WO2023190929A1 - Active energy ray curable polyolefin resin and aqueous resin composition - Google Patents

Active energy ray curable polyolefin resin and aqueous resin composition Download PDF

Info

Publication number
WO2023190929A1
WO2023190929A1 PCT/JP2023/013295 JP2023013295W WO2023190929A1 WO 2023190929 A1 WO2023190929 A1 WO 2023190929A1 JP 2023013295 W JP2023013295 W JP 2023013295W WO 2023190929 A1 WO2023190929 A1 WO 2023190929A1
Authority
WO
WIPO (PCT)
Prior art keywords
double bond
polyolefin
unsaturated double
polyolefin resin
resin composition
Prior art date
Application number
PCT/JP2023/013295
Other languages
French (fr)
Japanese (ja)
Inventor
恵太朗 宮崎
健二 柏原
篤 山根
Original Assignee
東洋紡エムシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡エムシー株式会社 filed Critical 東洋紡エムシー株式会社
Publication of WO2023190929A1 publication Critical patent/WO2023190929A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/46Reaction with unsaturated dicarboxylic acids or anhydrides thereof, e.g. maleinisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • C09J123/26Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers modified by chemical after-treatment

Definitions

  • the present invention relates to active energy ray-curable polyolefin resins that have excellent adhesion to polyolefin substrates.
  • Polyolefin resins such as polypropylene have excellent properties and are inexpensive, so they are used in large quantities in automobile parts, various films, various molded products, etc. However, since polyolefin resins are crystalline and have non-polar surfaces, they have the problem of being difficult to paint or adhere to.
  • modified polyolefins such as acid-modified polyolefins and acid-modified chlorinated polyolefins have been developed for painting, printing, and film lamination and adhesion of polyolefin resins.
  • water-based modified polyolefins which are environmentally and sanitary-friendly, have been developed.
  • Dispersion compositions have been proposed (eg, Patent Documents 1 and 2).
  • the present invention was devised in view of the problems of the prior art, and it is an object of the present invention to provide an active energy ray-curable polyolefin resin that exhibits high adhesion, water resistance, and peel strength to polyolefin substrates.
  • a polyolefin resin having the following characteristics. It has a carboxyl group and an unsaturated double bond, and the unsaturated double bond is from the group consisting of ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B) and the following (I), (II) and (III).
  • Active energy ray-curable polyolefin resin (A) derived from at least one selected compound (C) (I) Compound (C1) having an unsaturated double bond and an amino group (II) Compound (C2) having an unsaturated double bond and a hydroxyl group (III) Compound (C3) having an unsaturated double bond and an epoxy group.
  • the present invention has the following configuration.
  • Item 1 It has a carboxyl group and an unsaturated double bond, and the unsaturated double bond is from the group consisting of ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B) and the following (I), (II) and (III).
  • An active energy ray-curable polyolefin resin (A) characterized by being derived from at least one selected compound (C).
  • C1 Compound (C1) having an unsaturated double bond and an amino group
  • II Compound (C2) having an unsaturated double bond and a hydroxyl group
  • III Compound (C3) having an unsaturated double bond and an epoxy group.
  • Item 2. Item 2.
  • Item 3. Item 2. A paint for a polyolefin substrate, comprising the active energy ray-curable polyolefin resin (A) according to Item 1 or the aqueous resin composition according to Item 2.
  • Item 4. Item 2. An ink for polyolefin substrates containing the active energy ray-curable polyolefin resin (A) according to Item 1 or the aqueous resin composition according to Item 2.
  • Item 6. Item 2.
  • the active energy ray-curable polyolefin resin (A) of the present invention exhibits excellent adhesion, water resistance, and high peel strength to polyolefin base materials. Therefore, it can be suitably used in paints, inks, adhesives, primers, etc.
  • the polyolefin resin (A) of the present invention (hereinafter, the active energy ray-curable polyolefin resin (A) may simply be referred to as polyolefin resin (A)) has a carboxyl group and an unsaturated double bond.
  • the polyolefin (a) in the present invention is selected from, for example, polypropylene, propylene- ⁇ -olefin copolymer, polyethylene, ethylene- ⁇ -olefin copolymer, poly-1-butene, and 1-butene- ⁇ -olefin copolymer. At least one type of polyolefin is mentioned.
  • the propylene- ⁇ -olefin copolymer is a copolymer of propylene and ⁇ -olefin.
  • the ⁇ -olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 4-methyl-1-pentene, etc. and ⁇ -olefins having 2 or 4 to 20 carbon atoms.
  • the content of the propylene component in the propylene- ⁇ -olefin copolymer is preferably 50 mol% or more, more preferably 70 mol% or more. When the content of the propylene component is 50 mol % or more, the adhesiveness to the polypropylene base material becomes good.
  • Ethylene- ⁇ -olefin copolymer is a copolymer of ethylene and ⁇ -olefin.
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 4-methyl-1-pentene, etc. and ⁇ -olefins having 3 to 20 carbon atoms.
  • the content of the ethylene component in the ethylene- ⁇ -olefin copolymer is preferably 75 mol% or more. When the content of the ethylene component is 75 mol% or more, the adhesiveness to the polyethylene base material will be good.
  • the 1-butene- ⁇ -olefin copolymer is a copolymer of 1-butene and ⁇ -olefin.
  • ⁇ -olefins include ethylene, propylene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 4-methyl-1-pentene, etc. Mention may be made of ⁇ -olefins having 2 to 3 or 5 to 20 carbon atoms.
  • the content of the 1-butene component in the 1-butene- ⁇ -olefin copolymer is preferably 65 mol% or more. When the content of the 1-butene component is 65 mol % or more, the adhesiveness to the polypropylene base material or the poly-1-butene base material will be good.
  • the polyolefin (a) may be further chlorinated and modified.
  • a chlorinated polyolefin obtained by chlorinating the above-mentioned polyolefin resin (a) is preferable.
  • the lower limit of the chlorine content is preferably 5% by mass or more, more preferably 8% by mass, from the viewpoint of solution stability and adhesion to the polyolefin base material.
  • the content is more preferably 10% by mass or more, particularly preferably 12% by mass or more, and most preferably 14% by mass or more. When the content is 5% by mass or more, the solution stability becomes good and emulsification becomes easy.
  • the upper limit is preferably 40% by mass or less, more preferably 38% by mass or less, even more preferably 35% by mass or less, particularly preferably 32% by mass or less, and most preferably 30% by mass or less. be. If it is less than 40% by mass, the crystallinity of the chlorinated polyolefin becomes high and the peel strength tends to become strong.
  • the chlorine content of the chlorinated polyolefin can be measured by titration according to JIS K-7229-1995.
  • the polyolefin resin (A) of the present invention has a carboxyl group and an unsaturated double bond.
  • the unsaturated double bond is derived from an ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B) and at least one compound selected from the group consisting of (I), (II), and (III) below.
  • Compound (C1) having an unsaturated double bond and an amino group Compound (C2) having an unsaturated double bond and a hydroxyl group
  • Compound (C3) having an unsaturated double bond and an epoxy group.
  • the carboxyl group and unsaturated double bond that the polyolefin resin (A) of the present invention has can be obtained by graft polymerizing the ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B) onto the polyolefin (a).
  • a compound (C1) having an unsaturated double bond and an amino group, a compound (C2) having an unsaturated double bond and a hydroxyl group, and an unsaturated double bond and epoxy via the unsaturated carboxylic anhydride (B) It is preferably obtained by adding at least one compound selected from the group consisting of compounds having an unsaturated double bond (C3) (hereinafter sometimes abbreviated as a compound having an unsaturated double bond (C)).
  • the carboxyl group that the polyolefin resin (A) has is determined to be an ⁇ , ⁇ -unsaturated carboxyl group when the polyolefin (a) is polymerized with the ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B).
  • the adhesion and peel strength of the coating film obtained from the polyolefin resin (A) become even better.
  • the unsaturated double bond that the polyolefin resin (A) has is converted into a compound ( Addition of C1) is preferable because an amide group is induced.
  • a compound (C2) having an unsaturated double bond and a hydroxyl group or a compound (C3) having an unsaturated double bond and an epoxy group is added via the ⁇ , ⁇ -unsaturated carboxylic anhydride (B). This is preferable because an ester group is thereby induced.
  • the coating film obtained from the polyolefin resin (A) has good adhesion to the polyolefin substrate, water resistance, and peel strength.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B) to be graft copolymerized to the polyolefin (a) include maleic anhydride, citraconic anhydride, itaconic anhydride, aconitic anhydride, and himic anhydride. . Among these, maleic anhydride and itaconic anhydride are preferred.
  • a method for graft copolymerizing polyolefin (a) with ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B) involves heating and melting polyolefin (a) above its melting point in the presence of a radical generator to react.
  • a radical generator to react.
  • known methods include a method (melt method) and a method in which the polyolefin (a) is dissolved in an organic solvent and then heated and stirred in the presence of a radical generator to react (solution method).
  • the content of ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B) is The amount of acid anhydride (B) is preferably 0.5 to 10% by mass based on 100 parts by mass of acid-modified polyolefin modified to polyolefin (a). More preferably, it is 0.7% by mass or more. Further, the content is more preferably 3% by mass or less, and even more preferably 2% by mass or less.
  • the unsaturated double bond that the polyolefin resin (A) of the present invention has is derived from the compound (C) having an unsaturated double bond. It is thought that the presence of unsaturated double bonds causes a crosslinking reaction during curing with active energy rays, and improves cohesive force, thereby improving adhesion to polyolefin substrates, water resistance, and peel strength.
  • the proportion of the compound (C) having an unsaturated double bond containing an alkylene glycol chain is: It is preferably 3% by mass or less based on the compound (C) having all unsaturated double bonds contained in the polyolefin resin (A).
  • Alkylene glycol chains have a high affinity with water and facilitate phase inversion emulsification of the polyolefin resin (A), but they also reduce the affinity with the polyolefin base material, resulting in decreased adhesion and water resistance. There are cases. It is more preferably 2% by mass or less, and even more preferably 1% by mass or less, based on the compound (C) having all unsaturated double bonds contained in the polyolefin resin (A).
  • Examples of the compound (C1) having an unsaturated double bond and an amino group include allylamine and diallylamine.
  • the number of active hydrogens on the nitrogen of the compound (C1) having an unsaturated double bond and an amino group is one or two, and one is more preferable.
  • the number of active hydrogens is 1 or 2
  • the formation of imide bonds in the reaction with the ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B) is further suppressed, and phase inversion when preparing the aqueous resin composition is suppressed. Emulsification becomes easier.
  • reaction temperature is lowered in the manufacturing process of introducing the unsaturated double bond into the polyolefin resin (A). By doing so, the generation of imide bonds can be suppressed.
  • the reaction temperature is preferably 100°C or lower, more preferably 80°C or lower.
  • Compounds (C2) having an unsaturated double bond and a hydroxyl group include, for example, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 1,4-cyclohexane
  • Examples include alcohol compounds such as dimethanol monoacrylate, N-(2-hydroxyethyl)acrylamide, allyl alcohol, and acrylate adducts to polyols such as isocyanuric acid EO-modified diacrylate and pentaerythritol triacrylate.
  • Examples of the compound (C3) having an unsaturated double bond and an epoxy group include glycidyl ether compounds such as glycidyl methacrylate, glycidyl acrylate, 4-hydroxybutyl acrylate glycidyl ether, and allyl glycidyl ether.
  • the melting point of the polyolefin resin (A) in the present invention as measured by a differential scanning calorimeter (hereinafter referred to as DSC) is preferably 50°C or more and 85°C or less.
  • the temperature is more preferably 55°C or more and 80°C or less, particularly preferably 60°C or more and 75°C or less.
  • the film formability and cohesive force due to crystallinity in curing with active energy rays are favorable, and the adhesion to the polyolefin substrate, water resistance, and peel strength are favorable.
  • the measurement of the melting point by DSC in the present invention can be performed in accordance with JIS K7121-2012, and can be performed, for example, under the following conditions.
  • a DSC measurement device manufactured by Seiko Electronics Industries
  • approximately 5 mg of the sample was heated at 150°C and kept in a molten state for 10 minutes, then cooled down at a rate of 10°C/min, kept stably at -50°C, and then heated for another 10 minutes.
  • the temperature is increased to 150°C at a rate of 150°C/min, the melting peak temperature is measured, and this temperature is evaluated as the melting point. Note that the melting points in the Examples described below were measured under the conditions described above.
  • the content of the compound (C) having an unsaturated double bond in the polyolefin resin (A) is preferably 0.5 to 20% by mass. More preferably, it is 0.7% by mass or more. Further, it is more preferably 15% by mass or less, and even more preferably 10% by mass or less.
  • content of the compound (C) having an unsaturated double bond is 0.5 to 20% by mass, adhesion to the polyolefin substrate and phase inversion emulsification to water can be improved in a well-balanced manner.
  • the structure of the polyolefin resin (A) of the present invention is an amide formed when a compound (C1) having an unsaturated double bond and an amino group is added via an ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B).
  • a compound (C1) having an unsaturated double bond and an amino group is added via an ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B).
  • Infrared absorption of the ester group and carboxyl group when a compound (C2) having an unsaturated double bond and a hydroxyl group is added via an ⁇ , ⁇ -unsaturated carboxylic anhydride (B) It can be confirmed by spectrum.
  • the weight average molecular weight of the polyolefin resin (A) is preferably 15,000 to 300,000, more preferably 30,000 to 150,000, and even more preferably 30,000 to 120,000. It is preferably 50,000 to 120,000, particularly preferably 50,000 to 120,000. When the weight average molecular weight is within the above range, the ease of phase inversion emulsification of the aqueous resin composition and the adhesion to the polyolefin substrate and peel strength can be improved in a well-balanced manner.
  • the polyolefin resin (A) may further be graft-modified with a radically polymerizable monomer. That is, the modifying component may contain a radically polymerizable monomer together with the ⁇ , ⁇ -unsaturated carboxylic acid anhydride (B) and the compound having an unsaturated double bond (C).
  • Examples of radically polymerizable monomers include (meth)acrylic compounds and vinyl compounds.
  • a (meth)acrylic compound is a compound containing at least one (meth)acryloyl group (meaning an acryloyl group and/or a methacryloyl group) in the molecule.
  • radically polymerizable monomers include (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, hydroxyethyl (meth)acrylate, isobornyl (meth)acrylate, and glycidyl ( meth)acrylate, octyl(meth)acrylate, lauryl(meth)acrylate, tridecyl(meth)acrylate, stearyl(meth)acrylate, cyclohexyl(meth)acrylate, benzyl(meth)acrylate, phenyl(meth)acrylate, dimethylaminoethyl( meth)acrylate, diethylaminoethyl (meth)acrylate, hydroxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate,
  • methyl (meth)acrylate, ethyl (meth)acrylate, cyclohexyl (meth)acrylate, and lauryl (meth)acrylate are preferred, and among these methacrylates are more preferred. These can be used alone or in combination of two or more, and the mixing ratio can be freely set.
  • the polyolefin resin (A) of the present invention can be made into an aqueous resin composition by further containing a basic compound (D), and the carboxyl group is neutralized with the basic compound (D) in the aqueous resin composition.
  • the modified polyolefin resin (A) may be dispersed in water.
  • a basic compound is allowed to coexist. By allowing this to exist in the system, it becomes possible to improve the dispersibility of the modified polyolefin resin (A).
  • Basic compounds (D) include inorganic basic compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, triethylamine, N,N-dimethylethanolamine, aminoethanolamine, N-methyl -N,N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, 3-ethoxypropylamine, 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, allylamine, diallylamine, methyliminobis Propylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, triethanolamine, morpholine, N-methylmorpholine, N-ethylmorpholine, 2-amino-2-methyl-1-propanol, 2-dimethylamino-2- Examples include amines such as methyl-1-propanol, ammonia, and the like
