WO2023199559A1 - High-frequency heating cooker - Google Patents

High-frequency heating cooker Download PDF

Info

Publication number
WO2023199559A1
WO2023199559A1 PCT/JP2023/000294 JP2023000294W WO2023199559A1 WO 2023199559 A1 WO2023199559 A1 WO 2023199559A1 JP 2023000294 W JP2023000294 W JP 2023000294W WO 2023199559 A1 WO2023199559 A1 WO 2023199559A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
table plate
heated
heating
infrared sensor
Prior art date
Application number
PCT/JP2023/000294
Other languages
French (fr)
Japanese (ja)
Inventor
恵 安島
香織 竹中
友秀 松井
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2023199559A1 publication Critical patent/WO2023199559A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Definitions

  • the present invention relates to a high-frequency cooking device that uses microwaves to cook food.
  • Some conventional high-frequency heating cookers set the cooking time using microwaves based on the preservation state of the food placed in the heating chamber.
  • the abstract of Patent Document 1 describes a high-frequency cooking device that "makes it possible to heat the object to an appropriate temperature regardless of the storage state, amount, or initial surface temperature of the object.”
  • a heating means for heating the object to be heated a table plate on which the object to be heated is placed in the heating chamber; a weight sensor for supporting the table plate and measuring the weight of the object to be heated; a temperature sensor that detects the temperature, and a control means that controls the heating means based on the detected values of the weight sensor and the temperature sensor so as to reach the finished temperature, and the control means is configured to control the heated
  • the temperature sensor detects a temperature rise when the object is being heated, and depending on the detected temperature rise, it is determined whether the object to be heated is in a frozen state or not, and the object to be heated is in a frozen state.
  • a device is disclosed that calculates a heating time according to storage conditions and
  • the high-frequency heating cooker of Patent Document 1 it is determined whether or not the object to be heated is in a frozen state based on the temperature rise of the object to be heated detected by the non-contact temperature sensor (infrared sensor). By calculating the cooking time according to the determination result, the object to be heated is appropriately cooked (see FIGS. 13 to 15 of the same document).
  • Patent Document 1 does not assume a situation in which one food is cooked and then another food is successively cooked, and the latter food may not be properly cooked in some cases. .
  • This problem will be specifically explained using an example of a situation in which rice is heated after heating a side dish.
  • the high-frequency heating device of Patent Document 1 misunderstands the high-temperature area on the top surface of the table plate (where the side dishes were placed until just before) as the object to be heated, and based on the temperature change there, inappropriately heats the rice. There was a possibility that the time would be calculated, and there was a risk that the rice would be insufficiently heated.
  • An object of the present invention is to provide a high-frequency heating cooker that can be specified.
  • the high-frequency heating cooker of the present invention has been made to achieve the above object, and includes a heating chamber housing a table plate, a microwave heating section that heats an object placed on the table plate, and a microwave heating section that heats an object placed on the table plate.
  • a heating chamber housing a table plate, a microwave heating section that heats an object placed on the table plate, and a microwave heating section that heats an object placed on the table plate.
  • an infrared sensor that detects temperatures at multiple locations on the top surface of the table plate; an outside temperature sensor that detects the outside temperature of the heating chamber; and a control unit that controls the microwave heating section based on the temperature detected by the infrared sensor.
  • the control unit calculates a temperature difference between the temperature outside the refrigerator and a temperature on the back side of the table plate, and a temperature difference between the temperature outside the refrigerator and the temperature on the front side of the table plate, and calculates the temperature difference between the outside temperature and the temperature on the front side of the table plate. If the difference is small, the back side temperature is used as the table plate temperature, and if the latter temperature difference is small, the front side temperature is used as the table plate temperature, and the area on the top surface of the table plate is used as the table plate temperature. A portion having a temperature difference from the table plate temperature is determined to be the placement area of the object to be heated.
  • the high-frequency heating cooker of the present invention when heating and cooking a plurality of objects to be heated in succession, even if the temperature of the place where the objects to be heated have risen during the previous heating, the current It is possible to specify the location where objects are installed.
  • FIG. 1 is a front perspective view of a heating cooker according to an embodiment.
  • FIG. 2 is a rear perspective view of the heating cooker according to one embodiment with the outer frame removed.
  • FIG. 3 is an enlarged sectional view illustrating a reference position of an infrared sensor.
  • FIG. 3 is an enlarged cross-sectional view illustrating the end point position of an infrared sensor.
  • FIG. 3 is an enlarged cross-sectional view illustrating a state in which the observation window of the infrared sensor is closed.
  • FIG. 3 is an explanatory diagram illustrating a temperature measurement area of an infrared sensor.
  • 1 is a flowchart illustrating the first stage of control of a heating cooker according to an embodiment.
  • 2 is a flowchart illustrating the latter stage of control of the heating cooker according to an embodiment.
  • FIG. 2 is a control block diagram of a heating cooker according to an embodiment. The figure explaining the heating time of the heating cooker based on one Example.
  • Figures 1 to 3 show the main parts of this embodiment.
  • Figure 1 is a perspective view of the cooking device main body as seen from the front side
  • Figure 2 is a perspective view of the main body of the cooking device viewed from the rear side with the outer frame removed.
  • the perspective view shown in FIG. 3 is a sectional view taken along the line AA in FIG.
  • the main body 1 of the cooking device places food to be heated in a heating chamber 28 and cooks the food using microwaves, heat from a heater, and superheated steam.
  • the door 2 is opened and closed to take food into and out of the heating chamber 28.
  • the heating chamber 28 is sealed, preventing leakage of microwaves used when heating food. Contains heater heat and superheated steam, making it possible to heat efficiently.
  • the handle 9 is attached to the door 2 to facilitate opening and closing of the door 2, and has a shape that is easy to grip with the hand.
  • the glass window 3 is attached to the door 2 so that the state of the food being cooked can be checked, and is made of glass that can withstand high temperatures caused by heat generated by a heater or the like.
  • the input unit 71 is provided on the operation panel 4 on the lower front side of the door 2, and includes an operation unit 6 for inputting a heating unit such as microwave heating or heater heating, heating time, heating temperature, etc. It is comprised of a display section 5 that displays the contents inputted from and the progress state of cooking.
  • a heating unit such as microwave heating or heater heating, heating time, heating temperature, etc.
  • the outer frame 7 is a cabinet that covers the top surface and left and right side surfaces of the main body 1 of the cooking device.
  • the water tank 42 is a container that stores water necessary for producing heated steam, and is provided at the lower front of the main body 1 of the heating cooker, and has a structure that can be attached and detached from the front of the main body 1 to supply water. and easy drainage.
  • the rear plate 10 forms the rear surface of the above-mentioned cabinet, and an external exhaust duct 18 is attached to the upper part to collect the steam discharged from the food and the cooling air (waste heat) after cooling the internal parts of the main body 1. 39 is discharged from the external exhaust port 8 of the external exhaust duct 18.
  • the machine room 20 is provided in a space between the bottom surface 28a of the heating chamber and the bottom plate 21 of the main body 1, and on the bottom plate 21 there is a magnetron 33 for heating food, a waveguide 47 connected to the magnetron 33, A control board 23 on which a control unit 23a (see FIG. 12) is mounted, various other components to be described later, a fan device 15 for cooling these various components, and the like are attached.
  • the bottom surface 28a of the heating chamber has a concave shape approximately in the center, and the rotating antenna 26 is installed in the bottom surface 28a, and the microwave energy radiated from the magnetron 33 is passed through the waveguide 47 and the output shaft 46a of the rotating antenna 26.
  • the heat flows into the lower surface of the rotary antenna 26 through the opening 47a, is diffused by the rotary antenna 26, and is radiated into the heating chamber 28.
  • An output shaft 46a of the rotary antenna 26 is connected to a rotary antenna drive section 46.
  • the fan device 15 is composed of a cooling fan attached to a cooling motor attached to the bottom plate 21.
  • the cooling air 39 generated by the fan device 15 cools the self-heating magnetron 33, an inverter circuit (not shown), the back weight sensor 25c, the left weight sensor 25b, etc. in the machine room 20. Further, the hot air flows between the outside of the heating chamber 28 and the outer frame 7 and between the hot air case 11a and the rear plate 10 as described above, cooling the outer frame 7 and the rear plate 10 while cooling the outer exhaust port 8 of the external exhaust duct 18. more excreted.
  • a duct 16a for cooling a hot air motor 13 (described later) and a duct 16b for cooling an infrared unit 50 housed in an infrared case 48 (described later) are provided, and the cooling air 39 that has cooled the infrared unit 50 is provided.
  • the exhaust heat (water vapor, etc.) in the heating chamber 28 is discharged from the opposite side of the exhaust duct 28e for discarding it, and then exhausted to the outside through the external exhaust duct 18.
  • the microwave heating section 330 (FIG. 12) includes a magnetron 33 and an inverter circuit (not shown), and is controlled by the control section 23a.
  • the temperature of an IGBT (not shown) in the inverter circuit is detected by an IGBT temperature sensor 101.
  • a hot air unit 11 is attached to the rear part of the heating chamber 28, and a hot air fan 32 is attached to the hot air unit 11 to efficiently circulate the air in the heating chamber 28.
  • An air passage is provided in the rear wall surface 28b of the heating chamber.
  • a hot air intake hole 31 and a hot air blowout hole 30 are provided.
  • the hot air fan 32 is rotated by the drive of the hot air motor 13 attached to the outside of the hot air case 11a, and the hot air heater 14 heats the circulating air.
  • the hot air unit 11 includes a hot air case 11a provided on the rear side of the heating chamber back wall surface 28b, and a hot air fan 32 and a hot air heater 14 located on the outer peripheral side thereof.
  • a hot air motor 13 is attached to the rear side of the hot air case 11a, and the motor shaft is connected to a hot air fan 32 through a hole provided in the hot air case 11a.
  • the temperature of the hot air motor 13 increases due to the heat from the heating chamber 28 and the hot air heater 14.
  • the hot air motor 13 is surrounded by a hot air motor cover 17 and is formed into a substantially cylindrical shape to connect the duct 16a to the hot air case 11a and the rear plate 10.
  • the upper end opening of the duct 16a is connected to the lower surface of the hot air motor cover 17, and the lower end opening of the duct 16a is connected to the outlet of the fan device 15, so that a part of the cooling air 39 from the fan device 15 is It is taken into the hot air motor cover 17.
  • a grill heating section 12 consisting of a heater is attached to the back side of the heating chamber top surface 28c of the heating chamber 28.
  • the grill heating section 12 is formed into a planar shape by winding a heater wire around a mica plate, and is pressed and fixed against the back side of the top surface of the heating chamber 28 to heat the top surface of the heating chamber 28 and heat the food in the heating chamber 28. It is baked using radiant heat.
  • an infrared unit 50 which will be described later, is provided on the back side of the heating chamber top surface 28c of the heating chamber 28, and is covered with an infrared case 48 to cool the infrared unit 50.
  • the duct 16b is located between the hot air case 11a and the rear plate 10, the upper end opening of the duct 16b is connected to the side surface of the infrared rays case 48, the lower end opening is connected to the upper surface of the hot air motor cover 17, and the cooling air from the fan device 15 is connected to the duct 16b. I'm trying to incorporate some of the 39.
  • An internal temperature sensor 80 that detects the ambient temperature of the heating chamber 28 (hereinafter referred to as “internal temperature Ti") is provided on the left back side of the heating chamber top surface 28c of the heating chamber 28.
  • a plurality of weight sensors 25 are provided on the bottom surface 28a of the heating chamber, for example, a left side weight sensor 25b, a right side weight sensor (not shown) on the left and right sides of the front side, and a back side weight sensor 25c at the center of the rear side.
  • a table plate 24 is placed thereon.
  • the table plate 24 is for placing food, and is made of a material that is heat resistant and has good microwave transparency so that it can be used for both heater heating and microwave heating.
  • the boiler 43 is attached to the outer surface of the hot air case 11a of the hot air unit 11, and exposes saturated steam to the inside of the hot air unit 11.
  • the saturated steam ejected into the hot air unit 11 is heated by the hot air heater 14 and becomes superheated steam.
  • the pump unit 87 pumps water from the water tank 42 to the boiler 43, and is composed of a pump and a motor that drives the pump. Adjustment of the amount of water supplied to the boiler 43 is determined by the ON/OFF ratio of the motor.
  • the heating parts include a range heating part 330, a hot air heater 14, a hot air motor 13, a grill heating part 12, a boiler 43, etc.
  • the infrared sensor 52 which is provided above the heating chamber 28 and detects the temperature of the heated object in a non-contact manner, will be described in detail with reference to FIGS. 4 to 9.
  • Figure 4 is an explanatory diagram of the operation of an infrared sensor when rice is heated in a bowl using the cross-sectional diagram shown in Figure 3.
  • Figure 5 is an illustration of the operation of an infrared sensor when rice is heated in a bowl using the cross-sectional diagram shown in Figure 3.
  • FIG. 6 is an explanatory enlarged view of the infrared sensor section showing the reference position.
  • FIG. 7 is an explanatory enlarged view of the infrared sensor showing the end point position.
  • FIG. 9 is an explanatory enlarged view of the infrared sensor showing a state in which the window is closed.
  • FIG. 9 is an explanatory view for explaining the field of view of the infrared sensor.
  • Reference numeral 51 denotes a motor, and the motor 51 is installed so that the direction of the motor 51 is parallel to the rotating shaft 51a and the inner wall surface 28b of the heating chamber.
  • the rotating shaft 51a rotates (drives) a cylindrical unit case 54 (described later), thereby rotating the board 53 on which the infrared sensor 52 housed in the unit case 54 is mounted, thereby directing the lens portion 52a of the infrared sensor 52.
  • the temperature can be detected by rotationally moving the range from the back side of the heating chamber bottom surface 28a (heating chamber back wall surface 28b side) to the heating chamber opening 28d.
  • the motor 51 uses a stepping motor, and under the control of a control section 23a provided on the control board 23, the rotating shaft 51a can be rotated in the normal direction, reverse direction, or rotated at a desired rotation angle.
  • the infrared sensor 52 is an infrared sensor that detects the temperature of the table plate 24 and the object to be heated 60c in a non-contact manner.
  • the infrared sensor 52 is configured by arranging eight infrared detection elements (for example, thermopiles) on a substrate 53 in a row in the direction of the rotation axis 51a. Therefore, the infrared sensor 52 of this embodiment can simultaneously detect the temperatures at eight locations on the table plate 24. Further, the infrared sensor 52 of this embodiment can detect the temperature of the entire area of the table plate 24 by rotating the substrate 53 on which the infrared detection element group is installed around the rotation axis 51a (see FIGS. 6 and 7). I have to.
  • Reference numeral 54 designates a cylindrical unit case, which has a substrate 53 disposed at its largest diameter portion and a window portion 54a through which the lens portion 52a of the infrared sensor 52 is exposed. Further, by incorporating carbon into the material of the unit case 54, the characteristic of the unit case 54 is made to be a conductive material, thereby preventing external noise from entering the unit case 54.
  • an air passage 55c with a gap is formed along the outer periphery of the unit case 54 so that cooling air can flow around the outer periphery of the unit case 54.
  • a shutter 55 is disposed in the air passage 55c, and an opening 55a and an opening 55b are provided in the air passage 55c to serve as an entrance and exit for the cooling air 39.
  • Reference numeral 56 denotes a positioning convex portion, and when the control unit 23a controls the rotation of the motor 51 so that the detection point of the infrared sensor 52 is aligned with the reference position (detection point a in FIG. 4), the reference position of the detection point of the infrared sensor 52 is set. In order to correct this, when the observation window 44a is closed by the shutter 55, the rotating shaft 51a is allowed to slip while the positioning protrusion 56 is in contact with a stopper (not shown) provided on the infrared case 48. , the position of the detection point a, which is the reference position controlled by the control unit 23a and the reference position detected by the infrared sensor 52, can be corrected.
  • Reference numeral 44a denotes an observation window provided in the observation section 44, which opens the range that is the visual field detected by the infrared sensor 52. Further, in order to prevent microwave leakage from the observation window 44a during microwave heating, a raised wall (burring) 44b of about 2 mm is provided outside the observation window 44a.
  • Numeral 49 is a convex portion that separates the infrared case 48 and the infrared unit 50 from the top surface 28c of the heating chamber.By making only the convex portion 49 in contact with the top surface 28c of the heating chamber, the grill heating section 12 and hot air are removed during heating. The temperature of the top surface 28c of the heating chamber heated by the heater such as the unit 11 is made difficult to be transmitted to the infrared unit 50.
  • Reference numeral 100 denotes an outside temperature sensor disposed on the board 53 in the infrared unit 50, which detects the outside temperature To outside the heating chamber 28.
  • the outside temperature To measured before the start of heating for the first time is almost equal to the room temperature outside the cooking device, and although the outside temperature To is higher than the room temperature outside the cooking device, it is lower than the inside temperature Ti.
  • FIG. 4 is a diagram illustrating the operation of the infrared sensor when heating rice in a bowl
  • FIG. 5 is a diagram illustrating the operation of the infrared sensor when heating frozen rice wrapped in plastic wrap.
  • the surface of the object to be heated 60c can be directly detected at the detection point f.
  • the surface of the object to be heated 60c is detected through the edible wrap.
  • the infrared sensor 52 measures 8 points at once, and moves the infrared sensor 52 14 times at 3 degrees each from the reference position (Fig. 4, detection point a) to the end point position (Fig. 4, detection point h) using the motor 51. , a total of 15 rows are measured by rotating and moving, and temperatures are detected at 120 locations: 8 points in the left-right direction x 15 rows in the front-back direction. From the end point position to the reference position, the infrared sensor 52 does not perform any measurement and directly returns to the reference position.
