WO2023190687A1 - フレキシブル配線基板用ポリイミド前駆体組成物、ポリイミドフィルムおよびポリイミド金属積層体 - Google Patents

フレキシブル配線基板用ポリイミド前駆体組成物、ポリイミドフィルムおよびポリイミド金属積層体 Download PDF

Info

Publication number
WO2023190687A1
WO2023190687A1 PCT/JP2023/012801 JP2023012801W WO2023190687A1 WO 2023190687 A1 WO2023190687 A1 WO 2023190687A1 JP 2023012801 W JP2023012801 W JP 2023012801W WO 2023190687 A1 WO2023190687 A1 WO 2023190687A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
group
bis
mol
precursor composition
Prior art date
Application number
PCT/JP2023/012801
Other languages
English (en)
French (fr)
Inventor
孝輔 山路
暢 飯泉
拓人 深田
圭司 岩本
Original Assignee
Ube株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube株式会社 filed Critical Ube株式会社
Publication of WO2023190687A1 publication Critical patent/WO2023190687A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a polyimide film for flexible wiring boards, more specifically a polyimide film suitable for circuit boards in high frequency bands, and a polyimide precursor composition for producing the same.
  • polyimide films have excellent thermal and electrical properties, they are widely used in electronic devices such as flexible wiring boards and TAB (Tape Automated Bonding) tapes.
  • a polyimide with a low coefficient of linear expansion and a high modulus of elasticity can be obtained by using 3,3',4,4'-biphenyltetracarboxylic dianhydride and p-phenylenediamine as the tetracarboxylic acid component and the diamine component, respectively. It has been known.
  • Polyimide which is a flexible circuit board material that involves high-frequency signal transmission, is required to have a small dielectric loss tangent, that is, a material that has a small transmission loss when used as a flexible wiring board.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2019-210342 states that as a polyimide film with a small dielectric loss tangent, "at least p-phenylene bis (trimellitic acid monoester acid anhydride) or 3,3 ',4,4'-biphenyltetracarboxylic dianhydride, at least 4,4'-diaminodiphenyl ether, 1,3-bis(4-aminophenoxy)benzene, A "thermoplastic polyimide film containing either one of bis(4-aminophenyl) terephthalate or 2,2'-bis(trifluoromethyl)benzidine" (see claim 4) has been proposed.
  • Patent Document 2 JP 2021-74894 describes a multilayer polyimide film having a thermoplastic polyimide resin layer on at least one surface of the non-thermoplastic polyimide resin layer, in which the non-thermoplastic polyimide resin layer contains an acid dianhydride and an acid dianhydride.
  • a film is described (see claim 1).
  • JP 2019-210342 Publication Japanese Patent Application Publication No. 2021-74894 Japanese Patent Application Publication No. 11-199668 International Publication No. 2008/056808 Japanese Patent Application Publication No. 2007-246709
  • polyimide films for use in flexible wiring boards are required not only to have a small dielectric loss tangent, but also to have various other properties.
  • a polyimide film used as a polyimide core layer (heat-resistant layer) of a flexible copper-clad laminate is required to have high heat resistance.
  • the film disclosed in Patent Document 1 is a thermoplastic polyimide film and cannot be used as a heat-resistant film for a polyimide core layer.
  • Patent Document 2 aims to provide a non-thermoplastic polyimide resin layer in a multilayer polyimide film, but the heat resistance is insufficient.
  • the polyimide films disclosed in Patent Documents 3 to 5 similarly lack heat resistance.
  • An object of the present invention is to provide a polyimide precursor composition for flexible wiring boards and a polyimide film that can produce a polyimide film that has a small dielectric loss tangent in a high frequency region, has excellent heat resistance, and is suitable for manufacturing flexible wiring boards. purpose.
  • another aspect of the present invention is to provide a polyimide metal laminate such as a copper-clad laminate, which uses a polyimide film obtained from the polyimide precursor composition as a base material, and a flexible printed wiring board processed from the same. With the goal.
  • a polyimide precursor composition for a flexible wiring board comprising a polyimide precursor having a repeating unit represented by the following general formula (I).
  • X 1 is a tetravalent aliphatic group or aromatic group
  • Y 1 is a divalent aliphatic group or aromatic group
  • R 1 and R 2 are each independently , a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms, provided that more than 0 mol% but less than 30 mol% of Y 1 is represented by formula (1):
  • n is an integer of 1 to 4
  • m is an integer of 0 to 4
  • B is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen group, and a carbon number It represents one selected from the group consisting of 1 to 6 fluoroalkyl groups, and U independently represents -CO-O- or -O-CO-.
  • polyimide precursor composition according to item 1 wherein the A has a structure selected from the group consisting of a 1,4-phenylene group and a 4,4'-biphenylene group.
  • a polyimide film for flexible wiring boards obtained from the polyimide precursor composition according to any one of items 1 to 3 above.
  • a polyimide metal laminate in which the polyimide film according to item 4 above and a metal foil or a metal layer are laminated.
  • a flexible wiring board on which wiring is formed by patterning the metal foil or metal layer of the polyimide metal laminate according to item 5 above.
  • a polyimide precursor composition for a flexible wiring board that can produce a polyimide film that has a small dielectric loss tangent in a high frequency region, has excellent heat resistance, and is suitable for manufacturing a flexible wiring board, and this precursor composition
  • a polyimide metal laminate such as a copper-clad laminate, which uses a polyimide film obtained from the polyimide precursor composition as a base material, and a flexible printed wiring board processed from the same. can do.
  • the polyimide precursor composition for a flexible wiring board contains a polyimide precursor having a repeating unit represented by the general formula (I), and contains a solvent in a distributed form, and the polyimide precursor is dissolved in the solvent. There is.
  • the polyimide precursor has the following general formula (I):
  • X 1 is a tetravalent aliphatic group or aromatic group
  • Y 1 is a divalent aliphatic group or aromatic group
  • R 1 and R 2 are independently hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms.
  • R 1 and R 2 are independently hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylsilyl group having 3 to 9 carbon atoms.
  • the polyimide precursor will be explained using monomers (tetracarboxylic acid component, diamine component, and other components) that provide X 1 and Y 1 in general formula (I), and then the manufacturing method will be explained.
  • the tetracarboxylic acid component refers to tetracarboxylic acid, tetracarboxylic dianhydride, other tetracarboxylic acid silyl esters, tetracarboxylic acid esters, tetracarboxylic acid chlorides, etc. used as raw materials for producing polyimide.
  • tetracarboxylic dianhydride it is convenient to use tetracarboxylic dianhydride for production purposes, and in the following description, an example will be described in which tetracarboxylic dianhydride is used as the tetracarboxylic acid component.
  • the diamine component is a diamine compound having two amino groups (-NH 2 ), which is used as a raw material for producing polyimide.
  • X 1 and tetracarboxylic acid component may be either an aliphatic group or an aromatic group, an aromatic group is preferable.
  • 50 mol% or more of X 1 is an aromatic group, more preferably 70 mol% or more, even more preferably 90 mol% or more (100 mol% is also extremely preferred).
  • the aromatic group X 1 has the following structure.
  • Z 1 is a direct bond or the following divalent group:
  • Z 2 in the formula is a divalent organic group
  • Z 3 and Z 4 are each independently an amide bond, an ester bond, and a carbonyl bond
  • Z 5 is an organic group containing an aromatic ring.
  • Z 2 include aliphatic hydrocarbon groups having 2 to 24 carbon atoms and aromatic hydrocarbon groups having 6 to 24 carbon atoms.
  • Z 5 include aromatic hydrocarbon groups having 6 to 24 carbon atoms.
  • the tetracarboxylic acid component that provides the repeating unit of general formula (I) in which X 1 is a tetravalent group having an aromatic ring is not particularly limited, but includes 3,3',4,4'-biphenyltetracarboxylic acid; Dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, benzophenonetetracarboxylic dianhydride Acid dianhydride, 4,4'-oxydiphthalic dianhydride, diphenylsulfonetetracarboxylic dianhydride, p-terphenyltetracarboxylic dianhydride, m-terphenyltetracarboxylic dianhydride, 1,4 - Halogen-unsubstituted aromatic tetracarboxylic dian
  • the structure derived from s-BPDA as X 1 is at least 50 mol% or more, more preferably 60 mol% or more, even more preferably 70 mol% or more, and most preferably 80 mol% or more. (including 100 mol%).
  • the remaining X 1 is preferably an aromatic group, such as 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, From a group derived from pyromellitic dianhydride, 4,4'-oxydiphthalic dianhydride, or 1,4-phenylenebis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylate) Preferably selected.
  • the aliphatic group X 1 may be a chain aliphatic group or an alicyclic group, but an alicyclic group is preferable.
  • As the alicyclic group It is more preferable to have a 6-membered ring.
  • Preferred tetravalent groups having a 4-membered aliphatic ring or 6-membered aliphatic ring include the following.
  • R 31 to R 38 are each independently a direct bond or a divalent organic group.
  • R 48 is an organic group containing an aromatic ring or an alicyclic structure. It is the basis.
  • R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 , and R 38 include a direct bond, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, or Examples include an oxygen atom (-O-), a sulfur atom (-S-), a carbonyl bond, an ester bond, and an amide bond.
  • Examples of the organic group containing an aromatic ring as R 48 include the following.
  • W 1 is a direct bond or a divalent organic group
  • n 11 to n 13 each independently represents an integer of 0 to 4
  • R 51 , R 52 , and R 53 each independently is an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group.
  • W 1 examples include a direct bond, a divalent group represented by the following formula (5), and a divalent group represented by the following formula (6).
  • R 61 to R 68 in formula (6) each independently represent either a direct bond or a divalent group represented by formula (5) above.
  • the tetravalent group having an alicyclic structure the following are particularly preferable.
  • Examples of the tetracarboxylic acid component that provides X 1 which is an alicyclic group, include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, compound, [1,1'-bi(cyclohexane)]-3,3',4,4'-tetracarboxylic dianhydride, [1,1'-bi(cyclohexane)]-2,3,3', 4'-tetracarboxylic dianhydride, [1,1'-bi(cyclohexane)]-2,2',3,3'-tetracarboxylic dianhydride, 4,4'-methylenebis(cyclohexane-1, 2-dicarboxylic anhydride), 4,4'-(propane-2,2-diyl)bis(cyclohexane-1,2-dicarboxylic anhydride), 4,4'-oxy
  • Examples of the tetracarboxylic acid component that provides X 1 which is a chain aliphatic group, include 1,2,3,4-butanetetracarboxylic dianhydride, 1,2,3,4-pentanetetracarboxylic dianhydride, etc.
  • Examples include linear or branched tetracarboxylic dianhydrides having about 4 to 10 carbon atoms.
  • n is an integer of 1 to 4
  • m is an integer of 0 to 4
  • B is an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen group, and a fluoroalkyl group having 1 to 6 carbon atoms.
  • n is preferably 1 to 3, more preferably 1 or 2.
  • m is preferably 0 or 1.
  • A include 1,4-phenylene, 1,3-phenylene, 4,4'-biphenylene, 3,4'-biphenylene, 3,3'-biphenylene, 4,4"-p-terphenylene, etc. Particularly preferred are 1,4-phenylene, 4,4'-biphenylene, 4,4''-p-terphenylene, etc., which are bonded at the para position.
  • one of U represents -CO-O- and the other represents -O-CO-. That is, a preferable structure of formula (1) is represented by formula (1-1) or formula (1-2).
  • the positional relationship between U in formula (1) and the bond may be any of the ortho, meta, or para positions, but is preferably the para position.
  • diamine compounds that provide the group of formula (1) include (bis(4-aminophenyl) terephthalate (abbreviation: BPTP), bis(4-aminophenyl)biphenyl-4,4'-dicarboxylate (abbreviation: APBP), [ Examples include 4-(4-aminobenzoyl)oxyphenyl]4-aminobenzoate (abbreviation: ABHQ).
  • BPTP bis(4-aminophenyl) terephthalate
  • APBP bis(4-aminophenyl)biphenyl-4,4'-dicarboxylate
  • ABHQ 4-(4-aminobenzoyl)oxyphenyl]4-aminobenzoate
  • the proportion of the group of formula (1) in Y 1 is more than 0 mol% and less than 30 mol%, more preferably 10 mol% or more, even more preferably 15 mol% or more, and preferably less than 25 mol%. . Within this range, a polyimide film with a well-balanced low dielectric loss tangent and heat resistance can be obtained.
  • Y 1 other than formula (1) may be either an aliphatic group or an aromatic group, but an aromatic group is preferable.
  • Examples of the aromatic group Y 1 include the following.
  • W 1 is a direct bond or a divalent organic group
  • n 11 to n 13 each independently represents an integer of 0 to 4
  • R 51 , R 52 , and R 53 each independently is an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group.
  • W 1 examples include a direct bond, a divalent group represented by the following formula (5), and a divalent group represented by the following formula (6).
  • R 61 to R 68 in formula (6) each independently represent either a direct bond or a divalent group represented by formula (5) above.
  • Examples of the diamine component that provides Y 1 which is a divalent group having an aromatic ring, include p-phenylenediamine, m-phenylenediamine, 2,4-toluenediamine, 3,3'-dihydroxy-4,4' -diaminobiphenyl, bis(4-amino-3-carboxyphenyl)methane, benzidine, 3,3'-diamino-biphenyl, 4,4''-diamino-p-terphenyl, 2,2'-bis(trifluoromethyl) ) benzidine, 3,3'-bis(trifluoromethyl)benzidine, m-tolidine, 4,4'-diaminobenzanilide, 3,4'-diaminobenzanilide, N,N'-bis(4-aminophenyl) Terephthalamide, N,N'-p-phenylenebis(p-aminobenzamide), 4-aminophenoxy-4-d
  • Examples of the diamine component providing the repeating unit of general formula (I) in which Y 1 is a divalent group having an aromatic ring containing a fluorine atom include 2,2'-bis(trifluoromethyl)benzidine, 3 , 3'-bis(trifluoromethyl)benzidine, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2 '-bis(3-amino-4-hydroxyphenyl)hexafluoropropane.
  • preferred diamine compounds include 9,9-bis(4-aminophenyl)fluorene, 4,4'-(((9H-fluorene-9,9-diyl)bis([1,1'-biphenyl]-5 ,2-diyl))bis(oxy))diamine, [1,1':4',1"-terphenyl]-4,4"-diamine, 4,4'-([1,1'-binaphthalene] -2,2'-diylbis(oxy))diamine is mentioned.
  • the diamine component may be used alone or in combination.
  • Examples of Y 1 which is a group having an alicyclic structure, include the following.
  • V 1 and V 2 are each independently a direct bond or a divalent organic group
  • n 21 to n 26 each independently represent an integer of 0 to 4
  • R 81 to R 86 are each independently an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group
  • V 1 and V 2 include a direct bond and a divalent group represented by the above formula (5).
  • Examples of the diamine component that provides Y 1 having an alicyclic structure include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diaminocyclohexane.
  • Y 1 other than formula (1) is preferably selected from one that provides a polyimide with high heat resistance, and is preferably an aromatic group. Examples include phenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl, 4,4'-bis(4-aminophenoxy)biphenyl, and 1,3-bis(4-aminophenoxy)benzene.
  • p-phenylenediamine and/or 4,4''-diamino-p-terphenyl accounts for 40 mol% or more and less than 100 mol%, preferably 50 mol% or more and less than 100 mol%, based on the total diamine component.
  • the proportion of the diamine compound providing the group of formula (1) is more than 0 mol% and less than 30 mol%, more preferably 10 mol% or more, even more preferably 15 mol% or more, and preferably 25 mol%. % or less, more preferably less than 25 mol%. Therefore, p-phenylenediamine and/or 4,4"-diamino-p-terphenyl and other diamine compounds such as 2,2'-dimethyl-4,4'- Diaminobiphenyl, 4,4'-bis(4-aminophenoxy)biphenyl, 1,3-bis(4-aminophenoxy)benzene, etc. are used.
  • the polyimide precursor composition for flexible wiring boards is obtained by reacting a tetracarboxylic acid component and a diamine component in a solvent. This reaction is carried out using approximately equal moles of the tetracarboxylic acid component (tetracarboxylic dianhydride) and the diamine component at a relatively low temperature of, for example, 100°C or lower, preferably 80°C or lower.
  • the reaction temperature is usually 25°C to 100°C, preferably 25°C to 80°C, more preferably 30°C to 80°C
  • the reaction time is, for example, about 0.1 to 72 hours, preferably is about 2 to 60 hours.
  • the reaction can be carried out under an air atmosphere, it is usually suitably carried out under an inert gas atmosphere, preferably a nitrogen gas atmosphere.
  • the tetracarboxylic acid component tetracarboxylic dianhydride
  • the diamine component diamine component
  • the molar ratio [tetracarboxylic acid component/diamine component] is about 0.90 to 1.10, It is preferably about 0.95 to 1.05.
  • Solvents used in preparing the polyimide precursor composition include water, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 1 , 3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, and other aprotic solvents are preferred; any type of solvent can be used without any problem as long as it dissolves the raw material monomer component and the polyimide precursor to be produced. , but is not particularly limited to its structure.
  • an amide solvent such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone.
  • cyclic ester solvents such as ⁇ -caprolactone, ⁇ -caprolactone, ⁇ -methyl- ⁇ -butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, glycol solvents such as triethylene glycol, m-cresol, p-cresol, 3 Phenolic solvents such as -chlorophenol and 4-chlorophenol, acetophenone, 1,3-dimethyl-2-imidazolidinone, sulfolane, and dimethyl sulfoxide are preferably employed.
  • polyimide precursor composition In the production of a polyimide precursor composition, although not particularly limited, monomers and solvents are charged at a concentration such that the solid content concentration (polyimide equivalent mass concentration) of the polyimide precursor is, for example, 5 to 45% by mass, and the reaction is carried out.
  • the solution viscosity of the polyimide precursor composition may be appropriately selected depending on the purpose of use (coating, casting, etc.) and the purpose of production.
  • the polyamic acid (polyimide precursor) solution should have a rotational viscosity measured at 30°C of about 0.1 to 5000 poise, particularly 0.5 to 2000 poise, and more preferably about 1 to 2000 poise. is preferable from the viewpoint of workability in handling this polyamic acid solution.
  • the reaction solution of the tetracarboxylic acid component and the diamine component may be used as it is, or it may be concentrated or diluted by adding a solvent if necessary. Therefore, the solvent contained in the polyimide precursor composition may be the solvent used in the reaction between the tetracarboxylic acid component and the diamine component. The solvent added if necessary may be the same as or different from the reaction solvent.
