WO2023188614A1 - 眼底観察装置 - Google Patents

眼底観察装置 Download PDF

Info

Publication number
WO2023188614A1
WO2023188614A1 PCT/JP2022/047116 JP2022047116W WO2023188614A1 WO 2023188614 A1 WO2023188614 A1 WO 2023188614A1 JP 2022047116 W JP2022047116 W JP 2022047116W WO 2023188614 A1 WO2023188614 A1 WO 2023188614A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
mirror
fundus
ellipsoidal mirror
Prior art date
Application number
PCT/JP2022/047116
Other languages
English (en)
French (fr)
Inventor
美智子 中西
慎悟 上野
洋人 田嶋
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2023188614A1 publication Critical patent/WO2023188614A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions

Definitions

  • the present invention relates to a fundus observation device.
  • Fundus observation devices for screening and treating eye diseases are required to be able to easily observe and photograph the fundus of the eye to be examined with a wide field of view. Specifically, there is a demand for a device that can observe the fundus of the eye to be examined at a wide angle of view of more than 80 degrees in one shot.
  • a scanning laser ophthalmoscope (SLO) is known as such a fundus observation device.
  • the SLO is a device that scans the fundus with light and forms an image of the fundus by detecting the returned light from the fundus with a light receiving device.
  • Patent Document 1 discloses a scanning ophthalmoscope capable of scanning the retina at a wide angle by performing two-dimensional parallel light scanning using two ellipsoidal mirrors and a plane mirror, which are moved by a scanning moving means. ing.
  • the present invention has been made in view of these circumstances, and one of its purposes is to provide a new technique for easily adjusting optical members with high precision.
  • One aspect of the embodiment includes an optical system that projects light from a light source onto the fundus of the eye to be examined and receives return light from the fundus, each of which has a concave reflective surface, two concave mirrors that guide the light to the fundus of the eye and guide the returned light to the optical system;
  • a fundus observation device including a holding member capable of holding a concave mirror.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical system of the fundus observation device according to the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellipsoidal mirror and a second ellipsoidal mirror according to the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellipsoidal mirror and a second ellipsoidal mirror according to the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellipsoidal mirror and a second ellipsoidal mirror according to the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellipsoidal mirror and a second ellipsoidal mirror according to the first embodiment.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an optical system of the fundus observation device according to the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellips
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellipsoidal mirror and a second ellipsoidal mirror according to the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellipsoidal mirror and a second ellipsoidal mirror according to a comparative example of the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellipsoidal mirror and a second ellipsoidal mirror according to a comparative example of the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellipsoidal mirror and a second ellipsoidal mirror according to the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a first ellipsoidal mirror and a second ellipsoidal mirror according to the first embodiment.
  • FIG. 2 is a schematic diagram showing an example of the configuration of a processing system of the fundus observation device according to the first embodiment. It is a flow chart showing an example of operation of the fundus observation device according to the first embodiment.
  • It is a schematic diagram showing an example of composition of an optical system of a fundus oculi observation device concerning a 2nd embodiment.
  • It is a schematic diagram showing an example of composition of an optical system of a fundus oculi observation device concerning a 2nd embodiment.
  • FIG. 7 is a schematic diagram for explaining the operation of the fundus observation device according to the second embodiment. It is a schematic diagram showing an example of composition of an optical system of a fundus oculi observation device concerning a 3rd embodiment. It is a schematic diagram showing an example of composition of an optical system of a fundus oculi observation device concerning a 4th embodiment. It is a schematic diagram showing an example of composition of an optical system of a fundus observation device concerning a 5th embodiment.
  • a "processor” refers to, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated C circuit), programmable logic devices (for example, SPLD (Simple Programmable Logic Device), CPLD (Complex It means a circuit such as a programmable logic device (FPGA) or a field programmable gate array (FPGA).
  • the processor realizes the functions according to the embodiment by, for example, reading and executing a program stored in a storage circuit or a storage device.
  • the fundus observation device includes an optical system and two concave mirrors having concave reflective surfaces, and guides light from the optical system to the fundus of the eye to be examined and returns light from the fundus to the optical system. .
  • the optical system projects light from a light source onto the fundus of the eye via two concave mirrors, and receives light returned from the fundus of the eye via two concave mirrors.
  • the fundus observation device includes a holding member capable of holding two concave mirrors disposed on both sides at predetermined relative positions in a predetermined one-dimensional direction or two-dimensional direction. In some embodiments, the retaining member holds two concave mirrors on opposite sides at a predetermined distance in a predetermined direction. Examples of the predetermined direction include the optical axis direction of the optical system, the scan center direction of the light from the light source, or the traveling direction of the light from the light source.
  • the two concave mirrors held by the holding member are fixed in a predetermined positional relationship in one or two of the three-dimensional directions, so the number of directions in which the positional relationship between the two concave mirrors should be adjusted is can be reduced.
  • two concave mirrors when two concave mirrors are fixed in a predetermined positional relationship in the optical axis direction of the optical system, they only need to be adjusted in two-dimensional directions intersecting the optical axis direction of the optical system.
  • by manufacturing optical members such as concave mirrors using high-precision processing technology, it is possible to suppress deterioration in optical measurement accuracy due to alignment accuracy.
  • the optical system includes an imaging optical system, an optical coherence tomography (OCT) optical system, an SLO optical system, or a combination of two or more of these.
  • the photographing optical system illuminates the fundus with light from a light source and receives return light from the fundus to form a fundus image based on the light reception result obtained.
  • the OCT optical system splits light from a light source into measurement light and reference light, scans the fundus with the measurement light, and detects interference light between the measurement light returning from the fundus and the reference light.
  • a fundus image (tomographic image, frontal image) is formed based on the detection results of the interference light.
  • the SLO optical system scans the fundus with light from a light source and forms a fundus image based on the light reception result obtained by receiving light returned from the fundus.
  • the two concave mirrors are arranged such that their reflective surfaces face each other, and the light deflected by the deflection member is reflected by one concave mirror, and the reflected light is reflected by the other concave mirror.
  • the eye is configured to be guided to the eye to be examined.
  • an optical scanner or reflective mirror is placed between two concave mirrors, and the light reflected by one concave mirror is deflected by the optical scanner or reflective mirror and reflected by the other concave mirror to the subject's eye. Configured to lead.
  • a concave mirror is an ellipsoidal mirror whose reflecting surface forms part of an ellipsoid (ellipsoidal surface), a parabolic mirror whose reflecting surface forms part of a paraboloid, or a reflecting surface forms part of a free-form surface. It may be a free-form mirror.
  • the two concave mirrors may be a combination of the same type of concave mirrors or a combination of different types of concave mirrors.
  • the two concave mirrors are two ellipsoidal mirrors.
  • the two concave mirrors are an ellipsoidal mirror and a freeform mirror.
  • a fundus observation device in which the holding member holds two concave mirrors as described above, for example, illuminates the fundus of the subject's eye with illumination light having a slit-shaped (line-shaped) cross-sectional light beam shape, and It is possible for the two-dimensional image sensor to receive the return light of the illumination light from the fundus in a movable light-receiving range (focal plane, virtual aperture range) at a position that is substantially conjugate to the eye. At this time, the optical path of the illumination light and the optical path of the return light are combined ( separation) and deflecting the illumination light in synchronization with the movement of the light-receiving range (focal plane), it is possible to scan the fundus with the illumination light.
  • the optical path coupling portion of the optical path of the illumination light and the optical path of the return light in the deflection member is arranged at a position that is optically approximately conjugate with the pupil of the eye to be examined.
  • the deflection member is a hole mirror.
  • the fundus observation device further includes an optical scanner, irradiates the subject's eye with measurement light deflected by the optical scanner, and detects interference light between the return light of the measurement light and the reference light.
  • the optical path of the return light of the slit-shaped (line-shaped) illumination light and the optical path of the OCT optical system are coupled by the optical path coupling/separating member disposed between the deflection member and the two-dimensional image sensor. That is, by optically coupling the OCT optical system on the transmission side of the deflection member (through the hole of the hole mirror), the optical path of the return light of the illumination light can be separated from the shared optical system at low cost.
  • OCT measurement OCT photography
  • the fundus observation device will be described using two ellipsoidal mirrors (in a broad sense, , a concave mirror) to obtain an image of the fundus of the eye to be examined.
  • the scan center direction of the light projected onto the fundus will be referred to as the z direction (optical axis direction of the optical system)
  • the vertical direction (vertical direction) orthogonal to the z direction will be referred to as the y direction
  • the direction perpendicular to the z direction will be referred to as the y direction.
  • the left-right direction horizontal direction
  • FIG. 1 shows a configuration example of an optical system of a fundus observation apparatus according to a first embodiment.
  • a position that is optically approximately conjugate with the fundus Ef of the eye E to be examined is illustrated as a fundus conjugate position P
  • a position that is approximately optically conjugate with the pupil (iris) of the eye E to be examined is a pupil conjugate position ( The iris conjugate position) is shown as Q.
  • the fundus observation device 1 includes a slit projection optical system 10, a slit light receiving optical system 20, a hole mirror 30 as a deflection member having a scanning mechanism, a first ellipsoidal mirror 40, and a second ellipsoidal mirror 40.
  • a surface mirror 50 is included.
  • the slit projection optical system 10 generates slit-shaped illumination light (illumination light with a line-shaped cross-sectional shape of the beam) and projects the generated illumination light onto the hole mirror 30 .
  • the slit projection optical system 10 includes an illumination light source 11, an iris diaphragm 12, a slit 13, and a projection lens 14.
  • the illumination light source 11 includes a visible light source that generates light in the visible region.
  • the illumination light source 11 generates light having a center wavelength in the wavelength range of 420 nm to 700 nm.
  • Such an illumination light source 11 includes, for example, an LED (Light Emitting Diode), an LD (Laser Diode), a halogen lamp, or a xenon lamp.
  • the illumination light source 11 includes a white light source or a light source capable of outputting light of each RGB color component.
  • the illumination light source 11 includes a light source that can switch and output light in the infrared region or light in the visible region.
  • the illumination light source 11 is arranged at a position optically non-conjugate with each of the fundus Ef and pupil (iris) of the eye E to be examined.
  • the iris diaphragm 12 (specifically, the opening described below) can be placed at the pupil conjugate position Q.
  • the iris diaphragm 12 has one or more openings formed at positions away from the optical axis of the optical path of the light output from the illumination light source 11.
  • the opening formed in the iris diaphragm 12 defines the incident position (incident shape) of the illumination light on the iris of the eye E to be examined.
  • the iris diaphragm 12 has openings formed at symmetrical positions with respect to the optical axis.
  • the illumination light is emitted from a position eccentric from the pupil center (specifically, a point symmetrical position with the pupil center as the center). It becomes possible to introduce it into the eye.
  • the slit 13 (specifically, the opening described below) can be placed at a conjugate position P on the fundus.
  • the opening formed in the slit 13 defines the shape of the irradiation area (irradiation pattern shape) of the illumination light on the fundus Ef of the eye E to be examined.
  • the slit 13 is movable in the optical axis direction of the slit projection optical system 10 by a moving mechanism (not shown).
  • the moving mechanism moves the slit 13 in the optical axis direction under control from a control section, which will be described later. Thereby, the position of the slit 13 can be moved according to the condition of the eye E to be examined (specifically, the refractive power and the shape of the fundus Ef).
  • the slit 13 is configured such that at least one of the position and shape of the opening can be changed depending on the condition of the eye E to be examined without being moved in the optical axis direction.
  • a function of the slit 13 is realized by, for example, a liquid crystal shutter.
  • the slit-shaped illumination light output from the slit projection optical system 10 is guided to the hole mirror 30.
  • the slit projection optical system 10 includes a projector equipped with a light source, and the projector outputs slit-shaped illumination light.
  • Projectors include LCD (Liquid Crystal Display) projectors using a transmissive liquid crystal panel, LCOS (Liquid Crystal On Silicon) projectors using a reflective liquid crystal panel, and DMD (Digital Mir) projectors.
  • LCD Liquid Crystal Display
  • LCOS Liquid Crystal On Silicon
  • DMD Digital Mir
  • DLP There are digital light processing (registered trademark) type projectors and the like.
  • the hole mirror 30 (specifically, the deflection surface described below) can be placed at the pupil conjugate position Q.
  • the hole mirror 30 has a deflection surface whose direction (deflection direction) can be changed, and functions as a uniaxial optical scanner that guides the illumination light from the slit projection optical system 10 to the reflection surface of a first ellipsoidal mirror 40, which will be described later. do.
  • a hole is formed in the deflection surface so that the optical axis of a slit light-receiving optical system 20 (described later) passes therethrough. That is, the hole mirror 30 has a structure in which the return light of the illumination light is transmitted (passes) through the center, and the illumination light is reflected at the periphery of the center.
  • the hole mirror 30 is arranged in a direction (slit width direction, lateral direction of the irradiation area) perpendicular to the slit direction of the irradiation area (the direction in which the slit extends, the longitudinal direction of the irradiation area) at the irradiation site of the illumination light in the eye E.
  • the illumination light is deflected by changing the direction of the deflection plane so as to move sequentially.
  • the hole mirror 30 is configured to be able to change the deflection direction of the illumination light under control from a control section that will be described later.
  • the illumination light from the slit projection optical system 10 is deflected by a deflection surface around the hole and guided to the reflection surface of the first ellipsoidal mirror 40.
  • the return light of the illumination light from the eye E to be examined passes through the hole formed in the hole mirror 30 via the reflective surface of the first ellipsoidal mirror 40, and is guided to the slit light receiving optical system 20.
  • the hole mirror 30 functions as a biaxial optical scanner that guides the illumination light from the slit projection optical system 10 to the reflective surface of the first ellipsoidal mirror 40.
  • the hole mirror 30 is configured to transmit the wavelength component (or polarization component) of the return light of the illumination light.
  • the return light of the illumination light from the eye E to be examined passes through the hole mirror 30 via the reflective surface of the first ellipsoidal mirror 40 and is guided to the slit light receiving optical system 20.
  • the slit light receiving optical system 20 receives the return light of the illumination light from the eye E that has passed through the hole of the hole mirror 30.
  • the slit light receiving optical system 20 includes an image sensor 21 and an imaging lens 22.
  • the image sensor 21 realizes the function of a two-dimensional image sensor as a pixelated light receiver.
  • the light receiving surface (detection surface, imaging surface) of the image sensor 21 can be placed at a fundus conjugate position P.
  • the image sensor 21 can set a movable light-receiving range (virtual aperture range, focal plane) at the fundus conjugate position P.
  • the light reception result by the image sensor 21 is captured and read out using a rolling shutter method.
  • a control unit which will be described later, controls the reading of light reception results by controlling the image sensor 21.
