WO2023189222A1 - Electrode foil, capacitor element and solid electrolytic capacitor - Google Patents

Electrode foil, capacitor element and solid electrolytic capacitor Download PDF

Info

Publication number
WO2023189222A1
WO2023189222A1 PCT/JP2023/008199 JP2023008199W WO2023189222A1 WO 2023189222 A1 WO2023189222 A1 WO 2023189222A1 JP 2023008199 W JP2023008199 W JP 2023008199W WO 2023189222 A1 WO2023189222 A1 WO 2023189222A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode foil
recesses
surface layer
layer portion
layer
Prior art date
Application number
PCT/JP2023/008199
Other languages
French (fr)
Japanese (ja)
Inventor
尚大 平尾
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023189222A1 publication Critical patent/WO2023189222A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to an electrode foil used in a flat film capacitor element, a capacitor element using this electrode foil, and a solid electrolytic capacitor.
  • Patent Document 1 describes a solid electrolytic capacitor.
  • the solid electrolytic capacitor described in Patent Document 1 includes a plurality of capacitor elements.
  • Each capacitor element includes an electrode foil, a dielectric layer, and a solid electrolyte layer.
  • the surface layer of the electrode foil is porous.
  • a dielectric layer is formed on the surface of the porous body.
  • the solid electrolyte layer is formed on the surface of the electrode foil where the dielectric layer is formed.
  • Such a solid electrolyte layer is formed by immersing an electrode foil with a dielectric layer in a liquid (electrolyte solution) that is the basis of the solid electrolyte layer. Specifically, the electrode foil is lifted from the top of a tank containing an electrolyte solution. The electrode foil is immersed into an electrolyte solution and pulled up from the electrolyte solution. As a result, the electrolyte solution adheres to the surface of the electrode foil. By drying the electrolyte solution, a solid electrolyte layer is formed on the surface of the electrode foil.
  • an object of the present invention is to provide an electrode foil in which a solid electrolyte layer can be easily formed and the adhesion to the solid electrolyte layer can be increased.
  • the electrode foil of the present invention includes a main body and a dielectric layer.
  • the main body includes a first surface layer portion and a second surface layer portion each of which is a porous body, and a core portion between the first surface layer portion and the second surface layer portion in the thickness direction, and a flat membrane containing a valve metal. It is in a state of A dielectric layer is formed on each surface of the first surface layer portion and the second surface layer portion.
  • the main body has a recess that is recessed in the thickness direction.
  • the solid electrolyte layer can be easily formed on the electrode foil, and the adhesion of the solid electrolyte layer to the surface of the electrode foil can be increased.
  • FIG. 1(A) is a plan view of the electrode foil according to the first embodiment
  • FIG. 1(B) is a side sectional view of the electrode foil according to the first embodiment
  • FIG. 1(C) is a plan view of the electrode foil according to the first embodiment. It is an external perspective view of the electrode foil concerning a 1st embodiment.
  • FIG. 2 is an enlarged side cross-sectional view of the electrode foil according to the first embodiment.
  • FIGS. 3A and 3B are greatly enlarged side cross-sectional views of the electrode foil according to the first embodiment.
  • 4(A) is a plan view of the capacitor element according to the first embodiment
  • FIG. 4(B) is a side sectional view of the capacitor element according to the first embodiment
  • FIG. 4(C) is a plan view of the capacitor element according to the first embodiment.
  • FIG. 1 is an external perspective view of a capacitor element according to a first embodiment.
  • FIG. 5 is a greatly enlarged side cross-sectional view of the capacitor element according to the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of a method for manufacturing a capacitor element according to the first embodiment.
  • FIG. 7 is a side view showing an example of the process of forming a plurality of recesses in an electrode foil.
  • FIG. 8 is a side sectional view of the electrode foil according to the second embodiment.
  • 9(A) and 9(B) are plan views of the electrode foil according to the third embodiment.
  • 10(A) and 10(B) are plan views of the electrode foil according to the fourth embodiment.
  • FIG. 11(A) and 11(B) are enlarged side cross-sectional views of the electrode foil according to the fifth embodiment.
  • 12(A) and 12(B) are enlarged side cross-sectional views of the electrode foil according to the sixth embodiment.
  • FIG. 13 is an enlarged side cross-sectional view of the electrode foil according to the seventh embodiment.
  • FIG. 14 is a side sectional view of a solid electrolytic capacitor according to an eighth embodiment.
  • FIG. 15 is a side sectional view of a solid electrolytic capacitor according to a ninth embodiment.
  • FIG. 1(A) is a plan view of the electrode foil according to the first embodiment
  • FIG. 1(B) is a side sectional view of the electrode foil according to the first embodiment
  • FIG. 1(C) is a plan view of the electrode foil according to the first embodiment. It is an external perspective view of the electrode foil concerning a 1st embodiment.
  • FIG. 2 is an enlarged side cross-sectional view of the electrode foil according to the first embodiment.
  • FIGS. 3A and 3B are greatly enlarged side cross-sectional views of the electrode foil according to the first embodiment. 1(A), FIG. 1(B), FIG. 1(C), FIG. 2, and FIG. 3(A) show the electrode foil in a state where no dielectric layer is formed, and FIG.
  • FIG. 3(B) shows the electrode foil in a state where no dielectric layer is formed. , shows an electrode foil with a dielectric layer formed thereon.
  • the electrode foil 111 (corresponding to the main body of the electrode foil) is a flat film with a predetermined length (dimension in the DirL direction), It has a predetermined width (dimension in the DirW direction) and a predetermined thickness (dimension in the DirD direction).
  • the length, width, and thickness are determined according to the specifications of the capacitor element (details will be described later) formed by the electrode foil 111.
  • the electrode foil 111 has a first surface F1 and a second surface F2 that are parallel to the length direction (DirL direction) and width direction (DirW direction) (perpendicular to the thickness direction (DirD direction)).
  • the electrode foil 111 has a first end 111EG1 and a second end 111EG2 in the length direction (DirL direction). Note that the length direction (DirL direction) corresponds to the first direction of the present invention, and the width direction (DirW direction) corresponds to the second direction of the present invention.
  • the electrode foil 111 is made of, for example, a single metal such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, or silicon, or an alloy containing these metals. Note that the electrode foil 111 is preferably made of aluminum or an aluminum alloy. The electrode foil 111 may be any valve metal that exhibits a so-called valve action.
  • the electrode foil 111 is composed of a plurality of layers in the thickness direction (DirD direction). Specifically, the electrode foil 111 includes a core portion 111BM, a first surface portion 111P1, and a second surface portion 111P2. The first surface layer portion 111P1, the core portion 111BM, and the second surface layer portion 111P2 are arranged in this order (first surface layer portion 111P1, core portion 111BM, and 2 surface layer portions 111P2).
  • the core portion 111BM is not a porous body, and the first surface layer portion 111P1 and the second surface layer portion 111P2 are porous bodies.
  • the thickness of the core portion 111BM is preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the first surface layer portion 111P1 and the second surface layer portion 111P2 is preferably 5 ⁇ m or more and 200 ⁇ m or less, respectively.
  • the porous body is formed by communicating cavities having a diameter (or the maximum dimension that determines the volume) of 0.5 ⁇ m or less, for example, and is open to the first surface F1 and the second surface F2.
  • the maximum dimension of the area portion is 0.5 ⁇ m or less.
  • a plurality of recesses 191 and a plurality of recesses 192 are formed in the electrode foil 111.
  • the plurality of recesses 191 are recessed from the first surface F1 in the thickness direction of the electrode foil 111.
  • the plurality of recesses 191 have a shape that is perpendicular to the length direction (DirL direction) and extends in the width direction (DirW direction).
  • the plurality of recesses 191 reach both ends of the electrode foil 111 in the width direction.
  • the plurality of recesses 191 are formed at predetermined intervals in the length direction (DirL) direction.
  • the plurality of recesses 192 are recessed from the second surface F2 in the thickness direction of the electrode foil 111.
  • the plurality of recesses 192 have a shape that is perpendicular to the length direction (DirL direction) and extends in the width direction (DirW direction).
  • the plurality of recesses 192 reach both ends of the electrode foil 111 in the width direction.
  • the plurality of recesses 192 are formed at predetermined intervals in the length direction (DirL) direction.
  • the positions of the plurality of recesses 191 and the plurality of recesses 192 in the length direction (DirL direction) are different.
  • the depth of the plurality of recesses 191 is smaller than the thickness of the first surface layer portion 111P1. That is, the plurality of recesses 191 do not reach the core portion 111BM.
  • the depth of the plurality of recesses 192 is smaller than the thickness of the second surface layer portion 111P2. That is, the plurality of recesses 192 do not reach the core portion 111BM.
  • the opening size in the length direction (DirL direction) of the plurality of recesses 191 and the plurality of recesses 192 is, for example, 3 ⁇ m or more. That is, the opening dimension of the plurality of recesses 191 and the plurality of recesses 192 in the length direction (DirL direction) is 60 times or more the maximum dimension of the opening area portion to the surface of the porous body. Note that this size relationship is just an example, and if the opening dimensions of the recesses 191 and 192 are larger than the maximum dimension of the opening area portion to the surface of the porous body, the viscosity of the electrolyte solution that forms the basis of the solid electrolyte layer will increase. It can be set as appropriate based on the characteristics such as.
  • a dielectric layer 112 is formed on the electrode foil 111.
  • the dielectric layer 112 covers the first surface F1 and the second surface F2 of the electrode foil 111. More specifically, the dielectric layer 112 covers the surface of the porous body constituting the first surface layer portion 111P1 and the surface of the porous body constituting the second surface layer portion 111P2 in the electrode foil 111.
  • the dielectric layer 112 is preferably made of an oxide film of the electrode foil 111.
  • the dielectric layer 112 is formed by oxidizing it in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or their sodium or ammonium salts.
  • the thickness of the dielectric layer 112 is preferably 10 nm or more and 100 nm or less.
  • FIG. 4(A) is a plan view of the capacitor element according to the first embodiment
  • FIG. 4(B) is a side sectional view of the capacitor element according to the first embodiment
  • FIG. 4(C) is a plan view of the capacitor element according to the first embodiment.
  • FIG. 1 is an external perspective view of a capacitor element according to a first embodiment.
  • FIG. 5 is a greatly enlarged side cross-sectional view of the capacitor element according to the first embodiment.
  • the capacitor element 11 includes an electrode foil 111, a dielectric layer 112, and a solid electrolyte layer 113.
  • the electrode foil 111 and the dielectric layer 112 are as described above, and the explanation here will be appropriately omitted except where further explanation is necessary.
  • the solid electrolyte layer 113 covers the outer surface of the dielectric layer 112 (the surface facing the surface that contacts the electrode foil 111).
  • the solid electrolyte layer 113 also fills a large number of holes covered with the dielectric layer 112.
  • the solid electrolyte layer 113 is formed in a predetermined area of the electrode foil 111 on the second end 111EG2 side that does not reach the first end 111EG1. At this time, the solid electrolyte layer 113 is formed to include locations where the plurality of recesses 191 and the plurality of recesses 192 are formed. As shown in FIG. 5, the solid electrolyte layer 113 is formed so as to fit into the plurality of recesses 191 and the plurality of recesses 192 as well.
  • the solid electrolyte layer 113 includes, for example, an inner layer and an outer layer.
  • the inner layer is a layer on the dielectric layer 112 side of the solid electrolyte layer 113, and is made of, for example, a conductive polymer having a backbone of pyrroles, thiophenes, anilines, etc., or a conductive polymer having a backbone of thiophenes. It may be a layer of PEDOT:PSS which is realized by PEDOT [poly(3,4-ethylenedioxythiophene)] or the like and is composited with polystyrene sulfonic acid (PSS) as a dopant.
  • PEDOT poly(3,4-ethylenedioxythiophene)
  • the inner layer is formed by coating the surface of the dielectric layer 112 with poly(3,4- It is formed by a method of forming a polymer film such as ethylenedioxythiophene), or a method of applying a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric part and drying it. .
  • the outer layer is a layer formed outside the inner layer.
  • the outer layer is a layer formed to cover the entire dielectric layer 112 after forming an inner layer that fills fine recesses in the porous portion.
  • the thickness of the outer layer is preferably 2 ⁇ m or more and 20 ⁇ m or less.
  • the outer layer is preferably a carbon layer, a graphene layer, or a silver layer formed by applying a conductive paste such as carbon paste, graphene paste, or silver paste. It may be a composite layer in which a silver layer is provided on a carbon layer or a graphene layer, or a mixed layer in which carbon paste, graphene paste, and silver paste are mixed.
  • a conductive adhesive layer may be provided as a layer further after the outer layer.
  • a material constituting the conductive adhesive layer for example, a mixture of an insulating resin such as an epoxy resin or a phenol resin and conductive particles such as carbon or silver may be used.
  • the capacitor element 11 becomes a flat film solid electrolytic capacitor.
  • electrode foil 111 corresponds to an anode
  • solid electrolyte layer 113 corresponds to a cathode.
  • FIG. 6 is a flowchart illustrating an example of a method for manufacturing a capacitor element according to the first embodiment.
  • FIG. 7 is a side view showing an example of the process of forming a plurality of recesses in an electrode foil.
  • a plurality of recesses 191 and a plurality of recesses 192 are formed on the surface of the electrode foil 111 (S11). For example, as shown in FIG. 7, embossing is performed by applying a roll machine having protrusions to the first surface F1 and second surface F2 of the electrode foil 111.
  • the electrode foil 111 is made of, for example, aluminum foil with a purity of 99.9% or more.
  • a region near the surface (surface layer portion) including the first surface F1 and second surface F2 of the electrode foil 111 is made porous (S12).
  • the porosity is made, for example, by etching the surface.
  • a dielectric layer 112 is formed (S13).
  • the dielectric layer 112 is formed by oxidizing the surface of the electrode foil 111 and the surface of the porous body.
  • the solid electrolyte layer 113 is attached to the surface of the electrode foil 111 and the surface of the porous body by dipping treatment (S14).
  • an electrolyte solution that will become the basis of the solid electrolyte layer 113 is placed in a tank.
  • the electrode foil 111 is hung on the top of the tank. At this time, the electrode foil 111 is hung so that the second end 111EG2 is on the lower side. In this state, the electrode foil 111 is immersed in the electrolyte solution. After immersion for a predetermined time, the electrode foil 111 is pulled out from the electrolyte solution. After drawing out the electrolyte solution, leave it for a predetermined period of time to dry the electrolyte solution.
  • the electrode foil 111 has a plurality of recesses 191 and a plurality of recesses 192. Therefore, when the electrode foil 111 is immersed in an electrolyte solution, the electrolyte solution enters the plurality of recesses 191 and the plurality of recesses 192.
  • the electrolyte solution becomes stuck in the plurality of recesses 191 and the plurality of recesses 192, and is unlikely to fall down below the electrode foil 111 (on the second end 111EG2 side). . Therefore, the solid electrolyte layer 113 tends to remain on the electrode foil 111 and is easier to form than a structure (conventional structure) that does not have the plurality of recesses 191 and the plurality of recesses 192.
  • the bonding surfaces between the solid electrolyte layer 113 and the electrode foil 111 do not become one roughly flat surface, but instead become multiple surfaces that are not parallel to each other. Thereby, the adhesive strength between the solid electrolyte layer 113 and the electrode foil 111 can be increased.
  • the plurality of recesses 191 and the plurality of recesses 192 extend over the entire width of the electrode foil 111.
  • the solid electrolyte layer 113 easily adheres to the entire electrode foil 111 in the width direction. Therefore, the solid electrolyte layer 113 can be formed to have a substantially uniform thickness throughout the width direction.
  • the plurality of recesses 191 and the plurality of recesses 192 are formed at different positions in the length direction. Thereby, even if grooves are formed on both the first surface F1 and the second surface F2, it is possible to suppress the formation of a significantly thin portion. Thereby, breakage of the electrode foil 111 can be suppressed, and the reliability of the electrode foil 111 and the capacitor element 11 is improved.
  • the shape, number, and total volume of the plurality of recesses 191 and the shape, number, and total volume of the plurality of recesses 192 may be different. However, if the shape, number, and total area of the plurality of recesses 191 are the same as the shape, number, and total area of the plurality of recesses 192, the shape, thickness, and thickness of the solid electrolyte layer 113 on the first surface F1 side It is easy to make the shape and thickness of the solid electrolyte layer 113 on the second surface F2 side the same.
  • FIG. 8 is a side sectional view of the electrode foil according to the second embodiment.