  • the amount of the basic compound (D) added is preferably 0.3 to 4.0 times the chemical equivalent, more preferably 0.7 to 2.5 times the chemical equivalent, relative to the carboxyl group of the polyolefin resin (A). If it is less than 0.3 times the chemical equivalent, the effect of the presence of the basic compound may not be observed. On the other hand, if it exceeds 4.0 times the chemical equivalent, there is a risk that the residual amount of the target composition in the dried product may become too large.
  • the basic compound (D) is preferably contained in an amount of 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and 0.5 parts by mass or more based on 100 parts by mass of the polyolefin resin (A). It is even more preferable to contain it. Moreover, it is more preferable to contain 2 parts by mass or less, and even more preferably to contain 1 part by mass or less. In this case, the dispersibility of the polyolefin resin (A) can be improved, the particle size of the dispersed particles will not become too large, the storage stability will be good, and the amount remaining in the dry product will be suitable.
  • the method for producing the aqueous resin composition in the present invention is not particularly limited, the carboxyl groups in the polyolefin resin (A) are neutralized with a basic compound (D) in an organic solvent, and the aqueous medium is A phase inversion emulsification method in which the organic solvent is removed after addition, heating and stirring, and cooling is preferred.
  • the solid content concentration of the aqueous dispersion of the aqueous resin composition in the present invention is preferably 10 to 60% by mass, and preferably 20 to 50% by mass based on the total amount of the aqueous dispersion, from the viewpoint of handleability of the aqueous dispersion. %, and even more preferably 30 to 40% by mass. In this case, the stability of the aqueous resin composition will be good, and the adhesion to the polyolefin substrate will also be good.
  • the aqueous resin composition according to the present invention may contain a surfactant within a range that does not impair the performance of the present invention.
  • Surfactants include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Among these, it is preferable to use nonionic surfactants and anionic surfactants from the viewpoint of the particle size of the dispersed particles and the water resistance of the coating film obtained from the target composition. is more preferable.
  • nonionic surfactants include polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxypropylene alkylphenyl ether, polyoxyethylene styrenated phenyl ether, and polyoxypropylene styrenated phenyl ether.
  • Ether polyoxyethylene fatty acid ester, polyoxypropylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxypropylene sorbitan fatty acid ester, polyoxyethylene alkylamine ether, polyoxypropylene alkylamine ether, polyoxyethylene lanolin alcohol ether, poly Examples include oxypropylene lanolin alcohol ether, polyoxyethylene lanolin fatty acid ester, polyoxypropylene lanolin fatty acid ester, (polyoxyethylene oxypropylene) block copolymer, and the like.
  • Examples include the Emulmin series (manufactured by Sanyo Chemical Industries, Ltd.), the Neugen series (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and the Brownon series (manufactured by Aoki Yushi Kogyo Co., Ltd.).
  • reactive surfactants having a polymerizable double bond in the molecule can also be used.
  • examples include ADEKA REASOAP ER-10, ER-20, ER-30, and ER-40 (manufactured by ADEKA Co., Ltd.).
  • anionic surfactant examples include higher alkyl sulfate esters, alkylaryl polyoxyethylene sulfate salts, higher fatty acid salts, alkylaryl sulfonates, and alkyl phosphate ester salts.
  • examples include the Neocol series and the Hitenol series (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • reactive surfactants having a polymerizable double bond in the molecule can also be used.
  • examples include Adekaria Soap NE-10, NE-20, NE-30, NE-40, SE-10N (manufactured by ADEKA Co., Ltd.), Aqualon RN-20, RN-30, RN-50, HS. -10, HS-20 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Eleminol JS-2, Eleminol RS-30 (manufactured by Sanyo Chemical Industries, Ltd.), and the like.
  • the above surfactants can be used alone or in combination of two or more.
  • the surfactant per 100 parts by mass of the polyolefin resin (A) from the viewpoint of ease of phase inversion emulsification and water resistance of the coating film. More preferably it is 40 parts by mass or less, and still more preferably 30 parts by mass or less. Moreover, it is more preferably 25 parts by mass or less.
  • the Z average particle diameter of the resin particles in the aqueous resin composition obtained as described above is preferably 10 nm or more and 500 nm or less, more preferably 200 nm or less. If the average particle diameter exceeds 500 nm, defects may occur in the coated film after painting, which adversely affects various physical properties, making it particularly difficult to use as a top coat paint, which is not preferable.
  • the polyolefin resin (A) of the present invention can be used as a clear varnish in the form of a solution or an aqueous dispersion.
  • various paint additives and other resin emulsions can be blended to the extent that they do not inhibit adhesion to polyolefin substrates.
  • film forming aids such as propylene glycol monopropyl ether, dipropylene glycol monomethyl ether, butylpropylene diglycol, antifoaming agents, anti-sag agents, wetting agents, ultraviolet absorbers, etc. can be used.
  • coating film performance such as weather resistance, water resistance, coating film strength, and flexibility can be improved.
  • the aqueous resin composition of the present invention may contain a tackifier such as rosin, dammar, polymerized rosin, hydrogenated rosin, ester rosin, rosin-modified maleic acid resin, polyterpene resin, petroleum resin, cyclopentadiene resin.
  • a phenol resin, a xylene resin, a coumaron indene resin, or the like can be appropriately added as necessary, thereby improving the drying properties of the coating film and the adhesion to the polyolefin substrate.
  • the amount added is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the solid content of the resin composition.
  • the amount added is less than 5 parts by mass, there is a risk that the effect of the addition will not appear. On the other hand, if it exceeds 100 parts by mass, the amount added is too large and there is a risk that the adhesion will be adversely reduced.
  • the active energy ray-curable polyolefin resin (A) of the present invention has high adhesion to various polyolefin base materials including polypropylene, and can be used as active energy ray-curable paints, inks, adhesives, sealants, primers, etc. Although it can be suitably used, it is not limited to these base materials; for example, other plastics, wood, metal, etc. can also be coated. Examples of the polyolefin base material include films, sheets, molded bodies, and the like. There are no special restrictions on the coating method.
  • the active energy ray-curable polyolefin resin (A) of the present invention can be cured with active energy rays by a known method.
  • an electron beam irradiation device with an accelerating voltage of 20 to 2000 KeV, preferably 150 to 300 KeV is applied.
  • a cured product can be obtained by irradiating in an inert gas atmosphere containing or not containing a small amount of oxygen at a total irradiation dose of 5 to 200 KGy, preferably 20 to 150 KGy.
  • a method of curing in air or an inert gas atmosphere using ultraviolet rays obtained from a mercury lamp, a xenon lamp, etc. a method of curing using energy related to heat such as infrared rays, high frequency, or microwave, that is, a method of curing by heating.
  • energy related to heat such as infrared rays, high frequency, or microwave
  • heat curing or ultraviolet curing it is preferable to add a photopolymerization initiator or a thermal polymerization initiator.
  • one method selected from the above-mentioned curing method using ionizing radiation, curing method using ultraviolet rays, or heat curing method can be used alone, or two or more methods can be used simultaneously, or each method can be used one after the other.
  • thermal or photopolymerization initiators examples include potassium persulfate, ammonium persulfate, 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), and 2,2'-azobisisobutyronitrile.
  • Azo initiators such as '-azobis(2,4-dimethylvaleronitrile), 1,1'azobis(cyclohexane-1-carbonitrile), ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, etc., cumene Hydroperoxides such as hydroperpoxide, tert-butyl peroxide, dialkyl peroxides such as di-tert-butyl peroxide and dicumyl peroxide, tert-butyl peroxylaurylate, tert-butyl peroxybenzoate It is possible to use peroxide initiators such as peroxyesters such as.
  • redox system initiation is performed in which these persulfates, peroxides, etc. are used in combination with metal ions such as iron ions, or reducing agents such as sodium sulfoxylate formaldehyde, sodium pyrosulfite, or L-ascorbic acid. Agents can also be used.
  • intermolecular hydrogen abstraction type initiators such as benzophenone, 4,4'-bisdimethylaminobenzophenone, Michler's ketone, dibenzosuberone, 2-ethylanthraquinone, isobutylthioxanthone, benzoin, benzoin, etc.
  • organic phase radical polymerization initiators such as intramolecular bond cleavage type initiators such as Linopropane-1 can be used.
  • examples of the cationic polymerization initiator include diazonium salt type compounds, sulfonium salt type compounds, and iodonium salt type compounds. These compounds may be used in combination. However, when used as an aqueous resin composition, it is easy to use a structure that can also be used in an aqueous system or a liquid type. When using these organic phase initiators as an aqueous resin composition, it is preferable to add them in advance to the organic solvent solution before dispersing the resin solution in water.
  • the amount used may be appropriately selected from the range of 0.2 to 20% based on the solid content excluding colorant, and the range of 0.5 to 10% is particularly preferable.
  • the average particle diameter was measured by intensity distribution using a dynamic light scattering method using "Zetasizer Nano-ZS Model ZEN3600" manufactured by Malvern. A sample in which the solid content of the aqueous dispersion composition was adjusted to a concentration of 0.05 g/L was measured three times at 25°C, and the average value was taken as the average value.
  • the resulting resin was dried under reduced pressure to obtain a solid acid-modified polyolefin (PO-1).
  • PO-1 solid acid-modified polyolefin
  • the total content of the maleic anhydride component and the maleic acid component in which maleic anhydride is ring-opened was 1.1% by mass.
  • the weight average molecular weight as determined by high temperature GPC measurement was 90,000, and the melting point as determined by DSC was 70°C.
  • Production Example 3 (Production of aqueous resin composition (a)) 100 g of the maleic acid-modified polyolefin (PO-1) obtained in Production Example 1 and 60 g of toluene were placed in an autoclave equipped with a stirrer, and after purging with nitrogen for about 5 minutes, the mixture was heated and dissolved at 100°C for 30 minutes. went. Thereafter, 1.9 g of allylamine was added and the reaction was carried out at 80° C. for 2 hours while heating and stirring to obtain a polyolefin resin. Once cooled, a portion of the reaction solution was taken out and an infrared absorption spectrum was measured.
  • aqueous resin composition (b) A polyolefin resin (weight average molecular weight 90,000, melting point 70° C. by DSC) was obtained in the same manner as in Example 1, except that the types, amounts, and reaction temperatures of each component were changed to the compositions shown in Table 1. Furthermore, an aqueous resin composition (b) having a resin concentration (solid content) of 30% by mass and an average particle diameter of resin particles of 90 nm was obtained. In the infrared absorption spectrum measurement of the polyolefin resin, the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and peaks derived from the amide group and carboxyl group were confirmed at 1655 cm-1 and 1705 cm-1, respectively.
  • aqueous resin composition (c) A polyolefin resin (weight average molecular weight 90,000, melting point 70° C. by DSC) was obtained in the same manner as in Example 1, except that the types, amounts, and reaction temperatures of each component were changed to the compositions shown in Table 1. Furthermore, an aqueous resin composition (c) having a resin concentration (solid content) of 30% by mass and an average particle diameter of resin particles of 80 nm was obtained. In the infrared absorption spectrum measurement of the polyolefin resin, the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and peaks derived from the ester group and carboxyl group were confirmed at 1732 cm-1 and 1700 cm-1, respectively.
  • aqueous resin composition (d) A polyolefin resin (weight average molecular weight 90,000, melting point 70° C. by DSC) was obtained in the same manner as in Example 1, except that the types, amounts, and reaction temperatures of each component were changed to the compositions shown in Table 1. Furthermore, an aqueous resin composition (d) having a resin concentration (solid content) of 30% by mass and an average particle diameter of resin particles of 90 nm was obtained. In the infrared absorption spectrum measurement of the polyolefin resin, the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and peaks derived from the ester group and carboxyl group were confirmed at 1730 cm-1 and 1708 cm-1, respectively.
  • aqueous resin composition (e) A polyolefin resin (weight average molecular weight 80,000, melting point 70°C by DSC) was obtained in the same manner as in Example 1 except that the types and amounts of each component were changed to the compositions shown in Table 1. Furthermore, an aqueous resin composition (e) having a resin concentration (solid content) of 30% by mass and an average particle diameter of resin particles of 60 nm was obtained. In the infrared absorption spectrum measurement of the polyolefin resin, the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and peaks derived from the amide group and carboxyl group were confirmed at 1643 cm-1 and 1708 cm-1, respectively.
  • Production Example 8 (Production of aqueous resin composition (f))
  • 100 g of the acid-modified polyolefin (PO-1) obtained in Production Example 1 60 g of toluene, 60 g of isopropyl alcohol, and polyoxyethylene cetyl were added.
  • 20 g of ether manufactured by NOF Corporation, trade name "Nonion P-210", nonionic surfactant
  • 4.0 g of N,N-dimethylethanolamine was added to this solution and stirred for 15 minutes.
  • aqueous resin composition (f) having a resin concentration (solid content) of 30% by mass and an average particle size of resin particles of 65 nm.
  • Production Example 9 (Production of aqueous resin composition (g)) An aqueous resin composition (g ) was obtained.
  • Production Example 10 (Production of aqueous resin composition (h)) The same method as in Example 1 was carried out except that the type, amount, and reaction temperature of each component were changed to those shown in Table 1, but an aqueous resin composition could not be obtained due to poor emulsification.
  • the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and the spectrum at 1720 cm-1 derived from the imide group was confirmed.
  • peaks derived from carboxyl groups and amide groups could not be confirmed.
  • Example 1 60 g of aqueous resin composition (a), 40 g of urethane acrylate dispersion (UCECOAT7571 manufactured by ALLNEX), 2 g of propylene glycol monomethyl ether as a film-forming agent, 2 g of "Dynol 604" (manufactured by Air Products Japan Co., Ltd.) as a wetting agent, and light 1.5 g of OMNIRAD1173 (manufactured by IGM RESINS BV) was added as a polymerization initiator and stirred with a magnetic stirrer for 30 minutes to obtain an active energy ray-curable polyolefin resin composition.
  • Example 2 An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (b) was used.
  • Example 3 An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (c) was used.
  • Example 4 An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (d) was used.
  • Example 5 An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (e) was used.
  • Comparative example 1 An acid-modified polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (f) was used.
  • Comparative example 2 An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (g) was used.
  • Peel strength A test plate was prepared in the same manner as in (1) above, except that a 100 ⁇ m thick protective film was spray-painted, and then left in an atmosphere of 25°C and 60% relative humidity for an additional 48 hours, and this was used as a test plate. . Strip-shaped peel pieces were made on this test plate at 1 cm intervals, and a 50 mm, 180° peel test was performed at a speed of 50 mm/min using a tensile tester (Tensilon RTG-1310, manufactured by A&D Co., Ltd.). The stress during tension was defined as the peel strength, and the average value of 5 tests was defined as the measurement result.
  • the peel strength evaluation results were as follows.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

An active energy ray curable polyolefin resin (A) according to the present invention exhibits high detachment strength, water resistance, and adhesion force with respect to a polyolefin base material, and is characterized by having a carboxyl group and an unsaturated double bond and is characterized in that the unsaturated double bond is derived from an α,β-unsaturated carboxylic anhydride (B) and at least one compound (C) selected from the group consisting of (I), (II), and (III). (I) Compounds (C1) having an unsaturated double bond and an amino group. (II) Compounds (C2) having an unsaturated double bond and a hydroxyl group. (III) Compounds (C3) having an unsaturated double bond and an epoxy group.

