WO2023198173A1 - 确定sl定位参考信号资源的方法、终端及网络侧设备 - Google Patents

确定sl定位参考信号资源的方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2023198173A1
WO2023198173A1 PCT/CN2023/088292 CN2023088292W WO2023198173A1 WO 2023198173 A1 WO2023198173 A1 WO 2023198173A1 CN 2023088292 W CN2023088292 W CN 2023088292W WO 2023198173 A1 WO2023198173 A1 WO 2023198173A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning reference
reference signal
psfch
resource
resources
Prior art date
Application number
PCT/CN2023/088292
Other languages
English (en)
French (fr)
Inventor
彭淑燕
王园园
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023198173A1 publication Critical patent/WO2023198173A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a method, terminal and network side equipment for determining SL positioning reference signal resources.
  • LTE Long Term Evolution
  • SL sidelink
  • V2X vehicle to everything
  • NR 5G New Radio
  • SL positioning terminals is one of the important functions. Therefore, there are more and more studies on SL positioning in NR systems. SL positioning generally needs to be implemented based on reference signals.
  • SL reference signals include, for example, SSB, DMRS, DMRS, CSI-RS, PTRS, etc. Except for SSB, the remaining signals are limited to the frequency domain resource range of PSSCH. Therefore, the available frequency domain range of the above reference signal is smaller. In positioning, the greater the bandwidth of the reference signal used for positioning, the higher the positioning accuracy. In actual positioning scenarios, positioning accuracy requirements are generally higher, and positioning requires a larger amount of information. Current solutions may not meet positioning needs. Therefore, for those skilled in the art, how to allocate SL positioning reference signal resources to meet positioning requirements is an urgent technical problem that needs to be solved.
  • Embodiments of the present application provide a method, terminal and network-side device for determining SL positioning reference signal resources, which can solve the problem of how to allocate SL positioning reference signal resources to meet positioning requirements.
  • the first aspect provides a method for determining SL positioning reference signal resources, including:
  • the first terminal determines the SL positioning reference signal based on the configuration information of the physical side link feedback channel PSFCH. H.
  • a method for transmitting side-link SL positioning reference signals including:
  • the first terminal determines a third resource of the SL positioning reference signal, and transmits the SL positioning reference signal based on the third resource.
  • the third aspect provides a method for determining SL positioning reference signal resources, including:
  • the network side device or the second terminal sends the configuration information of the physical side link feedback channel PSFCH to the first terminal, and the configuration information of the PSFCH is used by the first terminal to determine the resource of the SL positioning reference signal.
  • a device for determining SL positioning reference signal resources in a side link including:
  • a processing module configured to determine the resources of the SL positioning reference signal based on the configuration information of the physical side link feedback channel PSFCH.
  • a transmission device for side-link SL positioning reference signals including:
  • a transmission module configured to transmit the SL positioning reference signal based on the third resource.
  • a device for determining SL positioning reference signal resources in a side link including:
  • a sending module configured to send configuration information of the physical side link feedback channel PSFCH to the first terminal, where the configuration information of the PSFCH is used by the first terminal to determine resources of the SL positioning reference signal.
  • a first terminal in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a first terminal including a processor and a communication interface, wherein the processor is configured to determine resources of the SL positioning reference signal based on configuration information of the physical side link feedback channel PSFCH.
  • a network side device in a ninth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send configuration information of the physical side link feedback channel PSFCH to the first terminal, and the configuration information of the PSFCH is Determine resources of the SL positioning reference signal at the first terminal.
  • a communication system including: a first terminal and a network side device.
  • the first terminal may be configured to perform the method of determining SL positioning reference signal resources as described in the first aspect or the second aspect.
  • the network side device may be configured to perform the steps of the method for determining SL positioning reference signal resources as described in the third aspect.
  • a readable storage medium In a twelfth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the method described in the first or second aspect is implemented. steps, or steps for implementing the method as described in the third aspect.
  • a chip in a thirteenth aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method described in the first aspect or the second aspect, or to implement the method described in the third aspect.
  • a fourteenth aspect a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect, the third aspect The method described in the second aspect or the third aspect.
  • PSFCH is a resource that is periodically reserved in the resource pool
  • the frequency domain resources available for PSFCH are the bandwidth of the entire resource pool. If the first terminal determines the resources of the SL positioning reference signal based on the configuration information of the physical side link feedback channel PSFCH, the frequency domain resource bandwidth available for the SL positioning reference signal may be the bandwidth of the resource pool. That is, the positioning accuracy of the SL positioning reference signal can be improved, because the larger the bandwidth of the SL positioning reference signal, the higher the positioning accuracy.
  • Figure 1 is a structural diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is one of the channel resource schematic diagrams provided by the embodiment of this application.
  • Figure 3 is the second schematic diagram of channel resources provided by the embodiment of this application.
  • Figure 4 is one of the flow diagrams of a method for determining SL positioning reference signal resources provided by an embodiment of the present application
  • Figure 5 is one of the resource diagrams of the SL positioning reference signal provided by the embodiment of the present application.
  • Figure 6 is the second schematic resource diagram of the SL positioning reference signal provided by the embodiment of the present application.
  • Figure 7 is the third resource diagram of the SL positioning reference signal provided by the embodiment of the present application.
  • Figure 8 is the fourth schematic resource diagram of the SL positioning reference signal provided by the embodiment of the present application.
  • Figure 9 is the fifth resource diagram of the SL positioning reference signal provided by the embodiment of the present application.
  • Figure 10 is the sixth resource diagram of the SL positioning reference signal provided by the embodiment of the present application.
  • Figure 11 is a second schematic flowchart of a method for determining SL positioning reference signal resources provided by an embodiment of the present application
  • Figure 12 is one of the structural schematic diagrams of a device for determining SL positioning reference signal resources provided by an embodiment of the present application
  • Figure 13 is a second structural schematic diagram of a device for determining SL positioning reference signal resources provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of the hardware structure of the first terminal provided by the embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • Mobile Internet Device MID
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • VUE vehicle-mounted equipment
  • PUE pedestrian terminal
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • PC personal computers
  • teller machines or self-service Terminal devices such as mobile phones
  • wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets, smart anklets, etc.), Smart wristbands, smart clothing, etc.
  • the network side equipment 12 may include access network equipment or core network equipment, where the access network equipment 12 may also be called It is a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all
  • eNB evolved Node B
  • BTS Base Transceiver Station
  • BSS Basic Service Set
  • ESS Extended Service Set
  • Home Node B Home Evolved Node B
  • TRP Transmitting Receiving Point
  • the Long Term Evolution LTE system supports sidelink (SL) starting from the 12th release, which is used for direct data transmission between terminals without going through network side equipment.
  • SL sidelink
  • the NR SL defined in the R16 version includes the following channels:
  • Physical sidelink control channel (PSCCH); physical sidelink shared channel (PSSCH); physical sidelink broadcast channel (PSBCH); physical sidelink Feedback information (physical sidelink discovery feedback channel, PSFCH).
  • PSCCH Physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • PSBCH physical sidelink broadcast channel
  • PSFCH physical sidelink Feedback information
  • PSSCH allocates resources in units of sub-channels, and adopts a continuous resource allocation method in the frequency domain.
  • the time domain resource of PSCCH is the number of symbols configured by the higher layer, and the frequency domain size is the parameter configured by the higher layer.
  • the frequency domain resource size of PSCCH is less than or equal to the size of one subchannel, and PSCCH is located within the range of the lowest subchannel of PSSCH.
  • An example diagram is shown in Figure 2.
  • the resources available for the PSFCH channel are determined on the SL resource pool according to the periodicity (eg, expressed as P_PSFCH) parameter.
  • P_PSFCH periodicity
  • the PSFCH channel occupies 1 or 2 symbols and is located in the last 2nd and 3rd symbols of the slot.
  • the previous symbol of PSFCH is the symbol used for AGC adjustment (the symbol used for AGC adjustment is the repetition of PSFCH symbol).
  • the next symbol of PSFCH is Gap.
  • Figure 3 shows a schematic diagram of the channel distribution of a physical resource block (Physical Resource Block, PRB).
  • PRB Physical Resource Block
  • PSFCH resources consist of time domain resources, frequency domain resources and code domain resources.
  • the code domain uses a ZC sequence, and the code sequence generation depends on the cyclic shift (CS), u, v, where u and v are the group identifier and sequence identifier of the ZC sequence respectively.
  • the PSFCH resource carries 1 bit of information bit for ACK/NACK feedback.
  • PSFCH resources have a fixed mapping relationship with PSCCH and/or PSSCH.
  • One or more PSCCH and/or PSSCH occasions may correspond to one PSFCH occasion.
  • One PSCCH/PSSCH resource can correspond to multiple PSFCH resources.
  • the terminal performs PSFCH transmission, it determines multiple corresponding PSFCH resources based on the received PSCCH/PSSCH resources, and determines a transmitted PSFCH resource based on the terminal ID.
  • NR V2X defines two resource allocation modes. One is mode1, which schedules resources for network-side devices (such as base stations); the other is mode2, where the terminal decides what resources to use for transmission.
  • the resource information may come from broadcast messages or preconfigured information from network-side devices. If the terminal works within the range of the network side device and has an RRC connection with the network side device, it can be mode1 and/or mode2. If the terminal works within the range of the network side device but has no RRC connection with the network side device, it can only work in mode2. If the terminal is outside the range of the network side device, it can only work in mode2 and perform V2X transmission according to the preconfigured information.
  • the specific working method is as follows: 1) After the resource selection is triggered, the TX terminal first determines the resource selection window. The lower boundary of the resource selection window is at the T1 time after the resource selection is triggered, and the upper boundary of the resource selection is at the T1 time after the resource selection is triggered. T2 time, where T2 is the value selected by the terminal implementation method within the packet delay budget (PDB) of its TB transmission, and T2 is not earlier than T1. 2) The terminal needs to determine the resource before resource selection The selected candidate resource set is compared with the corresponding RSRP threshold based on the RSRP measured on the resources within the resource selection window. If the RSRP is lower than the RSRP threshold, then the resource can be included in the candidate resource set. 3) After the resource set is determined, the terminal randomly selects transmission resources from the alternative resource set. In addition, the terminal can reserve transmission resources for subsequent transmissions during this transmission.
  • PDB packet delay budget
  • NR V2X supports a chained resource reservation method, that is, a SCI can reserve the current resource, and can reserve up to two additional resources. In the next resource, it can indicate two more reserved resources. Within the selection window, resources can be continuously reserved using dynamic reservation.
  • the method in the embodiment of this application is used for SL positioning.
  • PSFCH is a periodically reserved resource in the resource pool, and the frequency domain resources available for PSFCH are the bandwidth of the entire resource pool; PSSCH, PSCCH, DMRS, CSI-RS, PTRS, etc. are limited to the bandwidth of SL PSSCH (the range is less than or equal to the bandwidth of the resource pool).
  • PSSCH, PSCCH, DMRS, CSI-RS, PTRS, etc. are limited to the bandwidth of SL PSSCH (the range is less than or equal to the bandwidth of the resource pool).
  • the greater the bandwidth of the positioning reference signal the higher the positioning accuracy. Therefore, it is considered to determine the resources of the SL positioning reference signal based on the configuration information of the PSFCH, improve the positioning accuracy of the SL positioning reference signal, and at the same time minimize the complexity of the SL positioning reference signal design.
  • the SL positioning reference signal in the embodiment of this application may include: SL positioning reference signal (Position Reference Signal, PRS), and SL reference signals extended for positioning, such as: side link synchronization signal block S-SSB, SL channel status Information reference signal (Channel State Information Reference Signal, CSI-RS), SL phase tracking reference signal (PhaseTracking Reference Signal, PTRS) or SL demodulation reference signal (Demodulatin Reference Signal, DMRS).
  • SL positioning reference signal Position Reference Signal
  • SL reference signals extended for positioning such as: side link synchronization signal block S-SSB, SL channel status Information reference signal (Channel State Information Reference Signal, CSI-RS), SL phase tracking reference signal (PhaseTracking Reference Signal, PTRS) or SL demodulation reference signal (Demodulatin Reference Signal, DMRS).
  • Figure 4 is one of the flow diagrams of a method for determining SL positioning reference signal resources provided by an embodiment of the present application. As shown in Figure 4, the method provided by this embodiment includes:
  • Step 101 The first terminal determines the resources of the SL positioning reference signal based on the configuration information of the physical side link feedback channel PSFCH.
  • the configuration information of PSFCH may be predefined by the protocol, preconfigured (for example, factory configuration), configured by the network side device, or configured by the second terminal (for example, information configured by the second terminal 1 to the first terminal 2)
  • the PSFCH configuration information may include, for example, PSFCH candidate resource information, cycle and other information.
  • the first terminal may perform resource multiplexing in a variety of ways to determine the resources of the SL positioning reference signal.
  • radio resource control Radio Resource Control, RRC
  • media access layer control element Medium Access Control Element, MAC CE
  • DCI Downlink Control Information
  • PC5-RRC RRC of PC5 interface
  • SCI Sidelink Control Information
  • the resources of the SL positioning reference signal may be resources actually used by the SL positioning reference signal, or resources available for the SL positioning reference signal. Resources may include time domain resources, frequency domain resources or power resources, etc.
