WO2023202021A1 - 抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆 - Google Patents

抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆 Download PDF

Info

Publication number
WO2023202021A1
WO2023202021A1 PCT/CN2022/127817 CN2022127817W WO2023202021A1 WO 2023202021 A1 WO2023202021 A1 WO 2023202021A1 CN 2022127817 W CN2022127817 W CN 2022127817W WO 2023202021 A1 WO2023202021 A1 WO 2023202021A1
Authority
WO
WIPO (PCT)
Prior art keywords
snake
valve
damper
oil
rodless cavity
Prior art date
Application number
PCT/CN2022/127817
Other languages
English (en)
French (fr)
Inventor
曹洪勇
冯扬
韩旭
王旭
张振先
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Publication of WO2023202021A1 publication Critical patent/WO2023202021A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • B61F5/245Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes by active damping, i.e. with means to vary the damping characteristics in accordance with track or vehicle induced reactions, especially in high speed mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3292Sensor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • F16F9/5123Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity responsive to the static or steady-state load on the damper

Definitions

  • the present invention relates to the technical field of rail vehicles, and in particular to an anti-snake vibration damper, an anti-snake vibration damping system and a control method thereof, and a rail vehicle.
  • Anti-snake shock absorbers are one of the key components that affect the operational stability of rail vehicles. When rail vehicles operate under different conditions, they have different parameter requirements for shock absorbers, especially as rail vehicles operate across lines, across countries, and across regions. There are more and more situations, and the parameter requirements for shock absorbers are becoming more and more diverse. In view of this, how to design an anti-snake vibration damping system for rail vehicles to adapt to different operating conditions of the vehicle has become a technology in this field. Technical issues that personnel currently need to address.
  • the purpose of the present invention is to provide an anti-snake damper, an anti-snake damping system and a control method thereof, and a rail vehicle.
  • the working modes of the anti-snake damper include semi-active control mode, passive mode and small damping. mode, which can switch different working modes according to the different operating modes of the vehicle, improving the adaptability of the vehicle to different treads.
  • an anti-snake shock absorber which includes a hydraulic cylinder.
  • the hydraulic cylinder includes a cylinder body and a piston.
  • the piston is slidably disposed on the cylinder body, and the cylinder body is
  • the inner cavity is divided into a rod cavity and a rodless cavity, and the head of the piston is provided with an oil path that leads in one direction from the rodless cavity to the rod cavity;
  • the first branch oil passage is provided with a first switching valve and a damping valve
  • the second branch oil passage is provided with a first switching valve and a damping valve. It is equipped with an electromagnetic proportional valve and a second on-off valve on the third oil line;
  • the rodless cavity is connected to a first main oil circuit, and both the first branch oil circuit and the second branch oil circuit are connected to the first main oil circuit, so
  • the oil outlet of the oil storage tank is connected to the first main oil line, and the first main oil line is provided with a one-way valve that conducts one-way communication in the direction of the rodless chamber.
  • the rodless cavity is connected to a second main oil circuit
  • the third branch oil circuit is connected to the second main oil circuit
  • the second main oil circuit is connected to the second main oil circuit.
  • the damping valve on the first branch oil line is also connected in parallel with an unloading valve.
  • the present invention also provides an anti-snake vibration damping system for rail vehicles, including a controller and at least one anti-snake damper.
  • the anti-snake damper is the anti-snake damper described in any one of the above, and the The anti-snake damper is used to be installed between the vehicle body and the bogie; the controller is communicatively connected with the anti-snake damper to control the working status of each of the branch oil passages.
  • the anti-snake vibration damping system as described above also includes a driver, a first detection module and a second detection module, all three of which are communicatively connected with the controller;
  • the first detection module is installed on the anti-snake vibration absorber on the rail vehicle, for detecting the working information of the anti-snake damper
  • the second detection module is installed on the rail vehicle, for detecting the operation information of the rail vehicle;
  • the controller is used for detecting the operation information of the rail vehicle according to the first detection
  • the detection information of the module and the second detection module generates a driving signal for the driver to control the action of the anti-snake damper.
  • the first detection module includes a pressure sensor; the second detection module includes an acceleration sensor and a gyroscope, the acceleration sensor is installed on the bogie, and the gyroscope is installed on the vehicle body. .
  • the present invention also provides a control method for an anti-snake vibration damping system.
  • the anti-snake vibration damping system is the anti-snake vibration damping system described in any one of the above.
  • the control method includes:
  • the controller controls the anti-snake damper to switch to a semi-active mode.
  • the semi-active mode the first switching valve and the second switching valve are closed, and the first switching valve and the second switching valve are closed.
  • the electromagnetic proportional valves on the two oil lines adjust the damping force of the anti-snake damper;
  • the controller controls the anti-snake damper to switch to a small damping mode.
  • the small damping mode the first switch valve is opened, the second switch valve is closed, and the anti-snake damper is switched to a small damping mode.
  • the damping force of the serpentine shock absorber is reduced to the minimum value;
  • the controller controls the anti-snake damper to switch to the passive mode.
  • the passive mode the first switch valve is opened and the second switch valve is closed. The damping force of the anti-snake damper is adjusted through the unloading valve.
  • the control method determines the curve radius of the operating line of the rail vehicle by obtaining the operating parameters of the rail vehicle. If the curve radius is greater than the set value, it is determined that the rail vehicle is in a straight-line running state. If the curve radius is less than the set value, it is determined that the rail vehicle is in a curve operating state.
  • the present invention also provides a rail vehicle, including the anti-snake vibration damper described in any one of the above, or the anti-snake vibration damping system described in any one of the above.
  • the present invention optimizes the structure of the anti-snake shock absorber of the rail vehicle.
  • the working mode of the anti-snake shock absorber can be switched through the conduction status of each oil circuit, so that it has a semi-active mode, a small damping mode and a passive mode.
  • the semi-active mode is used when the vehicle is running in a straight line to adjust the unloading parameters in real time according to the different operating mileage to extend the rolling time. Repair cycle and reduce operating costs.