Description

活性エネルギー線硬化性ポリオレフィン樹脂及び水性樹脂組成物Active energy ray-curable polyolefin resin and aqueous resin composition
 本発明は、ポリオレフィン基材に対して優れた接着性を有する活性エネルギー線硬化性ポリオレフィン樹脂に関する。 The present invention relates to active energy ray-curable polyolefin resins that have excellent adhesion to polyolefin substrates.
 ポリプロピレン等のポリオレフィン系樹脂は、優れた性質を持ち安価であることから、自動車部品、各種フィルム、各種成形品等に多量に使用されている。しかしながら、ポリオレフィン系樹脂は結晶性で表面は無極性のため、塗装や接着が困難であるという問題を有する。   Polyolefin resins such as polypropylene have excellent properties and are inexpensive, so they are used in large quantities in automobile parts, various films, various molded products, etc. However, since polyolefin resins are crystalline and have non-polar surfaces, they have the problem of being difficult to paint or adhere to.​
 このため、ポリオレフィン系樹脂の塗装、印刷、フィルムの貼り合わせや接着には、酸変性ポリオレフィンや酸変性塩素化ポリオレフィン等の変性ポリオレフィンが開発され、中でも環境面や衛生面に配慮した変性ポリオレフィンの水性分散体組成物が提案されている(例えば、特許文献1、2)。   For this reason, modified polyolefins such as acid-modified polyolefins and acid-modified chlorinated polyolefins have been developed for painting, printing, and film lamination and adhesion of polyolefin resins. Among them, water-based modified polyolefins, which are environmentally and sanitary-friendly, have been developed. Dispersion compositions have been proposed (eg, Patent Documents 1 and 2).​
 さらに近年では、より環境面に配慮した必要熱負荷の小さい活性エネルギー線硬化塗料、接着剤、インキ、プライマー等の開発が進められており、ポリオレフィン基材への展開も期待される。 Furthermore, in recent years, active energy ray-curable paints, adhesives, inks, primers, etc. that are more environmentally friendly and require less heat load have been developed, and their use in polyolefin base materials is also expected.
日本国特開平8-176374号公報Japanese Patent Application Publication No. 8-176374 日本国特開平1-256549号公報Japanese Patent Application Publication No. 1-256549
 本発明は、かかる従来技術の問題に鑑み創案されたものであり、ポリオレフィン基材に対して高い付着力、耐水性、剥離強度を示す活性エネルギー線硬化性ポリオレフィン樹脂を提供することにある。 The present invention was devised in view of the problems of the prior art, and it is an object of the present invention to provide an active energy ray-curable polyolefin resin that exhibits high adhesion, water resistance, and peel strength to polyolefin substrates.
 本発明者等は、上記課題を解決する為に鋭意研究をした結果、本発明を完成するに至った。すなわち下記特徴を有するポリオレフィン樹脂によって、前記課題を解決できることを見出したものである。
カルボキシル基と不飽和二重結合を有し、前記不飽和二重結合が、α,β-不飽和カルボン酸無水物(B)並びに下記(I)、(II)及び(III)からなる群から選ばれる少なくとも1つの化合物(C)に由来することを特徴とする活性エネルギー線硬化性ポリオレフィン樹脂(A)
(I)不飽和二重結合及びアミノ基を有する化合物(C1)
(II)不飽和二重結合及び水酸基を有する化合物(C2)
(III)不飽和二重結合及びエポキシ基を有する化合物(C3)。
The present inventors have completed the present invention as a result of intensive research to solve the above problems. That is, it has been discovered that the above-mentioned problems can be solved by a polyolefin resin having the following characteristics.
It has a carboxyl group and an unsaturated double bond, and the unsaturated double bond is from the group consisting of α, β-unsaturated carboxylic acid anhydride (B) and the following (I), (II) and (III). Active energy ray-curable polyolefin resin (A) derived from at least one selected compound (C)
(I) Compound (C1) having an unsaturated double bond and an amino group
(II) Compound (C2) having an unsaturated double bond and a hydroxyl group
(III) Compound (C3) having an unsaturated double bond and an epoxy group.
 本発明は、以下の構成を有する。 The present invention has the following configuration.
項1.カルボキシル基と不飽和二重結合を有し、前記不飽和二重結合が、α,β-不飽和カルボン酸無水物(B)並びに下記(I)、(II)及び(III)からなる群から選ばれる少なくとも1つの化合物(C)に由来することを特徴とする活性エネルギー線硬化性ポリオレフィン樹脂(A)。
(I)不飽和二重結合及びアミノ基を有する化合物(C1)
(II)不飽和二重結合及び水酸基を有する化合物(C2)
(III)不飽和二重結合及びエポキシ基を有する化合物(C3)。
項2.項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)及び塩基性化合物(D)を含有する水性樹脂組成物。
項3.項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)又は項2に記載の水性樹脂組成物を含有するポリオレフィン基材用塗料。
項4.項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)又は項2に記載の水性樹脂組成物を含有するポリオレフィン基材用インキ。
項5.項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)又は項2に記載の水性樹脂組成物を含有するポリオレフィン基材用接着剤。
項6.項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)又は項2に記載の水性樹脂組成物を含有するポリオレフィン基材塗装用プライマー。
Item 1. It has a carboxyl group and an unsaturated double bond, and the unsaturated double bond is from the group consisting of α, β-unsaturated carboxylic acid anhydride (B) and the following (I), (II) and (III). An active energy ray-curable polyolefin resin (A) characterized by being derived from at least one selected compound (C).
(I) Compound (C1) having an unsaturated double bond and an amino group
(II) Compound (C2) having an unsaturated double bond and a hydroxyl group
(III) Compound (C3) having an unsaturated double bond and an epoxy group.
Item 2. Item 2. An aqueous resin composition containing the active energy ray-curable polyolefin resin (A) according to item 1 and a basic compound (D).
Item 3. Item 2. A paint for a polyolefin substrate, comprising the active energy ray-curable polyolefin resin (A) according to Item 1 or the aqueous resin composition according to Item 2.
Item 4. Item 2. An ink for polyolefin substrates containing the active energy ray-curable polyolefin resin (A) according to Item 1 or the aqueous resin composition according to Item 2.
Item 5. Item 2. An adhesive for polyolefin substrates containing the active energy ray-curable polyolefin resin (A) according to Item 1 or the aqueous resin composition according to Item 2.
Item 6. Item 2. A primer for coating a polyolefin substrate, comprising the active energy ray-curable polyolefin resin (A) according to Item 1 or the aqueous resin composition according to Item 2.
 本発明の活性エネルギー線硬化性ポリオレフィン樹脂(A)は、ポリオレフィン系基材に対して優れた付着性、耐水性および高い剥離強度を示す。そのため、塗料、インキ、接着剤、プライマー等に好適に用いることができる。 The active energy ray-curable polyolefin resin (A) of the present invention exhibits excellent adhesion, water resistance, and high peel strength to polyolefin base materials. Therefore, it can be suitably used in paints, inks, adhesives, primers, etc.
<活性エネルギー線硬化性ポリオレフィン樹脂(A)>
 本発明のポリオレフィン樹脂(A)(以下、活性エネルギー線硬化性ポリオレフィン樹脂(A)を単に、ポリオレフィン樹脂(A)という場合がある)は、カルボキシル基と不飽和二重結合を有する。
<Active energy ray-curable polyolefin resin (A)>
The polyolefin resin (A) of the present invention (hereinafter, the active energy ray-curable polyolefin resin (A) may simply be referred to as polyolefin resin (A)) has a carboxyl group and an unsaturated double bond.
<ポリオレフィン(a)>
 本発明におけるポリオレフィン(a)は、例えば、ポリプロピレン、プロピレン-α-オレフィン共重合体、ポリエチレン、エチレン-α-オレフィン共重合体、ポリ1-ブテンおよび1-ブテン-α-オレフィン共重合体から選ばれる少なくとも1種のポリオレフィンが挙げられる。
<Polyolefin (a)>
The polyolefin (a) in the present invention is selected from, for example, polypropylene, propylene-α-olefin copolymer, polyethylene, ethylene-α-olefin copolymer, poly-1-butene, and 1-butene-α-olefin copolymer. At least one type of polyolefin is mentioned.
 ここで、プロピレン-α-オレフィン共重合体とは、プロピレンを主体としてこれとα-オレフィンを共重合したものである。α-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、4-メチル-1-ペンテンなどの、炭素原子数2または4~20のα-オレフィンが挙げられる。プロピレン-α-オレフィン共重合体におけるプロピレン成分の含有量は、50モル%以上であることが好ましく、70モル%以上がより好ましい。プロピレン成分の含有量が50モル%以上であることで、ポリプロピレン基材に対する密着性が良好となる。 Here, the propylene-α-olefin copolymer is a copolymer of propylene and α-olefin. Examples of the α-olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 4-methyl-1-pentene, etc. and α-olefins having 2 or 4 to 20 carbon atoms. The content of the propylene component in the propylene-α-olefin copolymer is preferably 50 mol% or more, more preferably 70 mol% or more. When the content of the propylene component is 50 mol % or more, the adhesiveness to the polypropylene base material becomes good.
 エチレン-α-オレフィン共重合体とは、エチレンを主体としてこれとα-オレフィンを共重合したものである。α-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、4-メチル-1-ペンテンなどの、炭素原子数3~20のα-オレフィンが挙げられる。エチレン-α-オレフィン共重合体におけるエチレン成分の含有量は、75モル%以上であることが好ましい。エチレン成分の含有量が75モル%以上であると、ポリエチレン基材に対する密着性が良好となる。 Ethylene-α-olefin copolymer is a copolymer of ethylene and α-olefin. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 4-methyl-1-pentene, etc. and α-olefins having 3 to 20 carbon atoms. The content of the ethylene component in the ethylene-α-olefin copolymer is preferably 75 mol% or more. When the content of the ethylene component is 75 mol% or more, the adhesiveness to the polyethylene base material will be good.
 1-ブテン-α-オレフィン共重合体とは、1-ブテンを主体としてこれとα-オレフィンを共重合したものである。α-オレフィンとしては、例えば、エチレン、プロピレン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-ヘキサデセン、4-メチル-1-ペンテンなどの、炭素原子数2~3または5~20のα-オレフィンが挙げられる。1-ブテン-α-オレフィン共重合体における1-ブテン成分の含有量は、65モル%以上であることが好ましい。1-ブテン成分の含有量が65モル%以上であると、ポリプロピレン基材やポリ1-ブテン基材に対する密着性が良好となる。 The 1-butene-α-olefin copolymer is a copolymer of 1-butene and α-olefin. Examples of α-olefins include ethylene, propylene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-decene, 1-dodecene, 1-hexadecene, 4-methyl-1-pentene, etc. Mention may be made of α-olefins having 2 to 3 or 5 to 20 carbon atoms. The content of the 1-butene component in the 1-butene-α-olefin copolymer is preferably 65 mol% or more. When the content of the 1-butene component is 65 mol % or more, the adhesiveness to the polypropylene base material or the poly-1-butene base material will be good.
 ポリオレフィン(a)は、さらに塩素化変性されていてもよい。塩素化ポリオレフィンとしては、上述のポリオレフィン樹脂(a)を塩素化することにより得られる塩素化ポリオレフィンが好ましい。ポリオレフィン(a)が塩素化されている場合、塩素含有率は、溶液安定性およびポリオレフィン基材との付着性の観点から、下限は5質量%以上であることが好ましく、より好ましくは8質量%以上であり、さらに好ましくは10質量%以上であり、特に好ましくは12質量%以上であり、最も好ましくは14質量%以上である。5質量%以上であると、溶液安定性が良好となり乳化しやすくなる。上限は40質量%以下であることが好ましく、より好ましくは38質量%以下であり、さらに好ましくは35質量%以下であり、特に好ましくは32質量%以下であり、最も好ましくは30質量%以下である。40質量%以下では、塩素化ポリオレフィンの結晶性が高くなり、剥離強度が強くなりやすい。 The polyolefin (a) may be further chlorinated and modified. As the chlorinated polyolefin, a chlorinated polyolefin obtained by chlorinating the above-mentioned polyolefin resin (a) is preferable. When the polyolefin (a) is chlorinated, the lower limit of the chlorine content is preferably 5% by mass or more, more preferably 8% by mass, from the viewpoint of solution stability and adhesion to the polyolefin base material. The content is more preferably 10% by mass or more, particularly preferably 12% by mass or more, and most preferably 14% by mass or more. When the content is 5% by mass or more, the solution stability becomes good and emulsification becomes easy. The upper limit is preferably 40% by mass or less, more preferably 38% by mass or less, even more preferably 35% by mass or less, particularly preferably 32% by mass or less, and most preferably 30% by mass or less. be. If it is less than 40% by mass, the crystallinity of the chlorinated polyolefin becomes high and the peel strength tends to become strong.
 塩素化ポリオレフィンの塩素含有率は、JIS K-7229-1995に準じて滴定によって測定することができる。 The chlorine content of the chlorinated polyolefin can be measured by titration according to JIS K-7229-1995.
<カルボキシル基と不飽和二重結合を有するポリオレフィン樹脂>
 本発明のポリオレフィン樹脂(A)は、カルボキシル基と不飽和二重結合を有する。前記不飽和二重結合は、α,β-不飽和カルボン酸無水物(B)及び下記(I)、(II)及び(III)からなる群から選ばれる少なくとも1つの化合物に由来する。
(I)不飽和二重結合及びアミノ基を有する化合物(C1)
(II)不飽和二重結合及び水酸基を有する化合物(C2)
(III)不飽和二重結合及びエポキシ基を有する化合物(C3)。
<Polyolefin resin having carboxyl group and unsaturated double bond>
The polyolefin resin (A) of the present invention has a carboxyl group and an unsaturated double bond. The unsaturated double bond is derived from an α,β-unsaturated carboxylic acid anhydride (B) and at least one compound selected from the group consisting of (I), (II), and (III) below.
(I) Compound (C1) having an unsaturated double bond and an amino group
(II) Compound (C2) having an unsaturated double bond and a hydroxyl group
(III) Compound (C3) having an unsaturated double bond and an epoxy group.
本発明のポリオレフィン樹脂(A)が有するカルボキシル基と不飽和二重結合は、ポリオレフィン(a)に、α,β-不飽和カルボン酸無水物(B)をグラフト重合させた後、該α,β-不飽和カルボン酸無水物(B)を介して、不飽和二重結合及びアミノ基を有する化合物(C1)、不飽和二重結合及び水酸基を有する化合物(C2)及び不飽和二重結合及びエポキシ基を有する化合物(C3)からなる群から選ばれる少なくとも1つの化合物(以下、不飽和二重結合を有する化合物(C)と略することがある)を付加させることにより得られることが好ましい。 The carboxyl group and unsaturated double bond that the polyolefin resin (A) of the present invention has can be obtained by graft polymerizing the α,β-unsaturated carboxylic acid anhydride (B) onto the polyolefin (a). - A compound (C1) having an unsaturated double bond and an amino group, a compound (C2) having an unsaturated double bond and a hydroxyl group, and an unsaturated double bond and epoxy via the unsaturated carboxylic anhydride (B) It is preferably obtained by adding at least one compound selected from the group consisting of compounds having an unsaturated double bond (C3) (hereinafter sometimes abbreviated as a compound having an unsaturated double bond (C)).
ポリオレフィン樹脂(A)が有するカルボキシル基は、前述の製造方法の場合、ポリオレフィン(a)に、α,β-不飽和カルボン酸無水物(B)を重合させた際にα,β-不飽和カルボン酸無水物(B)が開環することで誘導されるカルボキシル基と、α,β-不飽和カルボン酸無水物(B)と不飽和二重結合を有する化合物(C)との反応により誘導されるカルボキシル基が存在するため好ましい。ポリオレフィン樹脂(A)がカルボキシル基を有することで、ポリオレフィン樹脂(A)から得られる塗膜の付着性、剥離強度が一層良好となる。 In the case of the above-mentioned production method, the carboxyl group that the polyolefin resin (A) has is determined to be an α,β-unsaturated carboxyl group when the polyolefin (a) is polymerized with the α,β-unsaturated carboxylic acid anhydride (B). A carboxyl group induced by ring opening of acid anhydride (B), and a carboxyl group induced by reaction between α,β-unsaturated carboxylic acid anhydride (B) and a compound (C) having an unsaturated double bond. This is preferable because of the presence of a carboxyl group. When the polyolefin resin (A) has a carboxyl group, the adhesion and peel strength of the coating film obtained from the polyolefin resin (A) become even better.