  • PSFCH is a resource that is periodically reserved in the resource pool
  • the frequency domain resources available for PSFCH are the bandwidth of the entire resource pool. If the first terminal determines the resources of the SL positioning reference signal based on the configuration information of the physical side link feedback channel PSFCH, the frequency domain resource bandwidth available for the SL positioning reference signal may be the bandwidth of the resource pool. That is, the positioning accuracy of the SL positioning reference signal can be improved, because the larger the bandwidth of the SL positioning reference signal, the higher the positioning accuracy.
  • step 101 can be implemented in the following ways:
  • Method 1 When the PSFCH is configured in the SL resource pool, or the first period of the configured PSFCH is non-0, or the first period of the configured PSFCH is N, the first terminal is based on the mapping of the SL positioning reference signal and the PSFCH Rules to determine the resources of SL positioning reference signals;
  • N is 1 or 2 or 4.
  • the first cycle of PSFCH may be a cycle defined in previous protocol versions, such as the PSFCH cycle defined in R16 and R17 versions, and the second cycle of PSFCH may be a newly defined PSFCH cycle, for example, represented as R18 PSFCH cycle.
  • the first terminal determines the SL positioning reference based on the mapping rules between the SL positioning reference signal and the PSFCH. Signal resources.
  • the mapping rule is a predefined, preconfigured or configured parameter (which may be a network side device or other terminal).
  • the protocol is predefined as the first mapping rule; or the protocol is predefined as the second mapping rule;
  • mapping rule is determined according to the first cycle of the PSFCH or the second cycle of the PSFCH.
  • the resources of the SL positioning reference signal can be determined based on the mapping rules of the SL positioning reference signal and the PSFCH.
  • the frequency domain resource bandwidth available for the SL positioning reference signal can be the bandwidth of the resource pool. That is, the positioning accuracy of the SL positioning reference signal can be improved.
  • the first terminal determines the resources of the SL positioning reference signal based on the mapping rules of the SL positioning reference signal and the PSFCH, which can be implemented in the following ways:
  • the mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH resource are located in the same time slot and have different symbols
  • mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH are in the same time slot, and the symbols do not overlap
  • Slot k1 is the resource in the SL resource pool, and P is the first cycle of PSFCH.
  • the frequency domain resources available for the SL positioning reference signal are different.
  • the frequency domain resources that can be occupied by the SL positioning reference signal may be the frequency domain resources of the resource pool or the frequency domain resources corresponding to the PSSCH.
  • the resources represented by SL PRS in Figure 5 are the available resources of the SL positioning reference signal, or the actually occupied resources.
  • the first terminal determines the resources of the SL positioning reference signal based on the mapping rules of the SL positioning reference signal and the PSFCH, which can be implemented in the following ways:
  • mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH resources are located in different time slots
  • the mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH are on different time slots.
  • the period of the configured SL positioning reference signal is smaller than the first period or the second period of the PSFCH.
  • P_prs is the period of the SL positioning reference signal
  • offset_prs is the offset value of the SL positioning reference signal. .
  • the figure shows the frequency domain resources that the SL positioning reference signal can occupy.
  • the resource of the SL positioning reference signal is located on at least one of the following symbols, and the at least one symbol includes: symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
  • the optional symbol positions of the SL positioning reference signal are symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
  • the first terminal determines the resources of the SL positioning reference signal based on the mapping rules of the SL positioning reference signal and the PSFCH, which can be implemented in the following manner:
  • the mapping rule is the first mapping rule
  • the resource of the SL positioning reference signal is located on the candidate resource of the PSFCH; the candidate resource of the PSFCH is determined according to the second period and/or the first offset value of the PSFCH.
  • the mapping rule is the first mapping rule
  • the time domain resources of the SL positioning reference signal can be TDM multiplexed with the PSFCH time domain resources, for example, resources in different slots.
  • the SL positioning reference signal occupies the last 4 symbols.
  • the SL positioning reference signal may adopt the same structure as the PSFCH.
  • the candidate resources of the PSFCH are determined based on the second period and/or the first offset value of the PSFCH.
  • the first offset value may be an offset value corresponding to the second cycle of the PSFCH.
  • the second period of PSFCH is smaller than the first period of PSFCH
  • the resource of the SL positioning reference signal is located on a resource in the SL resource pool other than the first resource of the PSFCH, and the first resource of the PSFCH is determined through the first cycle of the PSFCH.
  • the resource of the SL positioning reference signal is located on symbol 11 and/or symbol 12.
  • R16/R17 PSFCH resources can be excluded semi-statically.
  • the network side device and/or the second terminal configures the second cycle of PSFCH, such as the R18 PSFCH cycle.
  • the network side device and/or the second terminal configure the first cycle of PSFCH, such as the NR R16/R17 PSFCH cycle.
  • the first candidate resources of R16/R17 PSFCH are a subset of the second candidate resources of R18 PSFCH.
  • the PSFCH of the R16 version is used to transmit HARQ feedback information; the PSFCH of the R17 version can be used to transmit auxiliary information, such as collision information.
  • the first terminal determines that the resources available for the SL positioning reference signal are the first candidate resources of the PSFCH candidate resources that are not R16/R17 PSFCH.
  • the SL positioning reference signal can use the PSFCH structure configured for the resource pool to reduce the design complexity of the SL positioning reference signal.
  • the SL positioning reference signal corresponds to the four symbols at the end of the slot.
  • the resources available for the SL positioning reference signal are the resources in the entire frequency domain of the resource pool.
  • the larger the transmittable bandwidth the better the positioning accuracy.
  • the resources represented by SL PRS in Figure 8 are the available resources of the SL positioning reference signal, or the actually occupied resources.
  • the resources of the above-mentioned SL positioning reference signal do not conflict with the resources of the PSFCH; and/or,
  • offset_prs is greater than 0; and/or,
  • the period of the SL positioning reference signal is an integer multiple of the first period of the PSFCH.
  • the period (for example, recorded as P_prs) and/or the offset value (offset_prs) of the SL positioning reference signal can be predefined, preconfigured, or configured; optionally, the SL positioning reference signal can be configured independently, and the configuration realizes the SL positioning reference
  • the signal and PSFCH are time-division multiplexed.
  • the first terminal expects that slot k4 does not conflict with PSFCH resources.
  • the network side device and/or the second terminal configures the period of the SL positioning reference signal (the structure of the SL positioning reference signal is the same as the PSFCH structure, except that the position of the PSFCH is TDM resource configuration, depending on the configuration to ensure the SL positioning reference
  • the signal candidate resources do not conflict with the PSFCH candidate resources.
  • the period and offset value of the SL positioning reference signal are directly configured. It also uses multiple methods to locate SL reference signal resources, which is more flexible and can meet the needs of various scenarios.
  • the first terminal determines the resources of the SL positioning reference signal based on the mapping rule of the SL positioning reference signal and the PSFCH, including at least one of the following:
  • the SL positioning reference signal resource is located in time slot k5, and time slot k5 is the time slot in which PSFCH resources exist;
  • the first terminal determines the resources of the SL positioning reference signal by performing rate matching or puncturing on the PSFCH resources; or,
  • the interval between the SL positioning reference signal resources and the PSFCH resources is predefined or configured or indicated.
  • the PSFCH resources are actually occupied PSFCH resources or available PSFCH resources.
  • the SL positioning reference signal and PSFCH can be multiplexed for FDM;
  • the first terminal transmits (sends/receives) the SL positioning reference signal on slot k5, and slot 5 is the slot where the first terminal expects PSFCH resources to exist.
  • the performance of the SL positioning reference signal may be limited.
  • the gap is to reduce interference between the SL positioning reference signal and the PSFCH.
  • the gap is a guard bandwidth in the frequency domain; or a guard interval in the time domain.
  • the SL positioning reference signal is configured to be located in the PSFCH candidate time resource.
  • the SL positioning reference signal performs rate matching or hole punching on the PSFCH.
  • the first period of PSFCH is 2.
  • A/N is the actual sending position of PSFCH.
  • non-A/N positions can be used for sending SL positioning reference signals.
  • Method 2 When the PSFCH is not configured in the SL resource pool, or the first period of the configured PSFCH is 0, the first terminal determines the resource of the SL positioning reference signal based on the first information, and the first information includes at least one of the following: item:
  • the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal is the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal.
  • SL positioning may be configured based on at least one of the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal. Reference signal resources to improve the positioning accuracy of SL positioning reference signals as much as possible.
  • the method also includes:
  • the first terminal When the resources of the SL positioning reference signal and the resources of the PSFCH overlap in time on the second resource, the first terminal performs at least one of the following:
  • the SL positioning reference signal is sent on the second resource, or the PSFCH is received on the second resource, or based on the SL positioning reference signal and The priority of the PSFCH determines the transmission behavior; or,
  • the SL positioning reference signal is received on the second resource or the PSFCH is sent on the second resource, or based on the SL positioning reference signal and the PSFCH
  • the priority determines the transfer behavior.
  • the first terminal may perform at least one of the following:
  • PSFCH takes priority
  • the first terminal may perform at least one of the following:
  • PSFCH takes priority
  • a method for transmitting side-link SL positioning reference signals including:
  • the first terminal determines a third resource of the SL positioning reference signal, and transmits the SL positioning reference signal based on the third resource.
  • the third resource for determining the SL positioning reference signal may be any of the foregoing methods, or other methods, which are not limited in this embodiment of the present application.
  • transmitting the SL positioning reference signal based on the third resource includes:
  • the first terminal When the resource for sending the SL positioning reference signal and the resource for receiving the SL positioning reference signal overlap in time on the third resource, the first terminal performs at least one of the following:
  • the transmission behavior is determined based on the priority of sending and receiving SL positioning reference signals.
  • the first terminal Terminal executes at least one of the following:
  • transmitting the SL positioning reference signal based on the third resource includes:
  • the first terminal sends M1 SL positioning reference signals based on the first condition, where M1 is an integer greater than or equal to 1, and the first condition satisfies at least one of the following:
  • M2 there are M2 SL positioning reference signals to be sent, M2 is greater than M max , the M max is the maximum number of SL positioning reference signals that can be sent by the first terminal, and M1 is less than or equal to M max .
  • this scenario is: M2 SL positioning reference signals to be sent; where M2>M max , M max is the maximum number of SL positioning reference signals that the first terminal can send (for example, subject to power restrictions), from M2 Select M1 positioning reference signals from the SL positioning reference signals to send M1 less than or equal to M max .
  • the first terminal may select M1 SL positioning reference signals to send based on priority, QoS or delay, etc., satisfying at least one of the following:
  • the first terminal selects M1 SL positioning reference signals with the smallest remaining delay to send. For example, if multiple target first terminals trigger and assist the first terminal in sending SL positioning reference signals, a sending time window can be set, and the first terminal can select M1 SL positioning reference signals with the smallest remaining duration in the sending time window to send.
  • the first terminal selects the M1 SL positioning reference signals with the highest priority to send. For example, assuming that the smaller the priority value is, the higher the priority is, then M1 SL positioning reference signals with the smallest priority value are selected for transmission.
  • Figure 11 is one of the flow diagrams of a method for determining side link SL positioning reference signal resources provided by an embodiment of the present application. As shown in Figure 4, the method provided by this embodiment includes:
  • Step 201 The network side device or the second terminal sends the configuration information of the physical side link feedback channel PSFCH to the first terminal.
  • the configuration information of the PSFCH is used by the first terminal to determine the resources of the SL positioning reference signal.
  • PSFCH is configured in the SL resource pool, or the first period of the configured PSFCH is non-0, Or when the first period of the configured PSFCH is N, the resources of the SL positioning reference signal are determined based on the mapping rules of the SL positioning reference signal and PSFCH; N is 1 or 2 or 4; or,
  • the resource of the SL positioning reference signal is determined based on the first information, and the first information includes at least one of the following:
  • the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal is the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal.
  • the mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH resource are located in the same time slot and have different symbols
  • mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH resources are located in different time slots
  • the resource of the SL positioning reference signal is located on at least one of the following symbols, and the at least one symbol includes: symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
  • the mapping rule is the first mapping rule
  • the resource of the SL positioning reference signal is located on the candidate resource of the PSFCH; the candidate resource of the PSFCH is based on the second cycle of the PSFCH and/or the first determined by an offset value.
  • the second period of the PSFCH is smaller than the first period of the PSFCH
  • the resource of the SL positioning reference signal is located on a resource in the SL resource pool other than the first resource of the PSFCH, and the first resource of the PSFCH is determined through the first cycle of the PSFCH.
  • the resource of the SL positioning reference signal is located on symbol 11 and/or symbol 12.
  • the resources of the SL positioning reference signal do not conflict with the resources of the PSFCH; and/or,
  • the offset_prs is greater than 0; and/or,
  • the period of the SL positioning reference signal is an integer multiple of the first period of the PSFCH.
