JP2009224534A - Power module - Google Patents

Power module Download PDF

Info

Publication number
JP2009224534A
JP2009224534A JP2008067120A JP2008067120A JP2009224534A JP 2009224534 A JP2009224534 A JP 2009224534A JP 2008067120 A JP2008067120 A JP 2008067120A JP 2008067120 A JP2008067120 A JP 2008067120A JP 2009224534 A JP2009224534 A JP 2009224534A
Authority
JP
Japan
Prior art keywords
power
circuit board
anisotropic conductive
power module
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008067120A
Other languages
Japanese (ja)
Inventor
Akira Sasaki
亮 佐々木
Shoichiro Shimoike
正一郎 下池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2008067120A priority Critical patent/JP2009224534A/en
Publication of JP2009224534A publication Critical patent/JP2009224534A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Combinations Of Printed Boards (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power module small in thickness of the module, and high in reliability by repeated thermal stress fatigue of a joint part. <P>SOLUTION: This power module includes: a plurality of power semiconductor elements 1; a plurality of control elements 3, 4 controlling the plurality of power semiconductor elements; a power circuit 22 driving the plurality of power semiconductor elements; a power circuit board 10 constituting the circuit; a control circuit 21 comprising a plurality of control elements; and a control circuit board 6 constituting the circuit and comprising a control circuit board. The power module is composed by interposing anisotropic conductive rubber 5 in electrical connection between the power circuit board 10 and the control circuit board 6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、インバータやサーボアンプなど電子機器に使用するパワーモジュールに関するものである。   The present invention relates to a power module used for an electronic device such as an inverter or a servo amplifier.

従来の第1のパワーモジュールとして、図6に示すようなものがある。図において、201は上アーム用セラミック両面基板、202は下アーム用セラミック基板、203はP側端子用金属配線、204ははんだ層、205ははんだボールである。このパワーモジュールは、上アーム用セラミック両面基板201の上下にパワー半導体素子1がはんだボール205により接合されて、複数枚のセラミック基板の間に挟むように立体的に実装されたものである(例えば、特許文献1参照)。
また、従来の第2のパワーモジュールとして、図7に示すようなものがある。図において、31はセラミック基板、34は半導体素子、34aははんだボール、34bははんだ層
71は樹脂基板、144は導電性ゴムである。このパワーモジュールは、セラミック基板31とセラミック基板31間に導電性ゴム144を挟みこみ圧接して、基板間の電気的な接続を取る構造をしているものである(例えば、特許文献2参照)。
あるいは、従来の第3のパワーモジュールとして、図8に示すようなものがある。図において、304はリード、313、314、323は接続用配線、317ははんだ層、320は単位ユニット、321は異方性導電樹脂またはゴムからなる緩衝部材、322はマザーボードである。このパワーモジュールは、単位ユニット320の接続用配線313と別の単位ユニットの接続配線314を異方性導電樹脂321を挟み込んで圧接することで電気的な接続を行い、三次元的なパワーモジュールを構成するものである(例えば、特許文献3参照)。
このような従来のパワーモジュールは、セラミック基板とパワー半導体との電気的な接続にはんだ接合を行い、セラミック基板とセラミック基板との電気的な接続に導電性ゴムあるいははんだ接合を行いなどの方法で立体的なパワーモジュールを構成するようになっている。
特開2004−22844号公報(第7頁、図1) 特開平11−238962号公報(第15頁、図9) 特開平6−275775号公報(第4頁、図4)
There is a conventional first power module as shown in FIG. In the figure, 201 is an upper arm ceramic double-sided substrate, 202 is a lower arm ceramic substrate, 203 is a metal wiring for P-side terminals, 204 is a solder layer, and 205 is a solder ball. In this power module, the power semiconductor element 1 is joined to the upper and lower ceramic double-sided substrates 201 by solder balls 205 and mounted three-dimensionally so as to be sandwiched between a plurality of ceramic substrates (for example, , See Patent Document 1).
Further, there is a conventional second power module as shown in FIG. In the figure, 31 is a ceramic substrate, 34 is a semiconductor element, 34a is a solder ball, 34b is a solder layer 71 is a resin substrate, and 144 is a conductive rubber. This power module has a structure in which a conductive rubber 144 is sandwiched and pressed between the ceramic substrate 31 and the ceramic substrate 31 to make electrical connection between the substrates (see, for example, Patent Document 2). .
Alternatively, there is a conventional third power module as shown in FIG. In the figure, 304 is a lead, 313, 314 and 323 are connection wirings, 317 is a solder layer, 320 is a unit unit, 321 is a buffer member made of anisotropic conductive resin or rubber, and 322 is a mother board. In this power module, the connection wiring 313 of the unit unit 320 and the connection wiring 314 of another unit unit are electrically connected by sandwiching the anisotropic conductive resin 321 and the three-dimensional power module is connected. (See, for example, Patent Document 3).
In such a conventional power module, solder bonding is performed for electrical connection between the ceramic substrate and the power semiconductor, and conductive rubber or solder bonding is performed for electrical connection between the ceramic substrate and the ceramic substrate. A three-dimensional power module is configured.
Japanese Patent Laying-Open No. 2004-22844 (page 7, FIG. 1) Japanese Patent Application Laid-Open No. 11-238962 (page 15, FIG. 9) JP-A-6-275775 (4th page, FIG. 4)