  • Temperature detection is carried out by moving the infrared sensor 52 14 times in increments of 3 degrees from the reference position to the end point position, measuring in 15 rows, and repeating the process of returning from the end point position to the reference position. Processing of the measured temperature will be described later.
  • the magnetron 33 stably transmits signals for 1 to 2 seconds.
  • the shutter 55 closes the observation window 44a (see FIG. 8) to prevent noise from entering the infrared sensor 52 due to unstable transmission when the magnetron 33 starts transmitting.
  • the control unit 23a controls the rotating shaft 51a of the motor 51 to rotate to the reference position.
  • the unit case 54 is rotated, and the orientation of the lens portion 52a of the infrared sensor 52 is also rotated to a position where the detection point a at the reference position can be detected (see FIGS. 4 and 6).
  • the cooling air 39 flows through the lens portion 52a of the infrared sensor 52 and flows from the sensor window portion 44a to the heating chamber 28, thereby preventing dirt from adhering to the lens portion 52a.
  • the temperature of the heated object 60c is detected from the reference position (detection point a) to the detection point b and c of the table plate 24, and when the unit case 54 is further rotated, The temperature outside the bowl (container 60) is detected in the height direction, and the temperature from detection point d to detection point e is detected. After the detection point reaches the top of the opening of the bowl (container 60), the temperature on the surface of the heated object 60c is detected at the detection point f, and then the temperature inside the bowl (container 60) is detected at the detection point g. Then, the temperature of the table plate 24 is detected at a detection point h.
  • Detection of the temperature in the temperature detection range from detection point a to detection point h is performed on one side of the outward rotation of the unit case 54, and once the temperature has been detected up to the end point, the temperature is not detected on the return trip without measuring it midway. Instead, return to the reference position again and repeat the process from detection point a to detection point h in sequence.
  • the number of temperature detections can be changed as desired, and the detection points a to h described above are illustrative examples and measure 15 columns of data as described above.
  • temperature detection is performed by stopping the rotation of the motor 51 while the temperature is being detected, and then rotating the motor 51 after the temperature has been detected. In order to accurately detect temperature, it is better to stop rotation and measure.
  • the rotation of the unit case 54 is stopped and detected, after detection, it is rotated at a certain angle, the rotation is stopped and detected, and after detection, it is rotated at a certain angle, which are repeated to form a grid pattern. to measure the temperature distribution. By doing so, the entire surface of the table plate 24 is evenly measured by measuring the temperature at a fixed position at equal angles.
  • the infrared sensor 52 is provided at approximately the center in the left-right direction of the heating chamber top surface 28c inside an imaginary line extending perpendicularly to the heating chamber top surface 28c from the four sides of the table plate 24 placed on the heating chamber bottom surface 28a. There is.
  • the field of view of the infrared sensor 52 is such that the detection point a and the detection point h are roughly set in a range that detects the temperature of the front and rear flanges of the table plate 24, and the sensors on both sides of the arrayed plurality of elements of the infrared sensor 52 are set on the table plate 24.
  • the temperature of the left and right flange portions of 24 is approximately determined within the range for detecting the temperature. By doing so, it becomes possible to accurately detect the temperature of the object to be heated 60c placed approximately at the center of the table plate 24. Further, it is better to rotate the infrared sensor 52 so that the temperature measurement range is wide, so as to detect the temperature of the object to be heated 60c placed in the container 60.
  • the temperature of the object to be heated 60c in the bowl can be detected at the detection point b located approximately below the infrared sensor 52, and the temperature of the object to be heated 60c in the bowl can be detected.
  • the infrared sensor 52 is provided approximately in the center of the heating chamber 28 in the left and right direction, the infrared sensors 52 are arranged in a line provided in the infrared sensor 52.
  • the temperature of the object to be heated 60c can be detected by the eight-element infrared sensors on both sides.
  • the weight information is light and the temperature distribution is recognized to be increasing over a wide range from the weight information from the weight sensor 25 and the temperature distribution information detected by the infrared sensor 52, it can be determined that the object to be heated 60c is thin and wide.
  • the method of detecting the temperature of the object to be heated 60c placed in the container 60 has been described in detail. Since the temperature of the side surface and the top surface can be detected, it is possible to detect the temperature distribution of the heated object 60c in detail.
  • the infrared detection element (thermopile) used in the infrared sensor 52 of this embodiment is an element that outputs the average value of the temperature of the object to be measured within the field of view as the detected temperature. Therefore, when the object to be heated 60c and the table plate 24 are present within the field of view of the infrared detection element, not only the temperature of both but also the area ratio of both within the field of view will be reflected in the measured temperature.
  • the infrared sensor 52 of this embodiment measures the upper surface of the table plate 24 by dividing it into a plurality of regions so that the approximate size and shape of the object to be heated 60c placed on the table plate 24 can be recognized. For example, in the case of an infrared sensor 52 having eight infrared detection elements, by moving the rotating shaft 51a of the motor 51 14 times by 3 degrees, the upper surface of the table plate 24 can be moved 120 ( The temperature can be measured in 8 ⁇ 15) areas.
  • each of the 120 squares shown in FIG. 9 will be referred to as a pixel.
  • This pixel is set at a viewing angle that is approximately 50% or more of the directional characteristic of the infrared sensor 52.
  • the output from the infrared sensor 52 includes all objects to be measured within the field of view (100% viewing angle), including the following: This includes a pixel whose viewing angle has a viewing angle of 50% or more of the directional characteristic, a plurality of pixels adjacent to the pixel, and a wall surface of the heating chamber 28 other than the table plate 24. Therefore, it is necessary to roughly calculate the temperature of the heated object 60c by correcting the detected temperature.
  • the information necessary for the correction is the table plate temperature Tt, the recognition (judgment) of the heated object 60c, and the size and temperature of the recognized heated object 60c.
  • the table plate temperature Tt is a temperature suitable for use after detecting the back side temperature Tb (average temperature of 8 pixels on the back side) and the front side temperature Tf (average temperature of 8 pixels on the front side) of the table plate 24. is the table plate temperature Tt. Note that the details of which one to select as the table plate temperature Tt will be described later.
  • the object to be heated 60c is recognized by recognizing a pixel having a temperature difference of a predetermined value or more with respect to the table plate temperature Tt (that is, the temperature Tb on the back side or the temperature Tf on the front side of the table plate 24) as the object to be heated 60c. do.
  • the object to be heated 60c may be at a wide range of temperatures such as frozen, refrigerated, or room temperature, the following determination method is used to recognize the object to be heated 60c.
  • the temperature of the heating cooker is about the same as room temperature, except immediately after it is used for heating.
  • the temperature of the heated object 60c is lower than the table plate temperature Tt.
  • the object to be heated 60c has been recognized when the lowest temperature of each detected pixel is lower than the table plate temperature Tt by a specific temperature.
  • the size of the heated object 60c is determined by a collection of pixels indicating temperatures included in a pre-confirmed temperature range corresponding to the difference between the table plate temperature Tt and the minimum temperature from the lowest temperature. (For example, the shaded area in FIG. 9).
  • the lowest temperature is recognized as the temperature of the object to be heated 60c, and the detected temperature of the object to be heated 60c is corrected according to the emissivity of the object to be heated 60c and calculated as the initial temperature of the object to be heated 60c.
  • the reason why the detected temperature is corrected according to the emissivity is that even if the temperature of the heated object 60c is the same, if the emissivity is different, the temperature measured by the infrared sensor 52 will be different, so it is necessary to correct the temperature according to the emissivity. This is because there is. Note that the emissivity of the heated object 60c can be specified according to a set menu.
  • the heated object 60c if the heated object 60c is higher than the table plate temperature Tt, in order to accurately recognize the heated object 60c, the heated object 60c must be It is determined that the heated object 60c has been recognized.
  • the size of the heated object 60c is a collection of pixels indicating temperatures included in a pre-confirmed temperature range corresponding to the difference between the maximum temperature and the table plate temperature Tt. It is recognized as the size of the object 60c.
  • the maximum temperature is recognized as the temperature of the object to be heated 60c, and the detected temperature of the object to be heated 60c is corrected according to the emissivity of the object to be heated 60c and calculated as the initial temperature of the object to be heated 60c.
  • the table plate temperature Tt and the temperature of the object to be heated 60c are equal. Therefore, no specific temperature difference is required between the detected temperature of each pixel and the table plate temperature Tt. Therefore, if it is not determined to be on either side of the specific temperature difference assuming that the object to be heated 60c is frozen or refrigerated, or the temperature difference assuming that the object to be heated 60c is higher than the table plate temperature Tt, The entire area of the table plate temperature Tt is recognized as the object to be heated 60c.
  • the temperature rises, and the temperature at the position where this rise exceeds a specific temperature is re-recognized as the detected temperature of the object to be heated 60c, and the pixels where the specific temperature has increased are collected. This is re-recognized as the size of the object to be heated 60c.
  • the detected temperature of the object to be heated 60c is corrected according to the emissivity of the object to be heated 60c and calculated as the initial temperature of the object to be heated 60c.
  • This microwave heating control mainly determines the table plate temperature Tt in the first stage flowchart shown in FIG. 10, and mainly determines the microwave heating mode in the second stage flowchart shown in FIG.
  • step S1 in FIG. 10 the user opens the door 2 of the heating chamber 28, places the container 60 containing the object to be heated 60c on the table plate 24, and then closes the door 2. Then, the user selects the auto menu using the input section 71.
  • step S2 the user uses the input unit 71 to adjust the finish of the cooking. Specifically, one of “strong”, “slightly strong”, “medium”, “slightly weak”, and “weak” is selected from the finish adjustment K prepared in advance.
  • “medium” of the finishing adjustment K means finishing at a standard temperature
  • “strong” means finishing at a higher finishing temperature
  • “weak” means finishing at a lower finishing temperature.
  • step S3 the user presses the start button on the input unit 71.
  • step S4 the weight sensor 25 detects the total weight W of the object to be heated 60c and the container 60 placed on the table plate 24.
  • step S5 the internal temperature sensor 80 detects the internal temperature Ti.
  • step S6 the control unit 23a determines whether the internal temperature Ti is higher than a predetermined temperature. When the internal temperature Ti is higher than the predetermined temperature, the internal high temperature mode is entered and the object to be heated 60c is heated. On the other hand, if not, the process proceeds to step S7.
  • the internal high temperature mode means that when the temperature of the heating chamber 28 is high, such as immediately after oven cooking, the infrared sensor 52 cannot accurately detect the temperature of the object to be heated 60c, so the infrared sensor 52 cannot be used.
  • This mode allows you to heat in the microwave without heating. Therefore, in this mode, the user selects whether the storage state of the heated object 60c is room temperature/refrigerated or frozen using the input unit 71, and based on this selection result and the detected weight W, the heated object 60c is exposed to the input temperature. The total heating time is calculated based on the result of confirming in advance the heating time enough to heat the heating object 60c, and the heating is performed.
  • step S7 the infrared sensor 52 detects the back side temperature Tb and front side temperature Tf of the top surface of the table plate (see FIG. 9), and the outside temperature sensor 100 detects the outside temperature To of the outside of the heating chamber 28. .
  • step S8 the control unit 23a compares the temperature difference between the back side temperature Tb and the outside temperature To, and the temperature difference between the front side temperature Tf and the outside temperature To, and if the former temperature difference is small, the control section 23a advances to step S9. If the latter temperature difference is small, the process advances to step S10.
  • step S9 the control unit 23a adopts the back side temperature Tb, which is closer to the outside temperature To, as the table plate temperature Tt.
  • step S10 the control unit 23a adopts the near side temperature Tf, which is closer to the outside temperature To, as the table plate temperature Tt.
  • step S11 of FIG. 11 the control unit 23a determines the placement area of the object to be heated 60c based on the temperature of each pixel on the top surface of the table plate. Through this step, a placement area for the object to be heated 60c as illustrated by the hatched area in FIG. 9 is specified.
  • step S12 the control unit 23a determines whether the table plate temperature Tt adopted in step S9 or step S10 is higher than a predetermined temperature. If the table plate temperature Tt is high, the process proceeds to step S16; otherwise, the process proceeds to step S13. Note that if the table plate temperature Tt is determined to be high in this step, it is assumed that the table plate temperature Tt is high as a result of another microwave cooking being executed immediately before the current microwave cooking. I can do it.
  • step S13 the control unit 23a determines whether the IGBT temperature detected by the IGBT temperature sensor 101 is higher than a predetermined temperature. If the IGBT temperature is high, the process proceeds to step S14; otherwise, the process proceeds to step S15. Note that if the IGBT temperature is determined to be high in this step, the IGBT that supplies power to the microwave heating section 330 has become high temperature as a result of another microwave cooking being executed immediately before the current microwave heating. It can be estimated that
  • step S14 the control unit 23a determines whether the maximum temperature among the temperatures of each pixel on the top surface of the table plate measured by the infrared sensor 52 is higher than the temperature obtained by adding a predetermined temperature to the outside temperature To. . If the maximum temperature is high, the process proceeds to step S16; otherwise, the process proceeds to step S15. In addition, if it is determined that the top surface of the table plate is locally high temperature in this process, as a result of another microwave cooking being executed immediately before the current microwave cooking, the table plate may be affected by the heat of the previously heated object. It can be inferred that the upper surface is locally hot.
  • step S15 the control unit 23a detects the initial temperature Ts of the heated object 60c based on the temperature measured by the infrared sensor 52 at the pixel determined to be the heated object region in step S11, and detects the initial temperature Ts of the heated object 60c based on the initial temperature Ts.
  • the storage state of the object to be heated 60c is classified as frozen, refrigerated, or room temperature. Thereafter, depending on the state of the classified object to be heated 60c, cooking is performed in the normal heating mode.
  • the normal heating mode is a heating mode that is selected when the temperature of the object to be heated 60c can be detected correctly by the infrared sensor 52, and similarly to conventional heating control, the temperature of the object to be heated 60c is adjusted to the desired level for cooking. Heating ends when the end temperature is reached.
  • step S16 the control unit 23a detects the initial temperature Ts of the heated object 60c based on the temperature measured by the infrared sensor 52 at the pixel determined to be the heated object region in step S11, and detects the initial temperature Ts of the heated object 60c based on the initial temperature Ts. Then, the storage state of the heated object 60c is classified as either frozen or non-frozen. Thereafter, depending on the state of the classified object to be heated 60c, cooking is performed in the placement location high temperature mode.
  • Placement location high temperature mode indicates that there is evidence that another item was being microwaved immediately before this microwave cooking (the back or front side of the table plate is high temperature, or the table plate is locally high temperature). ), if there is a possibility that the infrared sensor 52 misunderstands the temperature of the heated object 60c due to the trace, the heated object 60c is This heating mode calculates and heats the microwave heating time long enough to heat the object 60c to an appropriate temperature.
  • the total heating time when the placement location high temperature mode is selected is the sum of the preceding sensing time t1 and the subsequent microwave heating time t2.
  • the preceding sensing time t1 is a period for performing sensing processing, and the weight W and storage state of the object to be heated 60c are determined.
  • the subsequent microwave heating time t2 is calculated using one of the following formulas based on the weight W of the object to be heated 60c determined by sensing and the storage state.
  • k1 is a coefficient depending on the finish adjustment K setting, for example, 1.5 for "strong” setting, 1.2 for "slightly strong” setting, and 1.2 for “medium” setting. is 1, 0.8 for the "slightly weak” setting, and 0.5 for the "weak” setting.
  • k 2 to k 5 are predetermined positive numbers, and values are set such that t2a in equation 1 and t2b in equation 2 are always positive values when the initial temperature Ts of the heated object is below the cooking completion temperature. be done.
  • the heated object 60c can be classified as frozen or other than frozen.
  • the microwave heating time t2 required to heat the object 60c to an appropriate temperature can be calculated, and by using the microwave heating time t2, the object to be heated 60c can be heated to an appropriate temperature.
  • the high-frequency heating cooker of this embodiment when a plurality of objects to be heated are heated and cooked in succession, the temperature of the place where the objects to be heated, etc. are placed increases during the previous heating. Even if the current object to be heated can be installed, the installation location of the current object to be heated can be specified, and the current object to be heated can be heated to an appropriate temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electric Ovens (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

