WO2023195195A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2023195195A1
WO2023195195A1 PCT/JP2022/040721 JP2022040721W WO2023195195A1 WO 2023195195 A1 WO2023195195 A1 WO 2023195195A1 JP 2022040721 W JP2022040721 W JP 2022040721W WO 2023195195 A1 WO2023195195 A1 WO 2023195195A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
wiring board
printed wiring
bus bar
conversion device
Prior art date
Application number
PCT/JP2022/040721
Other languages
French (fr)
Japanese (ja)
Inventor
健太 藤井
直也 安部
由浩 竹島
誠司 石橋
祐次郎 中田
由希子 中西
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2023195195A1 publication Critical patent/WO2023195195A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure relates to a power conversion device.
  • a power conversion device that includes a power module, a first substrate attached to the power module, a busbar assembly attached to the power module, and a second substrate attached to the busbar assembly.
  • the first board includes a first printed wiring board and a first inter-board connector.
  • the second board includes a second printed wiring board and a second inter-board connection connector.
  • the first printed wiring board is disposed between the power module and the busbar assembly.
  • the busbar assembly is disposed between the second printed wiring board and the first printed wiring board.
  • the first inter-board connecting connector and the second inter-board connecting connector are connected to each other (see, for example, Patent Document 1).
  • the present disclosure has been made to solve the above-mentioned problems, and its purpose is to provide a power conversion device that can expand the area in which electronic components can be mounted on a first printed wiring board of a first substrate. It provides:
  • the power conversion device includes a power module installation member, a power module provided on the power module installation member, a busbar assembly provided on the power module installation member, and a first board provided on the busbar assembly.
  • the power module is arranged between the power module installation member and the bus bar assembly, and the first board includes a first printed wiring board arranged between the power module and the bus bar assembly, and a first printed wiring board arranged between the power module and the bus bar assembly.
  • a first connection member provided on the wiring board, the first connection member has electrical conductivity and elasticity, and when the first connection member and the signal terminal of the power module contact each other, the first connection member The connection member and the signal terminal of the power module are electrically connected to each other.
  • the power conversion device it is possible to expand the area in which electronic components can be mounted on the first printed wiring board of the first substrate.
  • FIG. 1 is a perspective view showing a power conversion device according to Embodiment 1.
  • FIG. FIG. 2 is a plan view showing the power conversion device of FIG. 1.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2.
  • FIG. FIG. 2 is an exploded perspective view showing the power conversion device of FIG. 1.
  • FIG. 4 is an enlarged sectional view showing the power module of FIG. 3.
  • FIG. FIG. 2 is an enlarged perspective view of the busbar assembly and first substrate of FIG. 1;
  • FIG. FIG. 8 is a plan view of the busbar assembly of FIG.
  • FIG. 3 is a flowchart showing an assembly procedure of the power conversion device according to Embodiment 1.
  • FIG. 2 is an explanatory diagram showing the assembly direction of each member constituting the power conversion device according to the first embodiment and the electrical connection of each member.
  • FIG. 3 is a cross-sectional view showing main parts of a power conversion device according to a second embodiment. 14 is an enlarged view showing part A in FIG. 13.
  • FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a third embodiment.
  • FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a fourth embodiment.
  • FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a fifth embodiment.
  • FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a sixth embodiment.
  • FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a seventh embodiment.
  • FIG. 1 is a perspective view showing a power conversion device according to a first embodiment.
  • FIG. 2 is a plan view showing the power conversion device of FIG. 1.
  • FIG. 3 is a sectional view taken along line III-III in FIG. 2.
  • FIG. 4 is an exploded perspective view showing the power conversion device of FIG. 1.
  • the power conversion device according to Embodiment 1 is used, for example, in an electric vehicle. Examples of electrified vehicles include hybrid cars and electric cars.
  • the power conversion device includes a power module installation member 1, three power modules 2, a busbar assembly 3, three first substrates 4, a second substrate 5, and a smoothing capacitor 6. We are prepared.
  • the power module installation member 1 has a function of cooling each power module 2.
  • the power module installation member 1 includes a support member 101, a cooling plate 102 provided on the support member 101, and two pipes 103 provided on the support member 101.
  • a flow path 104 through which a cooling medium flows is formed between the support member 101 and the cooling plate 102.
  • the cooling refrigerant enters the flow path 104 through one of the two pipes 103 and exits the flow path 104 through the other. Examples of the cooling refrigerant flowing through the flow path 104 include water.
  • the cooling plate 102 includes a power module mounting section 105 and a plurality of cooling fins 106.
  • the power module mounting portion 105 is formed into a plate shape.
  • One of the pair of surfaces facing in the thickness direction of the power module mounting portion 105 is defined as a mounting surface 107, and the other is defined as a cooling surface 108.
  • the power module 2 is mounted on the mounting surface 107.
  • a plurality of cooling fins 106 are provided on the cooling surface 108 . Cooling surface 108 faces flow path 104 .
  • the three power modules 2 are arranged side by side along the mounting surface 107 of the power module mounting section 105.
  • the direction in which the three power modules 2 are arranged is defined as the X direction.
  • the direction perpendicular to the X direction on the plane along the mounting surface 107 is defined as the Y direction.
  • the direction perpendicular to the plane along the mounting surface 107 is defined as the Z direction.
  • the cooling fins 106 are cooled by the cooling refrigerant flowing through the flow path 104. By cooling the cooling fins 106, the cooling plate 102 is cooled. By cooling the cooling plate 102, the power module 2 is cooled.
  • the busbar assembly 3 is provided on the power module installation member 1.
  • a power module 2 is arranged between a busbar assembly 3 and a power module installation member 1.
  • Busbar assembly 3 is fixed to power module installation member 1 with a plurality of screws (not shown).
  • the three first substrates 4 are arranged side by side in the direction in which the three power modules 2 are lined up. In other words, the three first substrates 4 are arranged side by side in the X direction. Each first substrate 4 is provided on the busbar assembly 3. Each first board 4 is arranged to correspond to each power module 2 one by one. Each first substrate 4 is arranged between a respective power module 2 and a busbar assembly 3. Each first board 4 serves as a drive board that controls the current supplied to the power module 2 corresponding to each first board 4. In the power conversion device according to the first embodiment, a configuration including three first substrates 4 will be described. However, the configuration of the power converter device may include one first substrate 4.
  • the second board 5 is provided on the busbar assembly 3.
  • a busbar assembly 3 is arranged between the second substrate 5 and the first substrate 4.
  • the second board 5 is fixed to the busbar assembly 3 with a plurality of screws (not shown).
  • the second board 5 serves as a control board that controls each of the first boards 4. Note that the second board 5 may be provided on the power module installation member 1.
  • the smoothing capacitor 6 is provided in the busbar assembly 3.
  • a second substrate 5 is arranged between the smoothing capacitor 6 and the bus bar assembly 3.
  • the smoothing capacitor 6 is connected to and fixed to the busbar assembly 3 by a plurality of electrical connection screws 7 .
  • FIG. 5 is an enlarged sectional view showing the power module 2 of FIG. 3.
  • the power module 2 includes a semiconductor element 201, a semiconductor element wiring member 202, three bus bar connection terminals 203, a plurality of signal terminals 204, an insulating member 205, a molded resin part 206, and a signal connection member 207. , is equipped with.
  • FIG. 5 two of the three bus bar connection terminals 203 are shown, and one of the plurality of signal terminals 204 is shown.
  • the semiconductor element 201 and the semiconductor element wiring member 202 are bonded to each other via a conductive bonding member 208.
  • the semiconductor element wiring member 202 and one bus bar connection terminal 203 are bonded to each other via a conductive bonding member 209 .
  • the semiconductor element 201 and the other bus bar connection terminal 203 are bonded to each other via a conductive bonding member 210.
  • the semiconductor element 201 and the signal terminal 204 are electrically connected to each other via a signal connection member 207.
  • Each of the bus bar connection terminals 203 and the signal terminals 204 is provided on an insulating member 205.
  • the molded resin portion 206 covers the semiconductor element 201, the semiconductor element wiring member 202, a part of the bus bar connection terminal 203, a part of the signal terminal 204, the insulating member 205, and the signal connection member 207.
  • the semiconductor element 201 is controlled by the first substrate 4 and the second substrate 5.
  • FIG. 6 is an enlarged perspective view showing the busbar assembly 3 and first substrate 4 of FIG. 1.
  • FIG. 7 is a plan view showing the busbar assembly 3 and first substrate 4 of FIG. 6.
  • FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7.
  • the busbar assembly 3 includes a plurality of input/output busbars 301, three current sensor cores 302, and an insulating frame 303.
  • the plurality of input/output bus bars 301 and the three current sensor cores 302 are integrally formed by an insulating frame 303.
  • the plurality of input/output bus bars 301 include a P bus bar 304, an N bus bar 305, and three AC bus bars 306.
  • P bus bar 304 and N bus bar 305 are connected to smoothing capacitor 6, as shown in FIG.
  • the three busbar connection terminals 203 in one power module 2 are connected one each to a P busbar 304, an N busbar 305, and an AC busbar 306.
  • the three AC bus bars 306 are connected one by one to the corresponding bus bar connection terminal 203 in each of the three power modules 2.
  • the first board 4 includes a first printed wiring board 401, a first connection member 402, and a first inter-board connection connector 403.
  • the first connection member 402 is provided on the first printed wiring board 401.
  • the first connecting member 402 is fixed to the first printed wiring board 401 by a conductive bonding member 404.
  • the first inter-board connecting connector 403 is provided on the first printed wiring board 401.
  • the first printed wiring board 401 is formed into a plate shape.
  • the first printed wiring board 401 is arranged between the power module 2 and the busbar assembly 3.
  • the first printed wiring board 401 faces the power module 2 .
  • the surface of the first printed wiring board 401 that faces the power module 2 is referred to as a power module facing surface 405 .
  • a surface opposite to the power module facing surface 405 in the thickness direction of the first printed wiring board 401 is a connector mounting surface 406 .
  • the busbar assembly 3 is fixed to the connector mounting surface 406 with adhesive 8.
  • the first printed wiring board 401 is fixed to the busbar assembly 3 by the adhesive 8.
  • the first connection member 402 is provided on the power module facing surface 405.
  • the first inter-board connection connector 403 is provided on the connector mounting surface 406.
  • the first connecting member 402 has electrical conductivity and elasticity.
  • the first connection member 402 is pressed against the signal terminal 204.
  • the first connecting member 402 and the signal terminal 204 are electrically connected to each other by contacting each other.
  • the first connecting member 402 is made of, for example, a spring.
  • the spring constituting the first connection member 402 include a leaf spring and a coil spring.
  • the material constituting the first connection member 402 include iron, iron alloy, copper, and copper alloy.
  • the surface of the first connection member 402 may be plated. Examples of the plating applied to the surface of the first connection member 402 include Au plating, Ag plating, and Sn plating.
  • FIG. 9 is a plan view showing the busbar assembly 3 of FIG. 7.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9.
  • Three AC bus bars 306 are arranged side by side on the insulating frame 303. The direction in which the three AC bus bars 306 are lined up matches the direction in which the three power modules 2 are lined up.
  • Each current sensor core 302 is provided so as to surround each AC bus bar 306.
  • a sensor insertion portion 307 is formed in each current sensor core 302 .
  • the second board 5 has a second printed wiring board 501, three second board-to-board connection connectors 502, and three current sensors 503. Each second inter-board connection connector 502 is provided on the second printed wiring board 501. Each current sensor 503 is provided on the second printed wiring board 501.
  • the second printed wiring board 501 is formed into a plate shape.
  • a busbar assembly 3 is arranged between the second printed wiring board 501 and the first printed wiring board 401.
  • the second printed wiring board 501 is arranged to face the first printed wiring board 401.
  • the surface of second printed wiring board 501 that faces first printed wiring board 401 is defined as connector mounting surface 504 .
  • the respective second inter-board connection connectors 502 and the respective current sensors 503 are provided on the connector mounting surface 504 of the second printed wiring board 501.
  • the three first inter-board connection connectors 403 and the three second inter-board connection connectors 502 are connected to each other one by one.
  • the first printed wiring board 401 and the second printed wiring board 501 are electrically connected to each other.
  • the three current sensors 503 are inserted into the sensor insertion portions 307 of the three current sensor cores 302 one by one.
  • Each of the first inter-board connecting connector 403 and the second inter-board connecting connector 502 is arranged adjacent to the bus bar assembly 3 in the direction along the connector mounting surface 406.
  • FIG. 11 is a flowchart showing the assembly procedure of the power conversion device according to the first embodiment.
  • FIG. 12 is an explanatory diagram showing the assembly direction of each member constituting the power conversion device according to the first embodiment and the electrical connection of each member.
  • step S101 a power module installation process is performed.
  • each power module 2 is fixed to the cooling plate 102.
  • the power module 2 is fixed to the cooling plate 102 by, for example, soldering.
  • step S102 a busbar assembly installation process is performed.
  • the busbar assemblies 3 to which the respective first substrates 4 are fixed are fixed to the support member 101.
  • the combination of the busbar assembly 3 and the first substrate 4 is described as a busbar assembly assembly.
  • the busbar assembly 3 is fixed to the support member 101 by, for example, screwing.
  • the first connection member 402 is electrically connected to the signal terminal 204 of the power module 2.
  • a low voltage current flows between the first substrate 4 and the power module 2.
  • step S103 a second board installation process is performed.
  • the second board 5 is fixed to the busbar assembly 3.
  • the second substrate 5 is fixed to the busbar assembly 3 by, for example, screwing.
  • the first inter-board connecting connector 403 and the second inter-board connecting connector 502 are connected to each other.
  • a low voltage current flows between the first substrate 4 and the second substrate 5.
  • step S104 a capacitor installation process is performed.
  • the smoothing capacitor 6 is connected to the busbar assembly 3.
  • a second printed wiring board 501 is placed between the bus bar assembly 3 and the smoothing capacitor 6.
  • the smoothing capacitor 6 is connected to the P bus bar 304 and the N bus bar 305 in the bus bar assembly 3.
  • Smoothing capacitor 6 is connected to P bus bar 304 and N bus bar 305 via electrical connection screws 7. A high voltage current flows between the bus bar assembly 3 and the smoothing capacitor 6.
  • the power conversion device includes the power module installation member 1, the power module 2, the bus bar assembly 3, and the first substrate 4.
  • the power module 2 is provided on the power module installation member 1.
  • the busbar assembly 3 is provided on the power module installation member 1.
  • the first substrate 4 is provided on the busbar assembly 3.
  • the power module 2 is arranged between the power module installation member 1 and the busbar assembly 3.
  • the first board 4 includes a first printed wiring board 401 disposed between the power module 2 and the bus bar assembly 3, and a first connecting member 402 provided on the first printed wiring board 401. .
  • the first connecting member 402 has electrical conductivity and elasticity.
  • the power module 2 is provided on the power module installation member 1, and the first board 4 is provided on the power module installation member 1 via the busbar assembly 3.
  • the first substrate 4 and the power module 2 can be fixed to each other without using screws.
  • the area on the first printed wiring board 401 in which electronic components can be mounted can be expanded.
  • the first printed wiring board 401 is fixed to the bus bar assembly 3 with adhesive 8. According to this configuration, the first printed wiring board 401 can be fixed to the busbar assembly 3 without using screws. Further, by attaching the bus bar assembly 3 to the power module installation member 1, the first connection member 402 is electrically connected to the signal terminal 204 of the power module 2. Thereby, assembly of the power converter device can be facilitated.
  • the first connecting member 402 is fixed to the first printed wiring board 401 by a conductive bonding member 404. According to this configuration, the first connecting member 402 can be fixed to the first printed wiring board 401 while the first connecting member 402 and the first printed wiring board 401 are electrically connected to each other.
