WO2022176925A1 - 蓄電素子 - Google Patents

蓄電素子 Download PDF

Info

Publication number
WO2022176925A1
WO2022176925A1 PCT/JP2022/006232 JP2022006232W WO2022176925A1 WO 2022176925 A1 WO2022176925 A1 WO 2022176925A1 JP 2022006232 W JP2022006232 W JP 2022006232W WO 2022176925 A1 WO2022176925 A1 WO 2022176925A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
gas
storage element
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2022/006232
Other languages
English (en)
French (fr)
Inventor
雄大 川副
勇太 大杉
大聖 関口
和司 新田
Original Assignee
株式会社Gsユアサ
株式会社ブルーエナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ, 株式会社ブルーエナジー filed Critical 株式会社Gsユアサ
Priority to US18/277,932 priority Critical patent/US20240136610A1/en
Priority to JP2023500909A priority patent/JPWO2022176925A1/ja
Priority to EP22756243.6A priority patent/EP4276862A1/en
Priority to CN202280016156.1A priority patent/CN116918115A/zh
Publication of WO2022176925A1 publication Critical patent/WO2022176925A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/136Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/20Reformation or processes for removal of impurities, e.g. scavenging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to power storage elements.
  • Non-aqueous electrolyte secondary batteries typified by lithium-ion non-aqueous electrolyte secondary batteries
  • the non-aqueous electrolyte secondary battery generally includes an electrode body having a pair of electrodes electrically isolated by a separator, and a non-aqueous electrolyte interposed between the electrodes, and ions are formed between the electrodes. It is configured to charge and discharge by performing delivery.
  • Capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as storage elements other than non-aqueous electrolyte secondary batteries.
  • the additive may decompose during the first charge and discharge, generating gases such as carbon monoxide.
  • gases such as carbon monoxide.
  • gas may be generated due to oxidation-reduction decomposition of the electrolyte.
  • this gas tends to accumulate in the gap between the electrodes.
  • the gas existing inside the container may flow into the gap between the electrodes and accumulate therein. In this way, when a gas pool occurs between the electrodes, the active material of the electrode facing the portion where the gas pool exists cannot be charged or discharged, and the performance of the electric storage element may deteriorate.
  • An object of the present invention is to provide an electric storage element that can reduce the occurrence of gas accumulation between electrodes.
  • a power storage element includes an electrode body in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween, an electrolytic solution, and a sealable container for containing the electrode body and the electrolytic solution,
  • the compression elastic modulus of the separator is 15 MPa or more, and the inside of the container is in a negative pressure state.
  • the power storage device can reduce the occurrence of gas accumulation between electrodes.
  • FIG. 1 is a schematic exploded perspective view showing a power storage device according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an electric storage element in one embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing an embodiment of a power storage device configured by assembling a plurality of power storage elements.
  • a power storage element includes an electrode body in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween, an electrolytic solution, and a sealable container for containing the electrode body and the electrolytic solution,
  • the compression elastic modulus of the separator is 15 MPa or more, and the inside of the container is in a negative pressure state.
  • the electric storage element can reduce the occurrence of gas accumulation between the electrodes.
  • the reason for this is not clear, the following reasons are presumed, for example.
  • the expansion and contraction of the electrode due to charging and discharging causes a large change in the load applied to the electrode body, so the gap between the electrodes is rather generated.
  • gas accumulation between the when the inside of the container of the electric storage element is put in a negative pressure state, a force is generated that pulls the container inward, pressing the electrode assembly, thereby discharging the gas existing between the electrodes to the outside of the electrode assembly.
  • the occurrence of gas accumulation between the electrodes can be reduced.
  • the present inventors have found that if the compressive elastic modulus of the separator is small, the separator is compressed when the electrode body is compressed, and the effect of reducing the gap between the electrodes is reduced.
  • the inside of the container is in a negative pressure state, and the compression elastic modulus of the separator is set to 15 MPa or more, so that the gas existing between the electrodes is effectively discharged to the outside of the electrode body, and the gas between the electrodes is discharged. It is possible to reduce the occurrence of pooling.
  • the electric storage element can reduce the occurrence of gas accumulation between the electrodes.
  • the inside of the container is in a negative pressure state means that the pressure in the excess space inside the container is lower than the pressure outside the container.
  • the “surplus space inside the container” means the space obtained by subtracting the portions occupied by the structures such as the electrode body, the electrolytic solution, and the current collector from the space inside the container.
  • the method of making the inside of the container into a negative pressure state is not particularly limited.
  • a method of making the inside of the container into a negative pressure state for example, a method of sealing the inside of the container while reducing the pressure using a vacuum pump or the like, or a method of accommodating a member that adsorbs gas inside the container. , a method of accommodating a gas soluble in the electrolytic solution in the inside of the container, or the like can be adopted.
  • the above methods of creating a negative pressure inside the container can be used singly or in combination.
  • a gas soluble in the electrolytic solution is accommodated inside the container.
  • a gas that is soluble in the electrolytic solution is contained in the sealed container, and the gas dissolves in the electrolytic solution.
  • the pressure inside the container decreases, so that the inside of the container can be brought into a negative pressure state more reliably.
  • the pressure on the electrode body caused by the gas soluble in the electrolytic solution contained in the container is due to the atmospheric pressure, the change in the load on the electrode body is small, and the gap between the electrodes is generated. Hateful.
  • "a gas soluble in an electrolytic solution” means a gas having a solubility of 1 cm 3 or more in 1 cm 3 of electrolytic solution at 25° C. under 1 atmospheric pressure.
  • each component (each component) used in each embodiment may be different from the name of each component (each component) used in the background art.
  • a power storage device includes an electrode body in which a positive electrode and a negative electrode are laminated with a separator interposed therebetween, an electrolytic solution, and a sealable container for containing the electrode assembly and the electrolytic solution. .
  • the interior of the container is under negative pressure.
  • the container contains a gas soluble in the electrolyte.
  • the electrolyte exists in a state contained in the positive electrode, the negative electrode, and the separator.
  • a non-aqueous electrolyte secondary battery hereinafter also simply referred to as a "secondary battery" will be described as an example of a storage element with reference to the drawings. Note that the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships.
  • FIG. 1 shows a power storage element 1 as an example of a square battery.
  • FIG. 2 is a schematic cross-sectional view of the storage element in FIG. 1 above.
  • the storage element 1 includes a wound electrode body 2 in which a positive electrode and a negative electrode stacked with a separator interposed therebetween are wound, and a positive electrode current collector 14 and a negative electrode current collector 15 connected to both ends of the electrode body 2, respectively. , and a positive electrode terminal 4 and a negative electrode terminal 5 provided in the container 3 .
  • the container 3 a known metal container, resin container, or the like, which is usually used as a container for a non-aqueous electrolyte secondary battery, can be used. Examples of the metal include aluminum, stainless steel, nickel-plated steel, and the like.
  • the container 3 is made of aluminum or an alloy mainly composed of aluminum.
  • the plate thickness of the container is not particularly limited, but may be approximately 0.2 mm to 2 mm (eg, 0.3 mm to 1.5 mm, typically 0.35 mm to 1 mm).
  • the container 3 has a flat bottomed rectangular tube-shaped container body 3a and an elongated rectangular plate-like lid 3b capable of closing the elongated rectangular opening of the container body 3a.
  • the electrode body 2 is in direct or indirect contact with the inner surface of the container body 3a.
  • the container body 3a has a pair of wide side surfaces facing each other, a pair of narrow side surfaces facing each other, and a bottom surface facing the lid 3b, with the electrode body 2 interposed therebetween.
  • the electrode body 2 is in direct or indirect contact with the inner surface and the bottom surface of a pair of wide side surfaces of the container body 3a facing each other.
  • a positive electrode terminal 4 and a negative electrode terminal 5 that conduct electricity with the outside are provided on the lid 3b.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via a positive electrode current collector 14 connected to the positive electrode substrate
  • the negative electrode is electrically connected to the negative electrode terminal 4 via a negative electrode current collector 15 connected to the negative electrode substrate. 5 are electrically connected.
  • the inside of the container 3 is in a negative pressure state.
  • a negative pressure state that is, a force is generated to pull the container 3 inward
  • the gas present between the electrodes is discharged to the outside of the electrode body. Therefore, the electric storage device 1 can reduce the occurrence of gas accumulation between the electrodes.
  • the pressure inside the container 3 is preferably 0.09 MPa or less, more preferably 0.085 MPa or less, and further preferably 0.075 MPa or less, from the viewpoint of better exhibiting the effect of reducing the occurrence of gas accumulation between the electrodes. preferable.
  • the pressure may be 0.07 MPa or less, or 0.065 MPa or less (eg, 0.055 MPa).
  • the lower limit of the internal pressure of the container 3 is not particularly limited, it may be 0.02 MPa, for example.
  • the pressure inside the container 3 may be 0.03 MPa or higher, or may be 0.04 MPa or higher (for example, 0.045 MPa or higher) from the viewpoint of negative pressure resistance of the container.
  • the technology disclosed herein can be preferably implemented in a mode in which the pressure inside the container 3 is 0.02 MPa or more and 0.09 MPa or less (preferably 0.03 MPa or more and 0.07 MPa or less).
  • the container 3 contains a gas soluble in the electrolytic solution. Since the gas soluble in the electrolytic solution is contained in the sealed container 3, the gas dissolves in the electrolytic solution, the pressure inside the container 3 can be effectively lowered, and the inside of the container can be brought into a negative pressure state more reliably.
  • the gas soluble in the non-aqueous electrolyte includes, for example, carbon dioxide gas (solubility 5 cm 3 in 1 cm 3 of the non-aqueous electrolyte at 25° C. under 1 atm), Nitrogen gas etc. are mentioned.
  • Carbon dioxide which is easy to handle and obtain, is preferable as the gas. Since carbon dioxide readily dissolves in the non-aqueous electrolyte, the expansion and contraction of the electrodes due to charging and discharging causes the gas existing inside the container (gas containing high-concentration carbon dioxide) to flow into the gap between the electrodes. Even if the gas accumulates in the non-aqueous electrolyte, the gas can be quickly dissolved in the non-aqueous electrolyte, and as a result, the gas accumulation can be easily eliminated.
  • the content (concentration) of carbon dioxide in the excess space inside the container is not particularly limited, but the inside of the container is preferably in a negative pressure state. etc., the content is preferably 2% by volume or more, more preferably 2.5% by volume or more, and even more preferably 3% by volume or more.
  • the carbon dioxide content may be 4% by volume or more, or 5% by volume or more (eg, 6% by volume or more, typically 7% by volume or more).
  • the upper limit of the carbon dioxide content is not particularly limited, it may be approximately 100% by volume (eg, 80% by volume).
  • the carbon dioxide content may be, for example, 50% by volume or less, or may be 30% by volume or less (eg, 20% by volume or less, typically 15% by volume or less).
  • the content (concentration) of carbon dioxide in the electrolyte inside the container is not particularly limited. From the viewpoint of, for example, 0.001% by volume or more, and more preferably 0.003% by volume or more.
  • the content (concentration) of carbon dioxide in the electrolytic solution inside the container may be 0.0035% by volume or more, or 0.005% by volume or more.
  • the electrolytic solution is a non-aqueous electrolytic solution
  • gases that are sparingly soluble or insoluble in the non-aqueous electrolytic solution include oxygen gas, nitrogen gas, and methane gas.
  • the content (concentration) of nitrogen in the extra space inside the container may be 50% by volume or less (eg, 45% by volume or less).
  • the content (concentration) of nitrogen may be 40% by volume or less, or 30% by volume or less.
  • the lower limit of the nitrogen content is not particularly limited, it can be approximately 10% by volume.
  • the nitrogen content may be, for example, 15% by volume or more, or may be 20% by volume or more.
  • the gas soluble in the non-aqueous electrolyte is accommodated in the container so that the nitrogen concentration is as described above, so that the gas between the electrodes is A negative pressure state suitable for reducing the occurrence of gas accumulation can be achieved.
  • the total volume of gases other than nitrogen gas and oxygen gas e.g., carbon dioxide gas, methane gas, carbon monoxide gas, hydrogen gas, etc.
  • the proportion of carbon dioxide may be 4% by volume or more (for example, 4% by volume or more and 20% by volume or less).
  • the proportion of carbon dioxide is preferably 6% by volume or more (eg, 6% by volume or more and 18% by volume or less), more preferably 8% by volume or more (eg, 8% by volume or more and 16% by volume or less). In some embodiments, the proportion of carbon dioxide may be 10% by volume or more, or 12% by volume or more.
  • a member capable of adsorbing a gas soluble in the electrolytic solution is further accommodated in the container.
  • the content (concentration) of the gas soluble in the electrolytic solution in the excess space inside the container is easily reduced,
  • the inside of the container is in a more suitable negative pressure state, the gas between the electrodes can be more easily discharged to the outside of the electrode body. Therefore, it is possible to further improve the effect of reducing the occurrence of gas accumulation between the electrodes.
  • the gas soluble in the electrolytic solution is also adsorbed by the member capable of adsorbing the gas soluble in the electrolytic solution, the time required for the inside of the container to become in a negative pressure state after the container is sealed. can be shortened.
