WO2023195434A1 - 蓄電素子及び蓄電装置 - Google Patents

蓄電素子及び蓄電装置 Download PDF

Info

Publication number
WO2023195434A1
WO2023195434A1 PCT/JP2023/013750 JP2023013750W WO2023195434A1 WO 2023195434 A1 WO2023195434 A1 WO 2023195434A1 JP 2023013750 W JP2023013750 W JP 2023013750W WO 2023195434 A1 WO2023195434 A1 WO 2023195434A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
negative electrode
power storage
Prior art date
Application number
PCT/JP2023/013750
Other languages
English (en)
French (fr)
Inventor
大輔 遠藤
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2023195434A1 publication Critical patent/WO2023195434A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage element and a power storage device.
  • Non-aqueous electrolyte secondary batteries typified by lithium ion secondary batteries
  • the non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes and a separator, a non-aqueous electrolyte, and a container housing the electrode body and the non-aqueous electrolyte. It is configured to charge and discharge by transferring charge transporting ions.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as nonaqueous electrolyte storage devices other than nonaqueous electrolyte secondary batteries.
  • Patent Document 1 discloses a nonaqueous electrolyte secondary battery using lithium iron phosphate as a positive electrode active material and graphite or the like as a negative electrode active material.
  • Non-aqueous electrolyte secondary batteries that use lithium iron phosphate as the positive electrode active material and graphite as the negative electrode active material have a characteristic (voltage flatness) that changes in voltage due to changes in the state of charge are flat over a wide range of the state of charge. ) is excellent.
  • a characteristic voltage flatness
  • charging and discharging reactions are likely to occur unevenly within the electrode body, such as when the distance between the electrodes is uneven.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a power storage element and a power storage device that can suppress a decrease in capacity retention rate during charge/discharge cycles.
  • a power storage element includes an electrode body in which a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer are laminated, and a sealable container for accommodating the electrode body, The electrode body is in a state where it is pressed in the stacking direction of the positive electrode and the negative electrode, and the positive electrode active material layer has a differential pore volume of 0.0030 cm 3 /(g ⁇ nm) or more at a pore diameter of 50 nm. , the difference between the open circuit voltage at 30% SOC and the open circuit voltage at 70% SOC is 0.2 V or less.
  • a power storage element includes an electrode body in which a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer are laminated, and a sealable container for accommodating the electrode body.
  • the electrode body is in a state of being pressed in the stacking direction of the positive electrode and the negative electrode, and the positive electrode active material layer has a differential pore volume of 0.0030 cm 3 /(g ⁇ nm) or more at a pore diameter of 50 nm.
  • the above-mentioned positive electrode active material contains a compound represented by the following formula 1 or lithium manganate, and the above-mentioned negative electrode active material contains graphite or lithium titanate. LiFe x Mn (1-x) PO 4 (0 ⁇ x ⁇ 1) ...1
  • a power storage device includes two or more power storage elements, and includes one or more power storage elements according to one aspect of the present invention.
  • the power storage element and power storage device can suppress a decrease in capacity retention rate during charge/discharge cycles.
  • FIG. 1 is a graph showing an example of a discharge curve of a power storage element for explaining voltage flatness.
  • FIG. 2 is a transparent perspective view showing one embodiment of a power storage element.
  • FIG. 3 is a schematic diagram showing an embodiment of a power storage device configured by collecting a plurality of power storage elements.
  • FIG. 4 shows differential pore volume distribution curves of the positive electrode active material layers of Example 1 and Comparative Example 3.
  • One embodiment of the present invention provides the following aspects.
  • a power storage element includes an electrode body in which a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer are laminated, and a sealable container for accommodating the electrode body. , the electrode body is pressed in the lamination direction of the positive electrode and the negative electrode, and the positive electrode active material layer has a differential pore volume of 0.0030 cm 3 /(g ⁇ nm) or more at a pore diameter of 50 nm. Yes, the difference between the open circuit voltage at 30% SOC and the open circuit voltage at 70% SOC is 0.2V or less.
  • the electricity storage element according to item 1 above can suppress a decrease in capacity retention rate during charge/discharge cycles.
  • a power storage element includes an electrode body in which a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer are laminated, and a sealable container for accommodating the electrode body. , the electrode body is in a state of being pressed in the stacking direction of the positive electrode and the negative electrode, and the positive electrode active material layer has a differential pore volume of 0.0030 cm 3 /(g ⁇ nm) at a pore diameter of 50 nm.
  • the positive electrode active material contains a compound represented by the following formula 1 or lithium manganate
  • the negative electrode active material contains graphite or lithium titanate. LiFe x Mn (1-x) PO 4 (0 ⁇ x ⁇ 1) ...1
  • the electricity storage element according to item 2 above can suppress a decrease in capacity retention rate during charge/discharge cycles.
  • the inside of the container may be in a negative pressure state.
  • a power storage device includes two or more power storage elements, and includes one or more power storage elements described in any one of Items 1 to 3 above.
  • a power storage element includes an electrode body in which a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer are laminated, and a sealable container for accommodating the electrode body, The electrode body is in a state where it is pressed in the stacking direction of the positive electrode and the negative electrode, and the positive electrode active material layer has a differential pore volume of 0.0030 cm 3 /(g ⁇ nm) or more at a pore diameter of 50 nm. , the difference between the open circuit voltage at 30% SOC and the open circuit voltage at 70% SOC is 0.2 V or less.
  • the power storage element can suppress a decrease in capacity retention rate during charge/discharge cycles. The reason for this is presumed to be as follows.
  • FIG. 1 shows an example of a discharge curve of a power storage element with the horizontal axis as SOC (%) and the vertical axis as battery voltage (V).
  • the battery voltage (V) is the closed circuit voltage (CCV) of the storage element when constant current discharge is performed at 25° C. with a discharge current of 0.1C.
  • LFP/Gr is a lithium ion secondary battery using lithium iron phosphate (LFP) as a positive electrode and graphite (Gr) as a negative electrode
  • NCM/Gr is a composite oxide containing Ni, Co, and Mn. It is a lithium ion secondary battery that uses a composite oxide (NCA) containing Ni, Co and Al as a positive electrode and graphite (Gr) as a negative electrode. This is a lithium ion secondary battery that uses a lithium ion battery as a negative electrode.
  • the distance between the two electrodes is easily equalized by pressing the electrode body in the stacking direction of the positive electrode and the negative electrode, and the pore diameter of the positive electrode active material layer is 50 nm. Since the differential pore volume is 0.0030 cm 3 /(g ⁇ nm) or more, smooth and uniform movement of charge transport ions such as lithium ions is promoted within the positive electrode active material layer. Therefore, it is presumed that the charging and discharging reactions within the electrode body are less likely to be biased, and as a result, it is possible to suppress a decrease in the capacity retention rate during charging and discharging cycles.
  • a power storage element includes an electrode body in which a positive electrode having a positive electrode active material layer and a negative electrode having a negative electrode active material layer are laminated, and a sealable container for accommodating the electrode body.
  • the electrode body is in a state of being pressed in the stacking direction of the positive electrode and the negative electrode, and the positive electrode active material layer has a differential pore volume of 0.0030 cm 3 /(g ⁇ nm) or more at a pore diameter of 50 nm.
  • the above-mentioned positive electrode active material contains a compound represented by the following formula 1 or lithium manganate, and the above-mentioned negative electrode active material contains graphite or lithium titanate. LiFe x Mn (1-x) PO 4 (0 ⁇ x ⁇ 1) ...1
  • the positive electrode active material contains the compound represented by the above formula 1 or lithium manganate, and the negative electrode active material contains graphite or lithium titanate, the change in voltage due to the change in the state of charge is flat. It has voltage flatness.
  • the distance between the two electrodes is easily equalized, and the differential pore volume of the positive electrode active material layer at a pore diameter of 50 nm is 0.0030 cm 3 / (g ⁇ nm) or more, smooth and uniform movement of charge transport ions such as lithium ions is promoted within the positive electrode active material layer. Therefore, the charging and discharging reactions within the electrode body are less likely to be biased, and as a result, it is possible to suppress a decrease in the capacity retention rate during charging and discharging cycles.
  • the interior of the container may be under negative pressure. In this way, by having the inside of the container in a negative pressure state, the distance between both electrodes can be more easily equalized.
  • the lamination direction of the positive electrode and the negative electrode means the direction in which the positive electrode and the negative electrode are laminated
  • the “state of being pressed in the lamination direction” means the direction in which the positive electrode and the negative electrode are laminated
  • the term “state of being pressed in the lamination direction” means the direction in which the positive electrode and the negative electrode are laminated.
  • a “negative pressure state” means a state in which the pressure inside the container housing the electrode body is lower than the pressure outside the container.
  • SOC is an abbreviation for State of Charge, and represents the state of charge of a power storage element as a ratio of the remaining capacity at that time to the capacity in a fully charged state, and a fully charged state is expressed as SOC 100%.
  • the “fully charged state” refers to a state in which the electricity storage element is charged to the upper limit voltage using recommended or designated charging conditions.
  • the “difference between the open circuit voltage at SOC 30% and the open circuit voltage at SOC 70%” is calculated by subjecting the storage element to constant current discharge at 25° C. with a discharge current of 0.1 C to reach SOC 30% and SOC 70%. It refers to the absolute value of the difference in open circuit voltage (OCV) measured after 30 minutes without applying any current.
  • the differential pore volume distribution is evaluated by calculation by the BJH method using the isotherm on the desorption side, and the differential pore volume at a pore diameter of 50 nm is determined.
  • the above-described differential pore volume is measured using a gas adsorption amount measuring device "autosorb iQ" manufactured by Quantachrome and data analysis software "ASiQwin”.
  • a power storage device includes two or more power storage elements, and includes one or more power storage elements according to the above-described one aspect of the present invention. Since the power storage device includes the power storage element according to the above-described one aspect of the present invention, it is possible to suppress a decrease in capacity retention rate during charge/discharge cycles.
  • a configuration of a power storage element, a configuration of a power storage device, a method for manufacturing a power storage element, and other embodiments of the present invention will be described in detail. Note that the name of each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
  • a power storage element includes an electrode body having a positive electrode, a negative electrode, and a separator, a non-aqueous electrolyte, and a sealable container for accommodating the electrode body and the non-aqueous electrolyte.
  • the electrode body has a structure in which a plurality of positive electrodes and a plurality of negative electrodes are stacked with a separator in between. Examples of the structure of the electrode body include a laminated type, or a wound type in which a positive electrode and a negative electrode are laminated with a separator interposed in between and wound. The electrode body is in a state where it is pressed in the stacking direction of the positive electrode and the negative electrode.
  • the non-aqueous electrolyte exists in the positive electrode, negative electrode, and separator.
  • a non-aqueous electrolyte secondary battery (hereinafter also simply referred to as a "secondary battery”) will be described.
  • the upper limit of the difference between the open circuit voltage at 30% SOC and the open circuit voltage at 70% SOC is 0.2V, more preferably 0.15V, and even more preferably 0.10V.
  • the lower limit of the difference between the open circuit voltage at 30% SOC and the open circuit voltage at 70% SOC is not particularly limited, but may be, for example, 0.01V or 0.05V.