  • the power conversion device includes a second substrate 5.
  • the second substrate 5 is provided on the busbar assembly 3.
  • the second board 5 has a second printed wiring board 501.
  • Busbar assembly 3 is arranged between first printed wiring board 401 and second printed wiring board 501.
  • First printed wiring board 401 and second printed wiring board 501 are electrically connected to each other. According to this configuration, a current can be passed between the first substrate 4 and the second substrate 5.
  • the power conversion device includes a smoothing capacitor 6.
  • Smoothing capacitor 6 is connected to P bus bar 304 and N bus bar 305.
  • a second printed wiring board 501 is arranged between the bus bar assembly 3 and the smoothing capacitor 6. According to this configuration, the power module installation member 1, the power module 2, the first board 4, the bus bar assembly 3, the second board 5, and the smoothing capacitor 6 can be arranged one on top of the other in the Z direction. Thereby, the projected area of the power conversion device in the Z direction can be reduced.
  • the busbar assembly 3 includes an input/output busbar 301 and a current sensor core 302.
  • the input/output bus bar 301 is connected to the bus bar connection terminal 203 of the power module 2.
  • the current sensor core 302 is provided so as to surround the input/output bus bar 301, and has a sensor insertion portion 307 formed therein.
  • the second board 5 has a current sensor 503 provided on a second printed wiring board 501. Current sensor 503 is inserted into sensor insertion section 307.
  • a current sensor 503 is provided on the second printed wiring board 501. This eliminates the need for high precision in positioning the second printed wiring board 501 with respect to the bus bar assembly 3. As a result, the power conversion device can be easily assembled.
  • the second board 5 has the current sensor 503 provided on the second printed wiring board 501, and the current sensor 503 is inserted into the sensor insertion part 307.
  • the configuration was explained.
  • the first board 4 may have a current sensor provided on the first printed wiring board 401, and the current sensor of the first board 4 may be inserted into the sensor insertion portion 307. In this case, high precision is not required for positioning the first printed wiring board 401 with respect to the bus bar assembly 3. As a result, the power conversion device can be easily assembled.
  • FIG. 13 is a cross-sectional view showing the main parts of the power conversion device according to the second embodiment.
  • FIG. 14 is an enlarged view of section A in FIG. 13.
  • a recess 211 is formed in the signal terminal 204 of the power module 2.
  • the recess 211 is located on the surface of the signal terminal 204 that faces the first substrate 4 .
  • the first connecting member 402 is inserted into the recess 211. By inserting the first connecting member 402 into the recess 211, the position of the first connecting member 402 with respect to the signal terminal 204 is determined. By determining the position of the first connecting member 402 with respect to the signal terminal 204, displacement of the position of the first connecting member 402 with respect to the signal terminal 204 due to vibration is suppressed.
  • the first connecting member 402 and the signal terminal 204 are in contact with each other.
  • the first connecting member 402 and the signal terminal 204 are electrically connected to each other by contacting each other.
  • the other configuration of the power conversion device according to the second embodiment is the same as the configuration of the power conversion device according to the first embodiment.
  • the recess 211 is formed in the signal terminal 204, and when the first connection member 402 is inserted into the recess 211, the first connection member 402 and signal terminal 204 are in contact with each other.
  • the position of the first connecting member 402 with respect to the signal terminal 204 is determined by inserting the first connecting member 402 into the recess 211. Thereby, the position of the first connection member 402 with respect to the signal terminal 204 can be determined.
  • FIG. 15 is a cross-sectional view showing the main parts of the power conversion device according to the third embodiment.
  • the power conversion device according to the third embodiment includes an assembly side protrusion 9.
  • the assembly side protrusion 9 is provided on the busbar assembly 3.
  • Assembly-side protrusion 9 protrudes from busbar assembly 3 toward first printed wiring board 401 .
  • the assembly side protrusion 9 is in contact with the connector mounting surface 406. In other words, the assembly side protrusion 9 is in contact with the surface of the first printed wiring board 401 opposite to the surface on which the first connection member 402 is provided.
  • the assembly side protrusion 9 is in contact with a portion of the first printed wiring board 401 where the first connection member 402 is provided. In other words, when viewed in the Z direction, the assembly side protrusion 9 and the first connection member 402 overlap with each other. When the assembly side protrusion 9 contacts the first printed wiring board 401, the first printed wiring board 401 is moved so that the portion of the first printed wiring board 401 where the first connection member 402 is provided approaches the bus bar assembly 3. deformation is suppressed.
  • the portion of the first printed wiring board 401 where the first connecting member 402 is provided approaches the bus bar assembly 3. Stress acts. Since the assembly-side protrusion 9 contacts the first printed wiring board 401, deformation of the first printed wiring board 401 is suppressed.
  • the other configuration of the power conversion device according to the third embodiment is the same as the configuration of the power conversion device according to the first embodiment.
  • the recess 211 is formed in the signal terminal 204, and the first connection member 402 is inserted into the recess 211. , the first connecting member 402 may contact the signal terminal 204.
  • the power conversion device includes the assembly-side protrusion 9 provided on the busbar assembly 3.
  • the assembly side protrusion 9 is in contact with the surface of the first printed wiring board 401 opposite to the surface on which the first connection member 402 is provided.
  • the contact between the first connecting member 402 and the signal terminal 204 can be made more reliable.
  • the electrical connection between the first connection member 402 and the signal terminal 204 can be made more reliable.
  • FIG. 16 is a cross-sectional view showing main parts of a power conversion device according to Embodiment 4.
  • the power converter according to the fourth embodiment differs from the power converter according to the first embodiment in the configuration of the power module 2.
  • the signal terminal 204 does not protrude from the molded resin part 206 to the outside of the molded resin part 206. A portion of the signal terminal 204 is exposed. The exposed portion of the signal terminal 204 is referred to as a conductor exposed portion 212. A portion of the signal terminal 204 other than the exposed conductor portion 212 is covered with a molded resin portion 206 .
  • the conductor exposed portion 212 faces the first printed wiring board 401.
  • the exposed conductor portion 212 is arranged flush with the surface of the molded resin portion 206 that faces the first printed wiring board 401 .
  • the first connecting member 402 and the exposed conductor portion 212 are in contact with each other.
  • the first connecting member 402 and the signal terminal 204 are electrically connected to each other by the first connecting member 402 and the exposed conductor portion 212 coming into contact with each other.
  • the signal terminal 204 Stress acts on Since the portion of the signal terminal 204 other than the exposed conductor portion 212 is covered with the molded resin portion 206, deformation of the signal terminal 204 is suppressed.
  • the signal terminal 204 When viewed in the Z direction, the signal terminal 204 does not protrude from the side surface of the molded resin part 206 to the outside of the molded resin part 206. Thereby, the projected area of the power conversion device in the Z direction can be reduced.
  • the other configuration of the power conversion device according to the fourth embodiment is the same as the configuration of the power conversion device according to the first embodiment.
  • a recess 211 is formed in the signal terminal 204, and the first connection member 402 is inserted into the recess 211. 1 connection member 402 may contact signal terminal 204 .
  • the power converter according to the fourth embodiment may include an assembly-side protrusion 9 that contacts the first printed wiring board 401, similarly to the power converter according to the third embodiment.
  • the portion of the signal terminal 204 other than the conductor exposed portion 212 is covered with the molded resin portion 206.
  • the signal terminal 204 is arranged so that the portion of the signal terminal 204 against which the first connecting member 402 is pressed is separated from the first printed wiring board 401. Deformation of the terminal 204 can be suppressed. Thereby, contact between the first connecting member 402 and the signal terminal 204 can be made more reliable. As a result, the electrical connection between the first connection member 402 and the signal terminal 204 can be made more reliable.
  • FIG. 17 is a sectional view showing main parts of a power conversion device according to Embodiment 5.
  • the semiconductor element 201 and the signal terminal 204 are electrically connected to each other via the signal connection member 207.
  • the semiconductor element 201 and the signal terminal 204 are electrically connected to each other by contacting the semiconductor element 201 and the signal terminal 204 with each other.
  • the semiconductor element 201, the signal terminal 204, and the first connection member 402 overlap each other.
  • the other configuration of the power conversion device according to the fifth embodiment is the same as the configuration of the power conversion device according to the fourth embodiment.
  • the power module 2 has the semiconductor element 201 and the signal terminal 204 in contact with each other, so that the semiconductor element 201 and the signal terminal 204 are electrically connected to each other. It is connected. According to this configuration, the projected area of the power module 2 in the Z direction can be reduced.
  • FIG. 18 is a cross-sectional view showing main parts of a power conversion device according to Embodiment 6.
  • the first substrate 4 of the power conversion device according to the fifth embodiment further includes a second connection member 407.
  • the second connection member 407 is provided on the first printed wiring board 401. Specifically, the second connection member 407 is provided on the power module facing surface 405. The second connection member 407 is fixed to the first printed wiring board 401 by a conductive bonding member 408.
  • the second connection member 407 has electrical conductivity and elasticity.
  • the second connection member 407 is pressed against the busbar connection terminal 203.
  • the second connection member 407 and the bus bar connection terminal 203 come into contact with each other, the second connection member 407 and the bus bar connection terminal 203 are electrically connected to each other.
  • the second connecting member 407 is made of, for example, a spring.
  • the spring constituting the second connection member 407 include a leaf spring and a coil spring.
  • the material constituting the second connection member 407 include iron, iron alloy, copper, and copper alloy.
  • the surface of the second connection member 407 may be plated. Examples of the plating applied to the surface of the second connection member 407 include Au plating, Ag plating, and Sn plating.
  • the input/output bus bar 301 of the bus bar assembly 3 is electrically connected to the first printed wiring board 401.
  • the input/output bus bar 301 and the bus bar connection terminal 203 are electrically connected to each other via the first printed wiring board 401 and the second connection member 407.
  • the input/output bus bar 301 and the bus bar connection terminal 203 are electrically connected to each other via the first printed wiring board 401 and the second connection member 407. .
  • the first printed wiring board 401 and the second connection member 407. there is no need to weld or braze between the input/output bus bar 301 and the bus bar connection terminal 203. Therefore, there is no need to provide a working space for welding or brazing.
  • the other configuration of the power conversion device according to the sixth embodiment is the same as the configuration of the power conversion device according to the first embodiment.
  • the recess 211 is formed in the signal terminal 204, and the first connection member 402 is inserted into the recess 211.
  • the first connecting member 402 and the signal terminal 204 may be in contact with each other.
  • the second connection member 407 and the busbar connection terminal 203 come into contact with each other. good.
  • the power converter according to the sixth embodiment may include an assembly-side protrusion 9 that contacts the first printed wiring board 401, similarly to the power converter according to the third embodiment.
  • the portion of the signal terminal 204 other than the exposed conductor portion 212 may be covered with the molded resin portion 206, similarly to the power converter according to the fourth embodiment.
  • the semiconductor device 201 and the signal terminal 204 are brought into contact with each other. They may be electrically connected to each other.
  • the first board 4 has the second connection member 407 provided on the first printed wiring board 401.
  • the second connecting member 407 has electrical conductivity and elasticity.
  • FIG. 19 is a sectional view showing main parts of a power conversion device according to Embodiment 7.
  • the bus bar assembly 3 of the power conversion device according to the seventh embodiment further includes a third connection member 308.
  • the third connection member 308 is provided on the input/output bus bar 301. Specifically, the third connection member 308 is provided on the surface of the input/output bus bar 301 that faces the bus bar connection terminal 203 . The third connecting member 308 is fixed to the input/output bus bar 301 by a conductive joining member 309.
  • the third connecting member 308 has electrical conductivity and elasticity.
  • the third connection member 308 is pressed against the busbar connection terminal 203.
  • the third connecting member 308 and the bus bar connecting terminal 203 coming into contact with each other, the third connecting member 308 and the bus bar connecting terminal 203 are electrically connected to each other.
  • the third connecting member 308 is made of, for example, a spring.
  • the spring constituting the third connection member 308 include a leaf spring and a coil spring.
  • the material constituting the third connecting member 308 include iron, iron alloy, copper, and copper alloy.
  • the surface of the third connection member 308 may be plated. Examples of the plating applied to the surface of the third connection member 308 include Au plating, Ag plating, and Sn plating.
  • the input/output bus bar 301 and the bus bar connection terminal 203 are electrically connected to each other via the third connection member 308.
  • the rise in temperature of first printed wiring board 401 is suppressed.
  • the other configuration of the power conversion device according to the seventh embodiment is the same as the configuration of the power conversion device according to the first embodiment.
  • the recess 211 is formed in the signal terminal 204, and the first connection member 402 is inserted into the recess 211.
  • the first connecting member 402 and the signal terminal 204 may be in contact with each other.
  • the second connection member 407 and the busbar connection terminal 203 come into contact with each other. good.
  • the power converter according to the seventh embodiment may include an assembly-side protrusion 9 that contacts the first printed wiring board 401, similarly to the power converter according to the third embodiment. Further, in the power converter according to the seventh embodiment, the portion of the signal terminal 204 other than the exposed conductor portion 212 may be covered with the molded resin portion 206, similarly to the power converter according to the fourth embodiment. Further, in the power conversion device according to the seventh embodiment, similarly to the power conversion device according to the fifth embodiment, the semiconductor device 201 and the signal terminal 204 are brought into contact with each other. They may be electrically connected to each other. Further, in the power conversion device according to the seventh embodiment, the first substrate 4 has the second connection member 407, and the second connection member 407 and the bus bar connection terminal are similar to the power conversion device according to the sixth embodiment. 203 may be in contact with each other.
  • the busbar assembly 3 includes the input/output busbar 301 and the third connection member 308 provided on the input/output busbar 301.
  • the third connecting member 308 has electrical conductivity and elasticity.
  • the third connecting member 308 and the bus bar connecting terminal 203 coming into contact with each other, the third connecting member 308 and the bus bar connecting terminal 203 are electrically connected to each other. According to this configuration, current can flow between the input/output bus bar 301 and the bus bar connection terminal 203 without passing through the first printed wiring board 401. As a result, an increase in temperature of the first printed wiring board 401 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The present invention obtains a power conversion device in which a region on which electronic components can be mounted can be extended in a first printed-wiring board of a first substrate. This power conversion device comprises: a power module installation member; a power module with which the power module installation member is provided; a bus bar assembly with which the power module installation member is provided; and a first substrate with which the bus bar assembly is provided. The first substrate has a first printed-wiring board and a first connection member with which the first printed-wiring board is provided. The first connection member has an electrical conductivity and an elasticity. The first connection member and a signal terminal of the power module make contact with each other, and thereby the first connection member and the signal terminal of the power module are electrically connected to each other.