Provided is a high-frequency heating cooker that, if a plurality of items to be heated are successively heated and cooked, can determine the current placement location of an item to be heated, even if the temperature at a placement location etc. of an item to be heated has risen during a previous execution of heating. The invention is provided with: a range heating unit for heating an item to be heated that has been placed onto a table plate; an infrared sensor for detecting temperatures at a plurality of spots on an upper surface of the table plate; an outside temperature sensor for detecting the outside temperature outside a heating chamber; and a control unit for controlling the range heating unit on the basis of the temperature detected by the infrared sensor. The control unit: calculates the temperature difference between the outside temperature and a backside temperature of the table plate, and also the temperature difference between the outside temperature and a frontside temperature of the table plate; uses the backside temperature as a table plate temperature if the former temperature difference is small, and uses the frontside temperature as the table plate temperature if the latter temperature difference is small; and determines a region of the upper surface of the table plate where there is a temperature difference from the table plate temperature to be a placement region for an item to be heated.

Description

高周波加熱調理器High frequency heating cooker
 本発明は、マイクロ波を利用して食品を加熱調理する高周波加熱調理器に関する。 The present invention relates to a high-frequency cooking device that uses microwaves to cook food.
 従来の高周波加熱調理器の中には、加熱室に入れた食品の保存状態等に基づいて、マイクロ波による加熱調理時間を設定するものがある。例えば、特許文献1の要約書には、「被加熱物の保存状態、量、初期表面温度に関わらず、被加熱物を適温に加熱する事を可能とする」高周波加熱調理器として、「被加熱物を加熱する加熱手段と、前記加熱室で前記被加熱物が載置されるテーブルプレートと、該テーブルプレートを支持し前記被加熱物の重量を測定する重量センサと、前記非加熱物に係る温度を検出する温度センサと、仕上がり温度となるように、前記重量センサと前記温度センサの検出値に基づいて前記加熱手段を制御する制御手段と、を備え、該制御手段は、前記被加熱物を加熱している時の温度上昇を前記温度センサにて検出し、検出した温度上昇に応じて前記被加熱物が冷凍状態であるか否かを保存状態として判定し、前記被加熱物の保存状態に合わせた加熱時間を算出し、被加熱物を加熱する」ものが開示されている。また、同文献の請求項5には「前記温度センサは、赤外線センサである」と記載されている。 Some conventional high-frequency heating cookers set the cooking time using microwaves based on the preservation state of the food placed in the heating chamber. For example, the abstract of Patent Document 1 describes a high-frequency cooking device that "makes it possible to heat the object to an appropriate temperature regardless of the storage state, amount, or initial surface temperature of the object." a heating means for heating the object to be heated; a table plate on which the object to be heated is placed in the heating chamber; a weight sensor for supporting the table plate and measuring the weight of the object to be heated; a temperature sensor that detects the temperature, and a control means that controls the heating means based on the detected values of the weight sensor and the temperature sensor so as to reach the finished temperature, and the control means is configured to control the heated The temperature sensor detects a temperature rise when the object is being heated, and depending on the detected temperature rise, it is determined whether the object to be heated is in a frozen state or not, and the object to be heated is in a frozen state. A device is disclosed that calculates a heating time according to storage conditions and heats an object to be heated. Further, claim 5 of the same document states that "the temperature sensor is an infrared sensor."
 このように、特許文献1の高周波加熱調理器では、非接触の温度センサ(赤外線センサ)が検出した被加熱物の温度上昇に基づき、被加熱物が冷凍状態であるか否かを判定し、その判定結果に合わせた加熱調理時間を算出することで、被加熱物を適切に加熱調理している(同文献の図13~15参照)。 As described above, in the high-frequency heating cooker of Patent Document 1, it is determined whether or not the object to be heated is in a frozen state based on the temperature rise of the object to be heated detected by the non-contact temperature sensor (infrared sensor). By calculating the cooking time according to the determination result, the object to be heated is appropriately cooked (see FIGS. 13 to 15 of the same document).
特開2019-211171号公報JP2019-211171A
 しかしながら、特許文献1の高周波加熱装置は、ある食品を加熱調理した直後に別の食品を連続して加熱調理する状況を想定しておらず、後者の食品を適切に加熱調理できない場合があった。おかずの加熱に続けてごはんを加熱する状況を例に、この問題を具体的に説明する。 However, the high-frequency heating device of Patent Document 1 does not assume a situation in which one food is cooked and then another food is successively cooked, and the latter food may not be properly cooked in some cases. . This problem will be specifically explained using an example of a situation in which rice is heated after heating a side dish.
 この場合、おかず加熱時におかずを載置した部分のテーブルプレートの温度も上昇するため、調理終了後におかずを取り出すと、テーブルプレート上面には室温よりも高温の部分が存在することになる。その後、おかず載置場所と異なる位置にごはんを載置して加熱調理を開始すると、特許文献1の温度センサ(赤外線センサ)では、テーブルプレート上面の高温部が調理対象の食品(被加熱物)であるか否かを判別することができない。そのため、特許文献1の高周波加熱装置では、テーブルプレート上面の高温部(直前までおかずが載置されていた場所)を被加熱物と誤解し、そこでの温度変化に基づいて、不適切なごはん加熱時間を算出する可能性があり、ごはんの加熱不良を惹起する虞があった。 In this case, when the side dish is heated, the temperature of the part of the table plate on which the side dish is placed also rises, so when the side dish is taken out after cooking, there will be a part on the top surface of the table plate that is hotter than room temperature. After that, when the rice is placed in a position different from the place where the side dishes are placed and cooking is started, the temperature sensor (infrared sensor) of Patent Document 1 detects that the high temperature area on the top surface of the table plate is the food to be cooked (the object to be heated). It is not possible to determine whether or not. Therefore, the high-frequency heating device of Patent Document 1 misunderstands the high-temperature area on the top surface of the table plate (where the side dishes were placed until just before) as the object to be heated, and based on the temperature change there, inappropriately heats the rice. There was a possibility that the time would be calculated, and there was a risk that the rice would be insufficiently heated.
 そこで、本発明は、複数の被加熱物を連続して加熱調理する場合、前回の加熱時に被加熱物の載置場所等の温度が上昇していても、今回の被加熱物の設置場所を特定することができる高周波加熱調理器を提供することにある。 Therefore, in the case of successively heating and cooking a plurality of objects to be heated, even if the temperature of the place where the objects to be heated are increased during the previous heating, the current location of the objects to be heated can be adjusted. An object of the present invention is to provide a high-frequency heating cooker that can be specified.
 本発明の高周波加熱調理器は、上記目的を達成するためになされたものであり、テーブルプレートを収納した加熱室と、前記テーブルプレートに載置した被加熱物を加熱するレンジ加熱部と、前記テーブルプレートの上面の複数個所の温度を検出する赤外線センサと、前記加熱室の庫外温度を検出する庫外温度センサと、前記赤外線センサの検出温度に基づいて前記レンジ加熱部を制御する制御部と、を備え、該制御部は、前記庫外温度と前記テーブルプレートの奥側温度の温度差、および、前記庫外温度と前記テーブルプレートの手前側温度の温度差を算出し、前者の温度差が小さい場合は、前記奥側温度をテーブルプレート温度として採用し、後者の温度差が小さい場合は、前記手前側温度をテーブルプレート温度として採用し、前記テーブルプレートの上面の領域であって前記テーブルプレート温度と温度差のある部分を前記被加熱物の載置領域と判定する。 The high-frequency heating cooker of the present invention has been made to achieve the above object, and includes a heating chamber housing a table plate, a microwave heating section that heats an object placed on the table plate, and a microwave heating section that heats an object placed on the table plate. an infrared sensor that detects temperatures at multiple locations on the top surface of the table plate; an outside temperature sensor that detects the outside temperature of the heating chamber; and a control unit that controls the microwave heating section based on the temperature detected by the infrared sensor. The control unit calculates a temperature difference between the temperature outside the refrigerator and a temperature on the back side of the table plate, and a temperature difference between the temperature outside the refrigerator and the temperature on the front side of the table plate, and calculates the temperature difference between the outside temperature and the temperature on the front side of the table plate. If the difference is small, the back side temperature is used as the table plate temperature, and if the latter temperature difference is small, the front side temperature is used as the table plate temperature, and the area on the top surface of the table plate is used as the table plate temperature. A portion having a temperature difference from the table plate temperature is determined to be the placement area of the object to be heated.
 本発明の高周波加熱調理器によれば、複数の被加熱物を連続して加熱調理する場合、前回の加熱時に被加熱物の載置場所等の温度が上昇していても、今回の被加熱物の設置場所を特定することができる。 According to the high-frequency heating cooker of the present invention, when heating and cooking a plurality of objects to be heated in succession, even if the temperature of the place where the objects to be heated have risen during the previous heating, the current It is possible to specify the location where objects are installed.
一実施例に係る加熱調理器の前方斜視図。FIG. 1 is a front perspective view of a heating cooker according to an embodiment. 一実施例に係る加熱調理器の外枠を外した後方斜視図。FIG. 2 is a rear perspective view of the heating cooker according to one embodiment with the outer frame removed. 図1のA-A断面図AA sectional view in Figure 1 図3において、茶わんに入れた冷ごはんを加熱する場合の赤外線センサの動作説明図In Figure 3, an explanation diagram of the operation of the infrared sensor when heating cold rice in a bowl. 図3において、ラップに包んだ冷凍ごはんを加熱する場合の赤外線センサの動作説明図。An explanatory diagram of the operation of the infrared sensor in FIG. 3 when heating the frozen rice wrapped in plastic wrap. 赤外線センサの基準位置を説明する拡大断面図。FIG. 3 is an enlarged sectional view illustrating a reference position of an infrared sensor. 赤外線センサの終点位置を説明する拡大断面図。FIG. 3 is an enlarged cross-sectional view illustrating the end point position of an infrared sensor. 赤外線センサの観測窓を閉めた状態を説明する拡大断面図。FIG. 3 is an enlarged cross-sectional view illustrating a state in which the observation window of the infrared sensor is closed. 赤外線センサの温度測定領域を説明する説明図。FIG. 3 is an explanatory diagram illustrating a temperature measurement area of an infrared sensor. 一実施例に係る加熱調理器の制御の前段を説明するフローチャート。1 is a flowchart illustrating the first stage of control of a heating cooker according to an embodiment. 一実施例に係る加熱調理器の制御の後段を説明するフローチャート。2 is a flowchart illustrating the latter stage of control of the heating cooker according to an embodiment. 一実施例に係る加熱調理器の制御ブロック図。FIG. 2 is a control block diagram of a heating cooker according to an embodiment. 一実施例に係る加熱調理器の加熱時間を説明する図。The figure explaining the heating time of the heating cooker based on one Example.
 以下、本発明の実施例を添付図面に従って説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
 図1から図3は、本実施例の主要部分を示すもので、図1は加熱調理器本体を前面側から見た斜視図、図2は同本体の外枠を除いた状態で後方側から見た斜視図、図3は図1のA-A断面図である。 Figures 1 to 3 show the main parts of this embodiment. Figure 1 is a perspective view of the cooking device main body as seen from the front side, and Figure 2 is a perspective view of the main body of the cooking device viewed from the rear side with the outer frame removed. The perspective view shown in FIG. 3 is a sectional view taken along the line AA in FIG.
 図において、加熱調理器の本体1は、加熱室28の中に加熱する食品を入れ、マイクロ波やヒータの熱、過熱水蒸気を使用して食品を加熱調理する。 In the figure, the main body 1 of the cooking device places food to be heated in a heating chamber 28 and cooks the food using microwaves, heat from a heater, and superheated steam.
 ドア2は、加熱室28の内部に食品を出し入れするために開閉するもので、ドア2を閉めることで加熱室28を密閉状態にし、食品を加熱する時に使用するマイクロ波の漏洩を防止し、ヒータの熱や過熱水蒸気を封じ込め、効率良く加熱することを可能とする。 The door 2 is opened and closed to take food into and out of the heating chamber 28. By closing the door 2, the heating chamber 28 is sealed, preventing leakage of microwaves used when heating food. Contains heater heat and superheated steam, making it possible to heat efficiently.
 取っ手9は、ドア2に取り付けられ、ドア2の開閉を容易にするもので、手で握りやすい形状になっている。 The handle 9 is attached to the door 2 to facilitate opening and closing of the door 2, and has a shape that is easy to grip with the hand.
 ガラス窓3は、調理中の食品の状態が確認できるようにドア2に取り付けられており、ヒータ等の発熱による高温に耐えるガラスを使用している。 The glass window 3 is attached to the door 2 so that the state of the food being cooked can be checked, and is made of glass that can withstand high temperatures caused by heat generated by a heater or the like.
 入力部71は、ドア2の前面下側の操作パネル4に設けられ、マイクロ波加熱やヒータ加熱等の加熱部や加熱する時間等と加熱温度の入力するための操作部6と、操作部6から入力された内容や調理の進行状態を表示する表示部5とで構成されている。 The input unit 71 is provided on the operation panel 4 on the lower front side of the door 2, and includes an operation unit 6 for inputting a heating unit such as microwave heating or heater heating, heating time, heating temperature, etc. It is comprised of a display section 5 that displays the contents inputted from and the progress state of cooking.
 外枠7は、加熱調理器の本体1の上面と左右側面を覆うキャビネットである。 The outer frame 7 is a cabinet that covers the top surface and left and right side surfaces of the main body 1 of the cooking device.
 水タンク42は、加熱水蒸気を作るのに必要な水を溜めておく容器であり、加熱調理器の本体1の前面下側に設けられ、本体1の前面から着脱可能な構造とすることで給水および排水が容易にできるようになっている。 The water tank 42 is a container that stores water necessary for producing heated steam, and is provided at the lower front of the main body 1 of the heating cooker, and has a structure that can be attached and detached from the front of the main body 1 to supply water. and easy drainage.
 後板10は、前記したキャビネットの後面を形成するものであり、上部に外部排気ダクト18が取り付けられ、食品から排出した蒸気や本体1の内部の部品を冷却した後の冷却風(廃熱)39を外部排気ダクト18の外部排気口8から排出する。 The rear plate 10 forms the rear surface of the above-mentioned cabinet, and an external exhaust duct 18 is attached to the upper part to collect the steam discharged from the food and the cooling air (waste heat) after cooling the internal parts of the main body 1. 39 is discharged from the external exhaust port 8 of the external exhaust duct 18.
 機械室20は、加熱室底面28aと本体1の底板21との間の空間部に設けられ、底板21上には食品を加熱するためのマグネトロン33、マグネトロン33に接続された導波管47、制御部23a(図12参照)を実装した制御基板23、その他後述する各種部品、これらの各種部品を冷却するファン装置15等が取り付けられている。 The machine room 20 is provided in a space between the bottom surface 28a of the heating chamber and the bottom plate 21 of the main body 1, and on the bottom plate 21 there is a magnetron 33 for heating food, a waveguide 47 connected to the magnetron 33, A control board 23 on which a control unit 23a (see FIG. 12) is mounted, various other components to be described later, a fan device 15 for cooling these various components, and the like are attached.
 加熱室底面28aは、略中央部が凹状に窪んでおり、その中に回転アンテナ26が設置され、マグネトロン33より放射されるマイクロ波エネルギーが導波管47、回転アンテナ26の出力軸46aが貫通する開孔部47aを通して回転アンテナ26の下面に流入し、該回転アンテナ26で拡散されて加熱室28内に放射される。回転アンテナ26の出力軸46aは回転アンテナ駆動部46に連結されている。 The bottom surface 28a of the heating chamber has a concave shape approximately in the center, and the rotating antenna 26 is installed in the bottom surface 28a, and the microwave energy radiated from the magnetron 33 is passed through the waveguide 47 and the output shaft 46a of the rotating antenna 26. The heat flows into the lower surface of the rotary antenna 26 through the opening 47a, is diffused by the rotary antenna 26, and is radiated into the heating chamber 28. An output shaft 46a of the rotary antenna 26 is connected to a rotary antenna drive section 46.
 ファン装置15は、底板21に取り付けた冷却モータに取り付けられた冷却ファンとで構成する。このファン装置15によって発生する冷却風39は、機械室20内の自己発熱するマグネトロン33やインバータ回路(図示無し)、奥側重量センサ25c,左側重量センサ25bなどを冷却する。また、加熱室28の外側と外枠7の間および前記したように熱風ケース11aと後板10の間を流れ、外枠7と後板10を冷却しながら外部排気ダクト18の外部排気口8より排出される。さらに、後述する熱風モータ13を冷却するためのダクト16aと、後述する赤外線ケース48内に収められた赤外線ユニット50を冷却するためのダクト16bが設けられ、赤外線ユニット50を冷却した冷却風39は、加熱室28内の排熱(水蒸気など)を廃棄する排気ダクト28eの反対側から排出された後外部排気ダクト18より外に排出される。 The fan device 15 is composed of a cooling fan attached to a cooling motor attached to the bottom plate 21. The cooling air 39 generated by the fan device 15 cools the self-heating magnetron 33, an inverter circuit (not shown), the back weight sensor 25c, the left weight sensor 25b, etc. in the machine room 20. Further, the hot air flows between the outside of the heating chamber 28 and the outer frame 7 and between the hot air case 11a and the rear plate 10 as described above, cooling the outer frame 7 and the rear plate 10 while cooling the outer exhaust port 8 of the external exhaust duct 18. more excreted. Further, a duct 16a for cooling a hot air motor 13 (described later) and a duct 16b for cooling an infrared unit 50 housed in an infrared case 48 (described later) are provided, and the cooling air 39 that has cooled the infrared unit 50 is provided. The exhaust heat (water vapor, etc.) in the heating chamber 28 is discharged from the opposite side of the exhaust duct 28e for discarding it, and then exhausted to the outside through the external exhaust duct 18.
