WO2023203854A1 - 容器保管装置及び自動分析システム - Google Patents

容器保管装置及び自動分析システム Download PDF

Info

Publication number
WO2023203854A1
WO2023203854A1 PCT/JP2023/005622 JP2023005622W WO2023203854A1 WO 2023203854 A1 WO2023203854 A1 WO 2023203854A1 JP 2023005622 W JP2023005622 W JP 2023005622W WO 2023203854 A1 WO2023203854 A1 WO 2023203854A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
storage device
container storage
maintenance
Prior art date
Application number
PCT/JP2023/005622
Other languages
English (en)
French (fr)
Inventor
直樹 向山
由規 村松
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2023203854A1 publication Critical patent/WO2023203854A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the present invention relates to a container storage device and an automatic analysis system.
  • the automatic analysis system consists of an automatic analyzer that analyzes specific components contained in samples such as blood and urine, various pretreatment devices that perform various pretreatments on the sample, and an automatic analyzer that analyzes the sample container containing the sample. It is equipped with a conveyance device that conveys the In order to reduce downtime of an automatic analysis system, it is desirable that even when one of the plurality of devices is undergoing maintenance, another device, such as a transport device, can be operated. Further, in each device, it is desirable that other mechanisms can be operated while maintaining a specific mechanism.
  • Patent Document 1 discloses that in a sample processing apparatus that includes a plurality of mechanisms having one function, maintenance of a specific mechanism is performed by stopping power supply to the specific mechanism and continuing power supply to other mechanisms. Disclosed is the ability to operate other mechanisms while at the same time.
  • Patent Document 1 no consideration is given to performing maintenance while operating a specific unit in a mechanism whose power supply has been stopped. These mechanisms include power-required units that are maintained while being powered and operated, and power-free units that are maintained without being operated. Maintenance of power-requiring units is not possible if power supply to a specific mechanism is stopped.
  • the present invention provides a container storage device for storing containers, comprising a plurality of mechanisms having predetermined functions and a control section for controlling each mechanism, wherein the mechanism is provided with a power supply for maintenance. and a power-required unit that does not require power supply for maintenance.
  • the present invention is characterized in that when maintenance is performed on the power-requiring unit, power supply to the power-requiring unit is restarted while the communication is cut off.
  • the present invention is an automatic analysis system characterized in that the container storage device is located between an automatic analysis device that analyzes a specimen and a transport device that transports the specimen.
  • FIG. 1 is a diagram showing a configuration example of an automatic analysis system of Example 1.
  • FIG. The figure which shows the example of a structure of a quality control specimen storage device.
  • FIG. 3 is a diagram illustrating an example in which a quality control specimen storage device is connected to another device.
  • FIG. 7 is a diagram illustrating another example in which the quality control specimen storage device is connected to another device.
  • 1 is a diagram showing a configuration example of Example 1.
  • FIG. FIG. 3 is a diagram illustrating an example of the flow of processing in the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a second embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of Example 3.
  • the automatic analysis system illustrated in FIG. 1 includes an automatic analysis device 3, an input/recovery device 2, a quality control specimen storage device 1, a transport device 4, and a system control device 5.
  • the automatic analyzer 3 is a device that automatically analyzes specific components contained in samples such as blood and urine provided by patients.
  • the input/retrieval device 2 is a device into which a specimen container containing a specimen is inputted and retrieved.
  • the quality control sample storage device 1 is a device that stores sample containers in which quality control samples are accommodated.
  • the quality control specimen is a specimen used to manage the analysis accuracy of the automatic analyzer 3.
  • the transport device 4 is a device that transports sample containers to the automatic analyzer 3, the loading/recovering device 2, and the quality control specimen storage device 1.
  • the system control device 5 is a device that controls the automatic analyzer 3, the input/recovery device 2, and the quality control specimen storage device 1, and is configured by, for example, a computer.
  • the system control device 5 may be connected to input/output devices such as a keyboard, a mouse, a monitor, and a touch panel.
  • the input/output device inputs the operating conditions of the automatic analysis system and displays the operating status.
  • the automatic analysis system is equipped with a preprocessing device that performs preprocessing such as centrifuging blood, opening and closing sample containers, dispensing samples into smaller portions, and attaching labels to sample containers. Also good.
  • the input/retrieval device 2, the quality control sample storage device 1, the automatic analyzer 3, and the preprocessing device include a plurality of mechanisms having predetermined functions and a control unit that controls each mechanism.
  • the quality control specimen storage device 1 will be described as a container storage device, but it will also be described as a container storage device.