Description

電力変換装置power converter
 本開示は、電力変換装置に関する。 The present disclosure relates to a power conversion device.
 従来、パワーモジュールと、パワーモジュールに取り付けられた第1基板と、パワーモジュールに取り付けられたバスバーアセンブリと、バスバーアセンブリに取り付けられた第2基板と、を備えている電力変換装置が知られている。第1基板は、第1プリント配線板と、第1基板間接続用コネクタと、を有している。第2基板は、第2プリント配線板と、第2基板間接続用コネクタと、を有している。第1プリント配線板は、パワーモジュールとバスバーアセンブリとの間に配置されている。バスバーアセンブリは、第2プリント配線板と第1プリント配線板との間に配置されている。第1基板間接続用コネクタおよび第2基板間接続用コネクタは、互いに接続されている(例えば、特許文献1参照)。 Conventionally, a power conversion device is known that includes a power module, a first substrate attached to the power module, a busbar assembly attached to the power module, and a second substrate attached to the busbar assembly. . The first board includes a first printed wiring board and a first inter-board connector. The second board includes a second printed wiring board and a second inter-board connection connector. The first printed wiring board is disposed between the power module and the busbar assembly. The busbar assembly is disposed between the second printed wiring board and the first printed wiring board. The first inter-board connecting connector and the second inter-board connecting connector are connected to each other (see, for example, Patent Document 1).
特開2020-150749号公報Japanese Patent Application Publication No. 2020-150749
 しかしながら、特許文献1に記載された構成では、第1プリント配線板は、複数のねじによってパワーモジュールに締め付けられている。これにより、第1プリント配線板におけるねじが配置される部分には、電子部品を配置することができない。したがって、第1プリント配線板における電子部品が実装可能な領域が小さくなってしまうという課題があった。 However, in the configuration described in Patent Document 1, the first printed wiring board is fastened to the power module with a plurality of screws. As a result, electronic components cannot be placed in the portions of the first printed wiring board where the screws are placed. Therefore, there was a problem that the area on the first printed wiring board in which electronic components can be mounted becomes small.
 本開示は、上述のような課題を解決するためになされたものであり、その目的は、第1基板の第1プリント配線板における電子部品が実装可能な領域を拡大することができる電力変換装置を提供するものである。 The present disclosure has been made to solve the above-mentioned problems, and its purpose is to provide a power conversion device that can expand the area in which electronic components can be mounted on a first printed wiring board of a first substrate. It provides:
 本開示に係る電力変換装置は、パワーモジュール設置部材と、パワーモジュール設置部材に設けられたパワーモジュールと、パワーモジュール設置部材に設けられたバスバーアセンブリと、バスバーアセンブリに設けられた第1基板と、を備え、パワーモジュールは、パワーモジュール設置部材とバスバーアセンブリとの間に配置されており、第1基板は、パワーモジュールとバスバーアセンブリとの間に配置された第1プリント配線板と、第1プリント配線板に設けられた第1接続部材とを有し、第1接続部材は、電気伝導性および弾性を有し、第1接続部材とパワーモジュールの信号端子とが互いに接触することによって、第1接続部材とパワーモジュールの信号端子とが互いに電気的に接続されている。 The power conversion device according to the present disclosure includes a power module installation member, a power module provided on the power module installation member, a busbar assembly provided on the power module installation member, and a first board provided on the busbar assembly. The power module is arranged between the power module installation member and the bus bar assembly, and the first board includes a first printed wiring board arranged between the power module and the bus bar assembly, and a first printed wiring board arranged between the power module and the bus bar assembly. a first connection member provided on the wiring board, the first connection member has electrical conductivity and elasticity, and when the first connection member and the signal terminal of the power module contact each other, the first connection member The connection member and the signal terminal of the power module are electrically connected to each other.
 本開示に係る電力変換装置によれば、第1基板の第1プリント配線板における電子部品が実装可能な領域を拡大することができる。 According to the power conversion device according to the present disclosure, it is possible to expand the area in which electronic components can be mounted on the first printed wiring board of the first substrate.
実施の形態1に係る電力変換装置を示す斜視図である。1 is a perspective view showing a power conversion device according to Embodiment 1. FIG. 図1の電力変換装置を示す平面図である。FIG. 2 is a plan view showing the power conversion device of FIG. 1. FIG. 図2のIII-III線に沿った矢視断面図である。3 is a sectional view taken along the line III-III in FIG. 2. FIG. 図1の電力変換装置を示す分解斜視図である。FIG. 2 is an exploded perspective view showing the power conversion device of FIG. 1. FIG. 図3のパワーモジュールを示す拡大断面図である。4 is an enlarged sectional view showing the power module of FIG. 3. FIG. 図1のバスバーアセンブリおよび第1基板を示す拡大斜視図である。FIG. 2 is an enlarged perspective view of the busbar assembly and first substrate of FIG. 1; 図6のバスバーアセンブリおよび第1基板を示す平面図である。FIG. 7 is a plan view showing the busbar assembly and first substrate of FIG. 6; 図7のVIII-VIII線に沿った矢視断面図である。8 is a sectional view taken along line VIII-VIII in FIG. 7; FIG. 図7のバスバーアセンブリを示す平面図である。FIG. 8 is a plan view of the busbar assembly of FIG. 7; 図9のX-X線に沿った矢視断面図である。10 is a sectional view taken along line XX in FIG. 9. FIG. 実施の形態1に係る電力変換装置の組立手順を示すフローチャートである。3 is a flowchart showing an assembly procedure of the power conversion device according to Embodiment 1. FIG. 実施の形態1に係る電力変換装置を構成する各部材の組付方向および各部材の電気的接続を示す説明図である。FIG. 2 is an explanatory diagram showing the assembly direction of each member constituting the power conversion device according to the first embodiment and the electrical connection of each member. 実施の形態2に係る電力変換装置の要部を示す断面図である。FIG. 3 is a cross-sectional view showing main parts of a power conversion device according to a second embodiment. 図13のA部を示す拡大図である。14 is an enlarged view showing part A in FIG. 13. FIG. 実施の形態3に係る電力変換装置の要部を示す断面図である。FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a third embodiment. 実施の形態4に係る電力変換装置の要部を示す断面図である。FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a fourth embodiment. 実施の形態5に係る電力変換装置の要部を示す断面図である。FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a fifth embodiment. 実施の形態6に係る電力変換装置の要部を示す断面図である。FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a sixth embodiment. 実施の形態7に係る電力変換装置の要部を示す断面図である。FIG. 7 is a cross-sectional view showing main parts of a power conversion device according to a seventh embodiment.
 実施の形態1.
 図1は、実施の形態1に係る電力変換装置を示す斜視図である。図2は、図1の電力変換装置を示す平面図である。図3は、図2のIII-III線に沿った矢視断面図である。図4は、図1の電力変換装置を示す分解斜視図である。実施の形態1に係る電力変換装置は、例えば、電動化車両に用いられる。電動化車両としては、例えば、ハイブリッド自動車、電気自動車が挙げられる。
Embodiment 1.
FIG. 1 is a perspective view showing a power conversion device according to a first embodiment. FIG. 2 is a plan view showing the power conversion device of FIG. 1. FIG. 3 is a sectional view taken along line III-III in FIG. 2. FIG. 4 is an exploded perspective view showing the power conversion device of FIG. 1. The power conversion device according to Embodiment 1 is used, for example, in an electric vehicle. Examples of electrified vehicles include hybrid cars and electric cars.
 実施の形態1に係る電力変換装置は、パワーモジュール設置部材1と、3つのパワーモジュール2と、バスバーアセンブリ3と、3つの第1基板4と、第2基板5と、平滑コンデンサ6と、を備えている。 The power conversion device according to the first embodiment includes a power module installation member 1, three power modules 2, a busbar assembly 3, three first substrates 4, a second substrate 5, and a smoothing capacitor 6. We are prepared.
 パワーモジュール設置部材1は、それぞれのパワーモジュール2を冷却する機能を有している。パワーモジュール設置部材1は、支持部材101と、支持部材101に設けられた冷却板102と、支持部材101に設けられた2本のパイプ103と、を有している。支持部材101と冷却板102との間には、冷却冷媒が流れる流路104が形成されている。2本のパイプ103のうちの一方を介して、冷却冷媒が流路104の中に入り、他方を介して、冷却冷媒が流路104の外に出る。流路104を流れる冷却冷媒としては、例えば、水が挙げられる。 The power module installation member 1 has a function of cooling each power module 2. The power module installation member 1 includes a support member 101, a cooling plate 102 provided on the support member 101, and two pipes 103 provided on the support member 101. A flow path 104 through which a cooling medium flows is formed between the support member 101 and the cooling plate 102. The cooling refrigerant enters the flow path 104 through one of the two pipes 103 and exits the flow path 104 through the other. Examples of the cooling refrigerant flowing through the flow path 104 include water.
 冷却板102は、パワーモジュール実装部105と、複数の冷却フィン106と、を有している。パワーモジュール実装部105は、板形状に形成されている。パワーモジュール実装部105における厚さ方向に向く一対の面のうちの一方を実装面107とし、他方を冷却面108とする。実装面107には、パワーモジュール2が実装されている。冷却面108には、複数の冷却フィン106が設けられている。冷却面108は、流路104に面している。 The cooling plate 102 includes a power module mounting section 105 and a plurality of cooling fins 106. The power module mounting portion 105 is formed into a plate shape. One of the pair of surfaces facing in the thickness direction of the power module mounting portion 105 is defined as a mounting surface 107, and the other is defined as a cooling surface 108. The power module 2 is mounted on the mounting surface 107. A plurality of cooling fins 106 are provided on the cooling surface 108 . Cooling surface 108 faces flow path 104 .
 3つのパワーモジュール2は、パワーモジュール実装部105の実装面107に沿って並んで配置されている。3つのパワーモジュール2が並べられている方向をX方向とする。実装面107に沿った平面においてX方向に直交する方向をY方向とする。実装面107に沿った平面に直交する方向をZ方向とする。 The three power modules 2 are arranged side by side along the mounting surface 107 of the power module mounting section 105. The direction in which the three power modules 2 are arranged is defined as the X direction. The direction perpendicular to the X direction on the plane along the mounting surface 107 is defined as the Y direction. The direction perpendicular to the plane along the mounting surface 107 is defined as the Z direction.
 流路104に冷却冷媒が流れることによって、冷却フィン106が冷却される。冷却フィン106が冷却されることによって、冷却板102が冷却される。冷却板102が冷却されることによって、パワーモジュール2が冷却される。 The cooling fins 106 are cooled by the cooling refrigerant flowing through the flow path 104. By cooling the cooling fins 106, the cooling plate 102 is cooled. By cooling the cooling plate 102, the power module 2 is cooled.
 バスバーアセンブリ3は、パワーモジュール設置部材1に設けられている。バスバーアセンブリ3とパワーモジュール設置部材1との間にパワーモジュール2が配置されている。バスバーアセンブリ3は、図示しない複数のねじによってパワーモジュール設置部材1に固定されている。 The busbar assembly 3 is provided on the power module installation member 1. A power module 2 is arranged between a busbar assembly 3 and a power module installation member 1. Busbar assembly 3 is fixed to power module installation member 1 with a plurality of screws (not shown).
 3つの第1基板4は、3つのパワーモジュール2が並べられている方向に並んで配置されている。言い換えれば、3つの第1基板4は、X方向に並んで配置されている。それぞれの第1基板4は、バスバーアセンブリ3に設けられている。それぞれの第1基板4は、それぞれのパワーモジュール2に1つずつ対応して配置されている。それぞれの第1基板4は、それぞれのパワーモジュール2とバスバーアセンブリ3との間に配置されている。それぞれの第1基板4は、それぞれの第1基板4に対応するパワーモジュール2に供給される電流を制御するドライブ基板となっている。実施の形態1に係る電力変換装置では、3つの第1基板4を備えている構成について説明する。しかしながら、1つの第1基板4を備えている電力変換装置の構成であってもよい。 The three first substrates 4 are arranged side by side in the direction in which the three power modules 2 are lined up. In other words, the three first substrates 4 are arranged side by side in the X direction. Each first substrate 4 is provided on the busbar assembly 3. Each first board 4 is arranged to correspond to each power module 2 one by one. Each first substrate 4 is arranged between a respective power module 2 and a busbar assembly 3. Each first board 4 serves as a drive board that controls the current supplied to the power module 2 corresponding to each first board 4. In the power conversion device according to the first embodiment, a configuration including three first substrates 4 will be described. However, the configuration of the power converter device may include one first substrate 4.
 第2基板5は、バスバーアセンブリ3に設けられている。第2基板5と第1基板4との間にバスバーアセンブリ3が配置されている。第2基板5は、図示しない複数のねじによって、バスバーアセンブリ3に固定されている。第2基板5は、それぞれの第1基板4を制御するコントロール基板となっている。なお、第2基板5は、パワーモジュール設置部材1に設けられてもよい。 The second board 5 is provided on the busbar assembly 3. A busbar assembly 3 is arranged between the second substrate 5 and the first substrate 4. The second board 5 is fixed to the busbar assembly 3 with a plurality of screws (not shown). The second board 5 serves as a control board that controls each of the first boards 4. Note that the second board 5 may be provided on the power module installation member 1.
 平滑コンデンサ6は、バスバーアセンブリ3に設けられている。平滑コンデンサ6とバスバーアセンブリ3との間に第2基板5が配置されている。平滑コンデンサ6は、複数の電気接続用ねじ7によって、バスバーアセンブリ3に接続され、また、バスバーアセンブリ3に固定されている。 The smoothing capacitor 6 is provided in the busbar assembly 3. A second substrate 5 is arranged between the smoothing capacitor 6 and the bus bar assembly 3. The smoothing capacitor 6 is connected to and fixed to the busbar assembly 3 by a plurality of electrical connection screws 7 .
 図5は、図3のパワーモジュール2を示す拡大断面図である。パワーモジュール2は、半導体素子201と、半導体素子用配線部材202と、3つのバスバー接続用端子203と、複数の信号端子204と、絶縁部材205と、モールド樹脂部206と、信号接続部材207と、を備えている。図5では、3つのバスバー接続用端子203のうちの2つが示されており、複数の信号端子204のうちの1つが示されている。 FIG. 5 is an enlarged sectional view showing the power module 2 of FIG. 3. The power module 2 includes a semiconductor element 201, a semiconductor element wiring member 202, three bus bar connection terminals 203, a plurality of signal terminals 204, an insulating member 205, a molded resin part 206, and a signal connection member 207. , is equipped with. In FIG. 5, two of the three bus bar connection terminals 203 are shown, and one of the plurality of signal terminals 204 is shown.
 半導体素子201と半導体素子用配線部材202とは、導電性接合部材208を介して互いに接合されている。半導体素子用配線部材202と一方のバスバー接続用端子203とは、導電性接合部材209を介して互いに接合されている。半導体素子201と他方のバスバー接続用端子203とは、導電性接合部材210を介して互いに接合されている。半導体素子201と信号端子204とは、信号接続部材207を介して互いに電気的に接続されている。 The semiconductor element 201 and the semiconductor element wiring member 202 are bonded to each other via a conductive bonding member 208. The semiconductor element wiring member 202 and one bus bar connection terminal 203 are bonded to each other via a conductive bonding member 209 . The semiconductor element 201 and the other bus bar connection terminal 203 are bonded to each other via a conductive bonding member 210. The semiconductor element 201 and the signal terminal 204 are electrically connected to each other via a signal connection member 207.
 バスバー接続用端子203および信号端子204のそれぞれは、絶縁部材205に設けられている。モールド樹脂部206は、半導体素子201、半導体素子用配線部材202、バスバー接続用端子203の一部、信号端子204の一部、絶縁部材205および信号接続部材207を覆っている。半導体素子201は、第1基板4および第2基板5によって制御される。 Each of the bus bar connection terminals 203 and the signal terminals 204 is provided on an insulating member 205. The molded resin portion 206 covers the semiconductor element 201, the semiconductor element wiring member 202, a part of the bus bar connection terminal 203, a part of the signal terminal 204, the insulating member 205, and the signal connection member 207. The semiconductor element 201 is controlled by the first substrate 4 and the second substrate 5.
 図6は、図1のバスバーアセンブリ3および第1基板4を示す拡大斜視図である。図7は、図6のバスバーアセンブリ3および第1基板4を示す平面図である。図8は、図7のVIII-VIII線に沿った矢視断面図である。 FIG. 6 is an enlarged perspective view showing the busbar assembly 3 and first substrate 4 of FIG. 1. FIG. 7 is a plan view showing the busbar assembly 3 and first substrate 4 of FIG. 6. FIG. 8 is a sectional view taken along line VIII-VIII in FIG. 7.
 バスバーアセンブリ3は、複数の入出力バスバー301と、3つの電流センサコア302と、絶縁フレーム303とを備えている。複数の入出力バスバー301および3つの電流センサコア302は、絶縁フレーム303によって一体に形成されている。 The busbar assembly 3 includes a plurality of input/output busbars 301, three current sensor cores 302, and an insulating frame 303. The plurality of input/output bus bars 301 and the three current sensor cores 302 are integrally formed by an insulating frame 303.
 複数の入出力バスバー301には、Pバスバー304、Nバスバー305および3つのACバスバー306が含まれている。Pバスバー304およびNバスバー305は、図1に示すように、平滑コンデンサ6に接続されている。 The plurality of input/output bus bars 301 include a P bus bar 304, an N bus bar 305, and three AC bus bars 306. P bus bar 304 and N bus bar 305 are connected to smoothing capacitor 6, as shown in FIG.
 1つのパワーモジュール2における3つのバスバー接続用端子203は、Pバスバー304、Nバスバー305およびACバスバー306に1つずつ接続されている。3つのACバスバー306は、3つのパワーモジュール2のそれぞれにおいて、対応するバスバー接続用端子203に1つずつ接続されている。 The three busbar connection terminals 203 in one power module 2 are connected one each to a P busbar 304, an N busbar 305, and an AC busbar 306. The three AC bus bars 306 are connected one by one to the corresponding bus bar connection terminal 203 in each of the three power modules 2.