  • mapping rule is the second mapping rule
  • at least one of the following is satisfied:
  • the resource of the SL positioning reference signal is located in time slot k5, and the time slot k5 has PSFCH resources. time slot;
  • the resource of the SL positioning reference signal is determined by the first terminal by performing rate matching or puncturing on the PSFCH; or,
  • the interval between the SL positioning reference signal resources and the PSFCH resources is predefined or configured or indicated.
  • mapping rule between the SL positioning reference signal and the PSFCH is predefined, preconfigured or configured.
  • mapping rule is determined according to the first cycle of the PSFCH or the second cycle of the PSFCH.
  • the execution subject may be a device for determining SL positioning reference signal resources.
  • the method for determining side-link SL positioning reference signal resources performed by the device for determining SL positioning reference signal resources in the embodiment of the present application is taken as an example to illustrate the device for determining SL positioning reference signal resources provided by the embodiment of the present application.
  • Figure 12 is one of the structural schematic diagrams of a device for determining SL positioning reference signal resources provided by an embodiment of the present application. As shown in Figure 12, the device for determining SL positioning reference signal resources provided by this embodiment includes:
  • the processing module 210 is configured to determine the resources of the SL positioning reference signal based on the configuration information of the physical side link feedback channel PSFCH.
  • the first terminal bases the positioning reference on the SL
  • the mapping rules between signals and PSFCH determine the resources of the SL positioning reference signal; N is 1 or 2 or 4; or,
  • the first terminal determines the resource of the SL positioning reference signal based on first information, and the first information includes at least the following: One item:
  • the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal is the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal.
  • the mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH resource are located in the same time slot and have different symbols
  • mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH resources are located in different time slots
  • the resource of the SL positioning reference signal is located on at least one of the following symbols, and the at least one symbol includes: symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
  • the mapping rule is the first mapping rule
  • the resource of the SL positioning reference signal is located on the candidate resource of the PSFCH; the candidate resource of the PSFCH is based on the second cycle of the PSFCH and/or the first determined by an offset value.
  • the second period of the PSFCH is smaller than the first period of the PSFCH
  • the resource of the SL positioning reference signal is located on a resource in the SL resource pool other than the first resource of the PSFCH, and the first resource of the PSFCH is determined through the first cycle of the PSFCH.
  • the resource of the SL positioning reference signal is located on symbol 11 and/or symbol 12.
  • the resources of the SL positioning reference signal do not conflict with the resources of the PSFCH; and/or,
  • the offset_prs is greater than 0; and/or,
  • the period of the SL positioning reference signal is an integer multiple of the first period of the PSFCH.
  • the processing module 210 is specifically configured to perform at least one of the following:
  • the resource of the SL positioning reference signal is located in time slot k5, and the time slot k5 is a time slot in which PSFCH resources exist;
  • the interval between the SL positioning reference signal resources and the PSFCH resources is predefined or configured or indicated.
  • mapping rule between the SL positioning reference signal and the PSFCH is predefined, preconfigured or configured.
  • mapping rule is determined according to the first cycle of the PSFCH or the second cycle of the PSFCH.
  • the processing module 210 is further configured to perform at least one of the following:
  • the SL positioning reference signal is sent on the second resource, or the PSFCH is received on the second resource, or based on the SL positioning reference signal and The priority of the PSFCH determines the transmission behavior; or,
  • the resources for receiving the SL positioning reference signal and the resources for transmitting the PSFCH overlap in time, then Receive the SL positioning reference signal on the second resource or send the PSFCH on the second resource, or determine the transmission behavior based on the priorities of the SL positioning reference signal and the PSFCH.
  • Embodiments of the present application also provide a transmission device for side-link SL positioning reference signals, including:
  • a processing module configured to determine a third resource of the SL positioning reference signal, and transmit the SL positioning reference signal based on the third resource.
  • processing module is specifically used for:
  • the resource for transmitting the SL positioning reference signal and the resource for receiving the SL positioning reference signal on the third resource overlap in time perform at least one of the following:
  • the transmission behavior is determined based on the priority of sending and receiving SL positioning reference signals.
  • processing module is specifically used for:
  • the first terminal sends M1 SL positioning reference signals based on a first condition, where M1 is an integer greater than or equal to 1, and the first condition satisfies at least one of the following:
  • M2 there are M2 SL positioning reference signals to be sent, M2 is greater than M max , the M max is the maximum number of SL positioning reference signals that can be sent by the first terminal, and M1 is less than or equal to M max .
  • the device of this embodiment can be used to execute the method of any one of the foregoing first terminal-side method embodiments. Its specific implementation process and technical effects are the same as those in the first terminal-side method embodiment. For details, see First Terminal The detailed introduction of the side method embodiment will not be described again here.
  • Figure 13 is a second structural schematic diagram of a device for determining SL positioning reference signal resources provided by an embodiment of the present application. As shown in Figure 13, the device for determining SL positioning reference signal resources provided by this embodiment includes:
  • the sending module 310 is configured to send the configuration information of the physical side link feedback channel PSFCH to the first terminal, where the configuration information of the PSFCH is used by the first terminal to determine the resource of the SL positioning reference signal.
  • the resource of the SL positioning reference signal is based on the Determined by the mapping rules between the SL positioning reference signal and PSFCH; N is 1 or 2 or 4; or,
  • the resource of the SL positioning reference signal is determined based on the first information, and the first information includes at least one of the following:
  • the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal is the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal.
  • the mapping rule is the first mapping rule
  • the SL positioning reference signal and PSFCH The resources are located in the same time slot and have different symbols
  • mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH resources are located in different time slots
  • the resource of the SL positioning reference signal is located on at least one of the following symbols, and the at least one symbol includes: symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
  • the mapping rule is the first mapping rule
  • the resource of the SL positioning reference signal is located on the candidate resource of the PSFCH; the candidate resource of the PSFCH is based on the second cycle of the PSFCH and/or the first determined by an offset value.
  • the second period of the PSFCH is smaller than the first period of the PSFCH
  • the resource of the SL positioning reference signal is located on a resource in the SL resource pool other than the first resource of the PSFCH, and the first resource of the PSFCH is determined through the first cycle of the PSFCH.
  • the resource of the SL positioning reference signal is located on symbol 11 and/or symbol 12.
  • the resources of the SL positioning reference signal do not conflict with the resources of the PSFCH; and/or,
  • the offset_prs is greater than 0; and/or,
  • the period of the SL positioning reference signal is an integer multiple of the first period of the PSFCH.
  • mapping rule is the second mapping rule
  • at least one of the following is satisfied:
  • the resource of the SL positioning reference signal is located in time slot k5, and the time slot k5 is a time slot in which PSFCH resources exist;
  • the resource of the SL positioning reference signal is determined by the first terminal by performing rate matching or puncturing on the PSFCH; or,
  • the interval between the SL positioning reference signal resources and the PSFCH resources is predefined or configured or indicated.
  • mapping rule between the SL positioning reference signal and the PSFCH is predefined, preconfigured or configured.
  • mapping rule is determined according to the first cycle of the PSFCH or the second cycle of the PSFCH.
  • the device of this embodiment can be used to execute the method of any of the foregoing network-side method embodiments. Its specific implementation process and technical effects are the same as those in the network-side method embodiments. For details, please refer to the network-side method embodiments. Detailed introduction will not be repeated here.
  • the device for determining the SL positioning reference signal resource in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be the first terminal, or may be other devices other than the first terminal.
  • the first terminal may include but is not limited to the type of first terminal 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • the device for determining SL positioning reference signal resources provided by the embodiments of the present application can implement each process implemented by the method embodiments of Figures 4 to 10 and achieve the same technical effect. To avoid duplication, details will not be described here.
  • this embodiment of the present application also provides a communication device 1400, which includes a processor 1401 and a memory 1402.
  • the memory 1402 stores programs or instructions that can be run on the processor 1401, such as , when the communication device 1400 is the first terminal, when the program or instruction is executed by the processor 1401, each step of the above method embodiment for determining side link SL positioning reference signal resources is implemented, and the same technical effect can be achieved.
  • the communication device 1400 is a network-side device, when the program or instruction is executed by the processor 1401, each step of the method embodiment of determining the side link SL positioning reference signal resource is implemented, and the same technical effect can be achieved. In order to avoid duplication , we won’t go into details here.
  • Embodiments of the present application also provide a first terminal, including a processor and a communication interface.
  • the processor is configured to determine the resources of the SL positioning reference signal based on the configuration information of the physical side link feedback channel PSFCH.
  • This first terminal embodiment corresponds to the above-mentioned first terminal-side method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this first terminal embodiment and can achieve the same technical effect.
  • FIG. 15 is a schematic diagram of the hardware structure of a first terminal that implements an embodiment of the present application.
  • the first terminal 1000 includes but is not limited to: radio frequency unit 1001, network module 1002, audio output unit 1003, input unit 1004, sensor 1005, display unit 1006, user input unit 1007, interface unit 1008, memory 1009, and processor 1010 At least some parts of etc.
  • the first terminal 1000 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1010 through a power management system, thereby managing charging, discharging, and Power consumption management and other functions.
  • the structure of the first terminal shown in Figure 15 does not constitute a limitation on the first terminal.
  • the first terminal may include more or less components than shown in the figure, or combine certain components, or arrange different components, where No longer.
  • the input unit 1004 may include a graphics processing unit (Graphics Processing Unit, GPU) 10041 and microphone 10042, the graphics processor 10041 processes image data of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and at least one of other input devices 10072 . Touch panel 10071, also known as touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1001 after receiving downlink data from the network side device, can transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 can send uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage program or instruction area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, image playback function, etc.), etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or memory 1009 may include both volatile and nonvolatile memory.
  • non-volatile memory can also include non-volatile memory, where the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), programmable read-only memory (Programmable ROM, PROM), Erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM programmable read-only memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable programmable read-only memory
  • EPROM electrically erasable programmable read-only memory
  • flash memory electrically erasable programmable read-only memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • Memory 1009 in embodiments of the present application includes, but is not limited to, these and any other suitable type of memory such as at least one disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, where the application processor mainly processes operating systems, user interfaces, application programs or instructions, etc. In operation, the modem processor mainly processes wireless communication signals, such as the baseband processor. It can be understood that the above modem processor may not be integrated into the processor 1010.
  • the processor 1010 is configured to determine the resources of the SL positioning reference signal based on the configuration information of the physical side link feedback channel PSFCH.
  • PSFCH is a resource that is periodically reserved in the resource pool
  • the frequency domain resources available for PSFCH are the bandwidth of the entire resource pool. If the first terminal determines the resources of the SL positioning reference signal based on the configuration information of the physical side link feedback channel PSFCH, the frequency domain resource bandwidth available for the SL positioning reference signal may be the bandwidth of the resource pool. That is, the positioning accuracy of the SL positioning reference signal can be improved, because the larger the bandwidth of the SL positioning reference signal, the higher the positioning accuracy.
  • the first terminal bases the positioning reference on the SL
  • the mapping rules between signals and PSFCH determine the resources of the SL positioning reference signal; N is 1 or 2 or 4; or,
  • the first terminal determines the resource of the SL positioning reference signal based on first information, and the first information includes at least the following: One item:
  • the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal is the second period of the PSFCH, the first offset value, the period of the SL positioning reference signal, or the offset value of the SL positioning reference signal.
  • the mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH resource are located in the same time slot and have different symbols
  • mapping rule is the first mapping rule
  • the SL positioning reference signal and the PSFCH resources are located in different time slots
  • the resource of the SL positioning reference signal is located on at least one of the following symbols, and the at least one symbol includes: symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9.
  • the mapping rule is the first mapping rule
  • the resource of the SL positioning reference signal is located on the candidate resource of the PSFCH; the candidate resource of the PSFCH is based on the second cycle of the PSFCH and/or the first determined by an offset value.
  • the second period of the PSFCH is smaller than the first period of the PSFCH
  • the resource of the SL positioning reference signal is located on a resource in the SL resource pool other than the first resource of the PSFCH, and the first resource of the PSFCH is determined through the first cycle of the PSFCH.
  • the resource of the SL positioning reference signal is located on symbol 11 and/or symbol 12.
  • the offset value of the bit reference signal is the offset value of the bit reference signal.
  • the resources of the SL positioning reference signal do not conflict with the resources of the PSFCH; and/or,
  • the offset_prs is greater than 0; and/or,
  • the period of the SL positioning reference signal is an integer multiple of the first period of the PSFCH.
  • the processing module 210 is specifically configured to perform at least one of the following:
  • the resource of the SL positioning reference signal is located in time slot k5, and the time slot k5 is a time slot in which PSFCH resources exist;
  • the interval between the SL positioning reference signal resources and the PSFCH resources is predefined or configured or indicated.
  • mapping rule between the SL positioning reference signal and the PSFCH is predefined, preconfigured or configured.
  • mapping rule is determined according to the first cycle of the PSFCH or the second cycle of the PSFCH.