  • the image sensor 21 can automatically output light reception results for a predetermined line along with information indicating the light reception position.
  • Such an image sensor 21 includes, for example, a CMOS (complementary metal oxide semiconductor) image sensor.
  • the image sensor 21 includes a plurality of pixels (light receiving elements) arranged in a row direction and a plurality of pixels arranged in a column direction.
  • the image sensor 21 includes a plurality of pixels arranged two-dimensionally, a plurality of vertical signal lines, and a horizontal signal line.
  • Each pixel includes a photodiode (light receiving element) and a capacitor.
  • a plurality of vertical signal lines are provided for each pixel group in a column direction (vertical direction) orthogonal to a row direction (horizontal direction). Each vertical signal line is selectively electrically connected to a pixel group in which charges corresponding to light reception results are accumulated.
  • the horizontal signal line is selectively electrically connected to the plurality of vertical signal lines.
  • Each pixel accumulates charges corresponding to the result of receiving the returned light, and the accumulated charges are sequentially read out, for example, for each pixel group in the row direction. For example, for each line in the row direction, a voltage corresponding to the charge accumulated in each pixel is supplied to the vertical signal line.
  • the plurality of vertical signal lines are selectively electrically connected to the horizontal signal line.
  • the imaging lens 22 forms an image of the return light of the illumination light that has passed through the hole formed in the hole mirror 30 (or the return light of the illumination light that has passed through the hole mirror 30) on the light receiving surface of the image sensor 21.
  • the reflective surface (first reflective surface) of the first ellipsoidal mirror 40 is an ellipsoid (more specifically, a part of the ellipsoid).
  • the first ellipsoidal mirror 40 is an example of a concave mirror.
  • the first ellipsoidal mirror 40 has two optically conjugate focal points (first focal point F1 and second focal point F2).
  • the hole mirror 30 (the deflection surface of the hole mirror 30) is arranged at or near the first focal point F1 of the first ellipsoidal mirror 40. In some embodiments, the hole mirror 30 is arranged at or near a position optically conjugate with the first focal point F1 (conjugate position of the first focal point F1).
  • the reflective surface (second reflective surface) of the second ellipsoidal mirror 50 is an ellipsoid (more specifically, a part of the ellipsoid).
  • the second ellipsoidal mirror 50 is an example of a concave mirror.
  • the second ellipsoidal mirror 50 has two optically conjugate focal points (a first focal point F3 and a second focal point F4).
  • the second ellipsoidal mirror 50 is arranged so that the first focal point F3 substantially coincides with the second focal point F2 of the first ellipsoidal mirror 40.
  • the second ellipsoidal mirror 50 is located at or near a position where the first focal point F3 is optically conjugate with the second focal point F2 of the first ellipsoidal mirror 40 (conjugate position of the second focal point F2). It is arranged so that it roughly matches.
  • the eye E to be examined is placed at the second focal point F4 of the second ellipsoidal mirror 50. That is, the second ellipsoidal mirror 50 is arranged so that the second focal point F4 substantially coincides with the position of the eye to be examined where the eye to be examined E is placed.
  • the scanning optical member at the second focal point F2 (first focal point F3) between the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50.
  • horizontal direction For example, in the configuration described in Patent Document 1, since a deflection member that scans the illumination light in the horizontal direction is provided, the shooting angle of view is theoretically up to 180 degrees (in reality, up to about 150 degrees). can be ensured.
  • the embodiment since there is no need for a deflection member for scanning in the horizontal direction, it becomes possible to take pictures up to an angle of view exceeding 180 degrees (the cornea of the human eye is smaller than the pupil). Because it is placed in a position that projects forward, it is possible to observe a range exceeding 180 degrees with an effect similar to a fisheye lens.)
  • the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are an example of "two concave mirrors" according to the embodiment.
  • the second focal point F2 of the first ellipsoidal mirror 40 and the second ellipsoid can be easily and at low cost. It is possible to align the first focal point F3 of the plane mirror 50 with high precision.
  • FIGS. 2A to 2D schematically show an example of a holding structure for the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50.
  • FIG. 2A is a schematic side view showing how the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are attached, which are held by the holding member 45.
  • FIG. 2B is a perspective view schematically showing a state in which the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are held by the holding member 45 when viewed from the reflective surface side of the second ellipsoidal mirror 50. .
  • FIG. 1 is a schematic side view showing how the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are attached, which are held by the holding member 45.
  • FIG. 2B is a perspective view schematically showing a state in which the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are held by the holding member 45 when viewed from the reflective surface side of the second ellips
  • FIG. 2C is a perspective view schematically showing a state in which the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are held by the holding member 45 when viewed from the reflective surface side of the first ellipsoidal mirror 40.
  • FIG. 2D is a side view schematically showing a state in which the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are held by the holding member 45.
  • parts similar to those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the fundus observation device 1 includes a holding member 45 that holds a first ellipsoidal mirror 40 and a second ellipsoidal mirror 50.
  • the holding member 45 is configured such that the relative positions of the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 have a predetermined positional relationship in the optical axis direction of the optical system including the slit projection optical system 10 and the slit light receiving optical system 20.
  • the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 can be fixed in a state where they are arranged.
  • a flange is formed at the peripheral edge of each of the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50.
  • the first ellipsoidal mirror 40 is formed, for example, by electroforming. Electroforming is a method of faithfully replicating the shape of a matrix at the nano level by electrochemically depositing metal ions in an electrolyte onto the surface of the matrix. This makes it possible to form the first ellipsoidal mirror 40 having a very precise shape.
  • Both the first focal point F1 and the second focal point F2 of the first ellipsoidal mirror 40 are arranged at positions farther from the concave reflecting surface than the flange surface.
  • both the short-axis distance between the reflective surface and the first focal point F1 and the short-axis distance between the reflective surface and the second focal point F2 are the same as the distance between the reflective surface and the flange surface. longer than the distance in the minor axis direction between
  • Both ends of the first ellipsoidal mirror 40 in the long axis direction have a shape cut along a plane perpendicular to the long axis direction. This makes it possible to reduce the weight and size of the first ellipsoidal mirror 40 while ensuring the size of the reflecting surface of the first ellipsoidal mirror 40 necessary for wide-angle fundus observation.
  • the second ellipsoidal mirror 50 is formed, for example, by electroforming, similar to the first ellipsoidal mirror 40. This makes it possible to form the second ellipsoidal mirror 50 having a very precise shape.
  • Both the first focal point F3 and the second focal point F4 of the second ellipsoidal mirror 50 are arranged at positions farther from the concave reflecting surface than the flange surface.
  • both the short-axis distance between the reflective surface and the first focal point F3 and the short-axis distance between the reflective surface and the second focal point F4 are the distance between the reflective surface and the flange surface. longer than the distance in the minor axis direction between Note that the flange (surface) formed on the second ellipsoidal mirror 50 is approximately parallel to the long axis connecting the first focal point F3 and the second focal point F4.
  • Both ends of the second ellipsoidal mirror 50 in the long axis direction have a shape cut by a plane intersecting the long axis direction. This makes it possible to reduce the weight and size of the second ellipsoidal mirror 50 while ensuring the size of the reflecting surface of the second ellipsoidal mirror 50 necessary for wide-angle fundus observation. In particular, by cutting the lower side, it is possible to avoid interference between the second ellipsoidal mirror 50 and the mouth or jaw of the subject to be observed.
  • the holding member 45 has a predetermined thickness in the optical axis direction of the optical system, and the reflective surface of the first ellipsoidal mirror 40 held on the first holding surface is attached to a second holding surface opposite to the first holding surface.
  • the opening is formed so that the reflection surface of the second ellipsoidal mirror 50 held on the second holding surface is exposed on the first holding surface side.
  • the thickness of the holding member 45 in the optical axis direction of the optical system does not need to be constant. According to the change in the thickness of the optical system 45 of the holding member in the optical axis direction, the peripheral edges of the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are cut, and the peripheral edge (flange) of the ellipsoidal mirror is cut. It suffices if it has a shape that corresponds to the change in thickness.
  • the first ellipsoidal mirror 40 is arranged such that the reflective surface faces the opening on the first holding surface of the holding member 45, and the reflective surface faces the opening on the second holding surface.
  • the second ellipsoidal mirror 50 is arranged as follows. When the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are arranged on the holding member 45 in this way, as shown in FIG. 2D, the second focal point F2 of the first ellipsoidal mirror 40 and the second ellipsoidal mirror The first focal point F3 of No. 50 substantially coincides with the optical axis direction of the optical system.
  • the relative positions of the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 are changed to two-dimensional directions (x direction and y direction) orthogonal to the optical axis direction of the optical system.
  • the second focus F2 of the first ellipsoidal mirror 40 and the first focus F3 of the second ellipsoidal mirror 50 can be easily and precisely matched three-dimensionally.
  • the first focal point F1 of the first ellipsoidal mirror 40 or its optical Light from a light source arranged at a substantially conjugate position is received at the second focal point F4 of the second ellipsoidal mirror 50 or at a position optically substantially conjugate thereto.
  • the first ellipsoidal mirror 40 is arranged so that the light from the light source is focused at the second focus F2 of the first ellipsoidal mirror 40, the first focus F3 of the second ellipsoidal mirror 50, and the second focus F4.
  • the optical system of the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 can be Relative positions in two-dimensional directions (x direction and y direction) perpendicular to the optical axis direction of the system are determined.
  • the fundus observation device 1 holds the first ellipsoidal mirror 40 and moves in two-dimensional directions (x direction and a first moving mechanism that holds the second ellipsoidal mirror 50 and changes its relative position in the two-dimensional direction (x and a second moving mechanism that changes the relative position in the y-direction and the y-direction.
  • the fundus observation device 1 is configured to change the relative position of the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 using at least one of the first moving mechanism and the second moving mechanism.
  • the flanges of each ellipsoidal mirror are fixed to the holding member 45.
  • the flange is fixed to the holding member 45 by screwing, pinning, crimping, welding, caulking, or the like.
  • FIG. 3 schematically shows a side view of the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 held by the holding member 45.
  • parts similar to those in FIGS. 1 to 2D are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the holding member 45 is configured to hold the flange of the first ellipsoidal mirror 40 and the flange of the second ellipsoidal mirror 50.
  • the holding member 45 holds the flange (surface) of the first ellipsoidal mirror 40 and the flange (surface) of the second ellipsoidal mirror 50 so that they are substantially parallel.
  • the distance dz in the z direction is held constant by the holding member 45 and positioning in the z direction is performed with high precision
  • the distance dz is Positioning in the x and y directions perpendicular to the direction can be performed with high precision.
  • the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 can be easily aligned with high accuracy at low cost.
  • both ends of the second ellipsoidal mirror 50 according to the embodiment have a shape cut by a plane that intersects with the long axis direction of the reflecting surface that is a part of the ellipsoidal surface, as described above.
  • FIGS. 4A and 4B schematically show the positional relationship between the first ellipsoidal mirror and the second ellipsoidal mirror and the subject to be observed according to a comparative example of the embodiment.
  • FIG. 4A is a top view schematically showing the positional relationship between a first ellipsoidal mirror and a second ellipsoidal mirror and a subject to be observed according to a comparative example of the embodiment.
  • FIG. 4B is a side view schematically showing the positional relationship between the first ellipsoidal mirror and the second ellipsoidal mirror and the subject to be observed according to a comparative example of the embodiment.
  • a fundus observation device includes a first ellipsoidal mirror 40' and a second ellipsoidal mirror 50'.
  • the first ellipsoidal mirror 40' may be similar to the first ellipsoidal mirror 40 according to the embodiment.
  • both ends of the second ellipsoidal mirror 50' are not cut along a plane that intersects the long axis of the reflecting surface, which is an ellipsoid (see FIG. 4B).
  • FIGS. 5A and 5B schematically show the positional relationship between the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 according to the embodiment and the subject to be observed.
  • FIG. 5A is a top view schematically showing the positional relationship between the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 and the subject to be observed according to the embodiment.
  • FIG. 5B is a side view schematically showing the positional relationship between the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 and the subject to be observed according to the embodiment.
  • both ends of the second ellipsoidal mirror 50 are cut along a plane that intersects the long axis of the reflecting surface, which is an ellipsoid (see FIG. 5B).
  • the subject SU approaches the second ellipsoidal mirror 50 to place the subject's eye at the subject's eye position (the position of the second focal point F4 of the second ellipsoidal mirror 50), as shown in FIG. 5B,
  • the face mouth, chin
  • the subject SU can place the subject's eye at the subject's eye position, facing the front with respect to the reflective surface of the second ellipsoidal mirror 50. This facilitates fixation of the subject's eye and does not place any strain on the posture of the subject SU during observation.
  • the second ellipsoidal mirror 50 connects a straight line connecting the first focal point F1 and the second focal point F2 of the first ellipsoidal mirror 40 with the first focal point F3 of the second ellipsoidal mirror 50. It is arranged so that the angle it makes with the straight line connecting it to the second focal point F4 is angle ⁇ .
  • angle ⁇ is 30 degrees.
  • the second ellipsoidal mirror 50 is configured to be movable relative to the first ellipsoidal mirror 40 to change the angle ⁇ .
  • the illumination light deflected by the hole mirror 30 placed at the first focal point F1 is reflected by the reflective surface of the first ellipsoidal mirror 40, and is reflected at the second focal point F2 of the first ellipsoidal mirror 40. be guided.
  • the illumination light guided to the second focal point F2 is guided to the reflective surface of the second ellipsoidal mirror 50, is reflected by this reflective surface, and is placed at the second focal point F4 of the second ellipsoidal mirror 50. guided by.
  • the illumination light guided to the eye E enters the eye through the pupil and is irradiated onto the fundus Ef.
  • the return light of the illumination light reflected on the fundus Ef is emitted to the outside of the eye E through the pupil, travels in the opposite direction along the same path as the outward path, and is guided to the first focal point F1 of the first ellipsoidal mirror 40.
  • the return light of the illumination light guided to the first focal point F1 passes through the hole formed in the hole mirror 30 (or passes through the hole mirror 30) and is guided to the slit light receiving optical system 20. .
  • At least one of the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 is a concave mirror with a concave reflecting surface.
  • the reflective surface of the concave mirror is formed to be a free-form surface.
  • the fundus observation device 1 may be provided with an alignment optical system for aligning the eye E and the optical system. Further, the fundus observation device 1 may be provided with a focusing mechanism by moving the lens or moving the slit light receiving optical system 20.
  • the fundus observation device 1 may include a configuration for providing functions associated with the examination.
  • the fundus observation device 1 may be provided with a fixation optical system for projecting an optotype (fixation target) onto the fundus Ef of the eye E to be examined.
  • the fundus observation device 1 may be provided with arbitrary elements or units such as members (chin rest, forehead rest, etc.) for supporting the subject's face.