  • the electrode body 2 may be of a wound type in which positive electrodes and negative electrodes are laminated with separators interposed therebetween and wound, or may be of a laminated type in which a plurality of positive electrodes and a plurality of negative electrodes are laminated with separators interposed therebetween.
  • the electrode body 2 is a flat wound electrode body. In the wound electrode body, the gas generated between the electrodes is less likely to be discharged out of the electrode body than in the laminated electrode body.
  • the electrode body 2 has two winding R portions and two flat portions. The two flat portions correspond to the flat portions of the outer wall side surface forming the electrode body 2, and are arranged to face the wide side surfaces of the inner wall side forming the container body.
  • the two flat portions are arranged so as to be in contact with the wide side surface of the container body.
  • the two winding R portions correspond to the curved portions (curved portions) of the outer wall side surfaces of the electrode body 2, and are arranged facing the bottom surface and the lid of the container body, respectively.
  • the two winding R portions are arranged so as not to come into contact with the wide side surface of the container body.
  • the flat portion (flat surface) is pressed in the thickness direction (the direction of the short side of the rectangular plate-like lid and the stacking direction of the positive electrode, the negative electrode, and the separator). By compressing the flat portion (flat surface) of the electrode body 2 in the thickness direction in this way, it is possible to further reduce the occurrence of gas accumulation between the electrodes.
  • the electrode body 2 When the electrode body 2 is of a winding type, the electrode body 2 may further include a winding core in the central portion and may be wound around the winding core.
  • the core may have either a hollow structure or a solid structure, but a hollow core is preferred. Since the electrode body 2 is provided with a core having a hollow structure, the gas soluble in the electrolytic solution is sealed in the state where the hollow region is formed at the center of the electrode body 2, so that the pressure inside the container 3 is reduced. can be lowered more effectively.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer disposed directly on the positive electrode base material or via an intermediate layer.
  • a positive electrode base material has electroconductivity. Whether or not a material has "conductivity" is determined using a volume resistivity of 10 7 ⁇ cm as a threshold measured according to JIS-H-0505 (1975).
  • the material for the positive electrode substrate metals such as aluminum, titanium, tantalum and stainless steel, or alloys thereof are used. Among these, aluminum or an aluminum alloy is preferable from the viewpoint of potential resistance, high conductivity, and cost.
  • the positive electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, aluminum foil or aluminum alloy foil is preferable as the positive electrode substrate. Examples of aluminum or aluminum alloys include A1085, A3003, A1N30, etc. defined in JIS-H-4000 (2014) or JIS-H4160 (2006).
  • the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, even more preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the intermediate layer is a layer arranged between the positive electrode substrate and the positive electrode active material layer.
  • the intermediate layer contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode substrate and the positive electrode active material layer.
  • the composition of the intermediate layer is not particularly limited, and includes, for example, a binder and a conductive agent.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material layer contains arbitrary components such as a conductive agent, a binder (binding agent), a thickener, a filler, etc., as required.
  • the positive electrode active material can be appropriately selected from known positive electrode active materials.
  • a positive electrode active material for lithium ion secondary batteries a material capable of intercalating and deintercalating lithium ions is usually used.
  • positive electrode active materials include lithium-transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure, lithium-transition metal composite oxides having a spinel-type crystal structure, polyanion compounds, chalcogen compounds, and sulfur.
  • lithium transition metal composite oxides having an ⁇ -NaFeO 2 type crystal structure examples include Li[Li x Ni (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[Li x Ni ⁇ Co ( 1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Co (1-x) ]O 2 (0 ⁇ x ⁇ 0.5), Li[ Li x Ni ⁇ Mn (1-x- ⁇ ) ]O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ 1), Li[Li x Ni ⁇ Mn ⁇ Co (1-x- ⁇ - ⁇ ) ] O 2 (0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1), Li[Li x Ni ⁇ Co ⁇ Al (1-x- ⁇ - ⁇ ) ]O 2 ( 0 ⁇ x ⁇ 0.5, 0 ⁇ , 0 ⁇ , 0.5 ⁇ + ⁇ 1) and the like.
  • lithium transition metal composite oxides having a spinel crystal structure examples include Li x Mn 2 O 4 and Li x Ni ⁇ Mn (2- ⁇ ) O 4 .
  • polyanion compounds include LiFePO4 , LiMnPO4 , LiNiPO4 , LiCoPO4, Li3V2(PO4)3 , Li2MnSiO4 , Li2CoPO4F and the like.
  • chalcogen compounds include titanium disulfide, molybdenum disulfide, and molybdenum dioxide.
  • the atoms or polyanions in these materials may be partially substituted with atoms or anionic species of other elements. These materials may be coated with other materials on their surfaces. In the positive electrode active material layer, one kind of these materials may be used alone, or two or more kinds may be mixed and used.
  • the positive electrode active material is composed of a lithium transition metal composite oxide having an ⁇ -NaFeO 2 type crystal structure in terms of charge/discharge performance, energy density, and the like.
  • the lithium-transition metal composite oxide nickel-containing lithium-transition metal composite oxide containing at least nickel (Ni) as a constituent element in addition to Li, cobalt-containing lithium-transition metal composite oxide containing at least cobalt (Co) as a constituent element
  • Examples include oxides, manganese-containing lithium transition metal composite oxides containing at least manganese (Mn) as a constituent element, and the like. Among them, nickel-containing lithium-transition metal composite oxides are preferred, and lithium-transition metal composite oxides containing nickel, manganese and cobalt are more preferred.
  • the positive electrode active material is usually particles (powder).
  • the average particle size of the positive electrode active material is preferably, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. By making the average particle size of the positive electrode active material equal to or more than the above lower limit, manufacturing or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to the above upper limit or less, the electron conductivity of the positive electrode active material layer is improved. Note that when a composite of a positive electrode active material and another material is used, the average particle size of the composite is taken as the average particle size of the positive electrode active material.
  • Average particle size is based on JIS-Z-8825 (2013), based on the particle size distribution measured by a laser diffraction / scattering method for a diluted solution in which particles are diluted with a solvent, JIS-Z-8819 -2 (2001) means a value at which the volume-based integrated distribution calculated according to 50%.
  • Pulverizers, classifiers, etc. are used to obtain powder with a predetermined particle size.
  • Pulverization methods include, for example, methods using a mortar, ball mill, sand mill, vibrating ball mill, planetary ball mill, jet mill, counter jet mill, whirling jet mill, or sieve.
  • wet pulverization in which water or an organic solvent such as hexane is allowed to coexist can also be used.
  • a sieve, an air classifier, or the like is used as necessary, both dry and wet.
  • the content of the positive electrode active material in the positive electrode active material layer is preferably 50% by mass or more and 99% by mass or less, more preferably 70% by mass or more and 98% by mass or less, and even more preferably 80% by mass or more and 95% by mass or less.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • Examples of such conductive agents include carbonaceous materials, metals, and conductive ceramics.
  • Carbonaceous materials include graphite, non-graphitic carbon, graphene-based carbon, and the like.
  • Examples of non-graphitic carbon include carbon nanofiber, pitch-based carbon fiber, and carbon black.
  • Examples of carbon black include furnace black, acetylene black, and ketjen black.
  • Graphene-based carbon includes graphene, carbon nanotube (CNT), fullerene, and the like.
  • the shape of the conductive agent may be powdery, fibrous, or the like.
  • As the conductive agent one type of these materials may be used alone, or two or more types may be mixed and used. Also, these materials may be combined for use.
  • a composite material of carbon black and CNT may be used.
  • carbon black is preferable from the viewpoint of electron conductivity and coatability
  • acetylene black is particularly preferable
  • the content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • Binders include, for example, fluorine resins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfone Elastomers such as modified EPDM, styrene-butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
  • fluorine resins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, polyacryl, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene-butadiene rubber
  • fluororubber polysaccharide polymers and the like.
  • the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, more preferably 3% by mass or more and 9% by mass or less.
  • thickeners examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • the functional group may be previously deactivated by methylation or the like.
  • the filler is not particularly limited.
  • Fillers include polyolefins such as polypropylene and polyethylene, inorganic oxides such as silicon dioxide, alumina, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate, magnesium hydroxide, calcium hydroxide, hydroxide Hydroxides such as aluminum, carbonates such as calcium carbonate, sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite, zeolite, Mineral resource-derived substances such as apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof may be used.
  • the positive electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, and the like.
  • typical metal elements, transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb, W are used as positive electrode active materials, conductive agents, binders, thickeners, fillers It may be contained as a component other than
  • the mass per unit area of the positive electrode active material layer (one side) is not particularly limited, but may be, for example, 2.0 mg/cm 2 or more and 30.0 mg/cm 2 or less in terms of solid content.
  • the mass per unit area of the positive electrode active material layer is preferably 3.0 mg/cm 2 or more and 20.0 mg/cm 2 or less, more preferably 4.0 mg/cm 2 or more and 15.0 mg/cm 2 or less, and 5.0 mg. /cm 2 or more and 10.0 mg/cm 2 or less is more preferable.
  • the negative electrode has a negative electrode base material and a negative electrode active material layer disposed directly on the negative electrode base material or via an intermediate layer.
  • the structure of the intermediate layer is not particularly limited, and can be selected from, for example, the structures exemplified for the positive electrode.
  • the negative electrode base material has conductivity.
  • materials for the negative electrode substrate metals such as copper, nickel, stainless steel, nickel-plated steel, aluminum, alloys thereof, carbonaceous materials, and the like are used. Among these, copper or a copper alloy is preferred.
  • the negative electrode substrate include foil, deposited film, mesh, porous material, and the like, and foil is preferable from the viewpoint of cost. Therefore, copper foil or copper alloy foil is preferable as the negative electrode substrate.
  • Examples of copper foil include rolled copper foil and electrolytic copper foil.
  • the average thickness of the negative electrode substrate is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, even more preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material layer contains arbitrary components such as a conductive agent, a binder, a thickener, a filler, etc., as required.
  • Optional components such as conductive agents, binders, thickeners, and fillers can be selected from the materials exemplified for the positive electrode.
  • the negative electrode active material layer contains typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba, Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, etc. are used as negative electrode active materials, conductive agents, binders, You may contain as a component other than a thickener and a filler.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials. Materials capable of intercalating and deintercalating lithium ions are usually used as negative electrode active materials for lithium ion secondary batteries.
  • the negative electrode active material include metal Li; metals or metalloids such as Si and Sn; metal oxides and metalloid oxides such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTiO 2 and TiNb 2 O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite and non-graphitizable carbon (easily graphitizable carbon or non-graphitizable carbon) be done.
  • non-graphitic carbon especially non-graphitizable carbon
  • one type of these materials may be used alone, or two or more types may be mixed and used.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging/discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm.
  • Graphite includes natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material with stable physical properties can be obtained.
  • Non-graphitic carbon means a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by X-ray diffraction before charging/discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less.
  • Non-graphitizable carbon includes non-graphitizable carbon and graphitizable carbon.
  • Examples of non-graphitic carbon include resin-derived materials, petroleum pitch or petroleum pitch-derived materials, petroleum coke or petroleum coke-derived materials, plant-derived materials, and alcohol-derived materials.
  • the discharged state means a state in which the carbon material, which is the negative electrode active material, is discharged such that lithium ions that can be inserted and released are sufficiently released during charging and discharging.
  • the open circuit voltage is 0.7 V or higher.
  • non-graphitizable carbon refers to a carbon material having a d 002 of 0.36 nm or more and 0.42 nm or less.
  • Graphitizable carbon refers to a carbon material having a d 002 of 0.34 nm or more and less than 0.36 nm.
  • the negative electrode active material is usually particles (powder).
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the negative electrode active material is a carbon material, a titanium-containing oxide or a polyphosphate compound
  • the average particle size may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is Si, Sn, Si oxide, Sn oxide, or the like
  • the average particle size may be 1 nm or more and 1 ⁇ m or less.
  • the electron conductivity of the active material layer is improved.
  • a pulverizer, a classifier, or the like is used to obtain powder having a predetermined particle size.
  • the pulverization method and the powder class method can be selected from, for example, the methods exemplified for the positive electrode.
  • the negative electrode active material is metal such as metal Li
  • the negative electrode active material may be foil-shaped.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less.
  • the mass per unit area of the negative electrode active material layer (one side) is not particularly limited, but may be, for example, 0.5 mg/cm 2 or more and 20.0 mg/cm 2 or less in terms of solid content.