  • the present invention can also be applied to a pretreatment device as a container storage device.
  • the quality control sample storage device 1 includes a storage mechanism 13 and a transport mechanism 14.
  • the storage mechanism 13 is a mechanism that has a function of storing sample containers 15 that contain quality control samples, and includes a cold storage that keeps the plurality of sample containers 15 cool at a predetermined temperature.
  • the transport mechanism 14 is a mechanism that has a function of transporting the sample container 15, and includes a main line that transports the sample container 15 in a first direction, and a return line that transports the specimen container 15 in a direction opposite to the first direction.
  • the quality control sample storage device 1 is connected to other devices via a transport mechanism 14.
  • FIG. 3 shows a configuration example in which the quality control sample storage device 1 is connected between the transport device 4 and the loading/recovering device 2.
  • the sample container 15 is transported from the transport device 4 via the quality control sample storage device 1 to the input/retrieval device 2 via the main line, and from the input/retrieval device 2 via the quality control sample storage device 1 to the transport device by the return line. 4.
  • FIG. 4 shows a configuration example in which the quality control sample storage device 1 is connected only to the input/retrieval device 2.
  • a sample container 15 inserted by an operator from the emergency sample input port 16 is transported from the quality control sample storage device 1 to the input/collection device 2 via the main line, and from the input/collection device 2 to the quality control sample storage device 1 via the return line. transported to.
  • the quality control sample storage device 1 includes a storage mechanism 13 and a transport mechanism 14, as well as a control section 10, a power source 11, and power source switching sections 12a to 12d. Further, the storage mechanism 13 includes a cold storage disk drive unit 20, a cold storage shutter unit 21, etc., and the transport mechanism 14 includes a transfer line unit 22, a main line unit 23, etc. Furthermore, each unit includes control boards 30a-d, actuators 31a-d, and sensors 32a-d.
  • the control unit 10 is a device that controls the operation of each unit according to a control signal transmitted from the system control device 5, and is, for example, an MPU (Micro Processor Unit).
  • the power supply 11 is a device that supplies power to each unit via the power supply switching units 12a to 12d, and is, for example, a converter that converts commercial voltage to DC voltage.
  • the power supply switching units 12a to 12d are circuits that switch whether to continue or stop the power supply from the power supply 11 according to a control signal transmitted from the control unit 10.
  • the cold storage disk drive unit 20 is a unit that rotationally drives a cold storage disk on which a sample container is placed and arranged in a cold storage.
  • the rotation of the cold storage disk is achieved by operating the actuator 31a in response to a control signal from the control board 30a and by causing the sensor 32a to detect the position of the cold storage disk. Since maintenance of the cold storage disk drive unit 20 includes position adjustment in the rotational direction, it is necessary to supply power to rotate the cold storage disk. That is, the cold storage disk drive unit 20 is a power-requiring unit that requires power supply for maintenance.
  • the cold storage shutter unit 21 is a unit that drives a shutter that opens and closes the opening of the cold storage.
  • the shutter is opened and closed by operating the actuator 31b in response to a control signal from the control board 30b and by causing the sensor 32b to detect the shutter.
  • Maintenance of the cold storage shutter unit 21 involves only parts replacement and cleaning, and therefore no power supply is required. That is, the cold storage shutter unit 21 is a power-free unit that does not require power supply for maintenance.
  • the transfer line unit 22 is a unit that transfers sample containers between lines where sample containers are transported, and is a unit that requires power because maintenance includes horizontal position adjustment and requires power supply.
  • the main line unit 23 is a unit that transports the sample container in the first direction, and is a unit that does not require power because maintenance involves only parts replacement and cleaning, and no power supply is required.
  • the control unit 10 determines whether a maintenance start signal has been received. S601 is repeated until a maintenance start signal is received, and when the maintenance start signal is received, the process advances to S602. Note that the maintenance start signal is transmitted to the control unit 10 from the system control device 5 that has received the maintenance start operation by the operator.
  • the control unit 10 transmits a communication cutoff signal to the control boards 30a and 30b to stop the normal operation of the storage mechanism 13.
  • the control unit 10 transmits a power stop signal to the power supply switching units 12a and 12b, and stops the power supply from the power supply 11 to the storage mechanism 13.
  • the storage mechanism 13 becomes ready for maintenance, and the cold storage shutter unit 21, which is a power-free unit, is activated. will be maintained.
  • the cold storage disk drive unit 20, which is a power-requiring unit becomes ready for maintenance after power supply is resumed.
  • the communication between the control unit 10 and the transport mechanism 14 is not cut off, and the power supply to the transport mechanism 14 is not stopped, so the transport mechanism 14 continues to operate normally.