  • the polyimide precursor composition may contain an imidization catalyst, an organic phosphorus-containing compound, inorganic fine particles, etc., if necessary, in the case of thermal imidization.
  • the polyamic acid solution may contain a cyclization catalyst, a dehydrating agent, inorganic fine particles, etc. as necessary.
  • the imidization catalyst may be a substituted or unsubstituted nitrogen-containing heterocyclic compound, an N-oxide compound of the nitrogen-containing heterocyclic compound, a substituted or unsubstituted amino acid compound, an aromatic hydrocarbon compound having a hydroxyl group, or an aromatic heterocyclic compound.
  • cyclic compounds especially lower alkyl compounds such as 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole.
  • Group-substituted or aromatic group-substituted imidazole benzimidazole such as 5-methylbenzimidazole, isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4 Substituted pyridines such as -n-propylpyridine and the like can be preferably used.
  • the amount of the imidization catalyst used is preferably about 0.01 to 2 equivalents, particularly about 0.02 to 1 equivalent, relative to the amic acid unit of the polyamic acid.
  • organic phosphorus-containing compounds include monocaproyl phosphate, monooctyl phosphate, monolauryl phosphate, monomyristyl phosphate, monocetyl phosphate, monostearyl phosphate, and triethylene glycol monotridecyl.
  • Ether monophosphate tetraethylene glycol monolauryl ether monophosphate, diethylene glycol monostearyl ether monophosphate, dicaproyl phosphate, dioctyl phosphate, dicapryl phosphate, dilauryl phosphate, dimyristyl phosphate, Dicetyl phosphate, distearyl phosphate, diphosphoric acid ester of tetraethylene glycol mononeopentyl ether, diphosphoric acid ester of triethylene glycol monotridecyl ether, diphosphoric acid ester of tetraethylene glycol monolauryl ether, diphosphoric acid ester of diethylene glycol monostearyl ether Examples include phosphoric esters such as diphosphoric esters and amine salts of these phosphoric esters.
  • Amines include ammonia, monomethylamine, monoethylamine, monopropylamine, monobutylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, trimethylamine, triethylamine, tripropylamine, tributylamine, monoethanolamine, diethanolamine, triethanolamine. etc.
  • cyclization catalysts include aliphatic tertiary amines such as trimethylamine and triethylenediamine, aromatic tertiary amines such as dimethylaniline, and heterocyclic tertiary amines such as isoquinoline, pyridine, ⁇ -picoline, and ⁇ -picoline. Examples include.
  • dehydrating agent examples include aliphatic carboxylic anhydrides such as acetic anhydride, propionic anhydride, and butyric anhydride, and aromatic carboxylic acid anhydrides such as benzoic anhydride.
  • inorganic fine particles include inorganic oxide powders such as finely divided titanium dioxide powder, silicon dioxide (silica) powder, magnesium oxide powder, aluminum oxide (alumina) powder, and zinc oxide powder, finely divided silicon nitride powder, and titanium nitride powder.
  • inorganic nitride powders such as inorganic nitride powders, inorganic carbide powders such as silicon carbide powders, and inorganic salt powders such as finely divided calcium carbonate powders, calcium sulfate powders, and barium sulfate powders. Two or more types of these inorganic fine particles may be used in combination. In order to uniformly disperse these inorganic fine particles, per se known means can be applied.
  • the polyimide precursor compositions of the present invention can be used to produce single or multilayer polyimide films.
  • a polyimide film can be manufactured by a known method, and examples of manufacturing a single-layer polyimide film include the following methods (1) and (2).
  • (1) A method of casting or coating a polyimide precursor composition on a support and heating it on the support in that state to complete imidization and obtain a polyimide film (2)
  • Supporting the polyimide precursor composition A self-supporting film (gel film) is produced by casting or coating on a support body, heating it to produce a self-supporting film (gel film) in a semi-cured state or an earlier dry state, and peeling off the self-supporting film from the support.
  • the method (2) above is suitable for continuously manufacturing a long polyimide film.
  • the single-layer polyimide film produced using the polyimide precursor composition of the present invention has excellent heat resistance, and the glass transition temperature (Tg) is preferably 260°C or higher, more preferably 270°C or higher, and The temperature is more preferably 280°C or higher, even more preferably 290°C or higher.
  • the 5% weight loss temperature (Td5) is preferably 550°C or higher, more preferably 555°C or higher, and even more preferably 560°C or higher.
  • the dielectric loss tangent is preferably less than 0.0055, more preferably 0.0053 or less, even more preferably 0.0051 or less, even more preferably 0.0045 or less, and even more preferably at a frequency of 10 GHz and a humidity of 60% RH. It is preferably 0.0040 or less, even more preferably 0.0036 or less.
  • the coefficient of linear thermal expansion (CTE) of the single-layer polyimide film of the present invention is preferably 20 ppm/K or less, more preferably 16 ppm/K or less, even more preferably 13 ppm/K or less.
  • Examples of the method for producing a multilayer polyimide film include the following methods (3) and (4).
  • Two or more layers of polyimide precursor compositions are simultaneously cast or coated onto a support by, for example, a coextrusion method, and then heated (if necessary, a self-supporting film is produced once, and then a self-supporting film is produced).
  • a method of obtaining a polyimide film by completing imidization while holding the polyimide film in a tenter device).
  • the multilayer polyimide film (or polyimide layer) of the present invention has excellent heat resistance, and the solder heat resistance temperature is preferably 280°C or higher, more preferably 290°C or higher. Further, the dielectric loss tangent is preferably less than 0.0055, more preferably 0.0053 or less, even more preferably 0.0051 or less, even more preferably 0.0048 or less, and even more preferably at a frequency of 10 GHz and a humidity of 60% RH. Preferably it is 0.0045 or less.
  • the coefficient of linear thermal expansion (CTE) of the multilayer polyimide film of the present invention is preferably 25 ppm/K or less, more preferably 23 ppm/K or less, and even more preferably 20 ppm/K or less.
  • Examples of the form of the multilayer polyimide film include a two-layer structure of heat-fusible PI layer/heat-resistant PI layer, a three-layer structure of heat-fusible PI layer/heat-resistant PI layer/heat-fusible PI layer, etc. (PI stands for polyimide).
  • the polyimide precursor composition of the present invention is suitably used as a heat-resistant polyimide layer of a multilayer polyimide film.
  • the heat-fusible polyimide layer of the multilayer polyimide film is formed from a heat-fusible polyimide obtained from a tetracarboxylic acid component and a diamine component.
  • the heat-fusible polyimide contains 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride ( These two components are also collectively referred to as "biphenyltetracarboxylic dianhydride") and pyromellitic dianhydride. It is preferable to use 100 mol%.
  • the total amount of these tetracarboxylic acid components is preferably 70 mol% or more, more preferably 80 mol% or more, and even more preferably 90 mol% or more based on the total tetracarboxylic acid components.
  • pyromellitic dianhydride is the main component as the tetracarboxylic acid component
  • pyromellitic dianhydride is preferably 50 mol% or more and 90 mol% or less, more preferably 65 mol% or more, and 70 mol% or more. is more preferable, 85 mol% or less is more preferable, and even more preferably 80 mol% or less.
  • Biphenyltetracarboxylic dianhydride is preferably 10 mol% or more and 50 mol% or less, more preferably 15 mol% or more, even more preferably 20 mol% or more, more preferably 35 mol% or less, and still more preferably 30 mol% or less. preferable.
  • biphenyltetracarboxylic dianhydride is the main component as the tetracarboxylic acid component
  • biphenyltetracarboxylic dianhydride is preferably 50 mol% or more and 100 mol% or less, more preferably 70 mol% or more, and 90 mol%. % or more is more preferable.
  • the amount of pyromellitic dianhydride is preferably 0 mol% or more and 50 mol% or less, more preferably 30 mol% or less, and even more preferably 10 mol% or less.
  • the ratio of 3,3',4,4'-biphenyltetracarboxylic dianhydride is preferably 50 mol% or more and 100 mol% or less, and 70 mol%. % or more, more preferably 90 mol% or less, 2,3,3',4'-biphenyltetracarboxylic dianhydride is preferably 0 mol% or more and 50 mol% or less, It is more preferably 10 mol% or more, and more preferably 30 mol% or less.
  • tetracarboxylic acid component the above three tetracarboxylic acid components and other tetracarboxylic acid components can be used in combination.
  • Other tetracarboxylic acid components used in combination include, for example, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, bis(3,4-dicarboxyphenyl)ether dianhydride, bis(3,4 -dicarboxyphenyl) sulfide dianhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride, bis(3,4-dicarboxyphenyl)methane dianhydride, 2,2-bis(3,4- dicarboxyphenyl)propane dianhydride, and 1,4-hydroquinone dibenzoate-3,3',4,4'-tetracarboxylic dianhydride.
  • the tetracarboxylic acid components used together can be used alone or in combination of two or
  • a diamine represented by the following chemical formula (13) as a diamine component in an amount of 50 to 100 mol% of the total diamine component.
  • the total amount of these diamine components is preferably 70 mol% or more, more preferably 80 mol% or more, and even more preferably 90 mol% or more based on the total diamine components.
  • X represents O, CO, COO, OCO, C(CH 3 ) 2 , CH 2 , SO 2 , S, or a direct bond, even if it has two or more bonding modes Often m represents an integer from 0 to 4. ]
  • Examples of the diamine represented by the chemical formula (13) include 1,3-bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, and 1,3-bis(3-aminophenoxy). )benzene, 4,4'-bis(3-aminophenoxy)biphenyl, 4,4'-bis(4-aminophenoxy)biphenyl, 3,3'-diaminobenzophenone, bis[4-(3-aminophenoxy)phenyl ]Ketone, bis[4-(4-aminophenoxy)phenyl]ketone, bis[4-(3-aminophenoxy)phenyl]sulfide, bis[4-(4-aminophenoxy)phenyl]sulfide, bis[4-( 3-aminophenoxy)phenyl] sulfone, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4
  • the heat-fusible polyimide constituting the heat-fusible polyimide layer is amorphous, which improves the peel strength between the heat-fusible polyimide layer and the heat-resistant polyimide layer, and improves the peel strength between the heat-fusible polyimide layer and the heat-resistant polyimide layer. This is preferable from the viewpoint of improving the peel strength between the copper foil and the copper foil.
  • heat-fusible polyimide is amorphous, it means that it has a glass transition temperature but no observed melting point.
  • the glass transition temperature of the heat-fusible polyimide constituting the heat-fusible polyimide layer is preferably 250°C to 320°C, and 270°C. More preferably, the temperature is from °C to 300 °C. The method for measuring the glass transition temperature will be described in detail in the examples below.
  • a polyimide metal laminate in which a polyimide film (or layer) and a metal foil (or layer) are laminated can be manufactured.
  • Examples of the method for manufacturing the polyimide metal laminate include the following method.
  • a method of laminating a polyimide film and a base material e.g., metal foil
  • a base material e.g., metal foil
  • a polyimide precursor composition is applied onto a base material such as metal foil, and then dried and imidized.
  • adhesives include polyimide adhesives, epoxy-modified polyimide adhesives, phenol resin-modified epoxy resin adhesives, epoxy-modified acrylic resin adhesives, and epoxy-modified polyamide adhesives.
  • This heat-resistant adhesive layer itself can be provided by any method used in the electronic field, such as applying an adhesive solution to the polyimide film or molded body described above and drying it, or forming it separately. It may also be laminated with a film adhesive.
  • the base material may be a single metal or alloy, such as copper, aluminum, gold, silver, nickel, or stainless steel metal foil, or a metal plating layer (preferably a vapor-deposited metal base layer).
  • a metal plating layer preferably a vapor-deposited metal base layer.
  • Many known techniques such as a metal plating layer or a chemical metal plating layer can be applied, and preferred examples include rolled copper foil, electrolytic copper foil, and copper plating layer.
  • the thickness of the metal foil is not particularly limited, but is preferably 0.1 ⁇ m to 10 mm, more preferably 1 to 50 ⁇ m, particularly 5 to 18 ⁇ m.
  • metals used in the metallizing method include metals such as copper, nickel, chromium, manganese, aluminum, iron, molybdenum, cobalt, tungsten, vanadium, titanium, tantalum, alloys thereof, oxides of these metals, etc. Although metal carbides and the like can be used, the material is not particularly limited to these materials.
  • the thickness of the metal layer to be formed is, for example, 1 nm to 500 nm, and a metal plating layer of copper, tin, etc. is applied to the surface by a known wet plating method such as electroplating or electroless plating, for example, from 1 ⁇ m to 500 nm. It can be provided with a thickness of 40 ⁇ m.
  • the wet method (plating method) used in the above (ii) a known plating method can be used, and examples thereof include electrolytic plating and electroless plating, and these can be combined.
  • the metal used in the wet plating method is not particularly limited as long as it is a metal that can be wet plated.
  • the thickness of the metal layer formed by the wet plating method can be appropriately selected depending on the purpose of use, and is preferably in the range of 0.1 to 50 ⁇ m, more preferably 1 to 30 ⁇ m, in order to be suitable for practical use.
  • the number of metal layers formed by the wet plating method can be appropriately selected depending on the purpose of use, and may be one layer, two layers, or a multilayer of three or more layers.
  • wet plating methods include the Elf Seed process manufactured by Ebara Eudyrite Co., Ltd., and the method of performing electroless copper plating after applying the Catalyst Bond process, which is a surface treatment process manufactured by Nippon Mining & Metals Co., Ltd. Can be mentioned.
  • the polyimide film of the present invention has a small dielectric loss tangent in the high frequency range and has excellent heat resistance. (including both laminates in which a metal layer is directly formed on the substrate) can be suitably used for flexible wiring board applications. That is, a flexible wiring board can be manufactured by patterning the metal foil (or metal layer) of the polyimide metal laminate using a known method to form wiring.
  • the polyimide precursor composition, polyimide film, or polyimide metal laminate of the present invention can be used not only for flexible wiring boards but also for TAB tapes, COF tapes, flexible heaters, resistor substrates, insulating films, protective films, etc. can also be used.
  • Table 1 shows the structural formulas of the tetracarboxylic acid component and diamine component.
  • the dielectric loss tangent of the polyimide film was measured under the following conditions using a split cylinder resonator 10 GHz CR-710 (manufactured by EM Lab) as a measuring device. Measurement frequency: 10GHz Measurement conditions: temperature 25 ⁇ 2°C, humidity 60 ⁇ 2%RH Measurement sample: A sample left for 48 hours under the above measurement conditions was used.
  • Example 5 [Preparation of polyimide precursor composition] DMAc was added to a reaction vessel equipped with a stirrer and a nitrogen inlet tube, and PPD and BPTP were further added as diamine components. Subsequently, s-BPDA as a tetracarboxylic dianhydride component was added and reacted in an equimolar amount with the diamine component to form a polyimide precursor composition with a monomer concentration of 18% by mass and a solution viscosity of 1800 poise at 30°C. I got it. The molar ratio of PPD and BPTP was 80:20.
  • the polyimide precursor composition was cast onto a glass plate in the form of a thin film, heated in an oven at 120°C for 12 minutes, and peeled off from the glass plate to obtain a self-supporting film.
  • the four sides of this self-supporting film were fixed with pin tenters and gradually heated in a heating furnace from 150°C to 450°C (maximum heating temperature was 450°C) to remove the solvent and imidize to obtain a polyimide film. .
  • the thickness of the polyimide film is approximately 25 ⁇ m.
  • the evaluation results are shown in Table 2.
  • Examples 1 to 4, 6 to 19, Comparative Examples 1 to 6> A polyimide precursor composition was prepared in the same manner as in Example 5, except that the tetracarboxylic acid component and the diamine component were changed to the compounds and amounts (molar ratios) shown in Table 2. Thereafter, a polyimide film was produced in the same manner as in Example 5, and the physical properties of the film were evaluated. The evaluation results are shown in Table 2.
  • the present invention satisfies the properties of dielectric loss tangent and glass transition temperature (Tg) in a well-balanced manner, which are the properties required for a flexible copper-clad laminate board and its manufacture.
  • Tg dielectric loss tangent and glass transition temperature
  • Multilayer polyimide film> A multilayer polyimide film having a three-layer structure of heat-fusible PI layer/heat-resistant PI layer/heat-fusible PI layer was produced, using the polyimide film of the present invention as a heat-resistant PI layer (core layer).
  • the polyimide precursor composition for producing the core layer was prepared in the same manner as in Example 5, except that the tetracarboxylic acid component and the diamine component were changed to the compounds and amounts (molar ratios) shown in Table 3. Prepared.
  • a polyimide precursor composition for producing a core layer is applied onto the top surface of a smooth metal support so as to form a heat-fusible PI layer/heat-resistant PI layer/heat-fusible PI layer.
  • a polyimide precursor composition for forming a heat-adhesive layer was extruded and cast to form a thin film.
  • the thin film cast product was continuously dried with hot air at 140°C to form a self-supporting film.
  • Table 3 shows the results of dielectric loss tangent measurement and soldering heat resistance test for the manufactured multilayer polyimide film.
  • the polyimide film with the composition of the present invention is used as a heat-resistant PI layer (core layer), it has a small dielectric loss tangent and excellent solder heat resistance, so it is optimal for manufacturing flexible copper-clad laminates. I understand.
  • the polyimide film produced from the polyimide precursor composition of the present invention can be suitably used for flexible wiring board applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