  • the mass per unit area of the negative electrode active material layer is preferably 0.8 mg/cm 2 or more and 15.0 mg/cm 2 or less, more preferably 1.0 mg/cm 2 or more and 10.0 mg/cm 2 or less, and 2.0 mg. /cm 2 or more and 7.0 mg/cm 2 or less is more preferable.
  • the lower limit of the compressive elastic modulus of the separator of the electric storage element of the present embodiment is 15 MPa, preferably 17 MPa, more preferably 19 MPa (eg, 20 MPa).
  • the compressive elastic modulus of the separator is equal to or higher than the lower limit, compression of the separator is suppressed when pressed, and the effect of reducing gas accumulation between electrodes can be improved.
  • the upper limit of the compression modulus of the separator is preferably 50 MPa, more preferably 40 MPa, and even more preferably 30 MPa.
  • the compressive elastic modulus of the separator When the compressive elastic modulus of the separator is equal to or less than the upper limit, the compressive force applied to the electrode assembly is less likely to be biased, and the effect of reducing gas accumulation between the electrodes can be improved.
  • a separator having such a compressive elastic modulus is also suitable from the viewpoint of reducing the resistance of the storage element.
  • the compressive modulus of the separator can be adjusted by changing the porosity, material, drawing method, and molecular weight in the case of a polymer material.
  • the relationship between the compressive elastic modulus X (MPa) of the separator and the pressure P (absolute pressure: MPa) inside the container satisfies 180 ⁇ (X/P) ⁇ 600. Fulfill.
  • MPa compressive elastic modulus X
  • P absolute pressure: MPa
  • the relationship between X and P is 200 ⁇ (X/P) ⁇ 580, more preferably 220 ⁇ (X/P) ⁇ 550, and still more preferably 300 ⁇ (X/P ) ⁇ 500, particularly preferably 350 ⁇ (X/P) ⁇ 450.
  • a separator having an appropriate compressive elastic modulus can be appropriately selected and used from known separators.
  • the separator for example, a separator consisting of only a substrate layer, a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one or both surfaces of a substrate layer, or the like can be used.
  • the form of the base material layer of the separator include woven fabric, non-woven fabric, porous resin film, and the like. Among these forms, a porous resin film is preferable from the viewpoint of strength.
  • Materials for the base layer of the separator include polyolefins such as polyethylene (PE) and polypropylene (PP); polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyacrylonitrile; Sulfide, polyimide, fluorine resin and the like are included. Among these, polyolefin is preferred. Copolymers of monomers constituting these resins may also be used.
  • the base material layer of the separator is made of polyethylene resin.
  • the polyethylene-based resin an ethylene homopolymer or an ethylene copolymer is preferably used.
  • ethylene copolymer a resin containing 50% by mass or more of repeating units derived from ethylene, a copolymer obtained by polymerizing an olefin copolymerizable with ethylene, or at least one copolymerizable with ethylene.
  • a copolymer obtained by polymerizing the monomers of can be used.
  • Propylene etc. are illustrated as ethylene and an olefin which can be copolymerized.
  • Other monomers include conjugated dienes (eg, butadiene), acrylic acid, and the like.
  • a uniaxially stretched or biaxially stretched porous resin film can be suitably used as the substrate layer of the separator.
  • a porous resin film uniaxially stretched in the longitudinal direction can be preferably used.
  • "uniaxial stretching” refers to stretching only in one direction (e.g., longitudinal direction) in the process of stretching a resin film at a temperature equal to or higher than the glass transition temperature to orient the molecules. It refers to stretching in two directions (for example, the longitudinal direction and the width direction).
  • the width direction refers to a direction parallel to the conveying surface of the resin film and perpendicular to the longitudinal direction.
  • a dry base material layer in which dry stretching e.g., uniaxial stretching
  • a wet state e.g., a state in which a raw material resin and a solvent are mixed
  • a wet base layer employing wet stretching can be used.
  • a dry base layer is preferable.
  • the dry stretching of the microporous membrane can be performed by roll stretching or the like while heating.
  • a dry-stretched base material layer is particularly preferable because it is easy to adjust the compressive modulus of the separator to the preferred numerical value disclosed herein, and has moderate strength and less heat shrinkage in the width direction. .
  • the structure of the substrate layer may be a single layer structure, a mixed structure (for example, a mixed structure of PP and PE), or a multilayer structure (for example, a three-layer structure of PP/PE/PP or a PP /PE two-layer structure). Among them, a three-layer structure of PP/PE/PP is preferable.
  • the porosity of the base layer of the separator is not particularly limited, but the lower limit is preferably 20% by volume, more preferably 30% by volume. In some aspects, the porosity of the separator may be, for example, 35% by volume or more, typically 40% by volume or more. On the other hand, the upper limit of the porosity is preferably 80% by volume, more preferably 70% by volume. In some embodiments, the porosity of the separator may be, for example, 65% by volume or less, typically 60% by volume or less (eg, 55% by volume or less). The porosity of the separator may be, for example, 50% by volume or less, or may be 45% by volume or less.
  • the "porosity" is a volume-based value and means a value measured with a mercury porosimeter.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when the temperature is raised from room temperature to 500 ° C. in an air atmosphere of 1 atm, and the mass loss when the temperature is raised from room temperature to 800 ° C. is more preferably 5% or less.
  • An inorganic compound can be mentioned as a material whose mass reduction is less than or equal to a predetermined value. Examples of inorganic compounds include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, and aluminosilicate; nitrides such as aluminum nitride and silicon nitride.
  • carbonates such as calcium carbonate
  • sulfates such as barium sulfate
  • sparingly soluble ionic crystals such as calcium fluoride, barium fluoride, and barium titanate
  • covalent crystals such as silicon and diamond
  • Mineral resource-derived substances such as zeolite, apatite, kaolin, mullite, spinel, olivine, sericite, bentonite, and mica, or artificial products thereof.
  • the inorganic compound a single substance or a composite of these substances may be used alone, or two or more of them may be mixed and used.
  • silicon oxide, aluminum oxide, boehmite, or aluminosilicate is preferable from the viewpoint of the safety of the electric storage device.
  • the thickness of the separator (the total thickness of the base layer and the heat-resistant layer when the heat-resistant layer is included) is not particularly limited, but the lower limit is preferably 3 ⁇ m, more preferably 5 ⁇ m. In some embodiments, the thickness of the separator may be, for example, 8 ⁇ m or greater, typically 10 ⁇ m or greater. On the other hand, the upper limit of the heat is preferably 30 ⁇ m, more preferably 25 ⁇ m. In some embodiments, the thickness of the separator may be, for example, 20 ⁇ m or less, typically 15 ⁇ m or less (eg, 12 ⁇ m or less).
  • a non-aqueous electrolyte As the electrolyte, a non-aqueous electrolyte is used when the storage element is a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte can be appropriately selected from known non-aqueous electrolytes.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in this non-aqueous solvent.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • Non-aqueous solvents include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like.
  • the non-aqueous solvent those in which some of the hydrogen atoms contained in these compounds are substituted with halogens may be used.
  • Cyclic carbonates include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinylethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like. Among these, EC and PC are preferred.
  • chain carbonates examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis(trifluoroethyl) carbonate, and the like.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • diphenyl carbonate trifluoroethylmethyl carbonate
  • trifluoroethylmethyl carbonate trifluoroethylmethyl carbonate
  • bis(trifluoroethyl) carbonate and the like.
  • the non-aqueous solvent it is preferable to use a cyclic carbonate or a chain carbonate, and it is more preferable to use a combination of a cyclic carbonate and a chain carbonate.
  • a cyclic carbonate it is possible to promote the dissociation of the electrolyte salt and improve the ionic conductivity of the non-aqueous electrolyte.
  • a chain carbonate By using a chain carbonate, the viscosity of the non-aqueous electrolyte can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • the electrolyte salt can be appropriately selected from known electrolyte salts.
  • electrolyte salts include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts and the like. Among these, lithium salts are preferred.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 and LiN(SO 2 F) 2 , lithium bis(oxalate) borate (LiBOB), lithium difluorooxalate borate (LiFOB).
  • lithium oxalate salts such as lithium bis(oxalate) difluorophosphate ( LiFOP ), LiSO3CF3 , LiN ( SO2CF3 ) 2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ) (SO 2 C 4 F 9 ), LiC(SO 2 CF 3 ) 3 , LiC(SO 2 C 2 F 5 ) 3 and other lithium salts having a halogenated hydrocarbon group.
  • inorganic lithium salts are preferred, and LiPF6 is more preferred.
  • the content of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol/dm3 or more and 2.5 mol/dm3 or less , and 0.3 mol/dm3 or more and 2.0 mol/dm3 or less at 20 °C and 1 atm. It is more preferably 3 or less, more preferably 0.5 mol/dm 3 or more and 1.7 mol/dm 3 or less, and particularly preferably 0.7 mol/dm 3 or more and 1.5 mol/dm 3 or less.
  • the non-aqueous electrolyte may contain additives in addition to the non-aqueous solvent and electrolyte salt.
  • additives include halogenated carbonates such as fluoroethylene carbonate (FEC) and difluoroethylene carbonate (DFEC); lithium bis(oxalate)borate (LiBOB), lithium difluorooxalateborate (LiFOB), lithium bis(oxalate ) oxalates such as difluorophosphate (LiFOP); imide salts such as lithium bis(fluorosulfonyl)imide (LiFSI); biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene , t-amylbenzene, diphenyl ether, dibenzofuran and other aromatic compounds; 2-fluorobiphenyl, o-cyclohexylfluorobenzene
  • the content of the additive contained in the non-aqueous electrolyte is preferably 0.01% by mass or more and 10% by mass or less, and 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolyte. More preferably, it is 0.2% by mass or more and 5% by mass or less, and particularly preferably 0.3% by mass or more and 3% by mass or less.
  • the shape of the electric storage element of the present embodiment is not particularly limited, for example, a flat rectangular battery is preferable. Since the shape of the storage element is a flat rectangular battery, when the inside of the container is in a negative pressure state, a force that pulls the container inward is generated, so that at least one side surface of the container body is likely to be dented. . Since the side surface of the electrode body that faces the recessed side surface of the container body is pressurized in the thickness direction by the negative pressure, the gas between the electrodes is more easily discharged outside the electrode body, and the occurrence of gas accumulation between the electrodes is reduced. can improve effectiveness.
  • the method for manufacturing the electric storage element of the present embodiment includes, for example, housing an electrode body in which a negative electrode and a positive electrode are stacked in a container (hereinafter also referred to as an electrode body housing step), and housing an electrolytic solution in the container (hereinafter also referred to as an electrode body housing step). , also referred to as an electrolytic solution accommodating step), creating a negative pressure state inside the container (hereinafter also referred to as a negative pressure forming step), and sealing the container (hereinafter also referred to as a sealing step).
  • a container housing step also referred to as an electrode body housing step
  • an electrolytic solution accommodating step also referred to as an electrolytic solution accommodating step
  • creating a negative pressure state inside the container hereinafter also referred to as a negative pressure forming step
  • sealing step hereinafter also referred to as a sealing step.
  • the negative pressure forming step includes accommodating a gas soluble in the electrolytic solution in the container after the electrolytic solution accommodating step and before the sealing step (hereinafter also referred to as a gas accommodating step).
  • a gas accommodating step a gas soluble in the electrolytic solution in the container after the electrolytic solution accommodating step and before the sealing step.
  • other steps include, for example, forming a positive electrode (hereinafter also referred to as a positive electrode forming step) and forming a negative electrode (hereinafter also referred to as a negative electrode forming step). (hereinafter also referred to as an electrode body forming step).
  • a positive electrode having a positive electrode base material and a positive electrode active material layer is formed.
  • the positive electrode material mixture containing the positive electrode active material is applied to the positive electrode substrate so that the positive electrode mixture can be arranged along at least one surface of the positive electrode substrate.
  • the positive electrode active material layer is arranged by coating the positive electrode mixture on the positive electrode base material and drying it.
  • the positive electrode mixture may be a positive electrode mixture paste that further contains a dispersion medium in addition to the above optional components.
  • a dispersion medium examples include aqueous solvents such as water and mixed solvents mainly containing water; and organic solvents such as N-methylpyrrolidone (NMP) and toluene.
  • the positive electrode active material layer may be laminated on the positive electrode substrate directly or via an intermediate layer.
  • a negative electrode having a negative electrode base material and a negative electrode active material layer is formed.
  • the negative electrode mixture containing the negative electrode active material is applied to the negative electrode substrate, so that the negative electrode mixture can be arranged along at least one surface of the negative electrode substrate.
  • the negative electrode active material layer is arranged by coating the negative electrode mixture on the negative electrode base material and drying it.
  • the negative electrode mixture may be a negative electrode mixture paste containing a dispersion medium in addition to the optional components described above.
  • the dispersion medium can be arbitrarily selected from those exemplified in the positive electrode forming step.
  • the negative electrode active material layer may be laminated on the negative electrode substrate directly or via an intermediate layer.
  • an electrode assembly is formed using the positive electrode and the negative electrode.
  • the electrode body is preferably a flat wound electrode body having a pair of winding R portions facing each other and a flat portion positioned between the pair of winding R portions.
  • the positive electrode and the negative electrode are stacked or wound with the separator interposed therebetween to form an alternately stacked electrode body.