 第1基板4は、第1プリント配線板401と、第1接続部材402と、第1基板間接続用コネクタ403と、を有している。第1接続部材402は、第1プリント配線板401に設けられている。第1接続部材402は、導電性接合部材404によって第1プリント配線板401に固定されている。第1基板間接続用コネクタ403は、第1プリント配線板401に設けられている。 The first board 4 includes a first printed wiring board 401, a first connection member 402, and a first inter-board connection connector 403. The first connection member 402 is provided on the first printed wiring board 401. The first connecting member 402 is fixed to the first printed wiring board 401 by a conductive bonding member 404. The first inter-board connecting connector 403 is provided on the first printed wiring board 401.
 第1プリント配線板401は、板形状に形成されている。第1プリント配線板401は、パワーモジュール2とバスバーアセンブリ3との間に配置されている。第1プリント配線板401は、パワーモジュール2に対向している。第1プリント配線板401におけるパワーモジュール2に対向する面をパワーモジュール対向面405とする。第1プリント配線板401の厚さ方向においてパワーモジュール対向面405とは反対側の面をコネクタ実装面406とする。 The first printed wiring board 401 is formed into a plate shape. The first printed wiring board 401 is arranged between the power module 2 and the busbar assembly 3. The first printed wiring board 401 faces the power module 2 . The surface of the first printed wiring board 401 that faces the power module 2 is referred to as a power module facing surface 405 . A surface opposite to the power module facing surface 405 in the thickness direction of the first printed wiring board 401 is a connector mounting surface 406 .
 コネクタ実装面406には、接着剤8によってバスバーアセンブリ3が固定されている。言い換えれば、第1プリント配線板401は、接着剤8によってバスバーアセンブリ3に固定されている。 The busbar assembly 3 is fixed to the connector mounting surface 406 with adhesive 8. In other words, the first printed wiring board 401 is fixed to the busbar assembly 3 by the adhesive 8.
 第1接続部材402は、パワーモジュール対向面405に設けられている。第1基板間接続用コネクタ403は、コネクタ実装面406に設けられている。 The first connection member 402 is provided on the power module facing surface 405. The first inter-board connection connector 403 is provided on the connector mounting surface 406.
 第1接続部材402は、電気伝導性および弾性を有している。第1接続部材402は、信号端子204に押し付けられている。第1接続部材402と信号端子204とが互いに接触することによって、第1接続部材402と信号端子204とが互いに電気的に接続されている。 The first connecting member 402 has electrical conductivity and elasticity. The first connection member 402 is pressed against the signal terminal 204. The first connecting member 402 and the signal terminal 204 are electrically connected to each other by contacting each other.
 第1接続部材402は、例えば、ばねから構成されている。第1接続部材402を構成するばねとしては、例えば、板ばね、コイルばねが挙げられる。第1接続部材402を構成する材料としては、例えば、鉄、鉄合金、銅、銅合金が挙げられる。なお、第1接続部材402の表面には、めっきが施されてもよい。第1接続部材402の表面に施されるめっきとしては、Auめっき、Agめっき、Snめっきが挙げられる。 The first connecting member 402 is made of, for example, a spring. Examples of the spring constituting the first connection member 402 include a leaf spring and a coil spring. Examples of the material constituting the first connection member 402 include iron, iron alloy, copper, and copper alloy. Note that the surface of the first connection member 402 may be plated. Examples of the plating applied to the surface of the first connection member 402 include Au plating, Ag plating, and Sn plating.
 図9は、図7のバスバーアセンブリ3を示す平面図である。図10は、図9のX-X線に沿った矢視断面図である。絶縁フレーム303には、3つのACバスバー306が並んで配置されている。3つACバスバー306が並べられた方向は、3つのパワーモジュール2が並べられた方向と一致する。 FIG. 9 is a plan view showing the busbar assembly 3 of FIG. 7. FIG. 10 is a sectional view taken along line XX in FIG. 9. Three AC bus bars 306 are arranged side by side on the insulating frame 303. The direction in which the three AC bus bars 306 are lined up matches the direction in which the three power modules 2 are lined up.
 3つの電流センサコア302は、3つのACバスバー306に1つずつ対応して設けられている。それぞれの電流センサコア302は、それぞれのACバスバー306を囲むように設けられている。それぞれの電流センサコア302には、センサ挿入部307が形成されている。 Three current sensor cores 302 are provided, one for each of the three AC bus bars 306. Each current sensor core 302 is provided so as to surround each AC bus bar 306. A sensor insertion portion 307 is formed in each current sensor core 302 .
 第2基板5は、第2プリント配線板501と、3つの第2基板間接続用コネクタ502と、3つの電流センサ503と、を有している。それぞれの第2基板間接続用コネクタ502は、第2プリント配線板501に設けられている。それぞれの電流センサ503は、第2プリント配線板501に設けられている。 The second board 5 has a second printed wiring board 501, three second board-to-board connection connectors 502, and three current sensors 503. Each second inter-board connection connector 502 is provided on the second printed wiring board 501. Each current sensor 503 is provided on the second printed wiring board 501.
 第2プリント配線板501は、板形状に形成されている。第2プリント配線板501と第1プリント配線板401との間には、バスバーアセンブリ3が配置されている。第2プリント配線板501は、第1プリント配線板401に対向するように配置されている。第2プリント配線板501における第1プリント配線板401に対向する面をコネクタ実装面504とする。 The second printed wiring board 501 is formed into a plate shape. A busbar assembly 3 is arranged between the second printed wiring board 501 and the first printed wiring board 401. The second printed wiring board 501 is arranged to face the first printed wiring board 401. The surface of second printed wiring board 501 that faces first printed wiring board 401 is defined as connector mounting surface 504 .
 それぞれの第2基板間接続用コネクタ502およびそれぞれの電流センサ503は、第2プリント配線板501のコネクタ実装面504に設けられている。 The respective second inter-board connection connectors 502 and the respective current sensors 503 are provided on the connector mounting surface 504 of the second printed wiring board 501.
 3つの第1基板間接続用コネクタ403および3つの第2基板間接続用コネクタ502は、互いに1つずつ接続されている。第1基板間接続用コネクタ403と第2基板間接続用コネクタ502とが互いに接続されることによって、第1プリント配線板401と第2プリント配線板501とが互いに電気的に接続されている。3つの電流センサ503は、3つの電流センサコア302のそれぞれのセンサ挿入部307に1つずつ挿入されている。 The three first inter-board connection connectors 403 and the three second inter-board connection connectors 502 are connected to each other one by one. By connecting the first inter-board connecting connector 403 and the second inter-board connecting connector 502 to each other, the first printed wiring board 401 and the second printed wiring board 501 are electrically connected to each other. The three current sensors 503 are inserted into the sensor insertion portions 307 of the three current sensor cores 302 one by one.
 第1基板間接続用コネクタ403および第2基板間接続用コネクタ502のそれぞれは、コネクタ実装面406に沿った方向において、バスバーアセンブリ3と互いに隣り合うように配置されている。 Each of the first inter-board connecting connector 403 and the second inter-board connecting connector 502 is arranged adjacent to the bus bar assembly 3 in the direction along the connector mounting surface 406.
 次に、実施の形態1に係る電力変換装置の組立手順について説明する。図11は、実施の形態1に係る電力変換装置の組立手順を示すフローチャートである。図12は、実施の形態1に係る電力変換装置を構成する各部材の組付方向および各部材の電気的接続を示す説明図である。まず、ステップS101において、パワーモジュール設置工程が行われる。パワーモジュール設置工程では、それぞれのパワーモジュール2を冷却板102に固定する。冷却板102へのパワーモジュール2の固定は、例えば、はんだ付けによって行われる。 Next, a procedure for assembling the power conversion device according to Embodiment 1 will be described. FIG. 11 is a flowchart showing the assembly procedure of the power conversion device according to the first embodiment. FIG. 12 is an explanatory diagram showing the assembly direction of each member constituting the power conversion device according to the first embodiment and the electrical connection of each member. First, in step S101, a power module installation process is performed. In the power module installation process, each power module 2 is fixed to the cooling plate 102. The power module 2 is fixed to the cooling plate 102 by, for example, soldering.
 その後、ステップS102において、バスバーアセンブリ設置工程が行われる。バスバーアセンブリ設置工程では、それぞれの第1基板4が固定されているバスバーアセンブリ3を支持部材101に固定する。図12では、バスバーアセンブリ3および第1基板4を組み合わせたものがバスバーアセンブリ組立体として記載されている。支持部材101へのバスバーアセンブリ3の固定は、例えば、ねじ止めによって行われる。バスバーアセンブリ3が支持部材101に固定されることによって、第1接続部材402は、パワーモジュール2の信号端子204に電気的に接続される。第1基板4とパワーモジュール2との間では、低電圧の電流が流れる。 Thereafter, in step S102, a busbar assembly installation process is performed. In the busbar assembly installation step, the busbar assemblies 3 to which the respective first substrates 4 are fixed are fixed to the support member 101. In FIG. 12, the combination of the busbar assembly 3 and the first substrate 4 is described as a busbar assembly assembly. The busbar assembly 3 is fixed to the support member 101 by, for example, screwing. By fixing the bus bar assembly 3 to the support member 101, the first connection member 402 is electrically connected to the signal terminal 204 of the power module 2. A low voltage current flows between the first substrate 4 and the power module 2.
 その後、ステップS103において、第2基板設置工程が行われる。第2基板設置工程では、第2基板5をバスバーアセンブリ3に固定する。バスバーアセンブリ3への第2基板5の固定は、例えば、ねじ止めによって行われる。第2基板5がバスバーアセンブリ3に固定されることによって、第1基板間接続用コネクタ403および第2基板間接続用コネクタ502は、互いに接続される。第1基板4と第2基板5との間では、低電圧の電流が流れる。 After that, in step S103, a second board installation process is performed. In the second board installation step, the second board 5 is fixed to the busbar assembly 3. The second substrate 5 is fixed to the busbar assembly 3 by, for example, screwing. By fixing the second board 5 to the bus bar assembly 3, the first inter-board connecting connector 403 and the second inter-board connecting connector 502 are connected to each other. A low voltage current flows between the first substrate 4 and the second substrate 5.
 その後、ステップS104において、コンデンサ設置工程が行われる。コンデンサ設置工程では、平滑コンデンサ6をバスバーアセンブリ3に接続する。このとき、バスバーアセンブリ3と平滑コンデンサ6との間に第2プリント配線板501を配置する。また、平滑コンデンサ6をバスバーアセンブリ3におけるPバスバー304およびNバスバー305に接続する。Pバスバー304およびNバスバー305への平滑コンデンサ6の接続は、電気接続用ねじ7を介して行われる。バスバーアセンブリ3と平滑コンデンサ6との間では、高電圧の電流が流れる。以上により、電力変換装置の組立が終了する。 Thereafter, in step S104, a capacitor installation process is performed. In the capacitor installation process, the smoothing capacitor 6 is connected to the busbar assembly 3. At this time, a second printed wiring board 501 is placed between the bus bar assembly 3 and the smoothing capacitor 6. Further, the smoothing capacitor 6 is connected to the P bus bar 304 and the N bus bar 305 in the bus bar assembly 3. Smoothing capacitor 6 is connected to P bus bar 304 and N bus bar 305 via electrical connection screws 7. A high voltage current flows between the bus bar assembly 3 and the smoothing capacitor 6. Through the above steps, the assembly of the power conversion device is completed.
 以上説明したように、実施の形態1に係る電力変換装置は、パワーモジュール設置部材1と、パワーモジュール2と、バスバーアセンブリ3と、第1基板4と、を備えている。パワーモジュール2は、パワーモジュール設置部材1に設けられている。バスバーアセンブリ3は、パワーモジュール設置部材1に設けられている。第1基板4は、バスバーアセンブリ3に設けられている。パワーモジュール2は、パワーモジュール設置部材1とバスバーアセンブリ3との間に配置されている。第1基板4は、パワーモジュール2とバスバーアセンブリ3との間に配置された第1プリント配線板401と、第1プリント配線板401に設けられた第1接続部材402と、を有している。第1接続部材402は、電気伝導性および弾性を有している。第1接続部材402とパワーモジュール2の信号端子204とが互いに接触することによって、第1接続部材402とパワーモジュール2の信号端子204とが互いに電気的に接続されている。 As explained above, the power conversion device according to the first embodiment includes the power module installation member 1, the power module 2, the bus bar assembly 3, and the first substrate 4. The power module 2 is provided on the power module installation member 1. The busbar assembly 3 is provided on the power module installation member 1. The first substrate 4 is provided on the busbar assembly 3. The power module 2 is arranged between the power module installation member 1 and the busbar assembly 3. The first board 4 includes a first printed wiring board 401 disposed between the power module 2 and the bus bar assembly 3, and a first connecting member 402 provided on the first printed wiring board 401. . The first connecting member 402 has electrical conductivity and elasticity. By the first connection member 402 and the signal terminal 204 of the power module 2 coming into contact with each other, the first connection member 402 and the signal terminal 204 of the power module 2 are electrically connected to each other.
 この構成によれば、パワーモジュール2がパワーモジュール設置部材1に設けられており、第1基板4がバスバーアセンブリ3を介してパワーモジュール設置部材1に設けられている。これにより、ねじを用いることなく、第1基板4およびパワーモジュール2を互いに固定することができる。その結果、第1プリント配線板401における電子部品が実装可能な領域を拡大することができる。 According to this configuration, the power module 2 is provided on the power module installation member 1, and the first board 4 is provided on the power module installation member 1 via the busbar assembly 3. Thereby, the first substrate 4 and the power module 2 can be fixed to each other without using screws. As a result, the area on the first printed wiring board 401 in which electronic components can be mounted can be expanded.
 また、この構成によれば、第1プリント配線板401にパワーモジュール2の信号端子204をはんだ付けする工程がなくなる。これにより、第1プリント配線板401における信号端子204をはんだ付けする領域を削減することができ、また、電力変換装置の組立工数を削減することができる。 Furthermore, according to this configuration, there is no need to solder the signal terminals 204 of the power module 2 to the first printed wiring board 401. Thereby, the area on the first printed wiring board 401 where the signal terminals 204 are soldered can be reduced, and the number of steps for assembling the power conversion device can be reduced.
 また、実施の形態1に係る電力変換装置では、第1プリント配線板401は、接着剤8によってバスバーアセンブリ3に固定されている。この構成によれば、ねじを用いることなく、第1プリント配線板401をバスバーアセンブリ3に固定することができる。また、バスバーアセンブリ3をパワーモジュール設置部材1に取り付けることによって、第1接続部材402がパワーモジュール2の信号端子204に電気的に接続される。これにより、電力変換装置の組立を容易にすることができる。 Furthermore, in the power conversion device according to the first embodiment, the first printed wiring board 401 is fixed to the bus bar assembly 3 with adhesive 8. According to this configuration, the first printed wiring board 401 can be fixed to the busbar assembly 3 without using screws. Further, by attaching the bus bar assembly 3 to the power module installation member 1, the first connection member 402 is electrically connected to the signal terminal 204 of the power module 2. Thereby, assembly of the power converter device can be facilitated.
 また、実施の形態1に係る電力変換装置では、第1接続部材402は、導電性接合部材404によって第1プリント配線板401に固定されている。この構成によれば、第1接続部材402と第1プリント配線板401とを互いに電気的に接続した状態で、第1接続部材402を第1プリント配線板401に固定することができる。 Further, in the power conversion device according to the first embodiment, the first connecting member 402 is fixed to the first printed wiring board 401 by a conductive bonding member 404. According to this configuration, the first connecting member 402 can be fixed to the first printed wiring board 401 while the first connecting member 402 and the first printed wiring board 401 are electrically connected to each other.
 また、実施の形態1に係る電力変換装置は、第2基板5を備えている。第2基板5は、バスバーアセンブリ3に設けられている。第2基板5は、第2プリント配線板501を有している。バスバーアセンブリ3は、第1プリント配線板401と第2プリント配線板501との間に配置されている。第1プリント配線板401と第2プリント配線板501とが互いに電気的に接続されている。この構成によれば、第1基板4と第2基板5との間で電流を流すことができる。 Further, the power conversion device according to the first embodiment includes a second substrate 5. The second substrate 5 is provided on the busbar assembly 3. The second board 5 has a second printed wiring board 501. Busbar assembly 3 is arranged between first printed wiring board 401 and second printed wiring board 501. First printed wiring board 401 and second printed wiring board 501 are electrically connected to each other. According to this configuration, a current can be passed between the first substrate 4 and the second substrate 5.
 また、実施の形態1に係る電力変換装置は、平滑コンデンサ6を備えている。平滑コンデンサ6は、Pバスバー304およびNバスバー305に接続されている。バスバーアセンブリ3と平滑コンデンサ6との間に第2プリント配線板501が配置されている。この構成によれば、パワーモジュール設置部材1、パワーモジュール2、第1基板4、バスバーアセンブリ3、第2基板5および平滑コンデンサ6をZ方向に重ねて配置することができる。これにより、Z方向における電力変換装置の投影面積を縮小することができる。 Further, the power conversion device according to the first embodiment includes a smoothing capacitor 6. Smoothing capacitor 6 is connected to P bus bar 304 and N bus bar 305. A second printed wiring board 501 is arranged between the bus bar assembly 3 and the smoothing capacitor 6. According to this configuration, the power module installation member 1, the power module 2, the first board 4, the bus bar assembly 3, the second board 5, and the smoothing capacitor 6 can be arranged one on top of the other in the Z direction. Thereby, the projected area of the power conversion device in the Z direction can be reduced.
 また、実施の形態1に係る電力変換装置では、バスバーアセンブリ3は、入出力バスバー301と、電流センサコア302と、を有している。入出力バスバー301は、パワーモジュール2のバスバー接続用端子203に接続されている。電流センサコア302は、入出力バスバー301を囲むように設けられており、センサ挿入部307が形成されている。第2基板5は、第2プリント配線板501に設けられた電流センサ503を有している。電流センサ503は、センサ挿入部307に挿入されている。 Furthermore, in the power conversion device according to the first embodiment, the busbar assembly 3 includes an input/output busbar 301 and a current sensor core 302. The input/output bus bar 301 is connected to the bus bar connection terminal 203 of the power module 2. The current sensor core 302 is provided so as to surround the input/output bus bar 301, and has a sensor insertion portion 307 formed therein. The second board 5 has a current sensor 503 provided on a second printed wiring board 501. Current sensor 503 is inserted into sensor insertion section 307.