  • the electrode foil 111 according to the second embodiment differs from the electrode foil 111 according to the first embodiment in the formation positions of the plurality of recesses 191 and the plurality of recesses 192.
  • the other configurations of the electrode foil 111 according to the second embodiment are the same as those of the electrode foil 111 according to the first embodiment, and a description of the similar parts will be omitted.
  • the plurality of recesses 191 and the plurality of recesses 192 are formed at positions that overlap in the length direction.
  • FIG. 9(A) and 9(B) are plan views of the electrode foil according to the third embodiment.
  • the formation patterns of the recesses are different between FIG. 9(A) and FIG. 9(B).
  • the electrode foil 111 according to the third embodiment has a plurality of recesses 191A instead of the plurality of recesses 191 of the electrode foil 111 according to the first embodiment. They differ in that they are formed.
  • the other configurations of the electrode foil 111 according to the third embodiment are the same as those of the electrode foil 111 according to the first embodiment, and a description of the similar parts will be omitted.
  • the length of the plurality of recesses 191A in the width direction is shorter than the length of the electrode foil 111 in the width direction.
  • the plurality of recesses 191A have a shape recessed from the first surface F1.
  • the plurality of recesses 191A are two-dimensionally arranged in the length direction and width direction.
  • the formation positions of the plurality of recesses 191A in the width direction are the same.
  • the formation positions of the plurality of recesses 191A in the width direction are different in the rows of the plurality of recesses 191A that are adjacent to each other in the length direction.
  • the interval between the plurality of recesses 191A adjacent to each other in the width direction is shorter than the interval between the plurality of recesses 191A adjacent to each other in the length direction.
  • the recessed portion 191A is represented in a rectangular shape when viewed from above in FIGS. 9(A) and 9(B).
  • FIGS. 9A and 9B schematically represent the position of the recess 191A, and the shape of the recess 191A is not limited to this.
  • the shape of the recessed portion 191A may be a circular shape, an elliptical shape, or a rounded rectangular shape when viewed from above.
  • the same shape can be used.
  • FIG. 10(A) and 10(B) are plan views of the electrode foil according to the fourth embodiment.
  • the formation patterns of the recesses are different between FIG. 10(A) and FIG. 10(B).
  • the electrode foil 111 according to the fourth embodiment has a plurality of recesses 191B instead of the plurality of recesses 191 of the electrode foil 111 according to the third embodiment. They differ in that they are formed.
  • the other configuration of the electrode foil 111 according to the fourth embodiment is the same as the electrode foil 111 according to the third embodiment, and the explanation of the similar parts will be omitted.
  • a plurality of rows of recesses 191B are formed on the first surface F1 of the electrode foil 111, which are arranged along the width direction of the electrode foil 111. .
  • the plurality of rows are formed spaced apart in the length direction.
  • the interval PL1 between the plurality of rows on the first end 111EG1 side is narrower than the interval PL2 between the plurality of rows on the second end 111EG2 side.
  • the interval PL1 between the plurality of rows on the first end 111EG1 side is wider than the interval PL2 between the plurality of rows on the second end 111EG2 side.
  • the same effects as in the above embodiment can be achieved. Further, with this configuration, the amount of the solid electrolyte layer 113 attached can be adjusted for each region in the length direction.
  • FIG. 11(A) and 11(B) are enlarged side cross-sectional views of the electrode foil according to the fifth embodiment.
  • the shapes of the recesses are different between FIG. 11(A) and FIG. 11(B).
  • the electrode foil 111 according to the fifth embodiment has a plurality of recesses 191C formed in place of the plurality of recesses 191 of the electrode foil 111 according to the first embodiment. It's different.
  • the other configurations of the electrode foil 111 according to the fifth embodiment are the same as those of the electrode foil 111 according to the first embodiment, and explanations of similar parts will be omitted.
  • the plurality of recesses 191C have different shapes from the plurality of recesses 191. Specifically, the plurality of recesses 191C have a triangular cross-sectional shape. At this time, the plurality of recesses 191C are shaped so that the deeper they become, the shorter the length along the length direction of the electrode foil 111 becomes. The plurality of recesses 192C also have the same shape as the plurality of recesses 191C.
  • the electrode foil 111 according to the fifth embodiment is different from the electrode foil 111 according to the first embodiment in that a plurality of recesses 191D are formed.
  • the other configurations of the electrode foil 111 according to the fifth embodiment are the same as those of the electrode foil 111 according to the first embodiment, and explanations of similar parts will be omitted.
  • the plurality of recesses 191D have different shapes from the plurality of recesses 191. Specifically, the plurality of recesses 191D have a semicircular cross-sectional shape. At this time, the plurality of recesses 191C are shaped so that the deeper they become, the shorter the length along the length direction of the electrode foil 111 becomes. The plurality of recesses 192D also have the same shape as the plurality of recesses 191D.
  • FIG. 12(A) and 12(B) are enlarged side cross-sectional views of the electrode foil according to the sixth embodiment.
  • the shapes of the recesses are different between FIG. 12(A) and FIG. 12(B).
  • the electrode foil 111 according to the sixth embodiment has a plurality of recesses 191CA and 192CA formed in place of the plurality of recesses 191C and 192C of the electrode foil 111 according to the fifth embodiment. It differs in that it is The other configurations of the electrode foil 111 according to the sixth embodiment are the same as the electrode foil 111 according to the fifth embodiment, and explanations of the similar parts will be omitted.
  • the plurality of recesses 191CA have different shapes from the plurality of recesses 191C. Specifically, the cross sections of the plurality of recesses 191CA are triangular, but in the plurality of recesses 191CA, the position of the deepest part of the recess 191CA in the length direction of the electrode foil 111 is at the end of the opening on the first surface F1. It is located closer to the second end 111EG2 than the position. That is, the wall surface of the recess 191CA on the second end 111EG2 side is recessed toward the second end 111EG2 with respect to the opening of the recess 191CA to the first surface F1.
  • the plurality of recesses 192CA formed on the second surface F2 also have the same shape as the plurality of recesses 191CA.
  • the electrode foil 111 according to the sixth embodiment has a plurality of recesses 191DA and 192DA instead of the plurality of recesses 191D and 192D of the electrode foil 111 according to the fifth embodiment. It differs in that it is The other configurations of the electrode foil 111 according to the sixth embodiment are the same as the electrode foil 111 according to the fifth embodiment, and explanations of the similar parts will be omitted.
  • the plurality of recesses 191DA have different shapes from the plurality of recesses 191D.
  • the line (wall surface) forming the cross section of the plurality of recesses 191DA is a curved line, and the position of the deepest part of the recess 191CA in the length direction of the electrode foil 111 is at the end opening to the first surface F1. It is located closer to the second end 111EG2 than the position. That is, the wall surface of the recess 191DA on the second end 111EG2 side is recessed toward the second end 111EG2 with respect to the opening of the recess 191DA to the first surface F1.
  • the plurality of recesses 192DA formed on the second surface F2 also have the same shape as the plurality of recesses 191DA.
  • the second end 111EG2 is on the lower side. Therefore, when the electrode foil 111 is immersed in the electrolyte solution and pulled up, the electrolyte solution tends to accumulate in the portions of the plurality of recesses 191CA and the plurality of recesses 191DA that are recessed toward the second end 111EG2 side, and is difficult to fall off. Therefore, this portion functions as a liquid pool POT.
  • the solid electrolyte layer 113 can be easily formed on the electrode foil 111 by having a configuration having a plurality of recesses 191CA and a plurality of recesses 191DA.
  • a mode is shown in which the recessed portion is formed over the entire width direction of the electrode foil 111.
  • the recess may be formed only in a partial region of the electrode foil 111 in the width direction.
  • a mode in which a recess is formed at the center in the width direction of the electrode foil 111 but no recess is formed at the end or a mode in which a recess is formed at the end in the width direction of the electrode foil 111 but no recess is formed at the center. can also be applied.
  • the depth of the recesses is the same, but the depth of the recesses may be varied depending on the formation position.
  • the lengths of the recesses along the length direction of the electrode foil 111 may all be the same, or may be different depending on the formation position.
  • the number of the plurality of recesses shown in each of the above embodiments is an example, and the number is not limited to this.
  • FIG. 13 is an enlarged side cross-sectional view of the electrode foil according to the seventh embodiment.
  • the electrode foil 111 according to the seventh embodiment is different in that a plurality of recesses 191Z are formed instead of the plurality of recesses 191 of the electrode foil 111 according to the first embodiment.
  • the other configurations of the electrode foil 111 according to the sixth embodiment are the same as the electrode foil 111 according to the fifth embodiment, and explanations of the similar parts will be omitted.
  • the plurality of recesses 191Z and 192Z are formed by curving the electrode foil 111 in the thickness direction, unlike the recesses in each of the embodiments described above.
  • FIG. 14 is a side sectional view of a solid electrolytic capacitor according to an eighth embodiment.
  • the solid electrolytic capacitor 1 includes a capacitor assembly 10, a first terminal electrode 20, a second terminal electrode 30, and an insulating resin body 40.
  • the capacitor assembly 10 includes a plurality of capacitor elements 11 - 14 (capacitor element 11 , capacitor element 12 , capacitor element 13 , capacitor element 14 ) and a conductive member 19 .
  • the number of capacitor elements constituting the capacitor assembly 10 is four, but the number of capacitor elements may be more than one.
  • the plurality of capacitor elements 11-14 have the same configuration.
  • the plurality of capacitor elements 11-14 have the configurations of the electrode foil 111 and capacitor element 11 shown in each of the above-described embodiments.
  • the plurality of capacitor elements 11-14 are stacked. At this time, the plurality of capacitor elements 11-14 are stacked such that the dimension in the stacking direction on the second end side is larger than the dimension in the stacking direction on the first end side. That is, the plurality of capacitor elements 11-14 are arranged so as to spread in the thickness direction from the first end side toward the second end side when viewed from the side.
  • each electrode foil 111 in the plurality of capacitor elements 11-14 on the first end 111EG1 side is connected to the first terminal electrode 20.
  • connection layers conductive layers including the solid electrolyte layer 113 of the plurality of capacitor elements 11-14 are electrically and physically connected by the conductive member 19, and these are electrically and physically connected to the second terminal electrode 30. connected to.
  • the capacitor assembly 10 is sealed with an insulating resin body 40.
  • the insulating resin body 40 has a substantially rectangular parallelepiped shape having a top surface 401 , a bottom surface 402 , a first end surface 403 , and a second end surface 404 .
  • the first terminal electrode 20 is exposed to the outside from the first end surface 403 of the insulating resin body 40 and is disposed across the first end surface 403 and the bottom surface 402.
  • the second terminal electrode 30 is exposed to the outside from the second end surface 404 of the insulating resin body 40 and is disposed across the second end surface 404 and the bottom surface 402 .
  • the conductive member 19 is preferably an electrode paste containing nickel, silver, or copper as a main component, for example.
  • the maximum thickness of the conductive member 19 is preferably 2 ⁇ m or more and 20 ⁇ m or less. Note that even without using the conductive member 19, if conductivity higher than the desired conductivity can be obtained between the plurality of capacitor elements 11-14, between the capacitor elements 12 and 13 and the second terminal electrode 30, etc. It is also possible to omit the conductive member 19.
  • the first terminal electrode 20 and the second terminal electrode 30 are preferably formed of a metal material that is easy to bend and has high conductivity.
  • the first terminal electrode 20 and the second terminal electrode 30 are formed of a material cut out from a metal plate, for example. Note that the first terminal electrode 20 and the second terminal electrode 30 may be made of the same material or may be made of different materials.
  • the insulating resin body 40 is mainly made of resin and may contain filler.
  • the resin include epoxy resins, phenol resins, polyimide resins, silicone resins, polyamide resins, and liquid crystal polymers.
  • the form of the resin both solid resin and liquid resin can be used.
  • the corners are rounded by barrel polishing after resin sealing.
  • the filler for example, silica particles, alumina particles, metal particles, etc. are preferable.
  • the maximum diameter of the filler is preferably 30 ⁇ m or more and 40 ⁇ m or less, for example. More preferably, the material contains silica particles in solid epoxy resin and phenol resin.
  • the solid electrolytic capacitor 1 can achieve high reliability.
  • FIG. 15 is a side sectional view of a solid electrolytic capacitor according to a ninth embodiment.
  • the solid electrolytic capacitor 1A As shown in FIG. 15, the solid electrolytic capacitor 1A according to the ninth embodiment has a capacitor assembly 10A, a first terminal electrode 20A, a second terminal electrode 30A is different. Below, only the points different from the solid electrolytic capacitor 1 will be explained.
  • the capacitor assembly 10A includes a plurality of capacitor elements 11-14.
  • the plurality of capacitor elements 11-14 are stacked in parallel to each other.
  • the first ends (anodes) of the plurality of capacitor elements 11, 12, 13, and 14 are bundled. This bundled portion is connected to the first terminal electrode 20A.
  • the second terminal electrode 30A has a flat plate-shaped base portion 309.
  • the capacitor assembly 10A is placed on the stand 309.
  • the second terminal electrode 30A is connected to a connection layer (a conductive layer including the solid electrolyte layer 113) of the capacitor assembly 10A.
  • the solid electrolytic capacitor 1A can achieve high reliability.
  • the solid electrolytic capacitor is not limited to the structure in which a plurality of flat film capacitor elements are stacked in the thickness direction of the solid electrolytic capacitor as shown in the eighth embodiment and the ninth embodiment.
  • a configuration may be adopted in which a flat film-shaped capacitor element is wound and housed in a cylindrical housing.
  • a first surface layer portion and a second surface layer portion, each of which is a porous body, and a core portion between the first surface layer portion and the second surface layer portion are provided in the thickness direction, and include a valve metal.
  • a flat membrane-like body, a dielectric layer formed on each surface of the first surface layer portion and the second surface layer portion; Equipped with The main body is an electrode foil having a recessed portion recessed in the thickness direction.
  • ⁇ 2> The electrode foil of ⁇ 1>, wherein the side surface of the recess on one end side in the first direction perpendicular to the thickness direction has a portion that is further recessed with respect to the wall surface forming the recess.
  • the recess has a shape in which a length in a first direction perpendicular to the thickness direction is shorter than a length in a second direction perpendicular to the thickness direction and the first direction.
  • Electrode foil is
  • ⁇ 4> The electrode foil according to any one of ⁇ 1> to ⁇ 3>, wherein a plurality of the recesses are formed.
  • ⁇ 6> The electrode foil of ⁇ 4> or ⁇ 5>, wherein the plurality of recesses are formed at intervals in a first direction and a second direction perpendicular to the thickness direction.
  • the plurality of recesses are formed at intervals in a first direction and a second direction perpendicular to the thickness direction, respectively,
  • the electrode foil of ⁇ 4> wherein the interval in the second direction is shorter than the interval in the first direction.
  • ⁇ 8> The electrode foil according to any one of ⁇ 3> to ⁇ 5>, wherein the recess has a shape that reaches both ends of the main body in the second direction.
  • a first surface layer portion and a second surface layer portion, each of which is a porous body, and a core portion between the first surface layer portion and the second surface layer portion are provided in the thickness direction, and include a valve metal.
  • the main body includes an electrode foil having a concave portion recessed in the thickness direction; a solid electrolyte layer covering the formation region of the dielectric layer in the first surface layer portion and the second surface layer portion of the electrode foil;
  • a capacitor element comprising:
  • a plurality of capacitor elements of ⁇ 11> are provided, The plurality of capacitor elements are solid electrolytic capacitors connected in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention provides an electrode foil (111) which has a flat film shape and contains a valve-acting metal, while comprising, in the thickness direction, a first surface layer part (111P1) and a second surface layer part (111P2), each of which is a porous body, and a core part (111BM) that is arranged between the first surface layer part (111P1) and the second surface layer part (111P2). A dielectric layer (112) is formed on the respective surfaces of the first surface layer part (111P1) and the second surface layer part (111P2). This electrode foil (111) has recessed parts (191, 192) that are recessed in the thickness direction.