一般式(I)で表される繰り返し単位を有するポリイミド前駆体を含有するフレキシブル配線基板用ポリイミド前駆体組成物が提供される。このポリイミド前駆体組成物を使用して、高周波領域での誘電正接が小さく、同時に耐熱性に優れるポリイミドフィルムを製造できる。式中、Y1の0モル%超30モル%未満は、式(1)で表される構造であり、式(1)中、Aは式(A)で表される構造、nは1~4、mは0~4、Bは炭素数1~6のアルキル基等、Uは-CO-O-または-O-CO-を表す。

Description

フレキシブル配線基板用ポリイミド前駆体組成物、ポリイミドフィルムおよびポリイミド金属積層体
 本発明は、フレキシブル配線基板用ポリイミドフィルム、より詳細には高周波帯域での回路基板に適したポリイミドフィルム、およびその製造のためのポリイミド前駆体組成物に関する。
 ポリイミドフィルムは、熱的性質及び電気的性質に優れているため、フレキシブル配線基板、TAB(Tape Automated Bonding)用テープ等の電子機器類の用途に広く使用されている。特に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物とp-フェニレンジアミンとをそれぞれテトラカルボン酸成分およびジアミン成分として、低線膨張係数で高弾性率のポリイミドが得られることが知られている。
 一方、近年スマートフォンなどの通信機器では、5GHz付近、さらには10GHz以上の高周波数帯域が利用されるようになって来ている。高周波信号伝送を伴うフレキシブル回路基板材料であるポリイミドには、誘電正接が小さいもの、即ちフレキシブル配線基板とした状態での伝送損失が小さい材料が求められる。
 特許文献1(特開2019-210342)には、誘電正接の小さなポリイミドフィルムとして、「芳香族酸二無水物成分として、少なくともp-フェニレンビス(トリメリット酸モノエステル酸無水物)または3,3’,4,4’-ビフェニルテトラカルボン酸二無水物のいずれか1つを含み、芳香族ジアミン成分として、少なくとも4,4’-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス(4-アミノフェニル)テレフタレート、または2,2’-ビス(トリフルオロメチル)ベンジジンのいずれか1つを含む熱可塑性ポリイミドフィルム」(請求項4参照)が提案されている。
 特許文献2(特開2021-74894)には、非熱可塑性ポリイミド樹脂層の少なくとも一方の面に熱可塑性ポリイミド樹脂層を有する多層ポリイミドフィルムにおいて、非熱可塑性ポリイミド樹脂層が、酸二無水物とジアミンの反応物であり、テトラカルボン酸二無水物中、特定のエステル系テトラカルボン酸二無水物を30モル%以上、および/またはジアミン中、特定のエステル系ジアミンを30モル%以上含む多層ポリイミドフィルムが記載されている(請求項1参照)。
 上記文献1、2に開示されたジアミン化合物のようなエステル系ジアミン化合物を用いたポリイミドフィルムは、その他にも特許文献3~5にも開示されている。
特開2019-210342号公報 特開2021-74894号公報 特開平11-199668号公報 国際公開第2008/056808号公報 特開2007-246709号公報
 しかし、フレキシブル配線基板用途のポリイミドフィルムには、誘電正接が小さいだけなく、その他にも種々の特性が求められる。例えば、フレキシブル銅張積層基板のポリイミドコア層(耐熱層)として使用されるポリイミドフィルムには高い耐熱性が求められる。特許文献1に開示されたものは熱可塑性ポリイミドフィルムであり、ポリイミドコア層用の耐熱性フィルムとして使用することはできない。特許文献2は多層ポリイミドフィルム中の非熱可塑性ポリイミド樹脂層を提供することを目的としているが、耐熱性は不十分である。特許文献3~5に開示されたポリイミドフィルムも同様に、耐熱性が不足している。
 本発明は、高周波領域での誘電正接が小さく、同時に耐熱性に優れ、且つフレキシブル配線基板の製造に適したポリイミドフィルムを製造できるフレキシブル配線基板用ポリイミド前駆体組成物およびポリイミドフィルムを提供することを目的とする。
 さらに本発明の異なる態様は、前記ポリイミド前駆体組成物から得られるポリイミドフィルムを基材とする、銅張積層基板のようなポリイミド金属積層体、およびそれを加工したフレキシブルプリント配線基板を提供することを目的とする。
 本出願の主要な開示事項をまとめると、以下のとおりである。
 1. 下記一般式(I)で表される繰り返し単位を有するポリイミド前駆体を含有することを特徴とするフレキシブル配線基板用ポリイミド前駆体組成物。
Figure JPOXMLDOC01-appb-C000005
 