  • Electrode assembly step In the electrode body accommodating step, the electrode body in which the negative electrode and the positive electrode are laminated is accommodated in a container.
  • the electrolytic solution accommodating step the electrolytic solution is accommodated in the container.
  • the electrolytic solution can be accommodated by a known method.
  • the electric storage element is a non-aqueous electrolyte secondary battery
  • the non-aqueous electrolyte is contained in the container by, for example, pouring the non-aqueous electrolyte through an inlet provided in the container.
  • the gas soluble in the electrolyte is accommodated in the container.
  • a gas soluble in the electrolytic solution is injected into the container through the injection port, so that the gas soluble in the electrolytic solution is contained in the container.
  • the injection of the gas soluble in the electrolytic solution may be performed at atmospheric pressure, or may be performed in a state where the pressure inside the container is reduced using a vacuum pump or the like.
  • reduced pressure means that the pressure in the excess space inside the container is less than the atmospheric pressure.
  • the gas accommodation step is performed in a pressurized state, the gas soluble in the electrolyte solution is too dissolved in the electrolyte solution before sealing, so the gas soluble in the electrolyte solution is dissolved in the electrolyte solution after the sealing step. Furthermore, it becomes difficult to dissolve, and there is a risk that the inside of the container will not be in a sufficiently negative pressure state.
  • the injection port may be provided separately from the injection port for injecting the electrolytic solution.
  • the inside of the container is in a negative pressure state.
  • Accommodating a gas that is soluble in the electrolytic solution can be mentioned.
  • the gas dissolves in the electrolytic solution after the sealing step, thereby increasing the pressure inside the container. can be brought down to a suitable negative pressure inside the container.
  • the electrolytic solution is accommodated in the container after the gas soluble in the electrolytic solution is accommodated in the container, most of the gas soluble in the electrolytic solution is contained in the electrolytic solution when the electrolytic solution is accommodated.
  • the gas soluble in the electrolyte dissolves too much in the electrolyte before the sealing step (for example, saturated dissolution). That is, if too much gas soluble in the electrolytic solution dissolves in the electrolytic solution before the sealing step, it becomes difficult for the gas soluble in the electrolytic solution to further dissolve in the electrolytic solution after the sealing step. It may not be possible to effectively reduce the pressure inside the container.
  • precharging is performed, and after the pressure inside the container is reduced using a vacuum pump or the like, the pressure inside the container is adjusted to near atmospheric pressure. It is preferable to inject a gas soluble in the electrolytic solution.
  • the pressure inside the container immediately after injection of the gas soluble in the electrolytic solution is an important factor from the viewpoint of bringing the inside of the container into a suitable negative pressure state after the sealing step.
  • the pressure inside the container immediately after injection of the gas soluble in the electrolytic solution is preferably 0.1 MPa or more and 0.2 MPa or less, more preferably 0.1 MPa or more and 0.15 MPa or less, further preferably 0.1 MPa or more and 0.1 MPa or more. 0.12 MPa or less, particularly preferably 0.1 MPa or more and 0.11 MPa or less.
  • the amount of the gas soluble in the electrolytic solution is preferably 40% by volume or more with respect to the volume of the excess space inside the container from the viewpoint of reducing the pressure inside the container, and is preferably 70% by volume. % or more, and may be, for example, 95 volume % or more.
  • the capacity of the gas soluble in the electrolytic solution may be 100% by volume with respect to the volume of the excess space inside the container.
  • the amount of gas soluble in the electrolytic solution is preferably 70% by volume or more and 100% by volume or less, more preferably 80% by volume or more with respect to the volume of the excess space inside the container. It can be preferably carried out in a mode of 95% by volume or less.
  • the volume of the surplus space in the container means the volume obtained by subtracting the volume of the structure such as the electrode body, the electrolytic solution, and the current collector from the internal volume of the container.
  • the volume of the electrode body means the actual volume of the constituent elements (active material, separator, etc.) of the electrode, and does not include the voids present between the active materials and within the separator. That is, the volume of the surplus space inside the container means the volume of the gas contained inside the container when the pressure inside the container is 1 atm (0.1013 MPa) at 25°C.
  • the content of the gas soluble in the electrolyte contained in the container is 80 volumes with respect to the total gas contained in the container from the viewpoint of reducing the pressure inside the container. % or more, preferably 98 volume % or more, more preferably 100 volume %. From the viewpoint of easy handling of the gas, the content of the gas soluble in the electrolytic solution may be 80% by volume or less of the total amount of gas contained in the container.
  • the container is sealed while the gas soluble in the electrolytic solution is contained in the container.
  • the storage device can be obtained by sealing the injection port after the gas is contained in the container.
  • the injection port is sealed, for example, by closing the injection port with a sealing member and fixing the sealing member by laser welding or the like.
  • the sealing process must be performed immediately after sealing the gas soluble in the electrolyte. If the gas soluble in the electrolyte solution is left for a long time after sealing, the gas soluble in the electrolyte solution will dissolve too much in the electrolyte solution before the sealing process, so the gas soluble in the electrolyte solution will not be dissolved after the sealing process. becomes more difficult to dissolve in the electrolytic solution, and the interior of the container may not be in a sufficiently negative pressure state. As for the elapsed time from the accommodation of the gas soluble in the electrolyte to the sealing of the injection port, the gas soluble in the electrolyte before the sealing process dissolves in the electrolyte, or the gas passes through the injection port by diffusion.
  • the elapsed time is preferably 30 minutes or less (eg, 1 to 30 minutes), more preferably 20 minutes or less, even more preferably 15 minutes or less, and particularly preferably 10 minutes or less (eg, 5 minutes or less).
  • the step of temporarily sealing the injection port is, for example, a step of temporarily closing the injection port using a rubber plug member or the like.
  • the injection port may be closed with the sealing member, and the sealing member may be fixed by laser welding or the like.
  • a sealing member may be arranged to cover the plug member or the like for closing the injection port, and the sealing member may be fixed by laser welding or the like.
  • the internal pressure of the container when the dissolution of the gas soluble in the electrolytic solution into the electrolytic solution reaches an equilibrium state effectively suppresses an increase in the distance between the electrodes. From the point of view, it is preferably 0.02 MPa or more and 0.09 MPa or less at 25°C.
  • the pressure inside the container immediately after sealing is preferably 0.1 MPa or more and 0.2 MPa or less. That is, immediately after the sealing process, most of the gas soluble in the electrolyte solution is not dissolved in the electrolyte solution, and after the sealing process, the gas soluble in the electrolyte solution is dissolved in the electrolyte solution. , the pressure inside the container can be reduced.
  • the details of the electrode body, the electrolyte, the gas soluble in the electrolyte, the container, etc. in the method of manufacturing the electric storage element are as described above.
  • the electric storage device of the present invention is not limited to the above-described embodiments, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of another embodiment can be added to the configuration of one embodiment, and part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a known technique.
  • some of the configurations of certain embodiments can be deleted.
  • well-known techniques can be added to the configuration of a certain embodiment.
  • the flat-shaped wound electrode body has two winding R portions and two flat portions, and the two flat portions are the wide width portion constituting the container body.
  • the two winding R portions are arranged to face the wide side surface so as to be in direct or indirect contact with the wide side surface, and the two winding R portions are arranged so as not to contact the wide side surface.
  • the two winding R portions may be arranged so as to face the narrow side surfaces of the container body so as not to come into contact with the wide side surfaces. Since such a wound electrode body is more resistant to gas accumulation than a laminated electrode body, the effect of applying this aspect can be exhibited more effectively.
  • the present invention is not limited to this.
  • a method of making the inside of the container into a negative pressure state a method of sealing the inside of the container while reducing the pressure inside the container using a vacuum pump or the like may be adopted.
  • the negative pressure forming step may include a pressure reducing step of reducing the pressure inside the container using a vacuum pump or the like instead of the gas containing step.
  • Such a depressurization step can be performed after the electrolytic solution accommodating step and before the sealing step.
  • the storage element is used as a chargeable/dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery), but the type, shape, size, capacity, etc. of the storage element are arbitrary. be.
  • the present invention can also be applied to capacitors such as various secondary batteries, electric double layer capacitors, and lithium ion capacitors.
  • the power storage device of the present embodiment is a power source for automobiles such as electric vehicles (EV), hybrid vehicles (HEV), and plug-in hybrid vehicles (PHEV), power sources for electronic devices such as personal computers and communication terminals, or power sources for power storage.
  • EV electric vehicles
  • HEV hybrid vehicles
  • PHEV plug-in hybrid vehicles
  • power sources for electronic devices such as personal computers and communication terminals
  • power sources for power storage
  • it can be mounted as a power storage unit (battery module) configured by assembling a plurality of power storage elements 1 .
  • the technology of the present invention may be applied to at least one power storage element included in the power storage unit.
  • FIG. 3 shows an example of a power storage device 30 in which power storage units 20 each including two or more electrically connected power storage elements 1 are assembled.
  • the power storage device 30 may include a bus bar (not shown) that electrically connects two or more power storage elements 1, a bus bar (not shown) that electrically connects two or more power storage units 20, and the like.
  • the power storage unit 20 or the power storage device 30 may include a state monitoring device (not shown) that monitors the state of one or more power storage elements 1 .
  • Examples 1 to 3 and Comparative Examples 1 to 3 (1) Positive electrode formation step LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, PVDF as a binder, and acetylene black as a conductive agent are contained, and NMP is used as a dispersion medium.
  • a positive electrode mixture paste was prepared. The ratio of the positive electrode active material, the binder, and the conductive agent was set to 90:5:5 in mass ratio in terms of solid content.
  • the positive electrode mixture paste was applied to both sides of a 12 ⁇ m thick aluminum foil as a positive electrode base material and dried to form a positive electrode active material layer. was obtained.
  • the coating amount of the positive electrode mixture (a product obtained by evaporating the dispersion medium from the positive electrode mixture paste) per unit area on one side after drying was set to 8.5 mg/cm 2 .
  • Negative Electrode Forming Step A negative electrode mixture paste containing non-graphitizable carbon as a negative electrode active material, PVDF as a binder, and NMP as a dispersion medium was prepared. The ratio of the negative electrode active material and the binder was set to 95:5 in terms of solid content mass ratio. The negative electrode mixture paste was applied to both sides of a copper foil having a thickness of 8 ⁇ m as a negative electrode base material and dried to form a negative electrode active material layer. was obtained. The coating amount of the negative electrode mixture (a dispersion medium evaporated from the negative electrode mixture paste) per unit area on one side after drying was set to 4 mg/cm 2 .
  • Electrode body forming step The negative electrode and positive electrode described above and a separator having a thickness of 20 ⁇ m having the compression elastic modulus and porosity shown in Table 1 are laminated and wound around a core having a hollow structure. Thus, wound electrode bodies of Examples 1 to 3 and Comparative Examples 1 to 3 were produced.
  • As the separator material Examples 1 to 3 and Comparative Example 2 used a dry porous resin film separator with a three-layer structure made of PP/PE/PP, and Comparative Examples 1 and 3 used a single PE film separator. A layer wet porous resin film separator was used.
  • Electrode Body Accommodating Step The electrode body was accommodated in a flat bottomed prismatic container body made of an aluminum alloy.
  • Electrolyte Solution Accommodating Step A non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1.2 mol/dm 3 in a non-aqueous solvent in which PC, DMC and EMC were mixed at a volume ratio of 1:1:1.
  • a non-aqueous solvent in which PC, DMC and EMC were mixed at a volume ratio of 1:1:1.
  • 30 cm 3 of the prepared electrolytic solution was accommodated in the container.
  • the volume of the extra space inside the container was 12 cm 3 .
  • the compressive elastic modulus (MPa) of the separator was measured by pressing a cylindrical indenter with a diameter of 50 mm against a sample of 200 laminated separators at 30°C using a load cell type creep tester (manufactured by Mise Tester Co., Ltd.). After the compressive stress reached 1 MPa, the stress state was maintained, and the amount of change in thickness ( ⁇ m) of the separator after 1 hour was measured and calculated by the above formula.
  • Examples 1 to 3 in which the compression elastic modulus of the separator is 15 MPa or more and the inside of the container is in a negative pressure state, are excellent in the effect of reducing the generation of gas pools between the electrodes. rice field.
  • the lower the compressive modulus of elasticity of the separator and the pressure inside the container the better the effect of reducing the generation of gas pools between the electrodes.
  • Comparative Examples 1 and 3 in which the compressive elastic modulus of the separator was less than 15 MPa, could not obtain the effect of reducing the occurrence of gas accumulation between the electrodes regardless of the internal pressure of the container.
  • the separator has a compressive elasticity modulus of 15 MPa or more, and the inside of the container is in a negative pressure state, so that the occurrence of gas accumulation between the electrodes can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一側面に係る蓄電素子は、セパレータを介して正極及び負極が積層された電極体と、電解液と、上記電極体及び上記電解液を収容するための密閉可能な容器とを備え、上記セパレータの圧縮弾性率が15MPa以上であり、上記容器の内部が負圧状態である。