Description

電極箔、コンデンサ素子、および、固体電解コンデンサElectrode foil, capacitor element, and solid electrolytic capacitor
 本発明は、平膜状のコンデンサ素子に用いる電極箔、この電極箔を用いたコンデンサ素子および固体電解コンデンサに関する。 The present invention relates to an electrode foil used in a flat film capacitor element, a capacitor element using this electrode foil, and a solid electrolytic capacitor.
 特許文献1には、固体電解コンデンサが記載されている。特許文献1に記載の固体電解コンデンサは、複数のコンデンサ素子を備える。各コンデンサ素子は、電極箔、誘電体層、固体電解質層を備える。 Patent Document 1 describes a solid electrolytic capacitor. The solid electrolytic capacitor described in Patent Document 1 includes a plurality of capacitor elements. Each capacitor element includes an electrode foil, a dielectric layer, and a solid electrolyte layer.
 電極箔の表層部は多孔質体である。誘電体層は、多孔質体の表面に形成されている。固体電解質層は、電極箔の表面における誘電体層が形成されている部分に形成されている。 The surface layer of the electrode foil is porous. A dielectric layer is formed on the surface of the porous body. The solid electrolyte layer is formed on the surface of the electrode foil where the dielectric layer is formed.
 このような固体電解質層は、誘電体層付きの電極箔を、固体電解質層の基となる液体(電解質溶液)に浸漬させて形成される。具体的には、電極箔は、電解質溶液が収容された槽の上部から吊り上げられる。電極箔は、電解質溶液へ浸漬され、電解質溶液から引き上げられる。これにより、電極箔の表面には、電解質溶液が付着する。電解質溶液を乾燥させることで、電極箔の表面には、固体電解質層が形成される。 Such a solid electrolyte layer is formed by immersing an electrode foil with a dielectric layer in a liquid (electrolyte solution) that is the basis of the solid electrolyte layer. Specifically, the electrode foil is lifted from the top of a tank containing an electrolyte solution. The electrode foil is immersed into an electrolyte solution and pulled up from the electrolyte solution. As a result, the electrolyte solution adheres to the surface of the electrode foil. By drying the electrolyte solution, a solid electrolyte layer is formed on the surface of the electrode foil.
特開2017-212395号公報Japanese Patent Application Publication No. 2017-212395
 しかしながら、従来の構成では、固体電解質層が電極箔に形成し難く、また電極箔表面への固体電解質層の付着力の低下等に繋がる懸念があった。 However, in the conventional configuration, it is difficult to form the solid electrolyte layer on the electrode foil, and there is a concern that the adhesion of the solid electrolyte layer to the surface of the electrode foil may decrease.
 したがって、本発明の目的は、固体電解質層が形成し易く、固体電解質層との付着力を高められる電極箔を提供することにある。 Therefore, an object of the present invention is to provide an electrode foil in which a solid electrolyte layer can be easily formed and the adhesion to the solid electrolyte layer can be increased.
 この発明の電極箔は、本体、および、誘電体層を備える。本体は、それぞれ多孔質体である第1表層部および第2表層部と、第1表層部と第2表層部との間のコア部とを、厚み方向に備え、弁作用金属を含む平膜状である。誘電体層は、第1表層部および第2表層部のそれぞれの表面に形成される。 The electrode foil of the present invention includes a main body and a dielectric layer. The main body includes a first surface layer portion and a second surface layer portion each of which is a porous body, and a core portion between the first surface layer portion and the second surface layer portion in the thickness direction, and a flat membrane containing a valve metal. It is in a state of A dielectric layer is formed on each surface of the first surface layer portion and the second surface layer portion.
本体は、厚み方向に凹む凹部を有する。 The main body has a recess that is recessed in the thickness direction.
 この構成では、電極箔を電解質溶液に浸漬させたとき、凹部に電解質溶液が入り、電極箔の電解質溶液からの引き上げ時に、電解質溶液が残り易くなる。これにより、電極箔の広い面積に固体電解質層が形成され易くなる。 With this configuration, when the electrode foil is immersed in the electrolyte solution, the electrolyte solution enters the recess, and when the electrode foil is pulled up from the electrolyte solution, the electrolyte solution tends to remain. This makes it easier to form the solid electrolyte layer over a wide area of the electrode foil.
 この発明によれば、固体電解質層を電極箔に形成され易く、電極箔表面への固体電解質層の付着力を高められる。 According to this invention, the solid electrolyte layer can be easily formed on the electrode foil, and the adhesion of the solid electrolyte layer to the surface of the electrode foil can be increased.
図1(A)は、第1の実施形態に係る電極箔の平面図、図1(B)は、第1の実施形態に係る電極箔の側面断面図であり、図1(C)は、第1の実施形態に係る電極箔の外観斜視図である。FIG. 1(A) is a plan view of the electrode foil according to the first embodiment, FIG. 1(B) is a side sectional view of the electrode foil according to the first embodiment, and FIG. 1(C) is a plan view of the electrode foil according to the first embodiment. It is an external perspective view of the electrode foil concerning a 1st embodiment. 図2は、第1の実施形態に係る電極箔の側断面を拡大した図である。FIG. 2 is an enlarged side cross-sectional view of the electrode foil according to the first embodiment. 図3(A)、図3(B)は、第1の実施形態に係る電極箔の側断面を大幅に拡大した図である。FIGS. 3A and 3B are greatly enlarged side cross-sectional views of the electrode foil according to the first embodiment. 図4(A)は、第1の実施形態に係るコンデンサ素子の平面図、図4(B)は、第1の実施形態に係るコンデンサ素子の側面断面図であり、図4(C)は、第1の実施形態に係るコンデンサ素子の外観斜視図である。4(A) is a plan view of the capacitor element according to the first embodiment, FIG. 4(B) is a side sectional view of the capacitor element according to the first embodiment, and FIG. 4(C) is a plan view of the capacitor element according to the first embodiment. FIG. 1 is an external perspective view of a capacitor element according to a first embodiment. 図5は、第1の実施形態に係るコンデンサ素子の側断面を大幅に拡大した図である。FIG. 5 is a greatly enlarged side cross-sectional view of the capacitor element according to the first embodiment. 図6は、第1の実施形態に係るコンデンサ素子の製造方法の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of a method for manufacturing a capacitor element according to the first embodiment. 図7は、複数の凹部を電極箔に形成する工程の一例を示す側面図である。FIG. 7 is a side view showing an example of the process of forming a plurality of recesses in an electrode foil. 図8は、第2の実施形態に係る電極箔の側面断面図である。FIG. 8 is a side sectional view of the electrode foil according to the second embodiment. 図9(A)、図9(B)は、第3の実施形態に係る電極箔の平面図である。9(A) and 9(B) are plan views of the electrode foil according to the third embodiment. 図10(A)、図10(B)は、第4の実施形態に係る電極箔の平面図である。10(A) and 10(B) are plan views of the electrode foil according to the fourth embodiment. 図11(A)、図11(B)は、第5の実施形態に係る電極箔の側断面を拡大した図である。11(A) and 11(B) are enlarged side cross-sectional views of the electrode foil according to the fifth embodiment. 図12(A)、図12(B)は、第6の実施形態に係る電極箔の側断面を拡大した図である。12(A) and 12(B) are enlarged side cross-sectional views of the electrode foil according to the sixth embodiment. 図13は、第7の実施形態に係る電極箔の側断面を拡大した図である。FIG. 13 is an enlarged side cross-sectional view of the electrode foil according to the seventh embodiment. 図14は、第8の実施形態に係る固体電解コンデンサの側面断面図である。FIG. 14 is a side sectional view of a solid electrolytic capacitor according to an eighth embodiment. 図15は、第9の実施形態に係る固体電解コンデンサの側面断面図である。FIG. 15 is a side sectional view of a solid electrolytic capacitor according to a ninth embodiment.
 [第1の実施形態]
 本発明の第1の実施形態に係る電極箔およびコンデンサ素子について、図を参照して説明する。
[First embodiment]
An electrode foil and a capacitor element according to a first embodiment of the present invention will be described with reference to the drawings.
 (電極箔)
 図1(A)は、第1の実施形態に係る電極箔の平面図、図1(B)は、第1の実施形態に係る電極箔の側面断面図であり、図1(C)は、第1の実施形態に係る電極箔の外観斜視図である。図2は、第1の実施形態に係る電極箔の側断面を拡大した図である。図3(A)、図3(B)は、第1の実施形態に係る電極箔の側断面を大幅に拡大した図である。図1(A)、図1(B)、図1(C)、図2、図3(A)は、誘電体層が形成されていない状態での電極箔を示し、図3(B)は、誘電体層が形成された状態での電極箔を示す。なお、これらの図とともに、本実施形態に記載する各図は、本願発明の特徴が分かり易くなるように、適宜誇張を行って記載している。
(electrode foil)
FIG. 1(A) is a plan view of the electrode foil according to the first embodiment, FIG. 1(B) is a side sectional view of the electrode foil according to the first embodiment, and FIG. 1(C) is a plan view of the electrode foil according to the first embodiment. It is an external perspective view of the electrode foil concerning a 1st embodiment. FIG. 2 is an enlarged side cross-sectional view of the electrode foil according to the first embodiment. FIGS. 3A and 3B are greatly enlarged side cross-sectional views of the electrode foil according to the first embodiment. 1(A), FIG. 1(B), FIG. 1(C), FIG. 2, and FIG. 3(A) show the electrode foil in a state where no dielectric layer is formed, and FIG. 3(B) shows the electrode foil in a state where no dielectric layer is formed. , shows an electrode foil with a dielectric layer formed thereon. It should be noted that, together with these figures, each figure described in this embodiment is appropriately exaggerated so that the features of the present invention can be easily understood.
 図1(A)、図1(B)、図1(C)に示すように、電極箔111(電極箔の本体に対応)は、平膜であり、所定長さ(DirL方向の寸法)、所定幅(DirW方向の寸法)、所定厚み(DirD方向の寸法)を有する。長さ、幅、厚みは、電極箔111で形成するコンデンサ素子(詳細は後述する)の仕様に応じて決定される。 As shown in FIGS. 1(A), 1(B), and 1(C), the electrode foil 111 (corresponding to the main body of the electrode foil) is a flat film with a predetermined length (dimension in the DirL direction), It has a predetermined width (dimension in the DirW direction) and a predetermined thickness (dimension in the DirD direction). The length, width, and thickness are determined according to the specifications of the capacitor element (details will be described later) formed by the electrode foil 111.
 電極箔111は、長さ方向(DirL方向)および幅方向(DirW方向)に平行な(厚み方向(DirD方向)に直交する)第1面F1と第2面F2とを有する。電極箔111は、長さ方向(DirL方向)の第1端111EG1と第2端111EG2とを有する。なお、長さ方向(DirL方向)が、本発明の第1方向に対応し、幅方向(DirW方向)が、本発明の第2方向に対応する。 The electrode foil 111 has a first surface F1 and a second surface F2 that are parallel to the length direction (DirL direction) and width direction (DirW direction) (perpendicular to the thickness direction (DirD direction)). The electrode foil 111 has a first end 111EG1 and a second end 111EG2 in the length direction (DirL direction). Note that the length direction (DirL direction) corresponds to the first direction of the present invention, and the width direction (DirW direction) corresponds to the second direction of the present invention.
 電極箔111は、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、マグネシウム、ケイ素等の金属単体、または、これらの金属を含む合金等からなる。なお、電極箔111は、アルミニウムまたはアルミニウム合金であることが好ましい。電極箔111は、いわゆる弁作用を示す弁作用金属であればよい。 The electrode foil 111 is made of, for example, a single metal such as aluminum, tantalum, niobium, titanium, zirconium, magnesium, or silicon, or an alloy containing these metals. Note that the electrode foil 111 is preferably made of aluminum or an aluminum alloy. The electrode foil 111 may be any valve metal that exhibits a so-called valve action.
 図2、図3(A)に示すように、電極箔111は、厚み方向(DirD方向)に、複数の層によって構成される。具体的には、電極箔111は、コア部111BM、第1表層部111P1、第2表層部111P2によって構成される。第1表層部111P1、コア部111BM、および、第2表層部111P2は、電極箔111の第1面F1から第2面F2に向けて、この順(第1表層部111P1、コア部111BM、第2表層部111P2の順)で配置される。 As shown in FIGS. 2 and 3(A), the electrode foil 111 is composed of a plurality of layers in the thickness direction (DirD direction). Specifically, the electrode foil 111 includes a core portion 111BM, a first surface portion 111P1, and a second surface portion 111P2. The first surface layer portion 111P1, the core portion 111BM, and the second surface layer portion 111P2 are arranged in this order (first surface layer portion 111P1, core portion 111BM, and 2 surface layer portions 111P2).
 図3(A)に示すように、コア部111BMは、多孔質体でなく、第1表層部111P1、および、第2表層部111P2は、多孔質体である。コア部111BMの厚みは、5μm以上、100μm以下であることが好ましい。第1表層部111P1および第2表層部111P2の厚さは、それぞれに5μm以上、200μm以下であることが好ましい。また、多孔質体は、例えば、0.5μm以下の直径(もしくは体積を決定する最大寸法)を有する空洞が連通して形成されたものであり、第1面F1および第2面F2に開口する面積部分の最大寸法は、0.5μm以下である。 As shown in FIG. 3(A), the core portion 111BM is not a porous body, and the first surface layer portion 111P1 and the second surface layer portion 111P2 are porous bodies. The thickness of the core portion 111BM is preferably 5 μm or more and 100 μm or less. The thickness of the first surface layer portion 111P1 and the second surface layer portion 111P2 is preferably 5 μm or more and 200 μm or less, respectively. Further, the porous body is formed by communicating cavities having a diameter (or the maximum dimension that determines the volume) of 0.5 μm or less, for example, and is open to the first surface F1 and the second surface F2. The maximum dimension of the area portion is 0.5 μm or less.
 電極箔111には、複数の凹部191および複数の凹部192が形成されている。 A plurality of recesses 191 and a plurality of recesses 192 are formed in the electrode foil 111.
 複数の凹部191は、第1面F1から電極箔111の厚み方向に凹む形状である。複数の凹部191は、長さ方向(DirL方向)に直交し、幅方向(DirW方向)に延びる形状である。複数の凹部191は、電極箔111の幅方向の両端に達する。複数の凹部191は、長さ方向(DirL)方向に所定の間隔で形成されている。 The plurality of recesses 191 are recessed from the first surface F1 in the thickness direction of the electrode foil 111. The plurality of recesses 191 have a shape that is perpendicular to the length direction (DirL direction) and extends in the width direction (DirW direction). The plurality of recesses 191 reach both ends of the electrode foil 111 in the width direction. The plurality of recesses 191 are formed at predetermined intervals in the length direction (DirL) direction.
 複数の凹部192は、第2面F2から電極箔111の厚み方向に凹む形状である。複数の凹部192は、長さ方向(DirL方向)に直交し、幅方向(DirW方向)に延びる形状である。複数の凹部192は、電極箔111の幅方向の両端に達する。複数の凹部192は、長さ方向(DirL)方向に所定の間隔で形成されている。 The plurality of recesses 192 are recessed from the second surface F2 in the thickness direction of the electrode foil 111. The plurality of recesses 192 have a shape that is perpendicular to the length direction (DirL direction) and extends in the width direction (DirW direction). The plurality of recesses 192 reach both ends of the electrode foil 111 in the width direction. The plurality of recesses 192 are formed at predetermined intervals in the length direction (DirL) direction.
 複数の凹部191および複数の凹部192の長さ方向(DirL方向)における位置は、異なる。 The positions of the plurality of recesses 191 and the plurality of recesses 192 in the length direction (DirL direction) are different.
 複数の凹部191の深さは、第1表層部111P1の厚みよりも小さい。すなわち、複数の凹部191は、コア部111BMに達していない。 The depth of the plurality of recesses 191 is smaller than the thickness of the first surface layer portion 111P1. That is, the plurality of recesses 191 do not reach the core portion 111BM.
 複数の凹部192の深さは、第2表層部111P2の厚みよりも小さい。すなわち、複数の凹部192は、コア部111BMに達していない。 The depth of the plurality of recesses 192 is smaller than the thickness of the second surface layer portion 111P2. That is, the plurality of recesses 192 do not reach the core portion 111BM.
 複数の凹部191および複数の凹部192の長さ方向(DirL方向)の開口寸法は、例えば、3μm以上である。すなわち、複数の凹部191および複数の凹部192の長さ方向(DirL方向)の開口寸法は、多孔質体の表面への開口面積部分の最大寸法の60倍以上である。なお、この大きさ関係は一例であり、凹部191および凹部192の開口寸法が多孔質体の表面への開口面積部分の最大寸法よりも大きければ、固体電解質層の基ととなる電解質溶液の粘性等の性質に基づいて適宜設定できる。 The opening size in the length direction (DirL direction) of the plurality of recesses 191 and the plurality of recesses 192 is, for example, 3 μm or more. That is, the opening dimension of the plurality of recesses 191 and the plurality of recesses 192 in the length direction (DirL direction) is 60 times or more the maximum dimension of the opening area portion to the surface of the porous body. Note that this size relationship is just an example, and if the opening dimensions of the recesses 191 and 192 are larger than the maximum dimension of the opening area portion to the surface of the porous body, the viscosity of the electrolyte solution that forms the basis of the solid electrolyte layer will increase. It can be set as appropriate based on the characteristics such as.