  • the processor 1010 is further configured to perform at least one of the following:
  • the SL positioning reference signal is sent on the second resource, or the PSFCH is received on the second resource, or based on the SL positioning reference signal and The priority of the PSFCH determines the transmission behavior; or,
  • the SL positioning reference signal is received on the second resource or the PSFCH is sent on the second resource, or based on the SL positioning reference signal and the PSFCH
  • the priority determines the transfer behavior.
  • the processor 1010 is configured to determine a third resource of the SL positioning reference signal, and transmit the SL positioning reference signal based on the third resource.
  • processor 1010 is specifically used for:
  • the resource for transmitting the SL positioning reference signal and the resource for receiving the SL positioning reference signal on the third resource overlap in time perform at least one of the following:
  • the transmission behavior is determined based on the priority of sending and receiving SL positioning reference signals.
  • processor 1010 is specifically used for:
  • the first terminal sends M1 SL positioning reference signals based on a first condition, where M1 is an integer greater than or equal to 1, and the first condition satisfies at least one of the following:
  • M2 there are M2 SL positioning reference signals to be sent, M2 is greater than M max , the M max is the maximum number of SL positioning reference signals that can be sent by the first terminal, and M1 is less than or equal to M max .
  • Embodiments of the present application also provide a second terminal, including a processor and a communication interface.
  • the communication interface is used to send configuration information of the physical side link feedback channel PSFCH to the first terminal, and the configuration information of the PSFCH is used for the third terminal.
  • a terminal determines the resource of the SL positioning reference signal.
  • This second terminal embodiment corresponds to the above-mentioned second terminal method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this second terminal embodiment, and can achieve the same technical effect.
  • the second terminal can be implemented using the above structure of the first terminal.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the communication interface is used to send configuration information of the physical side link feedback channel PSFCH to the first terminal, and the configuration information of the PSFCH is used for the third terminal.
  • a terminal determines the resource of the SL positioning reference signal.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment. Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 700 includes: an antenna 71 , a radio frequency device 72 , a baseband device 73 , a processor 75 and a memory 75 .
  • the antenna 71 is connected to the radio frequency device 72 .
  • the radio frequency device 72 receives information through the antenna 71 and sends the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72.
  • the radio frequency device 72 processes the received information and then sends it out through the antenna 71.
  • the above frequency band processing device may be located in the baseband device 73 , and the method performed by the network side device in the above embodiment may be implemented in the baseband device 73 .
  • the baseband device 73 includes a baseband processor 75 and a memory 75 .
  • the baseband device 73 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG.
  • the program performs the network device operations shown in the above method embodiment.
  • the network side device of the baseband device 73 may also include a network interface 76 for exchanging information with the radio frequency device 72.
  • the interface is, for example, a common public radio interface (CPRI).
  • the network side device 700 in this embodiment of the present invention also includes: instructions or programs stored in the memory 75 and executable on the processor 75.
  • the processor 75 calls the instructions or programs in the memory 75 to execute the various operations shown in Figure 13. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium, with a program or instructions stored on the readable storage medium.
  • a program or instructions stored on the readable storage medium.
  • the processor is the processor in the first terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above determination of SL positioning reference signal resources.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above determination of the SL positioning reference signal.
  • Each process of the resource method embodiment can achieve the same technical effect. To avoid duplication, it will not be described again here.
  • An embodiment of the present application also provides a communication system, including: a first terminal and a network side device.
  • the first terminal can be used to perform the steps of the method for determining SL positioning reference signal resources as described above.
  • the network side device The steps may be used to perform the method of determining SL positioning reference signal resources as described above.
  • the communication system can adopt the system architecture as shown in Figure 1.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
  • the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种确定SL定位参考信号资源的方法、终端及网络侧设备,属于通信技术领域,本申请实施例的确定SL定位参考信号资源方法包括:第一终端基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源。

Description

确定SL定位参考信号资源的方法、终端及网络侧设备
相关申请的交叉引用
本申请要求于2022年4月15日提交的申请号为202210399394.7,发明名称为“确定SL定位参考信号资源的方法、终端及网络侧设备”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于通信技术领域,具体涉及一种确定SL定位参考信号资源的方法、终端及网络侧设备。
背景技术
长期演进(Long Term Evolution,LTE)***支持侧链路(sidelink,SL)传输,即终端之间直接在物理层上进行数据传输。LTE SL是基于广播进行通讯的,虽然可用于支持车联网(vehicle to everything,V2X)的基本安全类通信,但不适用于其他更高级的V2X业务。5G新空口(New Radio,NR)***将支持更加先进的SL传输设计,例如,单播,多播或组播等,从而可以支持更全面的业务类型。在移动通信***中,对终端进行定位是重要的功能之一。因此,对于NR***中SL定位的研究越来越多。SL定位一般需要基于参考信号实现。
目前,SL的参考信号例如包括SSB,DMRS,DMRS,CSI-RS,PTRS等。除了SSB外,剩余信号限制在了PSSCH的频域资源范围内,因此,上述参考信号可用的频域范围较小。在定位中,用于定位的参考信号的带宽越大,则定位精度越高。实际定位场景中定位精度要求一般较高,而且定位所要求携带的信息量较多。目前的方案可能无法满足定位需求。因此,对于本领域技术人员来说,如何分配SL定位参考信号的资源以满足定位需求,是亟需解决的技术问题。
发明内容
本申请实施例提供一种确定SL定位参考信号资源的方法、终端及网络侧设备,能够解决如何分配SL定位参考信号的资源以满足定位需求的问题。
第一方面,提供了一种确定SL定位参考信号资源的方法,包括:
第一终端基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号 的资源。
第二方面,提供了一种侧链路SL定位参考信号的传输方法,包括:
第一终端确定SL定位参考信号的第三资源,并基于所述的第三资源传输SL定位参考信号。
第三方面,提供了一种确定SL定位参考信号资源的方法,包括:
网络侧设备或者第二终端向第一终端发送物理侧链路反馈信道PSFCH的配置信息,所述PSFCH的配置信息用于所述第一终端确定SL定位参考信号的资源。
第四方面,提供了一种侧链路确定SL定位参考信号资源的装置,包括:
处理模块,用于基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源。
第五方面,提供了一种侧链路SL定位参考信号的传输装置,包括:
处理模块,用于确定SL定位参考信号的第三资源;
传输模块,用于基于所述的第三资源传输SL定位参考信号。
第六方面,提供了一种侧链路确定SL定位参考信号资源的装置,包括:
发送模块,用于向第一终端发送物理侧链路反馈信道PSFCH的配置信息,所述PSFCH的配置信息用于所述第一终端确定SL定位参考信号的资源。
第七方面,提供了一种第一终端,该第一终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第八方面,提供了一种第一终端,包括处理器及通信接口,其中,所述处理器用于基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源。
第九方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第十方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于向第一终端发送物理侧链路反馈信道PSFCH的配置信息,所述PSFCH的配置信息用于所述第一终端确定SL定位参考信号的资源。
第十一方面,提供了一种通信***,包括:第一终端及网络侧设备,所述第一终端可用于执行如第一方面或第二方面所述的确定SL定位参考信号资源的方法的步骤,所述网络侧设备可用于执行如第三方面所述的确定SL定位参考信号资源的方法的步骤。
第十二方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十三方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接 口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的方法,或实现如第三方面所述的方法。
第十四方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面、第二方面或第三方面所述的方法。
在本申请实施例中,由于在SL上,PSFCH是资源池内周期预留的资源,并且PSFCH可用的频域资源是整个资源池的带宽。若第一终端基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源,SL定位参考信号可用的频域资源带宽可以为资源池的带宽。即可以提高SL定位参考信号的定位精度,因为SL定位参考信号的带宽越大,定位的精度越高。
附图说明
图1是本申请实施例可应用的无线通信***的结构图;
图2是本申请实施例提供的信道资源示意图之一;
图3是本申请实施例提供的信道资源示意图之二;
图4是本申请实施例提供的确定SL定位参考信号资源的方法的流程示意图之一;
图5是本申请实施例提供的SL定位参考信号的资源示意图之一;
图6是本申请实施例提供的SL定位参考信号的资源示意图之二;
图7是本申请实施例提供的SL定位参考信号的资源示意图之三;
图8是本申请实施例提供的SL定位参考信号的资源示意图之四;
图9是本申请实施例提供的SL定位参考信号的资源示意图之五;
图10是本申请实施例提供的SL定位参考信号的资源示意图之六;
图11是本申请实施例提供的确定SL定位参考信号资源的方法的流程示意图之二;
图12是本申请实施例提供的确定SL定位参考信号资源的装置的结构示意图之一;
图13是本申请实施例提供的确定SL定位参考信号资源的装置的结构示意图之二;
图14是本申请实施例提供的通信设备的结构示意图;
图15是本申请实施例提供的第一终端的硬件结构示意图;
图16是本申请实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,还可用于其他无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他***。本申请实施例中的术语“***”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用,如第6代(6th Generation,6G)通信***。
图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称 为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例进行介绍,并不限定基站的具体类型。
长期演进LTE***从第12个发布版本开始支持侧链路(sidelink,SL),用于终端之间进行直接数据传输,不需要通过网络侧设备。R16版本中定义的NR SL包括如下信道:
物理侧链路控制信道(physical sidelink control channel,PSCCH);物理侧链路共享信道(physical sidelink shared channel,PSSCH);物理侧链路广播信道(physical sidelink broadcast channel,PSBCH);物理测侧链路反馈信息(physical sidelink discovery feedback channel,PSFCH)。
其中,PSSCH以子信道为单位进行资源分配,频域上采用连续的资源分配方式。PSCCH的时域资源为高层配置的符号数,频域大小为高层配置的参数,且PSCCH的频域资源大小小于或等于一个子信道的大小,且PSCCH位于PSSCH的最低子信道的范围内。一个示例图如图2所示。