  • the difference between the open circuit voltage at 30% SOC and the open circuit voltage at 70% SOC may be greater than or equal to any of the above lower limits and below any of the above upper limits.
  • the positive electrode includes a positive electrode base material and a positive electrode active material layer disposed on the positive electrode base material directly or via an intermediate layer.
  • the positive electrode base material has electrical conductivity. Whether or not it has “conductivity” is determined by using a volume resistivity of 10 7 ⁇ cm as a threshold value, which is measured in accordance with JIS-H-0505 (1975).
  • the material of the positive electrode base material metals such as aluminum, titanium, tantalum, stainless steel, or alloys thereof are used. Among these, aluminum or aluminum alloy is preferred from the viewpoint of potential resistance, high conductivity, and cost.
  • Examples of the positive electrode base material include foil, vapor deposited film, mesh, porous material, etc., and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085, A3003, A1N30, etc. specified in JIS-H-4000 (2014) or JIS-H-4160 (2006).
  • the average thickness of the positive electrode base material is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the intermediate layer is a layer disposed between the positive electrode base material and the positive electrode active material layer.
  • the intermediate layer reduces contact resistance between the positive electrode base material and the positive electrode active material layer by containing a conductive agent such as carbon particles.
  • the structure of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
  • the positive electrode active material includes a compound represented by the following formula 1 or lithium manganate.
  • the positive electrode active material may contain both the compound represented by Formula 1 above and lithium manganate. Further, the positive electrode active material may contain only one type of compound represented by the above formula 1, or two or more types of the above formula 1 having different molar ratios (x) of Fe to the sum of moles of Fe and Mn. It may contain the compound represented by.
  • the compound represented by the above formula 1 or lithium manganate may be partially substituted with atoms or anion species of other elements, or may be coated with other materials.
  • the lower limit of the total content of the compound represented by Formula 1 above and lithium manganate for all positive electrode active materials is preferably 70% by mass, more preferably 80% by mass, and even more preferably 90% by mass.
  • the total content is equal to or greater than the lower limit, it is easy to reduce the difference between the open circuit voltage at 30% SOC and the open circuit voltage at 70% SOC.
  • the total content of the compound represented by Formula 1 and lithium manganate in all positive electrode active materials may be 100% by mass.
  • the positive electrode active material preferably contains lithium iron phosphate (LiFePO 4 ) as a compound represented by Formula 1 above.
  • the lower limit of the content of lithium iron phosphate for all positive electrode active materials is preferably 70% by mass, more preferably 80% by mass, and even more preferably 90% by mass.
  • the content of lithium iron phosphate in all positive electrode active materials may be 100% by mass.
  • the positive electrode active material is usually particles (powder).
  • the average particle size of the positive electrode active material is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. By setting the average particle size of the positive electrode active material to be equal to or larger than the above lower limit, manufacturing or handling of the positive electrode active material becomes easier. By setting the average particle size of the positive electrode active material to be equal to or less than the above upper limit, the electronic conductivity of the positive electrode active material layer is improved. In addition, when using a composite of a positive electrode active material and another material, let the average particle diameter of the composite be the average particle diameter of the positive electrode active material.
  • Average particle size is based on the particle size distribution measured by laser diffraction/scattering method on a diluted solution of particles diluted with a solvent, in accordance with JIS-Z-8825 (2013). -2 (2001), meaning the value at which the volume-based cumulative distribution calculated in accordance with 2001 is 50%.
  • a pulverizer, classifier, etc. are used to obtain powder with a predetermined particle size.
  • the pulverization method include methods using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling jet mill, a sieve, and the like.
  • wet pulverization in which water or an organic solvent such as hexane is present can also be used.
  • a sieve, a wind classifier, etc. may be used, both dry and wet, as necessary.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less.
  • the conductive agent is not particularly limited as long as it is a material that has conductivity.
  • Examples of such conductive agents include carbonaceous materials, metals, conductive ceramics, and the like.
  • Examples of the carbonaceous material include graphite, non-graphitic carbon, graphene-based carbon, and the like.
  • Examples of non-graphitic carbon include carbon nanofibers, pitch-based carbon fibers, carbon black, and the like.
  • Examples of carbon black include furnace black, acetylene black, Ketjen black, and the like.
  • Examples of graphene-based carbon include graphene, carbon nanotubes (CNT), and fullerene.
  • Examples of the shape of the conductive agent include powder, fiber, and the like.
  • the conductive agent one type of these materials may be used alone, or two or more types may be used in combination. Further, these materials may be used in combination.
  • a composite material of carbon black and CNT may be used.
  • carbon black is preferred from the viewpoint of electronic conductivity and coatability, and acetylene black is particularly preferred.
  • the content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • binders include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacrylic, polyimide, etc.; ethylene-propylene-diene rubber (EPDM), sulfone.
  • EPDM ethylene-propylene-diene rubber
  • examples include elastomers such as chemically modified EPDM, styrene butadiene rubber (SBR), and fluororubber; polysaccharide polymers, and the like.
  • the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • the thickener examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • this functional group may be deactivated in advance by methylation or the like.
  • the filler is not particularly limited.
  • Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate, magnesium hydroxide, calcium hydroxide, and hydroxide.
  • Hydroxides such as aluminum, carbonates such as calcium carbonate, poorly soluble ionic crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Examples include substances derived from mineral resources such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • the positive electrode active material layer is made of typical nonmetallic elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, etc.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W, and other transition metal elements are used as positive electrode active materials, conductive agents, binders, thickeners, and fillers. It may be contained as a component other than the above.
  • the lower limit of the differential pore volume at a pore diameter of 50 nm in the positive electrode active material layer is 0.0030 cm 3 /(g ⁇ nm), preferably 0.0040 cm 3 /(g ⁇ nm), and 0.0050 cm 3 /(g ⁇ nm) is more preferable.
  • the differential pore volume is equal to or greater than the lower limit, the nonaqueous electrolyte easily permeates into the positive electrode active material layer, so that the movement of charge transport ions such as lithium ions in the positive electrode active material layer is likely to be uniform.
  • the upper limit of the differential pore volume is preferably 0.0100 cm 3 /(g ⁇ nm), more preferably 0.0080 cm 3 /(g ⁇ nm), from the viewpoint of ease of production. Since the differential pore volume is difficult to change due to charging and discharging, for example, the positive electrode active material layer is obtained by disassembling and removing a power storage device manufactured based on the positive electrode active material after charging and discharging the power storage device. It can be the value measured against. Note that the differential pore volume of the positive electrode active material layer at a pore diameter of 50 nm can be adjusted, for example, by changing the manufacturing conditions when producing the precursor of the positive electrode active material, or by changing the firing temperature during producing the active material. .
  • the positive electrode active material layer has at least one peak in the pore diameter range of 25 nm or more and 75 nm or less, and the maximum peak is in the pore diameter range of 25 nm or more and 75 nm or less. It is preferable to have it within the range.
  • the positive electrode active material layer should have at least one peak in the pore diameter range of 45 nm or more and 55 nm or less, and have the largest peak in the pore diameter range of 45 nm or more and 55 nm or less, in the differential pore volume distribution curve. is more preferable.
  • the positive electrode active material layer has at least one peak in the above range in the differential pore volume distribution curve, and has the maximum peak in the above range, so that the positive electrode active material layer of the non-aqueous electrolyte penetration and movement of charge transport ions such as lithium ions in the positive electrode active material layer are likely to be uniform.
  • the lower limit of the mass per unit area of the positive electrode active material layer is preferably 1 mg/cm 2 , more preferably 5 mg/cm 2 , and even more preferably 10 mg/cm 2 .
  • the upper limit of the mass per unit area of the positive electrode active material layer is preferably 30 mg/cm 2 , more preferably 25 mg/cm 2 , and even more preferably 20 mg/cm 2 .
  • charge transport ions such as lithium ions are likely to be uniformly diffused.
  • mass per unit area of the positive electrode active material layer refers to the solid content equivalent mass of the positive electrode active material layer, which is the mass of the positive electrode active material layer disposed directly or via an intermediate layer on the surface of the positive electrode base material. Means the value divided by the area of the region. When the positive electrode active material layer is arranged on both sides of the positive electrode base material, the value is determined from the mass and area per unit area of the positive electrode active material layer on one surface of the positive electrode base material.
  • the negative electrode includes a negative electrode base material and a negative electrode active material layer disposed on the negative electrode base material directly or via an intermediate layer.
  • the configuration of the intermediate layer is not particularly limited, and can be selected from, for example, the configurations exemplified for the positive electrode.
  • the negative electrode base material has electrical conductivity.
  • metals such as copper, nickel, stainless steel, nickel-plated steel, aluminum, alloys thereof, carbonaceous materials, etc. are used. Among these, copper or copper alloy is preferred.
  • the negative electrode base material include foil, vapor deposited film, mesh, porous material, etc. Foil is preferred from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode base material. Examples of copper foil include rolled copper foil, electrolytic copper foil, and the like.
  • the average thickness of the negative electrode base material is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, as necessary.
  • Optional components such as a conductive agent, a binder, a thickener, and a filler can be selected from the materials exemplified for the positive electrode.
  • the negative electrode active material layer is made of typical nonmetallic elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, etc. Typical metal elements of It may be contained as a component other than the adhesive and filler.
  • the negative electrode active material includes graphite or lithium titanate.
  • graphite refers to a carbon material whose average lattice spacing (d 002 ) of the (002) plane is 0.33 nm or more and less than 0.34 nm, as determined by X-ray diffraction before charging and discharging or in a discharge state. means.
  • Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferred from the viewpoint of being able to obtain a material with stable physical properties.
  • the "discharged state" of the negative electrode means a state in which the negative electrode active material is discharged such that charge transport ions such as lithium ions that can be intercalated and released during charging and discharging are sufficiently released.
  • the open circuit voltage is 0.7 V or more.
  • the lower limit of the content of graphite or lithium titanate for all negative electrode active materials is preferably 70% by mass, more preferably 80% by mass, and even more preferably 90% by mass.
  • the content of graphite or lithium titanate is at least the above lower limit, it is easy to reduce the difference between the open circuit voltage at 30% SOC and the open circuit voltage at 70% SOC.
  • the content of graphite or lithium titanate in all negative electrode active materials may be 100% by mass.
  • the negative electrode active material is usually particles (powder).
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the average particle size of the negative electrode active material may be 1 ⁇ m or more and 100 ⁇ m or less.