ところが、従来の第1のパワーモジュールでは、パワー半導体素子をセラミック両面基板にはんだ接合することにより形成し、それを立体的に積み上げることにより、インバータ回路のハーフブリッジを構成していた。この構成でははんだ接合を用いるためにセラミック基板にある程度の強度が必要であり、セラミック基板の板厚が厚くなることでモジュール全体を薄く作ることができないという問題があった。
また、従来の第2のパワーモジュールでは、パワー回路の入出力の電流の閉回路を形成するような場合は下側のセラミック基板からパワー端子を介して上側のセラミック基板に接続するため、上下のセラミック基板間に間隙が必要であり、モジュール全体を薄く作ることができないという問題もあった。
また、従来の第3のパワーモジュールでは、駆動時の発熱量が大きいパワー半導体素子をセラミック基板で挟みこみ、はんだで接合しているため繰り返しの熱応力疲労ではんだ接合部が破壊するという、接合信頼性が低いという問題もあった。
本発明はこのような問題点に鑑みてなされたものであり、パワー半導体素子の電極と制御基板の銅配線間および制御基板とパワー回路基板間に異方性導電ゴムを挟んで接続し、しかも異方性導電ゴムの一部を外部端子として形成した構造にすることで、モジュール内部の構成部材や隙間を極めて薄くできるパワーモジュールを提供し、接合部分の繰り返し熱応力疲労による信頼性を大きく改善することを目的とする。
However, in the first conventional power module, the power semiconductor element is formed by solder bonding to the ceramic double-sided substrate, and is stacked three-dimensionally to constitute a half bridge of the inverter circuit. In this configuration, since solder bonding is used, a certain degree of strength is required for the ceramic substrate, and there is a problem in that the entire module cannot be made thin due to an increase in the thickness of the ceramic substrate.
Further, in the conventional second power module, when a closed circuit of the input / output current of the power circuit is formed, since the lower ceramic substrate is connected to the upper ceramic substrate via the power terminal, the upper and lower There was a problem that a gap was necessary between the ceramic substrates, and the entire module could not be made thin.
Further, in the conventional third power module, a power semiconductor element that generates a large amount of heat during driving is sandwiched between ceramic substrates and joined with solder, so that the solder joint is destroyed due to repeated thermal stress fatigue. There was also a problem of low reliability.
The present invention has been made in view of such problems, and is connected between the electrodes of the power semiconductor element and the copper wiring of the control board and between the control board and the power circuit board with an anisotropic conductive rubber interposed therebetween, and By providing a structure in which a part of anisotropic conductive rubber is formed as an external terminal, we provide a power module that can make the components and gaps inside the module extremely thin and greatly improve the reliability due to repeated thermal stress fatigue at the joint. The purpose is to do.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、複数のパワー半導体素子と、前記複数のパワー半導体素子を制御する複数の制御素子と、前記複数のパワー半導体素子を駆動するパワー回路と、この回路を構成するパワー回路基板と、前記複数の制御素子からなる制御回路と、この回路を構成する樹脂基板からなる制御回路基板とを備えてなるパワーモジュールにおいて、前記パワー回路基板と前記制御回路基板との電気的接続に異方性導電ゴムを挟み込んで構成したものである。
請求項2に記載の発明は、前記異方性導電ゴムと前記パワー回路基板との間に金属性ポストが形成されたものである。
請求項3に記載の発明は、前記異方性導電ゴムの導電端子に金属箔または金属めっき部材を設けて制御回路の外部制御端子としたものである。
In order to solve the above problems, the present invention is configured as follows.
The invention described in claim 1 includes a plurality of power semiconductor elements, a plurality of control elements for controlling the plurality of power semiconductor elements, a power circuit for driving the plurality of power semiconductor elements, and a power constituting the circuit. In a power module comprising a circuit board, a control circuit comprising the plurality of control elements, and a control circuit board comprising a resin substrate constituting the circuit, electrical connection between the power circuit board and the control circuit board Is constructed by sandwiching anisotropic conductive rubber.
According to a second aspect of the present invention, a metallic post is formed between the anisotropic conductive rubber and the power circuit board.
According to a third aspect of the present invention, a metal foil or a metal plating member is provided on the conductive terminal of the anisotropic conductive rubber to form an external control terminal of the control circuit.