  • FIG. 6 shows a configuration example of a processing system of the fundus observation device 1 according to the first embodiment.
  • parts similar to those in FIG. 1 are designated by the same reference numerals, and description thereof will be omitted as appropriate.
  • the processing system of the fundus observation device 1 is configured around the control section 60.
  • the control unit 60 controls each part of the fundus observation device 1 .
  • the control section 60 includes a main control section 61 and a storage section 62.
  • the functions of the main control unit 61 are realized by, for example, a processor.
  • a computer program for controlling the fundus observation device 1 is stored in the storage unit 62 in advance.
  • This computer program includes an illumination light source control program, an image sensor control program, a hole mirror control program, an image formation program, a user interface program, and the like.
  • the main control section 61 controls each section of the slit projection optical system 10, the slit light receiving optical system 20, the hole mirror 30, the image forming section 70, and the user interface (UI) section 80.
  • Control of the slit projection optical system 10 includes control of the illumination light source 11, etc.
  • Controls for the illumination light source 11 include turning on and off the light source, adjusting the amount of light, and adjusting the aperture.
  • Control of the slit light receiving optical system 20 includes control of the image sensor 21, etc.
  • the image sensor 21 is controlled by setting a movable light-receiving range (virtual aperture range, focal plane) at the fundus conjugate position P, and by controlling the reading of light-receiving results using a rolling shutter method (for example, controlling the illumination pattern). (setting of light reception size corresponding to the size, etc.).
  • control of the image sensor 21 includes reset control, exposure control, charge transfer control, output control, and the like.
  • Control over the hole mirror 30 includes controlling the angle of the deflection surface that deflects the illumination light. By controlling the angle of the deflection surface, it is possible to control the deflection direction of the illumination light. By controlling the angular range of the deflection surface, it is possible to control the scan range (scan start position and scan end position). The scan speed can be controlled by controlling the speed at which the angle of the deflection surface changes.
  • the control for the image forming unit 70 includes image forming control that forms an image of the eye E from the light reception result obtained by the image sensor 21.
  • Control over the UI unit 80 includes control over a display device, control over an operation device (input device), and the like.
  • the storage unit 62 stores various data.
  • the data stored in the storage unit 62 includes, for example, light reception results obtained by the image sensor 21, image data of an image formed by the image forming unit 70, information on the eye to be examined, and the like.
  • the eye information to be examined includes information regarding the examinee such as a patient ID and name, and information regarding the eye to be examined such as left eye/right eye identification information.
  • the storage unit 62 stores various programs and data for operating the fundus observation device 1.
  • the image forming unit 70 forms a received light image (fundus image) corresponding to an arbitrary light receiving possible range (virtual aperture range, focal plane) based on the received light results read out from the image sensor 21 using a rolling shutter method. It is possible to do so.
  • the image forming unit 70 is capable of sequentially forming received light images corresponding to the light receiving possible range (aperture range), and forming an image of the eye E from the plurality of formed received light images.
  • Various images (image data) formed by the image forming section 70 are stored in the storage section 62, for example.
  • the image forming unit 70 includes a processor and implements the above functions by performing processing according to a program stored in a storage unit or the like.
  • the UI unit 80 has a function for exchanging information between the user and the fundus observation device 1.
  • the UI section 80 includes a display device and an operation device.
  • the display device may include a display section, or may include other display devices.
  • the display device displays various information.
  • the display device includes, for example, a liquid crystal display, and displays the above information under control from the main control unit 61.
  • the information displayed on the display device includes information corresponding to the control result by the control unit 60, information (image) corresponding to the calculation result by the image forming unit 70, and the like.
  • the operating device includes various hardware keys and/or software keys.
  • the main control section 61 is capable of receiving operation details on the operating device and outputting control signals corresponding to the operation details to each section. It is possible to integrally configure at least part of the operating device and at least part of the display device.
  • a touch panel display is one example.
  • the first ellipsoidal mirror 40 is an example of the "first concave mirror” according to the embodiment.
  • the second ellipsoidal mirror 50 is an example of a “second concave mirror” according to the embodiment.
  • the slit projection optical system 10 and the slit light receiving optical system 20 are an example of an “optical system” according to the embodiment.
  • the hole mirror 30 is an example of a "deflection member” according to the embodiment.
  • FIG. 7 shows an example of the operation of the fundus observation device 1 according to the first embodiment.
  • FIG. 7 shows a flowchart of an example of the operation of the fundus observation device 1 according to the first embodiment.
  • the storage unit 62 stores a computer program for implementing the processing shown in FIG.
  • the main control unit 61 executes the processing shown in FIG. 7 by operating according to this computer program.
  • FIG. 7 it is assumed that the eye E to be examined is placed at a predetermined eye position (the second focal point F4 of the second ellipsoidal mirror 50 in FIG. 1).
  • the main control unit 61 controls the illumination light source 11 to turn on the illumination light source 11 .
  • the light output from the illumination light source 11 passes through the opening formed in the iris diaphragm 12, passes through the opening formed in the slit 13, and passes through the projection lens 14, and is transmitted through the hole mirror as slit-shaped illumination light. Guided by 30.
  • the main controller 61 sets the orientation of the deflection surface in a predetermined deflection direction in order to illuminate a predetermined irradiation range, and changes the orientation of the deflection surface within a predetermined deflection angle range.
  • the deflection control of the illumination light is started by sequentially changing the illumination light. That is, the main control unit 61 starts scanning the fundus Ef with the illumination light.
  • the main control unit 61 controls the hole mirror 30 to deflect the illumination light in synchronization with the movement of a virtual aperture range (light receiving range) that can be arbitrarily set in the image sensor 21. Take control.
  • the main control unit 61 controls the image sensor 21 to create a virtual aperture range (light-receivable range) that includes the return light reception range on the light-receiving surface corresponding to the illumination light irradiation area on the fundus Ef.
  • a virtual aperture range light-receivable range
  • the irradiation range of the illumination light on the fundus Ef can be specified based on the deflection angle of the deflection surface of the hole mirror 30.
  • the main control unit 61 can virtually set the aperture range on the light receiving surface of the image sensor 21 in accordance with the deflection direction of the deflection surface of the hole mirror 30 that is sequentially changed.
  • the illumination light guided to the hole mirror 30 is deflected by a deflection surface whose polarization direction has been changed, and is guided to the reflection surface of the first ellipsoidal mirror 40, and is reflected by this reflection surface.
  • the light is guided to the reflecting surface of the second ellipsoidal mirror 50 via the second focal point F2.
  • the illumination light guided to the reflective surface of the second ellipsoidal mirror 50 is reflected by this reflective surface, enters the eye of the eye E to be examined, which is placed at the second focal point F4 of the second ellipsoidal mirror 50, and enters the fundus of the eye. Irradiated to Ef.
  • the return light of the illumination light from the fundus Ef travels in the opposite direction along the same path as the outward path, passes through the hole formed in the hole mirror 30, or is transmitted through the hole mirror 30, and passes through the imaging lens 22.
  • the light is received by the light receiving surface of the image sensor 21.
  • a virtual aperture range (light-receiving range) is set to include the return light reception range corresponding to the illumination light irradiation range on the fundus Ef, so unnecessary scattered light is Only the return light from the fundus Ef is received while suppressing the influence.
  • the main control unit 61 determines whether or not to finish scanning the fundus Ef with the illumination light. For example, the main control unit 61 finishes scanning the illumination light on the fundus Ef by determining whether the deflection angle of the deflection surface of the hole mirror 30, which is sequentially changed, is within a predetermined deflection angle range. It can be determined whether or not.
  • step S3: Y When it is determined that scanning of the fundus Ef with the illumination light is to be completed (S3: Y), the operation of the fundus observation device 1 moves to step S4. When it is determined that scanning of the fundus Ef with the illumination light is not completed (S3: N), the operation of the fundus oculi observation device 1 moves to step S2.
  • step S3 when it is determined to end the scanning of the illumination light on the fundus Ef (S3: Y), the main control unit 61 controls the image forming unit 70 to control the light reception results read out from the image sensor 21.
  • An image of the eye E to be examined is formed based on.
  • the image forming unit 70 sequentially forms received light images based on the received light results read from the image sensor 21 in step S2, and determines the image of the eye E from the plurality of formed received light images. form.
  • the first ellipsoidal mirror 40 and the second ellipsoidal mirror 50 can be easily aligned with high accuracy at low cost. Furthermore, in the fundus observation device 1 equipped with such a first ellipsoidal mirror 40 and a second ellipsoidal mirror 50, the optical path of the slit projection optical system 10 and the optical path of the slit light receiving optical system 20 are connected using the hole mirror 30. At the same time, the illumination light is deflected using the hole mirror 30 and guided to the reflecting surface of the first ellipsoidal mirror 40.
  • the scanning range of the illumination light can be set arbitrarily.
  • the configuration of the fundus observation apparatus according to the embodiment is not limited to the configuration of the fundus observation apparatus 1 according to the first embodiment.
  • the fundus observation device 1 according to the first embodiment may further include an OCT optical system.
  • the fundus observation device according to the second embodiment will be described, focusing on the differences from the fundus observation device 1 according to the first embodiment.
  • FIG. 8 shows an example of the configuration of the optical system of the fundus observation device according to the second embodiment.
  • parts similar to those in FIG. 1 are designated by the same reference numerals, and descriptions thereof will be omitted as appropriate.
  • the configuration of the optical system of the fundus observation device 1a according to the second embodiment is different from the configuration of the optical system of the fundus observation device 1 according to the first embodiment. This is the point where system 100 has been added.
  • the optical path of the OCT optical system 100 is coupled to the optical path of the slit light receiving optical system 20 through an optical path between the slit light receiving optical system 20 and the hole mirror 30.
  • a relay lens optical system including relay lenses 71 and 72 is arranged on the optical path between the slit light receiving optical system 20 and the hole mirror 30.
  • the optical path between the relay lens 71 and the relay lens 72 is converted into an optical path of a telecentric optical system, and a dichroic mirror 90 is arranged in the optical path of the telecentric optical system. That is, the relay lens optical system converts at least a portion of the optical path in which the dichroic mirror 90 is arranged into the optical path of the telecentric optical system.
  • the dichroic mirror 90 is an optical path coupling/separation member that separates the optical path of the OCT optical system 100 from the optical path of the slit light receiving optical system 20 (combines the optical path of the slit light receiving optical system 20 and the optical path of the OCT optical system 100).
  • the dichroic mirror 90 reflects the measurement light from the OCT optical system 100 and guides it to the relay lens 71, and also reflects the return light of the measurement light from the eye E to be examined and guides it to the OCT optical system 100. Furthermore, the dichroic mirror 90 transmits the return light of the illumination light from the eye E that has been guided through the relay lens 71 and guides it to the relay lens 72 .
  • FIG. 9 shows a configuration example of the OCT optical system 100 shown in FIG. 8.
  • parts similar to those in FIG. 8 are designated by the same reference numerals, and description thereof will be omitted as appropriate.
  • the OCT optical system 100 is provided with an optical system for performing OCT measurement (or OCT imaging) on the eye E to be examined.
  • This optical system splits light from a wavelength swept type (wavelength scanning type) light source into measurement light and reference light, and causes interference between the return light of the measurement light from the eye E and the reference light that has passed through the reference optical path.
  • This is an interference optical system that generates interference light and detects this interference light.
  • the detection result (detection signal) of the interference light by the interference optical system is an interference signal indicating the spectrum of the interference light, and is sent to an image forming section 70a, a data processing section 75a, etc., which will be described later.
  • the OCT light source 101 is configured to include a wavelength sweep type (wavelength scanning type) light source that can sweep (scan) the wavelength of emitted light, similar to a general swept source type fundus observation device.
  • the wavelength swept light source includes, for example, a laser light source that includes a resonator and emits light with a center wavelength of 1050 nm.
  • the OCT light source 101 temporally changes the output wavelength in a near-infrared wavelength band that is invisible to the human eye.
  • the light L0 output from the OCT light source 101 is guided to the polarization controller 103 through the optical fiber 102, and its polarization state is adjusted.
  • the polarization controller 103 adjusts the polarization state of the light L0 guided within the optical fiber 102, for example, by applying external stress to the looped optical fiber 102.
  • the light L0 whose polarization state has been adjusted by the polarization controller 103 is guided to the fiber coupler 105 through the optical fiber 104 and split into the measurement light LS and the reference light LR.
  • the reference light LR is guided to a collimator 111 by an optical fiber 110, converted into a parallel light beam, and guided to an optical path length changing unit 114 via an optical path length correction member 112 and a dispersion compensation member 113.
  • the optical path length correction member 112 acts to match the optical path length of the reference light LR and the optical path length of the measurement light LS.
  • the dispersion compensation member 113 acts to match the dispersion characteristics between the reference light LR and the measurement light LS.
  • the optical path length changing unit 114 is movable in the direction of the arrow shown in FIG. 9, and changes the optical path length of the reference light LR. This movement changes the length of the optical path of the reference light LR. This change in the optical path length is used for correcting the optical path length according to the axial length of the eye E to be examined, adjusting the interference state, and the like.
  • the optical path length changing unit 114 includes, for example, a corner cube and a moving mechanism that moves the corner cube. In this case, the corner cube of the optical path length changing unit 114 turns back the traveling direction of the reference light LR, which has been made into a parallel light beam by the collimator 111, in the opposite direction.
  • the optical path of the reference light LR entering the corner cube and the optical path of the reference light LR exiting from the corner cube are parallel.
  • the reference light LR that has passed through the optical path length changing unit 114 passes through the dispersion compensating member 113 and the optical path length correcting member 112, is converted from a parallel beam into a convergent beam by the collimator 116, and enters the optical fiber 117.
  • the reference light LR incident on the optical fiber 117 is guided to a polarization controller 118 to have its polarization state adjusted, guided to an attenuator 120 by an optical fiber 119 to have its light amount adjusted, and then sent to a fiber coupler 122 by an optical fiber 121. be guided.
  • the measurement light LS generated by the fiber coupler 105 is guided by the optical fiber 127 and made into a parallel light beam by the collimator lens unit 140.
  • the parallel light beam LS is deflected one-dimensionally or two-dimensionally by the optical scanner 150.
  • the collimator lens unit 140 includes a collimator lens arranged on the optical axis of the interference optical system included in the OCT optical system 100.
  • the collimator lens converts the light flux of the measurement light emitted from the end of the optical fiber connected to the OCT optical system 100 and guiding the measurement light LS into a parallel light flux.
  • the end of the optical fiber is placed, for example, at a fundus conjugate position P.
  • the optical scanner 150 (deflection surface) can be placed at the pupil conjugate position Q.
  • the optical scanner 150 includes a galvano scanner that deflects the measurement light LS within a predetermined deflection angle range based on a predetermined deflection direction.