  • the control unit 10 determines whether a maintenance completion signal for the power-free unit has been received. S604 is repeated until the maintenance completion signal is received, and when the maintenance completion signal is received, the process advances to S605. Note that the maintenance completion signal is transmitted to the control unit 10 from the system control device 5 that has received the maintenance completion operation by the operator.
  • the control unit transmits a power supply signal to the power supply switching units 12a and 12b to restart power supply from the power supply 11 to the storage mechanism 13.
  • the cold storage disk drive unit 20 which is a power-requiring unit, becomes ready for maintenance.
  • the control boards 30a to 30d execute programs that perform specialized operations during maintenance of power-requiring units.
  • the program may be stored in a portable recording medium such as an SD card, and executed when the portable recording medium is inserted into the control boards 30a to 30d.
  • the control unit 10 determines whether a maintenance completion signal for the power-requiring unit has been received. S606 is repeated until the maintenance completion signal is received, and once the maintenance completion signal is received, the process advances to S607. Note that the maintenance completion signal is transmitted to the control unit 10 from the system control device 5 that has received the maintenance completion operation by the operator.
  • the control unit 10 transmits a communication restart signal to the control boards 30a and 30b, and causes the storage mechanism 13 to resume normal operation.
  • the process flow explained using FIG. 6 makes it possible to perform maintenance on not only power-requiring units of the storage mechanism 13 but also power-requiring units. Furthermore, since the transport mechanism 14 can be operated normally during maintenance of the storage mechanism 13, downtime of the automatic analysis system can be reduced.
  • FIG. 7 shows an external PC 40 added to FIG. 5, so the external PC 40 will be explained.
  • the external PC 40 is, for example, a notebook computer, and stores a program that performs specialized operations during maintenance of the power-requiring unit.
  • the external PC 40 is used while being connected to a control board 30a included in a unit to be maintained, for example, the cold storage disk drive unit 20.
  • Example 2 The flow of maintenance processing in Example 2 is similar to Example 1. That is, the cold storage shutter unit 21, which is a power-free unit, is maintained in a state where the communication between the control unit 10 and the storage mechanism 13 is cut off and the power supply to the storage mechanism 13 is stopped. Note that the transport mechanism 14 remains in normal operation. After the power supply to the storage mechanism 13 is resumed, the cold storage disk drive unit 20, which is a power-requiring unit, is maintained by executing a maintenance program stored in the external PC 40 connected to the control board 30a. . When the maintenance of the power-unnecessary unit and the power-required unit is completed, communication between the control unit 10 and the storage mechanism 13 is restarted, and the storage mechanism 13 returns to normal operation.
  • the cold storage shutter unit 21 which is a power-free unit
  • Embodiment 2 as in Embodiment 1, maintenance can be performed not only on units that do not require electricity but also on units that require electricity, and other mechanisms can be operated normally during maintenance, so that the automatic analysis system can be maintained. Downtime can be reduced.
  • FIG. 8 shows a switching hub 41 added to FIG. 7, so the switching hub 41 will be explained.
  • the switching hub 41 is a circuit that switches the destination of a control signal, is placed between the system control device 5 and the control unit 10, and is connected to all of the control boards 30a to 30d. Further, for example, when maintaining the quality control sample storage device 1, the external PC 40 in which a maintenance program is stored is connected to the switching hub 41. Then, the switching hub 41 switches the unit to be maintained, for example, the control board 30a of the cold storage disk drive unit 20, to become the destination of the control signal.
  • the flow of maintenance processing in the third embodiment is also similar to that in the first embodiment. That is, the cold storage shutter unit 21, which is a power-free unit, is maintained in a state where the communication between the control unit 10 and the storage mechanism 13 is cut off and the power supply to the storage mechanism 13 is stopped. Note that the transport mechanism 14 remains in normal operation. After the power supply to the storage mechanism 13 is resumed, a maintenance program stored in the external PC 40 connected to the control board 30a via the switching hub 41 is executed to drive the cold storage disk, which is the power-requiring unit. Unit 20 is maintained. When the maintenance of the power-unnecessary unit and the power-required unit is completed, communication between the control unit 10 and the storage mechanism 13 is restarted, and the storage mechanism 13 returns to normal operation.
  • the cold storage shutter unit 21 which is a power-free unit
  • Embodiment 3 as in Embodiment 1, it is possible to perform maintenance on not only units that do not require electricity but also units that require electricity, and other mechanisms can be operated normally during maintenance, making it easier for automatic analysis systems to operate. Downtime can be reduced. Furthermore, by using the switching hub 41, there is no need to reconnect the external PC 40 every time the unit to be maintained changes, so the operator's effort can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