PSFCH信道可用的资源根据周期(例如表示为P_PSFCH)参数在SL资源池上确定。终端假设在SL资源池内的资源时隙slot k中存在PSFCH的资源。其中,k mod P_PSFCH=0,则终端认为在slot k上存在PSFCH资源。PSFCH信道占用1或2个符号,位于slot的最后第2和第3个符号。PSFCH的前一个符号为用于AGC调整的符号(用于AGC调整的符号为PSFCH符号的重复)。PSFCH的后一个符号为间隔Gap。其中,R16版本中利用参数sl-PSFCH-Period-r16配置周期。如图3所示,图3中示出了一个物理资源块(Physical Resource Block,PRB)的信道分布示意图。
PSFCH资源由时域资源、频域资源和码域资源组成。其码域采用ZC序列,码序列产生取决于循环移位(cyclic shift,CS),u,v,其中u,v分别为ZC序列的组标识和序列标识。PSFCH资源携带1bit信息位,用于ACK/NACK反馈。
PSFCH资源与PSCCH和/或PSSCH有固定的映射关系。一个或多个PSCCH和/或PSSCH时机(occasion)可以对应到一个PSFCH occasion。一个PSCCH/PSSCH资源可以对应多个PSFCH资源。终端做PSFCH传输的时候,根据所接收的PSCCH/PSSCH资源确定其对应的多个PSFCH资源,并根据终端ID确定一个传输的PSFCH资源。
NR SL资源分配方式:
NR V2X定义了两种资源分配模式mode,一种是mode1,为网络侧设备(例如基站)调度资源;另一种是mode2,终端自己决定使用什么资源进行传输。此时资源信息可能来自网络侧设备的广播消息或者预配置的信息。终端如果工作在网络侧设备范围内并且与网络侧设备有RRC连接,可以是mode1和/或mode2,终端如果工作在网络侧设备范围内但与网络侧设备没有RRC连接,只能工作在mode2。如果终端在网络侧设备范围外,那么只能工作在mode2,根据预配置的信息来进行V2X传输。
对于mode 2,具体的工作方式如下:1)TX终端在资源选择被触发后,首先确定资源选择窗口,资源选择窗口的下边界在资源选择触发后的T1时间,资源选择的上边界在触发后的T2时间,其中T2是终端实现的方式在其TB传输的分组时延预算(packet delay budget,PDB)内选择的值,T2不早于T1。2)终端在资源选择的之前,需要确定资源选择的备选资源集合(candidate resource set),根据资源选择窗口内的资源上测量的RSRP与相应的RSRP门限做对比,如果RSRP低于RSRP门限,那么该资源可以纳入备选资源集合。3)资源集合确定后,终端随机在备选资源集合中选择传输资源。另外,终端在本次传输可以为接下来的传输预留传输资源。
且NR V2X支持链式的资源预留方式,也就是,一个SCI可以预留当前的资源,最多可以在额外预留两个资源,在下一个资源中,可以再指示两个预留资源。在选择窗内,可以采用动态预留的方式持续预留资源。
本申请实施例的方法用于SL定位,在SL上,PSFCH是资源池内,周期预留的资源,并且PSFCH可用的频域资源是整个资源池的带宽;PSSCH、PSCCH以及DMRS、CSI-RS、PTRS等是限制在SL PSSCH的带宽内(范围小于或等于资源池的带宽)。在定位中,定位参考信号的带宽越大,则定位精度越高。故考虑基于PSFCH的配置信息确定SL定位参考信号的资源,提高SL定位参考信号的定位精度,同时尽量减少SL定位参考信号设计的复杂度。
本申请实施例中SL定位参考信号,可以包括:SL定位参考信号(Position Reference Signal,PRS),以及扩展用于定位的SL参考信号,例如:侧链路同步信号块S-SSB、SL信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、SL相位跟踪参考信号(PhaseTracking Reference Signal,PTRS)或SL解调参考信号(Demodulatin Reference Signal,DMRS)。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的确定SL定位参考信号资源的方法进行详细地说明。
图4是本申请实施例提供的确定SL定位参考信号资源的方法的流程示意图之一。如图4所示,本实施例提供的方法,包括:
步骤101、第一终端基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源。
具体地,PSFCH的配置信息可以是协议预定义的、预配置的(例如出厂配置)、网络侧设备配置的或第二终端配置的(例如第二终端1给第一终端2配置的信息),PSFCH的配置信息例如可以包括PSFCH的候选资源信息、周期等信息,第一终端基于PSFCH的配置信息,可以按照多种方式进行资源复用,确定出SL定位参考信号的资源。
可选地,本实施例的方法中,可以通过无线资源控制(Radio Resource Control,RRC)、媒体接入层控制单元(Medium Access Control Control Element,MAC CE)、下行控制信息(Downlink Control Information,DCI)、PC5-RRC(PC5接口的RRC)、侧链路控制信息(Sidelink Control Information,SCI)配置或指示信息。
其中,SL定位参考信号的资源可以是SL定位参考信号实际使用的资源,或者是SL定位参考信号可用的资源。资源可以包括时域资源、频域资源或功率资源等。
本实施例的方法,由于在SL上,PSFCH是资源池内周期预留的资源,并且PSFCH可用的频域资源是整个资源池的带宽。若第一终端基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源,SL定位参考信号可用的频域资源带宽可以为资源池的带宽。即可以提高SL定位参考信号的定位精度,因为SL定位参考信号的带宽越大,定位的精度越高。
可选地,步骤101可以通过以下几种方式实现:
方式1:在SL资源池中配置了PSFCH,或配置的PSFCH的第一周期为非0,或配置的PSFCH的第一周期为N的情况下,第一终端基于SL定位参考信号和PSFCH的映射规则,确定SL定位参考信号的资源;
可选地,N为1或2或4。
具体地,PSFCH的第一周期可以是之前协议版本中定义的周期,例如R16、R17版本中定义的PSFCH周期,PSFCH的第二周期可以是新定义的PSFCH周期,例如表示为R18 PSFCH周期。
如果配置的周期值=0,则表示不包含PSFCH资源;如果周期值为1,2,4(例如周期值的取值范围为:0,1,2,4),则表示资源池中有PSFCH资源。如果周期值=4,表示资源池内每4个slot有一个PSFCH可用资源。
若SL资源池中配置了PSFCH,或配置的PSFCH的第一周期为非0,或配置的PSFCH的第一周期为N,第一终端基于SL定位参考信号和PSFCH的映射规则,确定SL定位参考信号的资源。
可选地,映射规则为预定义、预配置或配置(可以是网络侧设备或其他终端)的参数。
例如:协议预定义为第一映射规则;或者,协议预定义为第二映射规则;
可选地,映射规则为根据PSFCH的第一周期或PSFCH的第二周期确定的。
具体地,可以根据配置的PSFCH的周期值确定映射规则。例如,当PSFCH的第一周期的周期值=1,则为第二映射规则;否则(也就是周期为2或4),则为第一映射规则。
上述实施方式中,在配置了PSFCH的情况下,可以基于SL定位参考信号和PSFCH的映射规则,确定SL定位参考信号的资源,SL定位参考信号可用的频域资源带宽可以为资源池的带宽。即可以提高SL定位参考信号的定位精度。
可选地,第一终端基于SL定位参考信号和PSFCH的映射规则,确定SL定位参考信号的资源,可以通过如下几种方式实现:
在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于相同的时隙,且不同的符号;
或者,SL定位参考信号的资源位于时隙k1,其中k1 mod P1=0,P1为PSFCH的第一周期。
具体地,在映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH处于相同的时隙上,且符号不重叠的位置;
或者说,SL定位参考信号在slot k1 mod P1=0的时隙k1上。Slot k1为SL资源池内的资源,P为PSFCH的第一周期。
示例性地,如图5、图6所示,SL定位参考信号可用的频域资源不同。
SL定位参考信号可占用的频域资源可以为资源池的频域资源或PSSCH对应的频域资源。图5中SL PRS表示的资源是SL定位参考信号的可用资源,或者是是实际占用的资源。
可选地,第一终端基于SL定位参考信号和PSFCH的映射规则,确定SL定位参考信号的资源,可以通过如下几种方式实现:
在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于不同的时隙;
或者,所述SL定位参考信号位于时隙k2,其中,k2 mod P_prs=offset_prs;P_prs为SL定位参考信号的周期,offset_prs为SL定位参考信号的偏移值。
具体地,在映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH在不同的时隙上。
例如,对于配置SL定位参考信号的周期小于PSFCH的第一周期或第二周期的情况下适用。
SL定位参考信号在slot k2 mode P_prs=offset_prs的时隙上。其中,P_prs为SL定位参考信号的周期,offset_prs为SL定位参考信号的偏移值。。
示例性地,如图7所示,假设PSFCH的第一周期为2,SL定位参考信号的周期为1图中示出了SL定位参考信号可占用的频域资源。
可选地,SL定位参考信号的资源位于以下至少一个符号上,至少一个符号包括:符号0、1、2、3、4、5、6、7、8和9。
具体地,在映射规则为第一映射规则的情况下,SL定位参考信号可选的符号位置为symbol 0,1,2,3,4,5,6,7,8,9。
上述实施方式中,在采用第一映射规则的情况下,可以采用多种方式SL定位参考信号的资源,灵活性较大,能够满足多种场景的需求。
可选地,第一终端基于SL定位参考信号和PSFCH的映射规则,确定SL定位参考信号的资源,可以通过如下方式实现:
在映射规则为第一映射规则的情况下,SL定位参考信号的资源位于PSFCH的候选资源上;PSFCH的候选资源为根据PSFCH的第二周期和/或第一偏移值确定的。
具体地,在映射规则为第一映射规则的情况下,若资源池中配置了PSFCH,SL定位参考信号的时域资源可以与PSFCH时域资源为TDM复用,例如为不同的slot内的资源,SL定位参考信号占用后4个符号。可选地,SL定位参考信号可以采用与PSFCH相同的结构。
配置PSFCH的第二周期,例如记为R18 PSFCH周期,SL定位参考信号在PSFCH的候选资源中传输。
可选地,上述PSFCH的候选资源为根据PSFCH的第二周期和/或第一偏移值确定的。
其中,第一偏移值可以是与PSFCH的第二周期对应的偏移值。
可选地,PSFCH的第二周期小于PSFCH的第一周期;
或者,时隙k3为存在PSFCH的时隙,k3 mod P2=0,其中,P2为PSFCH的第二周期。
具体地,第一终端可以假设在slot k3上存在PSFCH,slot k3 mod P2=0,P2为PSFCH的第二周期。
可选地,SL定位参考信号的资源位于SL资源池中除PSFCH的第一资源之外的资源上,所述PSFCH的第一资源为通过PSFCH的第一周期确定的。
可选地,SL定位参考信号的资源位于符号11和/或符号12上。
具体地,可以半静态的排除R16/R17 PSFCH的资源。例如,R18 PSFCH周期=1,R16/R17 PSFCH周期=4;则SL定位参考信号可以在slot k mod 4=1,2,3的位置传输。
例如,R18 PSFCH周期=2,R16/R17 PSFCH周期=4;则SL定位参考信号可以在slot k mod 2=1的位置传输。
上述实施方式中,在采用第一映射规则的情况下,可以采用多种方式SL定位参考信号的资源,灵活性较大,能够满足多种场景的需求。
示例性地,如图8所示,网络侧设备和/或第二终端配置PSFCH的第二周期,例如R18 PSFCH周期。
网络侧设备和/或第二终端配置PSFCH的第一周期,例如NR R16/R17 PSFCH周期,可选地,R16/R17 PSFCH的第一候选资源为R18 PSFCH的第二候选资源的子集。其中,R16版本的PSFCH为了传输HARQ反馈信息;R17版本的PSFCH可以用于传输辅助信息,例如冲突(collision)信息。
第一终端根据R18 PSFCH的配置信息,R16/R17 PSFCH的配置信息,确定可用于SL定位参考信号的资源为PSFCH候选资源中非R16/R17 PSFCH的第一候选资源的资源。
例如:R16/R17 PSFCH周期=2,R18 SL PSFCH周期=1;SL定位参考信号可以在slot k mod 2=1的位置传输。
可选地,第一终端认为R16/R17 PSFCH可用的位置为slot k mode 2=0的slot k。
如图8所示,SL定位参考信号可以利用为资源池配置的PSFCH结构,减小SL定位参考信号的设计复杂度。SL定位参考信号对应slot结尾的4个符号,频域上可以认为SL定位参考信号可用的资源为资源池整个频域的资源。对于SL定位参考信号而言,可传输的带宽越大,定位的精度可以更好。图8中SL PRS表示的资源是SL定位参考信号的可用资源,或者是是实际占用的资源。
在一实施例中,SL定位参考信号的资源位于时隙k4,其中,k4 mod P_prs=offset_prs,P_prs为SL定位参考信号的周期,offset_prs为SL定位参考信号的偏移值。
可选地,在时隙k4上述SL定位参考信号的资源与PSFCH的资源不冲突;和/或,
offset_prs大于0;和/或,
SL定位参考信号的周期为PSFCH的第一周期的整数倍。
具体地,可以预定义、预配置或配置SL定位参考信号的周期(例如记为P_prs)和/或偏移值(offset_prs);可选地,SL定位参考信号可以独立配置,配置实现SL定位参考信号与PSFCH为时分复用。
可选地,第一终端期望在slot k4 mod P_prs=offset_prs的slot k4上存在SL定位参考信号资源。
可选地,第一终端期望在slot k4与PSFCH资源不冲突。
示例性地,网络侧设备和/或第二终端配置SL定位参考信号的周期(SL定位参考信号的结构与PSFCH结构相同,只是与PSFCH的位置为TDM的资源配置,取决于配置保证SL定位参考信号候选资源与PSFCH候选资源不冲突。
如图9所示,当SL定位参考信号的周期=2,PSFCH的第一周期=2,PSFCH在 slot k mod 2=0的位置发送;SL定位参考信号在slot k mod 2=1的位置发送。
上述实施方式中,直接配置SL定位参考信号的周期和偏移值。并采用多种方式SL定位参考信号的资源,灵活性较大,能够满足多种场景的需求。
可选地,在映射规则为第二映射规则的情况下,第一终端基于SL定位参考信号和PSFCH的映射规则,确定SL定位参考信号的资源,包括以下至少一项:
SL定位参考信号的资源位于时隙k5上,时隙k5为存在PSFCH资源的时隙;
第一终端通过对PSFCH资源进行速率匹配或打孔的方式确定SL定位参考信号的资源;或,
SL定位参考信号的资源与PSFCH资源之间的间隔为预定义或配置或指示的。
其中,PSFCH资源为实际占用的PSFCH资源或者是可用的PSFCH资源。
具体地,若资源池中配置了PSFCH,SL定位参考信号与PSFCH可以为FDM复用;
第一终端在slot k5上传输(发送/接收)SL定位参考信号,slot 5为第一终端期望存在PSFCH资源的slot。
可选地,对PSFCH进行速率匹配(rate matching),或者打孔(puncturing),确定SL定位参考信号的资源。但是,SL定位参考信号的性能可能会受到限制。
预定义、配置或指示SL定位参考信号的资源与PSFCH资源之间的间隔gap,gap是为为了减少SL定位参考信号与PSFCH之间的干扰。所述gap为频域上的保护带宽;或者是时域上的保护间隔。
示例性地,配置SL定位参考信号位于PSFCH候选时间资源。SL定位参考信号对PSFCH进行速率匹配或者打孔。
如图10所示,PSFCH的第一周期为2。A/N为PSFCH实际发送的位置。在PSFCH资源中,非A/N位置,可用于SL定位参考信号的发送。
上述实施方式中,在采用第二映射规则的情况下,可以采用多种方式SL定位参考信号的资源,灵活性较大,能够满足多种场景的需求。
方式2:在SL资源池中未配置PSFCH,或配置的PSFCH的第一周期为0的情况下,第一终端基于第一信息确定所述SL定位参考信号的资源,第一信息包括以下至少一项:
PSFCH的第二周期、第一偏移值、SL定位参考信号的周期或SL定位参考信号的偏移值。
该方式中,可以没有PSFCH的配置,独立配置SL定位参考信号的资源、
上述实施方式中,在未配置PSFCH的情况下,可以基于PSFCH的第二周期、第一偏移值、SL定位参考信号的周期或SL定位参考信号的偏移值中的至少一项配置SL定位参考信号的资源,尽可能地提高SL定位参考信号的定位精度。
可选地,该方法还包括:
在第二资源上SL定位参考信号的资源与PSFCH的资源在时间上重叠的情况下,所述第一终端执行以下至少之一:
若发送SL定位参考信号的资源与接收PSFCH的资源在时间上重叠,则在所述第二资源上发送SL定位参考信号,或,在第二资源上接收PSFCH,或,基于SL定位参考信号和PSFCH的优先级确定传输行为;或,
若接收SL定位参考信号的资源与发送PSFCH的资源在时间上重叠,则在所述第二资源上接收SL定位参考信号或,在第二资源上发送PSFCH,或,基于SL定位参考信号和PSFCH的优先级确定传输行为。
具体地,在SL定位参考信号的传输与PSFCH在时间上重叠的情况下,如果第一终端发送SL定位参考信号与接收PSFCH重叠,该情况为在半双工的复用方式下对第一终端的传输有影响,则第一终端可以执行以下至少之一:
SL定位参考信号优先;
或者,PSFCH优先;
或者,根据SL定位参考信号和PSFCH的优先级确定发送SL定位参考信号还是接收PSFCH;如果发送SL定位参考信号地优先级高于接收PSFCH地优先级,则发送SL定位参考信号;反之,则接收PSFCH。
如果UE接收SL PRS与发送PSFCH重叠,该情况为在半双工的复用方式下对第一终端的传输有影响,则第一终端可以执行以下至少之一:
SL定位参考信号优先;
或者,PSFCH优先;
或者,根据SL定位参考信号和PSFCH的优先级确定接收SL定位参考信号还是发送PSFCH;如果接收SL定位参考信号的优先级高于发送PSFCH的优先级,则接收SL PRS;反之,则发送PSFCH。
上述实施方式中,在SL定位参考信号的资源与PSFCH的资源在时间上重叠的情况下,可以采用多种方式确定传输行为,灵活性较大。
本申请实施例中,还提供一种侧链路SL定位参考信号的传输方法,包括:
第一终端确定SL定位参考信号的第三资源,并基于第三资源传输SL定位参考信号。
此处确定SL定位参考信号的第三资源可以采用前述任意方法,或其他方式,本申请实施例对此并不限定。
在一实施例中,基于所述的第三资源传输SL定位参考信号包括:
在第三资源上发送SL定位参考信号的资源与接收SL定位参考信号的资源在时间上重叠,第一终端执行以下至少之一:
在第三资源上发送SL定位参考信号;
在第三资源上接收SL定位参考信号;
基于发送和接收SL定位参考信号的优先级确定传输行为。
具体地,如果第一终端发送SL定位参考信号与第一终端接收SL定位参考信号在时间上重叠,该情况为在半双工的复用方式下对第一终端的传输有影响,则第一终端执行以下至少之一:
优先发送SL定位参考信号;
或者,优先接收SL定位参考信号;
或者,根据优先级确定发送SL定位参考信号还是接收SL定位参考信号;如果发送SL定位参考信号的优先级高于接收SL定位参考信号的优先级,则发送SL定位参考信号;反之,则接收SL定位参考信号。
可选地,基于所述的第三资源传输SL定位参考信号,包括:
第一终端基于第一条件发送M1个SL定位参考信号,M1为大于或等于1的整数,第一条件满足以下至少之一:
选择在发送时间窗口内剩余时长最小的M1个SL定位参考信号发送;
选择优先级最高的M1个SL定位参考信号发送;
选择服务质量QoS最大的M1个SL定位参考信号发送。
可选地,待发送的SL定位参考信号为M2个,M2大于Mmax,所述Mmax为所述第一终端可发送的SL定位参考信号的最大数目,所述M1小于或等于Mmax
例如,该场景是:有待发送的M2个SL定位参考信号;其中M2>Mmax,Mmax是第一终端可以发送的SL定位参考信号的最大数目的(例如受到功率的限制),从M2个SL定位参考信号中选择M1个定位参考信号发送M1小于或等于Mmax.
