WO2023197746A1 - 显示基板及其制备方法和驱动方法、显示装置、车灯 - Google Patents

显示基板及其制备方法和驱动方法、显示装置、车灯 Download PDF

Info

Publication number
WO2023197746A1
WO2023197746A1 PCT/CN2023/077074 CN2023077074W WO2023197746A1 WO 2023197746 A1 WO2023197746 A1 WO 2023197746A1 CN 2023077074 W CN2023077074 W CN 2023077074W WO 2023197746 A1 WO2023197746 A1 WO 2023197746A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
power signal
electrode
light
signal line
Prior art date
Application number
PCT/CN2023/077074
Other languages
English (en)
French (fr)
Other versions
WO2023197746A9 (zh
Inventor
周桢力
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2023197746A1 publication Critical patent/WO2023197746A1/zh
Publication of WO2023197746A9 publication Critical patent/WO2023197746A9/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/82Interconnections, e.g. terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/155Surface emitters, e.g. organic light emitting diodes [OLED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate

Definitions

  • the present disclosure relates to the field of display technology, and specifically to a display substrate, a preparation method and a driving method thereof, a display device, and a vehicle lamp.
  • embodiments of the present disclosure provide a display substrate, including: a substrate;
  • the light-emitting element includes a first electrode, a light-emitting functional layer and a second electrode; the light-emitting functional layer is located on the side of the first electrode facing away from the substrate; the second electrode is located on the light-emitting functional layer. The side of the functional layer facing away from the substrate;
  • a plurality of power signal lines each of which is connected to at least one of the light-emitting elements
  • the thickness of the power signal line is greater than the thickness of the first electrode
  • the power signal line is located on a side of the first electrode away from the substrate, and the power signal line at least partially overlaps with an orthographic projection of the first electrode on the substrate;
  • the power signal line is connected to the first electrode.
  • the plurality of power signal lines extend along the first direction and the second direction respectively and are connected to form a grid
  • the first electrode includes a first sub-part and a second sub-part; the first sub-part is connected to the second sub-part;
  • the first sub-part is block-shaped, and the orthographic projection of the first sub-part on the base is located on the within the grid;
  • the second sub-portion is a strip extending along the first direction and/or the second direction of the grid, and the orthographic projection of the second sub-portion on the substrate is consistent with the power supply Signal lines at least partially overlap.
  • the plurality of power signal lines extend along the first direction and the second direction respectively and are connected to form a grid
  • the first electrode includes a first sub-section, a second sub-section and a third sub-section; the first sub-section, the second sub-section and the third sub-section are connected in sequence;
  • Orthographic projections of the first sub-portion and the second sub-portion on the substrate are located within the grid
  • the first sub-portion is block-shaped; the second sub-portion is strip-shaped extending along the first direction and/or the second direction parallel to the grid, and the second sub-portion is surrounding the periphery of said first sub-section;
  • the orthographic projection of the third sub-section on the substrate overlaps the power signal line, and the third sub-section is in contact with and connected to the power signal line.
  • the extension length of the second sub-section along the first direction and/or the second direction is at least 1/4 of the circumference of the mesh.
  • it also includes a passivation layer located between the first electrode and the power signal line;
  • a plurality of first openings and a plurality of second openings are provided in the passivation layer
  • the first opening is located in an orthographic overlap area of the second sub-section and the power signal line, and the power signal line contacts and is connected to the second sub-section through the first opening;
  • An orthographic projection of the second opening on the base overlaps an orthographic projection of the first sub-portion on the base.
  • the thickness of the power signal line is greater than the thickness of the passivation layer.
  • the power signal lines are divided into multiple groups
  • Each group includes a plurality of power signal lines, and the plurality of power signal lines in each group are connected to a signal input line.
  • a pixel definition layer is further included, located on a side of the power signal line facing away from the substrate;
  • a plurality of third openings are opened in the pixel definition layer, and the orthographic projection of the third openings on the substrate overlaps with the orthographic projection of the first sub-section on the substrate.
  • the light-emitting functional layers of the plurality of light-emitting elements are connected into one body
  • the second electrodes of the plurality of light-emitting elements are connected as one body
  • the light-emitting functional layer and the second electrode also extend to a side of the pixel defining layer facing away from the substrate.
  • it also includes an encapsulation layer located on a side of the second electrode facing away from the substrate;
  • the encapsulation layer includes a first inorganic encapsulation layer, an organic encapsulation layer and a second inorganic encapsulation layer; the first inorganic encapsulation layer, the organic encapsulation layer and the second inorganic encapsulation layer are stacked away from the substrate in sequence.
  • the second electrode uses an opaque conductive material
  • the first electrode is made of light-transmitting conductive material.
  • the thickness of the first electrode is ⁇ 2000 Angstroms
  • the thickness of the power signal line ranges from 2 to 3 ⁇ m.
  • the material of the first electrode includes indium tin oxide or indium zinc oxide
  • the power signal line is made of materials including aluminum and titanium.
  • an embodiment of the present disclosure also provides a display device, which includes the above-mentioned display substrate.
  • an embodiment of the present disclosure further provides a vehicle lamp, which includes the above-mentioned display substrate.
  • embodiments of the present disclosure also provide a method for preparing a display substrate, including:
  • Preparing the light-emitting element includes sequentially preparing a first electrode, a light-emitting functional layer and a second electrode on the substrate;
  • the power signal line is prepared after the first electrode is prepared; the thickness of the power signal line is greater than the thickness of the first electrode; the power signal line and the first electrode are on the substrate.
  • the display substrate is the above-mentioned display substrate
  • the preparation method includes: after preparing the first electrode and before preparing the power signal line, it also includes: preparing a passivation layer and a pattern of a plurality of first openings and a plurality of second openings therein;
  • Preparing the first electrode includes simultaneously forming patterns of the first sub-portion and the second sub-portion;
  • the power signal line contacts and connects with the second sub-section through the first opening.
  • the display substrate is the above-mentioned display substrate
  • the preparation method includes: preparing the first electrode includes simultaneously forming patterns of first sub-parts, second sub-parts and third sub-parts;
  • the orthographic projection of the third sub-section on the substrate overlaps the power signal line, and the power signal line is in contact with and connected to the third sub-section.
  • embodiments of the present disclosure further provide a method for driving a display substrate, which includes: the first electrode of the light-emitting element receiving a driving voltage signal input on a power signal line;
  • the light-emitting functional layer of the light-emitting element emits light under the action of an electric field formed between the first electrode and the second electrode of the light-emitting element.
  • the display substrate is the above-mentioned display substrate
  • the driving method includes: simultaneously inputting driving voltage signals to multiple groups of the power signal lines through different signal input lines;
  • driving voltage signals are input to each group of the power signal lines through different signal input lines at different times;
  • the driving voltage signals input on different signal input lines have the same or different magnitudes.
  • Figure 1 is a structural top view of a vehicle taillight in the disclosed technology.
  • Figure 2 is a structural cross-sectional view along the AA' section line in Figure 1.
  • Figure 3 is a schematic diagram of the anode layer breakage at the via hole position in Figure 2.
  • FIG. 4 is a structural top view of a display substrate in an embodiment of the present disclosure.
  • Figure 5 is a structural cross-sectional view along the BB' line in Figure 4.
  • FIG. 6 is a structural top view of another display substrate in an embodiment of the present disclosure.