{一般式(I)中、Xは4価の脂肪族基または芳香族基であり、Yは2価の脂肪族基または芳香族基であり、RおよびRは互いに独立して、水素原子、炭素数1~6のアルキル基または炭素数3~9のアルキルシリル基であり、但し、Yの0モル%超30モル%未満は、式(1):
Figure JPOXMLDOC01-appb-C000006
で表される構造であり、式(1)中、Aは式(A):
Figure JPOXMLDOC01-appb-C000007
で表される構造を表し、nは1~4の整数、mは0~4の整数、およびBは炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ハロゲン基および炭素数1~6のフルオロアルキル基よりなる群から選択される1種を表し、Uは独立して-CO-O-または-O-CO-を表す。}
 2. 前記Aが、1,4-フェニレン基および4,4’-ビフェニレン基からなる群より選ばれる構造である、上記項1に記載のポリイミド前駆体組成物。
 3. 前記Xの50モル%以上が、下式(21)で表される基である、上記項1または2に記載のポリイミド前駆体組成物。
Figure JPOXMLDOC01-appb-C000008
 4. 上記項1~3のいずれか1項に記載のポリイミド前駆体組成物から得られる、フレキシブル配線基板用ポリイミドフィルム。
 5. 上記項4に記載のポリイミドフィルムと金属箔または金属層が積層されたポリイミド金属積層体。
 6. 上記項5に記載のポリイミド金属積層体の金属箔または金属層がパターニングされて配線が形成されたフレキシブル配線基板。
 本発明によれば、高周波領域での誘電正接が小さく、同時に耐熱性に優れ、且つフレキシブル配線基板の製造に適したポリイミドフィルムを製造できるフレキシブル配線基板用ポリイミド前駆体組成物およびこの前駆体組成物から得られるポリイミドフィルムを提供することができる。
 さらに本発明の異なる態様によれば、前記ポリイミド前駆体組成物から得られるポリイミドフィルムを基材とする、銅張積層基板のようなポリイミド金属積層体、およびそれを加工したフレキシブルプリント配線板を提供することができる。
 <<ポリイミド前駆体組成物>>
 フレキシブル配線基板用ポリイミド前駆体組成物は、一般式(I)で表される繰り返し単位を有するポリイミド前駆体を含有し、流通する形態では溶媒を含有し、前記ポリイミド前駆体は溶媒に溶解している。
 ポリイミド前駆体は、下記一般式(I):
Figure JPOXMLDOC01-appb-C000009
(一般式I中、Xは4価の脂肪族基または芳香族基であり、Yは2価の脂肪族基または芳香族基であり、RおよびRは互いに独立して、水素原子、炭素数1~6のアルキル基または炭素数3~9のアルキルシリル基である。)
で表される繰り返し単位を有する。特に好ましくは、RおよびRが水素原子であるポリアミック酸である。
 ポリイミド前駆体について、一般式(I)中のXおよびYを与えるモノマー(テトラカルボン酸成分、ジアミン成分、その他成分)により説明し、続いて製造方法を説明する。
 本明細書において、テトラカルボン酸成分は、ポリイミドを製造する原料として使用されるテトラカルボン酸、テトラカルボン酸二無水物、その他テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等のテトラカルボン酸誘導体を含む。特に限定されるわけではないが、製造上、テトラカルボン酸二無水物を使用することが簡便であり、以下の説明ではテトラカルボン酸成分としてテトラカルボン酸二無水物を用いた例を説明する。また、ジアミン成分は、ポリイミドを製造する原料として使用される、アミノ基(-NH)を2個有するジアミン化合物である。
<Xおよびテトラカルボン酸成分>
 Xは脂肪族基または芳香族基のどちらでもよいが、芳香族基が好ましい。Xは、好ましくは50モル%以上、より好ましくは70モル%以上、さらにより好ましくは90モル%以上(100モル%も極めて好ましい)が芳香族基である。
 芳香族基であるXとして次の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(式中、Zは直接結合、または、下記の2価の基: 
Figure JPOXMLDOC01-appb-C000011
のいずれかである。ただし、式中のZは、2価の有機基、Z、Zはでそれぞれ独立にアミド結合、エステル結合、カルボニル結合であり、Zは芳香環を含む有機基である。)
 Zとしては、具体的には、炭素数2~24の脂肪族炭化水素基、炭素数6~24の芳香族炭化水素基が挙げられる。
 Zとしては、具体的には、炭素数6~24の芳香族炭化水素基が挙げられる。
 Xが芳香族環を有する4価の基である一般式(I)の繰り返し単位を与えるテトラカルボン酸成分としては、特に限定されないが、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、p-ターフェニルテトラカルボン酸二無水物、m-ターフェニルテトラカルボン酸二無水物、1,4-フェニレンビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキシレート)などのハロゲン無置換の芳香族テトラカルボン酸二無水物;4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、5,5’-[2,2,2-トリフルオロ-1-[3-(トリフルオロメチル)フェニル]エチリデン]ジフタル酸無水物、5,5’-[2,2,3,3,3-ペンタフルオロ-1-(トリフルオロメチル)ピロピリデン]ジフタル酸無水物、1H-ジフロ[3,4-b:3’,4’-i]キサンテン-1,3,7,9(11H)-テトロン、5,5’-オキシビス[4,6,7-トリフルオロ-ピロメリット酸無水物]、3,6-ビス(トリフルオロメチル)ピロメリット酸二無水物、4-(トリフルオロメチル)ピロメリット酸二無水物、1,4-ジフルオロピロメリット酸二無水物、1,4-ビス(3,4-ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン二無水物などのハロゲン置換されたテトラカルボン酸二無水物などを好適に挙げることができる。これらは1種または2種以上使用してもよい。
 これらの中でも、特に3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、4,4’-オキシジフタル酸二無水物、1,4-フェニレンビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキシレート)、ベンゾフェノンテトラカルボン酸二無水物、およびp-ターフェニルテトラカルボン酸二無水物が好ましい。
 本発明の好ましい実施形態において、Xとしてs-BPDAに由来する構造を、少なくとも50モル%以上、より好ましくは60モル%以上、さらにより好ましくは70モル%以上、最も好ましくは80モル%以上(100モル%を含む)の量で含む。残りのXとしては、芳香族基が好ましく、例えば2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、4,4’-オキシジフタル酸二無水物、または1,4-フェニレンビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキシレート)に由来する基から選ばれることが好ましい。
 脂肪族基であるXとしては、鎖状脂肪族基であっても、脂環式基であってもよいが、脂環式基が好ましい。脂環式基であるXとして、炭素数が4~40の脂環構造を有する4価の基が好ましく、少なくとも一つの脂肪族4~12員環、より好ましくは脂肪族4員環または脂肪族6員環を有することがより好ましい。好ましい脂肪族4員環または脂肪族6員環を有する4価の基としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式中、R31~R38は、それぞれ独立に直接結合、または、2価の有機基である。R41~R47、およびR71~R73は、それぞれ独立に式:-CH-、-CH=CH-、-CHCH-、-O-、-S-で表される基よりなる群から選択される1種を示す。R48は芳香環もしくは脂環構造を含む有機基である。)
 R31、R32、R33、R34、R35、R36、R37、R38としては、具体的には、直接結合、または、炭素数1~6の脂肪族炭化水素基、または、酸素原子(-O-)、硫黄原子(-S-)、カルボニル結合、エステル結合、アミド結合が挙げられる。
 R48として芳香環を含む有機基としては、例えば、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式中、Wは直接結合、または、2価の有機基であり、n11~n13は、それぞれ独立に0~4の整数を表し、R51、R52、R53は、それぞれ独立に炭素数1~6のアルキル基、ハロゲン基、水酸基、カルボキシル基、またはトリフルオロメチル基である。)
 Wとしては、具体的には、直接結合、下記の式(5)で表される2価の基、下記の式(6)で表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000014
(式(6)中のR61~R68は、それぞれ独立に直接結合または前記式(5)で表される2価の基のいずれかを表す。)
 脂環構造を有する4価の基としては、下記のものが特に好ましい。
Figure JPOXMLDOC01-appb-C000015
 脂環式基であるXを与えるテトラカルボン酸成分としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸二無水物、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸二無水物、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸二無水物、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸無水物)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸無水物)、オクタヒドロペンタレン-1,3,4,6-テトラカルボン酸二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸二無水物、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸二無水物、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸二無水物、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸二無水物、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸二無水物、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン5,5’’,6,6’’-テトラカルボン酸二無水物、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸二無水物、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸二無水物、デカヒドロ-1,4-エタノ-5,8-メタノナフタレン-2,3,6,7-テトラカルボン酸二無水物、テトラデカヒドロ-1,4:5,8:9,10-トリメタノアントラセン-2,3,6,7-テトラカルボン酸二無水物等が挙げられる。これらは、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 鎖状脂肪族基であるXを与えるテトラカルボン酸成分としては、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物等炭素数4~10程度の直鎖または分岐テトラカルボン酸二無水物が挙げられる。
 Yとしては、少なくとも式(1):
Figure JPOXMLDOC01-appb-C000016
で表される基を含む。Aは式(A):
Figure JPOXMLDOC01-appb-C000017
(nは1~4の整数、mは0~4の整数、およびBは炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ハロゲン基および炭素数1~6のフルオロアルキル基よりなる群から選択される1種を表す。)
で表される構造を表す。nは、好ましくは1~3、より好ましくは1または2である。mは0または1が好ましい。Aとしては、例えば1,4-フェニレン、1,3-フェニレン、4,4’-ビフェニレン、3,4’-ビフェニレン、3,3’-ビフェニレン、4,4”-p-テルフェニレン等が挙げられる。特にパラ位で結合している1,4-フェニレン、4,4’-ビフェニレン、4,4”-p-テルフェニレン等が好ましい。
 Uは、好ましくは一方が-CO-O-を表し、他方が-O-CO-を表す。即ち、式(1)の好ましい構造は、式(1-1)または式(1-2)で表される。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 式(1)中のUと結合手との位置関係(Uと式(I)のNとの関係)は、オルト位、メタ位又はパラ位のいずれでもよいが、好ましくはパラ位である。
 式(1)の基を与えるジアミン化合物としては、(ビス(4-アミノフェニル)テレフタレート(略号BPTP)、ビス(4-アミノフェニル)ビフェニル-4,4’-ジカルボキシレート(略号APBP)、[4-(4-アミノベンゾイル)オキシフェニル]4-アミノベンゾエート(略号ABHQ)等が挙げられる。
 Y中で式(1)の基の割合は、0モル%超30モル%未満、より好ましくは10モル%以上、さらにより好ましくは15モル%以上であり、好ましくは25モル%未満である。このような範囲であると、低誘電正接と耐熱性がバランス良く達成されたポリイミドフィルムが得られる。
 式(1)以外のYとしては、脂肪族基または芳香族基のどちらでもよいが、芳香族基が好ましい。
 芳香族基であるYとして、例えば下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000020
(式中、Wは直接結合、または、2価の有機基であり、n11~n13は、それぞれ独立に0~4の整数を表し、R51、R52、R53は、それぞれ独立に炭素数1~6のアルキル基、ハロゲン基、水酸基、カルボキシル基、またはトリフルオロメチル基である。)
 Wとしては、具体的には、直接結合、下記の式(5)で表される2価の基、下記の式(6)で表される2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000021
(式(6)中のR61~R68は、それぞれ独立に直接結合または前記式(5)で表される2価の基のいずれかを表す。)