具体地,第一终端可以根据优先级、QoS或时延等选择M1个SL定位参考信号发送,满足以下至少之一:
第一终端选择剩余时延最小的M1个SL定位参考信号发送。例如,多个目标第一终端触发辅助第一终端发送SL定位参考信号,可以设置一个发送时间窗口window,第一终端可以选择该发送时间窗口中剩余时长最小的M1个SL定位参考信号发送。
第一终端选择优先级最高的M1个SL定位参考信号发送。例如,假设优先级值越小,优先级越高,则选择优先级值最小的M1个SL定位参考信号发送。
图11是本申请实施例提供的确定侧链路SL定位参考信号资源的方法的流程示意图之一。如图4所示,本实施例提供的方法,包括:
步骤201、网络侧设备或者第二终端向第一终端发送物理侧链路反馈信道PSFCH的配置信息,PSFCH的配置信息用于第一终端确定SL定位参考信号的资源。
可选地,在SL资源池中配置了PSFCH,或配置的PSFCH的第一周期为非0, 或配置的PSFCH的第一周期为N的情况下,所述SL定位参考信号的资源为基于所述SL定位参考信号和PSFCH的映射规则确定的;N为1或2或4;或,
在SL资源池中未配置PSFCH,或配置的PSFCH的第一周期为0的情况下,所述SL定位参考信号的资源为基于第一信息确定的,所述第一信息包括以下至少一项:
PSFCH的第二周期、所述第一偏移值、SL定位参考信号的周期或SL定位参考信号的偏移值。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于相同的时隙,且不同的符号;
或者,SL定位参考信号的资源位于时隙k1,其中k1 mod P1=0,P1为PSFCH的第一周期。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于不同的时隙;
或者,所述SL定位参考信号位于时隙k2,其中,k2 mod P_prs=offset_prs;P_prs为SL定位参考信号的周期,offset_prs为SL定位参考信号的偏移值。
可选地,所述SL定位参考信号的资源位于以下至少一个符号上,所述至少一个符号包括:符号0、1、2、3、4、5、6、7、8和9。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号的资源位于PSFCH的候选资源上;所述PSFCH的候选资源为根据PSFCH的第二周期和/或所述第一偏移值确定的。
可选地,所述PSFCH的第二周期小于所述PSFCH的第一周期;
或者,时隙k3为存在PSFCH的时隙,k3 mod P2=0,其中,所述P2为所述PSFCH的第二周期。
可选地,SL定位参考信号的资源位于SL资源池中除PSFCH的第一资源之外的资源上,所述PSFCH的第一资源为通过PSFCH的第一周期确定的。
可选地,SL定位参考信号的资源位于符号11和/或符号12上。
可选地,SL定位参考信号的资源位于时隙k4,其中,k4 mod P_prs=offset_prs,所述P_prs为所述SL定位参考信号的周期,所述offset_prs为所述SL定位参考信号的偏移值。
可选地,在所述时隙k4上,所述SL定位参考信号的资源与所述PSFCH的资源不冲突;和/或,
所述offset_prs大于0;和/或,
所述SL定位参考信号的周期为PSFCH的第一周期的整数倍。
可选地,在所述映射规则为第二映射规则的情况下,满足以下至少一项:
所述SL定位参考信号的资源位于时隙k5上,所述时隙k5为存在PSFCH资源 的时隙;
所述SL定位参考信号的资源为第一终端通过对所述PSFCH进行速率匹配或打孔的方式确定的;或,
SL定位参考信号的资源与PSFCH资源之间的间隔为预定义或配置或指示的。
可选地,所述SL定位参考信号与PSFCH的映射规则为预定义、预配置或配置的。
可选地,所述映射规则为根据所述PSFCH的第一周期或所述PSFCH的第二周期确定的。
本实施例的方法,其具体实现过程与技术效果与第一终端侧方法实施例中相同,具体可以参见第一终端侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例提供的确定侧链路SL定位参考信号资源的方法,执行主体可以为确定SL定位参考信号资源的装置。本申请实施例中以确定SL定位参考信号资源的装置执行确定侧链路SL定位参考信号资源的方法为例,说明本申请实施例提供的确定SL定位参考信号资源的装置。
图12是本申请实施例提供的确定SL定位参考信号资源的装置的结构示意图之一。如图12所示,本实施例提供的确定SL定位参考信号资源的装置,包括:
处理模块210,用于基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源。
可选地,在SL资源池中配置了PSFCH,或配置的PSFCH的第一周期为非0,或配置的PSFCH的第一周期为N的情况下,所述第一终端基于所述SL定位参考信号和PSFCH的映射规则,确定所述SL定位参考信号的资源;N为1或2或4;或,
在SL资源池中未配置PSFCH,或配置的PSFCH的第一周期为0的情况下,所述第一终端基于第一信息确定所述SL定位参考信号的资源,所述第一信息包括以下至少一项:
PSFCH的第二周期、第一偏移值、SL定位参考信号的周期或SL定位参考信号的偏移值。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于相同的时隙,且不同的符号;
或者,SL定位参考信号的资源位于时隙k1,其中k1 mod P1=0,P1为PSFCH的第一周期。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于不同的时隙;
或者,所述SL定位参考信号位于时隙k2,其中,k2 mod P_prs=offset_prs;P_prs为SL定位参考信号的周期,offset_prs为SL定位参考信号的偏移值。
可选地,所述SL定位参考信号的资源位于以下至少一个符号上,所述至少一个符号包括:符号0、1、2、3、4、5、6、7、8和9。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号的资源位于PSFCH的候选资源上;所述PSFCH的候选资源为根据PSFCH的第二周期和/或所述第一偏移值确定的。
可选地,所述PSFCH的第二周期小于所述PSFCH的第一周期;
或者,时隙k3为存在PSFCH的时隙,k3 mod P2=0,其中,所述P2为所述PSFCH的第二周期。
可选地,SL定位参考信号的资源位于SL资源池中除PSFCH的第一资源之外的资源上,所述PSFCH的第一资源为通过PSFCH的第一周期确定的。
可选地,SL定位参考信号的资源位于符号11和/或符号12上。
可选地,SL定位参考信号的资源位于时隙k4,其中,k4 mod P_prs=offset_prs,所述P_prs为所述SL定位参考信号的周期,所述offset_prs为所述SL定位参考信号的偏移值。
可选地,在所述时隙k4上,所述SL定位参考信号的资源与所述PSFCH的资源不冲突;和/或,
所述offset_prs大于0;和/或,
所述SL定位参考信号的周期为PSFCH的第一周期的整数倍。
可选地,在所述映射规则为第二映射规则的情况下,所述处理模块210具体用于执行以下至少一项:
所述SL定位参考信号的资源位于时隙k5上,所述时隙k5为存在PSFCH资源的时隙;
通过对所述PSFCH资源进行速率匹配或打孔的方式确定所述SL定位参考信号的资源;或,
SL定位参考信号的资源与PSFCH资源之间的间隔为预定义或配置或指示的。
可选地,所述SL定位参考信号与PSFCH的映射规则为预定义、预配置或配置的。
可选地,所述映射规则为根据所述PSFCH的第一周期或所述PSFCH的第二周期确定的。
可选地,在第二资源上SL定位参考信号的资源与PSFCH的资源在时间上重叠的情况下,所述处理模块210还用于执行以下至少之一:
若发送SL定位参考信号的资源与接收PSFCH的资源在时间上重叠,则在所述第二资源上发送SL定位参考信号,或,在第二资源上接收PSFCH,或,基于SL定位参考信号和PSFCH的优先级确定传输行为;或,
若接收SL定位参考信号的资源与发送PSFCH的资源在时间上重叠,则在所述 第二资源上接收SL定位参考信号或,在第二资源上发送PSFCH,或,基于SL定位参考信号和PSFCH的优先级确定传输行为。
本申请实施例还提供一种侧链路SL定位参考信号的传输装置,包括:
处理模块,用于确定SL定位参考信号的第三资源,并基于所述第三资源传输SL定位参考信号。
可选地,处理模块,具体用于:
在所述第三资源上发送SL定位参考信号的资源与接收SL定位参考信号的资源在时间上重叠的情况下,执行以下至少之一:
在所述第三资源上发送SL定位参考信号;
在所述第三资源上接收SL定位参考信号;
基于发送和接收SL定位参考信号的优先级确定传输行为。
可选地,处理模块,具体用于:
所述第一终端基于第一条件发送M1个SL定位参考信号,M1为大于或等于1的整数,所述第一条件满足以下至少之一:
选择在发送时间窗口内剩余时长最小的M1个SL定位参考信号发送;
选择优先级最高的M1个SL定位参考信号发送;
选择服务质量QoS最大的M1个SL定位参考信号发送。
可选地,待发送的SL定位参考信号为M2个,M2大于Mmax,所述Mmax为所述第一终端可发送的SL定位参考信号的最大数目,所述M1小于或等于Mmax
本实施例的装置,可以用于执行前述第一终端侧方法实施例中任一实施例的方法,其具体实现过程与技术效果与第一终端侧方法实施例中相同,具体可以参见第一终端侧方法实施例中的详细介绍,此处不再赘述。
图13是本申请实施例提供的确定SL定位参考信号资源的装置的结构示意图之二。如图13所示,本实施例提供的确定SL定位参考信号资源的装置,包括:
发送模块310,用于向第一终端发送物理侧链路反馈信道PSFCH的配置信息,所述PSFCH的配置信息用于所述第一终端确定SL定位参考信号的资源。
可选地,在SL资源池中配置了PSFCH,或配置的PSFCH的第一周期为非0,或配置的PSFCH的第一周期为N的情况下,所述SL定位参考信号的资源为基于所述SL定位参考信号和PSFCH的映射规则确定的;N为1或2或4;或,
在SL资源池中未配置PSFCH,或配置的PSFCH的第一周期为0的情况下,所述SL定位参考信号的资源为基于第一信息确定的,所述第一信息包括以下至少一项:
PSFCH的第二周期、所述第一偏移值、SL定位参考信号的周期或SL定位参考信号的偏移值。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH 的资源位于相同的时隙,且不同的符号;
或者,SL定位参考信号的资源位于时隙k1,其中k1 mod P1=0,P1为PSFCH的第一周期。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于不同的时隙;
或者,所述SL定位参考信号位于时隙k2,其中,k2 mod P_prs=offset_prs;P_prs为SL定位参考信号的周期,offset_prs为SL定位参考信号的偏移值。
可选地,所述SL定位参考信号的资源位于以下至少一个符号上,所述至少一个符号包括:符号0、1、2、3、4、5、6、7、8和9。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号的资源位于PSFCH的候选资源上;所述PSFCH的候选资源为根据PSFCH的第二周期和/或所述第一偏移值确定的。
可选地,所述PSFCH的第二周期小于所述PSFCH的第一周期;
或者,时隙k3为存在PSFCH的时隙,k3 mod P2=0,其中,所述P2为所述PSFCH的第二周期。
可选地,SL定位参考信号的资源位于SL资源池中除PSFCH的第一资源之外的资源上,所述PSFCH的第一资源为通过PSFCH的第一周期确定的。
可选地,SL定位参考信号的资源位于符号11和/或符号12上。
可选地,SL定位参考信号的资源位于时隙k4,其中,k4 mod P_prs=offset_prs,所述P_prs为所述SL定位参考信号的周期,所述offset_prs为所述SL定位参考信号的偏移值。
可选地,在所述时隙k4上,所述SL定位参考信号的资源与所述PSFCH的资源不冲突;和/或,
所述offset_prs大于0;和/或,
所述SL定位参考信号的周期为PSFCH的第一周期的整数倍。
可选地,在所述映射规则为第二映射规则的情况下,满足以下至少一项:
所述SL定位参考信号的资源位于时隙k5上,所述时隙k5为存在PSFCH资源的时隙;
所述SL定位参考信号的资源为第一终端通过对所述PSFCH进行速率匹配或打孔的方式确定的;或,
SL定位参考信号的资源与PSFCH资源之间的间隔为预定义或配置或指示的。
可选地,所述SL定位参考信号与PSFCH的映射规则为预定义、预配置或配置的。
可选地,所述映射规则为根据所述PSFCH的第一周期或所述PSFCH的第二周期确定的。
本实施例的方法,其具体实现过程与技术效果与第一终端侧方法实施例中相同,具体可以参见第一终端侧方法实施例中的详细介绍,此处不再赘述。
本实施例的装置,可以用于执行前述网络侧方法实施例中任一实施例的方法,其具体实现过程与技术效果与网络侧方法实施例中相同,具体可以参见网络侧方法实施例中的详细介绍,此处不再赘述。
本申请实施例中的确定SL定位参考信号资源的装置可以是电子设备,例如具有操作***的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是第一终端,也可以为除第一终端之外的其他设备。示例性的,第一终端可以包括但不限于上述所列举的第一终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的确定SL定位参考信号资源的装置能够实现图4至图10的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图14所示,本申请实施例还提供一种通信设备1400,包括处理器1401和存储器1402,存储器1402上存储有可在所述处理器1401上运行的程序或指令,例如,该通信设备1400为第一终端时,该程序或指令被处理器1401执行时实现上述确定侧链路SL定位参考信号资源的方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1400为网络侧设备时,该程序或指令被处理器1401执行时实现上述确定侧链路SL定位参考信号资源的方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种第一终端,包括处理器和通信接口,处理器用于基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源。该第一终端实施例与上述第一终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第一终端实施例中,且能达到相同的技术效果。具体地,图15为实现本申请实施例的一种第一终端的硬件结构示意图。