 図3(B)に示すように、電極箔111には、誘電体層112が形成されている。誘電体層112は、電極箔111の第1面F1および第2面F2を覆う。より詳細には、誘電体層112は、電極箔111における第1表層部111P1を構成する多孔質体の表面、および、第2表層部111P2を構成する多孔質体の表面を覆う。 As shown in FIG. 3(B), a dielectric layer 112 is formed on the electrode foil 111. The dielectric layer 112 covers the first surface F1 and the second surface F2 of the electrode foil 111. More specifically, the dielectric layer 112 covers the surface of the porous body constituting the first surface layer portion 111P1 and the surface of the porous body constituting the second surface layer portion 111P2 in the electrode foil 111.
 誘電体層112は、電極箔111の酸化皮膜からなることが好ましい。誘電体層112は、例えば、電極箔111にアルミニウム箔を用いる場合、ホウ酸、リン酸、アジピン酸、またはそれらのナトリウム塩、アンモニウム塩等を含む水溶液中で酸化させることで形成される。誘電体層112の厚みは10nm以上、100nm以下であることが好ましい。 The dielectric layer 112 is preferably made of an oxide film of the electrode foil 111. For example, when aluminum foil is used as the electrode foil 111, the dielectric layer 112 is formed by oxidizing it in an aqueous solution containing boric acid, phosphoric acid, adipic acid, or their sodium or ammonium salts. The thickness of the dielectric layer 112 is preferably 10 nm or more and 100 nm or less.
 (コンデンサ素子)
 図4(A)は、第1の実施形態に係るコンデンサ素子の平面図、図4(B)は、第1の実施形態に係るコンデンサ素子の側面断面図であり、図4(C)は、第1の実施形態に係るコンデンサ素子の外観斜視図である。図5は、第1の実施形態に係るコンデンサ素子の側断面を大幅に拡大した図である。
(capacitor element)
4(A) is a plan view of the capacitor element according to the first embodiment, FIG. 4(B) is a side sectional view of the capacitor element according to the first embodiment, and FIG. 4(C) is a plan view of the capacitor element according to the first embodiment. FIG. 1 is an external perspective view of a capacitor element according to a first embodiment. FIG. 5 is a greatly enlarged side cross-sectional view of the capacitor element according to the first embodiment.
 図4(A)、図4(B)、図4(C)に示すように、コンデンサ素子11は、電極箔111、誘電体層112、および、固体電解質層113を備える。電極箔111および誘電体層112は、上述の通りであり、更なる説明の必要な箇所を除き、ここでの説明は適宜省略する。 As shown in FIGS. 4(A), 4(B), and 4(C), the capacitor element 11 includes an electrode foil 111, a dielectric layer 112, and a solid electrolyte layer 113. The electrode foil 111 and the dielectric layer 112 are as described above, and the explanation here will be appropriately omitted except where further explanation is necessary.
 図5に示すように、固体電解質層113は、誘電体層112の外面(電極箔111に当接する面と対向する面)を覆う。固体電解質層113は、誘電体層112で覆われた多数の孔内にも充填されている。 As shown in FIG. 5, the solid electrolyte layer 113 covers the outer surface of the dielectric layer 112 (the surface facing the surface that contacts the electrode foil 111). The solid electrolyte layer 113 also fills a large number of holes covered with the dielectric layer 112.
 固体電解質層113は、電極箔111における第1端111EG1に達しない第2端111EG2側の所定面積の領域に形成される。この際、固体電解質層113は、複数の凹部191および複数の凹部192が形成されている箇所を含むように形成される。図5に示すように、固体電解質層113は、複数の凹部191内および複数の凹部192内にも入り込むように形成される。 The solid electrolyte layer 113 is formed in a predetermined area of the electrode foil 111 on the second end 111EG2 side that does not reach the first end 111EG1. At this time, the solid electrolyte layer 113 is formed to include locations where the plurality of recesses 191 and the plurality of recesses 192 are formed. As shown in FIG. 5, the solid electrolyte layer 113 is formed so as to fit into the plurality of recesses 191 and the plurality of recesses 192 as well.
 より具体的な構成として、固体電解質層113は、例えば、内層と外層とを備える。 As a more specific configuration, the solid electrolyte layer 113 includes, for example, an inner layer and an outer layer.
 内層は、固体電解質層113の誘電体層112側の層であり、例えば、ピロール類、チオフェン類、アニリン類等を骨格とした導電性高分子、もしくはチオフェン類を骨格とする導電性高分子のPEDOT[ポリ(3,4-エチレンジオキシチオフェン)]等で実現され、ドーパントとなるポリスチレンスルホン酸(PSS)と複合化させたPEDOT:PSSの層であってもよい。内層は、固体電解質層113を形成する基となる電解質溶液、例えば、3,4-エチレンジオキシチオフェン等のモノマーを含む処理液を用いて、誘電体層112の表面にポリ(3,4-エチレンジオキシチオフェン)等の重合膜を形成する方法や、ポリ(3,4-エチレンジオキシチオフェン)等のポリマーの分散液を誘電体部の表面に塗布して乾燥させる方法等によって形成される。 The inner layer is a layer on the dielectric layer 112 side of the solid electrolyte layer 113, and is made of, for example, a conductive polymer having a backbone of pyrroles, thiophenes, anilines, etc., or a conductive polymer having a backbone of thiophenes. It may be a layer of PEDOT:PSS which is realized by PEDOT [poly(3,4-ethylenedioxythiophene)] or the like and is composited with polystyrene sulfonic acid (PSS) as a dopant. The inner layer is formed by coating the surface of the dielectric layer 112 with poly(3,4- It is formed by a method of forming a polymer film such as ethylenedioxythiophene), or a method of applying a dispersion of a polymer such as poly(3,4-ethylenedioxythiophene) to the surface of the dielectric part and drying it. .
 外層は、内層の外側に形成される層である。例えば、外層は、多孔質部の細かい凹部を充填する内層を形成した後、誘電体層112全体を被覆するように形成された層である。外層の厚みは、2μm以上、20μm以下であることが好ましい。外層は、例えば、カーボンペースト、グラフェンペースト、銀ペーストのような導電性ペーストを付与することによって形成されてなるカーボン層、グラフェン層又は銀層であることが好ましい。カーボン層やグラフェン層の上に銀層が設けられた複合層や、カーボンペーストやグラフェンペーストと銀ペーストを混合する混合層であってもよい。 The outer layer is a layer formed outside the inner layer. For example, the outer layer is a layer formed to cover the entire dielectric layer 112 after forming an inner layer that fills fine recesses in the porous portion. The thickness of the outer layer is preferably 2 μm or more and 20 μm or less. The outer layer is preferably a carbon layer, a graphene layer, or a silver layer formed by applying a conductive paste such as carbon paste, graphene paste, or silver paste. It may be a composite layer in which a silver layer is provided on a carbon layer or a graphene layer, or a mixed layer in which carbon paste, graphene paste, and silver paste are mixed.
 外層のさらに次層として、導電性接着剤層が設けられていてもよい。導電性接着剤層を構成する材料としては、例えば、エポキシ樹脂、フェノール樹脂等の絶縁性樹脂と、カーボンや銀等の導電性粒子との混合物を用いるとよい。 A conductive adhesive layer may be provided as a layer further after the outer layer. As the material constituting the conductive adhesive layer, for example, a mixture of an insulating resin such as an epoxy resin or a phenol resin and conductive particles such as carbon or silver may be used.
 このような構成によって、コンデンサ素子11は、平膜形状の固体電解コンデンサとなる。このコンデンサ素子11では、電極箔111が陽極に対応し、固体電解質層113が陰極に対応する。 With such a configuration, the capacitor element 11 becomes a flat film solid electrolytic capacitor. In this capacitor element 11, electrode foil 111 corresponds to an anode, and solid electrolyte layer 113 corresponds to a cathode.
 (コンデンサ素子の製造方法)
 図6は、第1の実施形態に係るコンデンサ素子の製造方法の一例を示すフローチャートである。図7は、複数の凹部を電極箔に形成する工程の一例を示す側面図である。
(Method for manufacturing capacitor element)
FIG. 6 is a flowchart illustrating an example of a method for manufacturing a capacitor element according to the first embodiment. FIG. 7 is a side view showing an example of the process of forming a plurality of recesses in an electrode foil.
 電極箔111の表面に複数の凹部191および複数の凹部192を形成する(S11)。例えば、図7に示すように、電極箔111の第1面F1および第2面F2に対して、突起を有するロール機を当てて、エンボス加工を実行する。なお、電極箔111は、例えば、純度99.9%以上のアルミ箔を用いる。 A plurality of recesses 191 and a plurality of recesses 192 are formed on the surface of the electrode foil 111 (S11). For example, as shown in FIG. 7, embossing is performed by applying a roll machine having protrusions to the first surface F1 and second surface F2 of the electrode foil 111. Note that the electrode foil 111 is made of, for example, aluminum foil with a purity of 99.9% or more.
 次に、電極箔111の第1面F1および第2面F2を含む表面の近傍領域(表層部)を多孔質化する(S12)。多孔質化は、例えば、表面に対するエッチング処理によって行われる。 Next, a region near the surface (surface layer portion) including the first surface F1 and second surface F2 of the electrode foil 111 is made porous (S12). The porosity is made, for example, by etching the surface.
 次に、誘電体層112を形成する(S13)。誘電体層112は、電極箔111の表面、多孔質体の表面の酸化によって行われる。 Next, a dielectric layer 112 is formed (S13). The dielectric layer 112 is formed by oxidizing the surface of the electrode foil 111 and the surface of the porous body.
 次に、ディップ処理によって、電極箔111の表面および多孔質体の表面に固体電解質層113を付着させる(S14)。 Next, the solid electrolyte layer 113 is attached to the surface of the electrode foil 111 and the surface of the porous body by dipping treatment (S14).
 例えば、固体電解質層113の基となる電解質溶液を槽に入れる。電極箔111を槽の上部につるす。この際、第2端111EG2が下側になるように、電極箔111をつるす。この状態で、電極箔111を電解質溶液に浸漬させる。所定時間の浸漬後、電極箔111を電解質溶液から引き出す。引き出し後、所定時間置き、電解質溶液を乾燥させる。これら、電解質溶液への浸漬、引き上げ、乾燥を一連の動作として、必要に応じて所定回数繰り返す。 For example, an electrolyte solution that will become the basis of the solid electrolyte layer 113 is placed in a tank. The electrode foil 111 is hung on the top of the tank. At this time, the electrode foil 111 is hung so that the second end 111EG2 is on the lower side. In this state, the electrode foil 111 is immersed in the electrolyte solution. After immersion for a predetermined time, the electrode foil 111 is pulled out from the electrolyte solution. After drawing out the electrolyte solution, leave it for a predetermined period of time to dry the electrolyte solution. These steps of immersion in an electrolyte solution, pulling up, and drying are repeated a predetermined number of times as necessary.
 この際、電極箔111は、複数の凹部191および複数の凹部192を有する。したがって、電極箔111を電解質溶液に浸漬させたとき、電解質溶液は、複数の凹部191および複数の凹部192に入り込む。 At this time, the electrode foil 111 has a plurality of recesses 191 and a plurality of recesses 192. Therefore, when the electrode foil 111 is immersed in an electrolyte solution, the electrolyte solution enters the plurality of recesses 191 and the plurality of recesses 192.
 この状態で、電極箔111を電解質溶液から引き上げると、電解質溶液は、複数の凹部191および複数の凹部192に引っかかったような状態となり、電極箔111の下方(第2端111EG2側)に落ちこぼれ難い。したがって、複数の凹部191および複数の凹部192を有さない構造(従来構造)よりも、電極箔111に固体電解質層113が残り易く、形成し易い。 When the electrode foil 111 is pulled up from the electrolyte solution in this state, the electrolyte solution becomes stuck in the plurality of recesses 191 and the plurality of recesses 192, and is unlikely to fall down below the electrode foil 111 (on the second end 111EG2 side). . Therefore, the solid electrolyte layer 113 tends to remain on the electrode foil 111 and is easier to form than a structure (conventional structure) that does not have the plurality of recesses 191 and the plurality of recesses 192.
 したがって、この構成を用いることで、固体電解質層113を電極箔111に形成し易い。これにより、例えば、固体電解質層113を所定厚みにするためのディップ処理の回数を減らすことができる。 Therefore, by using this configuration, it is easy to form the solid electrolyte layer 113 on the electrode foil 111. Thereby, for example, the number of times of dipping treatment for making the solid electrolyte layer 113 to a predetermined thickness can be reduced.
 また、この構成を用いることで、固体電解質層113と電極箔111との接着面が、概略的な一平面にならず、互いに平行でない複数の面となる。これにより、固体電解質層113と電極箔111との接着力を高められる。 Furthermore, by using this configuration, the bonding surfaces between the solid electrolyte layer 113 and the electrode foil 111 do not become one roughly flat surface, but instead become multiple surfaces that are not parallel to each other. Thereby, the adhesive strength between the solid electrolyte layer 113 and the electrode foil 111 can be increased.
 また、この構成では、複数の凹部191および複数の凹部192が電極箔111の幅方向全体にわたっている。これにより、固体電解質層113は、電極箔111の幅方向の全体において付着し易い。したがって、幅方向の全体でほぼ均一の厚みに固体電解質層113を形成できる。 Furthermore, in this configuration, the plurality of recesses 191 and the plurality of recesses 192 extend over the entire width of the electrode foil 111. Thereby, the solid electrolyte layer 113 easily adheres to the entire electrode foil 111 in the width direction. Therefore, the solid electrolyte layer 113 can be formed to have a substantially uniform thickness throughout the width direction.
 また、この構成では、複数の凹部191と複数の凹部192とが、長さ方向において異なる位置に形成されている。これにより、第1面F1と第2面F2の両方に溝を形成しても、大幅に薄い箇所ができることを抑制できる。これにより、電極箔111の破断を抑制でき、電極箔111として、コンデンサ素子11としての信頼性は向上する。 Furthermore, in this configuration, the plurality of recesses 191 and the plurality of recesses 192 are formed at different positions in the length direction. Thereby, even if grooves are formed on both the first surface F1 and the second surface F2, it is possible to suppress the formation of a significantly thin portion. Thereby, breakage of the electrode foil 111 can be suppressed, and the reliability of the electrode foil 111 and the capacitor element 11 is improved.
 なお、複数の凹部191の形状、個数および総体積と、複数の凹部192の形状、個数および総体積は異なっていてもよい。ただし、なお、複数の凹部191の形状、個数および総面積と、複数の凹部192の形状、個数および総面積が同じであれば、第1面F1側の固体電解質層113の形状および厚みと第2面F2側の固体電解質層113の形状および厚みを同じにし易い。 Note that the shape, number, and total volume of the plurality of recesses 191 and the shape, number, and total volume of the plurality of recesses 192 may be different. However, if the shape, number, and total area of the plurality of recesses 191 are the same as the shape, number, and total area of the plurality of recesses 192, the shape, thickness, and thickness of the solid electrolyte layer 113 on the first surface F1 side It is easy to make the shape and thickness of the solid electrolyte layer 113 on the second surface F2 side the same.
 [第2の実施形態]
 本発明の第2の実施形態に係る電極箔について、図を参照して説明する。図8は、第2の実施形態に係る電極箔の側面断面図である。
[Second embodiment]
An electrode foil according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a side sectional view of the electrode foil according to the second embodiment.
 図8に示すように、第2の実施形態に係る電極箔111は、第1の実施形態に係る電極箔111に対して、複数の凹部191および複数の凹部192の形成位置において異なる。第2の実施形態に係る電極箔111のその他の構成は、第1の実施形態に係る電極箔111と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 8, the electrode foil 111 according to the second embodiment differs from the electrode foil 111 according to the first embodiment in the formation positions of the plurality of recesses 191 and the plurality of recesses 192. The other configurations of the electrode foil 111 according to the second embodiment are the same as those of the electrode foil 111 according to the first embodiment, and a description of the similar parts will be omitted.
 複数の凹部191と複数の凹部192とは、長さ方向において重なる位置に形成される。 The plurality of recesses 191 and the plurality of recesses 192 are formed at positions that overlap in the length direction.
 このような構成であっても、第1の実施形態に係る電極箔111と同様の作用効果を奏することができる。 Even with such a configuration, the same effects as the electrode foil 111 according to the first embodiment can be achieved.
 [第3の実施形態]
 本発明の第3の実施形態に係る電極箔について、図を参照して説明する。図9(A)、図9(B)は、第3の実施形態に係る電極箔の平面図である。図9(A)と図9(B)とでは、凹部の形成パターンが異なる。
[Third embodiment]
An electrode foil according to a third embodiment of the present invention will be described with reference to the drawings. 9(A) and 9(B) are plan views of the electrode foil according to the third embodiment. The formation patterns of the recesses are different between FIG. 9(A) and FIG. 9(B).
 図9(A)、図9(B)に示すように、第3の実施形態に係る電極箔111は、第1の実施形態に係る電極箔111の複数の凹部191に替えて複数の凹部191Aが形成されている点で異なる。第3の実施形態に係る電極箔111の他の構成は、第1の実施形態に係る電極箔111と同様であり、同様の箇所の説明は省略する。 As shown in FIGS. 9A and 9B, the electrode foil 111 according to the third embodiment has a plurality of recesses 191A instead of the plurality of recesses 191 of the electrode foil 111 according to the first embodiment. They differ in that they are formed. The other configurations of the electrode foil 111 according to the third embodiment are the same as those of the electrode foil 111 according to the first embodiment, and a description of the similar parts will be omitted.