  • the small damping mode is used when the vehicle is running on curves, which can reduce the vehicle's rotational stiffness, increase the vehicle's curve passing speed, reduce wheel rail wear, and switch to passive mode when the system fails to ensure the normal operation of the vehicle. .
  • Figure 1 is a schematic structural diagram of an anti-snake vibration damping system according to an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of the anti-snake damper in a semi-active mode according to an embodiment of the present invention
  • Figure 3 is a schematic structural diagram of the anti-snake damper in a small damping mode according to an embodiment of the present invention
  • Figure 4 is a schematic structural diagram of the anti-snake damper in passive mode according to an embodiment of the present invention.
  • Anti-snake damper 10 controller 20, driver 30, acceleration sensor 40, gyroscope 50;
  • the first branch oil line a1 the first switching valve 21, the unloading valve 22, and the damping valve 23;
  • FIG. 1 is a schematic structural diagram of an anti-snake vibration reduction system according to an embodiment of the present invention.
  • Rail vehicles are equipped with anti-snake dampers 10. Since rail vehicles have different operating states, the parameter requirements for the anti-snake absorbers 10 are also different. In order to well adapt to the different operating states of rail vehicles, this embodiment provides The anti-snake damper 10 can adjust the working mode accordingly. Correspondingly, an anti-snake damping system is provided on the rail vehicle to switch the working mode of the anti-snake damper 10 according to the operating parameters of the rail vehicle.
  • the anti-snaking shock absorber system includes an anti-snake shock absorber 10.
  • the anti-snake shock absorber 10 is installed on the bogies at the front and rear ends of the vehicle body.
  • the anti-snake shock absorber 10 Connected between the car body and the bogie; along the width direction of the car body, anti-snake dampers 10 are installed on both sides of the bogie.
  • Figure 1 exemplarily shows four anti-snake dampers 10 installed on a car body.
  • two anti-snaking shock absorbers 10 can also be installed on each side of the bogie. In this way, eight anti-snake shock absorbers 10 are installed on one vehicle body. It can be set as needed for specific applications.
  • the anti-snake vibration damping system also includes a controller 20 .
  • the controller 20 is communicatively connected with each anti-snake vibration absorber 10 so as to control the working mode of the anti-snake vibration absorber 10 .
  • the anti-snake damping system also includes a driver 30 that communicates with the controller 20 .
  • the controller 20 is used to generate a driving signal for the driver 30 to control the action of the anti-snake damper 10 to switch the working state.
  • the controller 20 generates a driving signal based on the operating information of the rail vehicle and the operating information of the anti-snaking damper 10 .
  • the anti-snake vibration damping system includes a first detection module and a second detection module.
  • the controller 20 is also communicatively connected with the first detection module and the second detection module; wherein, the first detection module
  • the second detection module is installed on the anti-snake damper 10 and is used to detect the working information of the anti-snake damper 10.
  • the second detection module is installed on the rail vehicle and is used to detect the operation information of the rail vehicle.
  • the controller 20 can communicate with the rail vehicle. Communicate with the vehicle control system to obtain vehicle speed information.
  • the controller 20 can determine the track curve radius of the rail vehicle currently running based on the obtained vehicle operation information to determine whether the vehicle is running in a straight line or in a curve, thereby generating a working mode for controlling the anti-snake damper 10 .
  • the controller 20 also adjusts the anti-snake damper 10 in the current operating mode according to the vehicle operating information and the information of the first detection module, so that it meets the damping force required by the vehicle in the current operating state.
  • the second detection module includes an acceleration sensor 40 and a gyroscope 50. As shown in Figure 1, there are several acceleration sensors 40. In the example shown, two acceleration sensors 40 are installed on the front bogie and the rear bogie of the vehicle body. , two acceleration sensors 40 of the same bogie are installed at diagonal positions, and the yaw angle acceleration of the vehicle can be obtained through the detection signals of the acceleration sensors 40 .
  • the gyroscope 50 is installed on the vehicle body and is used to measure the angular velocity of the vehicle body.
  • the controller 20 can calculate the track curve radius of the vehicle based on the vehicle speed information, the measurement data of the gyroscope 50 and the measurement data of the acceleration sensor 40, and its calculation formula is It is a well-known formula in the industry and will not be described in detail here. Of course, there are many ways to obtain the track curve radius. According to the different information that needs to be obtained according to different calculation formulas, corresponding detection components can be set to detect the corresponding vehicle operating parameters.
  • the anti-snake damper 10 has three working modes through structural design (which will be described in detail below): semi-active mode, small damping mode and passive mode.
  • this embodiment also provides a control method for the anti-snake vibration reduction system, which specifically includes: when the rail vehicle runs in a straight line, the controller 20 generates a first drive signal and transmits it to the driver 30.
  • 30 causes the anti-snake damper 10 to operate according to the received first drive signal to switch to the semi-active mode; when the rail vehicle runs in a straight line, the controller 20 generates a second drive signal and transmits it to the driver 30.
  • the driver 30 operates according to the received first drive signal.
  • the second driving signal causes the anti-snake damper 10 to move to switch to the small damping mode; when a system failure occurs, such as when the gyroscope 50 is damaged or the acceleration sensor 40 is damaged, the driver 30 can control the anti-snake damper 10 to switch. to passive mode to ensure normal operation of the vehicle.
  • FIG. 2 to FIG. 4 Please refer to FIG. 2 to FIG. 4 below to describe the specific structure and each working mode of the anti-snake damper 10 provided in this embodiment.
  • the anti-snake damper 10 includes a hydraulic cylinder.
  • the hydraulic cylinder includes a cylinder 11 and a piston 12.
  • the piston 12 is slidably disposed in the cylinder 11 and divides the inner cavity of the cylinder 11 into a rod cavity and a rodless cavity.
  • the left cavity of the cylinder 11 is a rod cavity
  • the right cavity is a rodless cavity
  • the head of the piston 12 is also provided with a first single-way passage from the rodless cavity to the rod cavity.
  • To valve 13 To valve 13.
  • the cylinder body 11 of the hydraulic cylinder can be connected to the bogie, and the rod portion of the piston 12 can be connected to the vehicle body, or the cylinder body 11 can be connected to the vehicle body, and the rod portion of the piston 12 can be connected to the bogie.
  • the anti-snake damper 10 is also provided with three parallel branch oil passages connected between the rod cavity and the rodless cavity outside the cylinder 11.
  • the three branch oil passages will be referred to as the first branch below.
  • the first branch oil line a1 is provided with a first on-off valve 21 and an unloading valve 22.