Description

蓄電素子
 本開示は、蓄電素子に関する。
 リチウムイオン非水電解液二次電池に代表される非水電解液二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解液二次電池は、一般的には、セパレータで電気的に隔離された一対の電極を有する電極体、及び電極間に介在する非水電解液を備え、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解液二次電池以外の蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 このような蓄電素子の容量維持率等の特性の向上を目的として、例えば電解液の添加剤において数多くの検討がなされている(特許文献1参照)。
日本国特許出願公開2007-165125号公報
 しかしながら、電解液の添加剤によっては初回の充放電に伴って添加剤が分解して、一酸化炭素等のガスが発生する場合がある。また、電解液が添加剤を含まない場合でも、電解液の酸化還元分解によりガスが発生する場合もある。添加剤や電解液の分解によりガスが発生すると、このガスが電極間の隙間に溜まりやすくなる。また、充放電による電極の膨張収縮によって、電極間の隙間に容器の内部に存在しているガスが流入して溜まる場合もある。このように、電極間にガス溜りが生じた場合、ガス溜まりがある箇所に面した電極の活物質は充放電できなくなるため、蓄電素子の性能が低下するおそれがある。
 本発明の目的は、電極間のガス溜りの発生を低減できる蓄電素子を提供することである。
 本発明の一側面に係る蓄電素子は、セパレータを介して正極及び負極が積層された電極体と、電解液と、上記電極体及び上記電解液を収容するための密閉可能な容器とを備え、上記セパレータの圧縮弾性率が15MPa以上であり、上記容器の内部が負圧状態である。
 本発明の一側面に係る蓄電素子は、電極間のガス溜りの発生を低減できる。
図1は、本発明の一実施形態における蓄電素子を示す模式的分解斜視図である。 図2は、本発明の一実施形態における蓄電素子の模式的断面図である。 図3は、蓄電素子を複数個集合して構成した蓄電装置の一実施形態を示す概略図である。
 初めに、本明細書によって開示される蓄電素子の概要について説明する。
 本発明の一側面に係る蓄電素子は、セパレータを介して正極及び負極が積層された電極体と、電解液と、上記電極体及び上記電解液を収容するための密閉可能な容器とを備え、上記セパレータの圧縮弾性率が15MPa以上であり、上記容器の内部が負圧状態である。
 当該蓄電素子は、上記構成を備えることで電極間のガス溜りの発生を低減できる。この理由は定かでは無いが、例えば以下の理由が推測される。電極間の隙間を低減するために、蓄電素子の外部から物理的に圧迫すると、充放電による電極の膨張収縮によって、電極体にかかる荷重変化が大きいため、かえって電極間の隙間が発生し、電極間のガス溜りが生じやすくなるおそれがある。一方、蓄電素子の容器の内部を負圧状態にすると、容器を内側に向けて引く力が生じて電極体が圧迫されることにより、電極間に存在するガスが電極体外に排出されることで、電極間のガス溜りの発生を低減できる。しかしながら、セパレータの圧縮弾性率が小さい場合、上記電極体の圧迫時にセパレータが圧縮されてしまい、電極間の隙間を低減する効果が小さくなることを本発明者らは知見した。当該蓄電素子は、上記容器の内部が負圧状態であるとともに、セパレータの圧縮弾性率を15MPa以上とすることで、電極間に存在するガスを効果的に電極体外に排出し、電極間のガス溜りの発生を低減することができる。さらに、容器を負圧にすることにより生じる電極体に対する圧迫は、大気圧によるものであるため、電極体への荷重変化が小さく、電極間の隙間が生じにくい。従って、当該蓄電素子は電極間のガス溜りの発生を低減できると考えられる。ここで、「容器の内部が負圧状態である」とは、容器の外部の圧力と比較して容器の内部の余剰空間の圧力が低いことをいう。「容器の内部の余剰空間」とは、容器の内部の空間から電極体、電解液、及び集電体等の構造体が占める部分を差し引いた空間を意味する。
 上記容器の内部を負圧状態にする方法としては、特に限定されない。上記容器の内部を負圧状態にする方法としては、例えば真空ポンプ等を用いて容器の内部の圧力を減圧した状態で封止する方法や、容器の内部に気体を吸着する部材を収容する方法、容器の内部に電解液に可溶な気体を収容する方法等を採用することができる。上記容器の内部を負圧状態にする方法は、単独であるいは組み合わせて使用することができる。
 当該蓄電素子は、上記容器の内部に電解液に可溶な気体が収容されていることが好ましい。当該蓄電素子は、密閉された容器の内部に電解液に可溶な気体が収容されていることで、上記気体が電解液に溶解する。その結果、容器の内部の圧力が下がるので、容器の内部をより確実に負圧状態にすることができる。また、上記容器の内部に電解液に可溶な気体が収容されていることにより生じる電極体に対する圧迫は、大気圧によるものであるため、電極体の荷重変化が小さく、電極間の隙間が生じにくい。なお、本発明における「電解液に可溶な気体」とは、1気圧下、25℃の電解液1cmに対する溶解度が1cm以上の気体をいう。
 本発明の一実施形態に係る蓄電素子の構成、蓄電装置の構成、及び蓄電素子の製造方法、並びにその他の実施形態について詳述する。なお、各実施形態に用いられる各構成部材(各構成要素)の名称は、背景技術に用いられる各構成部材(各構成要素)の名称と異なる場合がある。
<蓄電素子の構成>
 本発明の一実施形態に係る蓄電素子は、セパレータを介して正極及び負極が積層された電極体と、電解液と、上記電極体及び上記電解液を収容するための密閉可能な容器とを備える。上記容器の内部は負圧状態である。この実施形態では、上記容器の内部に電解液に可溶な気体が収容されている。電解液は、正極、負極及びセパレータに含まれた状態で存在する。以下、図面を参照しながら、蓄電素子の一例として、非水電解液二次電池(以下、単に「二次電池」ともいう。)について説明する。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。
 図1に角型電池の一例としての蓄電素子1を示す。図2は、上記図1における蓄電素子の模式的断面図である。蓄電素子1は、セパレータを介して積層された正極及び負極を巻回した巻回型電極体2と、電極体2の両端部にそれぞれ接続される正極集電体14及び負極集電体15と、これらを収納する容器3と、容器3に設けられる正極端子4及び負極端子5とを備える。容器3としては、非水電解液二次電池の容器として通常用いられる公知の金属容器、樹脂容器等を用いることができる。上記金属としては、例えばアルミニウム、ステンレス鋼、ニッケルめっき鋼等が例示される。図2に示すように、負圧によって歪みやすい(ひいては容器の内部を負圧にして電極体に対する圧迫をより効果的に行う)等の観点から、アルミニウム若しくはアルミニウム合金製の容器3を用いることが好ましい。本実施形態に係る容器3はアルミニウム若しくはアルミニウムを主体とする合金によって構成されている。容器の板厚は特に限定されないが、概ね0.2mmから2mm(例えば0.3mmから1.5mm、典型的には0.35mmから1mm)であり得る。
 容器3は、偏平の有底角筒形状の容器本体3aと、容器本体3aの細長い矩形状の開口部を閉鎖可能である細長い矩形板状の蓋体3bとを有している。上記電極体2は、上記容器本体3aの内表面に直接又は間接的に接触している。この実施形態では、上記容器本体3aは、電極体2を間に挟んで、互いに対向する一対の幅広な側面と、互いに対向する一対の幅狭な側面と、上記蓋体3bと対向する底面とを有しており、上記電極体2は、上記容器本体3aの互いに対向する一対の幅広な側面の内表面及び底面に直接又は間接的に接触している。
 蓋体3bには、外部と通電する正極端子4及び負極端子5が設けられている。また、正極は、正極基材と接続される正極集電体14を介して正極端子4と電気的に接続され、負極は、負極基材と接続される負極集電体15を介して負極端子5と電気的に接続されている。
 当該蓄電素子1においては、上記容器3の内部が負圧状態である。上記容器3の内部が負圧状態になることにより、すなわち容器3を内側に向けて引く力が生じることにより、電極間に存在するガスが電極体外に排出される。従って、当該蓄電素子1は電極間のガス溜りの発生を低減できる。
 上記容器3の内部の圧力(絶対圧)は、容器3の外部の圧力(典型的には大気圧=1気圧=0.1013MPa)よりも小さければよく、特に限定されない。上記容器3の内部の圧力としては、電極間のガス溜りの発生低減効果をより良く発揮させる等の観点から、0.09MPa以下が好ましく、0.085MPa以下がより好ましく、0.075MPa以下がさらに好ましい。いくつかの態様において、上記圧力は、0.07MPa以下であってもよく、0.065MPa以下(例えば0.055MPa)であってもよい。上記容器3の内部の圧力の下限は特に限定されないが、例えば0.02MPaであり得る。上記容器3の内部の圧力は、容器の負圧耐性等の観点から、0.03MPa以上であってもよく、0.04MPa以上(例えば0.045MPa以上)であってもよい。ここに開示される技術は、上記容器3の内部の圧力が、0.02MPa以上0.09MPa以下(好ましくは0.03MPa以上0.07MPa以下)である態様で好ましく実施され得る。
 この実施形態では、上記容器3の内部に電解液に可溶な気体が収容されている。密閉された容器3の内部に電解液に可溶な気体が収容されていることで、上記気体が電解液に溶解し、容器3の内部の圧力を効果的に下げることができ、容器の内部をより確実に負圧状態にすることができる。
 上記電解液が非水電解液の場合、上記非水電解液に可溶な気体としては、例えば二酸化炭素ガス(1気圧下、25℃の非水電解液1cmに対する溶解度5cm)、亜酸化窒素ガス等が挙げられる。上記気体としては、取り扱い及び入手が容易な二酸化炭素が好ましい。二酸化炭素は、上記非水電解液に溶解し易いため、充放電による電極の膨張収縮によって容器の内部に存在しているガス(高濃度の二酸化炭素を含むガス)が電極間の隙間に流入して溜まったとしても、当該ガスが非水電解液に速やかに溶解し得、その結果、ガス溜まりが解消されやすくなる点でも好ましい。
 上記非水電解液に可溶な気体として、二酸化炭素を用いる場合、容器の内部の余剰空間における二酸化炭素の含有量(濃度)は特に限定されないが、容器の内部を好適な負圧状態とする等の観点から、2体積%以上であることが好ましく、2.5体積%以上であることがより好ましく、3体積%以上であることがさらに好ましい。いくつかの態様において、上記二酸化炭素の含有量は、4体積%以上であってもよく、5体積%以上(例えば6体積%以上、典型的には7体積%以上)であってもよい。上記二酸化炭素の含有量の上限は特に限定されないが、概ね100体積%(例えば80体積%)であり得る。上記二酸化炭素の含有量は、例えば50体積%以下であってもよく、30体積%以下(例えば20体積%以下、典型的には15体積%以下)であってもよい。二酸化炭素が電解液に溶解した後において、このような組成雰囲気となるように容器の内部に二酸化炭素を収容することにより、電極間のガス溜りの発生をより良く低減することができる。上記非水電解液に可溶な気体として、二酸化炭素を用いる場合、容器の内部の電解液中における二酸化炭素の含有量(濃度)は特に限定されないが、容器の内部を好適な負圧状態とする等の観点から、0.001体積%以上であることが好ましく、0.003体積%以上であることがより好ましい。いくつかの態様において、容器の内部の電解液中における二酸化炭素の含有量(濃度)は、0.0035体積%以上であってもよく、0.005体積%以上であってもよい。
 一方、上記電解液が非水電解液の場合、上記非水電解液に難溶又は不溶な気体としては、例えば、酸素ガス、窒素ガス、メタンガス等が挙げられる。好ましい一態様では、上記容器の内部の余剰空間における窒素の含有量(濃度)は、50体積%以下(例えば45体積%以下)であり得る。いくつかの態様において、窒素の含有量(濃度)は、40体積%以下であってもよく、30体積%以下であってもよい。上記窒素の含有量の下限は特に限定されないが、概ね10体積%であり得る。上記窒素の含有量は、例えば15体積%以上であってもよく、20体積%以上であってもよい。非水電解液に可溶な気体が電解液に溶解した後において、このような窒素の濃度となるように容器の内部に非水電解液に可溶な気体を収容することにより、電極間のガス溜りの発生の低減に好適な負圧状態とすることができる。好ましい一態様では、上記容器の内部の余剰空間における窒素ガスおよび酸素ガス以外の気体(例えば、二酸化炭素ガス、メタンガス、一酸化炭素ガス、水素ガス等)の体積の合計量を100体積%とした場合に、二酸化炭素が占める割合は、4体積%以上(例えば4体積%以上20体積%以下)であり得る。上記二酸化炭素が占める割合は、6体積%以上(例えば6体積%以上18体積%以下)が好ましく、8体積%以上(例えば8体積%以上16体積%以下)がより好ましい。いくつかの態様において、上記二酸化炭素が占める割合は、10体積%以上であってもよく、12体積%以上であってもよい。このような二酸化炭素の割合となるように容器の内部に二酸化炭素を収容することにより、電極間のガス溜りの発生の低減に好適な負圧状態とすることができる。上記容器の内部の余剰空間における各ガスの含有量(濃度)は、ガスクロマトグラフによって測定できる。
 当該蓄電素子においては、上記電解液に可溶な気体を吸着可能な部材がさらに上記容器に収容されることが好ましい。上記電解液に可溶な気体を吸着可能な部材が上記容器に収容されることで、容器の内部の余剰空間における上記電解液に可溶な気体の含有量(濃度)が低減しやすくなり、容器の内部がより好適な負圧状態となることで電極間のガスがより電極体外に排出されやすくなる。そのため、電極間のガス溜りの発生の低減効果をより向上できる。また、上記電解液に可溶な気体を吸着可能な部材によっても、上記電解液に可溶な気体が吸着されるので、上記容器を密閉した後に容器の内部が負圧状態になるまでの時間を短縮できる。
[電極体]
 電極体2は、正極及び負極がセパレータを介して積層された状態で巻回された巻回型であってもよく、複数の正極及び複数の負極がセパレータを介して積層された積層型であってもよい。この実施形態では、電極体2は、扁平形状の巻回電極体である。巻回電極体は、積層型の電極体に比べて電極間に発生するガスが電極体外に排出されにくいため、本態様を適用することによる効果がより効果的に発揮され得る。この実施形態では、電極体2は、2つの巻回R部と、2つの平坦部とを有する。2つの平坦部は、電極体2を構成する外壁側面の扁平部分に相当し、それぞれ、容器本体を構成する内壁側面の幅広な側面に対向して配置されている。この実施形態1では、2つの平坦部は、容器本体の幅広な側面と接するように配置されている。2つの巻回R部は、電極体2を構成する外壁側面の曲率部分(湾曲部分)に相当し、それぞれ、容器本体の底面および蓋体に面して配置されている。2つの巻回R部は、容器本体の幅広な側面と接しないように配置されている。かかる構成によると、上記容器3の内部を負圧状態にすることで、容器3を内側に向けて引く力が生じて容器3の少なくとも一つの幅広な側面が撓み、扁平状の電極体2の平坦部(扁平面)が厚さ方向(矩形板状の蓋体における短辺方向であって、正極、負極及びセパレータの積層方向)に圧迫される。このように、電極体2の平坦部(扁平面)を厚さ方向に圧迫することで、電極間のガス溜りの発生をより良く低減することができる。
 上記電極体2が巻回型の場合、上記電極体2は、さらに中央部に巻芯を備え、巻芯を中心として巻回されていてもよい。巻芯は、中空構造及び中実構造のいずれを有していてもよいが、中空構造の巻芯が好ましい。上記電極体2が中空構造の巻芯を備えることで、電極体2の中心に中空領域が形成された状態で上記電解液に可溶な気体が封入されるため、容器3の内部の圧力をより効果的に下げることができる。
(正極)
 正極は、正極基材と、当該正極基材に直接又は中間層を介して配される正極活物質層とを有する。
 正極基材は、導電性を有する。「導電性」を有するか否かは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cmを閾値として判定する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はこれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ、及びコストの観点からアルミニウム又はアルミニウム合金が好ましい。正極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)又はJIS-H4160(2006年)に規定されるA1085、A3003、A1N30等が例示できる。
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。
 中間層は、正極基材と正極活物質層との間に配される層である。中間層は、炭素粒子等の導電剤を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば、バインダ及び導電剤を含む。
 正極活物質層は、正極活物質を含む。正極活物質層は、必要に応じて、導電剤、バインダ(結着剤)、増粘剤、フィラー等の任意成分を含む。
 正極活物質としては、公知の正極活物質の中から適宜選択できる。リチウムイオン二次電池用の正極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。正極活物質としては、例えば、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物、スピネル型結晶構造を有するリチウム遷移金属複合酸化物、ポリアニオン化合物、カルコゲン化合物、硫黄等が挙げられる。α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物として、例えば、Li[LiNi(1-x)]O(0≦x<0.5)、Li[LiNiγCo(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiCo(1-x)]O(0≦x<0.5)、Li[LiNiγMn(1-x-γ)]O(0≦x<0.5、0<γ<1)、Li[LiNiγMnβCo(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)、Li[LiNiγCoβAl(1-x-γ-β)]O(0≦x<0.5、0<γ、0<β、0.5<γ+β<1)等が挙げられる。スピネル型結晶構造を有するリチウム遷移金属複合酸化物として、LiMn、LiNiγMn(2-γ)等が挙げられる。ポリアニオン化合物として、LiFePO、LiMnPO、LiNiPO、LiCoPO、Li(PO、LiMnSiO、LiCoPOF等が挙げられる。カルコゲン化合物として、二硫化チタン、二硫化モリブデン、二酸化モリブデン等が挙げられる。これらの材料中の原子又はポリアニオンは、他の元素からなる原子又はアニオン種で一部が置換されていてもよい。これらの材料は表面が他の材料で被覆されていてもよい。正極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 好ましい一態様では、上記正極活物質は、充放電性能、エネルギー密度等の点から、α-NaFeO型結晶構造を有するリチウム遷移金属複合酸化物により構成されている。例えば、上記リチウム遷移金属複合酸化物として、Li以外に、少なくともニッケル(Ni)を構成元素として含むニッケル含有リチウム遷移金属複合酸化物、少なくともコバルト(Co)を構成元素として含むコバルト含有リチウム遷移金属複合酸化物、少なくともマンガン(Mn)を構成元素として含むマンガン含有リチウム遷移金属複合酸化物等が例示される。なかでも、ニッケル含有リチウム遷移金属複合酸化物が好ましく、ニッケル、マンガン及びコバルトを含むリチウム遷移金属複合酸化物がより好ましい。