 芳香族環を有する2価の基であるYを与えるジアミン成分としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、2,4-トルエンジアミン、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、ビス(4-アミノ-3-カルボキシフェニル)メタン、ベンジジン、3,3’-ジアミノ-ビフェニル、4,4”-ジアミノ-p-テルフェニル、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、m-トリジン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェノキシ-4-ジアミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1’-ビフェニル]-4,4’-ジカルボキシレート、[1,1’-ビフェニル]-4,4’-ジイルビス(4-アミノベンゾエート)、4,4’-オキシジアニリン(別名4,4’-ジアミノジフェニルエーテル)、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス((アミノフェノキシ)フェニル)プロパン、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,4-ビス(4-アミノアニリノ)-6-アミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-メチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-エチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジンが挙げられる。Yがフッ素原子を含有する芳香族環を有する2価の基である一般式(I)の繰り返し単位を与えるジアミン成分としては、例えば、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンが挙げられる。加えて好ましいジアミン化合物として、9,9-ビス(4-アミノフェニル)フルオレン、4,4’-(((9H-フルオレン-9,9-ジイル)ビス([1,1’-ビフェニル]-5,2-ジイル))ビス(オキシ))ジアミン、[1,1’:4’,1”-ターフェニル]-4,4”-ジアミン、4,4’-([1,1’-ビナフタレン]-2,2’-ジイルビス(オキシ))ジアミンが挙げられる。ジアミン成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 脂環構造を有する基であるYとして、例えば下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000022
(式中、V、Vは、それぞれ独立に直接結合、または、2価の有機基であり、n21~n26は、それぞれ独立に0~4の整数を表し、R81~R86は、それぞれ独立に炭素数1~6のアルキル基、ハロゲン基、水酸基、カルボキシル基、またはトリフルオロメチル基であり、R91、R92、R93は、それぞれ独立に 式:-CH-、-CH=CH-、-CHCH-、-O-、-S-で表される基よりなる群から選択される1種である。)
 V、Vとしては、具体的には、直接結合および前記の式(5)で表される2価の基が挙げられる。
 脂環構造を有するYを与えるジアミン成分としては、例えば、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,3-ジアミノシクロブタン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、ジアミノビシクロヘプタン、ジアミノメチルビシクロヘプタン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロへキシル)メタン、ビス(アミノシクロヘキシル)イソプロピリデン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダンが挙げられる。ジアミン成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 式(1)以外のYは、耐熱性が高いポリイミドを与えるものが好ましく選択され、芳香族基が好ましく、ジアミン化合物で記載すると、p-フェニレンジアミン、4,4”-ジアミノ-p-テルフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン等が挙げられる。
 特に、p-フェニレンジアミンおよび/または4,4”-ジアミノ-p-テルフェニルが、全ジアミン成分に対して40モル%以上100モル%未満、好ましくは50モル%以上100モル%未満である。
 前述のとおり、式(1)の基を与えるジアミン化合物の割合は、0モル%超30モル%未満、より好ましくは10モル%以上、さらにより好ましくは15モル%以上であり、好ましくは25モル%以下、より好ましくは25モル%未満である。従って、全体で100モル%になるように、p-フェニレンジアミンおよび/または4,4”-ジアミノ-p-テルフェニル、並びにその他のジアミン化合物として例えば2,2’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、1,3-ビス(4-アミノフェノキシ)ベンゼン等が使用される。
 フレキシブル配線基板用ポリイミド前駆体組成物は、テトラカルボン酸成分とジアミン成分とを溶媒中で反応させて得られる。この反応は、テトラカルボン酸成分(テトラカルボン酸二無水物)とジアミン成分とを略等モル用い、例えば100℃以下、好ましくは80℃以下の比較的低温で行なわれる。限定するものではないが、通常、反応温度は25℃~100℃、好ましくは25℃~80℃、より好ましくは30℃~80℃であり、反応時間は例えば0.1~72時間程度、好ましくは2~60時間程度である。反応は、空気雰囲気下でも行うことができるが、通常は不活性ガス雰囲気下、好ましくは窒素ガス雰囲気下で好適に行われる。
 また、テトラカルボン酸成分(テトラカルボン酸二無水物)とジアミン成分とを略等モルとは、具体的にはモル比[テトラカルボン酸成分/ジアミン成分]で0.90~1.10程度、好ましくは0.95~1.05程度である。
 ポリイミド前駆体組成物を調製する際に使用する溶媒は、水や、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド等の非プロトン性溶媒が好ましく、原料モノマー成分と生成するポリイミド前駆体が溶解すれば、どんな種類の溶媒であっても問題はなく使用できるので、特にその構造には限定されない。溶媒として、水や、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、N-エチル-2-ピロリドン等のアミド溶媒、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトン等の環状エステル溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート溶媒、トリエチレングリコール等のグリコール系溶媒、m-クレゾール、p-クレゾール、3-クロロフェノール、4-クロロフェノール等のフェノール系溶媒、アセトフェノン、1,3-ジメチル-2-イミダゾリジノン、スルホラン、ジメチルスルホキシドなどが好ましく採用される。さらに、その他の一般的な有機溶剤、即ちフェノール、o-クレゾール、酢酸ブチル、酢酸エチル、酢酸イソブチル、プロピレングリコールメチルアセテート、エチルセロソルブ、ブチルセロソルブ、2-メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン、ジブチルエーテル、ジエチレングリコールジメチルエーテル、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、シクロへキサノン、メチルエチルケトン、アセトン、ブタノール、エタノール、キシレン、トルエン、クロルベンゼン、ターペン、ミネラルスピリット、石油ナフサ系溶媒なども使用できる。なお、溶媒は、複数種を組み合わせて使用することもできる。
 ポリイミド前駆体組成物の製造では、特に限定されないが、ポリイミド前駆体の固形分濃度(ポリイミド換算質量濃度)が例えば5~45質量%となるような濃度でモノマーおよび溶媒を仕込んで反応を行う。
 ポリイミド前駆体組成物の溶液粘度は、使用する目的(塗布、流延など)や製造する目的に応じて適宜選択すればよい。例えば、ポリアミック酸(ポリイミド前駆体)溶液は、30℃で測定した回転粘度が、約0.1~5000ポイズ、特に0.5~2000ポイズ、さらに好ましくは1~2000ポイズ程度のものであることが、このポリアミック酸溶液を取り扱う作業性の面から好ましい。
 ポリイミド前駆体組成物は、テトラカルボン酸成分とジアミン成分との反応液をそのままポリイミド前駆体組成物として使用してもよく、必要により濃縮したり、溶媒を加えて希釈したりしてもよい。従って、ポリイミド前駆体組成物に含有される溶媒は、テトラカルボン酸成分とジアミン成分との反応に使用した溶媒であってよい。必要により加える溶媒は、反応溶媒と同一でも異なるものでもよい。
 ポリイミド前駆体組成物は、熱イミド化であれば必要に応じて、イミド化触媒、有機リン含有化合物、無機微粒子などを含んでいてもよい。ポリアミック酸溶液には、化学イミド化であれば必要に応じて、環化触媒および脱水剤、無機微粒子などを含んでいてもよい。
 イミド化触媒としては、置換もしくは非置換の含窒素複素環化合物、該含窒素複素環化合物のN-オキシド化合物、置換もしくは非置換のアミノ酸化合物、ヒドロキシル基を有する芳香族炭化水素化合物または芳香族複素環状化合物が挙げられ、特に1,2-ジメチルイミダゾール、N-メチルイミダゾール、N-ベンジル-2-メチルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾールなどの低級アルキル基置換または芳香族基置換イミダゾール、5-メチルベンズイミダゾールなどのベンズイミダゾール、イソキノリン、3,5-ジメチルピリジン、3,4-ジメチルピリジン、2,5-ジメチルピリジン、2,4-ジメチルピリジン、4-n-プロピルピリジンなどの置換ピリジンなどを好適に使用することができる。イミド化触媒の使用量は、ポリアミド酸のアミド酸単位に対して0.01~2倍当量、特に0.02~1倍当量程度であることが好ましい。イミド化触媒を使用することによって、得られるポリイミドフィルムの物性、特に伸びや端裂抵抗が向上することがある。
 有機リン含有化合物としては、例えば、モノカプロイルリン酸エステル、モノオクチルリン酸エステル、モノラウリルリン酸エステル、モノミリスチルリン酸エステル、モノセチルリン酸エステル、モノステアリルリン酸エステル、トリエチレングリコールモノトリデシルエーテルのモノリン酸エステル、テトラエチレングリコールモノラウリルエーテルのモノリン酸エステル、ジエチレングリコールモノステアリルエーテルのモノリン酸エステル、ジカプロイルリン酸エステル、ジオクチルリン酸エステル、ジカプリルリン酸エステル、ジラウリルリン酸エステル、ジミリスチルリン酸エステル、ジセチルリン酸エステル、ジステアリルリン酸エステル、テトラエチレングリコールモノネオペンチルエーテルのジリン酸エステル、トリエチレングリコールモノトリデシルエーテルのジリン酸エステル、テトラエチレングリコールモノラウリルエーテルのジリン酸エステル、ジエチレングリコールモノステアリルエーテルのジリン酸エステル等のリン酸エステルや、これらリン酸エステルのアミン塩が挙げられる。アミンとしてはアンモニア、モノメチルアミン、モノエチルアミン、モノプロピルアミン、モノブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 環化触媒としては、トリメチルアミン、トリエチレンジアミンなどの脂肪族第3級アミン、ジメチルアニリンなどの芳香族第3級アミン、およびイソキノリン、ピリジン、α-ピコリン、β-ピコリンなどの複素環第3級アミンなどが挙げられる。
 脱水剤としては、無水酢酸、無水プロピオン酸、無水酪酸などの脂肪族カルボン酸無水物、および無水安息香酸などの芳香族カルボン酸無水物などが挙げられる。
 無機微粒子としては、微粒子状の二酸化チタン粉末、二酸化ケイ素(シリカ)粉末、酸化マグネシウム粉末、酸化アルミニウム(アルミナ)粉末、酸化亜鉛粉末などの無機酸化物粉末、微粒子状の窒化ケイ素粉末、窒化チタン粉末などの無機窒化物粉末、炭化ケイ素粉末などの無機炭化物粉末、および微粒子状の炭酸カルシウム粉末、硫酸カルシウム粉末、硫酸バリウム粉末などの無機塩粉末を挙げることができる。これらの無機微粒子は二種以上を組合せて使用してもよい。これらの無機微粒子を均一に分散させるために、それ自体公知の手段を適用することができる。
 <<ポリイミドフィルムの製造>>
 本発明のポリイミド前駆体組成物を使用して、単層または多層ポリイミドフィルムを製造することができる。
 ポリイミドフィルムは、公知の方法で製造することができ、例えば単層のポリイミドフィルムの製造としては、次の(1)、(2)の方法などが挙げられる。
(1)ポリイミド前駆体組成物を支持体に流延又は塗布し、その状態にて支持体上で加熱してイミド化を完了してポリイミドフィルムを得る方法
(2)ポリイミド前駆体組成物を支持体に流延又は塗布し、加熱して半硬化状態またはそれ以前の乾燥状態にある自己支持性フィルム(ゲルフィルム)を製造し、支持体から自己支持性フィルムを引き剥がし、自己支持性フィルムをテンター装置などで端を保持しながら加熱して、脱溶媒、イミド化を進めてポリイミドフィルムを得る方法
 上記(2)の方法は長尺状のポリイミドフィルムを連続的に製造するのに適している。
 本発明のポリイミド前駆体組成物を使用して製造された単層ポリイミドフィルムは、耐熱性に優れており、ガラス転移温度(Tg)は、好ましくは260℃以上、より好ましくは270℃以上、さらにより好ましくは280℃以上、さらにより好ましくは290℃以上である。5%重量減少温度(Td5)は、好ましくは550℃以上、より好ましくは555℃以上、さらに好ましくは560℃以上である。また、誘電正接は、周波数10GHz、湿度60%RHにおいて、好ましくは0.0055未満、より好ましくは0.0053以下、さらにより好ましくは0.0051以下、さらにより好ましくは0.0045以下、さらにより好ましくは0.0040以下、さらにより好ましくは0.0036以下である。
 本発明の単層ポリイミドフィルムの線熱膨張係数(CTE)は、好ましくは20ppm/K以下、より好ましくは16ppm/K以下、さらにより好ましくは13ppm/K以下である。
 多層ポリイミドフィルムの製造方法としては、次の(3)、(4)の方法などが挙げられる。
(3)ポリイミド前駆体組成物を支持体に流延又は塗布し、自己支持性フィルムを製造し、自己支持性フィルムの片面または両面に2層目以上のポリイミド前駆体組成物を流延又は塗布し、その後加熱して、(必要により一旦、自己支持性フィルムを製造し、その後自己支持性フィルムをテンター装置で保持しながら)イミド化を完了してポリイミドフィルムを得る方法。
(4)2層以上のポリイミド前駆体組成物を、例えば共押出法によって同時に支持体に流延又は塗布し、その後加熱して、(必要により一旦、自己支持性フィルムを製造し、その後自己支持性フィルムをテンター装置で保持しながら)イミド化を完了してポリイミドフィルムを得る方法。
 本発明の多層ポリイミドフィルム(またはポリイミド層)は、耐熱性に優れており、半田耐熱温度は、好ましくは280℃以上、より好ましくは290℃以上である。また、誘電正接は、周波数10GHz、湿度60%RHにおいて、好ましくは0.0055未満、より好ましくは0.0053以下、さらにより好ましくは0.0051以下、さらにより好ましくは0.0048以下、さらにより好ましくは0.0045以下である。
 本発明の多層ポリイミドフィルムの線熱膨張係数(CTE)は、好ましくは25ppm/K以下、より好ましくは23ppm/K以下、さらにより好ましくは20ppm/K以下である。
 多層ポリイミドフィルムの形態としては、熱融着性PI層/耐熱性PI層の2層構造、熱融着性PI層/耐熱性PI層/熱融着性PI層の3層構造などが挙げられる(PIはポリイミドの略)。本発明のポリイミド前駆体組成物は、多層ポリイミドフィルムの耐熱性ポリイミド層として好適に使用される。
<<熱融着性ポリイミド層(熱融着性PI層)>>
 多層ポリイミドフィルムの熱融着性ポリイミド層は、テトラカルボン酸成分とジアミン成分とから得られる熱融着性ポリイミドで形成される。
 前記熱融着性ポリイミドは、テトラカルボン酸成分として、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物(これら2成分を総称して「ビフェニルテトラカルボン酸二無水物」ともいう。)およびピロメリット酸二無水物から選ばれる少なくとも1種のテトラカルボン酸二無水物を、全テトラカルボン酸成分中50~100モル%用いることが好ましい。これらのテトラカルボン酸成分の合計量は、全テトラカルボン酸成分中70モル%以上であることが好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることがより好ましい。