電力不要ユニットだけでなく電力要ユニットもメンテナンス可能な容器保管装置及び自動分析システムを提供する。所定の機能を有する複数の機構と、各機構を制御する制御部を備え、容器を保管する容器保管装置であって、前記機構は、メンテナンスに電力供給を要する電力要ユニットと、メンテナンスに電力供給を要しない電力不要ユニットを有し、前記制御部は、前記電力要ユニット及び前記電力不要ユニットとの通信を遮断するとともに電力供給を停止し、前記電力要ユニットがメンテンナンスされるときに、前記通信を遮断したまま、前記電力要ユニットへの電力供給を再開させることを特徴とする。

Description

容器保管装置及び自動分析システム
 本発明は、容器保管装置及び自動分析システムに関する。
 自動分析システムは、血液や尿等の検体に含まれる特定成分を分析する自動分析装置と、検体に様々な前処理を行う各種の前処理装置と、検体が収容された検体容器を自動分析装置に搬送する搬送装置を備える。自動分析システムのダウンタイムを低減するには、複数の装置の中のある装置のメンテナンス中においても別の装置、例えば搬送装置は動作可能であることが望ましい。また各装置においても、特定の機構をメンテナンスしながらも他の機構は動作可能であることが望ましい。
 特許文献1には、一つの機能を有する機構を複数備える検体処理装置において、特定の機構への電力供給を停止するとともに他の機構への電力供給を継続することにより、特定の機構に対するメンテナンスをしながら他の機構を動作させることが開示される。
特許第6453078号公報
 しかしながら特許文献1では、電力供給が停止された機構の中の特定のユニットを動作させながらメンテナンスすることに対する配慮がなされていない。当該機構の中には電力供給をして動作させながらメンテナンスがなされる電力要ユニットと、動作させずにメンテナンスがなされる電力不要ユニットが含まれる。特定の機構への電力供給を停止したままでは電力要ユニットをメンテナンスできない。
 そこで本発明は、電力不要ユニットだけでなく電力要ユニットもメンテナンス可能な容器保管装置及び自動分析システムを提供することを目的とする。
 上記目的を達成するために本発明は、所定の機能を有する複数の機構と、各機構を制御する制御部を備え、容器を保管する容器保管装置であって、前記機構は、メンテナンスに電力供給を要する電力要ユニットと、メンテナンスに電力供給を要しない電力不要ユニットを有し、前記制御部は、前記電力要ユニット及び前記電力不要ユニットとの通信を遮断するとともに電力供給を停止し、前記電力要ユニットがメンテンナンスされるときに、前記通信を遮断したまま、前記電力要ユニットへの電力供給を再開させることを特徴とする。
 また本発明は、前記容器保管装置が、検体を分析する自動分析装置と、前記検体を搬送する搬送装置との間に位置することを特徴とする自動分析システムである。
 本発明によれば、電力不要ユニットだけでなく電力要ユニットもメンテナンス可能な容器保管装置及び自動分析システムを提供することができる。
実施例1の自動分析システムの構成例を示す図。 精度管理検体保管装置の構成例を示す図。 精度管理検体保管装置が他の装置と連結される一例を示す図。 精度管理検体保管装置が他の装置と連結される他の例を示す図。 実施例1の構成例を示す図。 実施例1の処理の流れの一例を示す図。 実施例2の構成例を示す図。 実施例3の構成例を示す図。
 以下、添付図面に従って容器保管装置及び自動分析システムの実施例について説明する。
 図1を用いて、実施例1の自動分析システムの構成例について説明する。図1に例示される自動分析システムは、自動分析装置3、投入・回収装置2、精度管理検体保管装置1、搬送装置4、システム制御装置5を備える。
 自動分析装置3は、患者から供される血液や尿等の検体に含まれる特定成分を自動的に分析する装置である。投入・回収装置2は、検体が収容される検体容器が投入されたり回収されたりする装置である。精度管理検体保管装置1は、精度管理検体が収容される検体容器を保管する装置である。精度管理検体とは、自動分析装置3の分析精度の管理に用いられる検体である。搬送装置4は、自動分析装置3や、投入・回収装置2、精度管理検体保管装置1へ検体容器を搬送する装置である。