 正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.1μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層の電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径」とは、JIS-Z-8825(2013年)に準拠し、粒子を溶媒で希釈した希釈液に対しレーザ回折・散乱法により測定した粒径分布に基づき、JIS-Z-8819-2(2001年)に準拠し計算される体積基準積算分布が50%となる値を意味する。
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。
 正極活物質層における正極活物質の含有量は、50質量%以上99質量%以下が好ましく、70質量%以上98質量%以下がより好ましく、80質量%以上95質量%以下がさらに好ましい。正極活物質の含有量を上記の範囲とすることで、正極活物質層の高エネルギー密度化と製造性を両立できる。
 導電剤は、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料、金属、導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛、非黒鉛質炭素、グラフェン系炭素等が挙げられる。非黒鉛質炭素としては、カーボンナノファイバー、ピッチ系炭素繊維、カーボンブラック等が挙げられる。カーボンブラックとしては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。グラフェン系炭素としては、グラフェン、カーボンナノチューブ(CNT)、フラーレン等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤としては、これらの材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。また、これらの材料を複合化して用いてもよい。例えば、カーボンブラックとCNTとを複合化した材料を用いてもよい。これらの中でも、電子伝導性及び塗工性の観点よりカーボンブラックが好ましく、中でもアセチレンブラックが好ましい。
 正極活物質層における導電剤の含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。導電剤の含有量を上記の範囲とすることで、二次電池のエネルギー密度を高めることができる。
 バインダとしては、例えば、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリアクリル、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 正極活物質層におけるバインダの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダの含有量を上記の範囲とすることで、活物質を安定して保持することができる。
 増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。増粘剤がリチウム等と反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させてもよい。
 フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、アルミナ、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 正極活物質層(片面)の単位面積当たりの質量としては特に限定されないが、固形分換算で、例えば2.0mg/cm以上30.0mg/cm以下であり得る。正極活物質層の単位面積当たりの質量は、3.0mg/cm以上20.0mg/cm以下が好ましく、4.0mg/cm以上15.0mg/cm以下がより好ましく、5.0mg/cm以上10.0mg/cm以下がさらに好ましい。
(負極)
 負極は、負極基材と、当該負極基材に直接又は中間層を介して配される負極活物質層とを有する。中間層の構成は特に限定されず、例えば上記正極で例示した構成から選択することができる。
 負極基材は、導電性を有する。負極基材の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼、アルミニウム等の金属又はこれらの合金、炭素質材料等が用いられる。これらの中でも銅又は銅合金が好ましい。負極基材としては、箔、蒸着膜、メッシュ、多孔質材料等が挙げられ、コストの観点から箔が好ましい。したがって、負極基材としては銅箔又は銅合金箔が好ましい。銅箔の例としては、圧延銅箔、電解銅箔等が挙げられる。
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、二次電池の体積当たりのエネルギー密度を高めることができる。
 負極活物質層は、負極活物質を含む。負極活物質層は、必要に応じて導電剤、バインダ、増粘剤、フィラー等の任意成分を含む。導電剤、バインダ、増粘剤、フィラー等の任意成分は、上記正極で例示した材料から選択できる。
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba、等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダ、増粘剤、フィラー以外の成分として含有してもよい。
 負極活物質としては、公知の負極活物質の中から適宜選択できる。リチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましく、非黒鉛質炭素(特に難黒鉛化性炭素)がより好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 「黒鉛」とは、充放電前又は放電状態において、X線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。
 「非黒鉛質炭素」とは、充放電前又は放電状態においてX線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。
 ここで、「放電状態」とは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されるように放電された状態を意味する。例えば、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた単極電池において、開回路電圧が0.7V以上である状態である。
 「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。
 「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。
 負極活物質は、通常、粒子(粉体)である。負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が炭素材料、チタン含有酸化物又はポリリン酸化合物である場合、その平均粒径は、1μm以上100μm以下であってもよい。負極活物質が、Si、Sn、Si酸化物、又は、Sn酸化物等である場合、その平均粒径は、1nm以上1μm以下であってもよい。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法及び粉級方法は、例えば、上記正極で例示した方法から選択できる。負極活物質が金属Li等の金属である場合、負極活物質は、箔状であってもよい。
 負極活物質層における負極活物質の含有量は、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。
 負極活物質層(片面)の単位面積当たりの質量としては特に限定されないが、固形分換算で、例えば0.5mg/cm以上20.0mg/cm以下であり得る。負極活物質層の単位面積当たりの質量は、0.8mg/cm以上15.0mg/cm以下が好ましく、1.0mg/cm以上10.0mg/cm以下がより好ましく、2.0mg/cm以上7.0mg/cm以下がさらに好ましい。
(セパレータ)
 本実施形態の蓄電素子のセパレータの圧縮弾性率の下限は、15MPaであり、17MPaが好ましく、19MPa(例えば20MPa)がより好ましい。上記セパレータの圧縮弾性率が上記下限以上であることで、圧迫時におけるセパレータの圧縮が抑制され、電極間のガス溜りの発生の低減効果を向上できる。一方、上記セパレータの圧縮弾性率の上限は、50MPaが好ましく、40MPaがより好ましく、30MPaがさらに好ましい。上記セパレータの圧縮弾性率が上記上限以下であることで、電極体にかかる圧迫力が偏りにくくなり、電極間のガス溜まりの発生の低減効果を向上できる。かかる圧縮弾性率を有するセパレータは、蓄電素子の抵抗低減の観点からも好適である。上記セパレータの圧縮弾性率は、空孔率や材料、延伸方法、高分子材料の場合は分子量等を変えることによって、調整することができる。
 上記セパレータの圧縮弾性率は、厚さ方向の圧縮弾性率であり、セパレータに対して厚さ方向に所定の荷重を加えて圧縮の応力が1MPaに到達したときの厚さ変化量(μm)とセパレータ1枚の圧縮前の厚さ(μm)とから下記式で算出する。
 圧縮弾性率=1/{セパレータの1枚当たりの厚さ変化量(μm)/セパレータ1枚の圧縮前の厚さ(μm)}
 ここに開示される蓄電素子の好ましい一態様では、上記セパレータの圧縮弾性率X(MPa)と容器の内部の圧力P(絶対圧:MPa)との関係が180≦(X/P)≦600を満たす。セパレータの圧縮弾性率Xと容器の内部の圧力Pとの関係を適切に設定することによって、電極間のガス溜りの発生の低減効果をより良く向上できる。ここに開示される技術は、例えば、XとPとの関係が、200≦(X/P)≦580、より好ましくは220≦(X/P)≦550、さらに好ましくは300≦(X/P)≦500、特に好ましくは350≦(X/P)≦450である態様で好ましく実施され得る。
 セパレータは、公知のセパレータの中から、適切な圧縮弾性率を有するものを適宜選択して使用することができる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の形態としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形態の中でも、強度の観点から多孔質樹脂フィルムが好ましい。セパレータの基材層の材料としては、セパレータを適切な圧縮弾性率とする観点から例えば例えばポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ポリエチレンテレフタレート及びポリブチレンテレフタレート等のポリエステル、ポリアクリロニトリル、ポリフェニレンサルファイド、ポリイミド、フッ素樹脂等が挙げられる。これらの中でもポリオレフィンが好ましい。また、これらの樹脂を構成する単量体の共重合体を用いてもよい。好ましい一態様では、セパレータの基材層はポリエチレン系樹脂によって構成されている。ポリエチレン系樹脂としては、エチレンの単独重合体やエチレンの共重合体が好ましく用いられる。エチレンの共重合体としては、エチレンから誘導される繰り返し単位を50質量%以上含有する樹脂であって、エチレンと共重合可能なオレフィンを重合した共重合体や、エチレンと共重合可能な少なくとも一種のモノマーを重合した共重合体を用いることができる。エチレンと共重合可能なオレフィンとして、プロピレン等が例示される。他のモノマーとして共役ジエン(例えばブタジエン)、アクリル酸等が例示される。また、セパレータの基材層としては、一軸延伸または二軸延伸された多孔質樹脂フィルムを好適に用いることができる。中でも、長手方向(MD方向:Machine Direction)に一軸延伸された多孔性樹脂フィルムを好適に用いることができる。ここで「一軸延伸」とは、樹脂フィルムをガラス転移温度以上で引き延ばし分子を配向させるプロセスにおいて、一方向(例えば、長手方向)にのみ延伸することをいい、「二軸延伸」とは、直交する二方向(例えば、長手方向および幅方向)に延伸することをいう。幅方向とは樹脂フィルムの搬送面に平行であり、長手方向と直交する方向をいう。また、セパレータの基材層の製造工程における多孔化の手段としては特に限定されない。例えば、乾燥後に延伸(例えば一軸延伸)を行う乾式延伸が採用された乾式の基材層や、湿式状態(例えば原料となる樹脂と溶剤とを混合した状態)で延伸(例えば二軸延伸)を行う湿式延伸が採用された湿式の基材層を用いることができる。なかでも、乾式の基材層が好ましい。微多孔膜の乾式延伸は、加熱しながらロール延伸等により行うことができる。乾式延伸された基材層は、セパレータの圧縮弾性率をここに開示される好適な数値に調整することが容易であり、かつ適度な強度を備えつつ幅方向の熱収縮が少ないため、特に好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。例えば、基材層の構造は、単層構造であってもよく、混合構造であってもよく(例えばPPとPEの混合構造)、多層構造(例えばPP/PE/PPの三層構造やPP/PEの二層構造)であってもよい。なかでも、PP/PE/PPの三層構造が好ましい。
 セパレータの基材層の空孔率は特に限定されないが、その下限としては、20体積%が好ましく、30体積%がより好ましい。いくつかの態様において、上記セパレータの空孔率は、例えば35体積%以上であってもよく、典型的には40体積%以上であってもよい。一方、上記空孔率の上限としては、80体積%が好ましく、70体積%がより好ましい。いくつかの態様において、上記セパレータの空孔率は、例えば65体積%以下であってもよく、典型的には60体積%以下(例えば55体積%以下)であってもよい。上記セパレータの空孔率は、例えば50体積%以下であってもよく、45体積%以下であってもよい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。
 耐熱層に含まれる耐熱粒子は、1気圧の空気雰囲気下で室温から500℃まで昇温したときの質量減少が5%以下であるものが好ましく、室温から800℃まで昇温したときの質量減少が5%以下であるものがさらに好ましい。質量減少が所定以下である材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、ベーマイト、又はアルミノケイ酸塩が好ましい。
 セパレータの厚さ(耐熱層を含む場合は、基材層と耐熱層との合計厚さ)は特に限定されないが、その下限としては、3μmが好ましく、5μmがより好ましい。いくつかの態様において、上記セパレータの厚さは、例えば8μm以上であってもよく、典型的には10μm以上であってもよい。一方、上記暑さの上限としては、30μmが好ましく、25μmがより好ましい。いくつかの態様において、上記セパレータの厚さは、例えば20μm以下であってもよく、典型的には15μm以下(例えば12μm以下)であってもよい。
(電解液)
 電解液としては、当該蓄電素子が非水電解液二次電池である場合、非水電解液が用いられる。非水電解液としては、公知の非水電解液の中から適宜選択できる。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもEC及びPCが好ましい。
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもDMC及びEMCが好ましい。
 非水溶媒として、環状カーボネート又は鎖状カーボネートを用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。
 電解質塩としては、公知の電解質塩から適宜選択できる。電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等が挙げられる。これらの中でもリチウム塩が好ましい。
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。
 非水電解液における電解質塩の含有量は、20℃1気圧下において、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。
 非水電解液は、非水溶媒と電解質塩以外に、添加剤を含んでもよい。添加剤としては、例えば、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)等のハロゲン化炭酸エステル;リチウムビス(オキサレート)ボレート(LiBOB)、リチウムジフルオロオキサレートボレート(LiFOB)、リチウムビス(オキサレート)ジフルオロホスフェート(LiFOP)等のシュウ酸塩;リチウムビス(フルオロスルホニル)イミド(LiFSI)等のイミド塩;ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、1,3-プロペンスルトン、1,3-プロパンスルトン、1,4-ブタンスルトン、1,4-ブテンスルトン、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下であると好ましく、0.1質量%以上7質量%以下であるとより好ましく、0.2質量%以上5質量%以下であるとさらに好ましく、0.3質量%以上3質量%以下であると特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又はサイクル性能を向上させたり、安全性をより向上させたりすることができる。
<蓄電装置の構成>