請求項1に記載の発明によると、前記複数のパワー半導体素子をドライブ制御する当該複数の制御素子からなるドライブ回路を備えて構成されるパワーモジュールにおいて、パワー回路を構成するパワー回路基板に実装されているパワー半導体素子と制御回路を構成する制御回路基板との電気的接続に異方性導電ゴムを挟み込んで接続することができるため、モジュールを薄くすることができる。
請求項2に記載の発明によると、前記パワーモジュールにおいて、異方性導電ゴムとパワー回路基板間に金属性ポストを形成しているため、パワー回路の閉回路を構成することができ、パワー回路を薄くすることができる。
請求項3に記載の発明によると、前記異方性導電ゴムの上面に金属製薄膜を形成し、金属薄薄膜の部分をモジュール側面に引き出し制御回路の外部端子として形成するため、パワー半導体素子を駆動する信号を異方性導電ゴムの端子から入出力することができ、パワーモジュールを薄くすることができる。また、異方性導電ゴムでパワー半導体素子と制御基板間あるいは制御基板とパワー回路基板間の接続を行うため、繰り返し熱応力疲労による信頼性を大幅に向上することができる。
According to the first aspect of the present invention, in a power module configured to include a drive circuit including a plurality of control elements that drive-control the plurality of power semiconductor elements, the power module is mounted on a power circuit board that configures the power circuit. Since the anisotropic conductive rubber can be inserted and connected to the electrical connection between the power semiconductor element and the control circuit board constituting the control circuit, the module can be made thin.
According to the second aspect of the present invention, in the power module, since the metallic post is formed between the anisotropic conductive rubber and the power circuit board, a closed circuit of the power circuit can be formed. Can be made thinner.
According to a third aspect of the present invention, a metal thin film is formed on the upper surface of the anisotropic conductive rubber, and a portion of the metal thin film is formed on the side of the module as an external terminal of the control circuit. The driving signal can be input / output from the terminal of the anisotropic conductive rubber, and the power module can be made thin. Further, since the connection between the power semiconductor element and the control board or between the control board and the power circuit board is performed with the anisotropic conductive rubber, the reliability due to repeated thermal stress fatigue can be greatly improved.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明のパワーモジュールを示す側断面図である。図において、1はパワー半導体素子、2はパワー半導体素子1に設けた電極、3、4はドライブ制御素子、5は異方性導電ゴム、6は樹脂基板からなる制御回路基板、7は制御回路基板6の銅配線、8は金属製ポスト、9は制御端子、10はセラミック基板上に銅配線を形成したパワー回路基板、11はパワー端子、12ははんだ層、13は異方性導電ゴムの外部(制御)端子、21は制御回路、22はパワー回路である。   FIG. 1 is a side sectional view showing a power module of the present invention. In the figure, 1 is a power semiconductor element, 2 is an electrode provided on the power semiconductor element 1, 3, 4 is a drive control element, 5 is an anisotropic conductive rubber, 6 is a control circuit board made of a resin substrate, and 7 is a control circuit. Copper wiring of substrate 6, 8 metal post, 9 control terminal, 10 power circuit board with copper wiring formed on ceramic substrate, 11 power terminal, 12 solder layer, 13 anisotropic conductive rubber An external (control) terminal, 21 is a control circuit, and 22 is a power circuit.