 図9(A)、図9(B)に示すように、複数の凹部191Aの幅方向の長さは、電極箔111の幅方向の長さよりも短い。複数の凹部191Aは、第1面F1から凹む形状である。複数の凹部191Aは、長さ方向と幅方向とに対して二次元配列されている。 As shown in FIGS. 9(A) and 9(B), the length of the plurality of recesses 191A in the width direction is shorter than the length of the electrode foil 111 in the width direction. The plurality of recesses 191A have a shape recessed from the first surface F1. The plurality of recesses 191A are two-dimensionally arranged in the length direction and width direction.
 図9(A)の場合、長さ方向に隣り合う複数の凹部191Aの列では、幅方向における複数の凹部191Aの形成位置は同じである。図9(B)の場合、長さ方向に隣り合う複数の凹部191Aの列では、幅方向における複数の凹部191Aの形成位置は異なる。 In the case of FIG. 9(A), in the rows of the plurality of recesses 191A adjacent to each other in the length direction, the formation positions of the plurality of recesses 191A in the width direction are the same. In the case of FIG. 9B, the formation positions of the plurality of recesses 191A in the width direction are different in the rows of the plurality of recesses 191A that are adjacent to each other in the length direction.
 このように、複数の凹部191Aが二次元配列された構成であっても、上述の実施形態と同様の作用効果を奏することができる。 In this way, even with a configuration in which the plurality of recesses 191A are two-dimensionally arranged, the same effects as in the above-described embodiment can be achieved.
 なお、これらの場合、複数の凹部191Aが幅方向に隣り合う間隔は、複数の凹部191Aが長さ方向に隣り合う間隔よりも短い。これにより、幅方向の固体電解質層113の付着量のばらつきを抑制できる。 Note that in these cases, the interval between the plurality of recesses 191A adjacent to each other in the width direction is shorter than the interval between the plurality of recesses 191A adjacent to each other in the length direction. Thereby, variations in the amount of solid electrolyte layer 113 deposited in the width direction can be suppressed.
 また、凹部191Aは、図9(A)、図9(B)では上面視して矩形状に表されている。ただし、図9(A)、図9(B)は、凹部191Aの位置を模式的に表したものであって、凹部191Aの形状は、これに限らない。例えば、凹部191Aの形状は、上面視して円形状、楕円形状または角取りされた矩形状であってもよい。以下、複数の凹部が二次元配列された構成である実施形態においては、同様の形状とすることができる。 Further, the recessed portion 191A is represented in a rectangular shape when viewed from above in FIGS. 9(A) and 9(B). However, FIGS. 9A and 9B schematically represent the position of the recess 191A, and the shape of the recess 191A is not limited to this. For example, the shape of the recessed portion 191A may be a circular shape, an elliptical shape, or a rounded rectangular shape when viewed from above. Hereinafter, in an embodiment in which a plurality of recesses are two-dimensionally arranged, the same shape can be used.
 また、第3の実施形態の説明では、第1面F1側のみを示したが、第2面F2側についても同様の構成を実現できる。 In addition, in the description of the third embodiment, only the first surface F1 side is shown, but a similar configuration can be realized also for the second surface F2 side.
 [第4の実施形態]
 本発明の第4の実施形態に係る電極箔について、図を参照して説明する。図10(A)、図10(B)は、第4の実施形態に係る電極箔の平面図である。図10(A)と図10(B)とでは、凹部の形成パターンが異なる。
[Fourth embodiment]
An electrode foil according to a fourth embodiment of the present invention will be described with reference to the drawings. 10(A) and 10(B) are plan views of the electrode foil according to the fourth embodiment. The formation patterns of the recesses are different between FIG. 10(A) and FIG. 10(B).
 図10(A)、図10(B)に示すように、第4の実施形態に係る電極箔111は、第3の実施形態に係る電極箔111の複数の凹部191に替えて複数の凹部191Bが形成されている点で異なる。第4の実施形態に係る電極箔111の他の構成は、第3の実施形態に係る電極箔111と同様であり、同様の箇所の説明は省略する。 As shown in FIGS. 10(A) and 10(B), the electrode foil 111 according to the fourth embodiment has a plurality of recesses 191B instead of the plurality of recesses 191 of the electrode foil 111 according to the third embodiment. They differ in that they are formed. The other configuration of the electrode foil 111 according to the fourth embodiment is the same as the electrode foil 111 according to the third embodiment, and the explanation of the similar parts will be omitted.
 図10(A)、図10(B)に示すように、電極箔111の第1面F1には、電極箔111の幅方向に沿って配列された複数の凹部191B列が複数個形成される。複数の列は、長さ方向に離間して形成される。 As shown in FIGS. 10(A) and 10(B), a plurality of rows of recesses 191B are formed on the first surface F1 of the electrode foil 111, which are arranged along the width direction of the electrode foil 111. . The plurality of rows are formed spaced apart in the length direction.
 図10(A)の場合、第1端111EG1側の複数列の間隔PL1は、第2端111EG2側の複数列の間隔PL2よりも狭い。図10(B)の場合、第1端111EG1側の複数列の間隔PL1は、第2端111EG2側の複数列の間隔PL2よりも広い。 In the case of FIG. 10(A), the interval PL1 between the plurality of rows on the first end 111EG1 side is narrower than the interval PL2 between the plurality of rows on the second end 111EG2 side. In the case of FIG. 10B, the interval PL1 between the plurality of rows on the first end 111EG1 side is wider than the interval PL2 between the plurality of rows on the second end 111EG2 side.
 このような構成であっても、上述の実施形態と同様の作用効果を奏することができる。また、この構成とすることによって、長さ方向における領域毎に、固体電解質層113の付着量を調整できる。 Even with such a configuration, the same effects as in the above embodiment can be achieved. Further, with this configuration, the amount of the solid electrolyte layer 113 attached can be adjusted for each region in the length direction.
 なお、第4の実施形態の説明でも、第1面F1側のみを示したが、第2面F2側についても同様の構成を実現できる。 Note that in the description of the fourth embodiment, only the first surface F1 side is shown, but a similar configuration can be realized for the second surface F2 side as well.
 [第5の実施形態]
 本発明の第5の実施形態に係る電極箔について、図を参照して説明する。図11(A)、図11(B)は、第5の実施形態に係る電極箔の側断面を拡大した図である。図11(A)と図11(B)とでは、凹部の形状が異なる。
[Fifth embodiment]
An electrode foil according to a fifth embodiment of the present invention will be described with reference to the drawings. 11(A) and 11(B) are enlarged side cross-sectional views of the electrode foil according to the fifth embodiment. The shapes of the recesses are different between FIG. 11(A) and FIG. 11(B).
 図11(A)に示すように、第5の実施形態に係る電極箔111は、第1の実施形態に係る電極箔111の複数の凹部191に替えて複数の凹部191Cが形成されている点で異なる。第5の実施形態に係る電極箔111の他の構成は、第1の実施形態に係る電極箔111と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 11(A), the electrode foil 111 according to the fifth embodiment has a plurality of recesses 191C formed in place of the plurality of recesses 191 of the electrode foil 111 according to the first embodiment. It's different. The other configurations of the electrode foil 111 according to the fifth embodiment are the same as those of the electrode foil 111 according to the first embodiment, and explanations of similar parts will be omitted.
 複数の凹部191Cは、複数の凹部191に対して形状が異なる。具体的には、複数の凹部191Cは、断面視した形状が三角形である。この際、複数の凹部191Cは、深くなるほど、電極箔111の長さ方向に沿った長さが短くなる形状である。複数の凹部192Cも、複数の凹部191Cと同様の形状である。 The plurality of recesses 191C have different shapes from the plurality of recesses 191. Specifically, the plurality of recesses 191C have a triangular cross-sectional shape. At this time, the plurality of recesses 191C are shaped so that the deeper they become, the shorter the length along the length direction of the electrode foil 111 becomes. The plurality of recesses 192C also have the same shape as the plurality of recesses 191C.
 図11(B)に示すように、第5の実施形態に係る電極箔111は、第1の実施形態に係る電極箔111に対して、複数の凹部191Dが形成されている点で異なる。第5の実施形態に係る電極箔111の他の構成は、第1の実施形態に係る電極箔111と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 11(B), the electrode foil 111 according to the fifth embodiment is different from the electrode foil 111 according to the first embodiment in that a plurality of recesses 191D are formed. The other configurations of the electrode foil 111 according to the fifth embodiment are the same as those of the electrode foil 111 according to the first embodiment, and explanations of similar parts will be omitted.
 複数の凹部191Dは、複数の凹部191に対して形状が異なる。具体的には、複数の凹部191Dは、断面視した形状が半円形である。この際、複数の凹部191Cは、深くなるほど、電極箔111の長さ方向に沿った長さが短くなる形状である。複数の凹部192Dも、複数の凹部191Dと同様の形状である。 The plurality of recesses 191D have different shapes from the plurality of recesses 191. Specifically, the plurality of recesses 191D have a semicircular cross-sectional shape. At this time, the plurality of recesses 191C are shaped so that the deeper they become, the shorter the length along the length direction of the electrode foil 111 becomes. The plurality of recesses 192D also have the same shape as the plurality of recesses 191D.
 これらの構成であっても、上述の実施形態と同様の作用効果を奏することができる。 Even with these configurations, the same effects as in the above embodiment can be achieved.
 [第6の実施形態]
 本発明の第6の実施形態に係る電極箔について、図を参照して説明する。図12(A)、図12(B)は、第6の実施形態に係る電極箔の側断面を拡大した図である。図12(A)と図12(B)とでは、凹部の形状が異なる。
[Sixth embodiment]
An electrode foil according to a sixth embodiment of the present invention will be described with reference to the drawings. 12(A) and 12(B) are enlarged side cross-sectional views of the electrode foil according to the sixth embodiment. The shapes of the recesses are different between FIG. 12(A) and FIG. 12(B).
 図12(A)に示すように、第6の実施形態に係る電極箔111は、第5の実施形態に係る電極箔111の複数の凹部191C、192Cに替えて複数の凹部191CA、192CAが形成されている点で異なる。第6の実施形態に係る電極箔111の他の構成は、第5の実施形態に係る電極箔111と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 12(A), the electrode foil 111 according to the sixth embodiment has a plurality of recesses 191CA and 192CA formed in place of the plurality of recesses 191C and 192C of the electrode foil 111 according to the fifth embodiment. It differs in that it is The other configurations of the electrode foil 111 according to the sixth embodiment are the same as the electrode foil 111 according to the fifth embodiment, and explanations of the similar parts will be omitted.
 複数の凹部191CAは、複数の凹部191Cに対して形状が異なる。具体的には、複数の凹部191CAの断面は三角形であるが、複数の凹部191CAでは、電極箔111の長さ方向における凹部191CAの最深部の位置が、第1面F1に開口する端部の位置よりも第2端111EG2側にある。すなわち、凹部191CAは、第2端111EG2側の壁面は、凹部191CAの第1面F1への開口部に対して、第2端111EG2側に凹む形状である。第2面F2に形成される複数の凹部192CAも、複数の凹部191CAと同様の形状である。 The plurality of recesses 191CA have different shapes from the plurality of recesses 191C. Specifically, the cross sections of the plurality of recesses 191CA are triangular, but in the plurality of recesses 191CA, the position of the deepest part of the recess 191CA in the length direction of the electrode foil 111 is at the end of the opening on the first surface F1. It is located closer to the second end 111EG2 than the position. That is, the wall surface of the recess 191CA on the second end 111EG2 side is recessed toward the second end 111EG2 with respect to the opening of the recess 191CA to the first surface F1. The plurality of recesses 192CA formed on the second surface F2 also have the same shape as the plurality of recesses 191CA.
 図12(B)に示すように、第6の実施形態に係る電極箔111は、第5の実施形態に係る電極箔111の複数の凹部191D、192Dに替えて複数の凹部191DA、192DAが形成されている点で異なる。第6の実施形態に係る電極箔111の他の構成は、第5の実施形態に係る電極箔111と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 12(B), the electrode foil 111 according to the sixth embodiment has a plurality of recesses 191DA and 192DA instead of the plurality of recesses 191D and 192D of the electrode foil 111 according to the fifth embodiment. It differs in that it is The other configurations of the electrode foil 111 according to the sixth embodiment are the same as the electrode foil 111 according to the fifth embodiment, and explanations of the similar parts will be omitted.
 複数の凹部191DAは、複数の凹部191Dに対して形状が異なる。具体的には、複数の凹部191DAの断面を形成する線(壁面)は曲線であり、電極箔111の長さ方向における凹部191CAの最深部の位置が、第1面F1に開口する端部の位置よりも第2端111EG2側にある。すなわち、凹部191DAは、第2端111EG2側の壁面は、凹部191DAの第1面F1への開口部に対して、第2端111EG2側に凹む形状である。第2面F2に形成される複数の凹部192DAも、複数の凹部191DAと同様の形状である。 The plurality of recesses 191DA have different shapes from the plurality of recesses 191D. Specifically, the line (wall surface) forming the cross section of the plurality of recesses 191DA is a curved line, and the position of the deepest part of the recess 191CA in the length direction of the electrode foil 111 is at the end opening to the first surface F1. It is located closer to the second end 111EG2 than the position. That is, the wall surface of the recess 191DA on the second end 111EG2 side is recessed toward the second end 111EG2 with respect to the opening of the recess 191DA to the first surface F1. The plurality of recesses 192DA formed on the second surface F2 also have the same shape as the plurality of recesses 191DA.
 これらの構成であっても、上述の実施形態と同様の作用効果を奏することができる。 Even with these configurations, the same effects as in the above embodiment can be achieved.
 さらに、電極箔111を電解質溶液に浸漬する際に、第2端111EG2が下側となる。このため、複数の凹部191CAや複数の凹部191DAにおける第2端111EG2側に凹む部分には、電極箔111を電解質溶液に浸漬して引き上げる際に、電解質溶液が溜まりやすく、落ち難い。したがって、この部分は、液だまり部POTとして機能する。 Furthermore, when the electrode foil 111 is immersed in the electrolyte solution, the second end 111EG2 is on the lower side. Therefore, when the electrode foil 111 is immersed in the electrolyte solution and pulled up, the electrolyte solution tends to accumulate in the portions of the plurality of recesses 191CA and the plurality of recesses 191DA that are recessed toward the second end 111EG2 side, and is difficult to fall off. Therefore, this portion functions as a liquid pool POT.
 これにより、複数の凹部191CAや複数の凹部191DAを有する構成とすることで、固体電解質層113を電極箔111に形成し易い。 As a result, the solid electrolyte layer 113 can be easily formed on the electrode foil 111 by having a configuration having a plurality of recesses 191CA and a plurality of recesses 191DA.
 なお、上述の各実施形態では、電極箔111の幅方向の全体にわたって凹部を形成する態様を示した。しかしながら、電極箔111の幅方向の一部の領域のみに凹部を形成してもよい。例えば、電極箔111の幅方向の中央部に凹部を形成し、端部に凹部を形成しない態様や、電極箔111の幅方向の端部に凹部を形成し、中央部に凹部を形成しない態様も適用できる。 In addition, in each of the above-mentioned embodiments, a mode is shown in which the recessed portion is formed over the entire width direction of the electrode foil 111. However, the recess may be formed only in a partial region of the electrode foil 111 in the width direction. For example, a mode in which a recess is formed at the center in the width direction of the electrode foil 111 but no recess is formed at the end, or a mode in which a recess is formed at the end in the width direction of the electrode foil 111 but no recess is formed at the center. can also be applied.
 また、上述の各実施形態では、凹部の深さを同じにしているが、形成位置に応じて凹部の深さを異ならせてもよい。同様に、電極箔111の長さ方向に沿った凹部の長さは、すべて同じであってもよく、形成位置に応じて異ならせてもよい。 Furthermore, in each of the embodiments described above, the depth of the recesses is the same, but the depth of the recesses may be varied depending on the formation position. Similarly, the lengths of the recesses along the length direction of the electrode foil 111 may all be the same, or may be different depending on the formation position.
 また、上述の各実施形態で示した複数の凹部の個数は一例であり、個数はこれに限られない。 Further, the number of the plurality of recesses shown in each of the above embodiments is an example, and the number is not limited to this.
 [第7の実施形態]
 本発明の第7の実施形態に係る電極箔について、図を参照して説明する。図13は、第7の実施形態に係る電極箔の側断面を拡大した図である。
[Seventh embodiment]
An electrode foil according to a seventh embodiment of the present invention will be described with reference to the drawings. FIG. 13 is an enlarged side cross-sectional view of the electrode foil according to the seventh embodiment.
 図13に示すように、第7の実施形態に係る電極箔111は、第1の実施形態に係る電極箔111の複数の凹部191に替えて複数の凹部191Zが形成されている点で異なる。第6の実施形態に係る電極箔111の他の構成は、第5の実施形態に係る電極箔111と同様であり、同様の箇所の説明は省略する。 As shown in FIG. 13, the electrode foil 111 according to the seventh embodiment is different in that a plurality of recesses 191Z are formed instead of the plurality of recesses 191 of the electrode foil 111 according to the first embodiment. The other configurations of the electrode foil 111 according to the sixth embodiment are the same as the electrode foil 111 according to the fifth embodiment, and explanations of the similar parts will be omitted.