  • Figure 7 is a structural cross-sectional view along the CC' section line in Figure 6.
  • FIG. 8 is a schematic diagram of the arrangement of signal input lines in the display substrate according to the embodiment of the present disclosure.
  • the display substrate, its preparation method and driving method, the display device, and the vehicle lamp provided by the embodiments of the present disclosure will be further described in detail below in conjunction with the drawings and specific implementation modes. describe.
  • first and second are used for descriptive purposes only and are not to be understood as indicators. or imply relative importance or implicitly specify the quantity of technical features indicated. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plural means two or more.
  • Figure 1 is a structural top view of the vehicle taillight in the disclosed technology
  • Figure 2 is a structural cross-sectional view along the AA' section line in Figure 1
  • Figure 3 shows the anode layer appearing at the via hole position in Figure 2 Schematic diagram of broken wires
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • the anode 8 layer located in the relatively upper layer communicates with the power supply layer located in the relatively lower layer through the via hole 9 in the passivation layer 4.
  • the signal line 3 is connected, so that the power signal on the power signal line 3 is input to the anode 8 of the OLED light-emitting element 10 to drive the OLED light-emitting element 10 to emit light.
  • an embodiment of the present disclosure provides a display substrate.
  • Figure 4 is a structural top view of a display substrate in an embodiment of the present disclosure
  • Figure 5 is a structural cross-sectional view along the BB' section line in Figure 4
  • the display substrate includes: a substrate 1; a plurality of light-emitting elements 2; the light-emitting elements 2 include a first electrode 21, a light-emitting functional layer 22 and a second electrode 23;
  • the functional layer 22 is located on the side of the first electrode 21 facing away from the substrate 1;
  • the second electrode 23 is located on the side of the light-emitting functional layer 22 facing away from the substrate 1;
  • a plurality of power signal lines 3, each power signal line 3 is connected to at least one light-emitting element 2 ;
  • the thickness of the power signal line 3 is greater than the thickness of the first electrode 21; the power signal line 3 is located on the side of the first electrode 21
  • the light-emitting element 2 can be an OLED element, that is, an organic electroluminescent element; the light-emitting functional layer 22 of the OLED element can include a hole transport layer, a hole injection layer, a light-emitting layer, an electron injection layer, an electron transport layer and other film layers.
  • the light-emitting element 2 may also be an LED element, that is, a light-emitting diode.
  • the light-emitting element 2 can also be a Mini LED or Micro LED element.
  • the first voltage signal on the power signal line 3 is input to the first electrode 21, and the second electrode 23 is connected to the other potential terminal, that is, the second voltage signal is input to the second electrode 23 through the other potential terminal; the first voltage signal is connected to the other potential terminal.
  • the two voltage signals are not equal; the light-emitting functional layer 22 is excited to emit light under the action of the current formed between the power signal line 3 and the other potential terminal.
  • the first electrode can be avoided when the first electrode 21 is connected to the power signal line 3 . 21 is disconnected, thereby avoiding the problem of dark spots on the display substrate.
  • the thickness of the first electrode 21 is ⁇ 2000 angstroms; the thickness of the power signal line 3 ranges from 2 to 3 ⁇ m.
  • the plurality of power signal lines 3 extend respectively along the first direction X and the second direction Y and are connected into a grid;
  • the first electrode 21 includes a first sub-section 211 and a second sub-section 212;
  • Part 211 is connected to the second sub-part 212;
  • the first sub-part 211 is block-shaped, and the orthographic projection of the first sub-part 211 on the substrate 1 is located within the grid;
  • the second sub-part 212 is along the first direction X of the grid and/or a strip shape extending in the second direction Y, and the orthographic projection of the second sub-portion 212 on the substrate 1 at least partially overlaps the power signal line 3 .
  • Such an arrangement can increase the area of the area within the grid where the light-emitting element 2 is located, thereby increasing the display aperture ratio of the display substrate.
  • the first sub-section 211 is used as the anode of the light-emitting element 2; the strip-shaped second sub-section 212 is used to limit the current input from the power signal line 3 to the first sub-section 211;
  • the strip-shaped second sub-section 212 can be made of indium tin oxide or indium zinc oxide material.
  • the strip-shaped second sub-section 212 of this material has a large resistance and can limit the current input to the first sub-section 211.
  • the light-emitting element 2 can emit light normally.
  • the orthographic projection of the second sub-portion 212 on the substrate 1 completely overlaps the power signal line 3 .
  • Such an arrangement can further increase the area of the area within the grid where the light-emitting element 2 is located, thereby further increasing the display aperture ratio of the display substrate.
  • the display substrate further includes a passivation layer 4, located between the first electrode 21 and the power signal line 3; a plurality of first openings 41 and a plurality of second openings 42 are opened in the passivation layer 4;
  • An opening 41 is located in the overlapping area of the orthographic projection of the second sub-section 212 and the power signal line 3.
  • the power signal line 3 contacts and connects with the second sub-section 212 through the first opening 41; the second opening 42 is located in the orthogonal projection area of the substrate 1.
  • the projection overlaps with the orthographic projection of the first sub-portion 211 on the substrate 1 .
  • the thickness of the power signal line 3 is greater than the thickness of the first electrode 21 , the power signal line 3 is less likely to be disconnected when connected to the first electrode 21 through the first opening 41 , thus avoiding dark spots in the light-emitting element 2 . bad.
  • the orthographic projection of the second opening 42 on the substrate 1 coincides with the orthographic projection of the first sub-portion 211 on the substrate 1 . This further improves the aperture ratio of the display substrate.
  • the second opening 42 enables the light-emitting functional layer 22 and the second electrode 23 to be stacked on the first electrode 21 in sequence, and realizes direct contact between the light-emitting functional layer 22 and the first electrode 21, thereby realizing a light-emitting element. 2 Normal light-emitting function under current drive.
  • the thickness of the power signal line 3 is greater than the thickness of the passivation layer 4 .
  • Figure 6 is a structural top view of another display substrate in an embodiment of the present disclosure
  • Figure 7 is a structural cross-sectional view along the CC' section line in Figure 6; wherein, multiple power supplies
  • the signal lines 3 respectively extend along the first direction X and the second direction Y and are connected to form a grid
  • the first electrode 21 includes a first sub-section 211, a second sub-section 212 and a third sub-section 213
  • the second sub-part 212 and the third sub-part 213 are connected in sequence
  • the orthographic projections of the first sub-part 211 and the second sub-part 212 on the substrate 1 are located within the grid
  • the first sub-part 211 is block-shaped
  • the second sub-part 212 is a strip extending along the first direction X and/or the second direction Y parallel to the grid, and the second sub-portion 212 surrounds the periphery of the first sub-portion 211
  • the orthographic projection overlaps the power signal
  • the first sub-section 211 is used as the anode of the light-emitting element 2; the strip-shaped second sub-section 212 is used to limit the current input from the power signal line 3 to the first sub-section 211;
  • the strip-shaped second sub-section 212 can be made of indium tin oxide or indium zinc oxide material.
  • the strip-shaped second sub-section 212 of this material has a large resistance and can limit the current input to the first sub-section 211.
  • the display substrate is not provided with a passivation layer, that is, the first sub-section 211 and the second sub-section 212 are located on the same layer as the power signal line 3 on the substrate 1; the third sub-section 213 is not connected to the power signal line 3. 3 Direct lap connection.
  • the extension length of the second sub-portion 212 along the first direction X and/or the second direction Y is at least 1/4 of the circumference of the grid. In some embodiments, the second sub-portion 212 extends to 1/2 the circumference of the grid.
  • the length of the strip-shaped second sub-section 212 is specifically designed according to its adjustment requirements for the current that drives the light-emitting element 2 to emit light.