  • the optical scanner 150 includes a first galvano scanner and a second galvano scanner. The first galvano scanner deflects the measurement light LS so as to move the irradiation position in a horizontal direction (for example, the x direction) perpendicular to the optical axis of the OCT optical system 100.
  • the second galvano scanner deflects the measurement light LS deflected by the first galvano scanner so as to move the irradiation position in a vertical direction (for example, the y direction) perpendicular to the optical axis of the OCT optical system 100.
  • Examples of scanning modes for moving the irradiation position of the measurement light LS by the optical scanner 150 include horizontal scanning, vertical scanning, cross scanning, radial scanning, circular scanning, concentric scanning, and spiral scanning.
  • the measurement light LS deflected by the optical scanner 150 passes through the focusing lens 151, is reflected by the dichroic mirror 90, passes through the hole of the hole mirror 30, is guided to the reflective surface of the first ellipsoidal mirror 40, The illumination light from the slit projection optical system 10 is guided to the eye E through the same path.
  • the focusing lens 151 is movable along the optical path of the measurement light LS (optical axis of the OCT optical system 100).
  • the focusing lens 151 is moved along the optical path of the measurement light LS by a moving mechanism (not shown) under the control of a control section that will be described later.
  • the measurement light LS reflected by the reflective surface of the second ellipsoidal mirror 50 enters the eye through the pupil of the eye E at the second focal point F4 (position of the eye to be examined).
  • the measurement light LS is scattered (including reflection) at various depth positions of the eye E to be examined.
  • the return light of the measurement light LS including such backscattered light travels in the opposite direction along the same path as the forward path, is guided to the fiber coupler 105, and reaches the fiber coupler 122 via the optical fiber 128.
  • the fiber coupler 122 combines (interferes with) the measurement light LS incident through the optical fiber 128 and the reference light LR incident through the optical fiber 121 to generate interference light.
  • the fiber coupler 122 generates a pair of interference lights LC by branching the interference light between the measurement light LS and the reference light LR at a predetermined branching ratio (for example, 1:1).
  • a pair of interference lights LC emitted from the fiber coupler 122 are guided to a detector 125 by optical fibers 123 and 124, respectively.
  • the detector 125 is, for example, a balanced photodiode that has a pair of photodetectors that respectively detect a pair of interference lights LC, and outputs a difference between the detection results obtained by these photodetectors.
  • the detector 125 sends the detection result (interference signal) to a DAQ (Data Acquisition System) 130.
  • a clock KC is supplied to the DAQ 130 from the OCT light source 101.
  • the clock KC is generated in the OCT light source 101 in synchronization with the output timing of each wavelength swept (scanned) within a predetermined wavelength range by the wavelength sweep type light source.
  • the OCT light source 101 optically delays one of the two branched lights obtained by branching the light L0 of each output wavelength, and then outputs the clock KC based on the result of detecting these combined lights. generate.
  • the DAQ 130 samples the detection result of the detector 125 based on the clock KC.
  • the DAQ 130 sends the sampled detection results of the detector 125 to the image forming section 70a, the data processing section 75a, and the like.
  • the image forming unit 70a (or the data processing unit 75a) performs Fourier transform or the like on the spectral distribution based on the detection results obtained by the detector 125, for example, for each series of wavelength scans (for each A line). A reflection intensity profile at each A-line is formed. Further, the image forming unit 70a forms image data by converting the reflection intensity profile of each A line into an image.
  • the optical path length difference between the measurement light and the reference light is changed by changing the optical path length of the reference light, but the configuration according to the embodiment is not limited to this.
  • the optical path length difference between the measurement light and the reference light may be changed by changing the optical path length of the measurement light.
  • FIG. 10 shows a configuration example of the processing system of the fundus observation device 1a according to the second embodiment.
  • parts similar to those in FIG. 6, FIG. 8, or FIG. 9 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the configuration of the processing system of the fundus observation device 1a differs from that of the fundus observation device 1 in that a control unit 60a is provided in place of the control unit 60, and an image forming unit is provided in place of the image forming unit 70. 70a is provided, and a data processing section 75a and an OCT optical system 100 are added.
  • the control unit 60a includes a main control unit 61a and a storage unit 62a, and in addition to the control executable by the control unit 60, controls the image forming unit 70a, the data processing unit 75a, and the OCT optical system 100. .
  • the functions of the main control section 61a like the main control section 61, are realized by, for example, a processor. Similar to the storage unit 62, the storage unit 62a stores in advance a computer program for controlling the fundus observation device 1a.
  • This computer program includes an illumination light source control program, an image sensor control program, a hole mirror control program, an image formation program, a data processing program, an OCT optical system control program, a user interface program, etc. .
  • the control section 60a executes control processing.
  • the main control section 61a controls each section of the slit projection optical system 10, the slit light receiving optical system 20, the hole mirror 30, the image forming section 70a, the data processing section 75a, the OCT optical system 100, and the UI section 80.
  • Control of the OCT optical system 100 includes control of the OCT light source 101, operation control of the polarization controllers 103 and 118, movement control of the optical path length changing unit 114, operation control of the attenuator 120, control of the detector 125, control of the DAQ 130, There are controls for the optical scanner 150, controls for the moving mechanism 151D, and the like.
  • Controls for the OCT light source 101 include turning on and off the light source, adjusting the light amount, and adjusting the aperture.
  • Control of the detector 125 includes exposure adjustment, gain adjustment, detection rate adjustment, etc. of the detection element.
  • Control of the optical scanner 150 includes control of the scan position, scan range, and scan speed by the optical scanner 150.
  • the moving mechanism 151D moves the focusing lens 151 in the optical axis direction of the OCT optical system 100.
  • the main control unit 61a can move the focusing lens 151 in the optical axis direction of the OCT optical system 100 and change the focusing position of the measurement light.
  • the focal position of the measurement light LS corresponds to the depth position (z position) of the beam waist of the measurement light LS.
  • the image forming unit 70a is controlled by OCT based on the interference light detection result obtained by the OCT optical system 100, in addition to image formation control for forming an image of the eye E from the light reception result obtained by the image sensor 21. This includes image formation control, etc.
  • the control for the data processing section 75a includes control of image processing for the image formed by the image forming section 70a, control of image analysis processing, etc.
  • the image forming section 70a creates a received light image (fundus of the eye) corresponding to a virtually set arbitrary aperture range (light receiving possible range) based on the light receiving results read out from the image sensor 21. image).
  • the image forming unit 70a can sequentially form received light images corresponding to the virtual aperture range, and form an image of the eye E from the plurality of formed received light images.
  • the image forming unit 70a forms image data of an OCT image (tomographic image) based on a detection signal input from the DAQ 130 (detector 125) and a pixel position signal input from the control unit 60a.
  • OCT images formed by the image forming section 70a include A-scan images, B-scan images, and the like.
  • a B-scan image is formed, for example, by arranging A-scan images in the B-scan direction. Similar to conventional swept source type OCT, this processing includes processing such as noise removal (noise reduction), filter processing, dispersion compensation, and FFT (Fast Fourier Transform).
  • the image forming section 70a executes known processing depending on the type.
  • Various images (image data) formed by the image forming section 70a are stored, for example, in the storage section 62a.
  • the data processing unit 75a processes an image formed based on the light reception result obtained by the slit light reception optical system 20 or data acquired by OCT measurement of the eye E to be examined.
  • the data processing section 75a can perform various image processing and analysis processing on the image formed by the image forming section 70a.
  • the data processing unit 75a executes various correction processes such as image brightness correction.
  • the data processing unit 75a executes known image processing such as interpolation processing for interpolating pixels between OCT images to form image data of a three-dimensional image of the fundus Ef.
  • image data of a three-dimensional image means image data in which pixel positions are defined by a three-dimensional coordinate system.
  • Image data of a three-dimensional image includes image data consisting of voxels arranged three-dimensionally. This image data is called volume data or voxel data.
  • rendering processing volume rendering, MIP (Maximum Intensity Projection: maximum intensity projection), etc.
  • image data of a pseudo three-dimensional image is created. This pseudo three-dimensional image is displayed on the display device included in the UI section 80.
  • stack data of multiple tomographic images is image data of a three-dimensional image.
  • Stack data is image data obtained by three-dimensionally arranging a plurality of tomographic images obtained along a plurality of scan lines based on the positional relationship of the scan lines.
  • stack data is image data obtained by expressing multiple tomographic images, which were originally defined by individual two-dimensional coordinate systems, using one three-dimensional coordinate system (that is, embedding them in one three-dimensional space).
  • the data processing unit 75a performs various types of rendering on the acquired three-dimensional data set (volume data, stack data, etc.) to create a B-mode image (longitudinal image, axial cross-sectional image) in an arbitrary cross section, It is possible to form C-mode images (cross-sectional images, horizontal sectional images), projection images, shadowgrams, and the like.
  • An image of an arbitrary cross section such as a B-mode image or a C-mode image, is formed by selecting pixels (pixels, voxels) on a specified cross-section from a three-dimensional data set.
  • a projection image is formed by projecting a three-dimensional data set in a predetermined direction (z direction, depth direction, axial direction).
  • a shadowgram is formed by projecting a part of a three-dimensional data set (for example, partial data corresponding to a specific layer) in a predetermined direction.
  • An image such as a C-mode image, a projection image, or a shadowgram, whose viewpoint is the front side of the subject's eye is called an en-face image.
  • the data processing unit 75a generates a B-mode image or a frontal image (vessel-enhanced image, angiogram) in which retinal blood vessels and choroidal blood vessels are emphasized based on data (for example, B-scan image data) collected in time series by OCT. can be constructed.
  • data for example, B-scan image data
  • time-series OCT data can be collected by repeatedly scanning substantially the same region of the eye E to be examined.
  • the data processing unit 75a compares time-series B-scan images obtained by B-scans of substantially the same region, and converts the pixel value of the portion where the signal intensity changes into a pixel value corresponding to the change. By performing the conversion, an enhanced image is constructed in which the changed portion is emphasized. Furthermore, the data processing unit 75a forms an OCTA image by extracting information for a predetermined thickness at a desired site from the constructed plurality of emphasized images and constructing it as an en-face image.
  • Images generated by the data processing unit 75a are also included in OCT images.
  • the data processing unit 75a generates an image formed based on the light reception result obtained by the slit light reception optical system 20, an interference light detection result obtained by OCT measurement, or an OCT image formed based on the detection result.
  • a predetermined analysis process is performed on the image.
  • the predetermined analysis process includes identifying a predetermined region (tissue, lesion) in the eye E; calculating the distance (interlayer distance), area, angle, ratio, and density between the specified regions; and using a specified calculation formula. identification of the shape of a predetermined part; calculation of these statistical values; calculation of the distribution of measured values and statistical values; and image processing based on the results of these analysis processes.
  • Predetermined tissues include blood vessels, optic disc, fovea, macula, and the like.
  • Predetermined lesions include vitiligo, hemorrhage, and the like.
  • the fundus observation device 1a may include a movement mechanism that moves the OCT optical system 100 in a one-dimensional direction or two-dimensional direction intersecting the optical axis of the OCT optical system 100.
  • the main controller 61a moves the OCT optical system 100 relative to the dichroic mirror 90 in a one-dimensional direction or two-dimensional direction intersecting the optical axis of the OCT optical system 100 by controlling this moving mechanism.
  • the OCT optical system 100 is an example of a "projection optical system” and a "light receiving optical system” according to the embodiment.
  • the fundus observation device 1a is capable of performing OCT measurement using the OCT optical system 100 in parallel with scanning control of the fundus Ef using illumination light shown in FIG.
  • the OCT measurement control that can be executed in parallel with the control shown in FIG. 7 will be described below.
  • FIG. 11 shows an example of the operation of the fundus observation device 1a according to the second embodiment.
  • FIG. 11 shows a flowchart of an example of the operation of the fundus observation device 1a according to the second embodiment.
  • a computer program for implementing the process shown in FIG. 11 is stored in the storage unit 62a.
  • the main control unit 61a executes the processing shown in FIG. 11 by operating according to this computer program.
  • FIG. 11 it is assumed that the eye E to be examined is placed at a predetermined eye position (the second focal point F4 of the second ellipsoidal mirror 50 in FIG. 1).
  • the main controller 61a sets the scan range of the optical scanner 150.
  • the main control unit 61a can set the scan range, the scan start position, scan end position, scan speed (scan frequency), etc. of the optical scanner 150.
  • the user can specify the scan mode or operation mode by operating the operating device on the UI unit 80.
  • a scan mode for example, horizontal scan, vertical scan
  • the main control unit 61a analyzes the operation information from the operation device and identifies the specified scan mode.
  • the main control unit 61a analyzes the operation information and selects a prespecified scan mode (for example, horizontal scan mode) in the specified operation mode (OCT measurement mode). , vertical scan).
  • the main control unit 61a controls the OCT light source 101 to turn on the OCT light source 101.
  • the main control unit 61a executes step S12 in synchronization with the lighting control of the illumination light source 11 in step S1 shown in FIG.
  • the main control unit 61a executes focus adjustment control and polarization adjustment control.
  • the main controller 61a controls the moving mechanism 151D to move the focusing lens by a predetermined distance, and then controls the OCT optical system 100 to perform OCT measurement.
  • the main control unit 61a causes the data processing unit 75a to determine the focus state of the measurement light LS based on the detection result of the interference light obtained by OCT measurement.
  • the data processing unit 75a calculates a predetermined evaluation value regarding the image quality of the OCT image by analyzing the detection result of interference light obtained by OCT measurement, and determines the focus state based on the calculated evaluation value. do.
  • the main control unit 61a controls the moving mechanism 151D again, and it is determined that the focus state is appropriate. Repeat until
  • the main controller 61a controls at least one of the polarization controllers 103 and 118 to change the polarization state of at least one of the light L0 and the measurement light LS by a predetermined amount, and then changes the OCT optical system 100.
  • the image forming section 70a controls and executes OCT measurement, and causes the image forming section 70a to form an OCT image based on the detection result of the acquired interference light.
  • the main control unit 61a causes the data processing unit 75a to determine the image quality of the OCT image obtained by OCT measurement.
  • the main control unit 61a controls the polarization controllers 103 and 118 again to ensure that the polarization state is appropriate. Repeat until it is determined that
  • the main controller 61a deflects the measurement light LS generated based on the light L0 emitted from the OCT light source 101 by controlling the optical scanner 150, and uses the deflected measurement light LS to illuminate the eye E. A predetermined part of the fundus Ef is scanned. The detection result of the interference light obtained by the OCT measurement is sampled in the DAQ 130 and stored as an interference signal in the storage unit 62a or the like.