 ポリオレフィン樹脂(A)が有する不飽和二重結合は、前述の製造方法の場合、α,β-不飽和カルボン酸無水物(B)を介して、不飽和二重結合及びアミノ基を有する化合物(C1)を付加させることにより、アミド基が誘導されるため好ましい。また、α,β-不飽和カルボン酸無水物(B)を介して、不飽和二重結合及び水酸基を有する化合物(C2)または不飽和二重結合及びエポキシ基を有する化合物(C3)を付加させることによりエステル基が誘導されるため好ましい。ポリオレフィン樹脂(A)が不飽和二重結合を有することで、ポリオレフィン樹脂(A)から得られる塗膜のポリオレフィン基材に対する付着性、耐水性及び剥離強度が良好となる。 In the case of the above-mentioned production method, the unsaturated double bond that the polyolefin resin (A) has is converted into a compound ( Addition of C1) is preferable because an amide group is induced. Additionally, a compound (C2) having an unsaturated double bond and a hydroxyl group or a compound (C3) having an unsaturated double bond and an epoxy group is added via the α,β-unsaturated carboxylic anhydride (B). This is preferable because an ester group is thereby induced. When the polyolefin resin (A) has unsaturated double bonds, the coating film obtained from the polyolefin resin (A) has good adhesion to the polyolefin substrate, water resistance, and peel strength.
ポリオレフィン(a)にグラフト共重合するα,β-不飽和カルボン酸無水物(B)としては、例えば、無水マレイン酸、無水シトラコン酸、無水イタコン酸、無水アコニット酸、無水ハイミック酸等が挙げられる。これらの中でも無水マレイン酸、無水イタコン酸が好ましい。 Examples of the α,β-unsaturated carboxylic acid anhydride (B) to be graft copolymerized to the polyolefin (a) include maleic anhydride, citraconic anhydride, itaconic anhydride, aconitic anhydride, and himic anhydride. . Among these, maleic anhydride and itaconic anhydride are preferred.
 ポリオレフィン(a)に、α,β-不飽和カルボン酸無水物(B)をグラフト共重合する方法としては、ラジカル発生剤の存在下で該ポリオレフィン(a)を融点以上に加熱溶融して反応させる方法(溶融法)、該ポリオレフィン(a)を有機溶剤に溶解させた後にラジカル発生剤の存在下に加熱撹拌して反応させる方法(溶液法)などの公知の方法が挙げられる。 A method for graft copolymerizing polyolefin (a) with α,β-unsaturated carboxylic acid anhydride (B) involves heating and melting polyolefin (a) above its melting point in the presence of a radical generator to react. Examples of known methods include a method (melt method) and a method in which the polyolefin (a) is dissolved in an organic solvent and then heated and stirred in the presence of a radical generator to react (solution method).
ポリオレフィン(a)に、α,β-不飽和カルボン酸無水物(B)を重合する際の、α,β-不飽和カルボン酸無水物(B)の含有量は、α,β-不飽和カルボン酸無水物(B)がポリオレフィン(a)に変性した酸変性ポリオレフィン100質量部に対し、0.5~10質量%であることが好ましい。より好ましくは0.7質量%以上である。また、3質量%以下がより好ましく、2質量%以下がさらに好ましい。α,β-不飽和カルボン酸無水物(B)の含有量がこの範囲内であると、ポリオレフィン樹脂(A)の転相乳化が容易となり、ポリオレフィン樹脂(A)を含有する水性樹脂組成物から得られる塗膜の付着性や剥離強度が良好となる。 When polymerizing α,β-unsaturated carboxylic acid anhydride (B) into polyolefin (a), the content of α,β-unsaturated carboxylic acid anhydride (B) is The amount of acid anhydride (B) is preferably 0.5 to 10% by mass based on 100 parts by mass of acid-modified polyolefin modified to polyolefin (a). More preferably, it is 0.7% by mass or more. Further, the content is more preferably 3% by mass or less, and even more preferably 2% by mass or less. When the content of α,β-unsaturated carboxylic acid anhydride (B) is within this range, phase inversion emulsification of the polyolefin resin (A) becomes easy, and the aqueous resin composition containing the polyolefin resin (A) The resulting coating film has good adhesion and peel strength.
<不飽和二重結合を有する化合物(C)>
本発明のポリオレフィン樹脂(A)が有する不飽和二重結合は、不飽和二重結合を有する化合物(C)に由来する。不飽和二重結合を有することで活性エネルギー線硬化時に架橋反応が起こり、凝集力が向上することによってポリオレフィン基材への密着性、耐水性、剥離強度が向上すると考えられる。
<Compound (C) having an unsaturated double bond>
The unsaturated double bond that the polyolefin resin (A) of the present invention has is derived from the compound (C) having an unsaturated double bond. It is thought that the presence of unsaturated double bonds causes a crosslinking reaction during curing with active energy rays, and improves cohesive force, thereby improving adhesion to polyolefin substrates, water resistance, and peel strength.
 また、不飽和二重結合を有する化合物(C)はアルキレングリコール鎖を含まないか、又はアルキレングリコール鎖を含む場合、アルキレングリコール鎖を含む不飽和二重結合を有する化合物(C)の割合は、ポリオレフィン樹脂(A)が含む全不飽和二重結合を有する化合物(C)に対して、3質量%以下であることが好ましい。アルキレングリコール鎖は水との親和性が高いことからポリオレフィン樹脂(A)の転相乳化を容易にする一方で、ポリオレフィン基材との親和性を落としてしまうことから付着性および耐水性が低下する場合がある。ポリオレフィン樹脂(A)が含む全不飽和二重結合を有する化合物(C)に対して、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。 In addition, if the compound (C) having an unsaturated double bond does not contain an alkylene glycol chain or contains an alkylene glycol chain, the proportion of the compound (C) having an unsaturated double bond containing an alkylene glycol chain is: It is preferably 3% by mass or less based on the compound (C) having all unsaturated double bonds contained in the polyolefin resin (A). Alkylene glycol chains have a high affinity with water and facilitate phase inversion emulsification of the polyolefin resin (A), but they also reduce the affinity with the polyolefin base material, resulting in decreased adhesion and water resistance. There are cases. It is more preferably 2% by mass or less, and even more preferably 1% by mass or less, based on the compound (C) having all unsaturated double bonds contained in the polyolefin resin (A).
 (I)不飽和二重結合及びアミノ基を有する化合物(C1)としては、例えば、アリルアミンやジアリルアミンなどがあげられる。   (I) Examples of the compound (C1) having an unsaturated double bond and an amino group include allylamine and diallylamine.​
 不飽和二重結合及びアミノ基を有する化合物(C1)の窒素上に有する活性水素は1個または2個であり、1個がより好ましい。活性水素の数が1個または2個であると、α,β-不飽和カルボン酸無水物(B)との反応におけるイミド結合の生成がより抑制され、水性樹脂組成物とする際の転相乳化が容易となる。 The number of active hydrogens on the nitrogen of the compound (C1) having an unsaturated double bond and an amino group is one or two, and one is more preferable. When the number of active hydrogens is 1 or 2, the formation of imide bonds in the reaction with the α,β-unsaturated carboxylic acid anhydride (B) is further suppressed, and phase inversion when preparing the aqueous resin composition is suppressed. Emulsification becomes easier.
 活性水素が2個である不飽和二重結合及びアミノ基を有する化合物(C1)を使用する場合には、不飽和二重結合をポリオレフィン樹脂(A)に導入する製造工程において、反応温度を低温とすることでイミド結合の生成を抑制できる。反応温度としては100℃以下が好ましく、80℃以下がより好ましい。 When using a compound (C1) having an unsaturated double bond with two active hydrogens and an amino group, the reaction temperature is lowered in the manufacturing process of introducing the unsaturated double bond into the polyolefin resin (A). By doing so, the generation of imide bonds can be suppressed. The reaction temperature is preferably 100°C or lower, more preferably 80°C or lower.
 (II)不飽和二重結合及び水酸基を有する化合物(C2)としては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、1,4-シクロヘキサンジメタノールモノアクリレート、N-(2-ヒドロキシエチル)アクリルアミド、アリルアルコールなどのアルコール化合物やイソシアヌル酸EO変性ジアクリレート、ペンタエリスリトールトリアクリレートなどのポリオールへのアクリレート付加物があげられる。 (II) Compounds (C2) having an unsaturated double bond and a hydroxyl group include, for example, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 1,4-cyclohexane Examples include alcohol compounds such as dimethanol monoacrylate, N-(2-hydroxyethyl)acrylamide, allyl alcohol, and acrylate adducts to polyols such as isocyanuric acid EO-modified diacrylate and pentaerythritol triacrylate.
 (III)不飽和二重結合及びエポキシ基を有する化合物(C3)としては例えばグリシジルメタクリレート、グリシジルアクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル、アリルグリシジルエーテルなどのグリシジルエーテル化合物があげられる。 (III) Examples of the compound (C3) having an unsaturated double bond and an epoxy group include glycidyl ether compounds such as glycidyl methacrylate, glycidyl acrylate, 4-hydroxybutyl acrylate glycidyl ether, and allyl glycidyl ether.
<ポリオレフィン樹脂(A)の物性>
 本発明におけるポリオレフィン樹脂(A)の示差走査型熱量計(以下DSC)による融点は50℃以上85℃以下であることが好ましい。より好ましくは55℃以上80℃以下であり、特に好ましくは60℃以上75℃以下である。この場合、活性エネルギー線硬化における成膜性及び結晶性による凝集力が好適となり、ポリオレフィン基材に対する付着性や耐水性、剥離強度が良好となる。
<Physical properties of polyolefin resin (A)>
The melting point of the polyolefin resin (A) in the present invention as measured by a differential scanning calorimeter (hereinafter referred to as DSC) is preferably 50°C or more and 85°C or less. The temperature is more preferably 55°C or more and 80°C or less, particularly preferably 60°C or more and 75°C or less. In this case, the film formability and cohesive force due to crystallinity in curing with active energy rays are favorable, and the adhesion to the polyolefin substrate, water resistance, and peel strength are favorable.
 本発明におけるDSCによる融点の測定はJIS K7121-2012に準拠して測定でき、例えば以下の条件で行うことができる。DSC測定装置(セイコー電子工業製)を用い、約5mgの試料を150℃で10分間加熱融解状態を保持後、10℃/分の速度で降温して-50℃で安定保持した後、更に10℃/分で150℃まで昇温して融解した時の融解ピーク温度を測定し、該温度を融点として評価する。尚、後述の実施例における融点は前述の条件で測定されたものである。 The measurement of the melting point by DSC in the present invention can be performed in accordance with JIS K7121-2012, and can be performed, for example, under the following conditions. Using a DSC measurement device (manufactured by Seiko Electronics Industries), approximately 5 mg of the sample was heated at 150°C and kept in a molten state for 10 minutes, then cooled down at a rate of 10°C/min, kept stably at -50°C, and then heated for another 10 minutes. When the temperature is increased to 150°C at a rate of 150°C/min, the melting peak temperature is measured, and this temperature is evaluated as the melting point. Note that the melting points in the Examples described below were measured under the conditions described above.
ポリオレフィン樹脂(A)における不飽和二重結合を有する化合物(C)の含有量は0.5~20質量%が好ましい。より好ましくは0.7質量%以上である。また、15質量%以下がより好ましく、10質量%以下がさらに好ましい。不飽和二重結合を有する化合物(C)の含有量が0.5~20質量%であると、ポリオレフィン基材に対する付着性および水への転相乳化をバランスよく向上できる。 The content of the compound (C) having an unsaturated double bond in the polyolefin resin (A) is preferably 0.5 to 20% by mass. More preferably, it is 0.7% by mass or more. Further, it is more preferably 15% by mass or less, and even more preferably 10% by mass or less. When the content of the compound (C) having an unsaturated double bond is 0.5 to 20% by mass, adhesion to the polyolefin substrate and phase inversion emulsification to water can be improved in a well-balanced manner.
本発明のポリオレフィン樹脂(A)の構造は、α,β-不飽和カルボン酸無水物(B)を介して不飽和二重結合及びアミノ基を有する化合物(C1)を付加させたときに生じるアミド基及びカルボキシル基、α,β-不飽和カルボン酸無水物(B)を介して不飽和二重結合及び水酸基を有する化合物(C2)を付加させたときに有するエステル基及びカルボキシル基の赤外吸収スペクトルにより確認できる。 The structure of the polyolefin resin (A) of the present invention is an amide formed when a compound (C1) having an unsaturated double bond and an amino group is added via an α,β-unsaturated carboxylic acid anhydride (B). Infrared absorption of the ester group and carboxyl group when a compound (C2) having an unsaturated double bond and a hydroxyl group is added via an α,β-unsaturated carboxylic anhydride (B) It can be confirmed by spectrum.
 赤外吸収スペクトルにおける測定について説明する。先ず、ポリオレフィン樹脂(A)を有機溶剤に溶解して溶液を得た後、、KBr板に該溶液を塗布、乾燥して薄膜を形成し、FT-IR(例、「FT/IR-4100」、日本分光社製)にて、400~4000cm-1の赤外吸光スペクトルを観測する。解析は、付属ソフトウェア(例、「Spectro Manager」、日本分光社)によって行い、波数1600~1700cm-1に現れるピークがアミド基由来のC=O伸縮振動、波数1700~1750cm-1に現れるピークがエステル基およびカルボキシル基由来のC=O伸縮振動に帰属され、ポリオレフィン樹脂(A)の構造を確認できる。同時に波数1780cm-1付近の酸無水物由来のC=O伸縮振動ピークが減縮、消失することにより反応が確認できる。 Measurement in infrared absorption spectrum will be explained. First, after obtaining a solution by dissolving the polyolefin resin (A) in an organic solvent, the solution is applied to a KBr plate, dried to form a thin film, and then subjected to FT-IR (e.g. "FT/IR-4100"). (manufactured by JASCO Corporation) to observe the infrared absorption spectrum from 400 to 4000 cm-1. The analysis was performed using the attached software (e.g. "Spectro Manager", JASCO Corporation), and the peak appearing at the wave number 1600 to 1700 cm-1 was the C=O stretching vibration derived from the amide group, and the peak appearing at the wave number 1700 to 1750 cm-1 was It is attributed to the C=O stretching vibration derived from the ester group and the carboxyl group, and the structure of the polyolefin resin (A) can be confirmed. At the same time, the reaction can be confirmed by the reduction and disappearance of the C=O stretching vibration peak derived from the acid anhydride at a wave number of around 1780 cm-1.
ポリオレフィン樹脂(A)の重量平均分子量は、15,000~300,000であることが好ましく、30,000~150,000であることがより好ましく、30,000~120,000であることがさらに好ましく、50,000~120,000であることが特に好ましい。重量平均分子量が上記範囲にあると、水性樹脂組成物の転相乳化の容易さと、ポリオレフィン基材への付着性および剥離強度をバランスよく向上できる。   The weight average molecular weight of the polyolefin resin (A) is preferably 15,000 to 300,000, more preferably 30,000 to 150,000, and even more preferably 30,000 to 120,000. It is preferably 50,000 to 120,000, particularly preferably 50,000 to 120,000. When the weight average molecular weight is within the above range, the ease of phase inversion emulsification of the aqueous resin composition and the adhesion to the polyolefin substrate and peel strength can be improved in a well-balanced manner.​
<ラジカル重合性モノマー>
ポリオレフィン樹脂(A)は、さらに、ラジカル重合性モノマーでグラフト変性されていてもよい。すなわち、変性成分は、α,β-不飽和カルボン酸無水物(B)および不飽和二重結合を有する化合物(C)とともに、ラジカル重合性モノマーを含んでいてもよい。  
<Radical polymerizable monomer>
The polyolefin resin (A) may further be graft-modified with a radically polymerizable monomer. That is, the modifying component may contain a radically polymerizable monomer together with the α,β-unsaturated carboxylic acid anhydride (B) and the compound having an unsaturated double bond (C).