 複数の凹部191Z、192Zは、上述の各実施形態の凹部と異なり、電極箔111を厚み方向に湾曲させることによって形成される。 The plurality of recesses 191Z and 192Z are formed by curving the electrode foil 111 in the thickness direction, unlike the recesses in each of the embodiments described above.
 このような構成であっても、上述の実施形態と同様の作用効果を奏することができる。 Even with such a configuration, the same effects as in the above embodiment can be achieved.
 [第8の実施形態]
 上記各実施形態では、電極箔およびコンデンサ素子を示したが、以下の実施形態では、これら電極箔およびコンデンサ素子を用いた固体電解コンデンサについて示す。
[Eighth embodiment]
In each of the above embodiments, an electrode foil and a capacitor element are shown, but in the following embodiments, a solid electrolytic capacitor using these electrode foils and a capacitor element is shown.
 本発明の第8の実施形態に係る固体電解コンデンサについて、図を参照して説明する。図14は、第8の実施形態に係る固体電解コンデンサの側面断面図である。 A solid electrolytic capacitor according to an eighth embodiment of the present invention will be described with reference to the drawings. FIG. 14 is a side sectional view of a solid electrolytic capacitor according to an eighth embodiment.
 図14に示すように、固体電解コンデンサ1は、コンデンサ集合体10、第1端子電極20、第2端子電極30、および、絶縁性樹脂体40を備える。 As shown in FIG. 14, the solid electrolytic capacitor 1 includes a capacitor assembly 10, a first terminal electrode 20, a second terminal electrode 30, and an insulating resin body 40.
 コンデンサ集合体10は、複数のコンデンサ素子11-14(コンデンサ素子11、コンデンサ素子12、コンデンサ素子13、コンデンサ素子14)、および、導通部材19を備える。なお、本実施形態では、コンデンサ集合体10を構成するコンデンサ素子の個数は、4個であるが、コンデンサ素子の個数は、複数であればよい。 The capacitor assembly 10 includes a plurality of capacitor elements 11 - 14 (capacitor element 11 , capacitor element 12 , capacitor element 13 , capacitor element 14 ) and a conductive member 19 . In this embodiment, the number of capacitor elements constituting the capacitor assembly 10 is four, but the number of capacitor elements may be more than one.
 複数のコンデンサ素子11-14は、同じ構成を有する。複数のコンデンサ素子11-14は、上述の各実施形態に示した電極箔111およびコンデンサ素子11の構成を備える。 The plurality of capacitor elements 11-14 have the same configuration. The plurality of capacitor elements 11-14 have the configurations of the electrode foil 111 and capacitor element 11 shown in each of the above-described embodiments.
 複数のコンデンサ素子11-14は、積層されている。この際、複数のコンデンサ素子11-14は、第2端部側の積層方向の寸法が第1端部側の積層方向の寸法よりも大きくなるように積層される。すなわち、複数のコンデンサ素子11-14は、側面視して第1端部側から第2端部側に向かって厚み方向に広がるように配置される。 The plurality of capacitor elements 11-14 are stacked. At this time, the plurality of capacitor elements 11-14 are stacked such that the dimension in the stacking direction on the second end side is larger than the dimension in the stacking direction on the first end side. That is, the plurality of capacitor elements 11-14 are arranged so as to spread in the thickness direction from the first end side toward the second end side when viewed from the side.
 複数のコンデンサ素子11-14におけるそれぞれの電極箔111の第1端111EG1側の端部は、第1端子電極20に接続される。 The end of each electrode foil 111 in the plurality of capacitor elements 11-14 on the first end 111EG1 side is connected to the first terminal electrode 20.
 複数のコンデンサ素子11-14の接続層(固体電解質層113を含む導電性を有する層)は、導通部材19によって電気的物理的に接続され、これらは、第2端子電極30に電気的物理的に接続される。 The connection layers (conductive layers including the solid electrolyte layer 113) of the plurality of capacitor elements 11-14 are electrically and physically connected by the conductive member 19, and these are electrically and physically connected to the second terminal electrode 30. connected to.
 コンデンサ集合体10は、絶縁性樹脂体40によって封止されている。絶縁性樹脂体40は、天面401、底面402、第1端面403、および、第2端面404を有する略直方体形状である。 The capacitor assembly 10 is sealed with an insulating resin body 40. The insulating resin body 40 has a substantially rectangular parallelepiped shape having a top surface 401 , a bottom surface 402 , a first end surface 403 , and a second end surface 404 .
 第1端子電極20は、絶縁性樹脂体40の第1端面403から外部に露出し、第1端面403および底面402に亘って配置される。第2端子電極30は、絶縁性樹脂体40の第2端面404から外部に露出し、第2端面404および底面402に亘って配置される。 The first terminal electrode 20 is exposed to the outside from the first end surface 403 of the insulating resin body 40 and is disposed across the first end surface 403 and the bottom surface 402. The second terminal electrode 30 is exposed to the outside from the second end surface 404 of the insulating resin body 40 and is disposed across the second end surface 404 and the bottom surface 402 .
 導通部材19は、例えばニッケル、銀又は銅を主成分とする電極ペーストであることが好ましい。導通部材19の最大厚みは、2μm以上、20μm以下であることが好ましい。なお、導通部材19を用いなくても、複数のコンデンサ素子11-14間、コンデンサ素子12、13と第2端子電極30との間等で、所望の導電率以上の導電性が得られれば、導通部材19を省略することも可能である。 The conductive member 19 is preferably an electrode paste containing nickel, silver, or copper as a main component, for example. The maximum thickness of the conductive member 19 is preferably 2 μm or more and 20 μm or less. Note that even without using the conductive member 19, if conductivity higher than the desired conductivity can be obtained between the plurality of capacitor elements 11-14, between the capacitor elements 12 and 13 and the second terminal electrode 30, etc. It is also possible to omit the conductive member 19.
 第1端子電極20および第2端子電極30は、折り曲げ加工が容易で高い導電性を有する金属材料で形成されていることが好ましい。第1端子電極20および第2端子電極30は、例えば金属製の板材から切り出された材料で形成されている。なお、第1端子電極20および第2端子電極30は同一材料であっても良いし、異なる材料であってもよい。 The first terminal electrode 20 and the second terminal electrode 30 are preferably formed of a metal material that is easy to bend and has high conductivity. The first terminal electrode 20 and the second terminal electrode 30 are formed of a material cut out from a metal plate, for example. Note that the first terminal electrode 20 and the second terminal electrode 30 may be made of the same material or may be made of different materials.
 絶縁性樹脂体40は、樹脂が主体であり、フィラーを含んでいてもよい。樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、シリコーン樹脂、ポリアミド樹脂、液晶ポリマー等が好ましい。樹脂の形態は、固形樹脂、液状樹脂いずれも使用可能である。樹脂封止後のバレル研磨により、角部に丸みが付けられていることが好ましい。フィラーとしては、例えば、シリカ粒子、アルミナ粒子、金属粒子等が好ましい。フィラーの最大径は、例えば30μm以上、40μm以下が望ましい。   固形エポキシ樹脂とフェノール樹脂に、シリカ粒子を含む材料であることがより好ましい。 The insulating resin body 40 is mainly made of resin and may contain filler. Preferred examples of the resin include epoxy resins, phenol resins, polyimide resins, silicone resins, polyamide resins, and liquid crystal polymers. As for the form of the resin, both solid resin and liquid resin can be used. Preferably, the corners are rounded by barrel polishing after resin sealing. As the filler, for example, silica particles, alumina particles, metal particles, etc. are preferable. The maximum diameter of the filler is preferably 30 μm or more and 40 μm or less, for example. More preferably, the material contains silica particles in solid epoxy resin and phenol resin.
 このような構成において、上述の電極箔111およびコンデンサ素子11の構成を採用することで、固体電解コンデンサ1は、高い信頼性を実現できる。 In such a configuration, by employing the configuration of the electrode foil 111 and the capacitor element 11 described above, the solid electrolytic capacitor 1 can achieve high reliability.
 [第9の実施形態]
 上記各実施形態では、電極箔およびコンデンサ素子を示したが、以下の実施形態では、これら電極箔およびコンデンサ素子を用いた固体電解コンデンサについて示す。
[Ninth embodiment]
In each of the above embodiments, an electrode foil and a capacitor element are shown, but in the following embodiments, a solid electrolytic capacitor using these electrode foils and a capacitor element is shown.
 本発明の第9の実施形態に係る固体電解コンデンサについて、図を参照して説明する。図15は、第9の実施形態に係る固体電解コンデンサの側面断面図である。 A solid electrolytic capacitor according to a ninth embodiment of the present invention will be described with reference to the drawings. FIG. 15 is a side sectional view of a solid electrolytic capacitor according to a ninth embodiment.
 図15に示すように、第9の実施形態に係る固体電解コンデンサ1Aは、第8の実施形態に係る固体電解コンデンサ1に対して、コンデンサ集合体10A、第1端子電極20A、第2端子電極30Aにおいて異なる。以下では、固体電解コンデンサ1と異なる箇所のみを説明する。 As shown in FIG. 15, the solid electrolytic capacitor 1A according to the ninth embodiment has a capacitor assembly 10A, a first terminal electrode 20A, a second terminal electrode 30A is different. Below, only the points different from the solid electrolytic capacitor 1 will be explained.
 コンデンサ集合体10Aは、複数のコンデンサ素子11-14を備える。複数のコンデンサ素子11-14は、互いに平行なるように積層される。 The capacitor assembly 10A includes a plurality of capacitor elements 11-14. The plurality of capacitor elements 11-14 are stacked in parallel to each other.
 複数のコンデンサ素子11、12、13、14の第1端部(陽極)は束ねられている。この束ねられている部分は、第1端子電極20Aに接続される。 The first ends (anodes) of the plurality of capacitor elements 11, 12, 13, and 14 are bundled. This bundled portion is connected to the first terminal electrode 20A.
 第2端子電極30Aは、平板状の台部309を有する。コンデンサ集合体10Aは、台部309上に載置されている。第2端子電極30Aは、コンデンサ集合体10Aの接続層(固体電解質層113を含む導電性を有する層)に接続される。 The second terminal electrode 30A has a flat plate-shaped base portion 309. The capacitor assembly 10A is placed on the stand 309. The second terminal electrode 30A is connected to a connection layer (a conductive layer including the solid electrolyte layer 113) of the capacitor assembly 10A.
 このような構成において、上述の電極箔111およびコンデンサ素子11の構成を採用することで、固体電解コンデンサ1Aは、高い信頼性を実現できる。 In such a configuration, by employing the configuration of the electrode foil 111 and capacitor element 11 described above, the solid electrolytic capacitor 1A can achieve high reliability.
 なお、固体電解コンデンサは、第8の実施形態および第9の実施形態に示したような、固体電解コンデンサの厚み方向に複数の平膜状のコンデンサ素子を積層する構成に限るものではない。例えば、平膜状のコンデンサ素子を巻回させ、円筒形の筐体内に収容した構成であってもよい。 Note that the solid electrolytic capacitor is not limited to the structure in which a plurality of flat film capacitor elements are stacked in the thickness direction of the solid electrolytic capacitor as shown in the eighth embodiment and the ninth embodiment. For example, a configuration may be adopted in which a flat film-shaped capacitor element is wound and housed in a cylindrical housing.
 また、上述の各実施形態に示す構成および各種の派生例は、適宜組み合わせることが可能であり、それぞれの組み合わせに応じた作用効果を奏することができる。 Further, the configurations and various derivative examples shown in each of the above-described embodiments can be combined as appropriate, and effects can be achieved according to each combination.
 <1> それぞれ多孔質体である第1表層部および第2表層部と、前記第1表層部と前記第2表層部との間のコア部とを、厚み方向に備え、弁作用金属を含む平膜状の本体と、
 前記第1表層部および前記第2表層部のそれぞれの表面に形成された誘電体層と、
を備え、
 前記本体は、前記厚み方向に凹む凹部を有する、電極箔。
<1> A first surface layer portion and a second surface layer portion, each of which is a porous body, and a core portion between the first surface layer portion and the second surface layer portion are provided in the thickness direction, and include a valve metal. A flat membrane-like body,
a dielectric layer formed on each surface of the first surface layer portion and the second surface layer portion;
Equipped with
The main body is an electrode foil having a recessed portion recessed in the thickness direction.
 <2> 前記凹部における前記厚み方向に直交する第1方向の一方端側の側面は、前記凹部を形成する壁面に対してさらに凹む部分を有する、<1>の電極箔。 <2> The electrode foil of <1>, wherein the side surface of the recess on one end side in the first direction perpendicular to the thickness direction has a portion that is further recessed with respect to the wall surface forming the recess.
 <3> 前記凹部は、前記厚み方向に直交する第1方向の長さが、前記厚み方向および前記第1方向に直交する第2方向の長さよりも短い形状である、<1>または<2>の電極箔。 <3> The recess has a shape in which a length in a first direction perpendicular to the thickness direction is shorter than a length in a second direction perpendicular to the thickness direction and the first direction. > Electrode foil.
 <4> 前記凹部は、複数形成されている、<1>乃至<3>のいずれかの電極箔。 <4> The electrode foil according to any one of <1> to <3>, wherein a plurality of the recesses are formed.
 <5> 前記複数の凹部は、前記厚み方向に直交する第1方向に間隔をあけて形成される、<4>の電極箔。 <5> The electrode foil of <4>, wherein the plurality of recesses are formed at intervals in a first direction perpendicular to the thickness direction.
 <6> 前記複数の凹部は、第1方向および前記厚み方向に直交する第2方向に間隔をあけて形成される、<4>または<5>の電極箔。 <6> The electrode foil of <4> or <5>, wherein the plurality of recesses are formed at intervals in a first direction and a second direction perpendicular to the thickness direction.
 <7> 前記複数の凹部は、前記厚み方向に直交する第1方向および第2方向にそれぞれ間隔をあけて形成され、
 前記第2方向の間隔は、前記第1方向の間隔よりも短い、<4>の電極箔。
<7> The plurality of recesses are formed at intervals in a first direction and a second direction perpendicular to the thickness direction, respectively,
The electrode foil of <4>, wherein the interval in the second direction is shorter than the interval in the first direction.
 <8> 前記凹部は、前記本体の第2方向の両端に達する形状である、<3>乃至<5>のいずれかの電極箔。 <8> The electrode foil according to any one of <3> to <5>, wherein the recess has a shape that reaches both ends of the main body in the second direction.
 <9> 前記複数の凹部の第1方向の間隔は、前記第1方向の位置によらず同じである、<5>乃至<8>のいずれかの電極箔。 <9> The electrode foil according to any one of <5> to <8>, wherein the interval in the first direction of the plurality of recesses is the same regardless of the position in the first direction.
 <10> 前記複数の凹部の第1方向の間隔は、前記第1方向の位置によって異なる、<5>乃至<8>のいずれかの電極箔。 <10> The electrode foil according to any one of <5> to <8>, wherein the interval in the first direction of the plurality of recesses varies depending on the position in the first direction.
 <11> それぞれ多孔質体である第1表層部および第2表層部と、前記第1表層部と前記第2表層部との間のコア部とを、厚み方向に備え、弁作用金属を含む平膜状の本体と、
 前記第1表層部および前記第2表層部のそれぞれの表面に形成された誘電体層と、
を備え、前記本体は、前記厚み方向に凹む凹部を有する電極箔と、
 前記電極箔の前記第1表層部および前記第2表層部における前記誘電体層の形成領域を覆う固体電解質層と、
 を備える、コンデンサ素子。
<11> A first surface layer portion and a second surface layer portion, each of which is a porous body, and a core portion between the first surface layer portion and the second surface layer portion are provided in the thickness direction, and include a valve metal. A flat membrane-like body,
a dielectric layer formed on each surface of the first surface layer portion and the second surface layer portion;
The main body includes an electrode foil having a concave portion recessed in the thickness direction;
a solid electrolyte layer covering the formation region of the dielectric layer in the first surface layer portion and the second surface layer portion of the electrode foil;
A capacitor element comprising:
 <12> <11>のコンデンサ素子を複数備え、
 前記複数のコンデンサ素子は、並列接続された、固体電解コンデンサ。
<12> A plurality of capacitor elements of <11> are provided,
The plurality of capacitor elements are solid electrolytic capacitors connected in parallel.
1、1A:固体電解コンデンサ
10、10A:コンデンサ集合体
11、12、13、14:コンデンサ素子
19:導通部材
20、20A:第1端子電極
30、30A:第2端子電極
40:絶縁性樹脂体
111:電極箔
111BM:コア部
111EG1:第1端
111EG2:第2端
111P1:第1表層部
111P2:第2表層部
112:誘電体層
113:固体電解質層
191、191A、191B、191C、191CA、191D、191DA、191Z、192、192C、192CA、192D、192DA:凹部
309:台部
401:天面
402:底面
403:第1端面
404:第2端面
F1:第1面
F2:第2面
1, 1A: Solid electrolytic capacitors 10, 10A: Capacitor assembly 11, 12, 13, 14: Capacitor element 19: Conductive member 20, 20A: First terminal electrode 30, 30A: Second terminal electrode 40: Insulating resin body 111: Electrode foil 111BM: Core portion 111EG1: First end 111EG2: Second end 111P1: First surface layer portion 111P2: Second surface layer portion 112: Dielectric layer 113: Solid electrolyte layer 191, 191A, 191B, 191C, 191CA, 191D, 191DA, 191Z, 192, 192C, 192CA, 192D, 192DA: Recessed portion 309: Base portion 401: Top surface 402: Bottom surface 403: First end surface 404: Second end surface F1: First surface F2: Second surface