  • a pulverizer, classifier, etc. are used to obtain powder with a predetermined particle size.
  • the pulverization method and classification method can be selected from, for example, the methods exemplified for the positive electrode.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less.
  • the lower limit of the mass per unit area of the negative electrode active material layer is preferably 1 mg/cm 2 , more preferably 3 mg/cm 2 , and even more preferably 5 mg/cm 2 .
  • the upper limit of the mass per unit area of the negative electrode active material layer is preferably 20 mg/cm 2 , more preferably 15 mg/cm 2 , and even more preferably 12 mg/cm 2 .
  • charge transport ions such as lithium ions are likely to be uniformly diffused.
  • mass per unit area of the negative electrode active material layer refers to the solid content equivalent mass of the negative electrode active material layer, which is the mass of the negative electrode active material layer disposed directly or through an intermediate layer on the surface of the negative electrode base material. Means the value divided by the area of the region. When the negative electrode active material layers are arranged on both sides of the negative electrode base material, the value is determined from the mass and area per unit area of the negative electrode active material layer on one surface of the negative electrode base material.
  • the separator can be appropriately selected from known separators.
  • a separator consisting of only a base material layer, a separator in which a heat resistant layer containing heat resistant particles and a binder is formed on one or both surfaces of the base material layer, etc.
  • Examples of the shape of the base material layer of the separator include woven fabric, nonwoven fabric, and porous resin film. Among these shapes, a porous resin film is preferred from the viewpoint of strength, and a nonwoven fabric is preferred from the viewpoint of liquid retention of the nonaqueous electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferred from the viewpoint of shutdown function, and polyimide, aramid, etc. are preferred from the viewpoint of oxidative decomposition resistance.
  • a composite material of these resins may be used as the base material layer of the separator.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when the temperature is raised from room temperature to 500°C in an air atmosphere of 1 atm, and the mass loss when the temperature is raised from room temperature to 800°C. is more preferably 5% or less.
  • Inorganic compounds are examples of materials whose mass loss is less than a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride.
  • carbonates such as calcium carbonate
  • sulfates such as barium sulfate
  • poorly soluble ionic crystals such as calcium fluoride, barium fluoride, barium titanate
  • covalent crystals such as silicon and diamond
  • talc montmorillonite, boehmite
  • examples include substances derived from mineral resources such as zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • these substances may be used alone or in combination, or two or more types may be used in combination.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the electricity storage element.
  • the porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • porosity is a value based on volume, and means a value measured with a mercury porosimeter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used as the separator.
  • the polymer include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride, and the like.
  • Use of polymer gel has the effect of suppressing liquid leakage.
  • a separator a porous resin film or nonwoven fabric as described above and a polymer gel may be used in combination.
  • Nonaqueous electrolyte The non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes.
  • a non-aqueous electrolyte may be used as the non-aqueous electrolyte.
  • the nonaqueous electrolyte includes a nonaqueous solvent and an electrolyte salt dissolved in the nonaqueous solvent.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic esters, phosphoric esters, sulfonic esters, ethers, amides, and nitriles.
  • compounds in which some of the hydrogen atoms contained in these compounds are replaced with halogens may be used.
  • cyclic carbonates examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate, and the like. Among these, EC is preferred.
  • chain carbonates examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like. Among these, EMC is preferred.
  • the nonaqueous solvent it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a cyclic carbonate and a chain carbonate together.
  • a cyclic carbonate it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte.
  • chain carbonate By using chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • electrolyte salts include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts, and the like. Among these, lithium salts are preferred.
  • lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , and LiN(SO 2 F) 2 , lithium bis(oxalate) borate (LiBOB), and lithium difluorooxalate borate (LiFOB).
  • inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , and LiN(SO 2 F) 2
  • LiBOB lithium bis(oxalate) borate
  • LiFOB lithium difluorooxalate borate
  • lithium oxalate salts such as lithium bis(oxalate) difluorophosphate (LiFOP), LiSO 3 CF 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN(SO 2 CF 3 )
  • lithium salts having halogenated hydrocarbon groups such as (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 and LiC (SO 2 C 2 F 5 ) 3 .
  • inorganic lithium salts are preferred, and LiPF 6 is more preferred.
  • the content of the electrolyte salt in the nonaqueous electrolyte is preferably 0.1 mol/dm 3 or more and 2.5 mol/dm 3 or less, and 0.3 mol/dm 3 or more and 2.0 mol/dm at 20° C. and 1 atmosphere. It is more preferably 3 or less, even more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less.
  • the non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt.
  • additives include halogenated carbonate esters such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC); lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), and lithium bis(oxalate).
  • Oxalates such as difluorophosphate (LiFOP); Imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI); biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene , t-amylbenzene, diphenyl ether, dibenzofuran and other aromatic compounds; 2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene and other aromatic compounds such as partial halides; 2,4-difluoroanisole, 2 , 5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and other halogenated anisole compounds; vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, succinic an
  • the content of the additive contained in the nonaqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more and 7% by mass or less based on the mass of the entire nonaqueous electrolyte. It is more preferable if it is present, more preferably from 0.2% by mass to 5% by mass, and particularly preferably from 0.3% by mass to 3% by mass.
  • a solid electrolyte may be used as the non-aqueous electrolyte, or a non-aqueous electrolyte and a solid electrolyte may be used together.
  • the solid electrolyte can be selected from any material that has ionic conductivity, such as lithium, sodium, and calcium, and is solid at room temperature (for example, 15° C. to 25° C.).
  • Examples of the solid electrolyte include sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, polymer solid electrolytes, and the like.
  • Examples of the sulfide solid electrolyte in the case of a lithium ion secondary battery include Li 2 SP 2 S 5 , LiI-Li 2 SP 2 S 5 , Li 10 Ge-P 2 S 12 , and the like.
  • FIG. 2 shows a power storage element 1 (non-aqueous electrolyte secondary battery) as an example of a square battery. Note that this figure is a perspective view of the inside of the container.
  • An electrode body 2 having a positive electrode and a negative electrode wound together with a separator in between is housed in a rectangular container 3. Further, the container 3 is sealed with the non-aqueous electrolyte added thereto.
  • a known metal container, resin container, or the like that is commonly used as a container for a power storage element can be used.
  • the container 3 is preferably a thin and flexible container, such as a container made of a composite film in which a metal layer and a resin film layer are laminated, from the viewpoint of making it easier to press the electrode body 2 by the method described later.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 41.
  • the negative electrode is electrically connected to the negative electrode terminal 5 via a negative electrode lead 51.
  • the axial direction of the winding of the electrode body 2 in the power storage element 1 is the X direction
  • the thickness direction of the power storage element 1 is the Y direction
  • the direction perpendicular to the axis direction (X direction) and the thickness direction (Y direction) is shown.
  • the direction perpendicular to is indicated as the Z direction. Note that the Z direction is parallel to the flat portion (that is, the surface of the flat portion) of the electrode body 2 in the power storage element 1, and coincides with the winding direction of the electrode body 2 on the flat portion.
  • the thickness direction of power storage element 1 coincides with the thickness direction of electrode body 2.
  • the thickness direction of the electrode body 2 corresponds to the lamination direction of the positive electrode, negative electrode, and separator, and also corresponds to the direction perpendicular to the surfaces of the positive electrode, negative electrode, and separator.
  • the electrode body 2 of the power storage element 1 is in a state where it is pressed in the stacking direction (Y direction) of the positive electrode and the negative electrode.
  • a part of the electrode body 2 (for example, a pair of curved surfaces at both ends of the flat part of the electrode body 2) may not be pressed.
  • the distance between both electrodes can be easily equalized, and as a result, lithium ions, etc. Smooth and uniform movement of charge transport ions is promoted.
  • a method of bringing the inside of the container 3 into a negative pressure state (closing the container 3 while maintaining the pressure inside the container 3 at a negative pressure) is preferable.
  • the container 3 is deformed (concave in the direction in which the positive electrode and the negative electrode are stacked) and presses the electrode body 2 in the direction in which the positive electrode and the negative electrode are stacked.
  • the distance between the positive electrode and the negative electrode in the electrode body 2 can be easily equalized.
  • the upper limit of the ratio of the minimum width in the stacking direction (minimum width in the Y direction) of the internal space of the container 3 to the thickness in the stacking direction (thickness in the Y direction) of the electrode body 2 is preferably 1.20, more preferably 1.10.
  • the ratio is less than or equal to the upper limit, the container 3 tends to press the electrode body 2 in the stacking direction due to deformation of the container 3.
  • the lower limit of the ratio is not particularly limited, but may be, for example, 1.05.
  • the container 3 contains a gas soluble in the non-aqueous electrolyte.
  • a gas soluble in the non-aqueous electrolyte is stored inside the container 3, and by dissolving this gas in the non-aqueous electrolyte, the inside of the container 3 can be easily brought into a negative pressure state.
  • a gas soluble in a non-aqueous electrolyte means a gas having a solubility of 1 cm 3 or more in 1 cm 3 of a non-aqueous solvent at 25° C. under 1 atmosphere.
  • the gas is preferably carbon dioxide when a cyclic carbonate or a chain carbonate is used as the nonaqueous solvent of the nonaqueous electrolyte.
  • the volume of the gas soluble in the non-aqueous electrolyte accommodated inside the container 3 is the volume of the non-aqueous electrolyte accommodated inside the container 3 and the volume of the gas soluble in the non-aqueous electrolyte. It can be determined by the solubility in non-aqueous electrolytes.
  • the amount of carbon dioxide relative to the volume of the nonaqueous electrolyte accommodated inside the container 3 is The lower limit of the volume is preferably 10%, more preferably 20%, from the viewpoint of enhancing the effect of negative pressure.
  • the upper limit of the volume of carbon dioxide gas relative to the volume of the non-aqueous electrolyte is preferably 400%, more preferably 200%, and 100% from the viewpoint of shortening the time until carbon dioxide gas is dissolved after sealing the container 3. % is more preferred.
  • the lower limit of the volume of the gas soluble in the non-aqueous electrolyte contained inside the container 3 (at 1 atmosphere, 25° C.) with respect to the volume of the surplus space inside the container 3 is 40°C. % is preferred, 70% is more preferred, and even more preferably 95%.
  • the upper limit of the volume of the surplus space in the container 3 may be 100%.
  • the volume of the surplus space inside the container 3 means the volume obtained by subtracting the volume of structures such as the electrode body 2 and the nonaqueous electrolyte from the internal volume of the container 3.
  • the volume of the electrode body 2 means the apparent volume of the constituent elements of the electrode body (active material layer, separator, etc.), and does not include voids existing between active material layers or within the separator.
  • the power storage element of this embodiment can be used as a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), or a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer or a communication terminal, or a power source for power storage. etc., it can be mounted as a power storage unit (battery module) configured by collecting a plurality of power storage elements.
  • the technology of the present invention may be applied to at least one power storage element included in the power storage unit.