 ラジカル重合性モノマーとしては、(メタ)アクリル化合物、ビニル化合物が挙げられる。(メタ)アクリル化合物とは、分子中に(メタ)アクリロイル基(アクリロイル基および/またはメタアクリロイル基を意味する。)を少なくとも1個含む化合物である。ラジカル重合性モノマーの例としては、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、グリシジル(メタ)アクリレート、オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、アセトアセトキシエチル(メタ)アクリレート、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-メチレン-ビス(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、n-ブチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ドデシルビニルエーテル等が挙げられる。中でも、メチル(メタ)アクリレート、エチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレートが好ましく、中でもこれらのメタアクリレートがより好ましい。これらは単独、あるいは2種以上を混合して使用することができ、その混合割合を自由に設定することができる。 Examples of radically polymerizable monomers include (meth)acrylic compounds and vinyl compounds. A (meth)acrylic compound is a compound containing at least one (meth)acryloyl group (meaning an acryloyl group and/or a methacryloyl group) in the molecule. Examples of radically polymerizable monomers include (meth)acrylic acid, methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, hydroxyethyl (meth)acrylate, isobornyl (meth)acrylate, and glycidyl ( meth)acrylate, octyl(meth)acrylate, lauryl(meth)acrylate, tridecyl(meth)acrylate, stearyl(meth)acrylate, cyclohexyl(meth)acrylate, benzyl(meth)acrylate, phenyl(meth)acrylate, dimethylaminoethyl( meth)acrylate, diethylaminoethyl (meth)acrylate, hydroxyethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, acetoacetoxyethyl (meth)acrylate, N-methyl (meth)acrylamide, N-ethyl (meth)acrylamide, N-propyl (meth)acrylamide, N-isopropyl (meth)acrylamide, N-butyl (meth)acrylamide, N-isobutyl (meth)acrylamide, Nt-butyl (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, N,N-methylene-bis(meth)acrylamide, N-methylol(meth)acrylamide, hydroxyethyl( Examples include meth)acrylamide, (meth)acryloylmorpholine, n-butyl vinyl ether, 4-hydroxybutyl vinyl ether, and dodecyl vinyl ether. Among these, methyl (meth)acrylate, ethyl (meth)acrylate, cyclohexyl (meth)acrylate, and lauryl (meth)acrylate are preferred, and among these methacrylates are more preferred. These can be used alone or in combination of two or more, and the mixing ratio can be freely set.
<塩基性化合物(D)>
 本発明のポリオレフィン樹脂(A)は、さらに塩基性化合物(D)を含有することで水性樹脂組成物とすることができ、水性樹脂組成物において塩基性化合物(D)でカルボキシル基を中和することで変性ポリオレフィン樹脂(A)を水に分散してもよい。例えば変性ポリオレフィン樹脂(A)を転相乳化させる際には塩基性化合物を共存させる。これを系内に存在させることにより、変性ポリオレフィン樹脂(A)の分散性を向上させることが可能となる。塩基性化合物(D)としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム等の無機塩基性化合物類、トリエチルアミン、N,N-ジメチルエタノールアミン、アミノエタノールアミン、N-メチル-N,N-ジエタノールアミン、イソプロピルアミン、イミノビスプロピルアミン、エチルアミン、ジエチルアミン、3-エトキシプロピルアミン、3-ジエチルアミノプロピルアミン、sec-ブチルアミン、プロピルアミン、メチルアミノプロピルアミン、アリルアミン、ジアリルアミン、メチルイミノビスプロピルアミン、3-メトキシプロピルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、N-メチルモルホリン、N-エチルモルホリン、2-アミノ-2-メチル-1-プロパノール、2-ジメチルアミノ-2-メチル-1-プロパノール等のアミン類、アンモニア等が挙げられる。
<Basic compound (D)>
The polyolefin resin (A) of the present invention can be made into an aqueous resin composition by further containing a basic compound (D), and the carboxyl group is neutralized with the basic compound (D) in the aqueous resin composition. The modified polyolefin resin (A) may be dispersed in water. For example, when the modified polyolefin resin (A) is subjected to phase inversion emulsification, a basic compound is allowed to coexist. By allowing this to exist in the system, it becomes possible to improve the dispersibility of the modified polyolefin resin (A). Basic compounds (D) include inorganic basic compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, triethylamine, N,N-dimethylethanolamine, aminoethanolamine, N-methyl -N,N-diethanolamine, isopropylamine, iminobispropylamine, ethylamine, diethylamine, 3-ethoxypropylamine, 3-diethylaminopropylamine, sec-butylamine, propylamine, methylaminopropylamine, allylamine, diallylamine, methyliminobis Propylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, triethanolamine, morpholine, N-methylmorpholine, N-ethylmorpholine, 2-amino-2-methyl-1-propanol, 2-dimethylamino-2- Examples include amines such as methyl-1-propanol, ammonia, and the like.
 塩基性化合物(D)の添加量は、ポリオレフィン樹脂(A)のカルボキシル基に対して、0.3~4.0倍化学当量が好ましく、0.7~2.5倍化学当量がより好ましい。0.3倍化学当量未満であると、塩基性化合物が存在する効果が見られないおそれがある。一方、4.0倍化学当量を超えると、目的組成物の乾燥物中における残存量が多くなりすぎるおそれがある。 The amount of the basic compound (D) added is preferably 0.3 to 4.0 times the chemical equivalent, more preferably 0.7 to 2.5 times the chemical equivalent, relative to the carboxyl group of the polyolefin resin (A). If it is less than 0.3 times the chemical equivalent, the effect of the presence of the basic compound may not be observed. On the other hand, if it exceeds 4.0 times the chemical equivalent, there is a risk that the residual amount of the target composition in the dried product may become too large.
 塩基性化合物(D)は、ポリオレフィン樹脂(A)100質量部に対し、0.1質量部以上含有することが好ましく、0.3質量部以上含有することがより好ましく、0.5質量部以上含有することがさらに好ましい。また、2質量部以下含有することがより好ましく、1質量部以下含有することがさらに好ましい。この場合、ポリオレフィン樹脂(A)の分散性を向上させることができ、分散粒子の粒子径が大きくなりすぎることなく貯蔵安定性が良好となり、乾燥物中への残存量も好適となる。 The basic compound (D) is preferably contained in an amount of 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and 0.5 parts by mass or more based on 100 parts by mass of the polyolefin resin (A). It is even more preferable to contain it. Moreover, it is more preferable to contain 2 parts by mass or less, and even more preferably to contain 1 part by mass or less. In this case, the dispersibility of the polyolefin resin (A) can be improved, the particle size of the dispersed particles will not become too large, the storage stability will be good, and the amount remaining in the dry product will be suitable.
<水性樹脂組成物の製造方法>
 本発明における水性樹脂組成物の製造方法は、特に限定されるものではないが、有機溶剤中、ポリオレフィン樹脂(A)中のカルボキシル基を、塩基性化合物(D)によって中和し、水媒体を添加して加熱攪拌し、冷却した後に、有機溶剤を除去することにより得る転相乳化法が好ましい。
<Method for producing aqueous resin composition>
Although the method for producing the aqueous resin composition in the present invention is not particularly limited, the carboxyl groups in the polyolefin resin (A) are neutralized with a basic compound (D) in an organic solvent, and the aqueous medium is A phase inversion emulsification method in which the organic solvent is removed after addition, heating and stirring, and cooling is preferred.
 本発明における水性樹脂組成物の水分散体の固形分濃度は、水分散体の取り扱い性の観点から、水分散体の総量に対して10~60質量%であることが好ましく、20~50質量%であることがより好ましく、30~40質量%であることがさらに好ましい。この場合、水性樹脂組成物の安定性が良好となり、ポリオレフィン基材に対する付着性も良好となる。 The solid content concentration of the aqueous dispersion of the aqueous resin composition in the present invention is preferably 10 to 60% by mass, and preferably 20 to 50% by mass based on the total amount of the aqueous dispersion, from the viewpoint of handleability of the aqueous dispersion. %, and even more preferably 30 to 40% by mass. In this case, the stability of the aqueous resin composition will be good, and the adhesion to the polyolefin substrate will also be good.
<界面活性剤>
 本発明にかかる水性樹脂組成物は、本発明の性能を損なわない範囲で界面活性剤を含有することができる。界面活性剤としては、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤および両性界面活性剤が挙げられる。このうち、分散粒子の粒子径、および目的組成物から得られる塗膜の耐水性の観点から、ノニオン性界面活性剤やアニオン性界面活性剤を用いるのが好ましく、ノニオン性界面活性剤を用いるのがより好ましい。
<Surfactant>
The aqueous resin composition according to the present invention may contain a surfactant within a range that does not impair the performance of the present invention. Surfactants include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants. Among these, it is preferable to use nonionic surfactants and anionic surfactants from the viewpoint of the particle size of the dispersed particles and the water resistance of the coating film obtained from the target composition. is more preferable.
 ノニオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシプロピレンアルキルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシプロピレンスチレン化フェニルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシプロピレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシプロピレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミンエーテル、ポリオキシプロピレンアルキルアミンエーテル、ポリオキシエチレンラノリンアルコールエーテル、ポリオキシプロピレンラノリンアルコールエーテル、ポリオキシエチレンラノリン脂肪酸エステル、ポリオキシプロピレンラノリン脂肪酸エステル、(ポリオキシエチレンオキシプロピレン)ブロックコポリマー等が挙げられる。その一例としては、エマルミンシリーズ(三洋化成工業株式会社製、)ノイゲンシリーズ(第一工業製薬株式会社製)、ブラウノンシリーズ(青木油脂工業株式会社製)等が挙げられる。 Examples of nonionic surfactants include polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxypropylene alkylphenyl ether, polyoxyethylene styrenated phenyl ether, and polyoxypropylene styrenated phenyl ether. Ether, polyoxyethylene fatty acid ester, polyoxypropylene fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxypropylene sorbitan fatty acid ester, polyoxyethylene alkylamine ether, polyoxypropylene alkylamine ether, polyoxyethylene lanolin alcohol ether, poly Examples include oxypropylene lanolin alcohol ether, polyoxyethylene lanolin fatty acid ester, polyoxypropylene lanolin fatty acid ester, (polyoxyethylene oxypropylene) block copolymer, and the like. Examples include the Emulmin series (manufactured by Sanyo Chemical Industries, Ltd.), the Neugen series (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and the Brownon series (manufactured by Aoki Yushi Kogyo Co., Ltd.).
 また、これらノニオン性界面活性剤として、分子中に重合性二重結合を有する反応性界面活性剤を用いることもできる。その一例としては、アデカリアソープER-10、ER-20、ER-30、ER-40(以上、株式会社ADEKA製)等が挙げられる。 Additionally, as these nonionic surfactants, reactive surfactants having a polymerizable double bond in the molecule can also be used. Examples include ADEKA REASOAP ER-10, ER-20, ER-30, and ER-40 (manufactured by ADEKA Co., Ltd.).
 アニオン性界面活性剤としては、例えば、高級アルキル硫酸エステル類、アルキルアリールポリオキシエチレン硫酸エステル塩類、高級脂肪酸塩類、アルキルアリールスルフォン酸塩類、アルキルリン酸エステル塩類等が挙げられる。その一例としては、ネオコールシリーズ、ハイテノールシリーズ(第一工業製薬株式会社製)等が挙げられる。 Examples of the anionic surfactant include higher alkyl sulfate esters, alkylaryl polyoxyethylene sulfate salts, higher fatty acid salts, alkylaryl sulfonates, and alkyl phosphate ester salts. Examples include the Neocol series and the Hitenol series (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
 また、これらアニオン性界面活性剤として、分子中に重合性二重結合を有する反応性界面活性剤を用いることもできる。その一例としては、アデカリアソープNE-10、NE-20、NE-30、NE-40、SE-10N(以上、株式会社ADEKA製)、アクアロンRN-20、RN-30、RN-50、HS-10、HS-20(以上、第一工業製薬株式会社製)、エレミノールJS-2、エレミノールRS-30(以上、三洋化成工業株式会社製)等が挙げられる。 Additionally, as these anionic surfactants, reactive surfactants having a polymerizable double bond in the molecule can also be used. Examples include Adekaria Soap NE-10, NE-20, NE-30, NE-40, SE-10N (manufactured by ADEKA Co., Ltd.), Aqualon RN-20, RN-30, RN-50, HS. -10, HS-20 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Eleminol JS-2, Eleminol RS-30 (manufactured by Sanyo Chemical Industries, Ltd.), and the like.
 上記界面活性剤は、1種単独または2種以上を混合して用いることができる。 The above surfactants can be used alone or in combination of two or more.
 本発明において、界面活性剤は、ポリオレフィン樹脂(A)100質量部に対して、5~60質量部用いることが、転相乳化のしやすさや塗膜の耐水性の観点から好ましい。より好ましくは40質量部以下、さらに好ましくは30質量部以下である。また、より好ましくは25質量部以下である。 In the present invention, it is preferable to use 5 to 60 parts by mass of the surfactant per 100 parts by mass of the polyolefin resin (A) from the viewpoint of ease of phase inversion emulsification and water resistance of the coating film. More preferably it is 40 parts by mass or less, and still more preferably 30 parts by mass or less. Moreover, it is more preferably 25 parts by mass or less.
 上記のようにして得られる水性樹脂組成物における樹脂粒子のZ平均粒子径は10nm以上500nm以下であるのが好ましく、200nm以下であるのがより好ましい。平均粒子径が500nmを超えると、塗装後の塗膜中に欠損が生じる可能性があり、諸物性に悪影響を及ぼし、特にトップコート塗料に使用し難くなるので、好ましくない。 The Z average particle diameter of the resin particles in the aqueous resin composition obtained as described above is preferably 10 nm or more and 500 nm or less, more preferably 200 nm or less. If the average particle diameter exceeds 500 nm, defects may occur in the coated film after painting, which adversely affects various physical properties, making it particularly difficult to use as a top coat paint, which is not preferable.
 本発明のポリオレフィン樹脂(A)は、溶液や水分散体としてクリヤーワニスとして使用可能であるが、さらなる塗膜性能、例えば、造膜性、塗膜硬度、耐候性、柔軟性等の改質を目的として、ポリオレフィン基材に対する付着性を阻害しない程度に、種々の塗料用添加剤や他の樹脂エマルションをブレンドして使用できる。例えば、プロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノメチルエーテル、ブチルプロピレンジグリコール等の造膜助剤、消泡剤、たれ止め剤、濡れ剤、紫外線吸収剤等を使用できる。特に、アクリル系エマルションやウレタン系エマルションをブレンドして使用することにより、耐候性、耐水性、塗膜強度、柔軟性等の塗膜性能を高めることができる。 The polyolefin resin (A) of the present invention can be used as a clear varnish in the form of a solution or an aqueous dispersion. For this purpose, various paint additives and other resin emulsions can be blended to the extent that they do not inhibit adhesion to polyolefin substrates. For example, film forming aids such as propylene glycol monopropyl ether, dipropylene glycol monomethyl ether, butylpropylene diglycol, antifoaming agents, anti-sag agents, wetting agents, ultraviolet absorbers, etc. can be used. In particular, by blending and using an acrylic emulsion or a urethane emulsion, coating film performance such as weather resistance, water resistance, coating film strength, and flexibility can be improved.
 さらに、本発明の水性樹脂組成物には、粘着付与剤、例えば、ロジン、ダンマル、重合ロジン、水添ロジン、エステルロジン、ロジン変性マレイン酸樹脂、ポリテルペン系樹脂、石油系樹脂、シクロペンタジエン系樹脂、フェノール系樹脂、キシレン系樹脂、クマロンインデン系樹脂等の水系分散液を、必要に応じて適宜添加することができ、これにより塗膜の乾燥性やポリオレフィン基材に対する付着性を改善できる。添加量としては、樹脂組成物の固形分100質量部に対して、固形分5~100質量部であるのが好ましく、10~50質量部であるのがより好ましい。添加量が5質量部未満の場合、添加効果が現れないおそれがある。一方、100質量部を超えると、添加量が多すぎて逆に付着性の低下が起こるおそれがある。 Furthermore, the aqueous resin composition of the present invention may contain a tackifier such as rosin, dammar, polymerized rosin, hydrogenated rosin, ester rosin, rosin-modified maleic acid resin, polyterpene resin, petroleum resin, cyclopentadiene resin. , a phenol resin, a xylene resin, a coumaron indene resin, or the like can be appropriately added as necessary, thereby improving the drying properties of the coating film and the adhesion to the polyolefin substrate. The amount added is preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the solid content of the resin composition. If the amount added is less than 5 parts by mass, there is a risk that the effect of the addition will not appear. On the other hand, if it exceeds 100 parts by mass, the amount added is too large and there is a risk that the adhesion will be adversely reduced.
<活性エネルギー線硬化性ポリオレフィン樹脂(A)の用途>
 本発明の活性エネルギー線硬化性ポリオレフィン樹脂(A)は、ポリプロピレンを始めとする種々のポリオレフィン基材への付着性が高く、活性エネルギー線硬化性塗料やインキ、接着剤、シール剤、プライマー等に好適に用いることができるが、これらの基材に限定されるものではなく、例えば、その他のプラスチック、木材、金属等にも塗装することができる。ポリオレフィン基材としてはフィルム、シート、成形体等が挙げられる。塗装方法に特別な制限はない。