  • the relevant parameters of the unloading valve 22 have been adjusted according to the vehicle type and other characteristics of the anti-snake damper 10. It is required to set it up.
  • the relevant structure of the unloading valve 22 can be replaced or adjusted;
  • the second oil line a2 is equipped with an electromagnetic proportional valve 31, and the opening pressure of the electromagnetic proportional valve 31 can be adjusted according to the actual application. It is set according to the demand. Generally speaking, its opening pressure is greater than the opening pressure of the unloading valve 22;
  • the third branch oil line a3 is provided with a second switching valve 41.
  • the anti-snake shock absorber 10 also includes an oil storage tank 52 for replenishing oil to the rodless cavity.
  • the rodless cavity of the cylinder 11 is connected with two main oil circuits, here called the first main oil circuit b1 and the second main oil circuit b2; the aforementioned first branch oil circuit a1 and the second branch oil line a2 are connected to the first main oil line b1, the oil storage tank 52 is also connected to the first main oil line b1, and there is also a first main oil line b1 between the oil storage tank 52 and the rodless cavity.
  • the second one-way valve 51 conducts one-way in the direction of the rodless cavity. The setting of the second one-way valve 51 can prevent the oil in the rodless cavity from flowing back to the oil storage tank 52; the aforementioned third branch oil path a3 and the second Main oil line b2 connection.
  • the rod cavity of the cylinder 11 is connected to a third main oil passage b3.
  • the aforementioned first branch oil passage a1, second branch oil passage a2 and third branch oil passage a3 are all connected to the third main oil passage b3 to simplify oil flow. road settings.
  • the second main oil line b2 is also connected to the oil storage tank 52 through the oil branch line c1, and a third on-off valve 61 is provided on the oil branch line c1.
  • the unloading valve 22 on the first branch oil line a1 is also connected in parallel with a damping valve 23.
  • Figure 2 shows a structural diagram of the anti-snake damper 10 in the semi-active mode.
  • the first switching valve 21, the second switching valve 41 and the third switching valve 61 are closed; at this time, when the rod part of the piston 12 of the hydraulic cylinder extends, as shown in the figure In the direction shown, that is, when the piston 12 moves to the left direction, that is, toward the rod cavity, the hydraulic oil flows out from the rod cavity of the cylinder 11 and passes through the electromagnetic proportional valve of the third main oil circuit b3 and the second branch oil circuit a2. 31 and the second one-way valve 51 of the first main oil line b1 flows into the rodless cavity of the cylinder 11. At the same time, the oil storage tank 52 can replenish oil to the rodless cavity through the first main oil line b1.
  • the damping force of the system is controlled by the electromagnetic
  • the proportional valve 31 adjusts; when the rod of the piston 12 of the hydraulic cylinder retracts, that is, when the piston 12 moves to the right direction, that is, toward the rodless chamber, the second one-way valve 51 of the first main oil line b1 is in a closed state. , the hydraulic oil in the rodless chamber flows to the rod chamber through the first one-way valve 13, and then flows into the oil storage tank 52 through the third main oil path b3 and the second branch oil path a2.
  • the damping force of the system is adjusted by the electromagnetic proportional valve 31.
  • the aforementioned first detection module installed on the anti-snaking shock absorber 10 is specifically a pressure sensor 70 for obtaining the oil pressure of the anti-snake shock absorber 10 .
  • the controller 20 operates according to the pressure sensor 70 and the aforementioned
  • the detection information of the acceleration sensor 40 can be used to calculate the currently required damping force through a pre-stored algorithm, thereby controlling the electromagnetic proportional valve 31 .
  • the algorithm used to obtain the damping force here is also a known algorithm in the industry. It is selected based on actual needs. The specific algorithm is not the core of this case.
  • the anti-snake damper 10 When the rail vehicle is running in a straight line, the anti-snake damper 10 is in the above-mentioned semi-active mode, and can adjust parameters such as unloading force and unloading speed in real time according to different operating mileage to extend the repair cycle and reduce operating costs.
  • the first switching valve 21 is closed, and the second switching valve 41 and the third switching valve 61 are opened; at this time, when the rod of the piston 12 of the hydraulic cylinder extends, as shown in the figure In the direction shown, that is, when the piston 12 moves to the left direction, that is, toward the rod cavity, the hydraulic oil flows out from the rod cavity of the cylinder 11 and passes through the third main oil passage b3 and the second branch of the third branch oil passage a3.
  • the switch valve 41 and the second main oil line b2 flow into the rodless cavity of the cylinder 11.
  • the oil storage tank 52 can replenish oil to the rodless cavity through the first main oil line b1, and the damping force of the anti-snake shock absorber 10 is reduced to Minimum; when the rod of the piston 12 of the hydraulic cylinder retracts, that is, when the piston 12 moves to the right direction, that is, toward the rodless chamber, the second one-way valve 51 of the first main oil line b1 is in a closed state, and the rodless
  • the hydraulic oil in the chamber flows to the rod chamber through the first one-way valve 13, and then flows into the rod chamber through the third main oil path b3, the third branch oil path a3 and the second main oil path b2.
  • the excess oil can be divided into The oil line c1 flows into the oil storage tank 52 .
  • the anti-snake damper 10 When the rail vehicle is running on a curve, the anti-snake damper 10 is in the above-mentioned small damping mode, which can reduce the vehicle's rotational stiffness, increase the vehicle's curve passing speed, and reduce wheel-rail wear.
  • the first switching valve 21 is opened, and the second switching valve 41 and the third switching valve 61 are closed; at this time, when the rod portion of the piston 12 of the hydraulic cylinder extends, as shown in the figure In the direction shown, that is, when the piston 12 moves to the left direction, that is, toward the rod cavity, the hydraulic oil flows out from the rod cavity of the cylinder 11 and passes through the damping valve 23 of the third main oil passage b3 and the first branch oil passage a1. and the first main oil line b1 flows into the rodless chamber.
  • the pressure increases to the set value of the unloading valve 22.
  • the damping force of the system is determined by the damping valve 23 and the unloading valve 22. Adjust together, and at the same time, the oil storage tank 52 can replenish oil to the rodless cavity through the first main oil line b1; when the rod of the piston 12 of the hydraulic cylinder retracts, that is, the piston 12 moves to the right direction, that is, toward the rodless cavity.
  • the second one-way valve 51 of the first main oil line b1 When , the second one-way valve 51 of the first main oil line b1 is in a closed state, and the hydraulic oil in the rodless chamber flows to the rod chamber through the first one-way valve 13, and then passes through the third main oil line b3 and the first branch oil Road a1 flows into the oil storage tank 52, and the damping force of the system is adjusted by the damping valve 23 and the unloading valve 22 together.
  • the system can switch to the above-mentioned passive mode to ensure the normal operation of the rail vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