  • a power storage device according to another embodiment of the present invention includes two or more power storage elements, and includes one or more power storage elements according to the embodiment of the present invention (hereinafter referred to as "second embodiment"). .
  • the battery may include one or more power storage elements that are not related to the embodiment of the present invention, or may include two or more power storage elements that are not related to the embodiment of the present invention.
  • FIG. 3 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected power storage elements 1 are assembled is further assembled.
  • the power storage device 30 according to the second embodiment includes a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20, etc. may be provided.
  • the power storage unit 20 or the power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements.
  • the method for manufacturing the electricity storage element of this embodiment can be appropriately selected from known methods.
  • the manufacturing method includes, for example, preparing an electrode body, preparing a non-aqueous electrolyte, and accommodating the electrode body and the non-aqueous electrolyte in a container.
  • Preparing the electrode body includes preparing a positive electrode and a negative electrode, and forming the electrode body by laminating or winding the positive electrode and the negative electrode with a separator in between.
  • the method for manufacturing a power storage element of the present embodiment further includes pressing the electrode body in the stacking direction of the positive electrode and the negative electrode. Pressing the electrode body in the stacking direction of the positive electrode and the negative electrode preferably includes storing a gas soluble in the non-aqueous electrolyte in a container.
  • Storing the non-aqueous electrolyte in a container can be appropriately selected from known methods.
  • the injection port may be sealed after the nonaqueous electrolyte is injected through an injection port formed in the container.
  • the power storage element of the present invention is not limited to the above embodiments, and various changes may be made without departing from the gist of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique.
  • some of the configurations of certain embodiments may be deleted.
  • well-known techniques can be added to the configuration of a certain embodiment.
  • the electricity storage element is used as a chargeable/dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery), but the type, shape, size, capacity, etc. of the electricity storage element are arbitrary.
  • the present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.
  • the electrode body does not need to include a separator.
  • the positive electrode and the negative electrode may be in direct contact with each other with a non-conductive layer formed on the active material layer of the positive electrode or the negative electrode.
  • the positive electrode active material contains the compound represented by the above formula 1 or lithium manganate
  • the negative electrode active material contains graphite or lithium titanate
  • the positive electrode active material and the negative electrode active material The configuration is not limited to the above embodiment. For example, if a positive electrode active material is selected other than the compound represented by formula 1 or lithium manganate, and a negative electrode active material is selected other than graphite or lithium titanate, and the open circuit voltage at SOC 30% and the open circuit voltage at SOC 70% are selected, A configuration may be adopted in which the difference from the circuit voltage is 0.2 V or less.
  • the method of bringing the inside of the container into a negative pressure state is explained as a method of putting the electrode body in a pressed state.
  • the electrode body can be brought into a pressed state by restraining the electricity storage element in a state where it is pressed in the stacking direction (Y direction) of the positive electrode and the negative electrode using a conventionally known restraining member or the like.
  • the restraining member is not particularly limited as long as it can press (pressurize) the electricity storage element. Examples of the mode of pressing the electrode body using a restraining member or the like include pressing the power storage element with the restraint member so that the pressing force applied to the power storage element becomes a constant value (constant pressure restraint).
  • the area and shape of the region pressed by the restraining member or the like on the outer surface of the power storage element are not particularly limited, and may have the effect of suppressing a decrease in capacity retention during charge/discharge cycles and the characteristics of the power storage element. It can be set appropriately in consideration.
  • the container is preferably thin and flexible. Further, it is preferable to arrange a known buffer member between the restraining member and the container, since the pressure applied to the electrode body can be maintained at a constant value from the beginning.
  • the pressure applied to the electrode body by the restraining member etc. is not particularly limited and can be set as appropriate.
  • the lower limit of the pressure applied to the electrode body is preferably 0.5 MPa, more preferably 0.7 MPa, even more preferably 0.9 MPa, and even more preferably 1.0 MPa.
  • the upper limit of the pressure is preferably 3.7 MPa, more preferably 3.5 MPa, even more preferably 3.3 MPa, and even more preferably 3.0 MPa.
  • the pressure is below the upper limit, it is possible to prevent the pores of the separator from being clogged due to excessive pressure being applied.
  • the pressure applied to the electrode body is the pressure in the discharge state.
  • the method of measuring the pressure applied to the electrode body is to separate the energy storage element from the restraining member etc. in the discharge state, and press the energy storage element using an autograph until it has the same thickness as when it was being pressed by the restraining member etc.
  • the pressure applied to the electrode body may be determined by dividing the load at that time by the area of the contact surface between the autograph and the electrode body. Note that, although a load is normally applied by the container to a pair of opposing surfaces of the electricity storage element, the area of only one of the pair of surfaces is defined as the area of the surface to which the load is applied.
  • Lithium iron phosphate LiFePO 4
  • NMP N-methylpyrrolidone
  • the positive electrode active material, acetylene black (AB) as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder are mixed in a mass ratio of 90:5:5 in terms of solid content.
  • a positive electrode mixture paste was prepared containing: The positive electrode mixture paste was applied to both sides of an aluminum foil serving as a positive electrode base material, dried, and then pressed. Thereby, a positive electrode was obtained in which positive electrode active material layers were laminated on both sides of the positive electrode base material.
  • the mass per unit area of the positive electrode active material layer laminated on one side of the positive electrode base material was 15 mg/cm 2 in terms of solid content.
  • the differential pore volume of the positive electrode active material layer in the obtained positive electrode at a pore diameter of 50 nm was 0.0039 cm 3 /(g ⁇ nm).
  • the differential pore volume of the positive electrode active material layer at a pore diameter of 50 nm is a value determined by the method described above.
  • the above differential pore volume is a value measured at the time of producing the positive electrode, but the above differential pore volume should be considered to be the same value even after charging and discharging a storage element produced based on this positive electrode. I can do it.
  • the differential pore volume distribution curve of the positive electrode active material layer of Example 1 is shown in FIG.
  • a negative electrode mixture paste was prepared by mixing graphite (Gr) as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, carboxymethyl cellulose (CMC) as a thickener, and water as a dispersion medium. Note that the mass ratio of Gr, SBR, and CMC was 96:2:2 (in terms of solid content).
  • a negative electrode mixture paste was applied to both sides of a copper foil serving as a negative electrode base material and dried. Thereafter, roll pressing was performed to obtain a negative electrode. At this time, the mass per unit area of the negative electrode active material layer laminated on one side of the negative electrode base material was 8 mg/cm 2 in terms of solid matter.
  • a solution was prepared by dissolving LiPF 6 as an electrolyte salt at a concentration of 1.0 mol/dm 3 in a non-aqueous solvent in which EC and EMC were mixed at a volume ratio of 30:70. The above solution was obtained as a non-aqueous electrolyte.
  • a microporous polyolefin membrane was used as a separator.
  • An electrode body was produced by laminating the above positive electrode and the above negative electrode with the separator interposed therebetween.
  • This electrode body was housed in a container made of a composite film (total thickness: approximately 150 ⁇ m) in which an aluminum layer and a resin film layer were laminated, and the nonaqueous electrolyte was poured into the container.
  • the ratio of the minimum width of the internal space of the container in the stacking direction to the thickness of the electrode body in the stacking direction was 1.10 or less.
  • Examples 2 and 3 and Comparative Examples 1 to 9 Each of the energy storage elements of Examples 2 and 3 and Comparative Examples 1 to 3 was prepared in the same manner as in Example 1 except that the differential pore volume at a pore diameter of 50 nm in the positive electrode active material layer was changed as shown in Table 1. Obtained. Comparative Example 4 was carried out in the same manner as in Example 1, except that carbon dioxide gas was not sealed in the container and the differential pore volume at a pore diameter of 50 nm in the positive electrode active material layer was changed as shown in Table 1.
  • Nine electricity storage elements were obtained from the following.
  • Comparative Example 3 the differential pore volume at all pore diameters was evaluated, and in Examples 2, 3, and Comparative Examples 1, 2, and 4 to 9, only the differential pore volume at a pore diameter of 50 nm was evaluated.
  • the differential pore volume distribution curve of the positive electrode active material layer of Comparative Example 3 is shown in FIG.
  • the pressure inside the container of the electricity storage elements of Comparative Examples 4 to 9 was equal to atmospheric pressure (1 atm).
  • the state after performing the initial capacity confirmation test is expressed as a fully discharged state and SOC 0%, and the state in which the same amount of electricity as the initial discharge capacity is charged at a constant current and constant voltage with a charge end voltage of 3.6V is referred to as a fully discharged state.
  • a fully charged state is expressed as SOC 100%.
  • Comparative Example 1 As shown in Table 1 above, comparing Comparative Example 1 and Comparative Example 7 in which the differential pore volume at a pore diameter of 50 nm in the positive electrode active material layer is the same, Comparative Example 1 in which the pressure inside the container is in a negative pressure state is The capacity retention rate is higher than that of Comparative Example 7 in which the internal pressure is equal to atmospheric pressure. Similarly, comparing Comparative Example 2 and Comparative Example 8, and Comparative Example 3 and Comparative Example 9, Comparative Example 2 has a negative pressure inside the container, and Comparative Example 3 has a negative pressure inside the container. The capacity retention rate is higher than that of Example 8 and Comparative Example 9.
  • Comparative Examples 4 to 9 when comparing Comparative Examples 4 to 9 where the pressure inside the container is equal to atmospheric pressure, Comparative Examples 4 to 9 where the differential pore volume at a pore diameter of 50 nm in the positive electrode active material layer is 0.0030 cm 3 / (g ⁇ nm) or more. Sample No. 6 has a higher capacity retention rate than Comparative Examples 7 to 9 in which the differential pore volume of the positive electrode active material layer at a pore diameter of 50 nm is less than 0.0030 cm 3 /(g ⁇ nm).
  • Examples 1 to 3 in which the positive electrode active material layer has a differential pore volume of 0.0030 cm 3 /(g ⁇ nm) or more at a pore diameter of 50 nm, and the pressure inside the container is in a negative pressure state, are different from Comparative Example 1.
  • the capacity retention rate is greatly improved compared to 9.
  • the electrode body is pressed due to the negative pressure inside the container, and the positive electrode active material layer has appropriate pores, which act synergistically to cause the inside of the electrode body to
  • the smooth and uniform movement of charge transport ions such as lithium ions was significantly promoted, the charge/discharge reaction within the electrode body was less likely to be biased, and as a result, the decline in capacity retention during charge/discharge cycles was suppressed. It is assumed that
  • the present invention can be applied to power storage elements used as power sources for electronic devices such as personal computers and communication terminals, and automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の一側面に係る蓄電素子は、正極活物質層を有する正極及び負極活物質層を有する負極が積層された電極体と、上記電極体を収容するための密閉可能な容器とを備え、上記電極体が、上記正極及び上記負極の積層方向に押圧された状態であり、上記正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm3/(g・nm)以上であり、SOC30%における開回路電圧とSOC70%における開回路電圧との差が0.2V以下である。