 レンジ加熱部330(図12)はマグネトロン33とインバータ回路(図示せず)よりなり制御部23aによって制御される。インバータ回路の中にあるIGBT(図示せず)の温度はIGBT温度センサ101によって検出される。 The microwave heating section 330 (FIG. 12) includes a magnetron 33 and an inverter circuit (not shown), and is controlled by the control section 23a. The temperature of an IGBT (not shown) in the inverter circuit is detected by an IGBT temperature sensor 101.
 加熱室28の後部には、熱風ユニット11が取り付けられ、該熱風ユニット11内には加熱室28内の空気を効率良く循環させる熱風ファン32が取り付けられ、加熱室後部壁面28bには空気の通り道となる熱風吸気孔31と熱風吹出し孔30が設けられている。 A hot air unit 11 is attached to the rear part of the heating chamber 28, and a hot air fan 32 is attached to the hot air unit 11 to efficiently circulate the air in the heating chamber 28. An air passage is provided in the rear wall surface 28b of the heating chamber. A hot air intake hole 31 and a hot air blowout hole 30 are provided.
 熱風ファン32は、熱風ケース11aの外側に取り付けられた熱風モータ13の駆動により回転し、熱風ヒータ14で循環する空気を加熱する。 The hot air fan 32 is rotated by the drive of the hot air motor 13 attached to the outside of the hot air case 11a, and the hot air heater 14 heats the circulating air.
 また、熱風ユニット11は、加熱室奥壁面28bの後部側に熱風ケース11aを設け、加熱室奥壁面28bと熱風ケース11aとの間に熱風ファン32とその外周側に位置するように熱風ヒータ14を設け、熱風ケース11aの後側に熱風モータ13を取り付け、そのモータ軸を熱風ケース11aに設けた穴を通して熱風ファン32と連結している。 Further, the hot air unit 11 includes a hot air case 11a provided on the rear side of the heating chamber back wall surface 28b, and a hot air fan 32 and a hot air heater 14 located on the outer peripheral side thereof. A hot air motor 13 is attached to the rear side of the hot air case 11a, and the motor shaft is connected to a hot air fan 32 through a hole provided in the hot air case 11a.
 熱風モータ13は、加熱室28や熱風ヒータ14からの熱によって温度上昇するため、それを防ぐために、熱風モータカバー17によって囲い、略筒状に形成されてダクト16aを熱風ケース11aと後板10との間に位置し、ダクト16aの上端開口部を熱風モータカバー17の下面に接続し、下端開口部をファン装置15の吹出し口に接続し、ファン装置15からの冷却風39の一部を熱風モータカバー17内に取り入れるようにしている。 The temperature of the hot air motor 13 increases due to the heat from the heating chamber 28 and the hot air heater 14. To prevent this, the hot air motor 13 is surrounded by a hot air motor cover 17 and is formed into a substantially cylindrical shape to connect the duct 16a to the hot air case 11a and the rear plate 10. The upper end opening of the duct 16a is connected to the lower surface of the hot air motor cover 17, and the lower end opening of the duct 16a is connected to the outlet of the fan device 15, so that a part of the cooling air 39 from the fan device 15 is It is taken into the hot air motor cover 17.
 加熱室28の加熱室天面28cの裏側には、ヒータよりなるグリル加熱部12が取り付けられている。グリル加熱部12は、マイカ板にヒータ線を巻き付けて平面状に形成し、加熱室28の天面裏側に押し付けて固定し、加熱室28の天面を加熱して加熱室28内の食品を輻射熱によって焼くものである。 A grill heating section 12 consisting of a heater is attached to the back side of the heating chamber top surface 28c of the heating chamber 28. The grill heating section 12 is formed into a planar shape by winding a heater wire around a mica plate, and is pressed and fixed against the back side of the top surface of the heating chamber 28 to heat the top surface of the heating chamber 28 and heat the food in the heating chamber 28. It is baked using radiant heat.
 また、加熱室28の加熱室天面28cの奥側には後述する赤外線ユニット50が設けられ、赤外線ユニット50を冷却するために赤外線ケース48にて覆い、略筒状に形成されてダクト16bを熱風ケース11aと後板10との間に位置し、ダクト16bの上端開口部を赤外線ケース48の側面に接続し、下端開口部を熱風モータカバー17上面と接続し、ファン装置15からの冷却風39の一部を取り入れるようにしている。 Further, an infrared unit 50, which will be described later, is provided on the back side of the heating chamber top surface 28c of the heating chamber 28, and is covered with an infrared case 48 to cool the infrared unit 50. The duct 16b is located between the hot air case 11a and the rear plate 10, the upper end opening of the duct 16b is connected to the side surface of the infrared rays case 48, the lower end opening is connected to the upper surface of the hot air motor cover 17, and the cooling air from the fan device 15 is connected to the duct 16b. I'm trying to incorporate some of the 39.
 加熱室28の加熱室天面28cの左奥側には、加熱室28の雰囲気温度(以下、「庫内温度Ti」と称する)を検出する庫内温度センサ80(サーミスタ)を設けている。 An internal temperature sensor 80 (thermistor) that detects the ambient temperature of the heating chamber 28 (hereinafter referred to as "internal temperature Ti") is provided on the left back side of the heating chamber top surface 28c of the heating chamber 28.
 また、加熱室底面28aには、複数個の重量センサ25、例えば前側左右に左側重量センサ25b、右側重量センサ(図示せず)、後側中央に奥側重量センサ25cが設けられ、その上にテーブルプレート24が載置されている。 Further, a plurality of weight sensors 25 are provided on the bottom surface 28a of the heating chamber, for example, a left side weight sensor 25b, a right side weight sensor (not shown) on the left and right sides of the front side, and a back side weight sensor 25c at the center of the rear side. A table plate 24 is placed thereon.
 テーブルプレート24は、食品を載置するためのもので、ヒータ加熱とマイクロ波加熱の両方に使用できるように耐熱性を有し、かつ、マイクロ波の透過性が良い材料で成形されている。 The table plate 24 is for placing food, and is made of a material that is heat resistant and has good microwave transparency so that it can be used for both heater heating and microwave heating.
 ボイラー43は、熱風ユニット11の熱風ケース11aの外側面に取り付けられ、飽和水蒸気を熱風ユニット11内に臨ませ、熱風ユニット11内に噴出した飽和水蒸気は熱風ヒータ14によって加熱され過熱水蒸気となる。 The boiler 43 is attached to the outer surface of the hot air case 11a of the hot air unit 11, and exposes saturated steam to the inside of the hot air unit 11. The saturated steam ejected into the hot air unit 11 is heated by the hot air heater 14 and becomes superheated steam.
 ポンプ部87は、水タンク42の水をボイラー43まで汲み上げるもので、ポンプとポンプを駆動するモータで構成される。ボイラー43への給水量の調節はモータのON/OFFの比率で決定する。 The pump unit 87 pumps water from the water tank 42 to the boiler 43, and is composed of a pump and a motor that drives the pump. Adjustment of the amount of water supplied to the boiler 43 is determined by the ON/OFF ratio of the motor.
 加熱部はレンジ加熱部330、熱風ヒータ14、熱風モータ13、グリル加熱部12、ボイラー43などである。 The heating parts include a range heating part 330, a hot air heater 14, a hot air motor 13, a grill heating part 12, a boiler 43, etc.
 次に、図4~図9を用いて加熱室28の上方に設けられた非接触で被加熱物の温度を検出する赤外線センサ52について詳細を説明する。 Next, the infrared sensor 52, which is provided above the heating chamber 28 and detects the temperature of the heated object in a non-contact manner, will be described in detail with reference to FIGS. 4 to 9.
 図4は図3で示す断面図を使用して茶わんにごはんを入れて加熱する場合の赤外線センサの動作説明図、図5は図3で示す断面図を使用してラップに包んだ冷凍ごはんを加熱する場合の赤外線センサの動作説明図、図6は基準位置を示す赤外線センサ部の説明用の拡大図、図7は、終点位置を示す赤外線センサの説明用の拡大図、図8は、観測窓を閉めた状態を示す赤外線センサの説明用の拡大図、図9は赤外線センサの視野を説明する説明図である。 Figure 4 is an explanatory diagram of the operation of an infrared sensor when rice is heated in a bowl using the cross-sectional diagram shown in Figure 3. Figure 5 is an illustration of the operation of an infrared sensor when rice is heated in a bowl using the cross-sectional diagram shown in Figure 3. An explanatory diagram of the operation of the infrared sensor when heating. FIG. 6 is an explanatory enlarged view of the infrared sensor section showing the reference position. FIG. 7 is an explanatory enlarged view of the infrared sensor showing the end point position. FIG. 9 is an explanatory enlarged view of the infrared sensor showing a state in which the window is closed. FIG. 9 is an explanatory view for explaining the field of view of the infrared sensor.
 51はモータで、モータ51の向きは、回転軸51aと加熱室奥壁面28bと並行となるように取り付けられている。そして、回転軸51aが後述する筒状のユニットケース54を回転(駆動)させることで、ユニットケース54に収めた赤外線センサ52を搭載した基板53を回転させて赤外線センサ52のレンズ部52aの向きを加熱室底面28aの奥側(加熱室奥壁面28b側)から加熱室開口部28dまでの範囲を回転移動して温度を検出できるようにしている。モータ51はステッピングモータを使用し制御基板23に設けられた制御部23aの制御によって回転軸51aを正転、逆転、また回転角度を好みに動作可能となっている。 Reference numeral 51 denotes a motor, and the motor 51 is installed so that the direction of the motor 51 is parallel to the rotating shaft 51a and the inner wall surface 28b of the heating chamber. The rotating shaft 51a rotates (drives) a cylindrical unit case 54 (described later), thereby rotating the board 53 on which the infrared sensor 52 housed in the unit case 54 is mounted, thereby directing the lens portion 52a of the infrared sensor 52. The temperature can be detected by rotationally moving the range from the back side of the heating chamber bottom surface 28a (heating chamber back wall surface 28b side) to the heating chamber opening 28d. The motor 51 uses a stepping motor, and under the control of a control section 23a provided on the control board 23, the rotating shaft 51a can be rotated in the normal direction, reverse direction, or rotated at a desired rotation angle.
 52は赤外線センサで、テーブルプレート24や被加熱物60cの温度を非接触で検出する。本実施例では、基板53上に8個の赤外線検出素子(例えばサーモパイル)を回転軸51aの方向に一列に並べて赤外線センサ52を構成している。そのため、本実施例の赤外線センサ52は、テーブルプレート24上の8個所の温度を同時に検出することができる。また、本実施例の赤外線センサ52は、赤外線検出素子群を設置した基板53を回転軸51a周りに回転させることで(図6、図7参照)、テーブルプレート24の全域の温度を検出できるようにしている。 52 is an infrared sensor that detects the temperature of the table plate 24 and the object to be heated 60c in a non-contact manner. In this embodiment, the infrared sensor 52 is configured by arranging eight infrared detection elements (for example, thermopiles) on a substrate 53 in a row in the direction of the rotation axis 51a. Therefore, the infrared sensor 52 of this embodiment can simultaneously detect the temperatures at eight locations on the table plate 24. Further, the infrared sensor 52 of this embodiment can detect the temperature of the entire area of the table plate 24 by rotating the substrate 53 on which the infrared detection element group is installed around the rotation axis 51a (see FIGS. 6 and 7). I have to.
 54は筒状のユニットケースで、最大径部に基板53を配置し赤外線センサ52のレンズ部52aを臨ませる窓部54aを設けている。また、ユニットケース54の材料にはカーボンを含ませることでユニットケース54の特性を導電材とすることで外来ノイズのユニットケース54内への侵入を防止している。 Reference numeral 54 designates a cylindrical unit case, which has a substrate 53 disposed at its largest diameter portion and a window portion 54a through which the lens portion 52a of the infrared sensor 52 is exposed. Further, by incorporating carbon into the material of the unit case 54, the characteristic of the unit case 54 is made to be a conductive material, thereby preventing external noise from entering the unit case 54.
 55は金属板から成るシャッタである。シャッタ55は、赤外線センサ52を使用しない時に後述する観測窓44aを閉じるものである(図8参照)。また加熱室28の温度がユニットケース54に伝わるのを防止するために、ユニットケース54の外周に冷却風を流せるようにユニットケース54の外周に沿って隙間を設けた風路55cを形成するようにシャッタ55を配置し、風路55cに冷却風39流す出入り口となる開口55aと開口55bを設けている。 55 is a shutter made of a metal plate. The shutter 55 closes the observation window 44a, which will be described later, when the infrared sensor 52 is not used (see FIG. 8). Further, in order to prevent the temperature of the heating chamber 28 from being transmitted to the unit case 54, an air passage 55c with a gap is formed along the outer periphery of the unit case 54 so that cooling air can flow around the outer periphery of the unit case 54. A shutter 55 is disposed in the air passage 55c, and an opening 55a and an opening 55b are provided in the air passage 55c to serve as an entrance and exit for the cooling air 39.
 56は位置決め凸部で、赤外線センサ52の検知点を基準位置(図4の検知点a)に合わせるように制御部23aがモータ51の回転を制御した時、赤外線センサ52の検知点の基準位置を補正できるように、シャッタ55によって観測窓44aを閉じた時に、位置決め凸部56が赤外線ケース48に設けられたストッパ(図示せず)に当接させた状態で回転軸51aをスリップさせることで、制御部23aの制御する基準位置と赤外線センサ52の検知する基準位置となる検知点aの位置を補正することができる
 44は加熱室28の内方向に突出した円弧状の観測部で、回転軸51aの回転中心と筒状のユニットケース54の中心とユニットケース54の外周に沿って設けられて円弧状に曲げられたシャッタ55の円弧の中心と円弧状の観測部44の各中心位置は全て同一位置となっている。44aは観測部44に設けた観測窓で、赤外線センサ52の検出する視野範囲となる範囲を開口している。また、マイクロ波加熱時に観測窓44aからのマイクロ波漏洩を防止するために、観測窓44aの周囲外側には立上壁(バーリング)44bを2mm程度設けている。
Reference numeral 56 denotes a positioning convex portion, and when the control unit 23a controls the rotation of the motor 51 so that the detection point of the infrared sensor 52 is aligned with the reference position (detection point a in FIG. 4), the reference position of the detection point of the infrared sensor 52 is set. In order to correct this, when the observation window 44a is closed by the shutter 55, the rotating shaft 51a is allowed to slip while the positioning protrusion 56 is in contact with a stopper (not shown) provided on the infrared case 48. , the position of the detection point a, which is the reference position controlled by the control unit 23a and the reference position detected by the infrared sensor 52, can be corrected. 44 is an arc-shaped observation part protruding inward of the heating chamber 28; The rotation center of the shaft 51a, the center of the cylindrical unit case 54, the center of the arc of the shutter 55 provided along the outer periphery of the unit case 54 and bent into an arc, and the center positions of the arc-shaped observation section 44 are as follows. All are in the same location. Reference numeral 44a denotes an observation window provided in the observation section 44, which opens the range that is the visual field detected by the infrared sensor 52. Further, in order to prevent microwave leakage from the observation window 44a during microwave heating, a raised wall (burring) 44b of about 2 mm is provided outside the observation window 44a.
 観測部44を加熱室28の内側に突出させることで、最低限の狭い観測窓開口範囲で広範囲の温度検知が可能となる。 By protruding the observation section 44 inside the heating chamber 28, it is possible to detect a wide range of temperatures within the minimum narrow observation window opening range.
 49は凸部であり、加熱室天面28cから赤外線ケース48と赤外線ユニット50を離すもので、加熱室天面28cとの接触を凸部49のみとすることで加熱時にグリル加熱部12や熱風ユニット11などのヒータによって加熱された加熱室天面28cの温度が赤外線ユニット50に伝わりにくいようにしている。 Numeral 49 is a convex portion that separates the infrared case 48 and the infrared unit 50 from the top surface 28c of the heating chamber.By making only the convex portion 49 in contact with the top surface 28c of the heating chamber, the grill heating section 12 and hot air are removed during heating. The temperature of the top surface 28c of the heating chamber heated by the heater such as the unit 11 is made difficult to be transmitted to the infrared unit 50.
 100は赤外線ユニット50内の基板53に配置した庫外温度センサであり、加熱室28の外側の庫外温度Toを検知する。なお、複数の被加熱物を連続して加熱する場合、初回の加熱開始前に測定された庫外温度Toは、加熱調理器外部の室温とほぼ等しく、2回目以降の加熱開始前に測定された庫外温度Toは、加熱調理器外部の室温より高温になっているものの、庫内温度Tiよりは低温である。 Reference numeral 100 denotes an outside temperature sensor disposed on the board 53 in the infrared unit 50, which detects the outside temperature To outside the heating chamber 28. In addition, when heating multiple objects to be heated continuously, the outside temperature To measured before the start of heating for the first time is almost equal to the room temperature outside the cooking device, and Although the outside temperature To is higher than the room temperature outside the cooking device, it is lower than the inside temperature Ti.
 制御基板23に搭載された制御部23aの赤外線センサ52の測定要領について図4、図5により説明する。 The procedure for measuring the infrared sensor 52 of the control unit 23a mounted on the control board 23 will be explained with reference to FIGS. 4 and 5.
 図4では、茶わんにごはんを入れて加熱する場合、図5はラップに包んだ冷凍ごはんを加熱する場合の赤外線センサの動作を説明する図である。図4では、検知点fにおいて被加熱物60cの表面を直接検出する事ができる。図5では、被加熱物60cの表面を食用ラップ越しに検出している。 FIG. 4 is a diagram illustrating the operation of the infrared sensor when heating rice in a bowl, and FIG. 5 is a diagram illustrating the operation of the infrared sensor when heating frozen rice wrapped in plastic wrap. In FIG. 4, the surface of the object to be heated 60c can be directly detected at the detection point f. In FIG. 5, the surface of the object to be heated 60c is detected through the edible wrap.
 赤外線センサ52は、一度の測定で8点を測定するセンサをモータ51で基準位置(図4、検知点a)から終点位置(図4、検知点h)まで赤外線センサ52を3度ずつ14回、回転移動させて計15列の測定が行われ、左右方向8点×前後方向15列の120か所の温度を検出する。そして終点位置から基準位置までは赤外線センサ52は測定せずに直接基準位置に戻る。 The infrared sensor 52 measures 8 points at once, and moves the infrared sensor 52 14 times at 3 degrees each from the reference position (Fig. 4, detection point a) to the end point position (Fig. 4, detection point h) using the motor 51. , a total of 15 rows are measured by rotating and moving, and temperatures are detected at 120 locations: 8 points in the left-right direction x 15 rows in the front-back direction. From the end point position to the reference position, the infrared sensor 52 does not perform any measurement and directly returns to the reference position.