  • the main control unit 61a determines whether to end the OCT scan of the fundus Ef. For example, the main control unit 61a determines whether or not the deflection angle of the deflection surface of the optical scanner 150, which is sequentially changed, is within a predetermined deflection angle range, thereby determining whether or not to end the OCT scan of the fundus Ef. It is possible to determine whether
  • step S15 When it is determined that the OCT scan of the fundus Ef is to be completed (S14: Y), the operation of the fundus observation device 1a moves to step S15.
  • step S14: N When it is determined that the OCT scan of the fundus Ef is not completed (S14: N), the operation of the fundus observation device 1a moves to step S13.
  • step S14 when it is determined to end the OCT scan on the fundus Ef (S14: Y), the main control unit 61a scans the fundus Ef along the B-scan direction based on the interference signal acquired in step S14.
  • the image forming section 70a forms an A-scan image.
  • the main control unit 61a controls the data processing unit 75a to form OCT images such as three-dimensional OCT images, B-mode images, C-mode images, projection images, shadowgrams, and OCTA images.
  • FIG. 12 shows an explanatory diagram of the operation of the fundus observation device 1a according to the second embodiment.
  • the scan of the illumination light on the fundus Ef is realized by deflecting the illumination light using the hole mirror 30, and the fundus is realized by deflecting the measurement light LS using the optical scanner 150.
  • the OCT scan in Ef is performed in parallel.
  • an OCT scan is performed for the scan range SC0 at an arbitrary position within the scan range SC1. can do.
  • the OCT optical system 100 is By symmetrical coupling, the optical path of wide-angle illumination light and the optical path of its return light can be separated at low cost.
  • OCT measurement OCT photography
  • the second ellipsoidal mirror 50 connects the straight line connecting the first focal point F1 and the second focal point F2 of the first ellipsoidal mirror 40 with the first focal point F1 of the second ellipsoidal mirror 50.
  • a case has been described in which the focal point F3 and the second focal point F4 are arranged so that the angle ⁇ between the focal point F3 and the straight line connecting the second focal point F4 is 30 degrees.
  • the configuration according to the embodiment is not limited to this.
  • the angle between the straight line connecting the first focal point F1 and the second focal point F2 of the first ellipsoidal mirror 40 and the straight line connecting the first focal point F3 and the second focal point F4 of the second ellipsoidal mirror 50. ⁇ may be approximately 0 degrees.
  • FIG. 13 shows an example of the configuration of the optical system of the fundus observation device according to the third embodiment.
  • parts similar to those in FIG. 8 are designated by the same reference numerals, and description thereof will be omitted as appropriate.
  • the configuration of the optical system of the fundus observation device 1b according to the third embodiment is different from the configuration of the optical system of the fundus observation device 1a according to the second embodiment. It is the arrangement.
  • the second ellipsoidal mirror 50 connects a straight line connecting the first focal point F1 and the second focal point F2 of the first ellipsoidal mirror 40, and the first focal point F3 and the second focal point F3 of the second ellipsoidal mirror 50. It is arranged so that the angle ⁇ between it and the straight line connecting it to the focal point F4 is 0.2 degrees (approximately 0 degrees).
  • the fundus observation device 1b is provided with the OCT optical system 100, but the fundus observation device 1b has a configuration in which the OCT optical system 100 is omitted, as in FIG. Good too.
  • the wide-angle range and the symmetry of the observation range with respect to the eye E to be examined change.
  • a reflecting mirror may be placed at the first focal point F1 of the first ellipsoidal mirror 40, and a hole mirror may be placed at a position that is optically approximately conjugate with the pupil of the eye E. .
  • FIG. 14 shows an example of the configuration of the optical system of the fundus observation device according to the fourth embodiment.
  • the same parts as in FIG. 1 are denoted by the same reference numerals, and descriptions thereof will be omitted as appropriate.
  • the configuration of the optical system of the fundus observation device 1c according to the fourth embodiment is different from the configuration of the optical system of the fundus observation device 1 according to the first embodiment.
  • a reflection mirror 31 is placed in place of the mirror 30, a hole mirror 32 is placed at the pupil conjugate position Q away from the first focal point F1, and light is transmitted between the hole mirror 32 and the slit projection optical system 10.
  • the scanner 17 is arranged, and the relay lenses 33, 15, and 16 for relaying the pupil conjugate position Q are added.
  • the direction of the deflection surface of the reflection mirror 31 is fixed.
  • the relay lens 33 is arranged between the reflecting mirror 31 and the hole mirror 32.
  • the hole mirror 32 separates or combines the optical path of the slit projection optical system 10 and the optical path of the slit light receiving optical system 20.
  • the direction of the deflection surface of the hole mirror 32 is fixed.
  • a relay lens 16, an optical scanner 17, and a relay lens 15 are arranged between the hole mirror 32 and the slit projection optical system 10.
  • the optical scanner 17 is a uniaxial optical scanner that performs the same deflection operation of illumination light as the hole mirror 30.
  • the illumination light from the slit projection optical system 10 passes through the relay lens 15 and is deflected by the optical scanner 17.
  • the illumination light deflected by the optical scanner 17 passes through the relay lens 16 , is deflected in the peripheral area of the hole formed in the hole mirror 32 , and is guided to the relay lens 33 .
  • the illumination light guided to the relay lens 33 is reflected by the reflecting mirror 31 and guided to the reflecting surface of the first ellipsoidal mirror 40.
  • the return light of the illumination light from the fundus Ef of the eye E to be examined is deflected by the reflection mirror 31, passes through the relay lens 33, passes through the hole of the hole mirror 32, and is guided to the slit light receiving optical system 20.
  • the pupil conjugate position Q can be relayed even if there is not enough space to arrange the optical system near the first focal point F1 of the first ellipsoidal mirror 40. By doing so, the degree of freedom in arranging the slit projection optical system 10 and the slit light receiving optical system 20 can be improved.
  • ⁇ Fifth embodiment> In the second embodiment, a case has been described in which the illumination light is deflected using the hole mirror 30, but the configuration according to the embodiment is not limited to this.
  • a reflecting mirror of the first focal point F1 of the first ellipsoidal mirror 40 is arranged, and a hole mirror is placed at a position optically substantially conjugate with the pupil of the eye E. You may also place .
  • FIG. 15 shows an example of the configuration of the optical system of the fundus observation device according to the fifth embodiment.
  • parts similar to those in FIG. 8 or 14 are designated by the same reference numerals, and description thereof will be omitted as appropriate.
  • the configuration of the optical system of the fundus observation device 1d according to the fifth embodiment is different from the configuration of the optical system of the fundus observation device 1a according to the second embodiment.
  • a reflection mirror 31 is placed in place of the mirror 30, a hole mirror 32 is placed at the pupil conjugate position Q away from the first focal point F1, and light is transmitted between the hole mirror 32 and the slit projection optical system 10.
  • the scanner 17 is arranged, and the relay lenses 15 and 16 for relaying the pupil conjugate position Q are added.
  • the directions of the deflection surfaces of the reflection mirror 31 and the hole mirror 32 are fixed.
  • the pupil conjugate position Q is relayed by relay lenses 71 and 72.
  • the hole mirror 32 separates or combines the optical path of the slit projection optical system 10 and the optical path of the slit light receiving optical system 20.
  • a relay lens 16, an optical scanner 17, and a relay lens 15 are arranged between the hole mirror 32 and the slit projection optical system 10.
  • the optical scanner 17 is a uniaxial optical scanner that performs the same deflection operation of illumination light as the hole mirror 30.
  • the illumination light from the slit projection optical system 10 passes through the relay lens 15 and is deflected by the optical scanner 17.
  • the illumination light deflected by the optical scanner 17 passes through the relay lens 16, is deflected in the peripheral area of the hole formed in the hole mirror 32, passes through the relay lens 72, the dichroic mirror 90, and the relay lens 71, It is reflected by the reflecting mirror 31 and guided to the reflecting surface of the first ellipsoidal mirror 40 .
  • the return light of the illumination light from the fundus Ef of the eye E to be examined is deflected by the reflection mirror 31, passes through the relay lens 71, dichroic mirror 90, and relay lens 72, passes through the hole of the hole mirror 32, and is received by the slit. It is guided to an optical system 20.
  • the pupil conjugate position Q can be relayed even if there is not enough space to arrange the optical system near the first focal point F1 of the first ellipsoidal mirror 40. By doing so, the degree of freedom in arranging the slit projection optical system 10 and the slit light receiving optical system 20 can be improved.
  • a first aspect of the embodiment is an optical system (slit projection optical system) that projects light from a light source (illumination light source 11, OCT light source 101) onto the fundus (Ef) of the eye (E) to be examined, and receives return light from the fundus.
  • system 10 slit light-receiving optical system 20, OCT optical system 100
  • two concave mirrors first This is a fundus observation device (1, 1a, 1b, 1c, 1d) including an ellipsoidal mirror 40, a second ellipsoidal mirror) and a holding member (45) that holds two concave mirrors.
  • the holding member 45 is capable of holding two concave mirrors arranged on both sides at predetermined relative positions in a predetermined one-dimensional direction or two-dimensional direction.
  • the two concave mirrors are fixed in a predetermined positional relationship in one or two of the three-dimensional directions, the number of directions in which the positional relationship between the two concave mirrors needs to be adjusted is reduced. can do. Thereby, it becomes possible to easily realize highly precisely designed optical measurement conditions and improve the accuracy of fundus observation at low cost.
  • optical members such as concave mirrors using high-precision processing technology, it is possible to suppress deterioration in optical measurement accuracy due to alignment accuracy.
  • the holding member holds two concave mirrors on both sides at a predetermined distance in the optical axis direction of the optical system.
  • optical measurement conditions designed with high precision can be easily realized by simply adjusting in a two-dimensional direction intersecting the optical axis direction of the optical system.
  • the two concave mirrors include a first concave mirror (first concave mirror) having a first flange formed at the peripheral edge and having a concave first reflective surface that reflects light. 1 ellipsoidal mirror 40), and a second concave mirror (second ellipsoidal mirror 50) having a second flange formed on the peripheral edge and a concave second reflecting surface that guides the light reflected by the first concave mirror to the fundus. and, including.
  • the holding member holds the first concave mirror and the second concave mirror so that the first flange and the second flange are substantially parallel.
  • both ends of at least one of the two concave mirrors in the predetermined first direction are arranged in the first direction. It has a shape cut by intersecting planes.
  • the fundus observation device it is possible to reduce the weight and size of the fundus observation device while ensuring the size of the reflective surface necessary for wide-angle fundus observation.
  • At least one of the two concave mirrors is an ellipsoidal mirror (first ellipsoidal mirror 40, second ellipsoidal mirror 50).
  • the two concave mirrors include a first ellipsoidal mirror (40) and a second ellipsoidal mirror (50), and the first ellipsoidal mirror
  • One of the two focal points of the surface mirror (second focal point F2) is placed at one of the two focal points (first focal point F3) of the second ellipsoidal mirror, and the light from the optical system is directed to the second focal point of the second ellipsoidal mirror. to the other of the two focal points (second focal point F4).
  • the optical system includes a projection optical system (slit projection optical system 10, OCT optical system 100) that projects the light from the light source, and a light receiving optical system (that receives the returned light). It is arranged at the other of the two focal points (first focus F1) of the slit light receiving optical system 20, OCT optical system 100) and the first ellipsoidal mirror, deflects the light from the light source, and guides the returned light to the light receiving optical system.
  • a deflection member (hole mirror 30) is included.
  • the optical system includes a projection optical system (slit projection optical system 10) that includes a deflection member (optical scanner 17) and deflects and projects the light from the light source, and a return beam.
  • a light receiving optical system slit light receiving optical system 20
  • an optical path coupling member hole mirror 32
  • a reflecting member disposed at the other of the two focal points (first focal point F1) and guiding light from a light source guided through an optical path combined by an optical path coupling member to a first ellipsoidal mirror; include.
  • a program for causing a processor (computer) to execute each step of the method for controlling a fundus observation device described above.
  • a program can be stored in any computer-readable non-transitory storage medium. Examples of this recording medium include semiconductor memory, optical disk, magneto-optical disk (CD-ROM/DVD-RAM/DVD-ROM/MO, etc.), magnetic storage medium (hard disk/floppy (registered trademark) disk/ZIP, etc.), etc. It is possible to use It is also possible to send and receive this program via a network such as the Internet or LAN.