異方性導電ゴム5の詳細を図2に示す。図2(a)は接続前の拡大断面図、(b)は接続後の拡大断面図である。図2(a)において、電極2は、ゲート電極2aとソース電極2bからなる。異方性導電ゴム5は、シリコーン系のゴム部材5aの中にNi/Auメッキを施した異方性の導電粒子5bを局所的に分散配向したものである。導電粒子5bを配向した部分が導電端子5cとなる。なお、ゴム部材5aの厚さは、接合部分の厚さを用途に合わせて数10μm〜数100μmのものを用いることができる。パワー端子11はパワー回路基板10の端部まで引き出すことで形成されている。パワー回路22は、パワー回路基板10の銅配線にパワー半導体素子1と金属製ポスト8がはんだ層12により接合されて構成されている。制御回路21は、制御回路基板6の上面に制御素子3,4および制御端子9がはんだ層12により接合されて構成されている。   The details of the anisotropic conductive rubber 5 are shown in FIG. 2A is an enlarged sectional view before connection, and FIG. 2B is an enlarged sectional view after connection. In FIG. 2A, the electrode 2 includes a gate electrode 2a and a source electrode 2b. The anisotropic conductive rubber 5 is obtained by locally dispersing and orienting anisotropic conductive particles 5b subjected to Ni / Au plating in a silicone rubber member 5a. The portion where the conductive particles 5b are oriented becomes the conductive terminal 5c. In addition, the thickness of the rubber member 5a can use the thing of several 10 micrometers-several 100 micrometers according to the use of the thickness of a junction part. The power terminal 11 is formed by drawing out to the end of the power circuit board 10. The power circuit 22 is configured by joining the power semiconductor element 1 and the metal post 8 to the copper wiring of the power circuit board 10 with the solder layer 12. The control circuit 21 is configured by connecting control elements 3 and 4 and a control terminal 9 to the upper surface of the control circuit board 6 with a solder layer 12.

つぎに、異方性導電ゴム5の電気的接続原理を図2(b)により説明する。
図2(a)の状態では導電粒子5bはゴム中で分散しているため、お互いは接触しておらず上側から下側へつながる導電性パスは形成されていない。図2(b)では、異方性導電ゴム5の上面に制御回路基板6の銅配線7を接触するように配置し、ゴム部材5aの下面にはパワー半導体素子1のゲート電極2aとソース電極2bが接触するように配置し、パワー半導体素子1が実装されたパワー回路22側を固定した状態で、制御回路基板6が実装された制御回路21を押圧する。これにより、異方性の導電粒子5bがゴム部材5aを破り繋がることで制御回路21からパワー回路22に向かう縦方向の導電性パスが形成させる。このため、制御回路基板6の銅配線7とパワー半導体素子1のゲート電極2aとソース電極2bは電気的に接続され、電気的に配線されたパワーモジュールを構成することができる。
このように、異方性導電ゴム5は、制御回路21とパワー回路22の間で押圧することにより、制御回路21とパワー回路22を電気的に接続している。
本発明が従来技術と異なる部分は、異方性導電ゴム5と金属ポスト8を備えた部分である。
Next, the principle of electrical connection of the anisotropic conductive rubber 5 will be described with reference to FIG.
In the state of FIG. 2A, since the conductive particles 5b are dispersed in the rubber, the conductive paths that are not in contact with each other and are connected from the upper side to the lower side are not formed. In FIG. 2 (b), the copper wiring 7 of the control circuit board 6 is disposed on the upper surface of the anisotropic conductive rubber 5, and the gate electrode 2a and the source electrode of the power semiconductor element 1 are disposed on the lower surface of the rubber member 5a. The control circuit 21 on which the control circuit board 6 is mounted is pressed while the power circuit 22 side on which the power semiconductor element 1 is mounted is fixed. As a result, the anisotropic conductive particles 5b break the rubber member 5a to form a vertical conductive path from the control circuit 21 to the power circuit 22. For this reason, the copper wiring 7 of the control circuit board 6 and the gate electrode 2a and the source electrode 2b of the power semiconductor element 1 are electrically connected, and an electrically wired power module can be configured.
Thus, the anisotropic conductive rubber 5 is electrically connected between the control circuit 21 and the power circuit 22 by being pressed between the control circuit 21 and the power circuit 22.
The portion where the present invention is different from the prior art is a portion including the anisotropic conductive rubber 5 and the metal post 8.