 システム制御装置5は、自動分析装置3や、投入・回収装置2、精度管理検体保管装置1を制御する装置であり、例えばコンピュータによって構成される。システム制御装置5には、キーボードやマウス、モニタ、タッチパネル等の入出力装置が接続されても良い。入出力装置では、自動分析システムの動作条件が入力されたり、動作状況が表示されたりする。
 なお自動分析システムには、血液の遠心分離や検体容器の開栓・閉栓、検体を小分けにするための分注、検体容器へのラベル貼り付け等の前処理を行う前処理装置が備えられても良い。また投入・回収装置2や精度管理検体保管装置1、自動分析装置3、前処理装置は、所定の機能を有する複数の機構と、各機構を制御する制御部を備える。本実施例では、精度管理検体保管装置1が容器保管装置であるとして説明するが、一時的に検体や試薬等の液体を収容する容器を保管する投入・回収装置2、自動分析装置3、及び前処理装置に対しても、容器保管装置として本発明を適用することは可能である。
 図2を用いて、精度管理検体保管装置1の構成例について説明する。精度管理検体保管装置1は、保管機構13と搬送機構14を備える。保管機構13は、精度管理検体を収容する検体容器15を保管する機能を有する機構であり、複数の検体容器15を所定の温度で保冷する保冷庫を備える。搬送機構14は、検体容器15を搬送する機能を有する機構であり、検体容器15を第一の方向に搬送するメインラインと、第一の方向とは反対の方向に搬送する戻りラインを備える。精度管理検体保管装置1は搬送機構14を介して他の装置と連結される。
 図3には、精度管理検体保管装置1が搬送装置4と投入・回収装置2の間に連結される構成例が示される。検体容器15は、メインラインによって搬送装置4から精度管理検体保管装置1を介して投入・回収装置2へ搬送され、戻りラインによって投入・回収装置2から精度管理検体保管装置1を介して搬送装置4へ搬送される。
 図4には、精度管理検体保管装置1が投入・回収装置2だけに連結される構成例が示される。緊急検体投入口16からオペレータによって投入された検体容器15は、メインラインによって精度管理検体保管装置1から投入・回収装置2へ搬送され、戻りラインによって投入・回収装置2から精度管理検体保管装置1へ搬送される。
 図5を用いて、実施例1の容器保管装置の詳細構成について、精度管理検体保管装置1を例として説明する。精度管理検体保管装置1は、保管機構13と搬送機構14を備えるとともに、制御部10、電源11、電源切替部12a~dを備える。また保管機構13は、保冷ディスク駆動ユニット20や保冷庫シャッタユニット21等を有し、搬送機構14は移載ラインユニット22やメインラインユニット23等を有する。さらに各ユニットは制御基板30a~d、アクチュエータ31a~d、センサ32a~dを備える。
 制御部10は、システム制御装置5から送信される制御信号に従って、各ユニットの動作を制御する装置であり、例えばMPU(Micro Processor Unit)である。電源11は電源切替部12a~dを介して各ユニットへ電力供給する装置であり、例えば商用電圧を直流電圧に変換するコンバータである。電源切替部12a~dは、制御部10から送信される制御信号に従って、電源11からの電力供給を継続するか停止するかを切り替える回路である。
 保冷ディスク駆動ユニット20は、検体容器が載置され、保冷庫の中に配置される保冷ディスクを回転駆動させるユニットである。保冷ディスクの回転駆動は、制御基板30aからの制御信号によってアクチュエータ31aを動作させるとともにセンサ32aに保冷ディスクの位置を検出させることによってなされる。保冷ディスク駆動ユニット20のメンテンナンスには回転方向の位置調整が含まれるので、保冷ディスクを回転駆動させるための電力供給が必要である。すなわち保冷ディスク駆動ユニット20はメンテナンスに電力供給を要する電力要ユニットである。
 保冷庫シャッタユニット21は、保冷庫の開口を開け閉めするシャッタを駆動するユニットである。シャッタの開閉は、制御基板30bからの制御信号によってアクチュエータ31bを動作させるとともにセンサ32bにシャッタを検出させることによってなされる。保冷庫シャッタユニット21のメンテンナンスには部品交換や清掃が実施されるだけであるので、電力供給は不要である。すなわち保冷庫シャッタユニット21はメンテナンスに電力供給を要しない電力不要ユニットである。