  • the display substrate further includes a pixel definition layer 5 located on the side of the power signal line 3 away from the substrate 1 ; a plurality of third openings 51 are opened in the pixel definition layer 5 , and the third openings 51 are on the substrate 1
  • the orthographic projection of . overlaps with the orthographic projection of the first sub-portion 211 on the substrate 1 .
  • the third opening 51 is used to define the formation position of the light-emitting element 2 , that is, the third opening 51 is used to accommodate the light-emitting element 2 .
  • the orthographic projection of the third opening 51 on the substrate 1 coincides with the orthographic projection of the first sub-portion 211 on the substrate 1 . This can further improve the aperture ratio of the display substrate.
  • the light-emitting functional layers 22 of multiple light-emitting elements 2 are connected as one body; the second electrodes 23 of the multiple light-emitting elements 2 are connected as one body; the light-emitting functional layers 22 and the second electrodes 23 also extend to the pixel defining layer 5 the side facing away from base 1.
  • the light-emitting functional layer 22 emits light of one color (such as white light or red light), thereby realizing the function of the display substrate being applied to vehicle lights.
  • the light-emitting element 2 does not need to be provided with a driving circuit and can be lit directly through the first voltage signal input on the power signal line 3 .
  • the light-emitting functional layers of multiple light-emitting elements can also be provided independently, and the second electrodes of the multiple light-emitting elements are connected as a whole. In this way, the light-emitting functional layers of different light-emitting elements can emit light of different colors, thereby realizing the color display function of the display substrate.
  • a driving circuit that drives the light-emitting elements to emit light can be provided to achieve individual lighting control of different light-emitting elements.
  • the display substrate further includes an encapsulation layer 6 located on the side of the second electrode 23 away from the substrate 1; the encapsulation layer 6 includes a first inorganic encapsulation layer 61, an organic encapsulation layer 62 and a second inorganic encapsulation layer 63; The first inorganic encapsulation layer 61 , the organic encapsulation layer 62 and the second inorganic encapsulation layer 63 are sequentially stacked away from the substrate 1 .
  • the encapsulation layer 6 can prevent external water and oxygen from intruding into the light-emitting element 2, thereby protecting the light-emitting element from being damaged.
  • the material of the first electrode 21 includes indium tin oxide (ITO) or indium zinc oxide (IZO); the material of the power signal line 3 includes aluminum and titanium, such as a stack of titanium/aluminum/titanium.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the material of the power signal line 3 includes aluminum and titanium, such as a stack of titanium/aluminum/titanium.
  • the signal input line in the substrate is shown for an embodiment of the present disclosure.
  • Setup diagram wherein, the power signal lines 3 are divided into multiple groups; each group includes multiple power signal lines 3, and the multiple power signal lines 3 in each group are connected to a signal input line 7.
  • the light-emitting elements 2 connected to each group of power signal lines 3 can be independently lit, thereby achieving some special lighting effects of the display substrate, such as time-sharing driving of each group of power signal lines 3.
  • the signal input line 7 and the power signal line 3 are arranged on the same layer and made of the same material.
  • the first electrode 21 can be connected to the power signal line 3 to avoid the first The electrode 21 is disconnected, thereby avoiding the problem of dark spots on the display substrate.
  • the embodiment of the present disclosure also provides a method for preparing the above-mentioned display substrate, including: preparing multiple light-emitting elements and multiple power supply signal lines on the substrate; preparing The light-emitting element includes sequentially preparing a first electrode, a light-emitting functional layer and a second electrode on a substrate; wherein, a power signal line is prepared after the first electrode is prepared; the thickness of the power signal line is greater than the thickness of the first electrode; the power signal line and Orthographic projections of the first electrode on the substrate at least partially overlap; and the power signal line is connected to the first electrode.
  • the preparation method of the display substrate includes: after preparing the first electrode 21 and before preparing the power signal line 3 , the method further includes: preparing a passivation layer 4 and a plurality of first openings 41 therein and Patterns of a plurality of second openings 42; preparing the first electrode 21 includes simultaneously forming patterns of the first sub-portion 211 and the second sub-portion 212; the orthographic projection of the second sub-portion 212 on the substrate 1 overlaps with the power signal line 3 ; The power signal line 3 contacts and connects with the second sub-section 212 through the first opening 41.
  • the patterns of the passivation layer 4 and the first openings 41 and the second openings 42 are formed through a patterning process (including film deposition, exposure, development, etching and other steps) or an evaporation process (such as FMM evaporation).
  • the process that is, with the passivation layer 4 and the first opening 41 and the second opening 42 in FIG. Shaped metal mask plate evaporation) preparation.
  • the pattern of the first electrode 21 and the pattern of the power signal line 3 are also prepared through a patterning process or an evaporation process respectively.
  • the first electrode 21 and the power signal line 3 are respectively prepared through two processes.
  • the preparation method of the display substrate includes: preparing the first electrode 21 including simultaneously forming patterns of the first sub-section 211 , the second sub-section 212 and the third sub-section 213 ; the third sub-section 213
  • the orthographic projection on the substrate 1 overlaps the power supply signal line 3, which is in contact with and connected to the third sub-section 213.
  • the pattern of the first electrode 21 and the pattern of the power signal line 3 are also prepared through a patterning process or an evaporation process respectively.
  • the first electrode 21 and the power signal line 3 are respectively prepared through two processes.
  • embodiments of the present disclosure also provide a driving method for the above-mentioned display substrate, which includes: the first electrode of the light-emitting element receives the driving voltage signal input from the power signal line; the light-emitting functional layer of the light-emitting element is on the first electrode. It emits light under the action of the electric field formed between the second electrode of the light-emitting element and the second electrode of the light-emitting element.
  • the driving method of the display substrate includes: simultaneously inputting driving voltage signals to multiple sets of power signal lines through different signal input lines; thereby realizing that all light-emitting elements in the display substrate emit light at the same time, thus realizing the application of the display substrate For the function of car lights.
  • the driving method of the display substrate includes: inputting driving voltage signals to each group of power signal lines through different signal input lines at different times; thus achieving time-sharing driving of the light-emitting elements connected to each group of power signal lines, This enables the display substrate to be used in some dynamic lighting of car lights. Such as arrow indicators or some flashing lights applied to vehicles.
  • the driving method of the display substrate includes: driving voltage signals input on different signal input lines have the same or different magnitudes.
  • the light-emitting elements connected to each group of power signal lines can emit light with different brightness, so that the display substrate can be used to display some still images with different brightness zones.
  • the driving method of the display substrate may also be any of the above driving methods. Use in combination.
  • an embodiment of the present disclosure further provides a display device, which includes the above-mentioned display substrate.
  • the display device can be: an OLED panel, an OLED TV, a mobile phone, a tablet computer, a notebook computer, a monitor, a digital photo frame, a navigator, or any other product or component with a display function.
  • an embodiment of the present disclosure further provides a vehicle lamp, which includes the above-mentioned display substrate.
  • the car lights can be: lights for various cars, lights for high-speed trains, lights on airplanes, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开实施例提供一种显示基板,包括:基底;多个发光元件;发光元件包括第一电极、发光功能层和第二电极;发光功能层位于第一电极背离基底的一侧;第二电极位于发光功能层背离基底的一侧;多条电源信号线,每条电源信号线连接至少一个发光元件;其中,电源信号线的厚度大于第一电极的厚度;电源信号线位于第一电极的背离基底的一侧,电源信号线与第一电极在基底上的正投影至少部分交叠;电源信号线与第一电极连接。本公开还提供一种显示装置和车灯,包括上述显示基板。本公开还提供一种显示基板的驱动方法。