次にパワーモジュールの動作について、図3を用いて説明する。
図3は、本発明のパワーモジュールのブロック回路図である。図において、ドライブ制御端子9は入力端子9aおよび出力端子9bからなり、パワー端子11はパワー入力端子11aおよびパワー出力端子11bからなる。
制御回路21は、ドライブ制御素子3,4がドライブ制御端子9の入力端子9aと出力端子9bに電気的に接続され、ドライブ信号の送受信を行う。さらにパワー入力端子11aが接続され制御回路21を構成している。パワー半導体素子1を6個用い3相のハーフブリッジとして電気的に配線し、各相のブリッジの中性点からそれぞれ配線を引き出してパワー出力端子11bに接続することでパワー回路22を構成している。
Next, the operation of the power module will be described with reference to FIG.
FIG. 3 is a block circuit diagram of the power module of the present invention. In the figure, the drive control terminal 9 comprises an input terminal 9a and an output terminal 9b, and the power terminal 11 comprises a power input terminal 11a and a power output terminal 11b.
In the control circuit 21, the drive control elements 3 and 4 are electrically connected to the input terminal 9a and the output terminal 9b of the drive control terminal 9, and transmit / receive drive signals. Further, the power input terminal 11a is connected to constitute the control circuit 21. The power circuit 22 is configured by electrically wiring as a three-phase half bridge using six power semiconductor elements 1 and drawing the wiring from the neutral point of each phase bridge and connecting to the power output terminal 11b. Yes.

制御回路21とパワー回路22の間の配線として、パワー半導体素子1を駆動するためのゲート配線と、各相に電圧を供給するためのパワー入力配線の接続が必要になる。この部分の接続に前記の異方性導電ゴム5により電気的に接続している。ゲート信号は前記ドライブ制御素子4とパワー半導体素子1のゲート電極2aを異方性導電ゴム5により接続する。また、パワー信号は前記パワー回路基板10に実装された金属製ポスト8と制御回路基板の銅配線およびパワー半導体素子1のソース電極2bと制御回路基板の銅配線7を異方性導電ゴムにより電気的に接続している。このように前記パワー回路22の3相ハーフブリッジの閉回路を形成し、駆動することができる。   As wiring between the control circuit 21 and the power circuit 22, it is necessary to connect a gate wiring for driving the power semiconductor element 1 and a power input wiring for supplying a voltage to each phase. This portion is electrically connected by the anisotropic conductive rubber 5. The gate signal connects the drive control element 4 and the gate electrode 2 a of the power semiconductor element 1 by an anisotropic conductive rubber 5. Further, the power signal is generated by anisotropically conductive rubber between the metal post 8 mounted on the power circuit board 10 and the copper wiring of the control circuit board, and the source electrode 2b of the power semiconductor element 1 and the copper wiring 7 of the control circuit board. Connected. In this way, a closed circuit of the three-phase half bridge of the power circuit 22 can be formed and driven.