  • Fundus observation device 10 Slit projection optical system 17, 150 Optical scanner 20 Slit reception optical system 30, 32 Hole mirror 31 Reflection mirror 40 First ellipsoidal mirror 45 Holding member 50 Second ellipsoidal mirror 100 OCT optical system E Eyes to be examined F1, F3 First focal point F2, F4 Second focal point P Fundus conjugate position Q Pupil conjugate position

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

眼底観察装置は、光学系と、2つの凹面鏡と、保持部材とを含む。光学系は、光源からの光を被検眼の眼底に投射し、眼底からの戻り光を受光する。2つの凹面鏡は、それぞれが凹面状の反射面を有し、光学系からの光を眼底に導くと共に戻り光を光学系に導く。保持部材は、所定の1次元方向又は2次元方向に既定の相対位置になるように両面に配置された状態で2つの凹面鏡を保持可能である。

Description

眼底観察装置
 この発明は、眼底観察装置に関する。
 眼疾患のスクリーニングや治療などを行うための眼底観察装置には、簡便に広い視野で被検眼の眼底などの観察や撮影が可能なものが求められている。具体的には、一度の撮影で、撮影画角が80度を超える広角で被検眼の眼底を観察可能なものが求められている。このような眼底観察装置として、走査型レーザー検眼鏡(Scanning Laser Ophthalmoscope:SLO)が知られている。SLOは、光で眼底をスキャンし、眼底からの戻り光を受光デバイスで検出することにより眼底の画像を形成する装置である。
 このような眼底観察装置に関する技術について、種々提案されている。
 例えば、特許文献1には、2つの楕円面鏡と平面鏡とを用いた2次元の平行光走査を、走査移動手段によって移動させて網膜を広角で走査することが可能な走査検眼鏡が開示されている。
特表2009-543585号公報
 広角で眼底の観察(撮影)を行う場合、広い偏向角度範囲で偏向された光を瞳孔を通じて眼内に入射させる必要がある。これは、楕円面鏡等の光学系の精度が眼底観察の精度により一層の影響を及ぼすことを意味する。
 しかしながら、従来の技術では、楕円面鏡等の光学部材自体が高精度なものであっても、光学部材の位置合わせ等の調整精度に起因して眼底観察の精度が低下したり、光学部材の位置合わせ等の調整作業が複雑化したりする。そこで、簡便に光学部材を高精度に調整するための新たな技術が求められる。
 本発明は、このような事情を鑑みてなされたものであり、その目的の1つは、簡便に光学部材を高精度に調整するための新たな技術を提供することにある。
 実施形態の1つの態様は、光源からの光を被検眼の眼底に投射し、前記眼底からの戻り光を受光する光学系と、それぞれが凹面状の反射面を有し、前記光学系からの前記光を前記眼底に導くと共に前記戻り光を前記光学系に導く2つの凹面鏡と、所定の1次元方向又は2次元方向に既定の相対位置になるように両面に配置された状態で前記2つの凹面鏡を保持可能な保持部材と、を含む、眼底観察装置である。
 本発明によれば、簡便に光学部材を高精度に調整するための新たな技術を提供することができるようになる。
第1実施形態に係る眼底観察装置の光学系の構成の一例を表す概略図である。 第1実施形態に係る第1楕円面鏡及び第2楕円面鏡の構成の一例を表す概略図である。 第1実施形態に係る第1楕円面鏡及び第2楕円面鏡の構成の一例を表す概略図である。 第1実施形態に係る第1楕円面鏡及び第2楕円面鏡の構成の一例を表す概略図である。 第1実施形態に係る第1楕円面鏡及び第2楕円面鏡の構成の一例を表す概略図である。 第1実施形態に係る第1楕円面鏡及び第2楕円面鏡の構成の一例を表す概略図である。 第1実施形態の比較例に係る第1楕円面鏡及び第2楕円面鏡の構成の一例を表す概略図である。 第1実施形態の比較例に係る第1楕円面鏡及び第2楕円面鏡の構成の一例を表す概略図である。 第1実施形態に係る第1楕円面鏡及び第2楕円面鏡の構成の一例を表す概略図である。 第1実施形態に係る第1楕円面鏡及び第2楕円面鏡の構成の一例を表す概略図である。 第1実施形態に係る眼底観察装置の処理系の構成の一例を表す概略図である。 第1実施形態に係る眼底観察装置の動作例を表すフローチャートである。 第2実施形態に係る眼底観察装置の光学系の構成の一例を表す概略図である。 第2実施形態に係る眼底観察装置の光学系の構成の一例を表す概略図である。 第2実施形態に係る眼底観察装置の処理系の構成の一例を表す概略図である。 第2実施形態に係る眼底観察装置の動作例を表すフローチャートである。 第2実施形態に係る眼底観察装置の動作を説明するための概略図である。 第3実施形態に係る眼底観察装置の光学系の構成の一例を表す概略図である。 第4実施形態に係る眼底観察装置の光学系の構成の一例を表す概略図である。 第5実施形態に係る眼底観察装置の光学系の構成の一例を表す概略図である。
 この発明に係る眼底観察装置の実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書において引用された文献の記載内容や任意の公知技術を、以下の実施形態に援用することが可能である。
 本明細書において「プロセッサ」は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。プロセッサは、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
 実施形態に係る眼底観察装置は、光学系と、凹面状の反射面を有する2つの凹面鏡を含み、光学系からの光を被検眼の眼底に導くと共に、眼底からの戻り光を光学系に導く。光学系は、2つの凹面鏡を介して光源からの光を眼底に投射し、眼底からの戻り光を2つの凹面鏡を介して受光する。眼底観察装置は、所定の1次元方向又は2次元方向に既定の相対位置になるように両面に配置された状態で2つの凹面鏡を保持可能な保持部材を含む。いくつかの実施形態では、保持部材は、所定の方向に既定の距離を置いて両面に2つの凹面鏡を保持する。所定の方向の例として、光学系の光軸方向、光源からの光のスキャン中心方向、又は光源からの光の進行方向などがある。
 これにより、保持部材により保持される2つの凹面鏡は、3次元方向のうち1次元方向又は2次元方向について所定の位置関係で固定されるため、2つの凹面鏡の位置関係を調整すべき方向の数を低減することができる。例えば、2つの凹面鏡が光学系の光軸方向に既定の位置関係で固定される場合、光学系の光軸方向に交差する2次元方向に調整するだけで済む。その結果、高精度に設計された光学的な計測条件を簡便に実現しつつ、眼底観察の精度を低コストで向上させることが可能になる。特に、凹面鏡等の光学部材を高精度な加工技術で製造することで、位置合わせ精度に起因した光学的な計測精度の劣化を抑えることが可能になる。
 光学系は、撮影光学系、光コヒーレンストモグラフィ(Optical Coherence Tomography:以下、OCT)光学系、SLO光学系、又はこれらの2以上を組み合わせた光学系を含む。撮影光学系は、光源からの光で眼底を照明し、眼底からの戻り光を受光することにより得られた受光結果に基づいて眼底画像を形成する。OCT光学系は、光源からの光を測定光と参照光とに分割し、測定光で眼底をスキャンし、眼底からの測定光の戻り光と参照光との干渉光を検出することにより得られた干渉光の検出結果に基づいて眼底画像(断層画像、正面画像)を形成する。SLO光学系は、光源からの光で眼底をスキャンし、眼底からの戻り光を受光するにより得られた受光結果に基づいて眼底画像を形成する。
 いくつかの実施形態では、2つの凹面鏡は互いの反射面が対向するように配置され、偏向部材により偏向された光を一方の凹面鏡で反射し、反射された光を他方の凹面鏡で反射して被検眼に導くように構成される。いくつかの実施形態では、2つの凹面鏡の間に光スキャナ又は反射ミラーが配置され、一方の凹面鏡で反射された光を光スキャナ又は反射ミラーで偏向して他方の凹面鏡で反射して被検眼に導くように構成される。
 凹面鏡は、反射面が楕円面(楕円体面)の一部を構成する楕円面鏡、反射面が放物面の一部を構成する放物面鏡、又は反射面が自由曲面の一部を構成する自由曲面鏡であってよい。2つの凹面鏡は、上記の同じタイプの凹面鏡を組み合わせたものであってもよいし、上記の互いに異なるタイプの凹面鏡を組み合わせたものであってもよい。いくつかの実施形態では、2つの凹面鏡は、2つの楕円面鏡である。いくつかの実施形態では、2つの凹面鏡は、楕円面鏡と自由曲面鏡である。
 上記のように保持部材が2つの凹面鏡を保持するように構成された眼底観察装置は、例えば、被検眼の眼底を断面光束形状がスリット状(ライン状)の照明光で照明し、眼底と光学的に略共役な位置における移動可能な受光可能範囲(フォーカルプレーン、仮想的な開口範囲)において眼底からの照明光の戻り光を2次元イメージセンサで受光することが可能である。このとき、戻り光が中心部を透過(通過)し、且つ、中心部の周辺部で照明光を反射させる構造を有する偏向部材を用いて、照明光の光路と戻り光の光路とを結合(分離)し、受光可能範囲(フォーカルプレーン)の移動に同期して照明光を偏向することにより照明光で眼底をスキャンさせることが可能である。いくつかの実施形態では、偏向部材における、照明光の光路と戻り光の光路との光路結合部は、被検眼の瞳孔と光学的に略共役な位置に配置される。いくつかの実施形態では、偏向部材は、穴鏡である。
 これにより、簡便、且つ、低コストで、光学部材の組み立て(取り付け)精度に起因した光学的な計測条件の劣化を回避し、照明光のラインの幅方向にスキャンする光学系だけで80度を超える撮影画角を確保して、広角な照明光の光路と戻り光の光路との共有光学系を容易に配置することが可能になる。
 いくつかの実施形態では、眼底観察装置は、更に、光スキャナを含み、光スキャナにより偏向された測定光を被検眼に照射し、測定光の戻り光と参照光との干渉光を検出するOCTスキャンを実行するOCT光学系を含む。この場合、偏向部材と2次元イメージセンサとの間に配置された光路結合分離部材により、スリット状(ライン状)の照明光の戻り光の光路とOCT光学系の光路とを結合する。すなわち、偏向部材の透過側において(穴鏡の穴を通して)OCT光学系を光学的に結合することで、上記の共有光学系から照明光の戻り光の光路を低コストで分離することができる。また、OCTスキャン用の光スキャナと照明光の偏向用の光スキャナとを共有させることなく、大広角で観察している眼底の任意の位置に対してOCT計測(OCT撮影)を行うことが可能になる。
 以下、実施形態に係る眼底観察装置が、1つの焦点位置を共有するように光学系の光軸方向に既定の距離を置いて保持部材の両面に保持された2つの楕円面鏡(広義には、凹面鏡)を用いて被検眼の眼底の画像を取得する場合について説明する。
 以下、説明の便宜上、眼底に投射される光のスキャン中心方向をz方向(光学系の光軸方向)とし、z方向に直交する上下方向(垂直方向)をy方向とし、z方向に直交する左右方向(水平方向)をx方向とする。
 <第1実施形態>
 <構成>
 図1に、第1実施形態に係る眼底観察装置の光学系の構成例を示す。なお、図1では、被検眼Eの眼底Efと光学的に略共役な位置が眼底共役位置Pとして図示され、被検眼Eの瞳孔(虹彩)と光学的に略共役な位置が瞳孔共役位置(虹彩共役位置)Qとして図示されている。
 第1実施形態に係る眼底観察装置1は、スリット投影光学系10と、スリット受光光学系20と、スキャン機構を有する偏向部材としての穴鏡30と、第1楕円面鏡40と、第2楕円面鏡50とを含む。
(スリット投影光学系10)
 スリット投影光学系10は、スリット状の照明光(光束断面形状がライン状の照明光)を生成し、生成された照明光を穴鏡30に投射する。スリット投影光学系10は、照明光源11と、虹彩絞り12と、スリット13と、投影レンズ14とを含む。
 照明光源11は、可視領域の光を発生する可視光源を含む。例えば、照明光源11は、420nm~700nmの波長範囲の中心波長を有する光を発生する。このような照明光源11は、例えば、LED(Light Emitting Diode)、LD(Laser Diode)、ハロゲンランプ、又はキセノンランプを含む。いくつかの実施形態では、照明光源11は、白色光源又はRGBの各色成分の光を出力可能な光源を含む。いくつかの実施形態では、照明光源11は、赤外領域の光又は可視領域の光を切り換えて出力することが可能な光源を含む。照明光源11は、被検眼Eの眼底Ef及び瞳孔(虹彩)のそれぞれと光学的に非共役な位置に配置される。
 虹彩絞り12(具体的には、後述の開口部)は、瞳孔共役位置Qに配置可能である。虹彩絞り12には、照明光源11から出力される光の光路の光軸から離れた位置に1以上の開口部が形成されている。虹彩絞り12に形成された開口部は、被検眼Eの虹彩における照明光の入射位置(入射形状)を規定する。例えば、虹彩絞り12には、光軸を中心とする点対称の位置に開口部が形成される。それにより、照明光の光路の光軸に被検眼Eの瞳孔中心が配置されたとき、瞳孔中心から偏心した位置(具体的には、瞳孔中心を中心とする点対称の位置)から照明光を眼内に入射させることが可能になる。
 また、照明光源11と虹彩絞り12に形成された開口部との間の相対位置を変更することにより、虹彩絞り12に形成された開口部を通過する光の光量分布を変更することが可能である。
 スリット13は、(具体的には、後述の開口部)は、眼底共役位置Pに配置可能である。スリット13に形成された開口部は、被検眼Eの眼底Efにおける照明光の照射領域の形状(照射パターン形状)を規定する。
 スリット13は、図示しない移動機構によりスリット投影光学系10の光軸方向に移動可能である。移動機構は、後述の制御部からの制御を受け、スリット13を光軸方向に移動する。これにより、被検眼Eの状態(具体的には、屈折度数、眼底Efの形状)に応じてスリット13の位置を移動することができる。
 いくつかの実施形態では、スリット13は、被検眼Eの状態に応じて、光軸方向に移動されることなく開口部の位置及び形状の少なくとも1つを変更可能に構成される。このようなスリット13の機能は、例えば液晶シャッターにより実現される。
 虹彩絞り12に形成された開口部を通過した照明光源11からの光は、スリット13に形成された開口部を通過し、投影レンズ14を透過してスリット状の照明光として出力される。スリット投影光学系10から出力されたスリット状の照明光は、穴鏡30に導かれる。
 いくつかの実施形態では、スリット投影光学系10は、光源を備えたプロジェクタを含み、プロジェクタがスリット状の照明光を出力する。プロジェクタには、透過型液晶パネルを用いたLCD(Liquid Crystal Display)方式のプロジェクタ、反射型液晶パネルを用いたLCOS(Liquid Crystal On Silicon)方式のプロジェクタ、DMD(Digital Mirror Device)を用いたDLP(Ditigal Light Processing)(登録商標)方式のプロジェクタなどがある。