 テトラカルボン酸成分として、ピロメリット酸二無水物が主成分である場合、ピロメリット酸二無水物が50モル%以上、90モル%以下が好ましく、65モル%以上がより好ましく、70モル%以上がさらに好ましく、85モル%以下がより好ましく、80モル%以下がさらに好ましい。ビフェニルテトラカルボン酸二無水物が10モル%以上、50モル%以下が好ましく、15モル%以上がより好ましく、20モル%以上がさらに好ましく、35モル%以下がより好ましく、30モル%以下がさらに好ましい。
 テトラカルボン酸成分として、ビフェニルテトラカルボン酸二無水物が主成分である場合、ビフェニルテトラカルボン酸二無水物が50モル%以上、100モル%以下が好ましく、70モル%以上がより好ましく、90モル%以上がさらに好ましい。ピロメリット酸二無水物が0モル%以上、50モル%以下が好ましく、30モル%以下がより好ましく、10モル%以下がさらに好ましい。
 ビフェニルテトラカルボン酸二無水物を100モル%とした場合、その比率は3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が50モル%以上、100モル%以下が好ましく、70モル%以上であることがより好ましく、90モル%以下であることがより好ましく、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物が0モル%以上、50モル%以下が好ましく、10モル%以上であることがより好ましく、30モル%以下であることがより好ましい。
 テトラカルボン酸成分としては、前記3つのテトラカルボン酸成分と、他のテトラカルボン酸成分とを併用することができる。併用する他のテトラカルボン酸成分としては、例えば3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルフィド二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、および1,4-ヒドロキノンジベンゾエート-3,3’,4,4’-テトラカルボン酸二無水物などが挙げられる。併用するテトラカルボン酸成分は、単独または2種以上を組み合わせて使用することができる。
 また、前記熱融着性ポリイミドは、ジアミン成分として、下記化学式(13)で表されるジアミンを、全ジアミン成分中50~100モル%用いることが好ましい。これらのジアミン成分の合計量は、全ジアミン成分中70モル%以上であることが好ましく、80モル%以上であることがさらに好ましく、90モル%以上であることがより好ましい。
Figure JPOXMLDOC01-appb-C000023
[式(13)において、XはO、CO、COO、OCO、C(CH、CH、SO、S、または直接結合を示し、2種以上の結合様式を有していてもよく、mは0から4の整数を示す。]
 前記化学式(13)で表されるジアミンとして、例えば、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、4,4’-ビス(3-アミノフェノキシ)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、3,3’-ジアミノベンゾフェノン、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、ビス(4-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)ビフェニル-4,4’-ジカルボキシレート、[4-(4-アミノベンゾイル)オキシフェニル]4-アミノベンゾエートなどが挙げられる。ジアミン成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。
 熱融着性ポリイミド層を構成する熱融着性ポリイミドは非結晶性であることが、該熱融着性ポリイミド層と耐熱性ポリイミド層との剥離強度の向上、および該熱融着性ポリイミド層と銅箔との剥離強度の向上の観点から好ましい。熱融着性ポリイミドが非結晶性であるとは、ガラス転移温度を有するが、融点は観測されないことを言う。非結晶性の熱融着性ポリイミドから構成される熱融着性ポリイミド層を製造するには、例えば、テトラカルボン酸成分またはジアミン成分として、エーテル結合を有する化合物を用いるなどの方法を採用すればよい。
 また、得られる熱融着性ポリイミドフィルムの耐熱性を向上させる観点から、熱融着性ポリイミド層を構成する熱融着性ポリイミドのガラス転移温度は250℃~320℃であることが好ましく、270℃~300℃であることがさらに好ましい。ガラス転移温度の測定方法は、後述する実施例において詳述する。
 <<ポリイミド金属積層体>>
 本発明のポリイミド前駆体組成物またはポリイミドフィルムを使用して、ポリイミドフィルム(または層)と金属箔(または層)が積層されたポリイミド金属積層体を製造することができる。ポリイミド金属積層体の製造方法としては、次の方法などが挙げられる。
(i)ポリイミドフィルムと基材(例えば、金属箔)とを、直接または接着剤を介して、加圧または加熱加圧して積層する方法、
(ii)ポリイミドフィルム上に乾式法(真空蒸着、スパッタリング等のメタライジング)および/または湿式法(めっき)により金属層を直接形成する方法、
(iii)金属箔等の基材上に、ポリイミド前駆体組成物を塗布し、乾燥・イミド化(する方法。
 上記(i)において、ポリイミドフィルムと基材(例えば、金属箔)とを直接積層する場合、熱融着性PI層/耐熱性PI層の2層構造、熱融着性PI層/耐熱性PI層/熱融着性PI層の3層構造などの表面に熱融着層を有する多層ポリイミドフィルムが好適に使用される。
 上記(i)において、ポリイミドフィルムと基材(例えば、金属箔)とを接着剤を介して積層する場合、接着剤としては、電子分野で使用されている耐熱性接着剤であれば特に制限はなく、例えばポリイミド系接着剤、エポキシ変性ポリイミド系接着剤、フェノール樹脂変性エポキシ樹脂接着剤、エポキシ変性アクリル樹脂系接着剤、エポキシ変性ポリアミド系接着剤などが挙げられる。この耐熱性接着剤層はそれ自体電子分野で実施されている任意の方法が設けることができ、例えば前記のポリイミドフィルム、成形体に接着剤溶液を塗布・乾燥してもよく、別途に形成したフィルム状接着剤と張り合わせてもよい。
 上記(i)、(iii)において、基材としては、単一金属又は合金、例えば、銅、アルミニウム、金、銀、ニッケル、ステンレスの金属箔、金属めっき層(好適には蒸着金属下地層-金属めっき層あるいは化学金属めっき層等の多くの公知技術が適用できる。)などを挙げることができ、好適には圧延銅箔、電解銅箔、銅めっき層などがあげられる。金属箔の厚さは特に制限はないが、0.1μm~10mm、さらに1~50μm、特に5~18μmが好ましい。
 上記(ii)において使用する乾式法(メタライジング法)としては、真空蒸着、スパッタリング、イオンプレーティング、電子ビーム等の公知の方法を用いることができる。メタライジング法に用いる金属としては、銅、ニッケル、クロム、マンガン、アルミニウム、鉄、モリブデン、コバルト、タングステン、バナジウム、チタン、タンタル等の金属、又はそれらの合金、或いはそれらの金属の酸化物、それらの金属の炭化物等を用いることができるが、特にこれらの材料に限定されない。形成される金属層の厚さは、例えば1nm~500nmの厚さであり、この表面に、電解めっき又は無電解めっきなどの公知の湿式めっき法により銅、錫などの金属めっき層を例えば1μ~40μmの厚さに設けることができる。
 上記(ii)において使用する湿式法(めっき法)としては、公知のめっき法を用いることができ、電解めっき、無電解めっきを挙げることができ、これらを組み合わせることができる。湿式めっき法に用いる金属としては、湿式めっき可能な金属であれば何ら制限されることはない。
 湿式めっき法より形成される金属層の厚さは、使用する目的に応じて適宜選択でき、好ましくは0.1~50μm、さらに好ましくは1~30μmの範囲が、実用に適するために好ましい。湿式めっき法により形成される金属層の層数は、使用する目的に応じて適宜選択でき、1層でも、2層でも、3層以上の多層でもよい。
 湿式めっき法として、例えば荏原ユージライト株式会社製エルフシードプロセスや、日鉱金属株式会社の表面処理プロセスであるキャタリストボンドプロセスを施した後に、無電解銅めっきを行う方法などの従来公知のものが挙げられる。
 本発明のポリイミドフィルムは、高周波領域での誘電正接が小さく、同時に耐熱性に優れるため、本発明のポリイミド金属積層体(接着剤層を介してフィルムと金属層が積層された積層体、フィルム上に直接金属層が形成された積層体の両方を含む)は、フレキシブル配線基板用途に好適に使用できる。即ち、ポリイミド金属積層体の金属箔(または金属層)を公知の方法でパターニングして配線を形成することで、フレキシブル配線基板を製造できる。
 本発明のポリイミド前駆体組成物、ポリイミドフィルムまたはポリイミド金属積層体は、フレキシブル配線基板用途以外にも、TAB用テープ、COF用テープ、フレキシブルヒーター、抵抗器用基板、絶縁膜、保護膜等の用途にも使用できる。
 以下、この発明を実施例及び比較例によりさらに詳細に説明する。
 以下、次の略記を使用する。
 <テトラカルボン酸類>
 s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
 PMDA:ピロメリット酸二無水物
 ODPA:オキシジフタル酸二無水物(別名ビス(3,4-ジカルボキシフェニル)エーテル二無水物)
 TAHQ:1,4-フェニレンビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボキシレート)(別名p-フェニレンビス(トリメリテート無水物)
 <ジアミン類>
 PPD:p-フェニレンジアミン
 DATP:4,4”-ジアミノ-p-テルフェニル
 m-TB:2,2’-ジメチル-4,4’-ジアミノビフェニル(別名m-トリジン)
 BPTP:ビス(4-アミノフェニル)テレフタレート
 APBP:ビス(4-アミノフェニル)ビフェニル-4,4’-ジカルボキシレート
 BAPB:4,4’-ビス(4-アミノフェノキシ)ビフェニル
 TPE-R:1,3-ビス(4-アミノフェノキシ)ベンゼン
 BAPP:2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン
 <その他>
 DMAc:N,N-ジメチルアセトアミド
 表1にテトラカルボン酸成分とジアミン成分の構造式を記す。
Figure JPOXMLDOC01-appb-T000024
 <ポリイミドフィルムの評価>
 [ガラス転移温度(Tg)]
 TA INSTRUMENTS社製 RSA G2型 動的粘弾性測定装置を用い、昇温速度10℃/min、周波数1Hzの条件でポリイミドフィルムの動的粘弾性測定を行い、tanδのピーク温度をガラス転移温度とした。
 [誘電正接]
 測定装置として、スプリットシリンダ共振器 10GHz CR-710(EMラボ社製)を用い、ポリイミドフィルムの誘電正接を下記条件で測定した。
 測定周波数:10GHz
 測定条件:温度25±2℃、湿度60±2%RH
 測定試料:前記測定条件下で、48時間放置した試料を使用した。
 [5%重量減少温度(Td5)]
 膜厚約25μmのポリイミドフィルムを試験片とし、TA INSTRUMENTS社製熱量計測定装置(Q5000IR)を用い、窒素気流中、昇温速度10℃/分で30℃から700℃まで昇温した。得られた重量曲線から、150℃の重量を100%として5%重量減少温度を求めた。
 [半田耐熱性試験]
 多層ポリイミドフィルムの両面に銅箔(福田金属箔粉工業株式会社製、CF-T49A-DS-HD2、厚み12μm)を重ね合わせ、温度360℃、余熱2分、プレス圧力3MPa、プレス時間2分で熱圧着することにより、多層ポリイミドフィルムの両面に銅箔が積層された銅張積層体を得た。この銅張積層板の片面の一部ともう片面の全面にレジストを印刷し、30℃で20~30分エッチング液に浸漬することで、片面の金属層が一部エッチングされ、もう片面は全面に銅箔が残った積層板を得た。得られた積層板を80℃で30分乾燥を行い、85℃-85%RHの環境下で24時間以上調湿した。このサンプルを種々の温度の半田浴へ60秒間フロートし、サンプルの発泡の有無を確認した。発泡が確認されない最高温度を半田耐熱温度とした。
<実施例5>
 [ポリイミド前駆体組成物の調製]
 攪拌機、窒素導入管を備えた反応容器にDMAcを加え、さらに、ジアミン成分としてPPDとBPTPを加えた。続いて、テトラカルボン酸二無水物成分としてs-BPDAを、ジアミン成分と等モルとなるよう加えて反応させ、モノマー濃度が18質量%、30℃における溶液粘度が1800ポイズのポリイミド前駆体組成物を得た。PPDとBPTPのモル比は80:20であった。
 [ポリイミドフィルムの製造]
 ポリイミド前駆体組成物をガラス板上に薄膜状にキャストし、オーブンを用いて120℃で12分加熱し、ガラス板から剥離して自己支持性フィルムを得た。この自己支持性フィルムの四辺をピンテンターで固定し、加熱炉で、150℃から450℃まで徐々に加熱し(最高加熱温度は450℃)、溶媒の除去とイミド化を行い、ポリイミドフィルムを得た。
 ポリイミドフィルムの膜厚は約25μmである。評価結果を表2に示す。
<実施例1~4、6~19、比較例1~6>
 実施例5において、テトラカルボン酸成分、ジアミン成分を、表2に示す化合物および量(モル比)に変更した以外は、実施例5と同様にしてポリイミド前駆体組成物を調製した。その後、実施例5と同様にしてポリイミドフィルムを製造してフィルム物性を評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000025
 表2から、BPTPの添加によって、誘電正接の低下効果が確認される。BPTPの添加量をジアミン成分の30モル%以上の範囲にすると未添加の比較例と比べてガラス転移温度(Tg)の低下が大きくなる。またAPBPの添加によっても、誘電正接の低下効果が確認される。
 以上のとおり、本発明によれば、フレキシブル銅張積層基板およびその製造に求められる特性である、誘電正接、およびガラス転移温度(Tg)の特性をバランスよく満足することが示された。
<多層ポリイミドフィルム>
 本発明のポリイミドフィルムを耐熱性PI層(コア層)とする、熱融着性PI層/耐熱性PI層/熱融着性PI層の3層構造の多層ポリイミドフィルムを製造した。コア層製造用のポリイミド前駆体組成物を、実施例5において、テトラカルボン酸成分、ジアミン成分を、表3に示す化合物および量(モル比)に変更した以外は、実施例5と同様にして調製した。
[熱融着性ポリイミドを与えるポリイミド前駆体組成物の調製]
 攪拌機、窒素導入管を備えた反応容器に、DMAcを加え、さらに、ジアミン成分としてBAPPを加えた。続いて、テトラカルボン酸二無水物成分としてs-BPDAとPMDAを、ジアミン成分とほぼ等モルとなるよう加えて反応させ、モノマー濃度が18質量%、30℃における溶液粘度が800ポイズのポリイミド前駆体組成物を得た。s-BPDAとPMDAのモル比は30:70であった。
[ポリイミドフィルムの製造]
 三層押し出しダイスから、平滑な金属製支持体の上面に、熱融着性PI層/耐熱性PI層/熱融着性PI層となるように、コア層製造用のポリイミド前駆体組成物と熱融着層形成用のポリイミド前駆体組成物を押し出して流延し、薄膜状にした。薄膜状の流延物を140℃の熱風で連続的に乾燥し、自己支持性フィルムを形成した。自己支持性フィルムを支持体から剥離した後、加熱炉で、200℃から390℃まで徐々に加熱し(最高加熱温度は390℃)、溶媒の除去とイミド化を行い、厚み50μm(5.7μm/38.6μm/5.7μm)の三層構造の多層ポリイミドフィルムを製造した。
 製造された多層ポリイミドフィルムについて、誘電正接測定および半田耐熱性試験結果を表3に示す。
Figure JPOXMLDOC01-appb-T000026
 この結果から、本発明の組成のポリイミドフィルムを耐熱性PI層(コア層)として用いた場合でも、誘電正接が小さくかつ半田耐熱性に優れるため、フレキシブル銅張積層基板の製造に最適であることが判る。
 本発明のポリイミド前駆体組成物から製造されたポリイミドフィルムは、フレキシブル配線基板用途に好適に使用できる。