一种抗蛇行减振器(10)、抗蛇行减振***及其控制方法和轨道车辆,该抗蛇行减振器(10),包括液压缸,液压缸包括缸体(11)和活塞(12),活塞(12)可滑动地设置于缸体(11),且将缸体(11)的内腔分隔为有杆腔和无杆腔,活塞(12)的头部内设有自无杆腔至有杆腔单向导通的油路;缸体(11)外在有杆腔和无杆腔之间设有三条并联的支油路,其中,第一支油路(a1)上设有第一开关阀(21)和阻尼阀(23),第二支油路(a2)上设有电磁比例阀(31),第三支油路(a3)上设有第二开关阀(41);还包括用于向无杆腔补油的储油箱(52)。该抗蛇行减振器(10)的工作模式包括半主动控制模式、被动模式及小阻尼模式,能够根据车辆运行模式的不同切换不同的工作模式,提高车辆对不同踏面的适应性。

Description

抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆
本申请要求于2022年04月19日提交中国专利局、申请号为202210411771.4、发明名称为“抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轨道车辆技术领域,特别是涉及一种抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆。
背景技术
抗蛇行减振器是影响轨道车辆运行稳定性的关键部件之一,轨道车辆在不同状态下运行时,对减振器的参数需求不同,特别是随着轨道车辆跨线、跨国、跨地区运行的情况越来越多,对减振器的参数需求也越来越多样化,有鉴于此,如何设计出一种轨道车辆用抗蛇行减振***,以适应车辆运行的不同状态成为本领域技术人员目前需要解决的技术问题。
发明内容
本发明的目的是提供一种抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆,通过结构设置使得抗蛇行减振器的工作模式包括半主动控制模式、被动模式及小阻尼模式,能够根据车辆运行模式的不同切换不同的工作模式,提高车辆对不同踏面的适应性。
为解决上述技术问题,本发明提供一种抗蛇行减振器,包括液压缸,所述液压缸包括缸体和活塞,所述活塞可滑动地设置于所述缸体,且将所述缸体的内腔分隔为有杆腔和无杆腔,所述活塞的头部内设有自所述无杆腔至所述有杆腔单向导通的油路;
所述缸体外在所述有杆腔和所述无杆腔之间设有三条并联的支油路,其中,第一支油路上设有第一开关阀和阻尼阀,第二支油路上设有电磁比例阀,第三支油路上设有第二开关阀;
还包括用于向所述无杆腔补油的储油箱。
如上所述的抗蛇行减振器,所述无杆腔连接有第一主油路,所述第一 支油路和所述第二支油路均与所述第一主油路连接,所述储油箱的出油口与所述第一主油路连接,所述第一主油路上设有向所述无杆腔方向单向导通的单向阀。
如上所述的抗蛇行减振器,所述无杆腔连接有第二主油路,所述第三支油路与所述第二主油路连接,所述第二主油路与所述储油箱之间还连接有分油路,所述分油路上设有第三开关阀。
如上所述的抗蛇行减振器,所述第一支油路上的所述阻尼阀还并联有卸荷阀。
本发明还提供一种轨道车辆的抗蛇行减振***,包括控制器和至少一个抗蛇行减振器,所述抗蛇行减振器为上述任一项所述的抗蛇行减振器,所述抗蛇行减振器用于安装在车体和转向架之间;所述控制器与所述抗蛇行减振器通信连接,以控制各所述支油路的工作状态。
如上所述的抗蛇行减振***,还包括驱动器、第一检测模块和第二检测模块,三者均与所述控制器通信连接;所述第一检测模块安装在所述抗蛇行减振器上,用于检测所述抗蛇行减振器的工作信息,所述第二检测模块安装在轨道车辆上,用于检测所述轨道车辆的运行信息;所述控制器用于根据所述第一检测模块和所述第二检测模块的检测信息生成驱动信号,以供所述驱动器控制所述抗蛇行减振器动作。
如上所述的抗蛇行减振***,所述第一检测模块包括压力传感器;所述第二检测模块包括加速度传感器和陀螺仪,所述加速度传感器安装于转向架,所述陀螺仪安装于车体。
本发明还提供一种抗蛇行减振***的控制方法,所述抗蛇行减振***为上述任一项所述的抗蛇行减振***,所述控制方法包括:
轨道车辆直线运行时,所述控制器控制所述抗蛇行减振器切换至半主动模式,处于所述半主动模式,所述第一开关阀和所述第二开关阀关闭,通过所述第二支油路上的所述电磁比例阀调节所述抗蛇行减振器的阻尼力;
轨道车辆曲线运行时,所述控制器控制所述抗蛇行减振器切换至小阻尼模式,处于所述小阻尼模式,所述第一开关阀打开,所述第二开关阀关闭,所述抗蛇行减振器的阻尼力降低至最小值;
所述抗蛇行减振***发生故障时,所述控制器控制所述抗蛇行减振器切换至被动模式,处于所述被动模式,所述第一开关阀打开,所述第二开关阀关闭,通过所述卸荷阀调节所述抗蛇行减振器的阻尼力。
如上所述的控制方法,通过获取所述轨道车辆的运行参数确定所述车辆的运行线路的曲线半径,若所述曲线半径大于设定值,则判定所述轨道车辆处于直线运行状态,所述曲线半径小于所述设定值,则判定所述轨道车辆处于曲线运行状态。