 3つの電流センサがバスバーアセンブリに設けられている場合には、第2プリント配線板には、電流センサから出力された信号を伝達する3つの電流信号端子が接続される必要がある。この場合に、それぞれの電流信号端子を第2プリント配線板に接続するためには、バスバーアセンブリに対する第2プリント配線板の位置決めに高度な精度が必要になる。一方、実施の形態1に係る電力変換装置では、電流センサ503が第2プリント配線板501に設けられている。これにより、バスバーアセンブリ3に対する第2プリント配線板501の位置決めに高度な精度が必要なくなる。その結果、電力変換装置の組立を容易にすることができる。 If three current sensors are provided in the busbar assembly, three current signal terminals that transmit signals output from the current sensors need to be connected to the second printed wiring board. In this case, in order to connect each current signal terminal to the second printed wiring board, a high degree of precision is required in positioning the second printed wiring board with respect to the bus bar assembly. On the other hand, in the power conversion device according to the first embodiment, a current sensor 503 is provided on the second printed wiring board 501. This eliminates the need for high precision in positioning the second printed wiring board 501 with respect to the bus bar assembly 3. As a result, the power conversion device can be easily assembled.
 なお、実施の形態1に係る電力変換装置では、第2基板5が、第2プリント配線板501に設けられた電流センサ503を有し、電流センサ503が、センサ挿入部307に挿入されている構成について説明した。しかしながら、第1基板4が、第1プリント配線板401に設けられた電流センサを有し、第1基板4の電流センサが、センサ挿入部307に挿入されている構成であってもよい。この場合に、バスバーアセンブリ3に対する第1プリント配線板401の位置決めに高度な精度が必要なくなる。その結果、電力変換装置の組立を容易にすることができる。 Note that in the power conversion device according to the first embodiment, the second board 5 has the current sensor 503 provided on the second printed wiring board 501, and the current sensor 503 is inserted into the sensor insertion part 307. The configuration was explained. However, the first board 4 may have a current sensor provided on the first printed wiring board 401, and the current sensor of the first board 4 may be inserted into the sensor insertion portion 307. In this case, high precision is not required for positioning the first printed wiring board 401 with respect to the bus bar assembly 3. As a result, the power conversion device can be easily assembled.
 実施の形態2.
 図13は、実施の形態2に係る電力変換装置の要部を示す断面図である。図14は、図13のA部を示す拡大図である。実施の形態2に係る電力変換装置では、パワーモジュール2の信号端子204に凹部211が形成されている。凹部211は、信号端子204における第1基板4に対向する面にある。
Embodiment 2.
FIG. 13 is a cross-sectional view showing the main parts of the power conversion device according to the second embodiment. FIG. 14 is an enlarged view of section A in FIG. 13. In the power conversion device according to the second embodiment, a recess 211 is formed in the signal terminal 204 of the power module 2. The recess 211 is located on the surface of the signal terminal 204 that faces the first substrate 4 .
 第1接続部材402は、凹部211に挿入されている。第1接続部材402が凹部211に挿入されることによって、信号端子204に対する第1接続部材402の位置が決められている。信号端子204に対する第1接続部材402の位置が決められることによって、振動により信号端子204に対する第1接続部材402の位置がずれることが抑制されている。 The first connecting member 402 is inserted into the recess 211. By inserting the first connecting member 402 into the recess 211, the position of the first connecting member 402 with respect to the signal terminal 204 is determined. By determining the position of the first connecting member 402 with respect to the signal terminal 204, displacement of the position of the first connecting member 402 with respect to the signal terminal 204 due to vibration is suppressed.
 第1接続部材402が凹部211に挿入された状態で、第1接続部材402と信号端子204とが互いに接触している。第1接続部材402と信号端子204とが互いに接触することによって、第1接続部材402と信号端子204とが互いに電気的に接続されている。 With the first connecting member 402 inserted into the recess 211, the first connecting member 402 and the signal terminal 204 are in contact with each other. The first connecting member 402 and the signal terminal 204 are electrically connected to each other by contacting each other.
 実施の形態2に係る電力変換装置におけるその他の構成は、実施の形態1に係る電力変換装置における構成と同様である。 The other configuration of the power conversion device according to the second embodiment is the same as the configuration of the power conversion device according to the first embodiment.
 以上説明したように、実施の形態2に係る電力変換装置では、信号端子204には凹部211が形成されており、第1接続部材402が凹部211に挿入された状態で、第1接続部材402と信号端子204とが互いに接触している。この構成によれば、第1接続部材402が凹部211に挿入されることによって、信号端子204に対する第1接続部材402の位置が決められている。これにより、信号端子204に対する第1接続部材402の位置を決めることができる。その結果、例えば、振動によって信号端子204に対する第1接続部材402の位置がずれることを抑制することができる。 As described above, in the power conversion device according to the second embodiment, the recess 211 is formed in the signal terminal 204, and when the first connection member 402 is inserted into the recess 211, the first connection member 402 and signal terminal 204 are in contact with each other. According to this configuration, the position of the first connecting member 402 with respect to the signal terminal 204 is determined by inserting the first connecting member 402 into the recess 211. Thereby, the position of the first connection member 402 with respect to the signal terminal 204 can be determined. As a result, for example, it is possible to suppress displacement of the first connection member 402 with respect to the signal terminal 204 due to vibration.
 実施の形態3.
 図15は、実施の形態3に係る電力変換装置の要部を示す断面図である。実施の形態3に係る電力変換装置は、アセンブリ側突起部9を備えている。アセンブリ側突起部9は、バスバーアセンブリ3に設けられている。アセンブリ側突起部9は、バスバーアセンブリ3から第1プリント配線板401に向かって突出している。アセンブリ側突起部9は、コネクタ実装面406に接触している。言い換えれば、アセンブリ側突起部9は、第1プリント配線板401における第1接続部材402が設けられている面とは反対側の面に接触している。
Embodiment 3.
FIG. 15 is a cross-sectional view showing the main parts of the power conversion device according to the third embodiment. The power conversion device according to the third embodiment includes an assembly side protrusion 9. The assembly side protrusion 9 is provided on the busbar assembly 3. Assembly-side protrusion 9 protrudes from busbar assembly 3 toward first printed wiring board 401 . The assembly side protrusion 9 is in contact with the connector mounting surface 406. In other words, the assembly side protrusion 9 is in contact with the surface of the first printed wiring board 401 opposite to the surface on which the first connection member 402 is provided.
 アセンブリ側突起部9は、第1プリント配線板401における第1接続部材402が設けられている部分に接触している。言い換えれば、Z方向に見た場合に、アセンブリ側突起部9と第1接続部材402とが互いに重なっている。アセンブリ側突起部9が第1プリント配線板401に接触することによって、第1プリント配線板401における第1接続部材402が設けられている部分がバスバーアセンブリ3に近づくように第1プリント配線板401が変形することが抑制されている。 The assembly side protrusion 9 is in contact with a portion of the first printed wiring board 401 where the first connection member 402 is provided. In other words, when viewed in the Z direction, the assembly side protrusion 9 and the first connection member 402 overlap with each other. When the assembly side protrusion 9 contacts the first printed wiring board 401, the first printed wiring board 401 is moved so that the portion of the first printed wiring board 401 where the first connection member 402 is provided approaches the bus bar assembly 3. deformation is suppressed.
 第1接続部材402が信号端子204に押し付けられることによって、第1プリント配線板401には、第1プリント配線板401における第1接続部材402が設けられている部分がバスバーアセンブリ3に近づくように応力が作用する。アセンブリ側突起部9が第1プリント配線板401に接触することによって、第1プリント配線板401が変形することが抑制されている。 By pressing the first connecting member 402 against the signal terminal 204, the portion of the first printed wiring board 401 where the first connecting member 402 is provided approaches the bus bar assembly 3. Stress acts. Since the assembly-side protrusion 9 contacts the first printed wiring board 401, deformation of the first printed wiring board 401 is suppressed.
 実施の形態3に係る電力変換装置におけるその他の構成は、実施の形態1に係る電力変換装置における構成と同様である。なお、実施の形態3に係る電力変換装置では、実施の形態2に係る電力変換装置と同様に、信号端子204に凹部211が形成され、第1接続部材402が凹部211に挿入された状態で、第1接続部材402が信号端子204に接触してもよい。 The other configuration of the power conversion device according to the third embodiment is the same as the configuration of the power conversion device according to the first embodiment. Note that in the power converter according to the third embodiment, similarly to the power converter according to the second embodiment, the recess 211 is formed in the signal terminal 204, and the first connection member 402 is inserted into the recess 211. , the first connecting member 402 may contact the signal terminal 204.
 以上説明したように、実施の形態3に係る電力変換装置は、バスバーアセンブリ3に設けられたアセンブリ側突起部9を備えている。アセンブリ側突起部9は、第1プリント配線板401における第1接続部材402が設けられている面とは反対側の面に接触している。これにより、第1プリント配線板401における第1接続部材402が設けられている部分がバスバーアセンブリ3に近づくように第1プリント配線板401が変形することを抑制することができる。したがって、第1接続部材402と信号端子204との間の接触をより確実にすることができる。その結果、第1接続部材402と信号端子204との間の電気的な接続をより確実にすることができる。 As described above, the power conversion device according to the third embodiment includes the assembly-side protrusion 9 provided on the busbar assembly 3. The assembly side protrusion 9 is in contact with the surface of the first printed wiring board 401 opposite to the surface on which the first connection member 402 is provided. Thereby, it is possible to suppress deformation of the first printed wiring board 401 such that the portion of the first printed wiring board 401 where the first connection member 402 is provided approaches the bus bar assembly 3. Therefore, the contact between the first connecting member 402 and the signal terminal 204 can be made more reliable. As a result, the electrical connection between the first connection member 402 and the signal terminal 204 can be made more reliable.
 実施の形態4.
 図16は、実施の形態4に係る電力変換装置の要部を示す断面図である。実施の形態4に係る電力変換装置では、パワーモジュール2の構成において、実施の形態1に係る電力変換装置と異なっている。
Embodiment 4.
FIG. 16 is a cross-sectional view showing main parts of a power conversion device according to Embodiment 4. The power converter according to the fourth embodiment differs from the power converter according to the first embodiment in the configuration of the power module 2.
 実施の形態4に係る電力変換装置のパワーモジュール2では、信号端子204は、モールド樹脂部206からモールド樹脂部206の外側に突出していない。信号端子204の一部が露出している。信号端子204における露出している部分を導体露出部212とする。信号端子204における導体露出部212以外の部分は、モールド樹脂部206に覆われている。 In the power module 2 of the power conversion device according to the fourth embodiment, the signal terminal 204 does not protrude from the molded resin part 206 to the outside of the molded resin part 206. A portion of the signal terminal 204 is exposed. The exposed portion of the signal terminal 204 is referred to as a conductor exposed portion 212. A portion of the signal terminal 204 other than the exposed conductor portion 212 is covered with a molded resin portion 206 .
 導体露出部212は、第1プリント配線板401に対向している。導体露出部212は、モールド樹脂部206における第1プリント配線板401に対向する面と面一に配置されている。 The conductor exposed portion 212 faces the first printed wiring board 401. The exposed conductor portion 212 is arranged flush with the surface of the molded resin portion 206 that faces the first printed wiring board 401 .
 第1接続部材402と導体露出部212とが互いに接触している。第1接続部材402と導体露出部212とが互いに接触することによって、第1接続部材402と信号端子204とが互いに電気的に接続されている。 The first connecting member 402 and the exposed conductor portion 212 are in contact with each other. The first connecting member 402 and the signal terminal 204 are electrically connected to each other by the first connecting member 402 and the exposed conductor portion 212 coming into contact with each other.
 第1接続部材402が信号端子204の導体露出部212に押し付けられることによって、信号端子204における第1接続部材402が押し付けられている部分が第1プリント配線板401から離れるように、信号端子204に応力が作用する。信号端子204における導体露出部212以外の部分がモールド樹脂部206に覆われていることによって、信号端子204が変形することが抑制されている。 By pressing the first connecting member 402 against the exposed conductor portion 212 of the signal terminal 204, the signal terminal 204 Stress acts on Since the portion of the signal terminal 204 other than the exposed conductor portion 212 is covered with the molded resin portion 206, deformation of the signal terminal 204 is suppressed.
 Z方向に見た場合に、信号端子204は、モールド樹脂部206の側面からモールド樹脂部206の外側に突出していない。これにより、Z方向における電力変換装置の投影面積を縮小することができる。 When viewed in the Z direction, the signal terminal 204 does not protrude from the side surface of the molded resin part 206 to the outside of the molded resin part 206. Thereby, the projected area of the power conversion device in the Z direction can be reduced.
 実施の形態4に係る電力変換装置におけるその他の構成は、実施の形態1に係る電力変換装置における構成と同様である。実施の形態4に係る電力変換装置では、実施の形態2に係る電力変換装置と同様に、信号端子204に凹部211が形成され、第1接続部材402が凹部211に挿入された状態で、第1接続部材402が信号端子204に接触してもよい。また、実施の形態4に係る電力変換装置は、実施の形態3に係る電力変換装置と同様に、第1プリント配線板401に接触するアセンブリ側突起部9を備えてもよい。 The other configuration of the power conversion device according to the fourth embodiment is the same as the configuration of the power conversion device according to the first embodiment. In the power conversion device according to the fourth embodiment, similarly to the power conversion device according to the second embodiment, a recess 211 is formed in the signal terminal 204, and the first connection member 402 is inserted into the recess 211. 1 connection member 402 may contact signal terminal 204 . Further, the power converter according to the fourth embodiment may include an assembly-side protrusion 9 that contacts the first printed wiring board 401, similarly to the power converter according to the third embodiment.
 以上説明したように、実施の形態4に係る電力変換装置では、信号端子204における導体露出部212以外の部分がモールド樹脂部206に覆われている。この構成によれば、導体露出部212に第1接続部材402が押し付けられた場合に、信号端子204における第1接続部材402が押し付けられている部分が第1プリント配線板401から離れるように信号端子204が変形することを抑制することができる。これにより、第1接続部材402と信号端子204との間の接触をより確実にすることができる。その結果、第1接続部材402と信号端子204との間の電気的な接続をより確実にすることができる。 As described above, in the power conversion device according to the fourth embodiment, the portion of the signal terminal 204 other than the conductor exposed portion 212 is covered with the molded resin portion 206. According to this configuration, when the first connecting member 402 is pressed against the conductor exposed portion 212, the signal terminal 204 is arranged so that the portion of the signal terminal 204 against which the first connecting member 402 is pressed is separated from the first printed wiring board 401. Deformation of the terminal 204 can be suppressed. Thereby, contact between the first connecting member 402 and the signal terminal 204 can be made more reliable. As a result, the electrical connection between the first connection member 402 and the signal terminal 204 can be made more reliable.
 実施の形態5.
 図17は、実施の形態5に係る電力変換装置の要部を示す断面図である。実施の形態4に係る電力変換装置のパワーモジュール2では、半導体素子201および信号端子204が信号接続部材207を介して互いに電気的に接続されている。一方、実施の形態5に係る電力変換装置のパワーモジュール2では、半導体素子201と信号端子204とが互いに接触することによって、半導体素子201と信号端子204とが互いに電気的に接続されている。Z方向に見た場合に、半導体素子201、信号端子204および第1接続部材402が互いに重なっている。
Embodiment 5.
FIG. 17 is a sectional view showing main parts of a power conversion device according to Embodiment 5. In the power module 2 of the power conversion device according to the fourth embodiment, the semiconductor element 201 and the signal terminal 204 are electrically connected to each other via the signal connection member 207. On the other hand, in the power module 2 of the power conversion device according to the fifth embodiment, the semiconductor element 201 and the signal terminal 204 are electrically connected to each other by contacting the semiconductor element 201 and the signal terminal 204 with each other. When viewed in the Z direction, the semiconductor element 201, the signal terminal 204, and the first connection member 402 overlap each other.
 実施の形態5に係る電力変換装置におけるその他の構成は、実施の形態4に係る電力変換装置における構成と同様である。 The other configuration of the power conversion device according to the fifth embodiment is the same as the configuration of the power conversion device according to the fourth embodiment.
 以上説明したように、実施の形態5に係る電力変換装置では、パワーモジュール2は、半導体素子201と信号端子204とが互いに接触することによって、半導体素子201と信号端子204とが互いに電気的に接続されている。この構成によれば、Z方向におけるパワーモジュール2の投影面積を縮小することができる。 As explained above, in the power conversion device according to the fifth embodiment, the power module 2 has the semiconductor element 201 and the signal terminal 204 in contact with each other, so that the semiconductor element 201 and the signal terminal 204 are electrically connected to each other. It is connected. According to this configuration, the projected area of the power module 2 in the Z direction can be reduced.