Claims (6)

  1.  下記一般式(I)で表される繰り返し単位を有するポリイミド前駆体を含有することを特徴とするフレキシブル配線基板用ポリイミド前駆体組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    {一般式(I)中、Xは4価の脂肪族基または芳香族基であり、Yは2価の脂肪族基または芳香族基であり、RおよびRは互いに独立して、水素原子、炭素数1~6のアルキル基または炭素数3~9のアルキルシリル基であり、但し、Yの0モル%超30モル%未満は、式(1):
    Figure JPOXMLDOC01-appb-C000002
    で表される構造であり、式(1)中、Aは式(A):
    Figure JPOXMLDOC01-appb-C000003
    で表される構造を表し、nは1~4の整数、mは0~4の整数、およびBは炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、ハロゲン基および炭素数1~6のフルオロアルキル基よりなる群から選択される1種を表し、Uは独立して-CO-O-または-O-CO-を表す。}
  2.  前記Aが、1,4-フェニレン基および4,4’-ビフェニレン基からなる群より選ばれる構造である、請求項1に記載のポリイミド前駆体組成物。
  3.  前記Xの50モル%以上が、下式(21)で表される基である、請求項1~3のいずれか1項に記載のポリイミド前駆体組成物。
    Figure JPOXMLDOC01-appb-C000004
  4.  請求項1~3のいずれか1項に記載のポリイミド前駆体組成物から得られる、フレキシブル配線基板用ポリイミドフィルム。
  5.  請求項4に記載のポリイミドフィルムと金属箔または金属層が積層されたポリイミド金属積層体。
  6.  請求項5に記載のポリイミド金属積層体の金属箔または金属層がパターニングされて配線が形成されたフレキシブル配線基板。
     