 移載ラインユニット22は、検体容器が搬送されるライン間で検体容器を移載するユニットであり、メンテナンスには水平方向の位置調整が含まれ電力供給を要するので、電力要ユニットである。
 メインラインユニット23は、検体容器を第一の方向に搬送するユニットであり、メンテンナンスには部品交換や清掃が実施されるだけであって電力供給は不要であるので電力不要ユニットである。
 図6を用いて、精度管理検体保管装置1に対して実行されるメンテナンス処理の流れの一例についてステップ毎に説明する。
 (S601)
 制御部10は、メンテナンス開始信号を受信したか否かを判定する。メンテナンス開始信号が受信されるまでS601は繰り返され、受信されるとS602へ処理が進められる。なおメンテナンス開始信号は、オペレータによるメンテナンス開始操作を受け付けたシステム制御装置5から、制御部10へ送信される。
 (S602)
 制御部10は、制御基板30a、30bへ通信遮断信号を送信し、保管機構13の通常動作を停止させる。
 (S603)
 制御部10は、電源切替部12a、12bへ電力停止信号を送信し、電源11から保管機構13への電力供給を停止させる。S602での制御部10と保管機構13の通信遮断と、S603での保管機構13への電力供給の停止とによって、保管機構13はメンテンナンスできる状態になり、電力不要ユニットである保冷庫シャッタユニット21がメンテナンスされる。なお、電力要ユニットである保冷ディスク駆動ユニット20は、電力供給が再開されてからメンテナンスできる状態になる。また制御部10と搬送機構14との通信は遮断されておらず、搬送機構14への電力供給も停止されてないので、搬送機構14は通常動作のままである。
 (S604)
 制御部10は、電力不要ユニットのメンテナンス完了信号を受信したか否かを判定する。メンテナンス完了信号が受信されるまでS604は繰り返され、受信されるとS605へ処理が進められる。なおメンテナンス完了信号は、オペレータによるメンテナンス完了操作を受け付けたシステム制御装置5から、制御部10へ送信される。
 (S605)
 制御部は、電源切替部12a、12bへ電力供給信号を送信し、電源11から保管機構13への電力供給を再開させる。S605での保管機構13への電力供給の再開によって、電力要ユニットである保冷ディスク駆動ユニット20はメンテンナンスできる状態になる。なお制御基板30a~dでは、電力要ユニットのメンテナンス時に特化した動作をさせるプログラムが実行される。当該プログラムはSDカード等の可搬性記録媒体に保存され、可搬性記録媒体が制御基板30a~dに挿入されることで実行されるようにしても良い。
 (S606)
 制御部10は、電力要ユニットのメンテナンス完了信号を受信したか否かを判定する。メンテナンス完了信号が受信されるまでS606は繰り返され、受信されるとS607へ処理が進められる。なおメンテナンス完了信号は、オペレータによるメンテナンス完了操作を受け付けたシステム制御装置5から、制御部10へ送信される。
 (S607)
 制御部10は、制御基板30a、30bへ通信再開信号を送信し、保管機構13の通常動作を再開させる。
 図6を用いて説明した処理の流れにより、保管機構13の電力不要ユニットだけでなく電力要ユニットもメンテナンスできるようになる。また保管機構13のメンテナンス中に、搬送機構14を通常動作させることができるので、自動分析システムのダウンタイムを低減できる。
 実施例1では、可搬性記録媒体に保存された電力要ユニットのメンテナンス用プログラムを制御基板30a~dに実行させることについて説明した。実施例2では電力要ユニットのメンテナンス用プログラムが保存された外付けPCを制御基板30a~dのそれぞれに接続することにより、当該メンテナンス用プログラムを実行させることについて説明する。
 図7を用いて、実施例2の詳細構成について説明する。なお図7は図5に対して外付けPC40が追加されたものであるので、外付けPC40について説明する。外付けPC40は、例えばノートブック型のコンピュータであり、電力要ユニットのメンテナンス時に特化した動作をさせるプログラムが保存される。外付けPC40は、メンテナンスの対象となるユニット、例えば保冷ディスク駆動ユニット20が有する制御基板30aに接続されて用いられる。