本发明还提供一种轨道车辆,包括上述任一项所述的抗蛇行减振器,或者,包括上述任一项所述的抗蛇行减振***。
本发明对轨道车辆的抗蛇行减振器进行了结构优化,通过其各支油路的导通情况可以切换抗蛇行减振器的工作模式,使其具有半主动模式、小阻尼模式和被动模式三者工作模式,从而可以根据轨道车辆的实际运行情况来选择合适的工作模式,具体来说,车辆直线运行时采用半主动模式,以根据运营里程的不同,实时调节卸荷参数,以延长镟修周期,降低运营成本,车辆曲线运行时采用小阻尼模式,可降低车辆回转刚度,提高车辆的曲线通过速度,降低轮轨磨耗,在***出现故障时切换至被动模式,以保证车辆的正常运行。
附图说明
图1为本发明所提供一种实施例中抗蛇行减振***的结构示意图;
图2为本发明所提供一种实施例中抗蛇行减振器处于半主动模式的结构示意图;
图3为本发明所提供一种实施例中抗蛇行减振器处于小阻尼模式的结构示意图;
图4为本发明所提供一种实施例中抗蛇行减振器处于被动模式的结构示意图。
附图标记说明:
抗蛇行减振器10,控制器20,驱动器30,加速度传感器40,陀螺仪50;
缸体11,活塞12,第一单向阀13;
第一支油路a1,第一开关阀21,卸荷阀22,阻尼阀23;
第二支油路a2,电磁比例阀31;
第三支油路a3,第二开关阀41;
第一主油路b1,第二单向阀51,储油箱52;
第二主油路b2,第三主油路b3;
分油路c1,第三开关阀61;
压力传感器70。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
为描述简洁和方便理解,下文结合抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆一并说明,有益效果部分不再重复论述。
请参考图1,图1为本发明所提供一种实施例中抗蛇行减振***的结构示意图。
轨道车辆都设有抗蛇行减振器10,因轨道车辆具有不同的运行状态,所以对抗蛇行减振器10的参数要求也不同,为了很好地适应轨道车辆的不同运行状态,本实施例提供的抗蛇行减振器10能够随之调节工作模式,相应地,在轨道车辆上设置有抗蛇行减振***,以根据轨道车辆的运行参数来切换抗蛇行减振器10的工作模式。
本实施例中,抗蛇行减振***包括抗蛇行减振器10,通常,在车体前端和后端的转向架上均安装有抗蛇行减振器10,具体来说,抗蛇行减振器10连接在车体和转向架之间;沿车体的宽度方向,转向架的两侧均安装有抗蛇行减振器10,图1示例性地示出了一个车体上安装有四个抗蛇行减振器10的结构,实际应用中,转向架的每侧也可以安装两个抗蛇行减振器10,这样,一个车体上安装有八个抗蛇行减振器10。具体应用时根据需要设置即可。
抗蛇行减振***还包括控制器20,控制器20与各抗蛇行减振器10通信连接,以便于控制抗蛇行减振器10的工作模式。
进一步,抗蛇行减振***还包括驱动器30,驱动器30与控制器20通信,控制器20用于生成驱动信号,以供驱动器30控制抗蛇行减振器10动作,从而切换工作状态。
具体的,控制器20根据轨道车辆的运行信息和抗蛇行减振器10的工作信息来生成驱动信号。
为获取轨道车辆的运行信息,该抗蛇行减振***包括第一检测模块和第二检测模块,显然,控制器20也与第一检测模块、第二检测模块通信连接;其中,第一检测模块安装在抗蛇行减振器10上,用于检测抗蛇行减振器10的工作信息,第二检测模块安装在轨道车辆上,用于检测轨道车辆的运行信息,控制器20可以与轨道车辆的整车控制***通信,以获取车速信息。
具体的,控制器20根据获取的车辆运行信息可以确定轨道车辆当前运行的轨道曲线半径,以判断车辆是处于直线运行还是曲线运行,从而来生成控制抗蛇行减振器10的工作模式。控制器20还根据车辆运行信息和第一检测模块的信息来调节当前工作模式下抗蛇行减振器10,以使其满足当前运行状态下车辆所需的阻尼力。
第二检测模块包括加速度传感器40和陀螺仪50,如图1所示,加速度传感器40设有若干,图示示例中,车体的前转向架和后转向架上均安装有两个加速度传感器40,同一转向架的两个加速度传感器器40安装在对角位置,通过加速度传感器40的检测信号可以获取车辆的偏航角加速度。
陀螺仪50安装在车体上,用于测量车体的角速度,控制器20根据车速信息、陀螺仪50的测量数据和加速度传感器40的测量数据可以计算出车辆运行的轨道曲线半径,其计算公式为业内已知公式,此处不赘述。当然,获取轨道曲线半径的方式有多种,根据不同的计算公式需要获取的不同信息,可以设置相应的检测元件来检测相应的车辆运行参数。
本实施例中,抗蛇行减振器10通过结构设计(下文将详细介绍)具有三种工作模式:半主动模式、小阻尼模式和被动模式。