Description

蓄電素子及び蓄電装置
 本発明は、蓄電素子及び蓄電装置に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、一対の電極及びセパレータを有する電極体と、非水電解質と、これら電極体及び非水電解質を収容する容器とを有し、両電極間で電荷輸送イオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 従来、非水電解質蓄電素子の負極に含まれる活物質としては、黒鉛等の炭素材料等が用いられており、非水電解質蓄電素子の充放電特性等の向上のために活物質の開発が進められている。非水電解質蓄電素子の一例として、特許文献1には、正極活物質としてリン酸鉄リチウムを、負極活物質として黒鉛等を用いた非水電解質二次電池が開示されている。
国際公開第2015/170561号
 リン酸鉄リチウムを正極活物質に用い、黒鉛を負極活物質に用いる非水電解質二次電池は、充電状態の変化に伴う電圧の変化が充電状態の広い範囲で平坦になる特性(電圧平坦性)に優れる。しかし、電圧平坦性を有する非水電解質二次電池は、電極間の距離が不均一である場合等に、電極体内で充放電反応の偏りが生じやすい。電極体内の充放電反応が偏ると、充放電反応の集中する箇所において充電時に負極表面にリチウム金属等が析出しやすいため、充放電サイクルに伴って容量維持率等が大きく低下するおそれがある。
 本発明は、以上のような事情に基づいてなされたものであり、充放電サイクル時の容量維持率の低下を抑制できる蓄電素子及び蓄電装置を提供することを目的とする。
 本発明の一側面に係る蓄電素子は、正極活物質層を有する正極及び負極活物質層を有する負極が積層された電極体と、上記電極体を収容するための密閉可能な容器とを備え、上記電極体が、上記正極及び上記負極の積層方向に押圧された状態であり、上記正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であり、SOC30%における開回路電圧とSOC70%における開回路電圧との差が0.2V以下である。
 本発明の他の一側面に係る蓄電素子は、正極活物質層を有する正極及び負極活物質層を有する負極が積層された電極体と、上記電極体を収容するための密閉可能な容器とを備え、上記電極体が、上記正極及び上記負極の積層方向に押圧された状態であり、上記正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であり、上記正極活物質が下記式1で表される化合物又はマンガン酸リチウムを含み、上記負極活物質が黒鉛又はチタン酸リチウムを含む。
 LiFeMn(1-x)PO(0≦x≦1) ・・・1
 本発明の他の一側面に係る蓄電装置は、蓄電素子を二以上備え、且つ本発明の一側面に係る蓄電素子を一以上備える。
 本発明の一側面に係る蓄電素子及び蓄電装置は、充放電サイクル時の容量維持率の低下を抑制できる。
図1は、電圧平坦性を説明するための蓄電素子の放電曲線の一例を示すグラフである。 図2は、蓄電素子の一実施形態を示す透視斜視図である。 図3は、蓄電素子を複数個集合して構成した蓄電装置の一実施形態を示す概略図である。 図4は、実施例1及び比較例3の正極活物質層の微分細孔容積分布曲線である。
 本発明の一実施形態は以下の各項の態様を提供する。
 項1.
 本発明の一実施形態に係る蓄電素子は、正極活物質層を有する正極及び負極活物質層を有する負極が積層された電極体と、上記電極体を収容するための密閉可能な容器とを備え、上記電極体が、上記正極及び上記負極の積層方向に押圧された状態であり、上記正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であり、SOC30%における開回路電圧とSOC70%における開回路電圧との差が0.2V以下である。
 上記項1に記載の蓄電素子は、充放電サイクル時の容量維持率の低下を抑制できる。
 項2.
 本発明の他の一実施形態に係る蓄電素子は、正極活物質層を有する正極及び負極活物質層を有する負極が積層された電極体と、上記電極体を収容するための密閉可能な容器とを備え、上記電極体が、上記正極及び上記負極の積層方向に押圧された状態であり、上記正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であり、上記正極活物質が下記式1で表される化合物又はマンガン酸リチウムを含み、上記負極活物質が黒鉛又はチタン酸リチウムを含む。
 LiFeMn(1-x)PO(0≦x≦1) ・・・1
 上記項2に記載の蓄電素子は、充放電サイクル時の容量維持率の低下を抑制できる。
 項3.
 上記項1又は項2に記載の蓄電素子は、上記容器の内部が負圧状態であってもよい。
 上記項3に記載の蓄電素子によれば、より充放電サイクル時の容量維持率の低下を抑制できる。
 項4.
 本発明の他の一実施形態に係る蓄電装置は、蓄電素子を二以上備え、且つ上記項1から項3のいずれか1項に記載の蓄電素子を一以上備える。
 上記項4に記載の蓄電装置によれば、充放電サイクル時の容量維持率の低下を抑制できる。
 初めに、本明細書によって開示される蓄電素子及び蓄電装置の概要について説明する。
 本発明の一側面に係る蓄電素子は、正極活物質層を有する正極及び負極活物質層を有する負極が積層された電極体と、上記電極体を収容するための密閉可能な容器とを備え、上記電極体が、上記正極及び上記負極の積層方向に押圧された状態であり、上記正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であり、SOC30%における開回路電圧とSOC70%における開回路電圧との差が0.2V以下である。
 当該蓄電素子は、充放電サイクル時の容量維持率の低下を抑制できる。この理由としては、以下が推測される。
 当該蓄電素子は、SOC30%における開回路電圧とSOC70%における開回路電圧との差が0.2V以下であるため、充電状態の変化に伴う電圧の変化が平坦になる電圧平坦性を有する。ここで、「電圧平坦性」を説明するため、図1に、横軸をSOC(%)、縦軸を電池電圧(V)とした蓄電素子の放電曲線の一例を示す。電池電圧(V)は、放電電流0.1Cとして、25℃の下で定電流放電したときの蓄電素子の閉回路電圧(CCV)である。図1において、LFP/Grは、リン酸鉄リチウム(LFP)を正極に、黒鉛(Gr)を負極に用いたリチウムイオン二次電池であり、NCM/GrはNi、Co及びMnを含む複合酸化物(NCM)を正極に、黒鉛(Gr)を負極に用いたリチウムイオン二次電池であり、NCA/GrはNi、Co及びAlを含む複合酸化物(NCA)を正極に、黒鉛(Gr)を負極に用いたリチウムイオン二次電池である。図1では、NCM/Gr及びNCA/Grの電池電圧(V)がSOC70%からSOC30%にかけて単調減少しているのに対し、LFP/Grの電池電圧(V)はSOC70%からSOC30%にかけてほぼ一定である。すなわち、図1のLFP/Grは電圧平坦性を有する。
 一方、従来の蓄電素子が上述の電圧平坦性を有すると、電極体内でリチウムイオン等の電荷輸送イオンの分布に偏りが生じた場合に、正極活物質層及び負極活物質層内での電位の差によってこの偏りを解消する力が働き難くなるものと推察される。特に、電極体の厚さが大きい場合や両電極間の距離が不均一である場合等に、リチウムイオン等の電荷輸送イオンの拡散が不均一となりやすく、また電極体内で充放電反応の偏りが維持されやすい。このため、充電時に負極表面に局所的にリチウム金属等が析出しやすくなり、充放電サイクルに伴って容量維持率が低下するおそれがある。
 これに対し、本発明の一側面に係る蓄電素子は、電極体が正極及び負極の積層方向に押圧されることによって両電極間の距離が均一化されやすく、また正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であるため、正極活物資層内においてリチウムイオン等の電荷輸送イオンの円滑かつ均一な移動が促進される。したがって、電極体内の充放電反応が偏り難く、その結果、充放電サイクル時の容量維持率の低下を抑制できるものと推測される。
 本発明の他の一側面に係る蓄電素子は、正極活物質層を有する正極及び負極活物質層を有する負極が積層された電極体と、上記電極体を収容するための密閉可能な容器とを備え、上記電極体が、上記正極及び上記負極の積層方向に押圧された状態であり、上記正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であり、上記正極活物質が下記式1で表される化合物又はマンガン酸リチウムを含み、上記負極活物質が黒鉛又はチタン酸リチウムを含む。
 LiFeMn(1-x)PO(0≦x≦1) ・・・1
 当該蓄電素子は、上記正極活物質が上記式1で表される化合物又はマンガン酸リチウムを含み、上記負極活物質が黒鉛又はチタン酸リチウムを含むため、充電状態の変化に伴う電圧の変化が平坦になる電圧平坦性を有する。一方、上記電極体が正極及び負極の積層方向に押圧されることによって両電極間の距離が均一化されやすく、また正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であるため、正極活物質層内においてリチウムイオン等の電荷輸送イオンの円滑かつ均一な移動が促進される。したがって、電極体内の充放電反応が偏り難く、その結果、充放電サイクル時の容量維持率の低下を抑制できる。
 上記容器の内部は負圧状態であってもよい。このように、上記容器の内部が負圧状態であることによって、より容易に両電極間の距離が均一化され得る。
 なお、本発明において、「正極及び負極の積層方向」とは、正極及び負極が積層される方向を意味し、「積層方向に押圧された状態」とは、電極体の積層された各層の間の距離が小さくなる方向に圧力が加えられる状態を意味する。また、本発明において、「負圧状態」とは、電極体を収容する容器の内部の圧力が容器の外部の圧力よりも低い状態を意味する。「SOC」とはState Of Chargeの略で、蓄電素子の充電状態をそのときの残存容量と満充電状態の容量との比率で表したものであり、満充電状態をSOC100%と表記する。ここで、「満充電状態」とは、当該蓄電素子について推奨され、又は指定される充電条件を採用して、上限電圧となるまで充電された状態とする。さらに、「SOC30%における開回路電圧とSOC70%における開回路電圧との差」は、蓄電素子を25℃の下で放電電流0.1Cで定電流放電し、SOC30%及びSOC70%とした後、電流を印加していない状態で30分間経過したときにそれぞれ測定された開回路電圧(OCV)の差の絶対値を意味する。
 本発明において、「細孔径50nmにおける微分細孔容積」は、窒素ガス吸着法を用いた吸着等温線からBJH法で求める値とする。具体的には、微分細孔容積は以下の方法により測定する。被測定試料(正極活物質層)の粉体1.00gを測定用のサンプル管に入れ、120℃にて12時間真空乾燥することで、測定試料中の水分を十分に除去する。次に、液体窒素を用いた窒素ガス吸着法により、相対圧力P/P0(P0=約770mmHg)が0から1の範囲内で吸着側及び脱離側の等温線を測定する。そして、脱離側の等温線を用いてBJH法により計算することにより微分細孔容積分布を評価し、細孔径50nmにおける微分細孔容積を求める。上述の微分細孔容積の測定は、Quantachrome社製のガス吸着量測定装置「autosorb iQ」及びデータ解析ソフト「ASiQwin」により行う。
 本発明の他の一側面に係る蓄電装置は、蓄電素子を二以上備え、且つ上記本発明の一側面に係る蓄電素子を一以上備える。当該蓄電装置は、上記本発明の一側面に係る蓄電素子を備えるので、充放電サイクル時の容量維持率の低下を抑制できる。
 本発明の一実施形態に係る蓄電素子の構成、蓄電装置の構成、及び蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。
<蓄電素子の構成>
 本発明の一実施形態に係る蓄電素子は、正極、負極及びセパレータを有する電極体と、非水電解質と、上記電極体及び非水電解質を収容するための密閉可能な容器と、を備える。電極体は、複数の正極及び複数の負極がセパレータを介して積層された構成を有する。電極体の構成として、例えば、積層型、又は、正極及び負極がセパレータを介して積層された状態で巻回された巻回型等が挙げられる。電極体は、正極及び負極の積層方向に押圧された状態である。非水電解質は、正極、負極及びセパレータに含まれた状態で存在する。蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。
 本発明の一実施形態において、SOC30%における開回路電圧とSOC70%における開回路電圧との差の上限は、0.2Vであり、0.15Vがより好ましく、0.10Vがさらに好ましい。SOC30%における開回路電圧とSOC70%における開回路電圧との差を上記上限以下とすることで、充電状態の変化に伴う電圧の変化が平坦になる充電状態の範囲を比較的広くできる(電圧平坦性を高められる)。一方、SOC30%における開回路電圧とSOC70%における開回路電圧との差の下限は、特に限定されないが、例えば0.01Vであってもよく、0.05Vであってもよい。SOC30%における開回路電圧とSOC70%における開回路電圧との差は、上記のいずれかの下限以上かつ上記のいずれかの上限以下であってもよい。
(正極)
 正極は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。
 正極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cmを閾値として判定する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H-4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。
 中間層は、正極基材と正極活物質層との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダ及び導電剤を含む。
 本発明の一実施形態において、正極活物質は、下記式1で表される化合物又はマンガン酸リチウムを含む。
 LiFeMn(1-x)PO(0≦x≦1) ・・・1
 正極活物質は、上記式1で表される化合物及びマンガン酸リチウムの両方を含んでいてもよい。また、正極活物質は、上記式1で表される化合物を1種類のみ含んでいてもよく、FeとMnのモル数の和に対するFeのモル比(x)の異なる2種類以上の上記式1で表される化合物を含んでいてもよい。上記式1で表される化合物又はマンガン酸リチウムは、他の元素からなる原子又はアニオン種で一部が置換されていてもよく、他の材料で被覆されていてもよい。