図4は第2実施例の構成を示すパワーモジュールの側断面図である。図において、13は異方性導電ゴム5に設けた外部制御端子である。その他の構成部材は第1実施例と同じであるため、詳細な説明は省略する。実施例1と同様に制御端子が形成されている異方性導電ゴム5は上面に制御回路21を配置し、下面にパワー回路22を配置し、制御回路21を応圧することで、異方性導電ゴム5の縦方向の導電性パスが形成され、電気的に配線されたパワーモジュールを構成することができる。外部制御端子13を形成した異方性導電ゴム5はゴム部材5aの端部が外部制御端子13として電気的に配線されているため、数10μmから数100μmの極めて薄い外部端子を形成している。   FIG. 4 is a side sectional view of the power module showing the configuration of the second embodiment. In the figure, 13 is an external control terminal provided on the anisotropic conductive rubber 5. The other constituent members are the same as those in the first embodiment, and thus detailed description thereof is omitted. In the anisotropic conductive rubber 5 in which the control terminals are formed as in the first embodiment, the control circuit 21 is disposed on the upper surface, the power circuit 22 is disposed on the lower surface, and the control circuit 21 is subjected to pressure, so that the anisotropic conductive rubber 5 is anisotropic. A conductive module in the vertical direction of the conductive rubber 5 is formed, and an electrically wired power module can be configured. The anisotropic conductive rubber 5 on which the external control terminal 13 is formed has an extremely thin external terminal of several tens to several hundreds of μm because the end of the rubber member 5a is electrically wired as the external control terminal 13. .

図5は外部制御端子13を形成した異方性導電ゴム5を拡大したものである。異方性導電ゴム5の外部端子材料として、ゴム部材5aの表面に圧延した銅箔およびアルミ箔を貼り付けた後でエッチングして形成している。箔の厚さは用途に併せて数10μmから数100μmの厚さで制御している。また、繰り返し曲げ耐性を気にする必要が無ければ、異方性導電ゴム5の端部にメッキにより箔を形成してもよい。このように、異方性導電性ゴム5の一部に数10μmから数100μmの金属箔を形成して制御端子を形成しているので、パワーモジュールの制御端子が不要であり、薄く造ることができる。   FIG. 5 is an enlarged view of the anisotropic conductive rubber 5 on which the external control terminal 13 is formed. As the external terminal material of the anisotropic conductive rubber 5, it is formed by attaching a rolled copper foil and an aluminum foil to the surface of the rubber member 5a and then etching. The thickness of the foil is controlled by a thickness of several tens of μm to several hundreds of μm according to the application. Further, if it is not necessary to worry about repeated bending resistance, a foil may be formed by plating at the end of the anisotropic conductive rubber 5. As described above, since the control terminal is formed by forming a metal foil of several tens of μm to several hundreds of μm on a part of the anisotropic conductive rubber 5, the control terminal of the power module is unnecessary and can be made thin. it can.

制御回路とパワー回路の電気的な接続を異方性導電ゴムを介して圧接してパワーモジュール形成しているので、モジュール構成後に分離して使うことができるので、装置の構成の要求により制御回路とパワー回路を物理的に離して、その間をフレキシブル基板で接続してパワーモジュールとして駆動するという用途にも適用できる。   Since the power module is formed by pressing the electrical connection between the control circuit and the power circuit via anisotropic conductive rubber, it can be used separately after the module configuration. The power circuit can be physically separated, and the power circuit can be connected with a flexible substrate to drive as a power module.

本発明の第1実施例を示すパワーモジュールの側断面図1 is a side sectional view of a power module showing a first embodiment of the present invention. 図1の異方性導電ゴムの詳細を示す拡大側断面図FIG. 1 is an enlarged side sectional view showing details of the anisotropic conductive rubber of FIG. 本発明のパワーモジュールのブロック回路図Block diagram of power module of the present invention 本発明の第2実施例を示すパワーモジュールの側断面図Side sectional view of a power module showing a second embodiment of the present invention 図4の異方性導電ゴムの詳細を示す拡大側断面図FIG. 4 is an enlarged side sectional view showing details of the anisotropic conductive rubber of FIG. 従来の第1のパワーモジュールを示す側断面図Side sectional view showing a conventional first power module 従来の第2のパワーモジュールを示す側断面図Side sectional view showing a conventional second power module 従来の第3のパワーモジュールを示す側断面図Side sectional view showing a conventional third power module