Description

显示基板及其制备方法和驱动方法、显示装置、车灯 技术领域
本公开涉及显示技术领域,具体涉及一种显示基板及其制备方法和驱动方法、显示装置、车灯。
背景技术
在OLED(Organic Light-Emitting Diode,有机发光二极管)刚性车尾灯项目中,出现约50%的暗点不良,不良分析显示,位于相对上层的厚度较薄的阳极层通过开设在绝缘层中的过孔与位于相对下层的电源信号线连接时,由于阳极层较薄,容易在过孔位置出现断线,导致OLED断路,出现暗点不良。
发明内容
一方面,本公开实施例提供一种显示基板,包括:基底;
多个发光元件;所述发光元件包括第一电极、发光功能层和第二电极;所述发光功能层位于所述第一电极背离所述基底的一侧;所述第二电极位于所述发光功能层背离所述基底的一侧;
多条电源信号线,每条所述电源信号线连接至少一个所述发光元件;
其中,所述电源信号线的厚度大于所述第一电极的厚度;
所述电源信号线位于所述第一电极的背离所述基底的一侧,所述电源信号线与所述第一电极在所述基底上的正投影至少部分交叠;
所述电源信号线与所述第一电极连接。
在一些实施例中,所述多条电源信号线分别沿第一方向和第二方向延伸并连接成网格;
所述第一电极包括第一子部和第二子部;所述第一子部与所述第二子部连接;
所述第一子部为块状,所述第一子部在所述基底上的正投影位于所述 网格内;
所述第二子部为沿所述网格的所述第一方向和/或所述第二方向延伸的条状,且所述第二子部在所述基底上的正投影与所述电源信号线至少部分交叠。
在一些实施例中,所述多条电源信号线分别沿第一方向和第二方向延伸并连接成网格;
所述第一电极包括第一子部、第二子部和第三子部;所述第一子部、所述第二子部和所述第三子部依次连接;
所述第一子部和所述第二子部在所述基底上的正投影位于所述网格内;
所述第一子部为块状;所述第二子部为沿平行于所述网格的所述第一方向和/或所述第二方向延伸的条状,且所述第二子部围绕在所述第一子部的***;
所述第三子部在所述基底上的正投影与所述电源信号线交叠,且所述第三子部与所述电源信号线接触并连接。
在一些实施例中,所述第二子部沿所述第一方向和/或所述第二方向的延伸长度至少为所述网格的1/4周长。
在一些实施例中,还包括钝化层,位于所述第一电极与所述电源信号线之间;
所述钝化层中开设有多个第一开口和多个第二开口;
所述第一开口位于所述第二子部与所述电源信号线的正投影交叠区域,所述电源信号线通过所述第一开口与所述第二子部接触并连接;
所述第二开口在所述基底上的正投影与所述第一子部在所述基底上的正投影交叠。
在一些实施例中,所述电源信号线的厚度大于所述钝化层的厚度。
在一些实施例中,所述电源信号线分为多组;
每组包括多条所述电源信号线,且每组中的多条所述电源信号线连接一条信号输入线。
在一些实施例中,还包括像素界定层,位于所述电源信号线的背离所述基底的一侧;
所述像素界定层中开设有多个第三开口,所述第三开口在所述基底上的正投影与所述第一子部在所述基底上的正投影交叠。
在一些实施例中,所述多个发光元件的所述发光功能层连接为一体;
所述多个发光元件的所述第二电极连接为一体;
所述发光功能层和所述第二电极还延伸至所述像素界定层的背离所述基底的一侧。
在一些实施例中,还包括封装层,位于所述第二电极的背离所述基底的一侧;
所述封装层包括第一无机封装层、有机封装层和第二无机封装层;所述第一无机封装层、所述有机封装层和所述第二无机封装层依次远离所述基底叠置。
在一些实施例中,所述第二电极采用不透光导电材料;
所述第一电极采用透光导电材料。
在一些实施例中,所述第一电极的厚度≤2000埃;
所述电源信号线的厚度范围为2~3μm。
在一些实施例中,所述第一电极的材料包括氧化铟锡或铟锌氧化物;
所述电源信号线的材料包括铝和钛。
第二方面,本公开实施例还提供一种显示装置,其中,包括上述显示基板。
第三方面,本公开实施例还提供一种车灯,其中,包括上述显示基板。
第四方面,本公开实施例还提供一种显示基板的制备方法,包括:
在基底上制备多个发光元件和多条电源信号线;
制备所述发光元件包括在所述基底上依次制备第一电极、发光功能层和第二电极;
其中,在制备完成所述第一电极后制备所述电源信号线;所述电源信号线的厚度大于所述第一电极的厚度;所述电源信号线与所述第一电极在所述基底上的正投影至少部分交叠;且所述电源信号线与所述第一电极连接。
在一些实施例中,所述显示基板为上述显示基板;
所述制备方法包括:在制备完成所述第一电极后且在制备所述电源信号线之前还包括:制备钝化层及其中多个第一开口和多个第二开口的图形;
制备所述第一电极包括同时形成第一子部和第二子部的图形;
所述第二子部在所述基底上的正投影与所述电源信号线交叠;
所述电源信号线通过所述第一开口与所述第二子部接触并连接。
在一些实施例中,所述显示基板为上述显示基板;
所述制备方法包括:制备所述第一电极包括同时形成第一子部、第二子部和第三子部的图形;
所述第三子部在所述基底上的正投影与所述电源信号线交叠,所述电源信号线与所述第三子部接触并连接。
第五方面,本公开实施例还提供一种显示基板的驱动方法,其中,包括:发光元件的第一电极接收电源信号线上输入的驱动电压信号;
所述发光元件的发光功能层在所述第一电极和所述发光元件的第二电极之间形成的电场作用下发光。
在一些实施例中,所述显示基板为上述显示基板;
所述驱动方法包括:通过不同的信号输入线向多组所述电源信号线同时输入驱动电压信号;
或者,在不同时间分别通过不同的信号输入线向各组所述电源信号线输入驱动电压信号;
不同的所述信号输入线上输入的所述驱动电压信号大小相同或不同。
附图说明
附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1为公开技术中车尾灯的结构俯视图。
图2为沿图1中AA'剖切线的结构剖视图。
图3为图2中过孔位置出现阳极层断线的示意图。
图4为本公开实施例中一种显示基板的结构俯视图。
图5为沿图4中BB'剖切线的结构剖视图。
图6为本公开实施例中另一种显示基板的结构俯视图。
图7为沿图6中CC'剖切线的结构剖视图。
图8为本公开实施例显示基板中信号输入线的设置示意图。
具体实施方式
为使本领域技术人员更好地理解本公开实施例的技术方案,下面结合附图和具体实施方式对本公开实施例提供的显示基板及其制备方法和驱动方法、显示装置、车灯作进一步详细描述。