基于前述抗蛇行减振***,本实施例还提供一种抗蛇行减振***的控制方法,具体包括:在轨道车辆直线运行时,控制器20生成第一驱动信号,并传递至驱动器30,驱动器30根据接收的第一驱动信号使抗蛇行减振器 10动作以切换至半主动模式;在轨道车辆直线运行时,控制器20生成第二驱动信号,并传递至驱动器30,驱动器30根据接收的第二驱动信号使抗蛇行减振器10动作以切换至小阻尼模式;在***发生故障,比如说陀螺仪50损坏或者加速度传感器40损坏时,驱动器30可控制抗蛇行减振器10动作以切换至被动模式,以确保车辆的正常运行。
下面请参考图2至图4,说明本实施例提供的抗蛇行减振器10的具体结构及各工作模式。
该抗蛇行减振器10包括液压缸,液压缸包括缸体11和活塞12,活塞12可滑动地设置于缸体11内,并将缸体11的内腔分隔为有杆腔和无杆腔,以图中所示方位,缸体11的左腔为有杆腔,右腔为无杆腔;活塞12的头部内还设有自无杆腔至有杆腔单向导通的第一单向阀13。
安装时,可将液压缸的缸体11与转向架连接,活塞12的杆部与车体连接,也可将缸体11与车体连接,活塞12的杆部与转向架连接。
该抗蛇行减振器10在缸体11外还设有连接在有杆腔和无杆腔之间的三条并联的支油路,为方便描述,下文将三条支油路称之为第一支油路a1、第二支油路a2和第三支油路a3。
如图所示,第一支油路a1上设有第一开关阀21和卸荷阀22,其中,在设置初始,卸荷阀22的相关参数就已根据车型等对抗蛇行减振器10的要求设置好,当然,后续若有需要,该卸荷阀22的相关结构可以替换或者调整;第二支油路a2上设有电磁比例阀31,该电磁比例阀31的开启压力可根据实际应用需求来设定,通常来说其开启压力大于卸荷阀22的开启压力;第三支油路a3上设有第二开关阀41。
该抗蛇行减振器10还包括用于向无杆腔补油的储油箱52。
具体的,为简化油路设置,缸体11的无杆腔连接有两条主油路,此处称之为第一主油路b1和第二主油路b2;前述第一支油路a1和第二支油路a2均与第一主油路b1连接,储油箱52也与第一主油路b1连接,储油箱52与无杆腔之间的第一主油路b1上还设有向无杆腔方向单向导通的第二单向阀51,该第二单向阀51的设置可避免无杆腔内的油液倒流回储油箱52;前述第三支油路a3与第二主油路b2连接。
缸体11的有杆腔连接有第三主油路b3,前述第一支油路a1、第二支 油路a2和第三支油路a3均与第三主油路b3连接,以简化油路设置。
进一步的,第二主油路b2还通过分油路c1与储油箱52连接,并在分油路c1上设有第三开关阀61。
进一步的,第一支油路a1上的卸荷阀22还并联有阻尼阀23。
如上设置后,参考图2,该图所示为抗蛇行减振器10处于半主动模式下的结构示意。
如图2所示,在半主动模式下,关闭第一开关阀21、第二开关阀41和第三开关阀61;此时,当液压缸的活塞12的杆部伸出时,以图中所示方向,即活塞12向左侧方向即向有杆腔方向移动时,液压油从缸体11的有杆腔流出,经第三主油路b3、第二支油路a2的电磁比例阀31和第一主油路b1的第二单向阀51流入缸体11的无杆腔,同时,储油箱52可经第一主油路b1向无杆腔补油,***的阻尼力由电磁比例阀31调节;当液压缸的活塞12的杆部缩回时,即活塞12向右侧方向即向无杆腔方向移动时,第一主油路b1的第二单向阀51处于关闭状态,无杆腔的液压油经第一单向阀13流向有杆腔,再经第三主油路b3、第二支油路a2流入储油箱52,***的阻尼力由电磁比例阀31调节。
在该实施例中,前述安装在抗蛇行减振器10上的第一检测模块具体为压力传感器70,用于获取抗蛇行减振器10的油液压力,控制器20根据压力传感器70和前述加速度传感器40的检测信息,通过预先存储的算法可计算出当前所需的阻尼力,从而对电磁比例阀31进行控制。这里获取阻尼力的算法也为业内的已知算法,具体根据实际需求来选择,具体的算法并非本案的核心。
轨道车辆直线运行时,抗蛇行减振器10处于上述半主动模式,可根据运营里程的不同,实时调节卸荷力、卸荷速度等参数,以延长镟修周期,降低运营成本。
如图3所示,在小阻尼模式下,关闭第一开关阀21,打开第二开关阀41和第三开关阀61;此时,当液压缸的活塞12的杆部伸出时,以图示所示方向,即活塞12向左侧方向即向有杆腔方向移动时,液压油从缸体11的有杆腔流出,经第三主油路b3、第三支油路a3的第二开关阀41和第二主油路b2流入缸体11的无杆腔,同时,储油箱52可经第一主油路b1向 无杆腔补油,抗蛇行减振器10的阻尼力降低到最小;当液压缸的活塞12的杆部缩回时,即活塞12向右侧方向即向无杆腔方向移动时,第一主油路b1的第二单向阀51处于关闭状态,无杆腔的液压油经第一单向阀13流向有杆腔,再经第三主油路b3、第三支油路a3和第二主油路b2流入有杆腔,多余的油液可经分油路c1流入储油箱52。
轨道车辆曲线运行时,抗蛇行减振器10处于上述小阻尼模式,可降低车辆回转刚度,提高车辆的曲线通过速度,降低轮轨磨耗。