Claims (12)

  1.  それぞれ多孔質体である第1表層部および第2表層部と、前記第1表層部と前記第2表層部との間のコア部とを、厚み方向に備え、弁作用金属を含む平膜状の本体と、
     前記第1表層部および前記第2表層部のそれぞれの表面に形成された誘電体層と、
    を備え、
     前記本体は、前記厚み方向に凹む凹部を有する、
     電極箔。
    A flat film-like material comprising, in the thickness direction, a first surface layer portion and a second surface layer portion each of which is a porous body, and a core portion between the first surface layer portion and the second surface layer portion, and containing a valve metal. The main body of
    a dielectric layer formed on each surface of the first surface layer portion and the second surface layer portion;
    Equipped with
    The main body has a recess that is recessed in the thickness direction,
    electrode foil.
  2.  前記凹部における前記厚み方向に直交する第1方向の一方端側の側面は、前記凹部を形成する壁面に対してさらに凹む部分を有する、
     請求項1に記載の電極箔。
    A side surface of the recess on one end side in a first direction perpendicular to the thickness direction has a portion that is further recessed with respect to a wall surface forming the recess.
    The electrode foil according to claim 1.
  3.  前記凹部は、前記厚み方向に直交する第1方向の長さが、前記厚み方向および前記第1方向に直交する第2方向の長さよりも短い形状である、
     請求項1または請求項2に記載の電極箔。
    The recess has a shape in which a length in a first direction perpendicular to the thickness direction is shorter than a length in a second direction perpendicular to the thickness direction and the first direction.
    The electrode foil according to claim 1 or 2.
  4.  前記凹部は、複数形成されている、
     請求項1乃至請求項3のいずれかに記載の電極箔。
    A plurality of the recesses are formed,
    The electrode foil according to any one of claims 1 to 3.
  5.  前記複数の凹部は、前記厚み方向に直交する第1方向に間隔をあけて形成される、
     請求項4に記載の電極箔。
    The plurality of recesses are formed at intervals in a first direction perpendicular to the thickness direction,
    The electrode foil according to claim 4.
  6.  前記複数の凹部は、第1方向および前記厚み方向に直交する第2方向に間隔をあけて形成される、
     請求項4または請求項5に記載の電極箔。
    The plurality of recesses are formed at intervals in a first direction and a second direction perpendicular to the thickness direction,
    The electrode foil according to claim 4 or 5.
  7.  前記複数の凹部は、前記厚み方向に直交する第1方向および第2方向にそれぞれ間隔をあけて形成され、
     前記第2方向の間隔は、前記第1方向の間隔よりも短い、
     請求項4に記載の電極箔。
    The plurality of recesses are formed at intervals in a first direction and a second direction perpendicular to the thickness direction, respectively,
    The distance in the second direction is shorter than the distance in the first direction.
    The electrode foil according to claim 4.
  8.  前記凹部は、前記本体の第2方向の両端に達する形状である、
     請求項3乃至請求項5のいずれかに記載の電極箔。
    The recess has a shape that reaches both ends of the main body in the second direction,
    The electrode foil according to any one of claims 3 to 5.
  9.  前記複数の凹部の第1方向の間隔は、前記第1方向の位置によらず同じである、
     請求項5乃至請求項8のいずれかに記載の電極箔。
    The intervals in the first direction of the plurality of recesses are the same regardless of the position in the first direction,
    The electrode foil according to any one of claims 5 to 8.
  10.  前記複数の凹部の第1方向の間隔は、前記第1方向の位置によって異なる、
     請求項5乃至請求項8のいずれかに記載の電極箔。
    The distance between the plurality of recesses in the first direction varies depending on the position in the first direction.
    The electrode foil according to any one of claims 5 to 8.
  11.  それぞれ多孔質体である第1表層部および第2表層部と、前記第1表層部と前記第2表層部との間のコア部とを、厚み方向に備え、弁作用金属を含む平膜状の本体と、
     前記第1表層部および前記第2表層部のそれぞれの表面に形成された誘電体層と、
    を備え、前記本体は、前記厚み方向に凹む凹部を有する電極箔と、
     前記電極箔の前記第1表層部および前記第2表層部における前記誘電体層の形成領域を覆う固体電解質層と、
     を備える、コンデンサ素子。
    A flat film-like material comprising, in the thickness direction, a first surface layer portion and a second surface layer portion each of which is a porous body, and a core portion between the first surface layer portion and the second surface layer portion, and containing a valve metal. The main body of
    a dielectric layer formed on each surface of the first surface layer portion and the second surface layer portion;
    The main body includes an electrode foil having a concave portion recessed in the thickness direction;
    a solid electrolyte layer covering the formation region of the dielectric layer in the first surface layer portion and the second surface layer portion of the electrode foil;
    A capacitor element comprising:
  12.  請求項11に記載のコンデンサ素子を複数備え、
     前記複数のコンデンサ素子は、並列接続された、
     固体電解コンデンサ。
    A plurality of capacitor elements according to claim 11 are provided,
    The plurality of capacitor elements are connected in parallel,
    Solid electrolytic capacitor.
PCT/JP2023/008199 2022-03-30 2023-03-06 Electrode foil, capacitor element and solid electrolytic capacitor WO2023189222A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022054838 2022-03-30
JP2022-054838 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023189222A1 true WO2023189222A1 (en) 2023-10-05