 温度検知は、基準位置から終点位置まで赤外線センサ52を3度ずつ14回移動させて15列で測定し、終点位置から基準位置までは戻ることを繰り返す。測定した温度の処理は後述する。 Temperature detection is carried out by moving the infrared sensor 52 14 times in increments of 3 degrees from the reference position to the end point position, measuring in 15 rows, and repeating the process of returning from the end point position to the reference position. Processing of the measured temperature will be described later.
 次に赤外線センサ52の回転移動について説明する。 Next, the rotational movement of the infrared sensor 52 will be explained.
 図4のように被加熱物(ごはん)60cが入った茶碗を熱室底面28aに設けられているテーブルプレート24に載置して加熱を開始した時、マグネトロン33が安定発信する1~2秒間はシャッタ55にて観測窓44aを閉じて(図8参照)マグネトロン33の発信開始時の不安定発信によるノイズが赤外線センサ52に入り込むのを防止する。 As shown in FIG. 4, when a rice bowl containing an object to be heated (rice) 60c is placed on the table plate 24 provided on the bottom surface 28a of the heat chamber and heating is started, the magnetron 33 stably transmits signals for 1 to 2 seconds. The shutter 55 closes the observation window 44a (see FIG. 8) to prevent noise from entering the infrared sensor 52 due to unstable transmission when the magnetron 33 starts transmitting.
 マグネトロン33の発信が安定した後に、制御部23aはモータ51の回転軸51aを基準位置に回転するように制御する。回転軸51aが基準位置へと回転することでユニットケース54を回転し、赤外線センサ52のレンズ部52aの向きも基準位置の検知点aを検知できる位置に回転(図4,図6参照)する。この時、冷却風39は赤外線センサ52のレンズ部52aを流れてセンサ窓部44aから加熱室28へと流れるので、レンズ部52aへの汚れ付着を防止している。 After the transmission of the magnetron 33 becomes stable, the control unit 23a controls the rotating shaft 51a of the motor 51 to rotate to the reference position. When the rotating shaft 51a rotates to the reference position, the unit case 54 is rotated, and the orientation of the lens portion 52a of the infrared sensor 52 is also rotated to a position where the detection point a at the reference position can be detected (see FIGS. 4 and 6). . At this time, the cooling air 39 flows through the lens portion 52a of the infrared sensor 52 and flows from the sensor window portion 44a to the heating chamber 28, thereby preventing dirt from adhering to the lens portion 52a.
 ユニットケース54を回転することで、被加熱物60cの温度の検出は前述した基準位置(検知点a)からテーブルプレート24の検知点b、検知点cへと進み、さらにユニットケース54が回転すると茶わん(容器60)の外側の温度を高さ方向に検知し、検知点dから検知点eの温度を検知する。検知点が茶わん(容器60)の開口部の頂点に達した後は、被加熱物60cの表面の温度を検知点fで検知し、次に茶わん(容器60)の内側の温度を検知点gで検知し、次にテーブルプレート24の温度を検知点hで検知する。 By rotating the unit case 54, the temperature of the heated object 60c is detected from the reference position (detection point a) to the detection point b and c of the table plate 24, and when the unit case 54 is further rotated, The temperature outside the bowl (container 60) is detected in the height direction, and the temperature from detection point d to detection point e is detected. After the detection point reaches the top of the opening of the bowl (container 60), the temperature on the surface of the heated object 60c is detected at the detection point f, and then the temperature inside the bowl (container 60) is detected at the detection point g. Then, the temperature of the table plate 24 is detected at a detection point h.
 検知点a~検知点hの温度検知範囲の温度の検知は、ユニットケース54を回転する往路の片方で行い、一度終点まで温度検知を行った後、復路は途中で測定せず温度の検知をしないで、再度基準位置に戻ってから再び検知点a~検知点hと順次行う。 Detection of the temperature in the temperature detection range from detection point a to detection point h is performed on one side of the outward rotation of the unit case 54, and once the temperature has been detected up to the end point, the temperature is not detected on the return trip without measuring it midway. Instead, return to the reference position again and repeat the process from detection point a to detection point h in sequence.
 温度の検知数は好みに変えられ、前述した検知点a~検知点hは、説明上の例で、前記したように15列のデータを測定する。 The number of temperature detections can be changed as desired, and the detection points a to h described above are illustrative examples and measure 15 columns of data as described above.
 また、温度の検知は、温度を検知している間はモータ51の回転を止めて検知し、検知した後に回転を行う。正確に温度を検知するため回転を止めて測定する方が良い。 Further, temperature detection is performed by stopping the rotation of the motor 51 while the temperature is being detected, and then rotating the motor 51 after the temperature has been detected. In order to accurately detect temperature, it is better to stop rotation and measure.
 例えば、加熱初めは、ユニットケース54の回転を止めて検知し、検知した後に一定角度で回転を行い、回転を止めて検知し、検知した後に一定角度で回転を行うことをくりかえしてマス目状に温度分布を測定する。そうすることで、等角度で一定位置の温度を測定することによりテーブルプレート24の全面をまんべんなく測定するものである。 For example, at the beginning of heating, the rotation of the unit case 54 is stopped and detected, after detection, it is rotated at a certain angle, the rotation is stopped and detected, and after detection, it is rotated at a certain angle, which are repeated to form a grid pattern. to measure the temperature distribution. By doing so, the entire surface of the table plate 24 is evenly measured by measuring the temperature at a fixed position at equal angles.
 赤外線センサ52は、加熱室底面28aに載置されたテーブルプレート24の四辺から加熱室天面28cに垂直に伸ばした仮想線の内側の加熱室天面28cの左右方向の略中央に設けられている。 The infrared sensor 52 is provided at approximately the center in the left-right direction of the heating chamber top surface 28c inside an imaginary line extending perpendicularly to the heating chamber top surface 28c from the four sides of the table plate 24 placed on the heating chamber bottom surface 28a. There is.
 そして、赤外線センサ52の視野は、検知点aと検知点hはテーブルプレート24の前後のフランジ部の温度を検知する範囲に略定め、赤外線センサ52の整列した複数素子の両側のセンサはテーブルプレート24の左右のフランジ部の温度を検知する範囲に略定められている。こうすることで、テーブルプレート24の略中央に載置された被加熱物60cの温度を正確に検出する事が可能となる。また赤外線センサ52の回転は、温度の測定範囲が広い方に回転させる方が、容器60に入れられた被加熱物60cの温度を検知するのに良い。 The field of view of the infrared sensor 52 is such that the detection point a and the detection point h are roughly set in a range that detects the temperature of the front and rear flanges of the table plate 24, and the sensors on both sides of the arrayed plurality of elements of the infrared sensor 52 are set on the table plate 24. The temperature of the left and right flange portions of 24 is approximately determined within the range for detecting the temperature. By doing so, it becomes possible to accurately detect the temperature of the object to be heated 60c placed approximately at the center of the table plate 24. Further, it is better to rotate the infrared sensor 52 so that the temperature measurement range is wide, so as to detect the temperature of the object to be heated 60c placed in the container 60.
 このような設定で、容器60をテーブルプレート24の奥側に載置した時は、赤外線センサ52の略下側の検知点bで茶わん内の被加熱物60cの温度を検知可能となり、容器60をテーブルプレート24の左右の一方側に載置したときは、赤外線センサ52は加熱室28の左右横方向の略中央に設けられているため、赤外線センサ52内に設けられている一列に整列した8素子の両側の赤外線センサによって被加熱物60cの温度の検出が可能となる。 With this setting, when the container 60 is placed on the back side of the table plate 24, the temperature of the object to be heated 60c in the bowl can be detected at the detection point b located approximately below the infrared sensor 52, and the temperature of the object to be heated 60c in the bowl can be detected. When placed on one of the left and right sides of the table plate 24, since the infrared sensor 52 is provided approximately in the center of the heating chamber 28 in the left and right direction, the infrared sensors 52 are arranged in a line provided in the infrared sensor 52. The temperature of the object to be heated 60c can be detected by the eight-element infrared sensors on both sides.
 さらに、重量センサ25による重量情報と赤外線センサ52による検知した温度分布情報から重量情報が軽く温度分布の温度上昇が広範囲に認められるときは、被加熱物60cが薄くて広いものと判断できる。 Further, when the weight information is light and the temperature distribution is recognized to be increasing over a wide range from the weight information from the weight sensor 25 and the temperature distribution information detected by the infrared sensor 52, it can be determined that the object to be heated 60c is thin and wide.
 本実施例では、容器60に入れた被加熱物60cの温度検知の方法を詳細説明したが、容器を使用しない被加熱物60cがブロック状の大きな塊の場合でも、ブロック状の被加熱物60cの側面の高さ方向と上面の温度を検知できるため、被加熱物60cの温度分布を詳細に検知することが可能となる。 In this embodiment, the method of detecting the temperature of the object to be heated 60c placed in the container 60 has been described in detail. Since the temperature of the side surface and the top surface can be detected, it is possible to detect the temperature distribution of the heated object 60c in detail.
 <赤外線センサ52の温度測定手順>
 次に、赤外線センサ52の測定した温度の処理について説明する。
<Temperature measurement procedure of infrared sensor 52>
Next, processing of the temperature measured by the infrared sensor 52 will be explained.
 初めに、テーブルプレート24上の被加熱物60cの温度を、赤外線センサ52を使用して測定する際の課題について説明する。本実施例の赤外線センサ52で使用される赤外線検出素子(サーモパイル)は、視野内の被測定物の温度の平均値を検出温度として出力する素子である。従って、赤外線検出素子の視野内に被加熱物60cとテーブルプレート24が存在する場合、両者の温度だけでなく視野内での両者の面積比も測定温度に反映されることになる。 First, a problem when measuring the temperature of the object to be heated 60c on the table plate 24 using the infrared sensor 52 will be explained. The infrared detection element (thermopile) used in the infrared sensor 52 of this embodiment is an element that outputs the average value of the temperature of the object to be measured within the field of view as the detected temperature. Therefore, when the object to be heated 60c and the table plate 24 are present within the field of view of the infrared detection element, not only the temperature of both but also the area ratio of both within the field of view will be reflected in the measured temperature.
 本実施例の赤外線センサ52は、テーブルプレート24に載置した被加熱物60cの大凡の大きさと形状を認識できるように、テーブルプレート24の上面を複数個の領域に分けて測定する。例えば、8個の赤外線検出素子を持つ赤外線センサ52であれば、モータ51の回転軸51aを3度ずつ14回移動させることで、図9に例示するように、デーブルプレート24の上面を120(8×15)個の領域に分けて温度測定することができる。 The infrared sensor 52 of this embodiment measures the upper surface of the table plate 24 by dividing it into a plurality of regions so that the approximate size and shape of the object to be heated 60c placed on the table plate 24 can be recognized. For example, in the case of an infrared sensor 52 having eight infrared detection elements, by moving the rotating shaft 51a of the motor 51 14 times by 3 degrees, the upper surface of the table plate 24 can be moved 120 ( The temperature can be measured in 8×15) areas.
 以下では、図9に示す120個のマス目一個一個をピクセルと呼ぶ。このピクセルは、赤外線センサ52の指向特性の約50%以上を有する視野角で設定している。しかし、赤外線センサ52からの出力は、視野内(視野角100%)に含まれるすべての被測定物となる以下のものが含まれる。指向特性の50%以上を有する視野角としているピクセル、該ピクセルに隣接した複数のピクセル、またテーブルプレート24以外の加熱室28の壁面も含まれる。そのため、検出した温度を補正して被加熱物60cの温度を略算出する必要がある。 Hereinafter, each of the 120 squares shown in FIG. 9 will be referred to as a pixel. This pixel is set at a viewing angle that is approximately 50% or more of the directional characteristic of the infrared sensor 52. However, the output from the infrared sensor 52 includes all objects to be measured within the field of view (100% viewing angle), including the following: This includes a pixel whose viewing angle has a viewing angle of 50% or more of the directional characteristic, a plurality of pixels adjacent to the pixel, and a wall surface of the heating chamber 28 other than the table plate 24. Therefore, it is necessary to roughly calculate the temperature of the heated object 60c by correcting the detected temperature.
 補正に必要な情報は、テーブルプレート温度Tt、および、被加熱物60cの認識(判定)と認識した被加熱物60cの大きさと温度である。 The information necessary for the correction is the table plate temperature Tt, the recognition (judgment) of the heated object 60c, and the size and temperature of the recognized heated object 60c.
 ここで、テーブルプレート温度Ttは、テーブルプレート24の奥側温度Tb(奥側8ピクセルの平均温度)と手前側温度Tf(手前側8ピクセルの平均温度)を検出した後、使用に適した温度をテーブルプレート温度Ttとしている。なお、テーブルプレート温度Ttとして、どちらを選択するかの詳細は、後述することとする。 Here, the table plate temperature Tt is a temperature suitable for use after detecting the back side temperature Tb (average temperature of 8 pixels on the back side) and the front side temperature Tf (average temperature of 8 pixels on the front side) of the table plate 24. is the table plate temperature Tt. Note that the details of which one to select as the table plate temperature Tt will be described later.
 <被加熱物60cの認識方法>
 次に、各ピクセルの測定温度に基づく、被加熱物60cの認識方法と、認識した被加熱物60cの大きさと温度について説明する。
<Method for recognizing heated object 60c>
Next, a method for recognizing the heated object 60c based on the measured temperature of each pixel, and the recognized size and temperature of the heated object 60c will be described.
 被加熱物60cの認識は、前述したテーブルプレート温度Tt(すなわち、テーブルプレート24の奥側温度Tbまたは手前側温度Tf)に対して、所定以上の温度差のあるピクセルを被加熱物60cとして認識する。但し、被加熱物60cは、冷凍・冷蔵・常温など幅広い温度の可能性があるので、被加熱物60cの認識には下記の判定方法を用いる。 The object to be heated 60c is recognized by recognizing a pixel having a temperature difference of a predetermined value or more with respect to the table plate temperature Tt (that is, the temperature Tb on the back side or the temperature Tf on the front side of the table plate 24) as the object to be heated 60c. do. However, since the object to be heated 60c may be at a wide range of temperatures such as frozen, refrigerated, or room temperature, the following determination method is used to recognize the object to be heated 60c.
 加熱調理器は主に台所に置かれているため、加熱に使用した直後を除くと、加熱調理器の温度は常温と同程度の温度となる。 Since heating cookers are mainly placed in the kitchen, the temperature of the heating cooker is about the same as room temperature, except immediately after it is used for heating.
 被加熱物60cが冷凍や冷蔵の場合、テーブルプレート温度Ttの温度に対して、被加熱物60cの温度は低い温度を示す。被加熱物60cを正確に認識するために、検出した各ピクセルの最低温度がテーブルプレート温度Ttより特定の温度分低い場合に、被加熱物60cを認識したと判断する。そして被加熱物60cの大きさは、最低温度からテーブルプレート温度Ttと最低温度との差に対応した事前に確認されている温度幅に含まれる温度を示すピクセルを集めたものを被加熱物60cの大きさとして認識する(例えば、図9の斜線部)。そして、最低温度を被加熱物60cの温度として認識し、検出した被加熱物60cの温度を被加熱物60cの放射率に応じて補正して被加熱物60cの初期温度として算出する。検出した温度を放射率に応じて補正するのは、被加熱物60cの温度が同じでも、放射率が異なれば、赤外線センサ52が測定する温度が異なるため、放射率に応じて温度補正する必要があるからである。なお、被加熱物60cの放射率は、設定されたメニューに応じて特定できるものとする。 When the heated object 60c is frozen or refrigerated, the temperature of the heated object 60c is lower than the table plate temperature Tt. In order to accurately recognize the object to be heated 60c, it is determined that the object to be heated 60c has been recognized when the lowest temperature of each detected pixel is lower than the table plate temperature Tt by a specific temperature. The size of the heated object 60c is determined by a collection of pixels indicating temperatures included in a pre-confirmed temperature range corresponding to the difference between the table plate temperature Tt and the minimum temperature from the lowest temperature. (For example, the shaded area in FIG. 9). Then, the lowest temperature is recognized as the temperature of the object to be heated 60c, and the detected temperature of the object to be heated 60c is corrected according to the emissivity of the object to be heated 60c and calculated as the initial temperature of the object to be heated 60c. The reason why the detected temperature is corrected according to the emissivity is that even if the temperature of the heated object 60c is the same, if the emissivity is different, the temperature measured by the infrared sensor 52 will be different, so it is necessary to correct the temperature according to the emissivity. This is because there is. Note that the emissivity of the heated object 60c can be specified according to a set menu.
 一方、被加熱物60cがテーブルプレート温度Ttの温度より高い場合は、被加熱物60cを正確に認識するために、検出した各ピクセルの最大温度がテーブルプレート温度Ttより特定の温度高い場合に被加熱物60cを認識したと判断する。そして被加熱物60cの大きさは、最高温度から最高温度とテーブルプレート温度Ttの温度との差に対応した事前に確認されている温度幅に含まれる温度を示すピクセルを集めたものを被加熱物60cの大きさとして認識する。そして、最高温度を被加熱物60cの温度として認識し、検出した被加熱物60cの温度を被加熱物60cの放射率に応じて補正して被加熱物60cの初期温度として算出する。 On the other hand, if the heated object 60c is higher than the table plate temperature Tt, in order to accurately recognize the heated object 60c, the heated object 60c must be It is determined that the heated object 60c has been recognized. The size of the heated object 60c is a collection of pixels indicating temperatures included in a pre-confirmed temperature range corresponding to the difference between the maximum temperature and the table plate temperature Tt. It is recognized as the size of the object 60c. Then, the maximum temperature is recognized as the temperature of the object to be heated 60c, and the detected temperature of the object to be heated 60c is corrected according to the emissivity of the object to be heated 60c and calculated as the initial temperature of the object to be heated 60c.