<Applications of active energy ray-curable polyolefin resin (A)>
The active energy ray-curable polyolefin resin (A) of the present invention has high adhesion to various polyolefin base materials including polypropylene, and can be used as active energy ray-curable paints, inks, adhesives, sealants, primers, etc. Although it can be suitably used, it is not limited to these base materials; for example, other plastics, wood, metal, etc. can also be coated. Examples of the polyolefin base material include films, sheets, molded bodies, and the like. There are no special restrictions on the coating method.
 本発明の活性エネルギー線硬化性ポリオレフィン樹脂(A)は、公知の方法により活性エネルギー線にて硬化させることができる。例えば電子線により硬化させる場合は、被着体に塗装して水及び含まれる場合は少量の有機溶剤を蒸発乾燥させた後、加速電圧20~2000KeV、好ましくは150~300KeVの電子線照射装置を用いて、少量の酸素を含む、または含まない不活性ガス雰囲気中で、全照射線量が5~200KGy、好ましくは20~150KGyとなるように照射して硬化物を得ることが出来る。 The active energy ray-curable polyolefin resin (A) of the present invention can be cured with active energy rays by a known method. For example, when curing with an electron beam, after coating the adherend and evaporating water and a small amount of organic solvent if contained, an electron beam irradiation device with an accelerating voltage of 20 to 2000 KeV, preferably 150 to 300 KeV is applied. A cured product can be obtained by irradiating in an inert gas atmosphere containing or not containing a small amount of oxygen at a total irradiation dose of 5 to 200 KGy, preferably 20 to 150 KGy.
 また、本発明においては水銀灯、キセノンランプ等から得られる紫外線により空気中または不活性ガス雰囲気中で硬化する方法、赤外線、高周波若しくはマイクロ波の如き熱に関与するエネルギーによるもの、即ち加熱硬化する方法がある。前記した電子線やX線、ガンマー線など、物質に吸収されて2次電子を放出する作用を有する高エネルギーの電離性放射線を用いる場合には、特に重合開始剤を添加しなくてもよいが、加熱硬化或いは紫外線硬化を用いる場合は光重合開始剤或いは熱重合開始剤を添加することが好ましい。また、前記した電離放射線による硬化方法、紫外線による硬化方法或いは加熱硬化する方法の中から選ばれる1種を単独でまたは2種以上の方法を同時に、或いは各々前後して用いることが出来る。 In addition, in the present invention, a method of curing in air or an inert gas atmosphere using ultraviolet rays obtained from a mercury lamp, a xenon lamp, etc., a method of curing using energy related to heat such as infrared rays, high frequency, or microwave, that is, a method of curing by heating. There is. When using high-energy ionizing radiation that has the effect of being absorbed by substances and emitting secondary electrons, such as the electron beams, X-rays, and gamma rays mentioned above, it is not necessary to add a polymerization initiator. When heat curing or ultraviolet curing is used, it is preferable to add a photopolymerization initiator or a thermal polymerization initiator. Further, one method selected from the above-mentioned curing method using ionizing radiation, curing method using ultraviolet rays, or heat curing method can be used alone, or two or more methods can be used simultaneously, or each method can be used one after the other.
 これらの熱或いは光による重合開始剤としては、例えば過硫酸カリウム、過硫酸アンモニウム、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ系開始剤類、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等の如きケトンパーオキサイド類、クメンハイドロパーポキサイド、tert-ブチルパーオキサイド等のハイドロパーオキサイド類、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド等のジアルキルパーオキサイド類、tert-ブチルパーオキシラウリレート、tert-ブチルパーオキシベンゾエート等のパーオキシエステル類等の過酸化物開始剤を使用可能である。また、これらの過硫酸塩や過酸化物等と、鉄イオンの如き金属イオン、或いは、ナトリウムスルホキシレートホルムアルデヒド、ピロ亜硫酸ナトリウムまたはL-アスコルビン酸等の還元剤を組み合わせて用いる、いわゆるレドックス系開始剤をも用いることが出来る。   Examples of these thermal or photopolymerization initiators include potassium persulfate, ammonium persulfate, 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-methylbutyronitrile), and 2,2'-azobisisobutyronitrile. Azo initiators such as '-azobis(2,4-dimethylvaleronitrile), 1,1'azobis(cyclohexane-1-carbonitrile), ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, etc., cumene Hydroperoxides such as hydroperpoxide, tert-butyl peroxide, dialkyl peroxides such as di-tert-butyl peroxide and dicumyl peroxide, tert-butyl peroxylaurylate, tert-butyl peroxybenzoate It is possible to use peroxide initiators such as peroxyesters such as. In addition, so-called redox system initiation is performed in which these persulfates, peroxides, etc. are used in combination with metal ions such as iron ions, or reducing agents such as sodium sulfoxylate formaldehyde, sodium pyrosulfite, or L-ascorbic acid. Agents can also be used.​
 更に光重合開始剤としては例えばベンゾフェノン、4,4’-ビスジメチルアミノベンゾフェノン、ミヒラーケトン、ジベンゾスベロン、2-エチルアンスラキノン、イソブチルチオキサンソン等の如き分子間水素引き抜き型開始剤、ベンゾイン、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインエチルエーテル、アセトフェノン、ジエトキシアセトフェノン、2,4-ジメチルチオキサントン、2-クロロチオキサントン、ベンジルメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン4-(2-ヒドロキシエトキシ)-フェンル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、アシルフォスフィンオキサイド、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1等の分子内結合開裂型の開始剤等の公知慣用の有機相ラジカル重合開始剤を用いることが出来る。また、カチオン系重合開始剤としては、例えば、ジアゾニウム塩型化合物、スルホニウム塩型化合物、ヨードニウム塩型化合物などが挙げられる。これら化合物の配合は併用してもかまわない。ただし、水性樹脂組成物として使用する場合は水系にも使用できる構造のものや液状のものが使用し易い。これら有機相開始剤を水性樹脂組成物として用いる場合は、樹脂溶液を水分散させる前に有機溶剤溶液中に予め加えておくのがよい。 Furthermore, as a photopolymerization initiator, intermolecular hydrogen abstraction type initiators such as benzophenone, 4,4'-bisdimethylaminobenzophenone, Michler's ketone, dibenzosuberone, 2-ethylanthraquinone, isobutylthioxanthone, benzoin, benzoin, etc. Isobutyl ether, benzoin isopropyl ether, benzoin ethyl ether, acetophenone, diethoxyacetophenone, 2,4-dimethylthioxanthone, 2-chlorothioxanthone, benzyl methyl ketal, 1-hydroxycyclohexyl phenyl ketone 4-(2-hydroxyethoxy)-fenyl ( 2-hydroxy-2-propyl)ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, acylphosphine oxide, 2-methyl-1-[4-(methylthio)phenyl]-2-morpho Known and commonly used organic phase radical polymerization initiators such as intramolecular bond cleavage type initiators such as Linopropane-1 can be used. Further, examples of the cationic polymerization initiator include diazonium salt type compounds, sulfonium salt type compounds, and iodonium salt type compounds. These compounds may be used in combination. However, when used as an aqueous resin composition, it is easy to use a structure that can also be used in an aqueous system or a liquid type. When using these organic phase initiators as an aqueous resin composition, it is preferable to add them in advance to the organic solvent solution before dispersing the resin solution in water.
 重合開始剤を使用する場合の使用量は着色剤を除く固形分あたり0.2~20%の範囲の中から適宜選択すれば良いが、0.5~10%範囲が特に好ましい。 When using a polymerization initiator, the amount used may be appropriately selected from the range of 0.2 to 20% based on the solid content excluding colorant, and the range of 0.5 to 10% is particularly preferable.
 次に、本発明を実施例によって具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.
(1)高温GPCによる重量平均分子量の測定
 溶媒としてオルトジクロロベンゼンを用い、140℃にてウォーターズ(Waters)社製のGPC150-Cプラス型を用いて行った。(カラム:東ソー社製 GMH6-HT + GMH6-HTL)重量平均分子量は、分子量既知のポリスチレンを標準物質として算出した。
(1) Measurement of weight average molecular weight by high temperature GPC Measurement was carried out using GPC150-C Plus model manufactured by Waters at 140° C. using orthodichlorobenzene as a solvent. (Column: GMH6-HT + GMH6-HTL manufactured by Tosoh Corporation) The weight average molecular weight was calculated using polystyrene of known molecular weight as a standard substance.
(2)示差走査型熱量計(DSC)による融点の測定
 JIS K7121-2012に準拠し、DSC測定装置(セイコー電子工業製)を用い、約5mgの試料を150℃で10分間加熱融解状態を保持後、10℃/分の速度で降温して-50℃で安定保持した後、更に10℃/分で150℃まで昇温して融解した時の融解ピーク温度を測定し、該温度を融点として評価する。
(2) Measurement of melting point by differential scanning calorimeter (DSC) Based on JIS K7121-2012, approximately 5 mg of sample was heated and kept in a molten state at 150°C for 10 minutes using a DSC measurement device (manufactured by Seiko Electronics Industries). After that, the temperature was lowered at a rate of 10°C/min and maintained stably at -50°C, and then the temperature was further increased to 150°C at a rate of 10°C/min to measure the melting peak temperature, and this temperature was taken as the melting point. evaluate.
(3)Z平均粒子径の測定(以下、単に平均粒子径とする。)
 Malvern社製“ゼータサイザー Nano-ZS Model ZEN3600”を用い、動的光散乱法にて、強度分布による平均粒子径(Z平均粒子径)を測定した。水性分散体組成物の固形分を0.05g/Lの濃度に調整したサンプルを25℃で3回測定し、その平均値とした。
(3) Measurement of Z average particle diameter (hereinafter simply referred to as average particle diameter)
The average particle diameter (Z average particle diameter) was measured by intensity distribution using a dynamic light scattering method using "Zetasizer Nano-ZS Model ZEN3600" manufactured by Malvern. A sample in which the solid content of the aqueous dispersion composition was adjusted to a concentration of 0.05 g/L was measured three times at 25°C, and the average value was taken as the average value.
製造例1
プロピレン-αオレフィン共重合体(プロピレン成分含有量=70モル%)280g、無水マレイン酸15g、ジクミルパーオキサイド7gおよびトルエン420gを、撹拌機を取り付けたオートクレーブ中に加え、窒素置換を約5分間行った後、加熱撹拌しながら140℃で5時間反応を行った。反応終了後、反応液を大量のメチルエチルケトン中に投入し、樹脂を析出させた。この樹脂をさらにメチルエチルケトンで数回洗浄し、未反応の無水マレイン酸を除去した。得られた樹脂を減圧乾燥することにより、酸変性ポリオレフィンの固形物(PO-1)を得た。赤外吸収スペクトルの測定結果から、無水マレイン酸成分と無水マレイン酸が開環したマレイン酸成分の合計の含有量は1.1質量%であった。また、高温GPC測定による重量平均分子量は90,000であり、DSCによる融点が70℃であった。
Manufacturing example 1
280 g of propylene-α olefin copolymer (propylene component content = 70 mol%), 15 g of maleic anhydride, 7 g of dicumyl peroxide, and 420 g of toluene were added to an autoclave equipped with a stirrer, and the mixture was replaced with nitrogen for about 5 minutes. After that, the reaction was carried out at 140° C. for 5 hours while heating and stirring. After the reaction was completed, the reaction solution was poured into a large amount of methyl ethyl ketone to precipitate the resin. The resin was further washed several times with methyl ethyl ketone to remove unreacted maleic anhydride. The resulting resin was dried under reduced pressure to obtain a solid acid-modified polyolefin (PO-1). From the measurement results of the infrared absorption spectrum, the total content of the maleic anhydride component and the maleic acid component in which maleic anhydride is ring-opened was 1.1% by mass. Further, the weight average molecular weight as determined by high temperature GPC measurement was 90,000, and the melting point as determined by DSC was 70°C.
製造例2 
 プロピレン-αオレフィン共重合体(プロピレン成分含有量=94モル%)280g、無水マレイン酸14g、ジクミルパーオキサイド5.6gおよびトルエン420gを、攪拌器を取り付けたオートクレーブ中に入れ、窒素置換を約5分行った後、加熱攪拌しながら140℃で5時間反応を行った。反応終了後、反応液を大量のメチルエチルケトン中に投入し、樹脂を析出させた。この樹脂をさらにメチルエチルケトンで数回洗浄し、未反応の無水マレイン酸を除去した。減圧乾燥後、得られた無水マレイン酸変性ポリオレフィンを280gおよびクロロホルム2520gを、攪拌器を取り付けたオートクレーブ中に入れ、窒素置換を約5分間行った後、110℃に加熱して樹脂を充分に溶解させた。次いで、tert-ブチルパーオキシ-2-エチルヘキサノエート1.4gを加え、塩素ガスを所定量吹き込んだ。反応溶媒であるクロロホルムを減圧留去して乾燥させることにより、塩素含有率が21質量%、重量平均分子量が80,000、DSCによる融点が70℃、無水マレイン酸成分と無水マレイン酸が開環したマレイン酸成分の合計の含有量が1.5質量%の酸変性塩素化ポリオレフィンの固形物(CPO-1)を得た。
Manufacturing example 2
280 g of propylene-α olefin copolymer (propylene component content = 94 mol%), 14 g of maleic anhydride, 5.6 g of dicumyl peroxide, and 420 g of toluene were placed in an autoclave equipped with a stirrer, and nitrogen purge was carried out to approx. After 5 minutes, the reaction was carried out at 140° C. for 5 hours while heating and stirring. After the reaction was completed, the reaction solution was poured into a large amount of methyl ethyl ketone to precipitate the resin. The resin was further washed several times with methyl ethyl ketone to remove unreacted maleic anhydride. After drying under reduced pressure, 280 g of the obtained maleic anhydride-modified polyolefin and 2,520 g of chloroform were placed in an autoclave equipped with a stirrer, and after purging with nitrogen for about 5 minutes, the mixture was heated to 110°C to fully dissolve the resin. I let it happen. Next, 1.4 g of tert-butylperoxy-2-ethylhexanoate was added, and a predetermined amount of chlorine gas was blown into the solution. By distilling off the reaction solvent chloroform and drying it, the chlorine content was 21% by mass, the weight average molecular weight was 80,000, the melting point by DSC was 70°C, and the maleic anhydride component and maleic anhydride were ring-opened. A solid substance (CPO-1) of acid-modified chlorinated polyolefin having a total content of 1.5% by mass of maleic acid components was obtained.
 製造例3(水性樹脂組成物(a)の製造)
 製造例1で得られたマレイン酸変性ポリオレフィン(PO-1)100g、トルエン60gを攪拌器を取り付けたオートクレーブ中に入れ、窒素置換を約5分行った後、30分100℃にて加熱溶解を行った。その後アリルアミン1.9gを添加して加熱攪拌しながら80℃で2時間反応を行い、ポリオレフィン樹脂を得た。一度冷却し、反応液を一部取り出し、赤外吸収スペクトル測定を実施したところ、酸無水物由来の1780cm-1付近のスペクトルが消失し、アミド基およびカルボキシル基由来のピークが1643cm-1、1708cm-1にそれぞれ確認できた。また、ポリオレフィン樹脂の重量平均分子量が90,000、DSCによる融点が70℃であった。続けて窒素雰囲気下、ポリオキシエチレンセチルエーテル(日油株式会社製、商品名「ノニオンP-210」、ノニオン性界面活性剤)20g、イソプロピルアルコール60gをオートクレーブへ仕込み、90℃で30分加熱撹拌後、90℃に温めたイオン交換水を500g添加した。90℃を維持したまま20分撹拌後、N,N-ジメチルエタノールアミン2.5gを加え、15分間撹拌した。その後加熱撹拌を1時間行い、この乳化液を60℃まで冷却し、減圧下で脱溶剤することにより、樹脂濃度(固形分)が30質量%、樹脂粒子の平均粒子径が65nmの水性樹脂組成物(a)を得た。   
Production Example 3 (Production of aqueous resin composition (a))