PCT/JP2023/012801 2022-03-29 2023-03-29 フレキシブル配線基板用ポリイミド前駆体組成物、ポリイミドフィルムおよびポリイミド金属積層体 WO2023190687A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022053006 2022-03-29
JP2022-053006 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023190687A1 true WO2023190687A1 (ja) 2023-10-05

Family

ID=88202054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012801 WO2023190687A1 (ja) 2022-03-29 2023-03-29 フレキシブル配線基板用ポリイミド前駆体組成物、ポリイミドフィルムおよびポリイミド金属積層体

Country Status (2)

Country Link
TW (1) TW202346424A (ja)
WO (1) WO2023190687A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157597A (ja) * 1994-12-09 1996-06-18 Shin Etsu Chem Co Ltd ポリイミド共重合体及びその製造方法
WO2008056808A1 (fr) * 2006-11-10 2008-05-15 Ube Industries, Ltd. Polyimide, composé diamine et leur procédé de production
JP2009299009A (ja) * 2008-05-16 2009-12-24 Asahi Kasei E-Materials Corp ポリアミド酸ワニス組成物、ポリイミド樹脂、および金属−ポリイミド複合体
JP2011237766A (ja) * 2010-04-15 2011-11-24 Jsr Corp 液晶配向膜形成用組成物、液晶配向膜及び液晶表示素子
US20190085131A1 (en) * 2017-09-19 2019-03-21 Zhen Ding Technology Co., Ltd. Low dielectric polyimide composition, polyimide, polyimide film and copper clad laminate using the same
JP2020204022A (ja) * 2019-06-17 2020-12-24 大日本印刷株式会社 ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムの製造方法、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置
JP2022518984A (ja) * 2019-02-01 2022-03-18 エルジー・ケム・リミテッド ポリイミド前駆体組成物およびそれから製造されたポリイミドフィルム、ディスプレイ装置用基板、および光学装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157597A (ja) * 1994-12-09 1996-06-18 Shin Etsu Chem Co Ltd ポリイミド共重合体及びその製造方法
WO2008056808A1 (fr) * 2006-11-10 2008-05-15 Ube Industries, Ltd. Polyimide, composé diamine et leur procédé de production
JP2009299009A (ja) * 2008-05-16 2009-12-24 Asahi Kasei E-Materials Corp ポリアミド酸ワニス組成物、ポリイミド樹脂、および金属−ポリイミド複合体
JP2011237766A (ja) * 2010-04-15 2011-11-24 Jsr Corp 液晶配向膜形成用組成物、液晶配向膜及び液晶表示素子
US20190085131A1 (en) * 2017-09-19 2019-03-21 Zhen Ding Technology Co., Ltd. Low dielectric polyimide composition, polyimide, polyimide film and copper clad laminate using the same
JP2022518984A (ja) * 2019-02-01 2022-03-18 エルジー・ケム・リミテッド ポリイミド前駆体組成物およびそれから製造されたポリイミドフィルム、ディスプレイ装置用基板、および光学装置
JP2020204022A (ja) * 2019-06-17 2020-12-24 大日本印刷株式会社 ポリイミドフィルム、ポリイミドワニス、ポリイミドフィルムの製造方法、積層体、ディスプレイ用部材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置

Also Published As

Publication number Publication date
TW202346424A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
TWI716524B (zh) 覆銅積層體及印刷線路板
JP7469383B2 (ja) 金属張積層板及び回路基板
JP5598619B2 (ja) ポリイミド金属積層体の製造方法
JP6073789B2 (ja) ポリイミド前駆体、ポリイミド、ポリイミドフィルム、およびこれらの製造に使用されるトリアジン化合物の製造方法
US9833973B2 (en) Metal laminate with polyimide resin and method for manufacturing the same
JP6559027B2 (ja) ポリアミド酸、ポリイミド、樹脂フィルム及び金属張積層板
US20100203324A1 (en) Laminate of heat resistant film and metal foil, and method for production thereof
JP2017165909A (ja) ポリイミド、樹脂フィルム及び金属張積層板
KR20200036770A (ko) 금속 피복 적층판 및 회로 기판
JP5139986B2 (ja) ポリイミド系樹脂組成物及びその製造方法、ならびに金属積層体
WO2009139086A1 (ja) ポリエステルイミド前駆体及びポリエステルイミド
CN111385967A (zh) 金属包覆层叠板及电路基板
JP7469537B2 (ja) ポリイミドの製造方法
KR20190038383A (ko) 폴리이미드 필름, 금속장 적층판 및 회로 기판
EP2145910A1 (en) Linear polyimide precursor having asymmetric structure, polyimide, and their production methods
JPH10130594A (ja) 耐熱性ボンディングシート
JP2004358961A (ja) 金属張り積層体
WO2023190687A1 (ja) フレキシブル配線基板用ポリイミド前駆体組成物、ポリイミドフィルムおよびポリイミド金属積層体
JP2008149549A (ja) 金属積層体の製造方法
WO2023190749A1 (ja) フレキシブル配線基板用ポリイミド前駆体組成物、ポリイミドフィルムおよびポリイミド金属積層体
JP7101352B2 (ja) ポリイミド、ポリイミドフィルム、ポリイミド金属積層体及び、ポリアミド酸
KR20210038331A (ko) 폴리이미드 필름, 금속 피복 적층판 및 회로 기판
JP7492702B2 (ja) ポリイミド、ポリイミドフィルム、ポリアミド酸、多層ポリイミドフィルム及びその製造方法、ポリイミド積層体
JP5570793B2 (ja) リン含有テトラカルボン酸二無水物及び難燃性ポリイミド
TW202237765A (zh) 電路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780696

Country of ref document: EP

Kind code of ref document: A1