 また、被加熱物60cが常温の場合は、テーブルプレート温度Ttと被加熱物60cの温度は等しくなる。そのため、検出した各ピクセルの温度とテーブルプレート温度Ttとの間に特定の温度差が求められない。従って、前述した被加熱物60cが冷凍もしくは冷蔵の場合を想定した特定の温度差、もしくは被加熱物60cがテーブルプレート温度Ttより高い場合を想定した温度差のどちら側にも判定されない場合は、テーブルプレート温度Ttの全域を被加熱物60cと認識する。そして、被加熱物60cを加熱することで温度上昇し、この上昇が特定の温度以上に上昇した位置の温度を被加熱物60cの検出温度として再認識し、特定の温度が上昇したピクセルを集めたものを被加熱物60cの大きさとして再認識する。この場合も、検出した被加熱物60cの温度を被加熱物60cの放射率に応じて補正して被加熱物60cの初期温度として算出する。 Furthermore, when the object to be heated 60c is at room temperature, the table plate temperature Tt and the temperature of the object to be heated 60c are equal. Therefore, no specific temperature difference is required between the detected temperature of each pixel and the table plate temperature Tt. Therefore, if it is not determined to be on either side of the specific temperature difference assuming that the object to be heated 60c is frozen or refrigerated, or the temperature difference assuming that the object to be heated 60c is higher than the table plate temperature Tt, The entire area of the table plate temperature Tt is recognized as the object to be heated 60c. Then, by heating the object to be heated 60c, the temperature rises, and the temperature at the position where this rise exceeds a specific temperature is re-recognized as the detected temperature of the object to be heated 60c, and the pixels where the specific temperature has increased are collected. This is re-recognized as the size of the object to be heated 60c. Also in this case, the detected temperature of the object to be heated 60c is corrected according to the emissivity of the object to be heated 60c and calculated as the initial temperature of the object to be heated 60c.
 <レンジ加熱制御のフローチャート>
 次に、図10と図11のフローチャートを用いて、本実施例の加熱調理器による、レンジ加熱制御を説明する。
<Flowchart of microwave heating control>
Next, microwave heating control by the heating cooker of this embodiment will be explained using the flowcharts of FIGS. 10 and 11.
 このレンジ加熱制御は、図10に示す前段のフローチャートで、主として、テーブルプレート温度Ttを判定し、図11に示す後段のフローチャートで、主として、レンジ加熱モードを決定する。 This microwave heating control mainly determines the table plate temperature Tt in the first stage flowchart shown in FIG. 10, and mainly determines the microwave heating mode in the second stage flowchart shown in FIG.
 初めに、図10の工程S1では、ユーザは、加熱室28のドア2を開け、被加熱物60cを入れた容器60をテーブルプレート24に載置した後、ドア2を閉める。そして、入力部71を用いてオートメニューを選択する。 First, in step S1 in FIG. 10, the user opens the door 2 of the heating chamber 28, places the container 60 containing the object to be heated 60c on the table plate 24, and then closes the door 2. Then, the user selects the auto menu using the input section 71.
 次に、工程S2では、ユーザは、入力部71を用いて、調理の仕上がりを調節する。具体的には、予め用意された仕上がり調節Kから、「強」、「やや強」、「中」、「やや弱」、「弱」のいずれかを選択する。ここで、仕上がり調節Kの「中」は標準の温度で仕上がりであり、「強」は仕上がり温度をより高くした仕上がりであり、「弱」は仕上がり温度をより低くした仕上がりである。 Next, in step S2, the user uses the input unit 71 to adjust the finish of the cooking. Specifically, one of "strong", "slightly strong", "medium", "slightly weak", and "weak" is selected from the finish adjustment K prepared in advance. Here, "medium" of the finishing adjustment K means finishing at a standard temperature, "strong" means finishing at a higher finishing temperature, and "weak" means finishing at a lower finishing temperature.
 工程S3では、ユーザは、入力部71のスタートボタンを入力する。 In step S3, the user presses the start button on the input unit 71.
 工程S4では、重量センサ25は、テーブルプレート24に載置された、被加熱物60cと容器60の合計の重量Wを検出する。 In step S4, the weight sensor 25 detects the total weight W of the object to be heated 60c and the container 60 placed on the table plate 24.
 工程S5では、庫内温度センサ80は庫内温度Tiを検出する。 In step S5, the internal temperature sensor 80 detects the internal temperature Ti.
 工程S6では、制御部23aは、庫内温度Tiが所定の温度より高いかを判定する。そして、庫内温度Tiが所定の温度より高い場合は、庫内高温モードに移行して被加熱物60cを加熱する。一方、そうでない場合は、工程S7に進む。 In step S6, the control unit 23a determines whether the internal temperature Ti is higher than a predetermined temperature. When the internal temperature Ti is higher than the predetermined temperature, the internal high temperature mode is entered and the object to be heated 60c is heated. On the other hand, if not, the process proceeds to step S7.
 ここで、庫内高温モードとは、オーブン調理の直後のように加熱室28の温度が高い場合、赤外線センサ52が被加熱物60cの温度を正確に検出できなくなるため、赤外線センサ52を使用せずにレンジ加熱を行うモードである。そのため、このモードでは、ユーザに、入力部71で被加熱物60cの保存状態が常温/冷蔵か冷凍かを選択させ、この選択結果と、検出した重量Wを基に、入力された温度に被加熱物60cが加熱できる程度の加熱時間を事前に確認した結果に基づいて総加熱時間を算出して加熱する。 Here, the internal high temperature mode means that when the temperature of the heating chamber 28 is high, such as immediately after oven cooking, the infrared sensor 52 cannot accurately detect the temperature of the object to be heated 60c, so the infrared sensor 52 cannot be used. This mode allows you to heat in the microwave without heating. Therefore, in this mode, the user selects whether the storage state of the heated object 60c is room temperature/refrigerated or frozen using the input unit 71, and based on this selection result and the detected weight W, the heated object 60c is exposed to the input temperature. The total heating time is calculated based on the result of confirming in advance the heating time enough to heat the heating object 60c, and the heating is performed.
 工程S7では、赤外線センサ52は、テーブルプレート上面の奥側温度Tbと手前側温度Tfを検出し(図9参照)、庫外温度センサ100は加熱室28の外側の庫外温度Toを検出する。 In step S7, the infrared sensor 52 detects the back side temperature Tb and front side temperature Tf of the top surface of the table plate (see FIG. 9), and the outside temperature sensor 100 detects the outside temperature To of the outside of the heating chamber 28. .
 工程S8では、制御部23aは、奥側温度Tbと庫外温度Toの温度差、および、手前側温度Tfと庫外温度Toの温度差を比較し、前者の温度差が小さければ工程S9に進み、後者の温度差が小さければ工程S10に進む。 In step S8, the control unit 23a compares the temperature difference between the back side temperature Tb and the outside temperature To, and the temperature difference between the front side temperature Tf and the outside temperature To, and if the former temperature difference is small, the control section 23a advances to step S9. If the latter temperature difference is small, the process advances to step S10.
 工程S9では、制御部23aは、庫外温度Toにより近い温度の奥側温度Tbをテーブルプレート温度Ttとして採用する。 In step S9, the control unit 23a adopts the back side temperature Tb, which is closer to the outside temperature To, as the table plate temperature Tt.
 一方、工程S10では、制御部23aは、庫外温度Toにより近い温度の手前側温度Tfをテーブルプレート温度Ttとして採用する。 On the other hand, in step S10, the control unit 23a adopts the near side temperature Tf, which is closer to the outside temperature To, as the table plate temperature Tt.
 次に、図11の工程S11では、制御部23aは、テーブルプレート上面の各ピクセルの温度に基づいて、被加熱物60cの載置領域を判定する。本工程により、図9の斜線部で例示するような被加熱物60cの載置領域が特定される。 Next, in step S11 of FIG. 11, the control unit 23a determines the placement area of the object to be heated 60c based on the temperature of each pixel on the top surface of the table plate. Through this step, a placement area for the object to be heated 60c as illustrated by the hatched area in FIG. 9 is specified.
 工程S12では、制御部23aは、工程S9または工程S10で採用したテーブルプレート温度Ttが所定の温度よりも高温であるかを判定する。そして、テーブルプレート温度Ttが高温であれば工程S16に進み、そうでなければ、工程S13に進む。なお、本工程でテーブルプレート温度Ttが高温と判定された場合、現在のレンジ加熱調理の直前に他のレンジ加熱調理が実行された結果、テーブルプレート温度Ttが高温になっていると推定することができる。 In step S12, the control unit 23a determines whether the table plate temperature Tt adopted in step S9 or step S10 is higher than a predetermined temperature. If the table plate temperature Tt is high, the process proceeds to step S16; otherwise, the process proceeds to step S13. Note that if the table plate temperature Tt is determined to be high in this step, it is assumed that the table plate temperature Tt is high as a result of another microwave cooking being executed immediately before the current microwave cooking. I can do it.
 工程S13では、制御部23aは、IGBT温度センサ101が検出したIGBT温度が所定の温度よりも高温であるかを判定する。そして、IGBT温度が高温であれば工程S14に進み、そうでなければ、工程S15に進む。なお、本工程でIGBT温度が高温と判定された場合、現在のレンジ加熱調理の直前に他のレンジ加熱調理が実行された結果、レンジ加熱部330に電力を供給するIGBTが高温になっていると推定することができる。 In step S13, the control unit 23a determines whether the IGBT temperature detected by the IGBT temperature sensor 101 is higher than a predetermined temperature. If the IGBT temperature is high, the process proceeds to step S14; otherwise, the process proceeds to step S15. Note that if the IGBT temperature is determined to be high in this step, the IGBT that supplies power to the microwave heating section 330 has become high temperature as a result of another microwave cooking being executed immediately before the current microwave heating. It can be estimated that
 工程S14では、制御部23aは、赤外線センサ52が測定したテーブルプレート上面の各ピクセルの温度のうち最大温度が、庫外温度Toに所定の温度を加算した温度よりも高温であるかを判定する。そして、最大温度が高温であれば工程S16に進み、そうでなければ、工程S15に進む。なお、本工程でテーブルプレート上面が局所的に高温と判定された場合、現在のレンジ加熱調理の直前に他のレンジ加熱調理が実行された結果、前回加熱された被加熱物の熱によってテーブルプレート上面が局所的に高温になっていると推定することができる。 In step S14, the control unit 23a determines whether the maximum temperature among the temperatures of each pixel on the top surface of the table plate measured by the infrared sensor 52 is higher than the temperature obtained by adding a predetermined temperature to the outside temperature To. . If the maximum temperature is high, the process proceeds to step S16; otherwise, the process proceeds to step S15. In addition, if it is determined that the top surface of the table plate is locally high temperature in this process, as a result of another microwave cooking being executed immediately before the current microwave cooking, the table plate may be affected by the heat of the previously heated object. It can be inferred that the upper surface is locally hot.
 工程S15では、制御部23aは、工程S11で被加熱物領域と判定されたピクセルにおける赤外線センサ52の測定温度に基づいて、被加熱物60cの初期温度Tsを検出し、その初期温度Tsに基づいて、被加熱物60cの保存状態を、冷凍、冷蔵、常温の何れかに分類する。その後、分類された被加熱物60cの状態に応じて、通常加熱モードでの加熱調理が実行される。なお、通常加熱モードは、赤外線センサ52で被加熱物60cの温度を正しく検出可能な場合に選択される加熱モードであり、従来の加熱制御と同様に、被加熱物60cの温度が所望の調理終了温度に到達した時点で加熱を終了するものである。 In step S15, the control unit 23a detects the initial temperature Ts of the heated object 60c based on the temperature measured by the infrared sensor 52 at the pixel determined to be the heated object region in step S11, and detects the initial temperature Ts of the heated object 60c based on the initial temperature Ts. The storage state of the object to be heated 60c is classified as frozen, refrigerated, or room temperature. Thereafter, depending on the state of the classified object to be heated 60c, cooking is performed in the normal heating mode. Note that the normal heating mode is a heating mode that is selected when the temperature of the object to be heated 60c can be detected correctly by the infrared sensor 52, and similarly to conventional heating control, the temperature of the object to be heated 60c is adjusted to the desired level for cooking. Heating ends when the end temperature is reached.
 工程S16では、制御部23aは、工程S11で被加熱物領域と判定されたピクセルにおける赤外線センサ52の測定温度に基づいて、被加熱物60cの初期温度Tsを検出し、その初期温度Tsに基づいて、被加熱物60cの保存状態を、冷凍、冷凍以外のどちらかに分類する。その後、分類された被加熱物60cの状態に応じて、載置場所高温モードでの加熱調理が実行される。 In step S16, the control unit 23a detects the initial temperature Ts of the heated object 60c based on the temperature measured by the infrared sensor 52 at the pixel determined to be the heated object region in step S11, and detects the initial temperature Ts of the heated object 60c based on the initial temperature Ts. Then, the storage state of the heated object 60c is classified as either frozen or non-frozen. Thereafter, depending on the state of the classified object to be heated 60c, cooking is performed in the placement location high temperature mode.
 載置場所高温モードは、今回のレンジ加熱調理の直前に他の被加熱物をレンジ加熱調理していた痕跡があり(テーブルプレートの奥側または手前側が高温、または、テーブルプレートが局所的に高温)、その痕跡のために、赤外線センサ52では被加熱物60cの温度を誤解する可能性がある場合に、工程S4で検出した重量Wと、工程S16で判別した保存状態に応じて、被加熱物60cを適切な温度に加熱できる程度のレンジ加熱時間を算出して加熱する加熱モードである。 Placement location high temperature mode indicates that there is evidence that another item was being microwaved immediately before this microwave cooking (the back or front side of the table plate is high temperature, or the table plate is locally high temperature). ), if there is a possibility that the infrared sensor 52 misunderstands the temperature of the heated object 60c due to the trace, the heated object 60c is This heating mode calculates and heats the microwave heating time long enough to heat the object 60c to an appropriate temperature.
 ここで、図13を用いて、載置場所高温モードが選択された場合のレンジ加熱を説明する。載置場所高温モードが選択された場合の総加熱時間は、前段のセンシング時間t1と、後段のレンジ加熱時間t2の和である。前段のセンシング時間t1は、センシング処理を実行するための期間であり、被加熱物60cの重量Wや保存状態が求められる。一方、後段のレンジ加熱時間t2は、センシングで求めた被加熱物60cの重量Wと保存状態に基づいて、下記の何れかの式で算出される。 Here, microwave heating when the placement location high temperature mode is selected will be described using FIG. 13. The total heating time when the placement location high temperature mode is selected is the sum of the preceding sensing time t1 and the subsequent microwave heating time t2. The preceding sensing time t1 is a period for performing sensing processing, and the weight W and storage state of the object to be heated 60c are determined. On the other hand, the subsequent microwave heating time t2 is calculated using one of the following formulas based on the weight W of the object to be heated 60c determined by sensing and the storage state.
 <被加熱物が冷凍である場合>
 t2a=k×(k-k×Ts)×W ・・・(式1)
 <被加熱物が冷凍以外(冷蔵、常温)の場合>
 t2b=k×(k-k×Ts)×W ・・・(式2)
 ここで、kは、仕上がり調節Kの設定に応じた係数であり、例えば、「強」設定の場合は1.5、「やや強」設定の場合は1.2、「中」設定の場合は1、「やや弱」設定の場合は0.8、「弱」設定の場合は0.5である。また、k~kは所定の正数であり、被加熱物の初期温度Tsが調理完了温度以下である場合に、式1のt2a、式2のt2bが常に正値となる値が設定される。
<When the object to be heated is frozen>
t2a= k1 ×( k2 - k3 ×Ts)×W...(Formula 1)
<If the object to be heated is other than frozen (refrigerated, room temperature)>
t2b= k1 ×( k4 - k5 ×Ts)×W...(Formula 2)
Here, k1 is a coefficient depending on the finish adjustment K setting, for example, 1.5 for "strong" setting, 1.2 for "slightly strong" setting, and 1.2 for "medium" setting. is 1, 0.8 for the "slightly weak" setting, and 0.5 for the "weak" setting. Further, k 2 to k 5 are predetermined positive numbers, and values are set such that t2a in equation 1 and t2b in equation 2 are always positive values when the initial temperature Ts of the heated object is below the cooking completion temperature. be done.
 これにより、被加熱物60cの保存状態を冷凍か冷凍以外かに分類できさえすれば、直前のレンジ加熱の痕跡によって被加熱物60cの温度を正確に測定できない場合であっても、被加熱物60cを適温に加熱するために必要とされるレンジ加熱時間t2を算出することができ、そのレンジ加熱時間t2を用いることで被加熱物60cを適温に加熱することができる。 As a result, as long as the storage state of the heated object 60c can be classified as frozen or other than frozen, even if the temperature of the heated object 60c cannot be accurately measured due to traces of previous microwave heating, the heated object 60c can be classified as frozen or other than frozen. The microwave heating time t2 required to heat the object 60c to an appropriate temperature can be calculated, and by using the microwave heating time t2, the object to be heated 60c can be heated to an appropriate temperature.
 以上で説明したように、本実施例の高周波加熱調理器によれば、複数の被加熱物を連続して加熱調理する場合、前回の加熱時に被加熱物の載置場所等の温度が上昇していても、今回の被加熱物の設置場所を特定することができ、今回の被加熱物を適温に加熱することができる。 As explained above, according to the high-frequency heating cooker of this embodiment, when a plurality of objects to be heated are heated and cooked in succession, the temperature of the place where the objects to be heated, etc. are placed increases during the previous heating. Even if the current object to be heated can be installed, the installation location of the current object to be heated can be specified, and the current object to be heated can be heated to an appropriate temperature.
1…加熱調理器の本体、23a…制御部、24…テーブルプレート、25…重量センサ、28…加熱室、33…マグネトロン、52…赤外線センサ、60…容器、60c…被加熱物、71…入力部、80…庫内温度センサ、100…庫外温度センサ、101…IGBT温度センサ、Ti…庫内温度、To…庫外温度、Tt…テーブルプレート温度、Tf…テーブルプレートの手前側温度、Tb…テーブルプレートの奥側温度、Ts…被加熱物の初期温度 DESCRIPTION OF SYMBOLS 1... Main body of heating cooker, 23a... Control unit, 24... Table plate, 25... Weight sensor, 28... Heating chamber, 33... Magnetron, 52... Infrared sensor, 60... Container, 60c... To be heated, 71... Input Part, 80... Inside temperature sensor, 100... Outside temperature sensor, 101... IGBT temperature sensor, Ti... Inside temperature, To... Outside temperature, Tt... Table plate temperature, Tf... Near side temperature of table plate, Tb ...Temperature on the back side of the table plate, Ts...Initial temperature of the heated object