 実施例2でのメンテナンス処理の流れは、実施例1に準ずる。すなわち、制御部10と保管機構13の通信が遮断され、保管機構13への電力供給が停止された状態で、電力不要ユニットである保冷庫シャッタユニット21がメンテナンスされる。なお搬送機構14は通常動作のままである。そして、保管機構13への電力供給の再開後に、制御基板30aに接続された外付けPC40に保管されるメンテナンス用プログラムを実行することで、電力要ユニットである保冷ディスク駆動ユニット20がメンテナンスされる。電力不要ユニットと電力要ユニットのメンテナンスが完了すると、制御部10と保管機構13の通信が再開され、保管機構13は通常動作に戻る。
 実施例2によれば、実施例1と同様に、電力不要ユニットだけでなく電力要ユニットもメンテナンスできるようになり、メンテナンス中に、他の機構を通常動作させることができるので、自動分析システムのダウンタイムを低減できる。
 実施例2では電力要ユニットのメンテナンス用プログラムが保存された外付けPC40を制御基板30a~dのそれぞれに接続させることについて説明した。実施例3では、スイッチングハブを介して外付けPC40と制御基板30a~dを接続することについて説明する。
 図8を用いて、実施例3の詳細構成について説明する。なお図8は図7に対してスイッチングハブ41が追加されたものであるので、スイッチングハブ41について説明する。スイッチングハブ41は、制御信号の送信先を切り替える回路であり、システム制御装置5と制御部10との間に配置され、制御基板30a~dの全てに接続される。また、例えば精度管理検体保管装置1をメンテナンスするときに、メンテナンス用プログラムが保存された外付けPC40がスイッチングハブ41に接続される。そしてメンテナンスの対象となるユニット、例えば保冷ディスク駆動ユニット20が有する制御基板30aが制御信号の送信先になるように、スイッチングハブ41によって切り替えられる。
 実施例3でのメンテナンス処理の流れも、実施例1に準ずる。すなわち、制御部10と保管機構13の通信が遮断され、保管機構13への電力供給が停止された状態で、電力不要ユニットである保冷庫シャッタユニット21がメンテナンスされる。なお搬送機構14は通常動作のままである。そして、保管機構13への電力供給の再開後に、制御基板30aにスイッチングハブ41を介して接続された外付けPC40に保管されるメンテナンス用プログラムを実行することで、電力要ユニットである保冷ディスク駆動ユニット20がメンテナンスされる。電力不要ユニットと電力要ユニットのメンテナンスが完了すると、制御部10と保管機構13の通信が再開され、保管機構13は通常動作に戻る。
 実施例3によれば、実施例1と同様に、電力不要ユニットだけでなく電力要ユニットもメンテナンスできるようになり、メンテナンス中に、他の機構を通常動作させることができるので、自動分析システムのダウンタイムを低減できる。またスイッチングハブ41が用いられることにより、メンテナンスの対象となるユニットが変わるたびに外付けPC40を接続し直さなくて済むので、オペレータの手間を軽減できる。
 以上、本発明の実施例について説明した。本発明は上記実施例に限定されるものではなく、発明の要旨を逸脱しない範囲で構成要素を変形しても良い。また、上記実施例に開示されている複数の構成要素を適宜組み合わせても良い。さらに、上記実施例に示される全構成要素からいくつかの構成要素を削除しても良い。
1:精度管理検体保管装置、2:投入・回収装置、3:自動分析装置、4:搬送装置、5:システム制御装置、10:制御部、11:電源、12a~d:電源切替部、13:保管機構、14:搬送機構、15:検体容器、16:緊急検体投入口、20:保冷ディスク駆動ユニット、21:保冷庫シャッタユニット、22:移載ラインユニット、23:メインラインユニット、23:メインラインユニット、30a~d:制御基板、31a~d:アクチュエータ、32a~d:センサ、40:メンテナンス用PC、41:スイッチングハブ。