 実施の形態6.
 図18は、実施の形態6に係る電力変換装置の要部を示す断面図である。実施の形態5に係る電力変換装置の第1基板4は、第2接続部材407をさらに有している。
Embodiment 6.
FIG. 18 is a cross-sectional view showing main parts of a power conversion device according to Embodiment 6. The first substrate 4 of the power conversion device according to the fifth embodiment further includes a second connection member 407.
 第2接続部材407は、第1プリント配線板401に設けられている。具体的には、第2接続部材407は、パワーモジュール対向面405に設けられている。第2接続部材407は、導電性接合部材408によって第1プリント配線板401に固定されている。 The second connection member 407 is provided on the first printed wiring board 401. Specifically, the second connection member 407 is provided on the power module facing surface 405. The second connection member 407 is fixed to the first printed wiring board 401 by a conductive bonding member 408.
 第2接続部材407は、電気伝導性および弾性を有している。第2接続部材407は、バスバー接続用端子203に押し付けられている。第2接続部材407とバスバー接続用端子203とが互いに接触することによって、第2接続部材407とバスバー接続用端子203とが互いに電気的に接続されている。 The second connection member 407 has electrical conductivity and elasticity. The second connection member 407 is pressed against the busbar connection terminal 203. By the second connection member 407 and the bus bar connection terminal 203 coming into contact with each other, the second connection member 407 and the bus bar connection terminal 203 are electrically connected to each other.
 第2接続部材407は、例えば、ばねから構成されている。第2接続部材407を構成するばねとしては、例えば、板ばね、コイルばねが挙げられる。第2接続部材407を構成する材料としては、例えば、鉄、鉄合金、銅、銅合金が挙げられる。なお、第2接続部材407の表面には、めっきが施されてもよい。第2接続部材407の表面に施されるめっきとしては、Auめっき、Agめっき、Snめっきが挙げられる。 The second connecting member 407 is made of, for example, a spring. Examples of the spring constituting the second connection member 407 include a leaf spring and a coil spring. Examples of the material constituting the second connection member 407 include iron, iron alloy, copper, and copper alloy. Note that the surface of the second connection member 407 may be plated. Examples of the plating applied to the surface of the second connection member 407 include Au plating, Ag plating, and Sn plating.
 第1プリント配線板401には、バスバーアセンブリ3の入出力バスバー301が電気的に接続されている。入出力バスバー301とバスバー接続用端子203とは、第1プリント配線板401および第2接続部材407を介して、互いに電気的に接続されている。 The input/output bus bar 301 of the bus bar assembly 3 is electrically connected to the first printed wiring board 401. The input/output bus bar 301 and the bus bar connection terminal 203 are electrically connected to each other via the first printed wiring board 401 and the second connection member 407.
 入出力バスバー301とバスバー接続用端子203とが互いに接触する場合には、入出力バスバー301とバスバー接続用端子203との間を溶接またはろう付けする必要がある。入出力バスバー301とバスバー接続用端子203との間を溶接またはろう付けするためには、入出力バスバー301およびバスバー接続用端子203の周囲に、溶接またはろう付けのための作業スペースを設ける必要がある。 When the input/output bus bar 301 and the bus bar connection terminal 203 contact each other, it is necessary to weld or braze the input/output bus bar 301 and the bus bar connection terminal 203. In order to weld or braze between the input/output bus bar 301 and the bus bar connection terminal 203, it is necessary to provide a work space for welding or brazing around the input/output bus bar 301 and the bus bar connection terminal 203. be.
 一方、実施の形態6に係る電力変換装置では、入出力バスバー301とバスバー接続用端子203とは、第1プリント配線板401および第2接続部材407を介して、互いに電気的に接続されている。これにより、入出力バスバー301とバスバー接続用端子203との間を溶接またはろう付けする必要がない。したがって、溶接またはろう付けのための作業スペースを設ける必要がなくなる。 On the other hand, in the power conversion device according to the sixth embodiment, the input/output bus bar 301 and the bus bar connection terminal 203 are electrically connected to each other via the first printed wiring board 401 and the second connection member 407. . Thereby, there is no need to weld or braze between the input/output bus bar 301 and the bus bar connection terminal 203. Therefore, there is no need to provide a working space for welding or brazing.
 実施の形態6に係る電力変換装置におけるその他の構成は、実施の形態1に係る電力変換装置における構成と同様である。なお、実施の形態6に係る電力変換装置では、実施の形態2に係る電力変換装置と同様に、信号端子204に凹部211が形成され、第1接続部材402が凹部211に挿入された状態で、第1接続部材402と信号端子204とが互いに接触してもよい。また、バスバー接続用端子203に凹部211と同様の凹部が形成され、第2接続部材407が凹部に挿入された状態で、第2接続部材407とバスバー接続用端子203とが互いに接触してもよい。また、実施の形態6に係る電力変換装置は、実施の形態3に係る電力変換装置と同様に、第1プリント配線板401に接触するアセンブリ側突起部9を備えてもよい。また、実施の形態6に係る電力変換装置では、実施の形態4に係る電力変換装置と同様に、信号端子204における導体露出部212以外の部分がモールド樹脂部206に覆われてもよい。また、実施の形態6に係る電力変換装置では、実施の形態5に係る電力変換装置と同様に、半導体素子201と信号端子204とが互いに接触することによって、半導体素子201と信号端子204とが互いに電気的に接続されてもよい。 The other configuration of the power conversion device according to the sixth embodiment is the same as the configuration of the power conversion device according to the first embodiment. Note that in the power converter according to the sixth embodiment, similarly to the power converter according to the second embodiment, the recess 211 is formed in the signal terminal 204, and the first connection member 402 is inserted into the recess 211. , the first connecting member 402 and the signal terminal 204 may be in contact with each other. Furthermore, even if a recess similar to the recess 211 is formed in the busbar connection terminal 203 and the second connection member 407 is inserted into the recess, the second connection member 407 and the busbar connection terminal 203 come into contact with each other. good. Further, the power converter according to the sixth embodiment may include an assembly-side protrusion 9 that contacts the first printed wiring board 401, similarly to the power converter according to the third embodiment. Further, in the power converter according to the sixth embodiment, the portion of the signal terminal 204 other than the exposed conductor portion 212 may be covered with the molded resin portion 206, similarly to the power converter according to the fourth embodiment. Further, in the power conversion device according to the sixth embodiment, similarly to the power conversion device according to the fifth embodiment, the semiconductor device 201 and the signal terminal 204 are brought into contact with each other. They may be electrically connected to each other.
 以上説明したように、実施の形態6に係る電力変換装置では、第1基板4は、第1プリント配線板401に設けられた第2接続部材407を有している。第2接続部材407は、電気伝導性および弾性を有している。第2接続部材407とパワーモジュール2のバスバー接続用端子203とが互いに接触することによって、第2接続部材407とパワーモジュール2のバスバー接続用端子203とが互いに電気的に接続されている。この構成によれば、入出力バスバー301とバスバー接続用端子203との間を溶接またはろう付けする必要がなくなる。これにより、溶接またはろう付けのための作業スペースを入出力バスバー301およびバスバー接続用端子203の周囲に設ける必要がなくなる。その結果、電力変換装置の小型化を図ることができる。 As described above, in the power conversion device according to the sixth embodiment, the first board 4 has the second connection member 407 provided on the first printed wiring board 401. The second connecting member 407 has electrical conductivity and elasticity. By the second connecting member 407 and the bus bar connecting terminal 203 of the power module 2 coming into contact with each other, the second connecting member 407 and the bus bar connecting terminal 203 of the power module 2 are electrically connected to each other. According to this configuration, there is no need to weld or braze between the input/output bus bar 301 and the bus bar connection terminal 203. This eliminates the need to provide a work space for welding or brazing around the input/output bus bar 301 and the bus bar connection terminal 203. As a result, it is possible to downsize the power conversion device.
 実施の形態7.
 図19は、実施の形態7に係る電力変換装置の要部を示す断面図である。実施の形態7に係る電力変換装置のバスバーアセンブリ3は、第3接続部材308をさらに有している。
Embodiment 7.
FIG. 19 is a sectional view showing main parts of a power conversion device according to Embodiment 7. The bus bar assembly 3 of the power conversion device according to the seventh embodiment further includes a third connection member 308.
 第3接続部材308は、入出力バスバー301に設けれられている。具体的には、第3接続部材308は、入出力バスバー301におけるバスバー接続用端子203に対向している面に設けられている。第3接続部材308は、導電性接合部材309によって入出力バスバー301に固定されている。 The third connection member 308 is provided on the input/output bus bar 301. Specifically, the third connection member 308 is provided on the surface of the input/output bus bar 301 that faces the bus bar connection terminal 203 . The third connecting member 308 is fixed to the input/output bus bar 301 by a conductive joining member 309.
 第3接続部材308は、電気伝導性および弾性を有している。第3接続部材308は、バスバー接続用端子203に押し付けられている。第3接続部材308とバスバー接続用端子203とが互いに接触することによって、第3接続部材308とバスバー接続用端子203とが互いに電気的に接続されている。 The third connecting member 308 has electrical conductivity and elasticity. The third connection member 308 is pressed against the busbar connection terminal 203. By the third connecting member 308 and the bus bar connecting terminal 203 coming into contact with each other, the third connecting member 308 and the bus bar connecting terminal 203 are electrically connected to each other.
 第3接続部材308は、例えば、ばねから構成されている。第3接続部材308を構成するばねとしては、例えば、板ばね、コイルばねが挙げられる。第3接続部材308を構成する材料としては、例えば、鉄、鉄合金、銅、銅合金が挙げられる。なお、第3接続部材308の表面には、めっきが施されてもよい。第3接続部材308の表面に施されるめっきとしては、Auめっき、Agめっき、Snめっきが挙げられる。 The third connecting member 308 is made of, for example, a spring. Examples of the spring constituting the third connection member 308 include a leaf spring and a coil spring. Examples of the material constituting the third connecting member 308 include iron, iron alloy, copper, and copper alloy. Note that the surface of the third connection member 308 may be plated. Examples of the plating applied to the surface of the third connection member 308 include Au plating, Ag plating, and Sn plating.
 第1プリント配線板401を介して入出力バスバー301とバスバー接続用端子203とが互いに電気的に接続されている場合には、第1プリント配線板401を介してバスバー接続用端子203に電流が流れる。これにより、第1プリント配線板401の温度が上昇する。 When the input/output busbar 301 and the busbar connection terminal 203 are electrically connected to each other via the first printed wiring board 401, current flows to the busbar connection terminal 203 via the first printed wiring board 401. flows. As a result, the temperature of the first printed wiring board 401 increases.
 一方、実施の形態7に係る電力変換装置では、第3接続部材308を介して入出力バスバー301とバスバー接続用端子203とが互いに電気的に接続されている。これにより、第1プリント配線板401を介さずに、入出力バスバー301とバスバー接続用端子203との間に電流が流れる。その結果、第1プリント配線板401の温度の上昇が抑制されている。 On the other hand, in the power conversion device according to the seventh embodiment, the input/output bus bar 301 and the bus bar connection terminal 203 are electrically connected to each other via the third connection member 308. As a result, current flows between the input/output bus bar 301 and the bus bar connection terminal 203 without passing through the first printed wiring board 401. As a result, the rise in temperature of first printed wiring board 401 is suppressed.
 実施の形態7に係る電力変換装置におけるその他の構成は、実施の形態1に係る電力変換装置における構成と同様である。なお、実施の形態7に係る電力変換装置では、実施の形態2に係る電力変換装置と同様に、信号端子204に凹部211が形成され、第1接続部材402が凹部211に挿入された状態で、第1接続部材402と信号端子204とが互いに接触してもよい。また、バスバー接続用端子203に凹部211と同様の凹部が形成され、第2接続部材407が凹部に挿入された状態で、第2接続部材407とバスバー接続用端子203とが互いに接触してもよい。また、実施の形態7に係る電力変換装置は、実施の形態3に係る電力変換装置と同様に、第1プリント配線板401に接触するアセンブリ側突起部9を備えてもよい。また、実施の形態7に係る電力変換装置では、実施の形態4に係る電力変換装置と同様に、信号端子204における導体露出部212以外の部分がモールド樹脂部206に覆われてもよい。また、実施の形態7に係る電力変換装置では、実施の形態5に係る電力変換装置と同様に、半導体素子201と信号端子204とが互いに接触することによって、半導体素子201と信号端子204とが互いに電気的に接続されてもよい。また、実施の形態7に係る電力変換装置では、実施の形態6に係る電力変換装置と同様に、第1基板4が第2接続部材407を有し、第2接続部材407とバスバー接続用端子203とが互いに接触する構成であってもよい。 The other configuration of the power conversion device according to the seventh embodiment is the same as the configuration of the power conversion device according to the first embodiment. Note that in the power converter according to the seventh embodiment, similarly to the power converter according to the second embodiment, the recess 211 is formed in the signal terminal 204, and the first connection member 402 is inserted into the recess 211. , the first connecting member 402 and the signal terminal 204 may be in contact with each other. Furthermore, even if a recess similar to the recess 211 is formed in the busbar connection terminal 203 and the second connection member 407 is inserted into the recess, the second connection member 407 and the busbar connection terminal 203 come into contact with each other. good. Further, the power converter according to the seventh embodiment may include an assembly-side protrusion 9 that contacts the first printed wiring board 401, similarly to the power converter according to the third embodiment. Further, in the power converter according to the seventh embodiment, the portion of the signal terminal 204 other than the exposed conductor portion 212 may be covered with the molded resin portion 206, similarly to the power converter according to the fourth embodiment. Further, in the power conversion device according to the seventh embodiment, similarly to the power conversion device according to the fifth embodiment, the semiconductor device 201 and the signal terminal 204 are brought into contact with each other. They may be electrically connected to each other. Further, in the power conversion device according to the seventh embodiment, the first substrate 4 has the second connection member 407, and the second connection member 407 and the bus bar connection terminal are similar to the power conversion device according to the sixth embodiment. 203 may be in contact with each other.
 以上説明したように、実施の形態7に係る電力変換装置では、バスバーアセンブリ3は、入出力バスバー301と、入出力バスバー301に設けられた第3接続部材308と、を有している。第3接続部材308は、電気伝導性および弾性を有している。第3接続部材308とバスバー接続用端子203とが互いに接触することによって、第3接続部材308とバスバー接続用端子203とが互いに電気的に接続されている。この構成によれば、第1プリント配線板401を介さずに、入出力バスバー301とバスバー接続用端子203との間に電流を流すことができる。その結果、第1プリント配線板401の温度の上昇を抑制することができる。 As described above, in the power conversion device according to the seventh embodiment, the busbar assembly 3 includes the input/output busbar 301 and the third connection member 308 provided on the input/output busbar 301. The third connecting member 308 has electrical conductivity and elasticity. By the third connecting member 308 and the bus bar connecting terminal 203 coming into contact with each other, the third connecting member 308 and the bus bar connecting terminal 203 are electrically connected to each other. According to this configuration, current can flow between the input/output bus bar 301 and the bus bar connection terminal 203 without passing through the first printed wiring board 401. As a result, an increase in temperature of the first printed wiring board 401 can be suppressed.
 1 パワーモジュール設置部材、2 パワーモジュール、3 バスバーアセンブリ、4 第1基板、5 第2基板、6 平滑コンデンサ、7 電気接続用ねじ、8 接着剤、9 アセンブリ側突起部、101 支持部材、102 冷却板、103 パイプ、104 流路、105 パワーモジュール実装部、106 冷却フィン、107 実装面、108 冷却面、201 半導体素子、202 半導体素子用配線部材、203 バスバー接続用端子、204 信号端子、205 絶縁部材、206 モールド樹脂部、207 信号接続部材、208 導電性接合部材、209 導電性接合部材、210 導電性接合部材、211 凹部、212 導体露出部、301 入出力バスバー、302 電流センサコア、303 絶縁フレーム、304 Pバスバー、305 Nバスバー、306 ACバスバー、307 センサ挿入部、308 第3接続部材、309 導電性接合部材、401 第1プリント配線板、402 第1接続部材、403 第1基板間接続用コネクタ、404 導電性接合部材、405 パワーモジュール対向面、406 コネクタ実装面、407 第2接続部材、408 導電性接合部材、501 第2プリント配線板、502 第2基板間接続用コネクタ、503 電流センサ、504 コネクタ実装面。 1 Power module installation member, 2 Power module, 3 Bus bar assembly, 4 First board, 5 Second board, 6 Smoothing capacitor, 7 Electrical connection screw, 8 Adhesive, 9 Assembly side protrusion, 101 Support member, 102 Cooling Plate, 103 Pipe, 104 Flow path, 105 Power module mounting part, 106 Cooling fin, 107 Mounting surface, 108 Cooling surface, 201 Semiconductor element, 202 Wiring member for semiconductor element, 203 Bus bar connection terminal, 204 Signal terminal, 205 Insulation Member, 206 molded resin part, 207 signal connection member, 208 conductive bonding member, 209 conductive bonding member, 210 conductive bonding member, 211 recess, 212 conductor exposed portion, 301 input/output bus bar, 302 current sensor core, 303 insulating frame , 304 P bus bar, 305 N bus bar, 306 AC bus bar, 307 sensor insertion part, 308 third connection member, 309 conductive bonding member, 401 first printed wiring board, 402 first connection member, 403 first board-to-board connection Connector, 404 Conductive bonding member, 405 Power module opposing surface, 406 Connector mounting surface, 407 Second connection member, 408 Conductive bonding member, 501 Second printed wiring board, 502 Second board-to-board connection connector, 503 Current sensor , 504 Connector mounting surface.