 全ての正極活物質に対する上記式1で表される化合物及びマンガン酸リチウムの合計含有量の下限は、70質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。上記合計含有量が上記下限以上であることによって、SOC30%における開回路電圧とSOC70%における開回路電圧との差を小さくしやすい。一方、全ての正極活物質に対する上記式1で表される化合物及びマンガン酸リチウムの合計含有量は、100質量%であってもよい。
 正極活物質は、上記式1で表される化合物としてリン酸鉄リチウム(LiFePO)を含むことが好ましい。全ての正極活物質に対するリン酸鉄リチウムの含有量の下限は、70質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。全ての正極活物質に対するリン酸鉄リチウムの含有量が上記下限以上であることによって、SOC30%における開回路電圧とSOC70%における開回路電圧との差をより小さくしやすい。一方、全ての正極活物質に対するリン酸鉄リチウムの含有量は、100質量%であってもよい。
 正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。
 正極活物質層における正極活物質の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。正極活物質の含有量を上記の範囲とすることで、正極活物質層の高エネルギー密度化と製造性を両立できる。
 導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
 正極活物質層における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、二次電池のエネルギー密度を高めることができる。
 バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 正極活物質層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 正極活物質層の細孔径50nmにおける微分細孔容積の下限は、0.0030cm/(g・nm)であり、0.0040cm/(g・nm)が好ましく、0.0050cm/(g・nm)がより好ましい。上記微分細孔容積が上記下限以上であることによって、非水電解質が正極活物質層に容易に浸透するため、正極活物質層におけるリチウムイオン等の電荷輸送イオンの移動が均一化されやすい。一方、上記微分細孔容積の上限は、製造の容易性の観点から、0.0100cm/(g・nm)が好ましく、0.0080cm/(g・nm)がより好ましい。上記微分細孔容積は、充放電を要因としては変化し難いため、例えば上記正極活物質を基に作製した蓄電素子を充放電させた後にその蓄電素子を解体して取り出した上記正極活物質層に対して測定した値とすることができる。なお、正極活物質層の細孔径50nmにおける微分細孔容積は、例えば正極活物質の前駆体作製時の製造条件を変更すること、又は活物質作製時の焼成温度を変更すること等によって調整できる。
 正極活物質層は、上述の方法で評価された微分細孔容積分布曲線において、細孔径25nm以上75nm以下の範囲に少なくとも1つのピークを有し、かつ最大のピークを細孔径25nm以上75nm以下の範囲に有することが好ましい。また、正極活物質層は、上記微分細孔容積分布曲線において、細孔径45nm以上55nm以下の範囲に少なくとも1つのピークを有し、かつ最大のピークを細孔径45nm以上55nm以下の範囲に有することがより好ましい。このように、正極活物質層が、微分細孔容積分布曲線において、上記範囲に少なくとも1つのピークを有し、かつ最大のピークを上記範囲に有することによって、非水電解質の正極活物質層への浸透及び正極活物質層におけるリチウムイオン等の電荷輸送イオンの移動が均一化されやすい。
 正極活物質層の単位面積当たりの質量の下限としては、エネルギー密度を高める観点から、1mg/cmが好ましく、5mg/cmがより好ましく、10mg/cmがさらに好ましい。一方、正極活物質層の単位面積当たりの質量の上限としては、30mg/cmが好ましく、25mg/cmがより好ましく、20mg/cmがさらに好ましい。正極活物質層の単位面積当たりの質量が上記上限以下であると、リチウムイオン等の電荷輸送イオンが均一に拡散されやすい。なお、「正極活物質層の単位面積当たりの質量」とは、正極活物質層の固形分換算の質量を、正極基材表面において直接又は中間層を介して正極活物質層が配されている領域の面積で除した値を意味する。正極活物質層が正極基材の両面に配されている場合には、正極基材の一方の面における正極活物質層の単位面積当たりの質量及び面積から求められる値とする。
(負極)
 負極は、負極基材と、当該負極基材に直接又は中間層を介して配される負極活物質層とを有する。中間層の構成は特に限定されず、例えば上記正極で例示した構成から選択することができる。
 負極基材は、導電性を有する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。
 負極活物質層は、負極活物質を含む。負極活物質層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、上記正極で例示した材料から選択できる。
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 本発明の一実施形態において、負極活物質は、黒鉛又はチタン酸リチウムを含む。ここで、「黒鉛」とは、充放電前又は放電状態において、X線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。また、負極の「放電状態」とは、負極活物質から、充放電に伴い吸蔵放出可能なリチウムイオン等の電荷輸送イオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として黒鉛を含む負極を作用極として、金属Liを対極として用いた単極電池において、開回路電圧が0.7V以上である状態である。
 全ての負極活物質に対する黒鉛又はチタン酸リチウムの含有量の下限は、70質量%が好ましく、80質量%がより好ましく、90質量%がさらに好ましい。黒鉛又はチタン酸リチウムの含有量が上記下限以上であることによって、SOC30%における開回路電圧とSOC70%における開回路電圧との差を小さくしやすい。一方、全ての負極活物質に対する黒鉛又はチタン酸リチウムの含有量は、100質量%であってもよい。
 負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質の平均粒径は、1μm以上100μm以下であってもよい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び分級方法は、例えば、上記正極で例示した方法から選択できる。
 負極活物質層における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。
 負極活物質層の単位面積当たりの質量の下限としては、エネルギー密度を高める観点から、1mg/cmが好ましく、3mg/cmがより好ましく、5mg/cmがさらに好ましい。一方、負極活物質層の単位面積当たりの質量の上限としては、20mg/cmが好ましく、15mg/cmがより好ましく、12mg/cmがさらに好ましい。負極活物質層の単位面積当たりの質量が上記上限以下であると、リチウムイオン等の電荷輸送イオンが均一に拡散されやすい。なお、「負極活物質層の単位面積当たりの質量」とは、負極活物質層の固形分換算の質量を、負極基材表面において直接又は中間層を介して負極活物質層が配されている領域の面積で除した値を意味する。負極活物質層が負極基材の両面に配されている場合には、負極基材の一方の面における負極活物質層の単位面積当たりの質量及び面積から求められる値とする。
(セパレータ)
 セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の形状としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形状の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
 耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃まで昇温したときの質量減少が5%以下であるものが好ましく、室温から800℃まで昇温したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。
 セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。
 セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。
(非水電解質)
 非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもEMCが好ましい。
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。
 非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。
 非水電解液は、非水溶媒と電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)等のハロゲン化炭酸エステル;リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸塩;リチウムビス(フルオロスルホニル)イミド(LiFSI)等のイミド塩;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の前記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、1,3-プロペンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,4-ブテンスルトン、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。
 非水電解質には、固体電解質を用いてもよく、非水電解液と固体電解質とを併用してもよい。
 固体電解質としては、リチウム、ナトリウム、カルシウム等のイオン伝導性を有し、常温(例えば15℃から25℃)において固体である任意の材料から選択できる。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、及び窒化物固体電解質、ポリマー固体電解質等が挙げられる。
 硫化物固体電解質としては、リチウムイオン二次電池の場合、例えば、LiS-P、LiI-LiS-P、Li10Ge-P12等が挙げられる。
 本実施形態の蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。
 図2に角型電池の一例としての蓄電素子1(非水電解質二次電池)を示す。なお、同図は、容器内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。また、容器3は、非水電解質が加えられた状態で密閉されている。容器3としては、蓄電素子の容器として通常用いられる公知の金属容器、樹脂容器等を用いることができる。容器3としては、後述する方法によって電極体2を押圧状態としやすくする観点から、金属層と樹脂フィルム層が積層された複合フィルム製の容器等、薄く、可撓性を有する容器が好ましい。
 正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。図2では、蓄電素子1における電極体2の巻回の軸線方向をX方向、蓄電素子1の厚さ方向をY方向、上記軸線方向(X方向)に垂直かつ上記厚さ方向(Y方向)に垂直な方向をZ方向と示す。なお、Z方向は、蓄電素子1における電極体2の平坦部(すなわち平坦部の表面)に平行であり、かつ上記平坦部での電極体2の巻回方向に一致する。ここでは、蓄電素子1の厚さ方向は、電極体2の厚さ方向と一致する。電極体2の厚さ方向は、正極、負極及びセパレータの積層方向に相当し、また、これらの正極、負極及びセパレータの表面に垂直な方向にも相当する。
 蓄電素子1の電極体2は、上述の通り正極及び負極の積層方向(Y方向)に押圧された状態である。ただし、電極体2の一部(例えば、電極体2の平坦部の両端における一対の曲面部等)は押圧されていなくてもよい。このように、電極体2が正極及び負極の積層方向に押圧された状態(押圧状態)であることによって、両電極間の距離が均一化されやすく、その結果、電極体2内においてリチウムイオン等の電荷輸送イオンの円滑かつ均一な移動が促進される。
 電極体2を押圧状態とする方法としては、容器3の内部を負圧状態とする(容器3の内部の圧力を負圧に維持しつつ容器3を密閉する)方法が好ましい。このように、容器3の内部を負圧状態とすることによって、容器3が変形し(正極及び負極の積層方向に凹み)、かつ電極体2を正極及び負極の積層方向に押圧する。その結果、電極体2における正極及び負極の間の距離が容易に均一化され得る。
 容器3を密閉する前の状態において、電極体2の積層方向の厚さ(Y方向の厚さ)に対する容器3の内部空間の上記積層方向における最小幅(Y方向の最小幅)の比率の上限としては、1.20が好ましく、1.10がより好ましい。上記比率が上記上限以下であると、容器3の変形によって容器3が電極体2を積層方向に押圧しやすい。なお、上記比率の下限としては、特に限定されないが、例えば1.05とすることができる。
 容器3の内部には、非水電解質に可溶な気体が収容されていることが好ましい。容器3の内部に非水電解質に可溶な気体が収容され、この気体が非水電解質に溶解することによって、容器3の内部を容易に負圧状態とすることができる。ここで、非水電解質に可溶な気体とは、1気圧下、25℃の非水溶媒1cmに対する溶解度が1cm以上の気体を意味する。上記気体としては、非水電解質の非水溶媒として環状カーボネート又は鎖状カーボネートを用いる場合、炭酸ガスが好ましい。
 容器3の内部に収容する非水電解質に可溶な気体の体積(1気圧下、25℃)は、容器3の内部に収容した非水電解質の体積と、非水電解質に可溶な気体の非水電解質に対する溶解度とによって決めることができる。例えば、非水電解質の非水溶媒として環状カーボネート又は鎖状カーボネートを用い、かつ非水電解質に可溶な気体として炭酸ガスを用いる場合、容器3の内部に収容する非水電解質の体積に対する炭酸ガスの体積の下限は、負圧の効果を高める観点から、10%が好ましく、20%がより好ましい。一方、上記非水電解質の体積に対する炭酸ガスの体積の上限は、容器3を密閉後、炭酸ガスが溶解されるまでの時間を短くする観点から、400%が好ましく、200%がより好ましく、100%がさらに好ましい。