Claims (8)

  1.  所定の機能を有する複数の機構と、各機構を制御する制御部を備え、容器を保管する容器保管装置であって、
     前記機構は、メンテナンスに電力供給を要する電力要ユニットと、メンテナンスに電力供給を要しない電力不要ユニットを有し、
     前記制御部は、前記電力要ユニット及び前記電力不要ユニットとの通信を遮断するとともに電力供給を停止し、前記電力要ユニットがメンテンナンスされるときに、前記通信を遮断したまま、前記電力要ユニットへの電力供給を再開させることを特徴とする容器保管装置。
  2.  請求項1に記載の容器保管装置であって、
     前記電力要ユニットは、前記電力不要ユニットがメンテナスされた後でメンテナンスされることを特徴とする容器保管装置。
  3.  請求項1に記載の容器保管装置であって、
     前記電力要ユニットは、前記電力要ユニットのメンテナンス時に特化した動作をさせるプログラムが実行されることによりメンテナンスされることを特徴とする容器保管装置。
  4.  請求項3に記載の容器保管装置であって、
     前記プログラムは、前記電力要ユニットに接続されるコンピュータに保存されることを特徴とする容器保管装置。
  5.  請求項4に記載の容器保管装置であって、
     前記コンピュータは、制御信号の送信先を切り替えるスイッチングハブを介して前記電力要ユニットに接続されることを特徴とする容器保管装置。
  6.  請求項1に記載の容器保管装置であって、
     精度管理検体が収容される検体容器を保管する機能を有する保管機構と、前記検体容器を搬送する機能を有する搬送機構を備えることを特徴とする容器保管装置。
  7.  請求項6に記載の容器保管装置であって、
     前記保管機構は前記電力要ユニットと前記電力不要ユニットを有し、前記搬送機構が動作しているときにメンテナンスされることを特徴とする容器保管装置。
  8.  請求項1に記載の容器保管装置が、検体を分析する自動分析装置と、前記検体を搬送する搬送装置との間に位置することを特徴とする自動分析システム。
PCT/JP2023/005622 2022-04-18 2023-02-17 容器保管装置及び自動分析システム WO2023203854A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022068149 2022-04-18
JP2022-068149 2022-04-18

Publications (1)

Publication Number Publication Date
WO2023203854A1 true WO2023203854A1 (ja) 2023-10-26

Family

ID=88419664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005622 WO2023203854A1 (ja) 2022-04-18 2023-02-17 容器保管装置及び自動分析システム

Country Status (1)

Country Link
WO (1) WO2023203854A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008558A (ja) * 2007-06-28 2009-01-15 A & T Corp 分注装置、検体検査システム、分注方法、検体検査方法、分注プログラム、検体検査プログラム
JP2015096816A (ja) * 2013-11-15 2015-05-21 株式会社サキコーポレーション 検査装置
JP2015108641A (ja) * 2011-03-04 2015-06-11 株式会社日立ハイテクノロジーズ 臨床検査用分析装置
WO2021240899A1 (ja) * 2020-05-29 2021-12-02 株式会社日立ハイテク 自動分析装置および自動分析装置におけるメンテナンス方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008558A (ja) * 2007-06-28 2009-01-15 A & T Corp 分注装置、検体検査システム、分注方法、検体検査方法、分注プログラム、検体検査プログラム
JP2015108641A (ja) * 2011-03-04 2015-06-11 株式会社日立ハイテクノロジーズ 臨床検査用分析装置
JP2015096816A (ja) * 2013-11-15 2015-05-21 株式会社サキコーポレーション 検査装置
WO2021240899A1 (ja) * 2020-05-29 2021-12-02 株式会社日立ハイテク 自動分析装置および自動分析装置におけるメンテナンス方法

Similar Documents

Publication Publication Date Title
US8409507B2 (en) Automatic analyzer
CN101253462B (zh) 用于提供电力的方法和装置以及显示设备
US20060248257A1 (en) Information processing apparatus, information processing system, and program
CN105389525B (zh) 刀片服务器的管理方法和***
WO2023203854A1 (ja) 容器保管装置及び自動分析システム
CN113692537A (zh) 自动分析装置以及自动分析装置中的维护引导方法
US20070124613A1 (en) Information processing apparatus and system control method
JPWO2014112259A1 (ja) 検体処理システム
US20040096361A1 (en) Automatic analyzer
JP2002357612A (ja) 検体処理システム
JP6143549B2 (ja) 検体処理システム
JP2002139504A (ja) 分析装置
US9430025B2 (en) Method for temporary operation of an automated analysis device in a standby mode
WO2020183597A1 (ja) 分析装置
GB2210217A (en) Computer software controlled power supply switch
US11549957B2 (en) Automated analyzer and automated analysis system
US20230056397A1 (en) Automatic analysis device, display system of automatic analysis device, and display method in automatic analysis device
JPH11224114A (ja) 数値制御装置及び数値制御装置の異常処理方法
EP0525800A2 (en) Battery-powered computer
EP3476293A1 (en) Mobile x-ray imaging device
JPH1138083A (ja) Icテストハンドラ
JPH1138084A (ja) Icテストハンドラ
JP2000176318A (ja) 自動遠心分離装置
JPH09130997A (ja) 電源分岐装置
JPH05233086A (ja) 計算機システムの自動運転制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23790219

Country of ref document: EP

Kind code of ref document: A1