Family

ID=88201332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008199 WO2023189222A1 (en) 2022-03-30 2023-03-06 Electrode foil, capacitor element and solid electrolytic capacitor

Country Status (1)

Country Link
WO (1) WO2023189222A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
JP2005217233A (en) * 2004-01-30 2005-08-11 Nec Tokin Corp Solid electrolytic capacitor and its manufacturing method
JP2006222333A (en) * 2005-02-14 2006-08-24 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2013153024A (en) * 2012-01-24 2013-08-08 Nichicon Corp Electrolytic capacitor and manufacturing method of the same
JP2017224843A (en) * 2016-03-31 2017-12-21 日本ケミコン株式会社 Electrode foil, wound capacitor, manufacturing method of electrode foil, and manufacturing method of wound capacitor
WO2022009800A1 (en) * 2020-07-07 2022-01-13 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor element, and solid electrolytic capacitor and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09298057A (en) * 1996-04-30 1997-11-18 Sanyo Electric Co Ltd Lithium ion battery
JP2005217233A (en) * 2004-01-30 2005-08-11 Nec Tokin Corp Solid electrolytic capacitor and its manufacturing method
JP2006222333A (en) * 2005-02-14 2006-08-24 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2013153024A (en) * 2012-01-24 2013-08-08 Nichicon Corp Electrolytic capacitor and manufacturing method of the same
JP2017224843A (en) * 2016-03-31 2017-12-21 日本ケミコン株式会社 Electrode foil, wound capacitor, manufacturing method of electrode foil, and manufacturing method of wound capacitor
WO2022009800A1 (en) * 2020-07-07 2022-01-13 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor element, and solid electrolytic capacitor and method for manufacturing same

Similar Documents

Publication Publication Date Title
US11437198B2 (en) Method for producing solid electrolytic capacitor, and solid electrolytic capacitor
JP6798560B2 (en) Solid electrolytic capacitors
JP7245997B2 (en) Electrolytic capacitor and manufacturing method thereof
US20060256506A1 (en) Solid electrolyte capacitor and process for producing same
JP6747512B2 (en) Solid electrolytic capacitor
US20230117353A1 (en) Solid electrolytic capacitor
CN115380345B (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
US20220399168A1 (en) Electrolytic capacitor
JP2003086459A (en) Solid electrolytic capacitor
WO2023189222A1 (en) Electrode foil, capacitor element and solid electrolytic capacitor
JP6664087B2 (en) Electrolytic capacitor and method of manufacturing the same
US11972907B2 (en) Solid electrolytic capacitor
US20110205691A1 (en) Solid electrolytic capacitor and a method for manufacturing the same
WO2022163645A1 (en) Electrolytic capacitor
WO2022163644A1 (en) Electrolytic capacitor
JP2010098163A (en) Solid electrolytic capacitor
JP7419791B2 (en) solid electrolytic capacitor
JP3123232B2 (en) Multilayer solid electrolytic capacitors
JP2004071745A (en) Solid electrolytic capacitor
JP7487719B2 (en) Solid electrolytic capacitor element, solid electrolytic capacitor, and method for manufacturing solid electrolytic capacitor element
US7365963B2 (en) Capacitor element, solid electrolytic capacitor, processes for their production and capacitor element combination
TWI829265B (en) capacitor element
JP7400953B2 (en) Electrolytic capacitor and electrolytic capacitor manufacturing method
US11984272B2 (en) Solid electrolytic capacitor
WO2023171045A1 (en) Electrolytic capacitor element and electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779251

Country of ref document: EP

Kind code of ref document: A1