(穴鏡30)
 穴鏡30(具体的には、後述の偏向面)は、瞳孔共役位置Qに配置可能である。穴鏡30は、その向き(偏向方向)が変更可能な偏向面を有し、スリット投影光学系10からの照明光を後述の第1楕円面鏡40の反射面に導く一軸の光スキャナとして機能する。偏向面には、後述のスリット受光光学系20の光軸が通過するように穴部が形成されている。すなわち、穴鏡30は、照明光の戻り光が中心部を透過(通過)し、且つ、中心部の周辺部で照明光を反射させる構造を有する。
 穴鏡30は、被検眼Eにおける照明光の照射部位において照射領域のスリット方向(スリットが延びる方向、照射領域の長手方向)に直交する方向(スリット幅の方向、照射領域の短手方向)に順次に移動するように偏向面の向きを変更することで照明光を偏向する。穴鏡30は、後述の制御部からの制御を受け、照明光の偏向方向を変更可能に構成されている。
 スリット投影光学系10からの照明光は、穴部の周辺の偏向面で偏向され、第1楕円面鏡40の反射面に導かれる。被検眼Eからの照明光の戻り光は、第1楕円面鏡40の反射面を介して、穴鏡30に形成された穴部を通過し、スリット受光光学系20に導かれる。
 いくつかの実施形態では、穴鏡30は、スリット投影光学系10からの照明光を第1楕円面鏡40の反射面に導く二軸の光スキャナとして機能する。
 いくつかの実施形態では、穴鏡30は、照明光の戻り光の波長成分(又は偏光成分)を透過するように構成される。この場合、被検眼Eからの照明光の戻り光は、第1楕円面鏡40の反射面を介して、穴鏡30を透過し、スリット受光光学系20に導かれる。
(スリット受光光学系20)
 スリット受光光学系20は、穴鏡30の穴部を通過した被検眼Eからの照明光の戻り光を受光する。スリット受光光学系20は、イメージセンサ21と、結像レンズ22とを含む。
 イメージセンサ21は、ピクセル化された受光器としての2次元イメージセンサの機能を実現する。イメージセンサ21の受光面(検出面、撮像面)は、眼底共役位置Pに配置可能である。イメージセンサ21は、眼底共役位置Pにおいて移動可能な受光可能範囲(仮想的な開口範囲、フォーカルプレーン)を設定可能である。
 例えば、イメージセンサ21による受光結果は、ローリングシャッター方式により取り込まれて読み出される。いくつかの実施形態では、後述の制御部は、イメージセンサ21を制御することにより受光結果の読み出し制御を行う。いくつかの実施形態では、イメージセンサ21は、受光位置を示す情報と共に、あらかじめ決められたライン分の受光結果を自動的に出力することが可能である。
 このようなイメージセンサ21は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサを含む。この場合、イメージセンサ21は、ロウ方向に配列された複数のピクセル(受光素子)群がカラム方向に配列された複数のピクセルを含む。具体的には、イメージセンサ21は、2次元的に配列された複数のピクセルと、複数の垂直信号線と、水平信号線とを含む。各ピクセルは、フォトダイオード(受光素子)と、キャパシタとを含む。複数の垂直信号線は、ロウ方向(水平方向)に直交するカラム方向(垂直方向)のピクセル群毎に設けられる。各垂直信号線は、受光結果に対応した電荷が蓄積されたピクセル群と選択的に電気的に接続される。水平信号線は、複数の垂直信号線と選択的に電気的に接続される。各ピクセルは、戻り光の受光結果に対応した電荷を蓄積し、蓄積された電荷は、例えばロウ方向のピクセル群毎に順次読み出される。例えば、ロウ方向のライン毎に、各ピクセルに蓄積された電荷に対応した電圧が垂直信号線に供給される。複数の垂直信号線は、選択的に水平信号線と電気的に接続される。垂直方向に順次に上記のロウ方向のライン毎の読み出し動作を行うことで、2次元的に配列された複数のピクセルの受光結果を読み出すことが可能である。
 このようなイメージセンサ21に対してローリングシャッター方式で戻り光の受光結果を取り込む(読み出す)ことにより、ロウ方向に延びる所望の仮想的な開口形状に対応した受光像が取得される。このような制御については、例えば、米国特許7831106号明細書又は米国特許第8237835号明細書等に開示されている。
 結像レンズ22は、穴鏡30に形成された穴部を通過した照明光の戻り光(又は穴鏡30を透過した照明光の戻り光)をイメージセンサ21の受光面に結像させる。
(第1楕円面鏡40)
 第1楕円面鏡40の反射面(第1反射面)は、楕円面(より具体的には、楕円面の一部)である。第1楕円面鏡40は、凹面鏡の一例である。
 第1楕円面鏡40は、光学的に共役な2つの焦点(第1焦点F1、第2焦点F2)を有する。穴鏡30(穴鏡30の偏向面)は、第1楕円面鏡40の第1焦点F1若しくはその近傍に配置される。いくつかの実施形態では、穴鏡30は、第1焦点F1と光学的に共役な位置(第1焦点F1の共役位置)又はその近傍に配置される。
(第2楕円面鏡50)
 第2楕円面鏡50の反射面(第2反射面)は、楕円面(より具体的には、楕円面の一部)である。第2楕円面鏡50は、凹面鏡の一例である。
 第2楕円面鏡50は、光学的に共役な2つの焦点(第1焦点F3、第2焦点F4)を有する。第2楕円面鏡50は、第1焦点F3が第1楕円面鏡40の第2焦点F2と略一致するように配置される。いくつかの実施形態では、第2楕円面鏡50は、第1焦点F3が第1楕円面鏡40の第2焦点F2と光学的に共役な位置(第2焦点F2の共役位置)又はその近傍に略一致するように配置される。第2楕円面鏡50の第2焦点F4には、被検眼Eが配置される。すなわち、第2楕円面鏡50は、第2焦点F4が、被検眼Eが配置される被検眼位置に略一致するように配置される。
 このように、第1楕円面鏡40と第2楕円面鏡50との間の第2焦点F2(第1焦点F3)にスキャン光学部材を配置する必要がないため、所定のスキャン方向(横方向、水平方向)のスキャン範囲の制限を受けない。例えば、特許文献1に記載された構成では、横方向に照明光をスキャンさせる偏向部材が設けられているため、理論上は180度まで(現実的には、150度程度まで)の撮影画角を確保することができる。これに対して、実施形態によれば、横方向にスキャンさせる偏向部材が不要であるため、180度を超えた撮影画角まで撮影することが可能になる(人眼の角膜は、瞳孔よりも前方に突出した位置に配置されるため、魚眼レンズのような効果で180度を超える範囲を観察可能である)。
 第1楕円面鏡40及び第2楕円面鏡50は、実施形態に係る「2つの凹面鏡」の一例である。第1楕円面鏡40及び第2楕円面鏡50を以下のように保持部材により保持することで、簡便に、且つ、低コストで、第1楕円面鏡40の第2焦点F2と第2楕円面鏡50の第1焦点F3とを高精度に一致するように配置することが可能である。
 図2A~図2Dに、第1楕円面鏡40及び第2楕円面鏡50の保持構造の一例を模式的に示す。図2Aは、保持部材45により保持される第1楕円面鏡40及び第2楕円面鏡50の取り付け態様を表す概略的な側面図である。図2Bは、第2楕円面鏡50の反射面の側からみたときの保持部材45に第1楕円面鏡40及び第2楕円面鏡50が保持された状態を模式的に表す斜視図である。図2Cは、第1楕円面鏡40の反射面の側からみたときの保持部材45に第1楕円面鏡40及び第2楕円面鏡50が保持された状態を模式的に表す斜視図である。図2Dは、保持部材45に第1楕円面鏡40及び第2楕円面鏡50が保持された状態を模式的に表す側面図である。図2A~図2Dにおいて、図1と同様の部分には同一符号を付し、適宜説明を省略する。
 眼底観察装置1は、第1楕円面鏡40及び第2楕円面鏡50を保持する保持部材45を含む。保持部材45は、第1楕円面鏡40及び第2楕円面鏡50の相対位置が、スリット投影光学系10及びスリット受光光学系20を含む光学系の光軸方向に既定の位置関係となるように配置された状態で第1楕円面鏡40及び第2楕円面鏡50を固定可能である。
 第1楕円面鏡40及び第2楕円面鏡50のそれぞれの周縁部には、フランジが形成されている。第1楕円面鏡40のフランジを保持部材45に固定することにより、保持部材45に第1楕円面鏡40を固定可能である。第2楕円面鏡50のフランジを保持部材45に固定することにより、保持部材45に第2楕円面鏡50を固定可能である。
 第1楕円面鏡40は、例えば、電気鋳造加工により形成される。電気鋳造加工は、電解液中の金属イオンを母型(matrix)の表面に電気化学的に析出させることで、ナノレベルで母型の形状を忠実に複製する手法である。これにより、非常に高精度な形状を有する第1楕円面鏡40を形成することが可能になる。
 第1楕円面鏡40の2つの第1焦点F1及び第2焦点F2の双方は、凹面状の反射面からフランジの面より離れた位置に配置される。図2Aでは、反射面と第1焦点F1との間の短軸方向の距離、及び反射面と第2焦点F2との間の短軸方向の距離の双方が、反射面とフランジの面との間の短軸方向の距離より長い。
 第1楕円面鏡40の長軸方向(所定の第1方向)の両端部は、長軸方向に直交する平面で切断された形状を有する。これにより、広角の眼底観察に必要な第1楕円面鏡40の反射面のサイズを確保しつつ、第1楕円面鏡40の軽量化及び小型化を図ることが可能になる。
 第2楕円面鏡50は、例えば、第1楕円面鏡40と同様に、電気鋳造加工により形成される。これにより、非常に高精度な形状を有する第2楕円面鏡50を形成することが可能になる。
 第2楕円面鏡50の2つの第1焦点F3及び第2焦点F4の双方は、凹面状の反射面からフランジの面より離れた位置に配置される。図2Aでは、反射面と第1焦点F3との間の短軸方向の距離、及び反射面と第2焦点F4との間の短軸方向の距離の双方が、反射面とフランジの面との間の短軸方向の距離より長い。なお、第2楕円面鏡50に形成されるフランジ(面)は、第1焦点F3及び第2焦点F4を結ぶ長軸に略平行である。
 第2楕円面鏡50の長軸方向(所定の第1方向)の両端部は、長軸方向に交差する平面で切断された形状を有する。これにより、広角の眼底観察に必要な第2楕円面鏡50の反射面のサイズを確保しつつ、第2楕円面鏡50の軽量化及び小型化を図ることが可能になる。特に、下方側を切断することで、観察対象の被検者の口や顎と第2楕円面鏡50との干渉を回避することが可能になる。
 保持部材45には、光学系の光軸方向に所定の厚さを有し、第1保持面に保持された第1楕円面鏡40の反射面が第1保持面と反対側の第2保持面の側に露出し、且つ、第2保持面に保持された第2楕円面鏡50の反射面が第1保持面の側に露出するように開口が形成されている。これにより、第1楕円面鏡40の反射面で反射された光学系からの光が開口を通過して第2楕円面鏡50の反射面で反射して眼底に導かれ、第2楕円面鏡50の反射面で反射された眼底からの戻り光が開口を通過して第1楕円面鏡40の反射面で反射して光学系に導かれる。
 なお、保持部材45の光学系の光軸方向の厚さは一定でなくてもよい。保持部材の45の光学系の光軸方向の厚さの変化に応じて、第1楕円面鏡40及び第2楕円面鏡50の周縁部が切断され、楕円面鏡の周縁部(フランジ)が当該厚さの変化に応じた形状を有していればよい。
 図2A~図2Cに示すように、保持部材45の第1保持面において反射面が開口に対向するように第1楕円面鏡40が配置され、第2保持面において反射面が開口に対向するように第2楕円面鏡50が配置される。このように保持部材45に第1楕円面鏡40及び第2楕円面鏡50が配置されたとき、図2Dに示すように、第1楕円面鏡40の第2焦点F2と第2楕円面鏡50の第1焦点F3とは、光学系の光軸方向に略一致するようになっている。
 従って、図2B及び図2Cに示すように、第1楕円面鏡40及び第2楕円面鏡50の相対位置を光学系の光軸方向に直交する2次元方向(x方向及びy方向)に変更するだけで、第1楕円面鏡40の第2焦点F2及び第2楕円面鏡50の第1焦点F3を3次元的に簡便に、且つ、高精度に一致させることが可能になる。
 例えば、図2Dに示すように保持部材45の両面に第1楕円面鏡40及び第2楕円面鏡50が配置された状態で、第1楕円面鏡40の第1焦点F1又はその光学的に略共役な位置に配置された光源からの光を第2楕円面鏡50の第2焦点F4又はその光学的に略共役な位置で受光する。このとき、第1楕円面鏡40の第2焦点F2、第2楕円面鏡50の第1焦点F3、及び第2焦点F4において光源からの光が集光するように第1楕円面鏡40と第2楕円面鏡50の光学系の光軸方向に直交する2次元方向(x方向及びy方向)の相対位置を変更することで、第1楕円面鏡40と第2楕円面鏡50の光学系の光軸方向に直交する2次元方向(x方向及びy方向)の相対位置が決定される。
 いくつかの実施形態では、眼底観察装置1は、第1楕円面鏡40を保持すると共に保持部材45に対する第1楕円面鏡40の光学系の光軸方向に直交する2次元方向(x方向及びy方向)の相対位置を変更する第1移動機構と、第2楕円面鏡50を保持すると共に保持部材45に対する第2楕円面鏡50の光学系の光軸方向に直交する2次元方向(x方向及びy方向)の相対位置を変更する第2移動機構とを含む。この場合、眼底観察装置1は、第1移動機構及び第2移動機構の少なくとも一方により、第1楕円面鏡40と第2楕円面鏡50との相対位置を変更するように構成される。
 上記のように、第1楕円面鏡40と第2楕円面鏡50との相対位置が決定されると、各楕円面鏡のフランジは保持部材45に固定される。例えば、ねじ留め、ピン留め、圧着、溶接、又はカシメ等によりフランジが保持部材45に対して固定される。
 図3に、保持部材45により保持された第1楕円面鏡40及び第2楕円面鏡50の側面図を模式的に示す。図3において、図1~図2Dと同様の部分には同一符号を付し、適宜説明を省略する。
 上記のように、保持部材45は、第1楕円面鏡40のフランジと、第2楕円面鏡50のフランジとを保持するように構成される。ここで、図2Dに示すように、保持部材45は、第1楕円面鏡40のフランジ(面)と第2楕円面鏡50のフランジ(面)とが略平行になるように保持する。
 これにより、保持部材45によりz方向の距離dzが一定に保持されてz方向に位置合わせが高精度に行われた状態で、第1楕円面鏡40及び第2楕円面鏡50に対してz方向に直交するx方向及びy方向の位置合わせを高精度に行うことができる。その結果、第1楕円面鏡40及び第2楕円面鏡50を簡便、且つ、低コストで高精度に位置合わせすることができるようになる。
 更に、実施形態に係る第2楕円面鏡50の両端部は、上記のように、楕円面の一部である反射面の長軸方向に交差する平面で切断された形状を有する。両端部を切断することで、軽量化及び小型化を図ることができるが、特に、下方の端部を切断することで、観察対象の被検者の負担を軽減することが可能になる。
 図4A及び図4Bに、実施形態の比較例に係る第1楕円面鏡及び第2楕円面鏡と観察対象の被検者との位置関係を模式的に示す。図4Aは、実施形態の比較例に係る第1楕円面鏡及び第2楕円面鏡と観察対象の被検者との位置関係の概略を示す上面図である。図4Bは、実施形態の比較例に係る第1楕円面鏡及び第2楕円面鏡と観察対象の被検者との位置関係の概略を示す側面図である。
 実施形態の比較例に係る眼底観察装置は、第1楕円面鏡40′と第2楕円面鏡50′とを含む。第1楕円面鏡40′は、実施形態に係る第1楕円面鏡40と同様であってよい。これに対して、第2楕円面鏡50′の両端部は、楕円面である反射面の長軸に交差する平面で切断されていない(図4B参照)。