 容器3内の余剰空間の体積に対する容器3の内部に収容する非水電解質に可溶な気体の体積(1気圧下、25℃)の下限は、容器3内の圧力を小さくする観点から、40%が好ましく、70%がより好ましく、95%がさらに好ましい。一方、容器3内の余剰空間の体積に対する上記体積の上限は、100%であってもよい。ここで、「容器3内の余剰空間の体積」とは、容器3の内容積から、電極体2及び非水電解質等の構造体の体積を差し引いた体積を意味する。また、電極体2の体積とは、電極体の構成要素(活物質層、セパレータ等)の見かけの体積を意味し、活物質層間やセパレータ内に存在する空隙は含まれない。
<蓄電装置の構成>
 本実施形態の蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの蓄電素子に対して、本発明の技術が適用されていればよい。
 本発明の他の一実施形態に係る蓄電装置は、蓄電素子を二以上備え、且つ上記本発明の一実施形態に係る蓄電素子を一以上備える(以下、「第二の実施形態」という。)。第二の実施形態に係る蓄電装置に含まれる少なくとも一つの蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよく、上記本発明の一実施形態に係る蓄電素子を一備え、且つ上記本発明の一実施形態に係らない蓄電素子を一以上備えていてもよく、上記本発明の一実施形態に係る蓄電素子を二以上備えていてもよい。図3に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。第二の実施形態に係る蓄電装置30は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。
<蓄電素子の製造方法>
 本実施形態の蓄電素子の製造方法は、公知の方法から適宜選択できる。当該製造方法は、例えば、電極体を準備することと、非水電解質を準備することと、電極体及び非水電解質を容器に収容することと、を備える。電極体を準備することは、正極及び負極を準備することと、セパレータを介して正極及び負極を積層又は巻回することにより電極体を形成することとを備える。本実施形態の蓄電素子の製造方法は、電極体を正極及び負極の積層方向に押圧することをさらに備える。電極体を正極及び負極の積層方向に押圧することとして、非水電解質に可溶な気体を容器に収容することを備えることが好ましい。
 非水電解質を容器に収容することは、公知の方法から適宜選択できる。例えば、非水電解質に非水電解液を用いる場合、容器に形成された注入口から非水電解液を注入した後、注入口を封止すればよい。
<その他の実施形態>
 尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
 上記実施形態では、蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。
 上記実施形態では、正極及び負極がセパレータを介して積層された電極体について説明したが、電極体は、セパレータを備えなくてもよい。例えば、正極又は負極の活物質層上に導電性を有さない層が形成された状態で、正極及び負極が直接接してもよい。
 上記実施形態では、正極活物質が上述の式1で表される化合物又はマンガン酸リチウムを含み、かつ負極活物質が黒鉛又はチタン酸リチウムを含む場合を説明したが、正極活物質及び負極活物質の構成は上記実施形態に限定されない。例えば、正極活物質として上述の式1で表される化合物又はマンガン酸リチウム以外を選択し、負極活物質として黒鉛又はチタン酸リチウム以外を選択し、かつSOC30%における開回路電圧とSOC70%における開回路電圧との差が0.2V以下となる構成としてもよい。
 上記実施形態では、電極体を押圧状態とする方法として容器の内部を負圧状態とする方法を説明したが、電極体を押圧状態とする方法として容器の内部を負圧状態とする方法以外の方法を採用してもよい。例えば、従来公知の拘束部材等を用いて正極及び負極の積層方向(Y方向)に押圧された状態で蓄電素子を拘束することにより、電極体を押圧状態とすることができる。拘束部材としては、蓄電素子を押圧(加圧)することが可能なものであればよく、特に限定されない。拘束部材等を用いて電極体を押圧する態様としては、蓄電素子に加えられる押圧力が一定の値となるように拘束部材によって蓄電素子を押圧すること(定圧拘束)等が挙げられる。蓄電素子の外面における拘束部材等によって押圧される領域(押圧領域)の面積及び形状は、特に限定されず、充放電サイクル時の容量維持率の低下を抑制する効果と、蓄電素子の特性とを考慮して適宜設定され得る。上記容器としてはその厚さが薄く、可撓性を有するものが好ましい。また、初期から上記電極体に加えられる圧力を一定値である状態にすることができる点で、上記拘束部材と上記容器との間に公知の緩衝部材を配置することが好ましい。
 拘束部材等によって電極体に加えられる圧力は、特に限定されず、適宜設定され得る。例えば、電極体に加えられる圧力の下限として、0.5MPaが好ましく、0.7MPaがより好ましく、0.9MPaがさらに好ましく、1.0MPaがよりさらに好ましい場合がある。上記圧力が上記下限以上であることによって、充放電サイクル時の容量維持率の低下を抑制する効果がより顕著に発揮される。一方、上記圧力の上限としては、3.7MPaが好ましく、3.5MPaがより好ましく、3.3MPaがさらに好ましく、3.0MPaがよりさらに好ましい場合がある。上記圧力が上記上限以下であることによって、過度の圧力が加えられることに起因するセパレータの空孔の閉塞等を抑制することができる。電極体に加えられる圧力は、放電状態における圧力とする。電極体に加えられる圧力を測定する方法としては、放電状態において蓄電素子を拘束部材等と分離し、拘束部材等によって押圧されていた時と同じ厚さになるまで蓄電素子をオートグラフで圧迫したときの荷重を、オートグラフと電極体との接触面の面積で除した値を、電極体に加えられた圧力とすることが挙げられる。なお、通常、容器によって蓄電素子の対向する一対の面に対して荷重が付与されるが、この一対の面の一方の面のみの面積を荷重が付与されている面の面積とする。
 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。
[実施例1]
(正極の作製)
 正極活物質として、リン酸鉄リチウム(LiFePO)を用いた。N-メチルピロリドン(NMP)を分散媒とし、上記正極活物質、導電剤であるアセチレンブラック(AB)、及びバインダであるポリフッ化ビニリデン(PVDF)を固形分換算で90:5:5の質量比率で含有する正極合剤ペーストを作製した。正極基材であるアルミニウム箔の両面に、上記正極合剤ペーストを塗布し、乾燥後プレスした。これにより、正極基材の両面に正極活物質層が積層された正極を得た。このとき、正極基材の片面に積層された正極活物質層の単位面積当たりの質量は、固形分換算で15mg/cmであった。また、得られた正極における正極活物質層の細孔径50nmにおける微分細孔容積は、0.0039cm/(g・nm)であった。なお、正極活物質層の細孔径50nmにおける微分細孔容積は、上述の方法により求めた値である。また、本実施例において、上記微分細孔容積は正極作製時点において測定した値だが、この正極を基に作製した蓄電素子を充放電させた後も上記微分細孔容積は同等の値とみなすことができる。実施例1の正極活物質層の微分細孔容積分布曲線を図4に示す。
(負極の作製)
 負極活物質である黒鉛(Gr)、バインダであるスチレン-ブタジエンゴム(SBR)、増粘剤であるカルボキシルメチルセルロース(CMC)及び分散媒である水を混合した負極合剤ペーストを調製した。なお、Gr、SBR及びCMCの質量比率は96:2:2(固形分換算)とした。負極基材である銅箔の両面に負極合剤ペーストを塗布し、乾燥した。その後、ロールプレスを行い、負極を得た。このとき、負極基材の片面に積層された負極活物質層の単位面積当たりの質量は、固形物換算で8mg/cmであった。
(非水電解質の調製)
 ECとEMCを30:70の体積比で混合した非水溶媒に、電解質塩としてLiPFを1.0mol/dmの濃度で溶解させた溶液を作製した。上記溶液を非水電解質として得た。
(蓄電素子の作製)
 セパレータとして、ポリオレフィン製微多孔膜を用いた。このセパレータを介して、上記正極と上記負極とを積層することにより電極体を作製した。この電極体を、アルミニウム層と樹脂フィルム層が積層された複合フィルム(合計厚さ:約150μm)製の容器に収納し、内部に上記非水電解質を注入した。上記電極体の積層方向の厚さに対する上記容器の内部空間の上記積層方向における最小幅の比率は1.10以下だった。その後、1気圧下、25℃の条件に換算して、注入した非水電解質の体積に対して約50%、かつ容器内の余剰空間の体積に対して約80%の体積となるように炭酸ガスを封入して熱溶着により密閉し、実施例1の蓄電素子を得た。なお、容器内に封入した炭酸ガスが上記非水電解質に溶解することにより、実施例1の蓄電素子の密閉後の容器の内部は負圧状態となった。また、上記容器はその厚さが薄く、可撓性を有する複合フィルム製であることから、上記容器の内部が負圧状態であることによって、上記容器が変形した。さらに、上記容器の内部空間の上記積層方向における最小幅が上記電極体の厚さに対して十分小さいため、上記容器の変形によって、上記電極体が正極及び負極の積層方向に押圧された状態となった。
[実施例2、3及び比較例1から9]
 正極活物質層の細孔径50nmにおける微分細孔容積を表1に記載の通りに変更したこと以外は実施例1と同様にして、実施例2、3及び比較例1から3の各蓄電素子を得た。
 また、容器内に炭酸ガスを封入せずに、正極活物質層の細孔径50nmにおける微分細孔容積を表1に記載の通りに変更したこと以外は実施例1と同様にして、比較例4から9の各蓄電素子を得た。ただし、比較例3ではすべての細孔径における微分細孔容積を評価し、実施例2、3、比較例1、2及び4から9では細孔径50nmにおける微分細孔容積のみを評価した。比較例3の正極活物質層の微分細孔容積分布曲線を図4に示す。また、容器内に炭酸ガスを封入していないため、比較例4から9の蓄電素子の容器の内部における圧力は大気圧(1気圧)に等しい。
(初期充放電)
 得られた各蓄電素子について、25℃の下、以下の要領にて初期充放電を行った。充電電流0.1C、充電終止電圧3.6Vとして定電流定電圧充電を行った。充電の終了条件は、充電電流が0.02Cとなるまでとした。その後、10分間の休止時間を設けた。その後、放電電流0.1C、放電終止電圧2.0Vとして定電流放電を行った。
(初期の容量確認試験)
 次いで、各蓄電素子について、25℃の下、以下の要領で初期の容量確認試験を行った。
 充電電流0.1C、充電終止電圧3.6Vとして定電流定電圧充電を行った。充電の終了条件は、充電電流が0.02Cとなるまでとした。その後、10分間の休止期間を設けた。その後、放電電流0.1C、放電終止電圧2.0Vとして定電流放電を行った。このときの放電容量を「初期の放電容量」とした。また、各蓄電素子について、充電電流0.1C、充電終止電圧3.6Vとして定電流定電圧充電を行った。充電の終了条件は、充電電流が0.02Cとなるまでとした。その後、10分間の休止期間を設けた。その後、放電電流0.1CでSOC70%まで定電流放電を行った後、電流を印加していない状態で30分経過した後の電圧を測定し、「SOC70%における開回路電圧」とした。その後、放電電流0.1CでSOC30%まで定電流放電を行った後、電流を印加していない状態で30分経過した後の電圧を測定し、「SOC30%における開回路電圧」とした。各蓄電素子において、SOC30%における開回路電圧とSOC70%における開回路電圧との差は、いずれも0.2V以下であった。なお、ここでは初期の容量確認試験を行った後の状態を完全放電状態としてSOC0%と表記し、初期の放電容量と同じ電気量を充電終止電圧3.6Vとして定電流定電圧充電した状態を満充電状態としてSOC100%と表記した。
(充放電サイクル試験)
 上記初期の容量確認試験後、各蓄電素子について、25℃の下、以下の要領で充放電サイクル試験を行った。充電電流1.0C、充電終止電圧3.6Vとして定電流定電圧充電を行った。充電の終了条件は、充電電流が0.05Cとなるまでとした。その後、放電電流1.0C、放電終止電圧2.0Vとして定電流放電を行った。充電後及び放電後は、それぞれ10分間の休止時間を設けた。この充放電を50サイクル実施した。
 充放電サイクル試験後、上記「初期の容量確認試験」と同様の方法にて充放電サイクル試験後の容量確認試験を行った。このときの放電容量を「充放電サイクル試験後の放電容量」とした。充放電サイクル試験後の放電容量を初期の放電容量で除し、容量維持率(%)を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示されるように、正極活物質層の細孔径50nmにおける微分細孔容積が同一の比較例1と比較例7で比較すると、容器内の圧力が負圧状態の比較例1は容器内の圧力が大気圧に等しい比較例7に比べて容量維持率が高い。同様に、比較例2と比較例8、比較例3と比較例9でそれぞれ比較すると、容器内の圧力が負圧状態の比較例2、比較例3は容器内の圧力が大気圧に等しい比較例8、比較例9に比べて容量維持率が高い。
 また、容器内の圧力が大気圧に等しい比較例4から9で比較すると、正極活物質層の細孔径50nmにおける微分細孔容積が0.0030cm/(g・nm)以上の比較例4から6は、正極活物質層の細孔径50nmにおける微分細孔容積が0.0030cm/(g・nm)未満の比較例7から9に比べて容量維持率が高い。 一方、正極活物質層の細孔径50nmにおける微分細孔容積が0.0030cm/(g・nm)以上、かつ容器内の圧力が負圧状態である実施例1から3は、比較例1から9に比べて容量維持率が大きく改善されている。これらのことから、例えば、容器内が負圧状態であるために電極体が押圧されていること、及び正極活物質層が適切な細孔を有することが相乗的に作用することによって、電極体内のリチウムイオン等の電荷輸送イオンの円滑かつ均一な移動が著しく促進されたこと等によって、電極体内の充放電反応が偏り難く、その結果、充放電サイクル時の容量維持率の低下が抑制できたものと推測される。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される蓄電素子などに適用できる。
1  蓄電素子
2  電極体
3  容器
4  正極端子
41 正極リード
5  負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置