在下文中将参考附图更充分地描述本公开实施例,但是所示的实施例可以以不同形式来体现,且不应当被解释为限于本公开阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了区的具体形状,但并不是旨在限制性的。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示 或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
公开技术中,参照图1-图3,图1为公开技术中车尾灯的结构俯视图;图2为沿图1中AA'剖切线的结构剖视图;图3为图2中过孔位置出现阳极层断线的示意图;在OLED(Organic Light-Emitting Diode,有机发光二极管)刚性车尾灯项目中,首先在刚性基底1上制备电源信号线3,然后在电源信号线3上方制备钝化层4,接着在钝化层4上方制备OLED发光元件10的阳极8;在阳极8的背离基底1的一侧还设置有像素界定层5;阳极8与电源信号线3在基底1上的正投影局部交叠,钝化层4中在对应阳极8与电源信号线3的正投影交叠区域开设有过孔9,位于相对上层的阳极8层通过钝化层4中的过孔9与位于相对下层的电源信号线3连接,从而实现电源信号线3上的电源信号输入至OLED发光元件10的阳极8,以驱动OLED发光元件10发光。
由于阳极8的膜层厚度较薄,当阳极8层通过过孔9与电源信号线3连接时,在过孔9的斜坡侧壁上很容易出现阳极8层断线,参照图3,导致OLED发光元件10断路,出现暗点不良。
为了解决公开技术中车尾灯的暗点不良问题,第一方面,本公开实施例提供一种显示基板,参照图4和图5,图4为本公开实施例中一种显示基板的结构俯视图;图5为沿图4中BB'剖切线的结构剖视图;其中,显示基板包括:基底1;多个发光元件2;发光元件2包括第一电极21、发光功能层22和第二电极23;发光功能层22位于第一电极21背离基底1的一侧;第二电极23位于发光功能层22背离基底1的一侧;多条电源信号线3,每条电源信号线3连接至少一个发光元件2;其中,电源信号线3的厚度大于第一电极21的厚度;电源信号线3位于第一电极21的背离基底1的一侧, 电源信号线3与第一电极21在基底1上的正投影至少部分交叠;电源信号线3与第一电极21连接。
其中,发光元件2可以是OLED元件,即有机电致发光元件;OLED元件的发光功能层22可以包括空穴传输层、空穴注入层、发光层、电子注入层、电子传输层等膜层。发光元件2也可以是LED元件,即发光二极管。发光元件2还可以是Mini LED或者Micro LED元件。电源信号线3上的第一电压信号输入至第一电极21,第二电极23连接另一电位端,即第二电极23上通过另一电位端输入第二电压信号;第一电压信号与第二电压信号不相等;发光功能层22在电源信号线3和另一电位端之间形成的电流作用下被激发发光。
本实施例中,通过将厚度较厚的电源信号线3设置于厚度较薄的第一电极21的背离基底1的一侧,能够在第一电极21与电源信号线3连接时避免第一电极21出现断线,从而避免该显示基板出现暗点不良问题。
在一些实施例中,第一电极21的厚度≤2000埃;电源信号线3的厚度范围为2~3μm。
在一些实施例中,多条电源信号线3分别沿第一方向X和第二方向Y延伸并连接成网格;第一电极21包括第一子部211和第二子部212;第一子部211与第二子部212连接;第一子部211为块状,第一子部211在基底1上的正投影位于网格内;第二子部212为沿网格的第一方向X和/或第二方向Y延伸的条状,且第二子部212在基底1上的正投影与电源信号线3至少部分交叠。如此设置,能够增大发光元件2所在的网格内区域的面积,从而增大该显示基板的显示开口率。
参照图4和图5中,第一子部211用作发光元件2的阳极;条状的第二子部212用于对电源信号线3输入至第一子部211上的电流进行限流;条状的第二子部212可以采用氧化铟锡或者铟锌氧化物材料,该材料的条状第二子部212电阻较大,能够对输入至第一子部211上的电流进行限流 调节,防止输入至第一子部211上的电流太大导致第一子部211与第二电极23之间发生短路,从而保护提供输入信号的电源不被短路烧坏,进而确保其他相互并联连接的发光元件2能够正常发光。
在一些实施例中,参照图4,第二子部212在基底1上的正投影与电源信号线3完全交叠。如此设置,能够进一步增大发光元件2所在的网格内区域的面积,从而进一步增大该显示基板的显示开口率。
在一些实施例中,显示基板还包括钝化层4,位于第一电极21与电源信号线3之间;钝化层4中开设有多个第一开口41和多个第二开口42;第一开口41位于第二子部212与电源信号线3的正投影交叠区域,电源信号线3通过第一开口41与第二子部212接触并连接;第二开口42在基底1上的正投影与第一子部211在基底1上的正投影交叠。如此设置,由于电源信号线3的厚度大于第一电极21的厚度,所以电源信号线3在通过第一开口41与第一电极21连接时不容易出现断线,从而避免发光元件2出现暗点不良。
在一些实施例中,第二开口42在基底1上的正投影与第一子部211在基底1上的正投影重合。如此进一步提高该显示基板的开口率。
在一些实施例中,第二开口42能使发光功能层22和第二电极23依次叠置于第一电极21上,并实现发光功能层22与第一电极21的直接接触,从而实现发光元件2在电流驱动下的正常发光功能。
在一些实施例中,电源信号线3的厚度大于钝化层4的厚度。如此设置,使电源信号线3能将第一开口41填平,从而进一步确保电源信号线3与第一电极21之间的连接不会发生断线,避免发光元件2出现暗点不良。
在一些实施例中,参照图6和图7,图6为本公开实施例中另一种显示基板的结构俯视图;图7为沿图6中CC'剖切线的结构剖视图;其中,多条电源信号线3分别沿第一方向X和第二方向Y延伸并连接成网格;第一电极21包括第一子部211、第二子部212和第三子部213;第一子部211、 第二子部212和第三子部213依次连接;第一子部211和第二子部212在基底1上的正投影位于网格内;第一子部211为块状;第二子部212为沿平行于网格的第一方向X和/或第二方向Y延伸的条状,且第二子部212围绕在第一子部211的***;第三子部213在基底1上的正投影与电源信号线3交叠,且第三子部213与电源信号线3接触并连接。
图6和图7中,第一子部211用作发光元件2的阳极;条状的第二子部212用于对电源信号线3输入至第一子部211上的电流进行限流;条状的第二子部212可以采用氧化铟锡或者铟锌氧化物材料,该材料的条状第二子部212电阻较大,能够对输入至第一子部211上的电流进行限流调节,防止输入至第一子部211上的电流太大导致第一子部211与第二电极23之间发生短路,从而保护提供输入信号的电源不被短路烧坏,进而确保其他相互并联连接的发光元件2能够正常发光。
图6和图7中,显示基板中未设置钝化层,即第一子部211和第二子部212与电源信号线3位于基底1上的同一层;第三子部213与电源信号线3直接搭接连接。