Claims (4)

  1.  テーブルプレートを収納した加熱室と、
     前記テーブルプレートに載置した被加熱物を加熱するレンジ加熱部と、
     前記テーブルプレートの上面の複数個所の温度を検出する赤外線センサと、
     前記加熱室の庫外温度を検出する庫外温度センサと、
     前記赤外線センサの検出温度に基づいて前記レンジ加熱部を制御する制御部と、を備え、
     該制御部は、
     前記庫外温度と前記テーブルプレートの奥側温度の温度差、および、前記庫外温度と前記テーブルプレートの手前側温度の温度差を算出し、
     前者の温度差が小さい場合は、前記奥側温度をテーブルプレート温度として採用し、
     後者の温度差が小さい場合は、前記手前側温度をテーブルプレート温度として採用し、
     前記テーブルプレートの上面の領域であって前記テーブルプレート温度と温度差のある部分を前記被加熱物の載置領域と判定することを特徴とする高周波加熱調理器。
    A heating chamber that houses the table plate,
    a microwave heating section that heats the object placed on the table plate;
    an infrared sensor that detects temperatures at multiple locations on the top surface of the table plate;
    an outside temperature sensor that detects the outside temperature of the heating chamber;
    A control unit that controls the microwave heating unit based on the temperature detected by the infrared sensor,
    The control section is
    Calculating the temperature difference between the temperature outside the refrigerator and the temperature on the back side of the table plate, and the temperature difference between the temperature outside the refrigerator and the temperature on the front side of the table plate,
    If the former temperature difference is small, the back side temperature is adopted as the table plate temperature,
    If the latter temperature difference is small, use the front side temperature as the table plate temperature,
    A high-frequency heating cooking device characterized in that a region on the upper surface of the table plate that has a temperature difference from the table plate temperature is determined to be a mounting region for the object to be heated.
  2.  請求項1に記載の高周波加熱調理器において、
     前記制御部は、前記テーブルプレート温度が所定温度よりも高温であった場合、
     前記赤外線センサが検出した前記被加熱物の初期温度から保存状態が冷凍であるか否かを分類し、該保存状態に応じた加熱時間を算出して、前記レンジ加熱部を制御することを特徴とする高周波加熱調理器。
    In the high frequency heating cooker according to claim 1,
    The control unit, when the table plate temperature is higher than a predetermined temperature,
    It is characterized by classifying whether the preservation state is frozen based on the initial temperature of the object to be heated detected by the infrared sensor, calculating the heating time according to the preservation state, and controlling the microwave heating section. High frequency heating cooker.
  3.  請求項1に記載の高周波加熱調理器において、
     さらに、前記レンジ加熱部のIGBT温度を検出するIGBT温度センサを備え、
     前記制御部は、前記テーブルプレート温度が所定温度よりも高温でなかった場合、
     前記IGBT温度が所定温度よりも高温であり、かつ、前記赤外線センサが検出した前記テーブルプレートの上面の温度のうち最大温度が所定温度よりも高温であったときに、
     前記赤外線センサが検出した前記被加熱物の初期温度から保存状態が冷凍であるか否かを分類し、該保存状態に応じた加熱時間を算出して、前記レンジ加熱部を制御することを特徴とする高周波加熱調理器。
    In the high frequency heating cooker according to claim 1,
    Furthermore, it includes an IGBT temperature sensor that detects the IGBT temperature of the microwave heating section,
    When the table plate temperature is not higher than a predetermined temperature, the control unit
    When the IGBT temperature is higher than a predetermined temperature, and the maximum temperature among the temperatures of the upper surface of the table plate detected by the infrared sensor is higher than the predetermined temperature,
    It is characterized by classifying whether the preservation state is frozen based on the initial temperature of the object to be heated detected by the infrared sensor, calculating the heating time according to the preservation state, and controlling the microwave heating section. High frequency heating cooker.
  4.  請求項2または請求項3に記載の高周波加熱調理器において、
     さらに、前記被加熱物の重量を検出する重量センサを備え、
     前記制御部は、前記重量に応じた加熱時間を算出して、前記レンジ加熱部を制御することを特徴とする高周波加熱調理器。
    In the high frequency heating cooker according to claim 2 or 3,
    Furthermore, it includes a weight sensor that detects the weight of the object to be heated,
    The high-frequency cooking device is characterized in that the control section calculates a heating time according to the weight and controls the microwave heating section.
PCT/JP2023/000294 2022-04-15 2023-01-10 High-frequency heating cooker WO2023199559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-067782 2022-04-15
JP2022067782A JP2023157706A (en) 2022-04-15 2022-04-15 High-frequency heating cooker