如图4所示,在被动模式下,打开第一开关阀21,关闭第二开关阀41和第三开关阀61;此时,当液压缸的活塞12的杆部伸出时,以图中所示方向,即活塞12向左侧方向即向有杆腔方向移动时,液压油从缸体11的有杆腔流出,经第三主油路b3、第一支油路a1的阻尼阀23和第一主油路b1流入无杆腔,在压力增大的卸荷阀22的设定值时,可通过卸荷阀22进行卸荷,***的阻尼力由阻尼阀23和卸荷阀22一起调节,同时,储油箱52可经第一主油路b1向无杆腔补油;当液压缸的活塞12的杆部缩回时,即活塞12向右侧方向即向无杆腔方向移动时,第一主油路b1的第二单向阀51处于关闭状态,无杆腔的液压油经第一单向阀13流向有杆腔,再经第三主油路b3、第一支油路a1流入储油箱52,***的阻尼力由阻尼阀23和卸荷阀22一起调节。
轨道车辆的抗蛇行减振***出现故障时,比如说前述陀螺仪50或加速度传感器50损坏时,***可切换至上述被动模式,以保证轨道车辆的正常运行。
以上对本发明所提供的抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆均进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 抗蛇行减振器,其特征在于,包括液压缸,所述液压缸包括缸体和活塞,所述活塞可滑动地设置于所述缸体,且将所述缸体的内腔分隔为有杆腔和无杆腔,所述活塞的头部内设有自所述无杆腔至所述有杆腔单向导通的油路;
    所述缸体外在所述有杆腔和所述无杆腔之间设有三条并联的支油路,其中,第一支油路上设有第一开关阀和阻尼阀,第二支油路上设有电磁比例阀,第三支油路上设有第二开关阀;
    还包括用于向所述无杆腔补油的储油箱。
  2. 根据权利要求1所述的抗蛇行减振器,其特征在于,所述无杆腔连接有第一主油路,所述第一支油路和所述第二支油路均与所述第一主油路连接,所述储油箱的出油口与所述第一主油路连接,所述第一主油路上设有向所述无杆腔方向单向导通的单向阀。
  3. 根据权利要求1或2所述的抗蛇行减振器,其特征在于,所述无杆腔连接有第二主油路,所述第三支油路与所述第二主油路连接,所述第二主油路与所述储油箱之间还连接有分油路,所述分油路上设有第三开关阀。
  4. 根据权利要求3所述的抗蛇行减振器,其特征在于,所述第一支油路上的所述阻尼阀还并联有卸荷阀。
  5. 轨道车辆的抗蛇行减振***,包括控制器和至少一个抗蛇行减振器,其特征在于,所述抗蛇行减振器为权利要求1-4任一项所述的抗蛇行减振器,所述抗蛇行减振器用于安装在车体和转向架之间;所述控制器与所述抗蛇行减振器通信连接,以控制各所述支油路的工作状态。
  6. 根据权利要求5所述的抗蛇行减振***,其特征在于,还包括驱动器、第一检测模块和第二检测模块,三者均与所述控制器通信连接;所述第一检测模块安装在所述抗蛇行减振器上,用于检测所述抗蛇行减振器的工作信息,所述第二检测模块安装在轨道车辆上,用于检测所述轨道车辆的运行信息;所述控制器用于根据所述第一检测模块和所述第二检测模块的检测信息生成驱动信号,以供所述驱动器控制所述抗蛇行减振器动作。
  7. 根据权利要求6所述的抗蛇行减振***,其特征在于,所述第一检测模块包括压力传感器;所述第二检测模块包括加速度传感器和陀螺仪, 所述加速度传感器安装于转向架,所述陀螺仪安装于车体。
  8. 抗蛇行减振***的控制方法,其特征在于,所述抗蛇行减振***为权利要求5-7任一项所述的抗蛇行减振***,所述控制方法包括:
    轨道车辆直线运行时,所述控制器控制所述抗蛇行减振器切换至半主动模式,处于所述半主动模式,所述第一开关阀和所述第二开关阀关闭,通过所述第二支油路上的所述电磁比例阀调节所述抗蛇行减振器的阻尼力;
    轨道车辆曲线运行时,所述控制器控制所述抗蛇行减振器切换至小阻尼模式,处于所述小阻尼模式,所述第一开关阀打开,所述第二开关阀关闭,所述抗蛇行减振器的阻尼力降低至最小值;
    所述抗蛇行减振***发生故障时,所述控制器控制所述抗蛇行减振器切换至被动模式,处于所述被动模式,所述第一开关阀打开,所述第二开关阀关闭,通过所述卸荷阀调节所述抗蛇行减振器的阻尼力。
  9. 根据权利要求8所述的控制方法,其特征在于,通过获取所述轨道车辆的运行参数确定所述车辆的运行线路的曲线半径,若所述曲线半径大于设定值,则判定所述轨道车辆处于直线运行状态,所述曲线半径小于所述设定值,则判定所述轨道车辆处于曲线运行状态。
  10. 轨道车辆,其特征在于,包括权利要求1-4任一项所述的抗蛇行减振器,或者,包括权利要求5-7任一项所述的抗蛇行减振***。
PCT/CN2022/127817 2022-04-19 2022-10-27 抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆 WO2023202021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210411771.4 2022-04-19
CN202210411771.4A CN114738423B (zh) 2022-04-19 2022-04-19 抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆

Publications (1)

Publication Number Publication Date
WO2023202021A1 true WO2023202021A1 (zh) 2023-10-26

Family

ID=82282178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127817 WO2023202021A1 (zh) 2022-04-19 2022-10-27 抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆

Country Status (2)

Country Link
CN (1) CN114738423B (zh)
WO (1) WO2023202021A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738423B (zh) * 2022-04-19 2024-06-21 中车青岛四方机车车辆股份有限公司 抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882338A (ja) * 1994-09-09 1996-03-26 Kayaba Ind Co Ltd セミアクティブ制御用ダンパおよび制御システム
JP2002054675A (ja) * 2000-08-14 2002-02-20 Kayaba Ind Co Ltd 制振用ダンパ及び制振システム
CN1699781A (zh) * 2005-06-24 2005-11-23 浙江大学 车辆半主动悬挂用阻尼主动可调的液压减振器
CN102069813A (zh) * 2010-12-15 2011-05-25 青岛四方车辆研究所有限公司 开关式半主动悬挂***
CN110374950A (zh) * 2019-06-20 2019-10-25 中车青岛四方机车车辆股份有限公司 减振器的油路控制方法及油路结构、减振器、车辆
CN112648320A (zh) * 2020-12-29 2021-04-13 上海淅减汽车悬架有限公司 一种高频率响应阻尼可调半主动减振器
CN114738423A (zh) * 2022-04-19 2022-07-12 中车青岛四方机车车辆股份有限公司 抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714699B2 (ja) * 1995-03-31 2005-11-09 カヤバ工業株式会社 減衰力可変ダンパ
JP3966937B2 (ja) * 1997-02-28 2007-08-29 カヤバ工業株式会社 ダンパ装置
CN102537176B (zh) * 2012-03-13 2014-07-02 株洲南车时代电气股份有限公司 一种阀控式半主动减振器
JP6018675B2 (ja) * 2015-08-24 2016-11-02 Kyb株式会社 鉄道車両用制振装置
CN110329297B (zh) * 2019-06-19 2021-11-12 中车青岛四方机车车辆股份有限公司 一种抗蛇形减振***、减振控制方法及车辆
CN110360263B (zh) * 2019-06-20 2021-08-27 中车青岛四方机车车辆股份有限公司 半主动抗蛇行减振器及减振***、车辆
CN214146396U (zh) * 2020-12-31 2021-09-07 上海淅减汽车悬架有限公司 一种阻尼可调半主动减振器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0882338A (ja) * 1994-09-09 1996-03-26 Kayaba Ind Co Ltd セミアクティブ制御用ダンパおよび制御システム
JP2002054675A (ja) * 2000-08-14 2002-02-20 Kayaba Ind Co Ltd 制振用ダンパ及び制振システム
CN1699781A (zh) * 2005-06-24 2005-11-23 浙江大学 车辆半主动悬挂用阻尼主动可调的液压减振器
CN102069813A (zh) * 2010-12-15 2011-05-25 青岛四方车辆研究所有限公司 开关式半主动悬挂***
CN110374950A (zh) * 2019-06-20 2019-10-25 中车青岛四方机车车辆股份有限公司 减振器的油路控制方法及油路结构、减振器、车辆
CN112648320A (zh) * 2020-12-29 2021-04-13 上海淅减汽车悬架有限公司 一种高频率响应阻尼可调半主动减振器
CN114738423A (zh) * 2022-04-19 2022-07-12 中车青岛四方机车车辆股份有限公司 抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆

Also Published As

Publication number Publication date
CN114738423B (zh) 2024-06-21
CN114738423A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
RU2654429C1 (ru) Ходовая часть рельсового транспортного средства
US7887064B2 (en) Suspension system for vehicle
CN214057159U (zh) 一种电磁平衡式车辆液压悬架***
CN104999881B (zh) 一种双模式可切换的主动控制悬架
WO2023202021A1 (zh) 抗蛇行减振器、抗蛇行减振***及其控制方法和轨道车辆
US20140216871A1 (en) Damper for railway vehicles
JP7379537B2 (ja) セミアクティブアンチヨーダンパ、制振システム、および車両
JP2011088623A (ja) 鉄道車両の制振用ダンパ
CN104786772A (zh) 一种互联式空气悬架控制装置、控制***及其方法
JP2011037435A (ja) 積極的にトー調整するための装置
CN206277915U (zh) 液压互锁单元及使用该单元的悬架***、车辆
Darling et al. A theoretical investigation of a prototype active roll control system
US20180022179A1 (en) Active suspension systems
EP2871110B1 (en) Crosswind stabilisation method and associated rail vehicle
CN114670886B (zh) 一种轨道车辆互联式二系悬挂横向减振***
CN112572087A (zh) 一种电磁平衡式车辆液压悬架***及其控制方法
JP2006137294A (ja) 鉄道車両の振動制御装置
CN112238721B (zh) 一种车辆、互联式车辆悬架***及其控制方法
JP6794244B2 (ja) 鉄道車両の制振装置
JP4070677B2 (ja) 鉄道車両
CN108001149A (zh) 一种液压互锁单元及使用该单元的悬架***、车辆
JP7502496B2 (ja) 車軸を制御するための装置を備える鉄道車両のシャーシ
KR20100045009A (ko) 유압실린더의 유압을 이용한 반능동 현가장치 및 그 제어 방법
JPS59186708A (ja) 自動車のサスペンシヨン
CN217463026U (zh) 一种抗蛇行运动轨道车辆减振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22938243

Country of ref document: EP

Kind code of ref document: A1