符号の説明Explanation of symbols

1 パワー半導体素子
2 電極
2a ゲート電極
2b ソース電極
3、4 制御素子
5 異方性導電ゴム
5a ゴム部材
5b 導電粒子
5c 導電端子
6 制御回路基板(樹脂基板)
7 銅配線
8 金属製ポスト
9 制御端子
9a 入力端子
9b 出力端子
10 パワー回路基板(セラミック基板)
11 パワー端子
11a パワー入力端子
11b パワー出力端子
12 はんだ層
13 外部端子
21 制御回路
22 パワー回路
31 セラミック基板
34 半導体素子
34a はんだボール
34b はんだ層
71 樹脂基板
144 導電性ゴム
201 上アーム用セラミック両面基板
202 下アーム用セラミック基板
203 P側端子用金属配線
204 はんだ層
205 はんだボール
304 リード
313、314、323 接続用配線
317 はんだ層
320 単位ユニット
321 緩衝部材(異方性導電樹脂またはゴム)
322 マザーボード
DESCRIPTION OF SYMBOLS 1 Power semiconductor element 2 Electrode 2a Gate electrode 2b Source electrode 3, 4 Control element 5 Anisotropic conductive rubber 5a Rubber member 5b Conductive particle 5c Conductive terminal 6 Control circuit board (resin board)
7 Copper wiring 8 Metal post 9 Control terminal 9a Input terminal 9b Output terminal 10 Power circuit board (ceramic board)
11 Power terminal 11a Power input terminal 11b Power output terminal 12 Solder layer 13 External terminal 21 Control circuit 22 Power circuit 31 Ceramic substrate 34 Semiconductor element 34a Solder ball 34b Solder layer 71 Resin substrate 144 Conductive rubber 201 Ceramic double-sided substrate 202 for upper arm Lower arm ceramic substrate 203 P side terminal metal wiring 204 Solder layer 205 Solder ball 304 Lead 313, 314, 323 Connection wiring
317 Solder layer 320 Unit unit 321 Buffer member (anisotropic conductive resin or rubber)
322 Motherboard

Claims (3)

複数のパワー半導体素子と、前記複数のパワー半導体素子を制御する複数の制御素子と、前記複数のパワー半導体素子を駆動するパワー回路と、この回路を構成するパワー回路基板と、前記複数の制御素子からなる制御回路と、この回路を構成する樹脂基板からなる制御回路基板と、を備えてなるパワーモジュールにおいて、
前記パワー回路基板と前記制御回路基板との電気的接続に異方性導電ゴムを挟み込んで構成したことを特徴とするパワーモジュール。
A plurality of power semiconductor elements, a plurality of control elements for controlling the plurality of power semiconductor elements, a power circuit for driving the plurality of power semiconductor elements, a power circuit board constituting the circuit, and the plurality of control elements In a power module comprising: a control circuit comprising: a control circuit board comprising a resin substrate constituting the circuit;
A power module comprising an anisotropic conductive rubber sandwiched between electrical connections between the power circuit board and the control circuit board.
前記異方性導電ゴムの導電端子と、前記パワー回路基板のパワー入出力端子との間を接続する金属性ポストが形成されていることを特徴とする請求項1記載のパワーモジュール。   The power module according to claim 1, wherein a metallic post that connects between the conductive terminal of the anisotropic conductive rubber and the power input / output terminal of the power circuit board is formed. 前記異方性導電ゴムの導電端子に金属箔または金属めっき材を設けて制御回路の外部端子としたことを特徴とする請求項1記載のパワーモジュール。   The power module according to claim 1, wherein a metal foil or a metal plating material is provided on the conductive terminal of the anisotropic conductive rubber to form an external terminal of the control circuit.
JP2008067120A 2008-03-17 2008-03-17 Power module Pending JP2009224534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067120A JP2009224534A (en) 2008-03-17 2008-03-17 Power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067120A JP2009224534A (en) 2008-03-17 2008-03-17 Power module

Publications (1)

Publication Number Publication Date
JP2009224534A true JP2009224534A (en) 2009-10-01

Family

ID=41241012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067120A Pending JP2009224534A (en) 2008-03-17 2008-03-17 Power module

Country Status (1)