该第一终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,第一终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理***与处理器1010逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。图15中示出的第一终端结构并不构成对第一终端的限定,第一终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元 (Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其它输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其它输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将接收来自网络侧设备的下行数据接收后,可以传输给处理器1010进行处理;另外,射频单元1001可以将上行的数据发送给向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储程序或指令区可存储操作***、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1009包括但不限于这些和任意其它适合类型的存储器例如至少一个磁盘存储器件、闪存器件、或其它非易失性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作***、用户界面和应用程序或指令等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,处理器1010,用于基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源。
由于在SL上,PSFCH是资源池内周期预留的资源,并且PSFCH可用的频域资源是整个资源池的带宽。若第一终端基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源,SL定位参考信号可用的频域资源带宽可以为资源池的带宽。即可以提高SL定位参考信号的定位精度,因为SL定位参考信号的带宽越大,定位的精度越高。
可选地,在SL资源池中配置了PSFCH,或配置的PSFCH的第一周期为非0,或配置的PSFCH的第一周期为N的情况下,所述第一终端基于所述SL定位参考信号和PSFCH的映射规则,确定所述SL定位参考信号的资源;N为1或2或4;或,
在SL资源池中未配置PSFCH,或配置的PSFCH的第一周期为0的情况下,所述第一终端基于第一信息确定所述SL定位参考信号的资源,所述第一信息包括以下至少一项:
PSFCH的第二周期、第一偏移值、SL定位参考信号的周期或SL定位参考信号的偏移值。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于相同的时隙,且不同的符号;
或者,SL定位参考信号的资源位于时隙k1,其中k1 mod P1=0,P1为PSFCH的第一周期。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于不同的时隙;
或者,所述SL定位参考信号位于时隙k2,其中,k2 mod P_prs=offset_prs;P_prs为SL定位参考信号的周期,offset_prs为SL定位参考信号的偏移值。
可选地,所述SL定位参考信号的资源位于以下至少一个符号上,所述至少一个符号包括:符号0、1、2、3、4、5、6、7、8和9。
可选地,在所述映射规则为第一映射规则的情况下,SL定位参考信号的资源位于PSFCH的候选资源上;所述PSFCH的候选资源为根据PSFCH的第二周期和/或所述第一偏移值确定的。
可选地,所述PSFCH的第二周期小于所述PSFCH的第一周期;
或者,时隙k3为存在PSFCH的时隙,k3 mod P2=0,其中,所述P2为所述PSFCH的第二周期。
可选地,SL定位参考信号的资源位于SL资源池中除PSFCH的第一资源之外的资源上,所述PSFCH的第一资源为通过PSFCH的第一周期确定的。
可选地,SL定位参考信号的资源位于符号11和/或符号12上。
可选地,SL定位参考信号的资源位于时隙k4,其中,k4 mod P_prs=offset_prs,所述P_prs为所述SL定位参考信号的周期,所述offset_prs为所述SL定 位参考信号的偏移值。
可选地,在所述时隙k4上,所述SL定位参考信号的资源与所述PSFCH的资源不冲突;和/或,
所述offset_prs大于0;和/或,
所述SL定位参考信号的周期为PSFCH的第一周期的整数倍。
可选地,在所述映射规则为第二映射规则的情况下,所述处理模块210具体用于执行以下至少一项:
所述SL定位参考信号的资源位于时隙k5上,所述时隙k5为存在PSFCH资源的时隙;
通过对所述PSFCH资源进行速率匹配或打孔的方式确定所述SL定位参考信号的资源;或,
SL定位参考信号的资源与PSFCH资源之间的间隔为预定义或配置或指示的。
可选地,所述SL定位参考信号与PSFCH的映射规则为预定义、预配置或配置的。
可选地,所述映射规则为根据所述PSFCH的第一周期或所述PSFCH的第二周期确定的。
可选地,在第二资源上SL定位参考信号的资源与PSFCH的资源在时间上重叠的情况下,处理器1010还用于执行以下至少之一:
若发送SL定位参考信号的资源与接收PSFCH的资源在时间上重叠,则在所述第二资源上发送SL定位参考信号,或,在第二资源上接收PSFCH,或,基于SL定位参考信号和PSFCH的优先级确定传输行为;或,
若接收SL定位参考信号的资源与发送PSFCH的资源在时间上重叠,则在所述第二资源上接收SL定位参考信号或,在第二资源上发送PSFCH,或,基于SL定位参考信号和PSFCH的优先级确定传输行为。
在一实施例中,处理器1010,用于确定SL定位参考信号的第三资源,并基于所述第三资源传输SL定位参考信号。
可选地,处理器1010,具体用于:
在所述第三资源上发送SL定位参考信号的资源与接收SL定位参考信号的资源在时间上重叠的情况下,执行以下至少之一:
在所述第三资源上发送SL定位参考信号;
在所述第三资源上接收SL定位参考信号;
基于发送和接收SL定位参考信号的优先级确定传输行为。
可选地,处理器1010,具体用于:
所述第一终端基于第一条件发送M1个SL定位参考信号,M1为大于或等于1的整数,所述第一条件满足以下至少之一:
选择在发送时间窗口内剩余时长最小的M1个SL定位参考信号发送;
选择优先级最高的M1个SL定位参考信号发送;
选择服务质量QoS最大的M1个SL定位参考信号发送。
可选地,待发送的SL定位参考信号为M2个,M2大于Mmax,所述Mmax为所述第一终端可发送的SL定位参考信号的最大数目,所述M1小于或等于Mmax
本申请实施例还提供一种第二终端,包括处理器和通信接口,通信接口用于向第一终端发送物理侧链路反馈信道PSFCH的配置信息,所述PSFCH的配置信息用于所述第一终端确定SL定位参考信号的资源。该第二终端实施例与上述第二终端方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第二终端实施例中,且能达到相同的技术效果。可选地,第二终端可以采用第一终端的上述结构实现。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,通信接口用于向第一终端发送物理侧链路反馈信道PSFCH的配置信息,所述PSFCH的配置信息用于所述第一终端确定SL定位参考信号的资源。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图16所示,该网络侧设备700包括:天线71、射频装置72、基带装置73、处理器75和存储器75。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络侧设备执行的方法可以在基带装置73中实现,该基带装置73包括基带处理器75和存储器75。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图16所示,其中一个芯片例如为基带处理器75,通过总线接口与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置73网络侧设备还可以包括网络接口76,用于与射频装置72交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备700还包括:存储在存储器75上并可在处理器75上运行的指令或程序,处理器75调用存储器75中的指令或程序执行图13所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述确定SL定位参考信号资源的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的第一终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述确定SL定位参考信号资源的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述确定SL定位参考信号资源的方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信***,包括:第一终端及网络侧设备,所述第一终端可用于执行如上所述的确定SL定位参考信号资源的方法的步骤,所述网络侧设备可用于执行如上所述的确定SL定位参考信号资源的方法的步骤。可选地,该通信***可以采用如图1所示的***架构。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个......”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具 体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种确定侧链路SL定位参考信号资源的方法,包括:
    第一终端基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源。
  2. 根据权利要求1所述的方法,其中,所述第一终端基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源,包括:
    在SL资源池中配置了PSFCH,或配置的PSFCH的第一周期为非0,或配置的PSFCH的第一周期为N的情况下,所述第一终端基于所述SL定位参考信号和PSFCH的映射规则,确定所述SL定位参考信号的资源;N为1或2或4;或,
    在SL资源池中未配置PSFCH,或配置的PSFCH的第一周期为0的情况下,所述第一终端基于第一信息确定所述SL定位参考信号的资源,所述第一信息包括以下至少一项:
    PSFCH的第二周期、第一偏移值、SL定位参考信号的周期或SL定位参考信号的偏移值。
  3. 根据权利要求2所述的方法,其中,所述第一终端基于所述SL定位参考信号和PSFCH的映射规则,确定所述SL定位参考信号的资源,包括:
    在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于相同的时隙,不同的符号;
    或者,SL定位参考信号的资源位于时隙k1,其中k1 mod P1=0,P1为PSFCH的第一周期。
  4. 根据权利要求2所述的方法,其中,所述第一终端基于所述SL定位参考信号和PSFCH的映射规则,确定所述SL定位参考信号的资源,包括:
    在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于不同的时隙;
    或者,所述SL定位参考信号位于时隙k2,其中,k2 mod P_prs=offset_prs;P_prs为SL定位参考信号的周期,offset_prs为SL定位参考信号的偏移值。
  5. 根据权利要求3或4所述的方法,其中,
    所述SL定位参考信号的资源位于以下至少一个符号上,所述至少一个符号包括:符号0、1、2、3、4、5、6、7、8和9。
  6. 根据权利要求2所述的方法,其中,所述第一终端基于所述SL定位参考信号和PSFCH的映射规则,确定所述SL定位参考信号的资源,包括:
    在所述映射规则为第一映射规则的情况下,SL定位参考信号的资源位于PSFCH的候选资源上;所述PSFCH的候选资源为根据PSFCH的第二周期和/或所述第一偏移值确定的。
  7. 根据权利要求6所述的方法,其中,
    所述PSFCH的第二周期小于所述PSFCH的第一周期;
    或者,时隙k3为存在PSFCH的时隙,k3 mod P2=0,其中,所述P2为所述PSFCH的第二周期。
  8. 根据权利要求6所述的方法,其中,
    SL定位参考信号的资源位于SL资源池中除PSFCH的第一资源之外的资源上,所述PSFCH的第一资源为通过PSFCH的第一周期确定的。
  9. 根据权利要求6所述的方法,其中,
    SL定位参考信号的资源位于符号11和/或符号12上。
  10. 根据权利要求1所述的方法,其中,SL定位参考信号的资源位于时隙k4,其中,k4 mod P_prs=offset_prs,所述P_prs为所述SL定位参考信号的周期,所述offset_prs为所述SL定位参考信号的偏移值。
  11. 根据权利要求10所述的方法,其中,
    在所述时隙k4上,所述SL定位参考信号的资源与所述PSFCH的资源不冲突;和/或,
    所述offset_prs大于0;和/或,
    所述SL定位参考信号的周期为PSFCH的第一周期的整数倍。
  12. 根据权利要求2所述的方法,其中,在所述映射规则为第二映射规则的情况下,所述第一终端基于所述SL定位参考信号和PSFCH的映射规则,确定所述SL定位参考信号的资源,包括以下至少一项:
    所述SL定位参考信号的资源位于时隙k5上,所述时隙k5为存在PSFCH资源的时隙;
    所述第一终端通过对所述PSFCH资源进行速率匹配或打孔的方式确定所述SL定位参考信号的资源;或,