Claims (11)

  1.  パワーモジュール設置部材と、
     前記パワーモジュール設置部材に設けられたパワーモジュールと、
     前記パワーモジュール設置部材に設けられたバスバーアセンブリと、
     前記バスバーアセンブリに設けられた第1基板と、
     を備え、
     前記パワーモジュールは、前記パワーモジュール設置部材と前記バスバーアセンブリとの間に配置されており、
     前記第1基板は、前記パワーモジュールと前記バスバーアセンブリとの間に配置された第1プリント配線板と、前記第1プリント配線板に設けられた第1接続部材と、を有し、
     前記第1接続部材は、電気伝導性および弾性を有し、
     前記第1接続部材と前記パワーモジュールの信号端子とが互いに接触することによって、前記第1接続部材と前記パワーモジュールの信号端子とが互いに電気的に接続されている電力変換装置。
    A power module installation member,
    a power module provided on the power module installation member;
    a busbar assembly provided on the power module installation member;
    a first substrate provided on the busbar assembly;
    Equipped with
    The power module is disposed between the power module installation member and the busbar assembly,
    The first board includes a first printed wiring board disposed between the power module and the bus bar assembly, and a first connection member provided on the first printed wiring board,
    The first connecting member has electrical conductivity and elasticity,
    A power conversion device in which the first connecting member and the signal terminal of the power module are electrically connected to each other by contacting the first connecting member and the signal terminal of the power module.
  2.  前記第1プリント配線板は、接着剤によって前記バスバーアセンブリに固定されている請求項1に記載の電力変換装置。 The power conversion device according to claim 1, wherein the first printed wiring board is fixed to the bus bar assembly with an adhesive.
  3.  前記第1接続部材は、導電性接合部材によって前記第1プリント配線板に固定されている請求項1または請求項2に記載の電力変換装置。 The power conversion device according to claim 1 or 2, wherein the first connecting member is fixed to the first printed wiring board by a conductive bonding member.
  4.  前記バスバーアセンブリに設けられたアセンブリ側突起部を備え、
     前記アセンブリ側突起部は、前記第1プリント配線板における前記第1接続部材が設けられている面とは反対側の面に接触している請求項1から請求項3までの何れか一項に記載の電力変換装置。
    an assembly side protrusion provided on the busbar assembly;
    4. The assembly side protrusion is in contact with a surface of the first printed wiring board opposite to a surface on which the first connection member is provided. The power conversion device described.
  5.  前記パワーモジュールの信号端子には、凹部が形成されており、
     前記第1接続部材が前記凹部に挿入された状態で、前記第1接続部材と前記パワーモジュールの信号端子とが互いに接触している請求項1から請求項4までの何れか一項に記載の電力変換装置。
    A recess is formed in the signal terminal of the power module,
    5. The power module according to claim 1, wherein the first connecting member and the signal terminal of the power module are in contact with each other when the first connecting member is inserted into the recess. Power converter.
  6.  前記第1基板は、前記第1プリント配線板に設けられた第2接続部材を有し、
     前記第2接続部材は、電気伝導性および弾性を有し、
     前記第2接続部材と前記パワーモジュールのバスバー接続用端子とが互いに接触することによって、前記第2接続部材と前記パワーモジュールのバスバー接続用端子とが互いに電気的に接続されている請求項1から請求項5までの何れか一項に記載の電力変換装置。
    The first board has a second connection member provided on the first printed wiring board,
    The second connecting member has electrical conductivity and elasticity,
    From claim 1, wherein the second connecting member and the bus bar connecting terminal of the power module are electrically connected to each other by contacting each other with the second connecting member and the bus bar connecting terminal of the power module. The power conversion device according to any one of claims 5 to 6.
  7.  前記バスバーアセンブリは、入出力バスバーと、前記入出力バスバーに設けられた第3接続部材と、を有し、
     前記第3接続部材は、電気伝導性および弾性を有しており、
     前記第3接続部材と前記パワーモジュールのバスバー接続用端子とが互いに接触することによって、前記第3接続部材と前記パワーモジュールのバスバー接続用端子とが互いに電気的に接続されている請求項1から請求項6までの何れか一項に記載の電力変換装置。
    The busbar assembly includes an input/output busbar and a third connection member provided on the input/output busbar,
    The third connecting member has electrical conductivity and elasticity,
    From claim 1, wherein the third connecting member and the bus bar connecting terminal of the power module are electrically connected to each other by contacting the third connecting member and the bus bar connecting terminal of the power module. The power conversion device according to any one of claims 6 to 9.
  8.  前記パワーモジュール設置部材または前記バスバーアセンブリに設けられた第2基板を備え、
     前記第2基板は、第2プリント配線板を有しており、
     前記バスバーアセンブリは、前記第1プリント配線板と前記第2プリント配線板との間に配置されており、
     前記第1プリント配線板と前記第2プリント配線板とが互いに電気的に接続されている請求項1から請求項7までの何れか一項に記載の電力変換装置。
    a second board provided on the power module installation member or the bus bar assembly;
    The second board has a second printed wiring board,
    The busbar assembly is disposed between the first printed wiring board and the second printed wiring board,
    The power conversion device according to any one of claims 1 to 7, wherein the first printed wiring board and the second printed wiring board are electrically connected to each other.
  9.  前記バスバーアセンブリにおけるPバスバーおよびNバスバーに接続された平滑コンデンサをさらに備え、
     前記バスバーアセンブリと前記平滑コンデンサとの間に前記第2プリント配線板が配置されている請求項8に記載の電力変換装置。
    further comprising a smoothing capacitor connected to the P bus bar and the N bus bar in the bus bar assembly,
    The power conversion device according to claim 8, wherein the second printed wiring board is disposed between the bus bar assembly and the smoothing capacitor.
  10.  前記バスバーアセンブリは、前記パワーモジュールのバスバー接続用端子に接続された入出力バスバーと、前記入出力バスバーを囲むように設けられ、センサ挿入部が形成された電流センサコアとを有し、
     前記第2基板は、前記第2プリント配線板に設けられ前記センサ挿入部に挿入された電流センサを有している請求項8または請求項9に記載の電力変換装置。
    The busbar assembly includes an input/output busbar connected to a busbar connection terminal of the power module, and a current sensor core provided to surround the input/output busbar and in which a sensor insertion portion is formed,
    The power conversion device according to claim 8 or 9, wherein the second board has a current sensor provided on the second printed wiring board and inserted into the sensor insertion part.
  11.  前記バスバーアセンブリは、前記パワーモジュールのバスバー接続用端子に接続された入出力バスバーと、前記入出力バスバーを囲むように設けられ、センサ挿入部が形成された電流センサコアとを有し、
     前記第1基板は、前記第1プリント配線板に設けられ前記センサ挿入部に挿入された電流センサを有している請求項1から請求項9までの何れか一項に記載の電力変換装置。
    The busbar assembly includes an input/output busbar connected to a busbar connection terminal of the power module, and a current sensor core provided to surround the input/output busbar and in which a sensor insertion portion is formed,
    The power conversion device according to any one of claims 1 to 9, wherein the first board has a current sensor provided on the first printed wiring board and inserted into the sensor insertion part.
PCT/JP2022/040721 2022-04-04 2022-10-31 Power conversion device WO2023195195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022062289A JP7414878B2 (en) 2022-04-04 2022-04-04 power converter
JP2022-062289 2022-04-04