 本実施形態の蓄電素子の形状については特に限定されるものではないが、例えば、偏平の角型電池が好ましい。当該蓄電素子の形状が偏平の角型電池であることで、容器の内部が負圧状態の場合、容器を内側に向けて引く力が生じることにより、容器本体の少なくとも一つの側面が凹みやすくなる。負圧により凹んだ容器本体の側面に対向する電極体の側面が厚さ方向に加圧されるので、電極間のガスがより電極体外に排出されやすくなり、電極間のガス溜りの発生の低減効果を向上できる。
<蓄電素子の製造方法>
 本実施形態の蓄電素子の製造方法は、例えば負極及び正極が積層された電極体を容器に収容すること(以下、電極体収容工程ともいう。)、電解液を上記容器に収容すること(以下、電解液収容工程ともいう。)、上記容器の内部を負圧状態にすること(以下、負圧形成工程ともいう。)、及び、上記容器を密閉すること(以下、密閉工程ともいう。)を備える。この実施形態では、上記負圧形成工程は、上記電解液収容工程後かつ上記密閉工程前に、上記電解液に可溶な気体を上記容器に収容すること(以下、気体収容工程ともいう。)を備える。さらに、当該蓄電素子の製造方法は、その他の工程として、例えば、正極を形成すること(以下、正極形成工程ともいう。)、負極を形成すること(以下、負極形成工程ともいう。)電極体を形成すること(以下、電極体形成工程ともいう。)等を備えることができる。
(正極形成工程)
 正極形成工程では、正極基材及び正極活物質層を有する正極を形成する。上記正極形成工程では、正極活物質を含有する正極合剤を正極基材へ塗工することにより正極合剤を正極基材の少なくとも一方の面に沿って配置することができる。具体的には、例えば正極基材に正極合剤を塗工して乾燥することにより正極活物質層を配置する。
 上記正極合剤は、上述の任意成分以外に、さらに分散媒を含んだ状態である正極合剤ペーストであってもよい。この分散媒としては、例えば、水、水を主体とする混合溶媒等の水系溶媒;N-メチルピロリドン(NMP)、トルエン等の有機系溶媒を用いることができる。正極活物質層は、正極基材に直接又は中間層を介して積層されてもよい。
(負極形成工程)
 負極形成工程では、負極基材及び負極活物質層を有する負極を形成する。上記負極形成工程では、負極活物質を含有する負極合剤を負極基材に塗工することにより負極合剤を負極基材の少なくとも一方の面に沿って配置することができる。具体的には、例えば負極基材に負極合剤を塗工して乾燥することにより負極活物質層を配置する。また、上記負極合剤は、上述の任意成分以外に、さらに分散媒を含んだ状態である負極合剤ペーストであってもよい。分散媒は、上記正極形成工程で例示したものから任意に選択できる。負極活物質層は、負極基材に直接又は中間層を介して積層されてもよい。
(電極体形成工程)
 電極体形成工程では、上記正極及び上記負極を用いて電極体を形成する。上記電極体は、対向する一対の巻回R部と、上記一対の巻回R部の間に位置する平坦部とを有する扁平形状の巻回型電極体であると好ましい。当該蓄電素子の電極体形成工程では、上述のセパレータを介して上記正極及び負極を積層又は巻回することにより、交互に重畳された電極体を形成する。
(電極体収容工程)
 電極体収容工程では、負極及び正極が積層された電極体を容器に収容する。
(電解液収容工程)
 電解液収容工程では、上記電解液を上記容器に収容する。電解液の収容は、公知の方法により行うことができる。当該蓄電素子が非水電解液二次電池の場合は、例えば容器に設けられた注入口から非水電解液を注入することで上記非水電解液を上記容器に収容する。
(気体収容工程)
 気体収容工程では、上記電解液収容工程の後、上記電解液に可溶な気体を容器に収容する。具体的には、上記電解液を上記容器に収容した後、上記容器に上記電解液に可溶な気体を上記注入口から注入することで上記電解液に可溶な気体を容器に収容する。上記電解液に可溶な気体の注入は、大気圧で実施してもよく、真空ポンプ等を用いて容器の内部の圧力を減圧した状態で実施してもよい。ここで、「減圧」とは、容器の内部の余剰空間の圧力が大気圧未満であることをいう。なお、気体収容工程を加圧した状態で実施すると、封口前の電解液に上記電解液に可溶な気体が溶けすぎるため、密閉工程の後に上記電解液に可溶な気体が上記電解液にさらに溶解することが困難になり、上記容器の内部が十分に負圧状態にならないおそれがある。また、上記注入口は、上記電解液を注入するための注入口と別に設けられていてもよい。
 上述のとおり、当該蓄電素子は、上記容器の内部が負圧状態であり、かかる負圧状態を実現する好適な方法のーつとして、上記電解液を上記容器に収容した後、当該容器に上記電解液に可溶な気体を収容することが挙げられる。このように、電解液が収容された状態の容器に上記電解液に可溶な気体を注入することにより、密閉工程の後に上記気体が上記電解液に溶解することによって容器の内部の圧力が効果的に下がり、容器の内部が好適な負圧状態になり得る。一方、上記電解液に可溶な気体を上記容器に収容した後、当該容器に上記電解液を収容する態様では、上記電解液の収容時に上記電解液に可溶な気体の多くが電解液に溶解し、密閉工程の前に上記電解液に上記電解液に可溶な気体が溶けすぎる(例えば飽和溶解する)ため好ましくない。すなわち、密閉工程の前に上記電解液に上記電解液に可溶な気体が溶けすぎると、密閉工程の後に上記電解液に可溶な気体が上記電解液にさらに溶解することが困難になり、上記容器の内部の圧力を効果的に低減できない場合があり得る。好ましくは、上記電解液を上記容器に収容した後、予備充電を行い、真空ポンプ等を用いて上記容器の内部の圧力を減圧した後に、上記容器の内部の圧力が大気圧付近となるように上記電解液に可溶な気体を注入するとよい。この上記電解液に可溶な気体注入直後の上記容器の内部の圧力は、密閉工程の後に上記容器の内部を好適な負圧状態にする観点から一つの重要なファクターである。上記電解液に可溶な気体注入直後の上記容器の内部の圧力は、好ましくは0.1MPa以上0.2MPa以下、より好ましくは0.1MPa以上0.15MPa以下、さらに好ましくは0.1MPa以上0.12MPa以下、特に好ましくは0.1MPa以上0.11MPa以下である。このように上記電解液に可溶な気体注入直後の上記容器の内部の圧力が大気圧付近となるように上記電解液に可溶な気体を注入することにより、密閉工程の前に上記電解液に上記電解液に可溶な気体が溶けすぎる不都合を解消または緩和し得、密閉工程の後に上記容器の内部の圧力を効果的に下げることができる。
 上記電解液に可溶な気体の収容量としては、上記容器の内部の圧力をより小さくする観点から、容器の内部の余剰空間の体積に対して40体積%以上であることが好ましく、70体積%以上であることがより好ましく、例えば95体積%以上であってもよい。上記電解液に可溶な気体の収容量としては、容器の内部の余剰空間の体積に対して100体積%であってもよい。ここに開示される技術は、上記電解液に可溶な気体の収容量が、容器の内部の余剰空間の体積に対して好ましくは70体積%以上100体積%以下、より好ましくは80体積%以上95体積%以下である態様で好ましく実施され得る。ここで、「容器内の余剰空間の体積」とは、容器の内容積から電極体、電解液、及び集電体等の構造体の体積を差し引いた体積を意味する。また、電極体の体積とは、電極の構成要素(活物質、セパレータ等)の実体積を意味し、活物質間やセパレータ内に存在する空隙は含まれない。つまり、容器内の余剰空間の体積とは、25℃において、容器の内部の圧力が1気圧(0.1013MPa)のときの容器の内部に収容されている気体の体積を意味する。
 容器の内部に収容される上記電解液に可溶な気体の含有量は、上記容器の内部の圧力をより小さくする観点から、容器の内部に収容される全気体の収容量に対して80体積%以上であることが好ましく、98体積%以上であることが好ましく、100体積%であることがさらに好ましい。上記電解液に可溶な気体の含有量は、上記気体の取り扱いやすさの観点から、容器の内部に収容される全気体の収容量に対して80体積%以下であってもよい。
(密閉工程)
 密閉工程では、上記電解液に可溶な気体が上記容器に収容された状態で上記容器を密閉する。具体的には、上記容器に上記気体を収容した後に注入口を封止することにより蓄電素子を得ることができる。注入口の封止は、例えば、上記注入口を封止部材で塞ぎ、上記封止部材をレーザ溶接等により固定することにより行われる。
 密閉工程は、上記電解液に可溶な気体を封入後に、速やかに行う必要がある。上記電解液に可溶な気体を封入後に長時間放置した場合、密閉工程の前に電解液に上記電解液に可溶な気体が溶けすぎるため、密閉工程の後に上記電解液に可溶な気体が上記電解液にさらに溶解することが困難になり、上記容器の内部が十分に負圧状態にならないおそれがある。上記電解液に可溶な気体の収容後から注入口の封止までの経過時間としては、密閉工程の前に上記電解液に可溶な電解液に溶解したり、拡散によって上記注入口を介して上記容器の外部へ排出されたりする上記気体の量を小さくする観点から1時間以下が好ましい。当該経過時間は、好ましくは30分以下(例えば1分以上30分以下)、より好ましくは20分以下、さらに好ましくは15分以下、特に好ましくは10分以下(例えば5分以下)である。上記電解液に可溶な気体の収容後から注入口の封止までの経過時間を短くすることにより、密閉工程の前に上記電解液に上記電解液に可溶な気体が溶けすぎる(典型的には飽和溶解する)不都合を解消または緩和し得、密閉工程の後に上記容器の内部の圧力を効果的に下げることができる。
 上記容器に上記電解液に可溶な気体を収容した後、注入口を封止する工程までの間に、上記注入口を仮封止する工程を有してもよい。上記注入口を仮封止する工程は、例えば、ゴム製の栓部材等を用いて一時的に上記注入口を塞ぐ工程である。上記注入口を仮封止する工程を有することで、上記容器に収容された上記電解液に可溶な気体が拡散によって上記注入口を介して上記容器の外部に放出されることを抑制できる。この場合、上記注入口を封止する工程においては、栓部材等を取り外した後に上記注入口を封止部材で塞ぎ、上記封止部材をレーザ溶接等により固定すればよい。また、上記注入口を封止する工程においては、上記注入口を塞ぐ栓部材等ごと覆う封止部材を配置し、上記封止部材をレーザ溶接等により固定してもよい。
 密閉工程の後、上記電解液に可溶な気体の上記電解液への溶解が平衡状態になった際の上記容器の内部の圧力としては、電極間距離が大きくなることを効果的に抑制する観点から、25℃において0.02MPa以上0.09MPa以下が好ましい。なお、密閉直後における上記容器の内部の圧力は、0.1MPa以上0.2MPa以下が好ましい。つまり、密閉工程の直後は、上記電解液に可溶な気体の多くが上記電解液に溶解しておらず、密閉工程の後に上記電解液に可溶な気体を上記電解液に溶解させることで、上記容器の内部の圧力を小さくすることができる。
 上記蓄電素子の製造方法における電極体、電解液、電解液に可溶な気体及び容器等についての詳細は上述したとおりである。
<その他の実施形態>
 尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。例えば、上述した実施形態では、上記扁平形状の巻回電極体は、2つの巻回R部と、2つの平坦部とを有し、上記2つの平坦部は、上記容器本体を構成する上記幅広な側面と直接又は間接的に接するように、該幅広な側面に対向して配置され、上記2つの巻回R部は、上記幅広な側面と接しないように、上記容器本体を構成する底面および蓋体に面して配置されている場合を例示したが、これに限定されない。上記2つの巻回R部は、上記幅広な側面と接しないように、上記容器本体を構成する幅狭な側面に面して配置されていてもよい。かかる巻回電極体は、積層型の電極体に比べてガス溜りが抜けにくいため、本態様を適用することによる効果がより効果的に発揮され得る。
 例えば、上述した実施形態では、上記容器の内部を負圧状態にする方法として、容器の内部に電解液に可溶な気体を収容する方法を採用する場合を例示したが、これに限定されない。例えば、上記容器の内部を負圧状態にする方法として、真空ポンプ等を用いて容器の内部の圧力を減圧した状態で封止する方法を採用してもよい。この場合、上記負圧形成工程は、上記気体収容工程に代えて、真空ポンプ等を用いて上記容器の内部の圧力を減圧する減圧工程を備えてもよい。かかる減圧工程は、上記電解液収容工程後かつ上記密閉工程前に実施することができる。ただし、上述した実施形態の如く、上記容器の内部に電解液に可溶な気体を収容する方法を採用した方が、電極間の隙間に容器の内部のガスが溜まることによるガス溜まりを解消しやすい点で好ましい。すなわち、容器の内部の余剰空間における電解液に可溶な気体の濃度が高まるため、充放電による電極の膨張収縮によって電極間に隙間が発生し、容器の内部に存在しているガスが電極間の隙間に流入して溜まったとしても、電解液に速やかに溶解し得、その結果、ガス溜まりが解消されやすくなる点で好ましい。
 上記実施形態では、蓄電素子が充放電可能な非水電解液二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類、形状、寸法、容量等は任意である。本発明は、種々の二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。
 本実施形態の蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の蓄電素子1を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの蓄電素子に対して、本発明の技術が適用されていればよい。
 図3に、電気的に接続された二以上の蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の蓄電素子1の状態を監視する状態監視装置(図示せず)を備えていてもよい。
 以下、実施例によって本発明をさらに具体的に説明する。本発明は以下の実施例に限定されない。
[実施例1から実施例3及び比較例1から比較例3]
(1)正極形成工程
 正極活物質としてのLiNi1/3Co1/3Mn1/3と、バインダとしてのPVDFと、導電剤としてのアセチレンブラックとを含有し、NMPを分散媒とする正極合剤ペーストを調製した。正極活物質、バインダ、導電剤の比率は、固形分換算の質量比で、90:5:5とした。正極合剤ペーストを正極基材としての厚さ12μmのアルミニウム箔の両面に塗工し、乾燥して、正極活物質層を形成し、実施例1から実施例3及び比較例1から比較例3の正極を得た。乾燥後の片面の単位面積当たりの正極合剤(正極合剤ペーストから分散媒を蒸発させたもの)の塗布量は、8.5mg/cmとなるようにした。
(2)負極形成工程
 負極活物質としての難黒鉛化性炭素と、バインダとしてのPVDFとを含有し、NMPを分散媒とする負極合剤ペーストを調製した。負極活物質及びバインダの比率は、固形分換算の質量比で、95:5とした。負極合剤ペーストを負極基材としての厚さ8μmの銅箔の両面に塗工し、乾燥して、負極活物質層を形成し、実施例1から実施例3及び比較例1から比較例3の負極を得た。乾燥後の片面の単位面積当たりの負極合剤(負極合剤ペーストから分散媒を蒸発させたもの)の塗布量は、4mg/cmとなるようにした。
(3)電極体形成工程
 上記負極及び正極と、表1に記載の圧縮弾性率及び空孔率を有する厚さ20μmのセパレータとを積層した状態で中空構造の巻芯を中心として巻回することで、実施例1から実施例3及び比較例1から比較例3の巻回型電極体を作製した。セパレータの材料としては、実施例1から実施例3及び比較例2がPP/PE/PP製の三層構造の乾式多孔質樹脂フィルムセパレータを用い、比較例1及び比較例3がPE製の単層の湿式多孔質樹脂フィルムセパレータを用いた。
(4)電極体収容工程
 上記電極体をアルミニウム合金製の偏平の有底角筒形状の容器本体に収容した。
(5)電解液収容工程
 PC、DMC及びEMCを体積比率1:1:1で混合した非水溶媒にLiPFを1.2mol/dmの濃度で溶解した非水電解液を調製した。実施例1から実施例3及び比較例1から比較例3の蓄電素子において、調整された電解液を上記容器に30cm収容した。上記容器の内部の余剰空間の体積は12cmであった。
 (6)気体収容工程
 上記電解液の収容後、予備充電を行った。その後、実施例1から実施例3及び比較例3の蓄電素子において、真空ポンプを用いて容器の内部の圧力を10000Paまで減圧した後に、電解液に可溶な気体としての二酸化炭素ガスおよび空気を表1に示す注入量で上記容器の内部に収容した。比較例1及び比較例2の蓄電素子は、二酸化炭素ガスの代わりに空気を容器の内部に収容した。
 (7)密閉工程
 上記二酸化炭素ガス又は上記空気を上記容器に収容した5分後に注入口の封止を行うことにより容器を密閉し、試験用セルである実施例1から実施例3及び比較例1から比較例3の蓄電素子を得た。
[評価]
(容器の内部の圧力)
 容器の内部の圧力は、容器に内圧測定器を取り付けて測定した。密閉後、48時間経過後の容器の内部の圧力(ゲージ圧力)を表1に示す。容器の内部の絶対圧としては、実施例1、2及び比較例3が0.0613MPa、実施例3が0.0513MPa、比較例1、2が0.1413MPaであった。
(セパレータの圧縮弾性率)
 セパレータの圧縮弾性率(MPa)は、200枚積層したセパレータのサンプルに対して、30℃にて、ロードセル式クリープ試験機(株式会社マイズ試験機製)を用いて、直径50mmの円柱圧子を押し当て、圧縮の応力が1MPaに達してから、その応力状態で保持し、1時間後のセパレータの厚さ変化量(μm)を測定し、上記式により算出した。
(電極間のガス溜りの発生数)
 実施例及び比較例の電極間のガス溜りの発生数は、蓄電素子を解体して電極体を展開し、目視で確認した。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、セパレータの圧縮弾性率が15MPa以上であり、上記容器の内部が負圧状態である実施例1から実施例3は、電極間のガス溜りの発生の低減効果が優れていた。また、セパレータの圧縮弾性率及び容器の内部の圧力が低いほど電極間のガス溜りの発生の低減効果が向上した。一方、セパレータの圧縮弾性率が15MPa未満である比較例1及び比較例3は、容器の内部の圧力に係わらず、電極間のガス溜りの発生の低減効果が得られなかった。また、容器の内部が負圧状態でない比較例2は、セパレータの圧縮弾性率が15MPa以上であっても電極間のガス溜りの発生の低減効果が得られなかった。
 以上の結果、当該蓄電素子は、上記セパレータの圧縮弾性率が15MPa以上であり、上記容器の内部が負圧状態であることにより、電極間のガス溜りの発生を低減できることが示された。
1       蓄電素子
2       電極体
3       容器
4       正極端子
14      正極集電体
5       負極端子
15      負極集電体
3a      容器本体
3b      蓋体
20      蓄電ユニット
30      蓄電装置