100 g of the maleic acid-modified polyolefin (PO-1) obtained in Production Example 1 and 60 g of toluene were placed in an autoclave equipped with a stirrer, and after purging with nitrogen for about 5 minutes, the mixture was heated and dissolved at 100°C for 30 minutes. went. Thereafter, 1.9 g of allylamine was added and the reaction was carried out at 80° C. for 2 hours while heating and stirring to obtain a polyolefin resin. Once cooled, a portion of the reaction solution was taken out and an infrared absorption spectrum was measured. The spectrum derived from the acid anhydride disappeared at around 1780 cm, and the peaks derived from the amide group and carboxyl group appeared at 1643 cm and 1708 cm. -1 was confirmed. Further, the weight average molecular weight of the polyolefin resin was 90,000, and the melting point by DSC was 70°C. Subsequently, under a nitrogen atmosphere, 20 g of polyoxyethylene cetyl ether (manufactured by NOF Corporation, trade name "Nonion P-210", nonionic surfactant) and 60 g of isopropyl alcohol were charged into an autoclave, and heated and stirred at 90 ° C. for 30 minutes. Thereafter, 500 g of ion-exchanged water heated to 90° C. was added. After stirring for 20 minutes while maintaining the temperature at 90°C, 2.5 g of N,N-dimethylethanolamine was added and stirred for 15 minutes. After that, heating and stirring was performed for 1 hour, and the emulsion was cooled to 60°C and the solvent was removed under reduced pressure to form an aqueous resin composition with a resin concentration (solid content) of 30% by mass and an average particle size of resin particles of 65 nm. Product (a) was obtained.
 製造例4(水性樹脂組成物(b)の製造)
 各成分の種類、量、反応温度を表1の組成に変更したこと以外は実施例1と同様の方法により、ポリオレフィン樹脂(重量平均分子量90,000、DSCによる融点70℃)を得た。さらに、樹脂濃度(固形分)が30質量%、樹脂粒子の平均粒子径が90nmの水性樹脂組成物(b)を得た。ポリオレフィン樹脂の赤外吸収スペクトル測定では酸無水物由来の1780cm-1付近のスペクトルが消失し、アミド基およびカルボキシル基由来のピークが1655cm-1、1705cm-1にそれぞれ確認できた。
Production Example 4 (Production of aqueous resin composition (b))
A polyolefin resin (weight average molecular weight 90,000, melting point 70° C. by DSC) was obtained in the same manner as in Example 1, except that the types, amounts, and reaction temperatures of each component were changed to the compositions shown in Table 1. Furthermore, an aqueous resin composition (b) having a resin concentration (solid content) of 30% by mass and an average particle diameter of resin particles of 90 nm was obtained. In the infrared absorption spectrum measurement of the polyolefin resin, the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and peaks derived from the amide group and carboxyl group were confirmed at 1655 cm-1 and 1705 cm-1, respectively.
 製造例5(水性樹脂組成物(c)の製造)
 各成分の種類、量、反応温度を表1の組成に変更したこと以外は実施例1と同様の方法により、ポリオレフィン樹脂(重量平均分子量90,000、DSCによる融点70℃)を得た。さらに、樹脂濃度(固形分)が30質量%、樹脂粒子の平均粒子径が80nmの水性樹脂組成物(c)を得た。ポリオレフィン樹脂の赤外吸収スペクトル測定では酸無水物由来の1780cm-1付近のスペクトルが消失し、エステル基およびカルボキシル基由来のピークが1732cm-1、1700cm-1にそれぞれ確認できた。
Production Example 5 (Production of aqueous resin composition (c))
A polyolefin resin (weight average molecular weight 90,000, melting point 70° C. by DSC) was obtained in the same manner as in Example 1, except that the types, amounts, and reaction temperatures of each component were changed to the compositions shown in Table 1. Furthermore, an aqueous resin composition (c) having a resin concentration (solid content) of 30% by mass and an average particle diameter of resin particles of 80 nm was obtained. In the infrared absorption spectrum measurement of the polyolefin resin, the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and peaks derived from the ester group and carboxyl group were confirmed at 1732 cm-1 and 1700 cm-1, respectively.
 製造例6(水性樹脂組成物(d)の製造)
 各成分の種類、量、反応温度を表1の組成に変更したこと以外は実施例1と同様の方法により、ポリオレフィン樹脂(重量平均分子量90,000、DSCによる融点70℃)を得た。さらに、樹脂濃度(固形分)が30質量%、樹脂粒子の平均粒子径が90nmの水性樹脂組成物(d)を得た。ポリオレフィン樹脂の赤外吸収スペクトル測定では酸無水物由来の1780cm-1付近のスペクトルが消失し、エステル基およびカルボキシル基由来のピークが1730cm-1、1708cm-1にそれぞれ確認できた。
Production Example 6 (Production of aqueous resin composition (d))
A polyolefin resin (weight average molecular weight 90,000, melting point 70° C. by DSC) was obtained in the same manner as in Example 1, except that the types, amounts, and reaction temperatures of each component were changed to the compositions shown in Table 1. Furthermore, an aqueous resin composition (d) having a resin concentration (solid content) of 30% by mass and an average particle diameter of resin particles of 90 nm was obtained. In the infrared absorption spectrum measurement of the polyolefin resin, the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and peaks derived from the ester group and carboxyl group were confirmed at 1730 cm-1 and 1708 cm-1, respectively.
 製造例7(水性樹脂組成物(e)の製造)
 各成分の種類、量を表1の組成に変更したこと以外は実施例1と同様の方法により、ポリオレフィン樹脂(重量平均分子量80,000、DSCによる融点70℃)を得た。さらに、樹脂濃度(固形分)が30質量%、樹脂粒子の平均粒子径が60nmの水性樹脂組成物(e)を得た。ポリオレフィン樹脂の赤外吸収スペクトル測定では酸無水物由来の1780cm-1付近のスペクトルが消失し、アミド基およびカルボキシル基由来のピークが1643cm-1、1708cm-1にそれぞれ確認できた。
Production Example 7 (Production of aqueous resin composition (e))
A polyolefin resin (weight average molecular weight 80,000, melting point 70°C by DSC) was obtained in the same manner as in Example 1 except that the types and amounts of each component were changed to the compositions shown in Table 1. Furthermore, an aqueous resin composition (e) having a resin concentration (solid content) of 30% by mass and an average particle diameter of resin particles of 60 nm was obtained. In the infrared absorption spectrum measurement of the polyolefin resin, the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and peaks derived from the amide group and carboxyl group were confirmed at 1643 cm-1 and 1708 cm-1, respectively.
 製造例8(水性樹脂組成物(f)の製造)   
 冷却器、温度計、撹拌機および滴下ロートを備えた2リットル4つ口フラスコに、製造例1で得られた酸変性ポリオレフィン(PO-1)100g、トルエン60g、イソプロピルアルコール60gおよびポリオキシエチレンセチルエーテル(日油株式会社製、商品名「ノニオンP-210」、ノニオン性界面活性剤)20gを仕込み、100℃に保った状態で十分溶解させた。この溶液にN,N-ジメチルエタノールアミン4.0gを加え、15分間撹拌した。次に、激しく撹拌した状態下に、あらかじめ90℃に加温しておいた脱イオン水500gを滴下ロートから30分かけて滴下し、酸変性ポリオレフィンを転相乳化させた。この乳化液を60℃まで冷却し、減圧下で脱溶剤することにより、樹脂濃度(固形分)が30質量%、樹脂粒子の平均粒子径が65nmの水性樹脂組成物(f)を得た。   
Production Example 8 (Production of aqueous resin composition (f))
In a 2-liter four-necked flask equipped with a condenser, thermometer, stirrer, and dropping funnel, 100 g of the acid-modified polyolefin (PO-1) obtained in Production Example 1, 60 g of toluene, 60 g of isopropyl alcohol, and polyoxyethylene cetyl were added. 20 g of ether (manufactured by NOF Corporation, trade name "Nonion P-210", nonionic surfactant) was charged and sufficiently dissolved at 100°C. 4.0 g of N,N-dimethylethanolamine was added to this solution and stirred for 15 minutes. Next, under vigorous stirring, 500 g of deionized water previously heated to 90° C. was added dropwise from the dropping funnel over 30 minutes to phase-invert emulsify the acid-modified polyolefin. This emulsion was cooled to 60° C. and the solvent was removed under reduced pressure to obtain an aqueous resin composition (f) having a resin concentration (solid content) of 30% by mass and an average particle size of resin particles of 65 nm.
 製造例9(水性樹脂組成物(g)の製造)   
 各成分の種類を表1の組成に変更したこと以外は比較例1と同様の方法により、樹脂濃度(固形分)が30質量%、樹脂粒子の平均粒子径が45nmの水性樹脂組成物(g)を得た。
Production Example 9 (Production of aqueous resin composition (g))
An aqueous resin composition (g ) was obtained.
 製造例10(水性樹脂組成物(h)の製造)   
 各成分の種類、量、反応温度を表1の組成に変更したこと以外は実施例1と同様の方法により実施したが、乳化不良により水性樹脂組成物は得られなかった。ポリオレフィン樹脂の赤外吸収スペクトル測定では酸無水物由来の1780cm-1付近のスペクトルが消失し、イミド基由来の1720cm-1が確認できた。一方でカルボキシル基およびアミド基由来のピークは確認できなかった。
Production Example 10 (Production of aqueous resin composition (h))
The same method as in Example 1 was carried out except that the type, amount, and reaction temperature of each component were changed to those shown in Table 1, but an aqueous resin composition could not be obtained due to poor emulsification. In the infrared absorption spectrum measurement of the polyolefin resin, the spectrum around 1780 cm-1 derived from the acid anhydride disappeared, and the spectrum at 1720 cm-1 derived from the imide group was confirmed. On the other hand, peaks derived from carboxyl groups and amide groups could not be confirmed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
上記製造例3~9で得た水性樹脂組成物(a)~(g)を用いて、塗膜を作製するための活性エネルギー線硬化性ポリオレフィン樹脂組成物を作成し、以下の特性について評価した。その結果を表2に示す。 Using the aqueous resin compositions (a) to (g) obtained in Production Examples 3 to 9 above, active energy ray-curable polyolefin resin compositions for producing coating films were prepared, and the following properties were evaluated. . The results are shown in Table 2.
実施例1 
水性樹脂組成物(a)60gに、ウレタンアクリレートディスパージョン(ALLNEX製UCECOAT7571)40g、造膜助剤としてプロピレングリコールモノメチルエーテル2g、濡れ剤として「ダイノール604」(エアープロダクツジャパン株式会社製)2g、光重合開始剤としてOMNIRAD1173(IGM RESINS B.V.製)を1.5g添加し、マグネチックスターラーで30分間撹拌して活性エネルギー線硬化性ポリオレフィン樹脂組成物を得た。 
Example 1
60 g of aqueous resin composition (a), 40 g of urethane acrylate dispersion (UCECOAT7571 manufactured by ALLNEX), 2 g of propylene glycol monomethyl ether as a film-forming agent, 2 g of "Dynol 604" (manufactured by Air Products Japan Co., Ltd.) as a wetting agent, and light 1.5 g of OMNIRAD1173 (manufactured by IGM RESINS BV) was added as a polymerization initiator and stirred with a magnetic stirrer for 30 minutes to obtain an active energy ray-curable polyolefin resin composition.
実施例2  
水性樹脂組成物(b)を使用した以外は、実施例1と同様の方法により、活性エネルギー線硬化性ポリオレフィン樹脂組成物を得た。 
Example 2
An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (b) was used.
実施例3 
水性樹脂組成物(c)を使用した以外は、実施例1と同様の方法により、活性エネルギー線硬化性ポリオレフィン樹脂組成物を得た。 
Example 3
An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (c) was used.
実施例4   
水性樹脂組成物(d)を使用した以外は、実施例1と同様の方法により、活性エネルギー線硬化性ポリオレフィン樹脂組成物を得た。 
Example 4
An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (d) was used.
実施例5  
水性樹脂組成物(e)を使用した以外は、実施例1と同様の方法により、活性エネルギー線硬化性ポリオレフィン樹脂組成物を得た。
Example 5
An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (e) was used.
比較例1  
水性樹脂組成物(f)を使用した以外は、実施例1と同様の方法により、酸変性ポリオレフィン樹脂組成物を得た。
Comparative example 1
An acid-modified polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (f) was used.
比較例2  
水性樹脂組成物(g)を使用した以外は、実施例1と同様の方法により、活性エネルギー線硬化性ポリオレフィン樹脂組成物を得た。
Comparative example 2
An active energy ray-curable polyolefin resin composition was obtained in the same manner as in Example 1, except that the aqueous resin composition (g) was used.
(1)付着性   
実施例1~5、比較例1~2で得られた活性エネルギー線硬化性ポリオレフィン樹脂組成物を、イソプロピルアルコールで洗浄したポリプロピレン板(日本テストパネル社製)に、乾燥塗膜厚が10μmとなるようにスプレー塗装した。80℃で3分乾燥後、コンベア式UV照射装置(アイグラフィックス株式会社製、アイグランデージECS-4011GX)で、紫外線を3パス照射した。(ランプ:高圧水銀ランプ、ランプ出力:3kW、ランプ高さ:110mm、コンベアスピード:276m/min、合計積算光量:3300mJ/cm2(紫外線積算光量計UVICURE PLUS II、UV-A測定値、FusionUV Systems Japan K.K.社))。続いて保護膜として2Kウレタン塗料(関西ペイント社製レタンPGホワイトIII)を40~50μmとなるようにスプレー塗装した。80℃×10分乾燥後、25℃×相対湿度60%の雰囲気下に24時間放置し、これを試験板とした。この試験板に1mm間隔で素地に達する100個のマス目を作り、その上にセロハンテープを圧着させて塗面に対して90度の角度で引き剥がしを3回繰り返し、剥離のない場合をA、3回目で剥離が生じた場合をB、2回目までに剥離した場合をCとして評価した。   
(1) Adhesion
The active energy ray-curable polyolefin resin compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 2 were applied to a polypropylene plate (manufactured by Nippon Test Panel Co., Ltd.) that had been washed with isopropyl alcohol so that the dry coating thickness was 10 μm. It was spray painted like this. After drying at 80° C. for 3 minutes, three passes of ultraviolet rays were irradiated using a conveyor-type UV irradiation device (Eye Grandage ECS-4011GX, manufactured by Eye Graphics Co., Ltd.). (Lamp: High pressure mercury lamp, Lamp output: 3kW, Lamp height: 110mm, Conveyor speed: 276m/min, Total integrated light amount: 3300mJ/cm2 (UV integrated light intensity meter UVICURE PLUS II, UV-A measurement value, FusionUV Systems Japan K.K. Co.)). Subsequently, 2K urethane paint (Rethane PG White III, manufactured by Kansai Paint Co., Ltd.) was spray-painted to a thickness of 40 to 50 μm as a protective film. After drying at 80° C. for 10 minutes, it was left in an atmosphere of 25° C. and 60% relative humidity for 24 hours, and this was used as a test plate. On this test plate, make 100 squares that reach the substrate at 1 mm intervals, press cellophane tape on top of it, and peel it off at a 90 degree angle to the painted surface three times. The evaluation was rated as B when peeling occurred at the third time, and C when peeling occurred by the second time.
(2)耐水性   
 上記(1)の方法で得られる試験板を40℃の温水に240時間浸漬した後、上記(1)と同様の方法で密着性を評価した。また塗膜の外観からブリスター(塗膜の浮きや膨らみ)の発生を確認した。剥離やブリスターがない場合をA、剥離はないがブリスターがある場合をB、剥離する場合をCとして評価した。   
(2) Water resistance
The test plate obtained by the method (1) above was immersed in warm water at 40° C. for 240 hours, and then the adhesion was evaluated in the same manner as in (1) above. We also confirmed the occurrence of blisters (lifting or swelling of the paint film) from the appearance of the paint film. The evaluation was rated A when there was no peeling or blisters, B when there was no peeling but there were blisters, and C when there was peeling.
(3)剥離強度   
 保護膜を100μmスプレー塗装する以外、上記(1)の方法と同様の方法で試験板を作製した後、25℃×相対湿度60%の雰囲気下でさらに48時間放置し、これを試験板とした。この試験板に1cm間隔で短冊状の剥離片をつくり、引っ張り試験機(エー・アンド・デイ社製テンシロンRTG-1310)にて50mm/分の速度で50mm、180°剥離試験を行った。引っ張り時の応力を剥離強度とし、5回試験の平均値を測定結果とした。
剥離強度の評価結果は下記の通りとした。
A:600gf/cm以上
B:500gf/cm以上600gf/cm未満
C:400gf/cm以上500gf/cm未満
D:400gf/cm未満
(3) Peel strength
A test plate was prepared in the same manner as in (1) above, except that a 100 μm thick protective film was spray-painted, and then left in an atmosphere of 25°C and 60% relative humidity for an additional 48 hours, and this was used as a test plate. . Strip-shaped peel pieces were made on this test plate at 1 cm intervals, and a 50 mm, 180° peel test was performed at a speed of 50 mm/min using a tensile tester (Tensilon RTG-1310, manufactured by A&D Co., Ltd.). The stress during tension was defined as the peel strength, and the average value of 5 tests was defined as the measurement result.
The peel strength evaluation results were as follows.
A: 600 gf/cm or more B: 500 gf/cm or more but less than 600 gf/cm C: 400 gf/cm or more but less than 500 gf/cm D: Less than 400 gf/cm
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[表2の結果の考察]
 表2から明らかなように、実施例1~5で得られた活性エネルギー線硬化性ポリオレフィン樹脂組成物は、活性エネルギー線硬化時において高い剥離強度を示すとともに、付着性、耐水性にも優れていることが示された。これに対し、比較例1、2で得られた樹脂組成物では、不飽和二重結合を有さないため、剥離強度と耐水性に劣る結果となった。