Publications (1)

Publication Number Publication Date
WO2023195195A1 true WO2023195195A1 (en) 2023-10-12

Family

ID=88242740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040721 WO2023195195A1 (en) 2022-04-04 2022-10-31 Power conversion device

Country Status (2)

Country Link
JP (1) JP7414878B2 (en)
WO (1) WO2023195195A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225580A (en) * 2003-01-21 2004-08-12 Denso Corp Shunt resistor installed inverter integration type electric compressor and shunt resistor device
JP2008193867A (en) * 2007-02-07 2008-08-21 Hitachi Ltd Power conversion device
JP2012070509A (en) * 2010-09-22 2012-04-05 Hitachi Automotive Systems Ltd Electronic control device
JP2020150749A (en) * 2019-03-15 2020-09-17 マレリ株式会社 Inverter assembly structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224534A (en) 2008-03-17 2009-10-01 Yaskawa Electric Corp Power module
JP4657329B2 (en) 2008-07-29 2011-03-23 日立オートモティブシステムズ株式会社 Power converter and electric vehicle
JP2011124341A (en) 2009-12-09 2011-06-23 Sharp Corp Semiconductor device and semiconductor module equipped with the same, method of manufacturing semiconductor device, and method of manufacturing semiconductor module
JP2013033874A (en) 2011-08-03 2013-02-14 Mitsubishi Electric Corp Power module
JP6364704B2 (en) 2013-04-30 2018-08-01 株式会社明電舎 Automotive power converter
JP6488688B2 (en) 2014-12-17 2019-03-27 ダイキン工業株式会社 Module-terminal block connection structure and connection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004225580A (en) * 2003-01-21 2004-08-12 Denso Corp Shunt resistor installed inverter integration type electric compressor and shunt resistor device
JP2008193867A (en) * 2007-02-07 2008-08-21 Hitachi Ltd Power conversion device
JP2012070509A (en) * 2010-09-22 2012-04-05 Hitachi Automotive Systems Ltd Electronic control device
JP2020150749A (en) * 2019-03-15 2020-09-17 マレリ株式会社 Inverter assembly structure

Also Published As

Publication number Publication date
JP7414878B2 (en) 2024-01-16
JP2023152350A (en) 2023-10-17

Similar Documents

Publication Publication Date Title
KR100887101B1 (en) Electronic control apparatus
KR100867263B1 (en) Electronic control apparatus
US20110163569A1 (en) Terminal mounting structure and method
US10576912B2 (en) Circuit assembly and electrical junction box
CN101577262A (en) Power semiconductor module system
US6234842B1 (en) Power converter connector assembly
JP2012070509A (en) Electronic control device
JP2005129274A (en) Press-fit terminal and connecting structure
US7497698B2 (en) Electrical module and electrical unit
CN100562216C (en) The heat abstractor that is used for electric equipment
JP5449237B2 (en) Substrate and substrate manufacturing method
CN113097171A (en) Power conversion device
JP7414878B2 (en) power converter
US11554732B2 (en) Electrical junction box
JP2007281138A (en) Wiring board
US20230130570A1 (en) Power conversion device
JP2012228082A (en) Circuit structure and electrical connection box
CN115191155A (en) Circuit structure
JP3685046B2 (en) Junction box
KR200302435Y1 (en) Hybrid junction Box
KR100458750B1 (en) Hybrid junction Box
JP4725341B2 (en) Junction box for vehicles
JP2011004534A (en) Electrical junction box
US20220022337A1 (en) Circuit board
CN115280908A (en) Circuit structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936590

Country of ref document: EP

Kind code of ref document: A1