Claims (4)

  1.  正極活物質層を有する正極及び負極活物質層を有する負極が積層された電極体と、
     上記電極体を収容するための密閉可能な容器と
     を備え、
     上記電極体が、上記正極及び上記負極の積層方向に押圧された状態であり、
     上記正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であり、
     SOC30%における開回路電圧とSOC70%における開回路電圧との差が0.2V以下である蓄電素子。
  2.  正極活物質層を有する正極及び負極活物質層を有する負極が積層された電極体と、
     上記電極体を収容するための密閉可能な容器と
     を備え、
     上記電極体が、上記正極及び上記負極の積層方向に押圧された状態であり、
     上記正極活物質層の細孔径50nmにおける微分細孔容積が、0.0030cm/(g・nm)以上であり、
     上記正極活物質が下記式1で表される化合物又はマンガン酸リチウムを含み、
     上記負極活物質が黒鉛又はチタン酸リチウムを含む蓄電素子。
     LiFeMn(1-x)PO(0≦x≦1) ・・・1
  3.  上記容器の内部が負圧状態である請求項1又は請求項2に記載の蓄電素子。
  4.  蓄電素子を二以上備え、且つ請求項1又は請求項2に記載の蓄電素子を一以上備える蓄電装置。
PCT/JP2023/013750 2022-04-04 2023-04-03 蓄電素子及び蓄電装置 WO2023195434A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022062630 2022-04-04
JP2022-062630 2022-04-04

Publications (1)

Publication Number Publication Date
WO2023195434A1 true WO2023195434A1 (ja) 2023-10-12

Family

ID=88242929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013750 WO2023195434A1 (ja) 2022-04-04 2023-04-03 蓄電素子及び蓄電装置

Country Status (1)

Country Link
WO (1) WO2023195434A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126682A1 (ja) * 2016-01-22 2017-07-27 旭化成株式会社 リチウムイオン二次電池
JP2018026400A (ja) * 2016-08-08 2018-02-15 旭化成株式会社 非水系リチウム型蓄電素子
JP2020167353A (ja) * 2019-03-29 2020-10-08 旭化成株式会社 非水系アルカリ金属蓄電素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126682A1 (ja) * 2016-01-22 2017-07-27 旭化成株式会社 リチウムイオン二次電池
JP2018026400A (ja) * 2016-08-08 2018-02-15 旭化成株式会社 非水系リチウム型蓄電素子
JP2020167353A (ja) * 2019-03-29 2020-10-08 旭化成株式会社 非水系アルカリ金属蓄電素子の製造方法

Similar Documents

Publication Publication Date Title
JP2020123465A (ja) 負極及び負極の製造方法
JP7409132B2 (ja) 非水電解質蓄電素子
WO2023195434A1 (ja) 蓄電素子及び蓄電装置
WO2022249667A1 (ja) 非水電解質蓄電素子及び蓄電装置
US20240186514A1 (en) Nonaqueous electrolyte energy storage device
WO2023224071A1 (ja) 非水電解質蓄電素子
WO2022097612A1 (ja) 非水電解質蓄電素子用正極、非水電解質蓄電素子及び蓄電装置
EP4280330A1 (en) Nonaqueous electrolyte power storage element
WO2023248769A1 (ja) 活物質粒子、電極、蓄電素子及び蓄電装置
EP4307405A1 (en) Nonaqueous-electrolyte electricity storage element
WO2024090207A1 (ja) 非水電解質蓄電素子用の正極及び非水電解質蓄電素子
WO2023074559A1 (ja) 蓄電素子
WO2023171796A1 (ja) 負極、蓄電素子及び蓄電装置
WO2024053496A1 (ja) 電極、蓄電素子及び蓄電装置
US20230155180A1 (en) Energy storage device, method for manufacturing the same and energy storage apparatus
WO2023145677A1 (ja) 非水電解質蓄電素子
US20240178391A1 (en) Nonaqueous electrolyte energy storage device
WO2022239520A1 (ja) 蓄電素子、その製造方法及び蓄電装置
WO2022239861A1 (ja) 蓄電素子
WO2022210643A1 (ja) 蓄電素子
WO2022176925A1 (ja) 蓄電素子
JP2023117881A (ja) 非水電解液蓄電素子
JP2022129039A (ja) 蓄電素子
JP2023056402A (ja) 非水電解質蓄電素子
JP2022129121A (ja) 蓄電素子及び蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784720

Country of ref document: EP

Kind code of ref document: A1