 
[Consideration of the results in Table 2]
As is clear from Table 2, the active energy ray-curable polyolefin resin compositions obtained in Examples 1 to 5 exhibit high peel strength when cured with active energy rays, and also have excellent adhesion and water resistance. It was shown that there is. In contrast, the resin compositions obtained in Comparative Examples 1 and 2 had poor peel strength and water resistance because they did not have unsaturated double bonds.

Claims (6)

  1. カルボキシル基と不飽和二重結合を有し、前記不飽和二重結合が、α,β-不飽和カルボン酸無水物(B)並びに下記(I)、(II)及び(III)からなる群から選ばれる少なくとも1つの化合物(C)に由来することを特徴とする活性エネルギー線硬化性ポリオレフィン樹脂(A)。
    (I)不飽和二重結合及びアミノ基を有する化合物(C1)
    (II)不飽和二重結合及び水酸基を有する化合物(C2)
    (III)不飽和二重結合及びエポキシ基を有する化合物(C3)。
    It has a carboxyl group and an unsaturated double bond, and the unsaturated double bond is from the group consisting of α, β-unsaturated carboxylic acid anhydride (B) and the following (I), (II) and (III). An active energy ray-curable polyolefin resin (A) characterized by being derived from at least one selected compound (C).
    (I) Compound (C1) having an unsaturated double bond and an amino group
    (II) Compound (C2) having an unsaturated double bond and a hydroxyl group
    (III) Compound (C3) having an unsaturated double bond and an epoxy group.
  2. 請求項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)及び塩基性化合物(D)を含有する水性樹脂組成物。 An aqueous resin composition containing the active energy ray-curable polyolefin resin (A) according to claim 1 and a basic compound (D).
  3. 請求項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)又は請求項2に記載の水性樹脂組成物を含有するポリオレフィン基材用塗料。 A paint for a polyolefin substrate, comprising the active energy ray-curable polyolefin resin (A) according to claim 1 or the aqueous resin composition according to claim 2.
  4. 請求項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)又は請求項2に記載の水性樹脂組成物を含有するポリオレフィン基材用インキ。 An ink for polyolefin substrates containing the active energy ray-curable polyolefin resin (A) according to claim 1 or the aqueous resin composition according to claim 2.
  5. 請求項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)又は請求項2に記載の水性樹脂組成物を含有するポリオレフィン基材用接着剤。 An adhesive for polyolefin substrates, comprising the active energy ray-curable polyolefin resin (A) according to claim 1 or the aqueous resin composition according to claim 2.
  6. 請求項1に記載の活性エネルギー線硬化性ポリオレフィン樹脂(A)又は請求項2に記載の水性樹脂組成物を含有するポリオレフィン基材塗装用プライマー。

     
    A primer for coating a polyolefin substrate, comprising the active energy ray-curable polyolefin resin (A) according to claim 1 or the aqueous resin composition according to claim 2.

PCT/JP2023/013295 2022-03-31 2023-03-30 Active energy ray curable polyolefin resin and aqueous resin composition WO2023190929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-060485 2022-03-31
JP2022060485 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190929A1 true WO2023190929A1 (en) 2023-10-05

Family

ID=88202232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013295 WO2023190929A1 (en) 2022-03-31 2023-03-30 Active energy ray curable polyolefin resin and aqueous resin composition

Country Status (2)

Country Link
TW (1) TW202348644A (en)
WO (1) WO2023190929A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105841A (en) * 1991-10-14 1993-04-27 Sanyo Kokusaku Pulp Co Ltd Binder resin composition
JPH06172422A (en) * 1992-12-10 1994-06-21 Tonen Chem Corp Reactive polypropylene
JPH0892427A (en) * 1994-09-27 1996-04-09 Nippon Paper Ind Co Ltd Water-based resin composition
JP2002212241A (en) * 2000-11-14 2002-07-31 Toyo Kasei Kogyo Co Ltd Graft polyolefin and resin composition for coating containing the same
JP2004520474A (en) * 2001-02-09 2004-07-08 イーストマン ケミカル カンパニー UV curable non-chlorine fixing agent
JP2004269872A (en) * 2003-02-21 2004-09-30 Mitsubishi Chemicals Corp Polypropylene copolymer, composition containing the same and method for producing the same
WO2020040217A1 (en) * 2018-08-24 2020-02-27 日本製紙株式会社 Modified polyolefin resin and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105841A (en) * 1991-10-14 1993-04-27 Sanyo Kokusaku Pulp Co Ltd Binder resin composition
JPH06172422A (en) * 1992-12-10 1994-06-21 Tonen Chem Corp Reactive polypropylene
JPH0892427A (en) * 1994-09-27 1996-04-09 Nippon Paper Ind Co Ltd Water-based resin composition
JP2002212241A (en) * 2000-11-14 2002-07-31 Toyo Kasei Kogyo Co Ltd Graft polyolefin and resin composition for coating containing the same
JP2004520474A (en) * 2001-02-09 2004-07-08 イーストマン ケミカル カンパニー UV curable non-chlorine fixing agent
JP2004269872A (en) * 2003-02-21 2004-09-30 Mitsubishi Chemicals Corp Polypropylene copolymer, composition containing the same and method for producing the same
WO2020040217A1 (en) * 2018-08-24 2020-02-27 日本製紙株式会社 Modified polyolefin resin and method for producing same

Also Published As

Publication number Publication date
TW202348644A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
US7737208B2 (en) Water base resin composition, process for producing the same, paint, ink, adhesive, sealant and primer
JP4848011B2 (en) Modified polyolefin resin and use thereof
CA2557421C (en) Modified polyolefin resin
JP3376244B2 (en) Chlorinated polyolefin-based aqueous resin composition
CN108699178B (en) Modified polyolefin resin
JP2005139305A (en) Ultraviolet curable resin composition
JP6976260B2 (en) Modified polyolefin resin
JP2008214414A (en) Modified polyolefin dispersion resin composition and primer containing it
JP3948279B2 (en) Aqueous dispersion, production method and use thereof
JP7193266B2 (en) Modified Polyolefin Resin, Aqueous Dispersion, and Primer
WO2023190929A1 (en) Active energy ray curable polyolefin resin and aqueous resin composition
JP5654876B2 (en) Active energy ray-curable resin composition
JP2602153B2 (en) Aqueous dispersion for resin molded article and method for producing the same
CN113748167B (en) Aqueous resin composition
JP2013203746A (en) Active energy ray-curable resin composition
JP7124316B2 (en) Method for producing aqueous resin dispersion
WO2023190396A1 (en) Modified polyolefin aqueous dispersion
TWI838510B (en) Water-based resin composition
JP2013067745A (en) Method for curing resin composition
JP2010059273A (en) Aqueous dispersion liquid and method for manufacturing coating film
JP2010084138A (en) Aqueous dispersion and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780937

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024512824

Country of ref document: JP