Publications (1)

Publication Number Publication Date
WO2023199559A1 true WO2023199559A1 (en) 2023-10-19

Family

ID=88329481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000294 WO2023199559A1 (en) 2022-04-15 2023-01-10 High-frequency heating cooker

Country Status (2)

Country Link
JP (1) JP2023157706A (en)
WO (1) WO2023199559A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105630A (en) * 1994-10-04 1996-04-23 Hitachi Home Tec Ltd Heating cooker
JP2002093569A (en) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd Microwave heating method
JP2007336781A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Invertor control circuit and high-frequency induction heating device
JP2017009229A (en) * 2015-06-25 2017-01-12 日立アプライアンス株式会社 Heating cooker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105630A (en) * 1994-10-04 1996-04-23 Hitachi Home Tec Ltd Heating cooker
JP2002093569A (en) * 2000-09-14 2002-03-29 Matsushita Electric Ind Co Ltd Microwave heating method
JP2007336781A (en) * 2006-06-19 2007-12-27 Matsushita Electric Ind Co Ltd Invertor control circuit and high-frequency induction heating device
JP2017009229A (en) * 2015-06-25 2017-01-12 日立アプライアンス株式会社 Heating cooker

Also Published As

Publication number Publication date
JP2023157706A (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP6637584B2 (en) Cooker
WO2023199559A1 (en) High-frequency heating cooker
JP6461656B2 (en) Cooker
US20050077290A1 (en) Combined toaster and microwave oven and control method thereof
JP6554439B2 (en) High frequency heating cooker
TWI614458B (en) High frequency heating conditioner
JP6823152B2 (en) Cooker
JP6488247B2 (en) Cooker
JP2019190682A (en) High frequency heating cooker
JP6824136B2 (en) Cooker
JP2024033456A (en) heating cooker
JP7002487B2 (en) Cooker
JP6905957B2 (en) High frequency cooker
JP6491937B2 (en) Cooker
JP2017067325A (en) Heating cooker
JP2010112634A (en) Heating cooker
JP6818793B2 (en) Cooker
JP6476075B2 (en) Cooker
JP2017003149A (en) Heating cooker
JP7345512B2 (en) heating cooker
JP2018194270A (en) Heating cooker
JP2017009229A (en) Heating cooker
JP7398407B2 (en) Cooking device and cooking method
JP5625618B2 (en) Cooker
JP2017009178A (en) Heating cooker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787982

Country of ref document: EP

Kind code of ref document: A1