    SL定位参考信号的资源与PSFCH资源之间的间隔为预定义或配置或指示的。
  13. 根据权利要求2-12任一项所述的方法,其中,
    所述SL定位参考信号与PSFCH的映射规则为预定义、预配置或配置的。
  14. 根据权利要求2-13任一项所述的方法,其中,所述映射规则为根据所述PSFCH的第一周期或所述PSFCH的第二周期确定的。
  15. 根据权利要求1-12任一项所述的方法,其中,所述方法还包括:
    在第二资源上SL定位参考信号的资源与PSFCH的资源在时间上重叠的情况下,所述第一终端执行以下至少之一:
    若发送SL定位参考信号的资源与接收PSFCH的资源在时间上重叠,则在所述第二资源上发送SL定位参考信号,或,在第二资源上接收PSFCH,或,基于SL定位参考信号和PSFCH的优先级确定传输行为;或,
    若接收SL定位参考信号的资源与发送PSFCH的资源在时间上重叠,则在所述第二资源上接收SL定位参考信号或,在第二资源上发送PSFCH,或,基于SL定位参考信号和PSFCH的优先级确定传输行为。
  16. 一种侧链路SL定位参考信号的传输方法,包括:
    第一终端确定SL定位参考信号的第三资源,并基于所述第三资源传输SL定位参考信号。
  17. 根据权利要求16所述的方法,其中,所述基于所述的第三资源传输SL定位参考信号包括:
    在所述第三资源上发送SL定位参考信号的资源与接收SL定位参考信号的资源在时间上重叠的情况下,所述第一终端执行以下至少之一:
    在所述第三资源上发送SL定位参考信号;
    在所述第三资源上接收SL定位参考信号;
    基于发送和接收SL定位参考信号的优先级确定传输行为。
  18. 根据权利要求16或17所述的方法,其中,所述基于所述的第三资源传输SL定位参考信号,包括:
    所述第一终端基于第一条件发送M1个SL定位参考信号,M1为大于或等于1的整数,所述第一条件满足以下至少之一:
    选择在发送时间窗口内剩余时长最小的M1个SL定位参考信号发送;
    选择优先级最高的M1个SL定位参考信号发送;
    选择服务质量QoS最大的M1个SL定位参考信号发送。
  19. 根据权利要求18所述的方法,其中,
    待发送的SL定位参考信号为M2个,M2大于Mmax,所述Mmax为所述第一终端可发送的SL定位参考信号的最大数目,所述M1小于或等于Mmax
  20. 一种确定侧链路SL定位参考信号资源的方法,包括:
    网络侧设备或者第二终端向第一终端发送物理侧链路反馈信道PSFCH的配置信息,所述PSFCH的配置信息用于确定SL定位参考信号的资源。
  21. 根据权利要求20所述的方法,其中,
    在SL资源池中配置了PSFCH,或配置的PSFCH的第一周期为非0,或配置的PSFCH的第一周期为N的情况下,所述SL定位参考信号的资源为基于所述SL定位参考信号和PSFCH的映射规则确定的;N为1或2或4;或,
    在SL资源池中未配置PSFCH,或配置的PSFCH的第一周期为0的情况下,所述SL定位参考信号的资源为基于第一信息确定的,所述第一信息包括以下至少一项:
    PSFCH的第二周期、第一偏移值、SL定位参考信号的周期或SL定位参考信号的偏移值。
  22. 根据权利要求21所述的方法,其中,
    在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于相同的时隙,且不同的符号;
    或者,SL定位参考信号的资源位于时隙k1,其中k1 mod P1=0,P1为PSFCH的第一周期。
  23. 根据权利要求21所述的方法,其中,
    在所述映射规则为第一映射规则的情况下,SL定位参考信号与PSFCH的资源位于不同的时隙;
    或者,所述SL定位参考信号位于时隙k2,其中,k2 mod P_prs=offset_prs;P_prs为SL定位参考信号的周期,offset_prs为SL定位参考信号的偏移值。
  24. 根据权利要求22或23所述的方法,其中,
    所述SL定位参考信号的资源位于以下至少一个符号上,所述至少一个符号包括:符号0、1、2、3、4、5、6、7、8和9。
  25. 根据权利要求21所述的方法,其中,
    在所述映射规则为第一映射规则的情况下,SL定位参考信号的资源位于PSFCH的候选资源上;所述PSFCH的候选资源为根据PSFCH的第二周期和/或所述第一偏移值确定的。
  26. 根据权利要求25所述的方法,其中,
    所述PSFCH的第二周期小于所述PSFCH的第一周期;
    或者,时隙k3为存在PSFCH的时隙,k3 mod P2=0,其中,所述P2为所述PSFCH的第二周期。
  27. 根据权利要求25所述的方法,其中,
    SL定位参考信号的资源位于SL资源池中除PSFCH的第一资源之外的资源上,所述PSFCH的第一资源为通过PSFCH的第一周期确定的。
  28. 根据权利要求25所述的方法,其中,
    SL定位参考信号的资源位于符号11和/或符号12上。
  29. 根据权利要求20所述的方法,其中,
    SL定位参考信号的资源位于时隙k4,其中,k4 mod P_prs=offset_prs,所述P_prs为所述SL定位参考信号的周期,所述offset_prs为所述SL定位参考信号的偏移值。
  30. 根据权利要求29所述的方法,其中,
    在所述时隙k4上,所述SL定位参考信号的资源与所述PSFCH的资源不冲突;和/或,
    所述offset_prs大于0;和/或,
    所述SL定位参考信号的周期为PSFCH的第一周期的整数倍。
  31. 根据权利要求21所述的方法,其中,
    在所述映射规则为第二映射规则的情况下,满足以下至少一项:
    所述SL定位参考信号的资源位于时隙k5上,所述时隙k5为存在PSFCH资源的时隙;
    所述SL定位参考信号的资源为第一终端通过对所述PSFCH进行速率匹配或打孔的方式确定的;或,
    SL定位参考信号的资源与PSFCH资源之间的间隔为预定义或配置或指示的。
  32. 根据权利要求21-31任一项所述的方法,其中,
    所述SL定位参考信号与PSFCH的映射规则为预定义、预配置或配置的。
  33. 根据权利要求21-32任一项所述的方法,其中,所述映射规则为根据所述PSFCH的第一周期或所述PSFCH的第二周期确定的。
  34. 一种确定侧链路SL定位参考信号资源的装置,包括:
    处理模块,用于基于物理侧链路反馈信道PSFCH的配置信息,确定SL定位参考信号的资源。
  35. 一种侧链路SL定位参考信号的传输装置,包括:
    处理模块,用于确定SL定位参考信号的第三资源;
    传输模块,用于基于所述的第三资源传输SL定位参考信号。
  36. 一种确定侧链路SL定位参考信号资源的装置,包括:
    发送模块,用于向第一终端发送物理侧链路反馈信道PSFCH的配置信息,所述PSFCH的配置信息用于所述第一终端确定SL定位参考信号的资源。
  37. 一种第一终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19任一项所述的确定侧链路SL定位参考信号资源的方法的步骤。
  38. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求20至33任一项所述的确定侧链路SL定位参考信号资源的方法的步骤。
PCT/CN2023/088292 2022-04-15 2023-04-14 确定sl定位参考信号资源的方法、终端及网络侧设备 WO2023198173A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210399394.7 2022-04-15
CN202210399394.7A CN116981077A (zh) 2022-04-15 2022-04-15 确定sl定位参考信号资源的方法、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2023198173A1 true WO2023198173A1 (zh) 2023-10-19

Family

ID=88329059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088292 WO2023198173A1 (zh) 2022-04-15 2023-04-14 确定sl定位参考信号资源的方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN116981077A (zh)
WO (1) WO2023198173A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066592A1 (ko) * 2019-10-02 2021-04-08 엘지전자 주식회사 Nr v2x에서 psfch 및 prs를 전송하는 방법 및 장치
WO2021112610A1 (ko) * 2019-12-06 2021-06-10 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 포지셔닝 참조 신호를 송수신하는 방법 및 이를 위한 장치
CN113498170A (zh) * 2020-03-19 2021-10-12 维沃移动通信有限公司 一种传输配置方法及终端
CN114339987A (zh) * 2020-09-30 2022-04-12 展讯通信(上海)有限公司 定位参考信号的传输方法及装置、存储介质、终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021066592A1 (ko) * 2019-10-02 2021-04-08 엘지전자 주식회사 Nr v2x에서 psfch 및 prs를 전송하는 방법 및 장치
WO2021112610A1 (ko) * 2019-12-06 2021-06-10 엘지전자 주식회사 사이드링크를 지원하는 무선통신시스템에서 단말이 포지셔닝 참조 신호를 송수신하는 방법 및 이를 위한 장치
CN113498170A (zh) * 2020-03-19 2021-10-12 维沃移动通信有限公司 一种传输配置方法及终端
CN114339987A (zh) * 2020-09-30 2022-04-12 展讯通信(上海)有限公司 定位参考信号的传输方法及装置、存储介质、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on physical layer procedures for NR sidelink", 3GPP DRAFT; R1-1910783 DISCUSSION ON PHYSICAL LAYER PROCEDURE FOR NR SIDELINK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 8 October 2019 (2019-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 23, XP051789571 *

Also Published As

Publication number Publication date
CN116981077A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US20230362924A1 (en) Transmission processing method and related device
US20240040595A1 (en) Method and Apparatus for Determining Sidelink Feedback Resource, Terminal, and Storage Medium
WO2023125906A1 (zh) 资源传输方向确定方法、装置及终端
WO2023078327A1 (zh) 上行传输信息确定、上行传输以及上行传输配置的方法
WO2023198173A1 (zh) 确定sl定位参考信号资源的方法、终端及网络侧设备
WO2022017409A1 (zh) 上行传输方法、装置及相关设备
CN113890698B (zh) 旁链路传输方法、传输装置和通信设备
WO2023011286A1 (zh) 反馈方法、相关设备及可读存储介质
WO2022237896A1 (zh) 传输处理方法、装置、通信设备及可读存储介质
WO2022237743A1 (zh) Pusch重复传输方法和设备
WO2024061261A1 (zh) 资源配置方法及装置、终端及网络侧设备
WO2024140446A1 (zh) 指示方法、设备及可读存储介质
WO2024022162A1 (zh) 信息配置方法、装置、终端、网络侧设备及可读存储介质
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2022237895A1 (zh) 资源处理方法、装置、通信设备及可读存储介质
WO2023179618A1 (zh) 传输方法、装置、终端及存储介质
WO2024032542A1 (zh) 发射通道切换的处理方法、终端及网络侧设备
WO2023116903A1 (zh) Sl信号处理方法、设备及可读存储介质
US20240080818A1 (en) Method and apparatus for determining uplink transmission time window, terminal, and network-side device
WO2024140634A1 (zh) 传输方法、设备及可读存储介质
CN115134048B (zh) 上行传输方法及装置、终端及可读存储介质
WO2023088480A1 (zh) 侧链路资源确定方法及终端
WO2023011309A1 (zh) 反馈方法、相关设备及可读存储介质
WO2023131227A1 (zh) 传输确定方法、装置、设备及介质
EP4319292A1 (en) Scheduling method and apparatus, and device and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787815

Country of ref document: EP

Kind code of ref document: A1