Claims (11)

  1.  セパレータを介して正極及び負極が積層された電極体と、
     電解液と、
     上記電極体及び上記電解液を収容するための密閉可能な容器と
     を備え、
     上記セパレータの圧縮弾性率が15MPa以上であり、
     上記容器の内部が負圧状態である蓄電素子。
  2.  上記容器の内部に上記電解液に可溶な気体が収容されている請求項1に記載の蓄電素子。
  3.  上記電解液に可溶な気体として、二酸化炭素を含む、請求項2に記載の蓄電素子。
  4.  上記容器の内部の余剰空間における上記二酸化炭素の含有量が5体積%以上である、請求項3に記載の蓄電素子。
  5.  上記セパレータの圧縮弾性率が40MPa以下である、請求項1から4の何れか一項に記載の蓄電素子。
  6.  上記容器の内部の圧力が0.07MPa以下である、請求項1から5の何れか一項に記載の蓄電素子。
  7.  上記負極は、負極活物質として炭素材料を含む、請求項1から6の何れか一項に記載の蓄電素子。
  8.  上記電極体は、上記セパレータを介して積層された上記正極及び上記負極を巻回した巻回電極体である、請求項1から7の何れか一項に記載の蓄電素子。
  9.  上記電極体は、上記セパレータを介して積層された上記正極及び上記負極を巻回した扁平形状の巻回電極体であり、
     上記容器は、偏平の有底角筒形状の容器本体と、該容器本体の開口部を閉塞する蓋体とを有し、
     上記容器本体の少なくとも一つの側面が上記容器の内側に向けて凹んでいる、請求項1から8の何れか一項に記載の蓄電素子。
  10.  上記容器本体は、上記電極体を間に挟んで、
     互いに対向する一対の幅広な側面と、互いに対向する一対の幅狭な側面と、上記蓋体と対向する底面とを有し、
     上記扁平形状の巻回電極体は、2つの巻回R部と、2つの平坦部とを有し、
     上記2つの平坦部は、上記容器本体を構成する幅広な側面と直接又は間接的に接するように、該幅広な側面に対向して配置され、
     上記2つの巻回R部は、上記幅広な側面と接しないように、上記容器本体の底面および上記蓋体に面して配置されている、請求項9に記載の蓄電素子。
  11.  上記容器本体は、上記電極体を間に挟んで、
     互いに対向する一対の幅広な側面と、互いに対向する一対の幅狭な側面と、上記蓋体と対向する底面とを有し、
     上記扁平形状の巻回電極体は、2つの巻回R部と、2つの平坦部とを有し、
     上記2つの平坦部は、上記容器本体を構成する上記幅広な側面と直接又は間接的に接するように、該幅広な側面に対向して配置され、
     上記2つの巻回R部は、上記幅広な側面と接しないように、上記容器本体を構成する上記幅狭な側面に面して配置されている、請求項9に記載の蓄電素子。
     
PCT/JP2022/006232 2021-02-22 2022-02-16 蓄電素子 WO2022176925A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/277,932 US20240136610A1 (en) 2021-02-22 2022-02-16 Energy storage device
JP2023500909A JPWO2022176925A1 (ja) 2021-02-22 2022-02-16
EP22756243.6A EP4276862A1 (en) 2021-02-22 2022-02-16 Electricity storage element
CN202280016156.1A CN116918115A (zh) 2021-02-22 2022-02-16 蓄电元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021026816 2021-02-22
JP2021-026816 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022176925A1 true WO2022176925A1 (ja) 2022-08-25

Family

ID=82930652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006232 WO2022176925A1 (ja) 2021-02-22 2022-02-16 蓄電素子

Country Status (5)

Country Link
US (1) US20240136610A1 (ja)
EP (1) EP4276862A1 (ja)
JP (1) JPWO2022176925A1 (ja)
CN (1) CN116918115A (ja)
WO (1) WO2022176925A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157898A (ja) * 2001-11-20 2003-05-30 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2005346965A (ja) * 2004-05-31 2005-12-15 Sanyo Electric Co Ltd 電池及び電池の製造方法
JP2007165125A (ja) 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2008097940A (ja) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd 双極型二次電池
JP2011028883A (ja) * 2009-07-22 2011-02-10 Panasonic Corp 非水電解質二次電池
JP2011187288A (ja) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd 密閉型電池
JP2017188465A (ja) * 2010-06-30 2017-10-12 株式会社Gsユアサ 二次電池の製造方法、二次電池及び組電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157898A (ja) * 2001-11-20 2003-05-30 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2005346965A (ja) * 2004-05-31 2005-12-15 Sanyo Electric Co Ltd 電池及び電池の製造方法
JP2007165125A (ja) 2005-12-14 2007-06-28 Central Glass Co Ltd 非水電解液電池用電解液及び非水電解液電池
JP2008097940A (ja) * 2006-10-10 2008-04-24 Nissan Motor Co Ltd 双極型二次電池
JP2011028883A (ja) * 2009-07-22 2011-02-10 Panasonic Corp 非水電解質二次電池
JP2011187288A (ja) * 2010-03-08 2011-09-22 Hitachi Maxell Energy Ltd 密閉型電池
JP2017188465A (ja) * 2010-06-30 2017-10-12 株式会社Gsユアサ 二次電池の製造方法、二次電池及び組電池

Also Published As

Publication number Publication date
JPWO2022176925A1 (ja) 2022-08-25
US20240136610A1 (en) 2024-04-25
EP4276862A1 (en) 2023-11-15
CN116918115A (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
US20230112577A1 (en) Energy storage device
WO2022176925A1 (ja) 蓄電素子
CN115516660A (zh) 蓄电元件用正极和蓄电元件
WO2022176836A1 (ja) 蓄電素子
WO2023074559A1 (ja) 蓄電素子
WO2023145677A1 (ja) 非水電解質蓄電素子
WO2022239861A1 (ja) 蓄電素子
US20230155180A1 (en) Energy storage device, method for manufacturing the same and energy storage apparatus
WO2023281886A1 (ja) 蓄電素子及び蓄電装置
WO2023008012A1 (ja) 蓄電素子及び蓄電装置
WO2023248769A1 (ja) 活物質粒子、電極、蓄電素子及び蓄電装置
WO2022210643A1 (ja) 蓄電素子
WO2024053496A1 (ja) 電極、蓄電素子及び蓄電装置
WO2023195434A1 (ja) 蓄電素子及び蓄電装置
WO2022239520A1 (ja) 蓄電素子、その製造方法及び蓄電装置
WO2022249667A1 (ja) 非水電解質蓄電素子及び蓄電装置
WO2024062862A1 (ja) 電極、蓄電素子及び蓄電装置
EP4280330A1 (en) Nonaqueous electrolyte power storage element
US20240186514A1 (en) Nonaqueous electrolyte energy storage device
US20230055952A1 (en) Energy storage device and energy storage apparatus
WO2024014376A1 (ja) 蓄電素子
WO2022186173A1 (ja) 蓄電素子及びその製造方法
JP2022129314A (ja) 蓄電素子
JP2023166909A (ja) 蓄電素子及び蓄電装置
JP2022129039A (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500909

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18277932

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280016156.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022756243

Country of ref document: EP

Effective date: 20230811

NENP Non-entry into the national phase

Ref country code: DE