在一些实施例中,第二子部212沿第一方向X和/或第二方向Y的延伸长度至少为网格的1/4周长。在一些实施例中,第二子部212的延伸长度为网格的1/2周长。其中,条状第二子部212的长度根据其对驱动发光元件2发光的电流大小的调节需求具体设计。
在一些实施例中,显示基板还包括像素界定层5,位于电源信号线3的背离基底1的一侧;像素界定层5中开设有多个第三开口51,第三开口51在基底1上的正投影与第一子部211在基底1上的正投影交叠。其中,第三开口51用于限定出发光元件2的形成位置,即第三开口51中用于容置发光元件2。
在一些实施例中,第三开口51在基底1上的正投影与第一子部211在基底1上的正投影重合。如此能进一步提高该显示基板的开口率。
在一些实施例中,多个发光元件2的发光功能层22连接为一体;多个发光元件2的第二电极23连接为一体;发光功能层22和第二电极23还延伸至像素界定层5的背离基底1的一侧。
本实施例中,发光功能层22发出一种颜色的光(如白光或红光),从而实现该显示基板应用于车灯的功能。
本实施例中,发光元件2不需要设置驱动电路,直接通过电源信号线3上输入的第一电压信号即可点亮。
在一些实施例中,多个发光元件的发光功能层也可以分别独立设置,多个发光元件的第二电极连接为一体。如此可以实现不同发光元件的发光功能层能发射不同颜色的光,从而实现该显示基板的彩色显示功能。在一些实施例中,当该显示基板用于实现显示功能时,可以设置驱动发光元件发光的驱动电路,以实现对不同发光元件的单独点亮控制。
在一些实施例中,显示基板还包括封装层6,位于第二电极23的背离基底1的一侧;封装层6包括第一无机封装层61、有机封装层62和第二无机封装层63;第一无机封装层61、有机封装层62和第二无机封装层63依次远离基底1叠置。封装层6能够防止外界水氧侵入发光元件2,从而保护发光元件不被损坏。
在一些实施例中,第二电极23采用不透光导电材料;第一电极21采用透光导电材料。即该显示基板可实现底发射型发光,当该底发射型显示基板应用于车灯时,能够减小车灯发光时的大视角色偏,提升车灯的发光效果。
在一些实施例中,也可以是第二电极采用透光导电材料;第一电极采用不透光导电材料。如此实现该显示基板的顶发射发光或显示。
在一些实施例中,第一电极21的材料包括氧化铟锡(ITO)或铟锌氧化物(IZO);电源信号线3的材料包括铝和钛,如钛/铝/钛的叠层。
在一些实施例中,参照图8,为本公开实施例显示基板中信号输入线的 设置示意图;其中,电源信号线3分为多组;每组包括多条电源信号线3,且每组中的多条电源信号线3连接一条信号输入线7。通过设置信号输入线7,能够对每组电源信号线3所连接的发光元件2进行独立点亮控制,从而实现该显示基板的一些特殊点亮效果,如分时驱动每组电源信号线3所连接的发光元件2,或者,驱动每组电源信号线3所连接发光元件2的发光亮度不同。
在一些实施例中,信号输入线7与电源信号线3同层设置且相同材料制备。
本公开实施例中,通过将厚度较厚的电源信号线3设置于厚度较薄的第一电极21的背离基底1的一侧,能够在第一电极21与电源信号线3连接时避免第一电极21出现断线,从而避免该显示基板出现暗点不良问题。
第二方面,基于本公开实施例提供的上述结构的显示基板,本公开实施例还提供一种上述显示基板的制备方法,包括:在基底上制备多个发光元件和多条电源信号线;制备发光元件包括在基底上依次制备第一电极、发光功能层和第二电极;其中,在制备完成第一电极后制备电源信号线;电源信号线的厚度大于第一电极的厚度;电源信号线与第一电极在基底上的正投影至少部分交叠;且电源信号线与第一电极连接。
在一些实施例中,参照图5,显示基板的制备方法包括:在制备完成第一电极21后且在制备电源信号线3之前还包括:制备钝化层4及其中多个第一开口41和多个第二开口42的图形;制备第一电极21包括同时形成第一子部211和第二子部212的图形;第二子部212在基底1上的正投影与电源信号线3交叠;电源信号线3通过第一开口41与第二子部212接触并连接。
在一些实施例中,钝化层4及其中第一开口41和第二开口42的图形通过构图工艺(包括膜层沉积、曝光、显影、刻蚀等步骤)或者蒸镀工艺(如FMM蒸镀工艺,即带有钝化层4及其中第一开口41和第二开口42图 形的金属掩膜板蒸镀)制备。第一电极21的图形和电源信号线3的图形的制备也分别通过构图工艺或者蒸镀工艺制备。第一电极21和电源信号线3分别通过两次工艺先后制备。
在一些实施例中,参照图7,显示基板的制备方法包括:制备第一电极21包括同时形成第一子部211、第二子部212和第三子部213的图形;第三子部213在基底1上的正投影与电源信号线3交叠,电源信号线3与第三子部213接触并连接。
其中,第一电极21的图形和电源信号线3的图形的制备也分别通过构图工艺或者蒸镀工艺制备。第一电极21和电源信号线3分别通过两次工艺先后制备。
第三方面,本公开实施例还提供一种上述显示基板的驱动方法,其中,包括:发光元件的第一电极接收电源信号线上输入的驱动电压信号;发光元件的发光功能层在第一电极和发光元件的第二电极之间形成的电场作用下发光。
在一些实施例中,显示基板的驱动方法包括:通过不同的信号输入线向多组电源信号线同时输入驱动电压信号;从而实现显示基板中所有发光元件的同时发光,如此可实现该显示基板应用于车灯的功能。
在一些实施例中,显示基板的驱动方法包括:在不同时间分别通过不同的信号输入线向各组电源信号线输入驱动电压信号;如此实现各组电源信号线所连接发光元件的分时驱动,从而可实现该显示基板应用于车灯的一些动态发光。如应用于交通工具上的箭头指示灯或者一些闪烁灯。
在一些实施例中,显示基板的驱动方法包括:不同的信号输入线上输入的驱动电压信号大小相同或不同。如此实现各组电源信号线所连接发光元件的不同亮度发光,从而可实现该显示基板应用于显示一些亮度分区不同的静止画面。
在一些实施例中,显示基板的驱动方法也可以是上述几种驱动方法的 组合使用。
第四方面,本公开实施例还提供一种显示装置,其中,包括上述显示基板。
通过采用上述实施例中的显示基板,避免该显示装置出现显示暗点不良问题。
该显示装置可以为:OLED面板、OLED电视、手机、平板电脑、笔记本电脑、显示器、数码相框、导航仪等任何具有显示功能的产品或部件。
第五方面,本公开实施例还提供一种车灯,其中,包括上述显示基板。
通过采用上述实施例中的显示基板,避免该车灯出现暗点不良问题。
该车灯可以为:各种汽车的车灯、高铁动车的车灯、飞机上的照明灯等。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (20)