Country Link
JP (1) JP2009224534A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051553A (en) * 2012-09-05 2014-03-20 Mitsubishi Chemicals Corp Interlaminar filler composition for three-dimensional laminate type semiconductor device, three-dimensional laminate type semiconductor device, and manufacturing method of three-dimensional laminate type semiconductor device
US9093277B2 (en) 2013-02-06 2015-07-28 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
JP2016195178A (en) * 2015-03-31 2016-11-17 アイシン・エィ・ダブリュ株式会社 Semiconductor module
JP2018191011A (en) * 2011-04-04 2018-11-29 ローム株式会社 Semiconductor device and semiconductor device manufacturing method
JP7414878B2 (en) 2022-04-04 2024-01-16 三菱電機株式会社 power converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132807A (en) * 1988-11-12 1990-05-22 Chichibu Cement Co Ltd Variable inductance device
JPH07263622A (en) * 1994-03-25 1995-10-13 Toshiba Corp Semiconductor device
JP2000307056A (en) * 1999-04-22 2000-11-02 Mitsubishi Electric Corp Vehicle-mounted semiconductor device
JP2001008068A (en) * 1999-06-25 2001-01-12 Keihin Art Work:Kk Sensor module of stereoscopic structure with reduced projection area
JP2001024301A (en) * 1999-07-07 2001-01-26 Fujitsu Ltd Wiring board and conductive elastic member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132807A (en) * 1988-11-12 1990-05-22 Chichibu Cement Co Ltd Variable inductance device
JPH07263622A (en) * 1994-03-25 1995-10-13 Toshiba Corp Semiconductor device
JP2000307056A (en) * 1999-04-22 2000-11-02 Mitsubishi Electric Corp Vehicle-mounted semiconductor device
JP2001008068A (en) * 1999-06-25 2001-01-12 Keihin Art Work:Kk Sensor module of stereoscopic structure with reduced projection area
JP2001024301A (en) * 1999-07-07 2001-01-26 Fujitsu Ltd Wiring board and conductive elastic member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018191011A (en) * 2011-04-04 2018-11-29 ローム株式会社 Semiconductor device and semiconductor device manufacturing method
JP2014051553A (en) * 2012-09-05 2014-03-20 Mitsubishi Chemicals Corp Interlaminar filler composition for three-dimensional laminate type semiconductor device, three-dimensional laminate type semiconductor device, and manufacturing method of three-dimensional laminate type semiconductor device
US9093277B2 (en) 2013-02-06 2015-07-28 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
DE102013219959B4 (en) 2013-02-06 2019-04-18 Mitsubishi Electric Corp. Semiconductor device and method for manufacturing the same
JP2016195178A (en) * 2015-03-31 2016-11-17 アイシン・エィ・ダブリュ株式会社 Semiconductor module
JP7414878B2 (en) 2022-04-04 2024-01-16 三菱電機株式会社 power converter

Similar Documents

Publication Publication Date Title
JP4751714B2 (en) Stacked mounting structure
JP2009224534A (en) Power module
JP2008186843A (en) Junction structure of flexible substrate
JP4675178B2 (en) Crimping method
JP2002124548A (en) Tape carrier and semiconductor device using the tape carrier
JP6804181B2 (en) Semiconductor module for electric power and its mounting method
JP2017215499A (en) Method for manufacturing display device
JP2004319703A (en) Electrode connection structure of rigid substrate and flexible substrate
US10269583B2 (en) Semiconductor die attachment with embedded stud bumps in attachment material
JP7207415B2 (en) Flexible printed wiring board, joined body, pressure sensor and mass flow controller
JP2008140718A (en) Substrate connecting structure and substrate connecting method
JP2008066363A (en) Noncontact ic medium and its manufacturing method
JP2004134653A (en) Substrate connecting structure and fabricating process of electronic parts therewith
JP3438583B2 (en) Anisotropic conductive film connection method
JP2008004927A (en) Laminated mounting structure
JP2008112911A (en) Inter-substrate connection structure, inter-substrate connection method, and display device
JPH10261852A (en) Heat-sealed connector and flexible wiring board
JP2006310583A (en) Composite substrate and manufacturing method thereof
US9453733B2 (en) Devices and methods for a path length control driver for a ring laser gyroscope
JP2005072098A (en) Semiconductor device
JP2007258281A (en) Flexible wiring board and its connection structure
JP2009059800A (en) Compact module
JP2008177299A (en) Laminated mounting structure
JP2005252134A (en) Joining method and structure of film substrate
JP3987288B2 (en) Semiconductor element mounting structure and liquid crystal display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111104