  1. 一种显示基板,包括:基底;
    多个发光元件;所述发光元件包括第一电极、发光功能层和第二电极;所述发光功能层位于所述第一电极背离所述基底的一侧;所述第二电极位于所述发光功能层背离所述基底的一侧;
    多条电源信号线,每条所述电源信号线连接至少一个所述发光元件;
    其中,所述电源信号线的厚度大于所述第一电极的厚度;
    所述电源信号线位于所述第一电极的背离所述基底的一侧,所述电源信号线与所述第一电极在所述基底上的正投影至少部分交叠;
    所述电源信号线与所述第一电极连接。
  2. 根据权利要求1所述的显示基板,其中,所述多条电源信号线分别沿第一方向和第二方向延伸并连接成网格;
    所述第一电极包括第一子部和第二子部;所述第一子部与所述第二子部连接;
    所述第一子部为块状,所述第一子部在所述基底上的正投影位于所述网格内;
    所述第二子部为沿所述网格的所述第一方向和/或所述第二方向延伸的条状,且所述第二子部在所述基底上的正投影与所述电源信号线至少部分交叠。
  3. 根据权利要求1所述的显示基板,其中,所述多条电源信号线分别沿第一方向和第二方向延伸并连接成网格;
    所述第一电极包括第一子部、第二子部和第三子部;所述第一子部、所述第二子部和所述第三子部依次连接;
    所述第一子部和所述第二子部在所述基底上的正投影位于所述网格内;
    所述第一子部为块状;所述第二子部为沿平行于所述网格的所述第一方向和/或所述第二方向延伸的条状,且所述第二子部围绕在所述第一子部的***;
    所述第三子部在所述基底上的正投影与所述电源信号线交叠,且所述第三子部与所述电源信号线接触并连接。
  4. 根据权利要求2或3所述的显示基板,其中,所述第二子部沿所述第一方向和/或所述第二方向的延伸长度至少为所述网格的1/4周长。
  5. 根据权利要求2所述的显示基板,其中,还包括钝化层,位于所述第一电极与所述电源信号线之间;
    所述钝化层中开设有多个第一开口和多个第二开口;
    所述第一开口位于所述第二子部与所述电源信号线的正投影交叠区域,所述电源信号线通过所述第一开口与所述第二子部接触并连接;
    所述第二开口在所述基底上的正投影与所述第一子部在所述基底上的正投影交叠。
  6. 根据权利要求5所述的显示基板,其中,所述电源信号线的厚度大于所述钝化层的厚度。
  7. 根据权利要求1-3任意一项所述的显示基板,其中,所述电源信号线分为多组;
    每组包括多条所述电源信号线,且每组中的多条所述电源信号线连接一条信号输入线。
  8. 根据权利要求2或3所述的显示基板,其中,还包括像素界定层,位于所述电源信号线的背离所述基底的一侧;
    所述像素界定层中开设有多个第三开口,所述第三开口在所述基底上的正投影与所述第一子部在所述基底上的正投影交叠。
  9. 根据权利要求8所述的显示基板,其中,所述多个发光元件的所述发光功能层连接为一体;
    所述多个发光元件的所述第二电极连接为一体;
    所述发光功能层和所述第二电极还延伸至所述像素界定层的背离所述基底的一侧。
  10. 根据权利要求9所述的显示基板,其中,还包括封装层,位于所述第二电极的背离所述基底的一侧;
    所述封装层包括第一无机封装层、有机封装层和第二无机封装层;所述第一无机封装层、所述有机封装层和所述第二无机封装层依次远离所述基底叠置。
  11. 根据权利要求1所述的显示基板,其中,所述第二电极采用不透光导电材料;
    所述第一电极采用透光导电材料。
  12. 根据权利要求1或11所述的显示基板,其中,所述第一电极的厚度≤2000埃;
    所述电源信号线的厚度范围为2~3μm。
  13. 根据权利要求12所述的显示基板,其中,所述第一电极的材料包括氧化铟锡或铟锌氧化物;
    所述电源信号线的材料包括铝和钛。
  14. 一种显示装置,其中,包括权利要求1-13任意一项所述的显示基板。
  15. 一种车灯,其中,包括权利要求1-13任意一项所述的显示基板。
  16. 一种显示基板的制备方法,包括:
    在基底上制备多个发光元件和多条电源信号线;
    制备所述发光元件包括在所述基底上依次制备第一电极、发光功能层和第二电极;
    其中,在制备完成所述第一电极后制备所述电源信号线;所述电源信号线的厚度大于所述第一电极的厚度;所述电源信号线与所述第一电极在所述基底上的正投影至少部分交叠;且所述电源信号线与所述第一电极连接。
  17. 根据权利要求16所述的显示基板的制备方法,其中,所述显示基板为权利要求5中所述的显示基板;
    所述制备方法包括:在制备完成所述第一电极后且在制备所述电源信号线之前还包括:制备钝化层及其中多个第一开口和多个第二开口的图形;
    制备所述第一电极包括同时形成第一子部和第二子部的图形;
    所述第二子部在所述基底上的正投影与所述电源信号线交叠;
    所述电源信号线通过所述第一开口与所述第二子部接触并连接。
  18. 根据权利要求16所述的显示基板的制备方法,其中,所述显示基板为权利要求3中所述的显示基板;
    所述制备方法包括:制备所述第一电极包括同时形成第一子部、第二子部和第三子部的图形;
    所述第三子部在所述基底上的正投影与所述电源信号线交叠,所述电源信号线与所述第三子部接触并连接。
  19. 一种显示基板的驱动方法,其中,包括:发光元件的第一电极接收电源信号线上输入的驱动电压信号;
    所述发光元件的发光功能层在所述第一电极和所述发光元件的第二电极之间形成的电场作用下发光。
  20. 根据权利要求19所述的显示基板的驱动方法,其中,所述显示基板为权利要求7中所述的显示基板;
    所述驱动方法包括:通过不同的信号输入线向多组所述电源信号线同时输入驱动电压信号;
    或者,在不同时间分别通过不同的信号输入线向各组所述电源信号线输入驱动电压信号;
    不同的所述信号输入线上输入的所述驱动电压信号大小相同或不同。
PCT/CN2023/077074 2022-04-13 2023-02-20 显示基板及其制备方法和驱动方法、显示装置、车灯 WO2023197746A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210388486.5A CN116981307A (zh) 2022-04-13 2022-04-13 显示基板及其制备方法和驱动方法、显示装置、车灯
CN202210388486.5 2022-04-13

Publications (2)

Publication Number Publication Date
WO2023197746A1 true WO2023197746A1 (zh) 2023-10-19
WO2023197746A9 WO2023197746A9 (zh) 2024-01-25

Family

ID=88328806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077074 WO2023197746A1 (zh) 2022-04-13 2023-02-20 显示基板及其制备方法和驱动方法、显示装置、车灯

Country Status (2)

Country Link
CN (1) CN116981307A (zh)
WO (1) WO2023197746A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463646A (zh) * 2014-05-12 2017-02-22 乐金显示有限公司 有机发光元件
CN108561762A (zh) * 2018-01-04 2018-09-21 京东方科技集团股份有限公司 照明面板及其制造方法、照明装置及其控制方法
US20190019980A1 (en) * 2017-07-11 2019-01-17 Lg Display Co., Ltd. Lighting apparatus using organic light emitting diode and manufacturing method thereof
CN114551550A (zh) * 2022-02-23 2022-05-27 京东方科技集团股份有限公司 发光基板、发光装置及车辆
CN217983349U (zh) * 2022-04-13 2022-12-06 京东方科技集团股份有限公司 显示基板、显示装置、车灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463646A (zh) * 2014-05-12 2017-02-22 乐金显示有限公司 有机发光元件
US20190019980A1 (en) * 2017-07-11 2019-01-17 Lg Display Co., Ltd. Lighting apparatus using organic light emitting diode and manufacturing method thereof
CN108561762A (zh) * 2018-01-04 2018-09-21 京东方科技集团股份有限公司 照明面板及其制造方法、照明装置及其控制方法
CN114551550A (zh) * 2022-02-23 2022-05-27 京东方科技集团股份有限公司 发光基板、发光装置及车辆
CN217983349U (zh) * 2022-04-13 2022-12-06 京东方科技集团股份有限公司 显示基板、显示装置、车灯

Also Published As

Publication number Publication date
CN116981307A (zh) 2023-10-31
WO2023197746A9 (zh) 2024-01-25

Similar Documents

Publication Publication Date Title
US9818979B2 (en) Organic electroluminescence display device and method of manufacturing organic electroluminescence display device
CN105514138B (zh) 显示装置及其制造方法
US7663314B2 (en) Organic electroluminescence display panel and method for sealing the same
CN112038373B (zh) 一种显示面板及显示装置
KR100811473B1 (ko) 전계발광패널 및 그를 포함하는 광원장치
JP3993129B2 (ja) 有機電界発光素子
US20190006443A1 (en) Oled display device and method of manufacturing the same
KR102357269B1 (ko) 유기발광 표시장치 및 그 제조방법
US9825109B2 (en) Display device
US9590202B2 (en) Organic light emitting display device and method of manufacturing the same
US20090302753A1 (en) Organic electro-luminescence display
US10872948B2 (en) Electroluminescent display device
US20120080668A1 (en) Organic el lighting device and method of manufacturing the same
JP3918558B2 (ja) 有機el表示装置
KR20160072406A (ko) 유기 발광 디스플레이 패널
US6870197B2 (en) Dual panel type organic electroluminescent display device and method of fabricating the same
US10797127B2 (en) Electroluminescent display device
KR20230153321A (ko) 유기발광 디스플레이 장치
CN102208432B (zh) 透射式彩色有机el显示装置
CN217983349U (zh) 显示基板、显示装置、车灯
CN113224254A (zh) 显示面板及其制备方法、显示装置
TWI423718B (zh) 有機電致發光裝置及具有此有機電致發光裝置的電子裝置
JPH0982476A (ja) 有機電界発光素子
WO2023197746A1 (zh) 显示基板及其制备方法和驱动方法、显示装置、车灯
TWI489625B (zh) 有機發光顯示面板及其製作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18280679

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787394

Country of ref document: EP

Kind code of ref document: A1