 この場合、被検眼位置(第2楕円面鏡50′の第2焦点F4の位置)に被検眼を配置しようと被検者SUが顔を第2楕円面鏡50′を近付けると、図4Bに示すように、顔の一部(口、顎)が第2楕円面鏡50′の下部に干渉する。従って、被検者SUは、図4Aに示すように、第2楕円面鏡50′の反射面に対して斜め方向に顔を向けて被検眼位置に被検眼を配置する必要が生ずる。それにより、被検眼の固視が困難になったり、観察中の被検者SUの姿勢に負担をかけたりする場合がある。
 図5A及び図5Bに、実施形態に係る第1楕円面鏡40及び第2楕円面鏡50と観察対象の被検者との位置関係を模式的に示す。図5Aは、実施形態に係る第1楕円面鏡40及び第2楕円面鏡50と観察対象の被検者との位置関係の概略を示す上面図である。図5Bは、実施形態に係る第1楕円面鏡40及び第2楕円面鏡50と観察対象の被検者との位置関係の概略を示す側面図である。
 上記のように、第2楕円面鏡50の両端部は、楕円面である反射面の長軸に交差する平面で切断されている(図5B参照)。この場合、被検眼位置(第2楕円面鏡50の第2焦点F4の位置)に被検眼を配置しようと被検者SUが顔を第2楕円面鏡50に近付けても、図5Bに示すように、顔(口、顎)が第2楕円面鏡50の下部に干渉することを回避することができる。従って、被検者SUは、図5Aに示すように、第2楕円面鏡50の反射面に対して正面を向いて被検眼位置に被検眼を配置することができる。それにより、被検眼の固視が容易になり、観察中の被検者SUの姿勢に負担をかけることがない。
 なお、図1に示すように、第2楕円面鏡50は、第1楕円面鏡40の第1焦点F1と第2焦点F2とを結ぶ直線と第2楕円面鏡50の第1焦点F3と第2焦点F4とを結ぶ直線とのなす角が角度αになるように配置される。例えば、角度αは30度である。いくつかの実施形態では、角度αを変更するように、第1楕円面鏡40に対して第2楕円面鏡50が相対的に移動可能に構成される。
 このような構成において、第1焦点F1に配置された穴鏡30により偏向された照明光は、第1楕円面鏡40の反射面で反射され、第1楕円面鏡40の第2焦点F2に導かれる。第2焦点F2に導かれた照明光は、第2楕円面鏡50の反射面に導かれ、この反射面で反射され、第2楕円面鏡50の第2焦点F4に配置された被検眼Eに導かれる。
 被検眼Eに導かれた照明光は、瞳孔を通じて眼内に入射し、眼底Efに照射される。眼底Efにおいて反射された照明光の戻り光は、瞳孔を通じて被検眼Eの外部に出射され、往路と同じ経路を逆向きに進行して、第1楕円面鏡40の第1焦点F1に導かれる。第1焦点F1に導かれた照明光の戻り光は、上記のように、穴鏡30に形成された穴部を通過し(又は穴鏡30を透過し)、スリット受光光学系20に導かれる。
 いくつかの実施形態では、第1楕円面鏡40及び第2楕円面鏡50の少なくとも一方は、反射面が凹面状に形成された凹面鏡である。いくつかの実施形態では、凹面鏡の反射面は、自由曲面になるように形成される。
 眼底観察装置1には、図1に示す構成に加え、被検眼Eと光学系との位置合わせを行うためのアライメント光学系が設けられてもよい。また、眼底観察装置1には、レンズの移動、又はスリット受光光学系20の移動による合焦機構が設けられていてもよい。
 また、眼底観察装置1は、検査に付随する機能を提供するための構成を備えていてよい。例えば、眼底観察装置1には、被検眼Eを固視させるための視標(固視標)を被検眼Eの眼底Efに投影するための固視光学系が設けられていてよい。更に、眼底観察装置1には、被検者の顔を支持するための部材(顎受け、額当て等)等の任意の要素やユニットが設けられてもよい。
 図6に、第1実施形態に係る眼底観察装置1の処理系の構成例を示す。図6において、図1と同様の部分には同一符号を付し、適宜説明を省略する。
 眼底観察装置1の処理系は、制御部60を中心に構成される。制御部60は、眼底観察装置1の各部の制御を行う。
 制御部60は、主制御部61と、記憶部62とを含む。主制御部61の機能は、例えばプロセッサにより実現される。記憶部62には、眼底観察装置1を制御するためのコンピュータプログラムがあらかじめ格納される。このコンピュータプログラムには、照明光源制御用プログラム、イメージセンサ制御用プログラム、穴鏡制御用プログラム、画像形成用プログラム、及びユーザインターフェイス用プログラムなどが含まれる。このようなコンピュータプログラムに従って主制御部61が動作することにより、制御部60は制御処理を実行する。
 (主制御部61)
 主制御部61は、スリット投影光学系10、スリット受光光学系20、穴鏡30、画像形成部70、及びユーザインターフェイス(User Interface:UI)部80の各部を制御する。
 スリット投影光学系10に対する制御には、照明光源11に対する制御などがある。照明光源11に対する制御には、光源の点灯、消灯、光量調整、絞り調整などがある。
 スリット受光光学系20に対する制御には、イメージセンサ21に対する制御などがある。イメージセンサ21に対する制御には、眼底共役位置Pにおいて移動可能な受光可能範囲(仮想的な開口範囲、フォーカルプレーン)の設定制御、ローリングシャッター方式で受光結果を読み出すための制御(例えば、照明パターンのサイズに対応した受光サイズの設定等)が含まれる。また、イメージセンサ21の制御には、リセット制御、露光制御、電荷転送制御、出力制御などが含まれる。
 穴鏡30に対する制御には、照明光を偏向する偏向面の角度の制御が含まれる。偏向面の角度を制御することで、照明光の偏向方向を制御することが可能である。偏向面の角度範囲を制御することで、スキャン範囲(スキャン開始位置及びスキャン終了位置)を制御することが可能である。偏向面の角度の変更速度を制御することで、スキャン速度を制御することが可能である。
 画像形成部70に対する制御には、イメージセンサ21により得られた受光結果から被検眼Eの画像を形成する画像形成制御などがある。
 UI部80に対する制御には、表示デバイスに対する制御、操作デバイス(入力デバイス)に対する制御などがある。
(記憶部62)
 記憶部62は、各種のデータを記憶する。記憶部62に記憶されるデータとしては、例えば、イメージセンサ21により得られた受光結果、画像形成部70により形成された画像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。
 また、記憶部62には、眼底観察装置1を動作させるための各種プログラムやデータが記憶されている。
(画像形成部70)
 画像形成部70は、ローリングシャッター方式によりイメージセンサ21から読み出された受光結果に基づいて、任意の受光可能範囲(仮想的な開口範囲、フォーカルプレーン)に対応した受光像(眼底像)を形成することが可能である。画像形成部70は、受光可能範囲(開口範囲)に対応した受光像を順次に形成し、形成された複数の受光像から被検眼Eの画像を形成することが可能である。画像形成部70により形成された各種の画像(画像データ)は、例えば記憶部62に保存される。
 例えば、画像形成部70は、プロセッサを含み、記憶部等に記憶されたプログラムに従って処理を行うことで、上記の機能を実現する。
(UI部80)
 UI部80は、ユーザと眼底観察装置1との間で情報のやりとりを行うための機能を備える。UI部80は、表示デバイスと操作デバイスとを含む。表示デバイスは、表示部を含んでよく、それ以外の表示デバイスを含んでもよい。表示デバイスは、各種の情報を表示させる。表示デバイスは、例えば液晶ディスプレイを含み、主制御部61からの制御を受け、上記の情報を表示する。表示デバイスに表示される情報には、制御部60による制御結果に対応した情報、画像形成部70による演算結果に対応した情報(画像)などがある。操作デバイスは、各種のハードウェアキー及び/又はソフトウェアキーを含む。主制御部61は、操作デバイスに対する操作内容を受け、操作内容に対応した制御信号を各部に出力することが可能である。操作デバイスの少なくとも一部と表示デバイスの少なくとも一部とを一体的に構成することが可能である。タッチパネルディスプレイはその一例である。
 第1楕円面鏡40は、実施形態に係る「第1凹面鏡」の一例である。第2楕円面鏡50は、実施形態に係る「第2凹面鏡」の一例である。スリット投影光学系10及スリット受光光学系20は、実施形態に係る「光学系」の一例である。穴鏡30は、実施形態に係る「偏向部材」の一例である。
 <動作>
 次に、第1実施形態に係る眼底観察装置1の動作例について説明する。
 図7に、第1実施形態に係る眼底観察装置1の動作例を示す。図7は、第1実施形態に係る眼底観察装置1の動作例のフローチャートを表す。記憶部62には、図7に示す処理を実現するためのコンピュータプログラムが記憶されている。主制御部61は、このコンピュータプログラムに従って動作することにより、図7に示す処理を実行する。
 図7では、被検眼Eが所定の被検眼位置(図1の第2楕円面鏡50の第2焦点F4)に配置されているものとする。
(S1:照明光源を点灯)
 主制御部61は、照明光源11を制御して、照明光源11を点灯させる。
 照明光源11から出力された光は、虹彩絞り12に形成された開口部を通過し、スリット13に形成された開口部を通過し、投影レンズ14を透過し、スリット状の照明光として穴鏡30に導かれる。
(S2:照明光の偏向制御、受光面の開口範囲を設定)
 続いて、主制御部61は、穴鏡30を制御することにより、所定の照射範囲を照明するために所定の偏向方向に偏向面の向きを設定し、所定の偏向角度範囲で偏向面の向きを順次に変更する照明光の偏向制御を開始する。すなわち、主制御部61は、眼底Efに対して照明光のスキャンを開始する。
 いくつかの実施形態では、主制御部61は、イメージセンサ21において任意に設定可能な仮想的な開口範囲(受光可能範囲)の移動に同期して、穴鏡30を制御して照明光の偏向制御を行う。
 いくつかの実施形態では、主制御部61は、イメージセンサ21を制御し、眼底Efにおける照明光の照射領域に対応する受光面における戻り光の受光範囲を含む開口範囲(受光可能範囲)を仮想的に設定する。例えば、眼底Efにおける照明光の照射範囲は、穴鏡30の偏向面の偏向角度に基づいて特定することが可能である。主制御部61は、順次に変更される穴鏡30の偏向面の偏向方向に対応して、イメージセンサ21の受光面における開口範囲を仮想的に設定することが可能である。
 穴鏡30に導かれた照明光は、偏向方向が変更された偏向面で偏向されて第1楕円面鏡40の反射面に導かれ、この反射面で反射され、第1楕円面鏡40の第2焦点F2を経由して、第2楕円面鏡50の反射面に導かれる。第2楕円面鏡50に反射面に導かれた照明光は、この反射面で反射され、第2楕円面鏡50の第2焦点F4に配置された被検眼Eの眼内に入射し、眼底Efに照射される。眼底Efからの照明光の戻り光は、往路と同じ経路を逆向きに進行し、穴鏡30に形成された穴部を通過し、又は穴鏡30を透過し、結像レンズ22を介してイメージセンサ21の受光面で受光される。イメージセンサ21の受光面では、眼底Efにおける照明光の照射範囲に対応した戻り光の受光範囲を含むように仮想的な開口範囲(受光可能範囲)が設定されているため、不要な散乱光の影響を抑えつつ、眼底Efからの戻り光のみが受光される。
(S3:終了?)
 続いて、主制御部61は、眼底Efに対する照明光のスキャンを終了するか否かを判定する。例えば、主制御部61は、順次に変更される穴鏡30の偏向面の偏向角度が所定の偏向角度範囲以内であるか否かを判定することにより、眼底Efに対する照明光のスキャンを終了するか否かを判定することができる。
 眼底Efに対する照明光のスキャンを終了すると判定されたとき(S3:Y)、眼底観察装置1の動作はステップS4に移行する。眼底Efに対する照明光のスキャンを終了しないと判定されたとき(S3:N)、眼底観察装置1の動作はステップS2に移行する。
(S4:画像を取得)
 ステップS3において、眼底Efに対する照明光のスキャンを終了すると判定されたとき(S3:Y)、主制御部61は、画像形成部70を制御することにより、イメージセンサ21から読み出された受光結果に基づいて被検眼Eの画像を形成させる。いくつかの実施形態では、画像形成部70は、ステップS2においてイメージセンサ21から読み出された受光結果に基づいて受光像を順次に形成し、形成された複数の受光像から被検眼Eの画像を形成する。
 以上で、眼底観察装置1の動作は終了である(エンド)。
 以上説明したように、第1実施形態によれば、第1楕円面鏡40及び第2楕円面鏡50を簡便、且つ、低コストで高精度に位置合わせすることができる。更に、このような第1楕円面鏡40及び第2楕円面鏡50を備えた眼底観察装置1では、穴鏡30を用いてスリット投影光学系10の光路とスリット受光光学系20の光路とを結合すると共に、穴鏡30を用いて照明光を偏向して第1楕円面鏡40の反射面に導く。それにより、低コスト、且つ、コンパクトな構成で、照明光のスリット方向に直交するスリット幅方向(ラインの幅方向)にスキャンする光学系だけで80度を超える撮影画角を確保しつつ、広角な照明光の光路と戻り光の光路との共有光学系を容易に配置することが可能になる。また、穴鏡30の穴部の通過(透過)側にも光学系を配置することができるため、瞳リレー系が不要な構成となり、光学系の配置の自由度を向上させることができる。
 更に、ポリゴンミラー等ではなく穴鏡30を用いることで、静音化を図りつつ、偏向角度範囲を広くすることが可能になる。また、スリット方向の長さ又はスキャン方向の長さを可変にすることで、照明光のスキャン範囲を任意に設定することができるようになる。
 <第2実施形態>
 実施形態に係る眼底観察装置の構成は、第1実施形態に係る眼底観察装置1の構成に限定されるものではない。例えば、第1実施形態に係る眼底観察装置1は、更に、OCT光学系を備えていてもよい。
 以下、実施形態では、OCTを用いた計測又は撮影においてスウェプトソースタイプのOCTの手法を用いる場合について特に説明する。しかしながら、他のタイプ(例えば、スペクトラルドメインタイプ)のOCTを用いる眼底観察装置に対して、実施形態に係る構成を適用することも可能である。
 以下、第2実施形態に係る眼底観察装置について、第1実施形態に係る眼底観察装置1との相違点を中心に説明する。
 <構成>
 図8に、第2実施形態に係る眼底観察装置の光学系の構成例を示す。図8において、図1と同様の部分には同一符号を付し、適宜説明を省略する。
 第2実施形態に係る眼底観察装置1aの光学系の構成が第1実施形態に係る眼底観察装置1の光学系の構成と異なる点は、眼底観察装置1の光学系の構成に対してOCT光学系100が追加された点である。OCT光学系100の光路は、スリット受光光学系20と穴鏡30との間の光路でスリット受光光学系20の光路と結合される。
 具体的には、スリット受光光学系20と穴鏡30との間の光路に、リレーレンズ71、72を含むリレーレンズ光学系が配置される。リレーレンズ71とリレーレンズ72との間の光路は、テレセントリック光学系の光路に変換され、テレセントリック光学系の光路にダイクロイックミラー90が配置される。すなわち、リレーレンズ光学系は、ダイクロイックミラー90が配置された光路の少なくとも一部をテレセントリック光学系の光路に変換する。
 ダイクロイックミラー90は、スリット受光光学系20の光路からOCT光学系100の光路を分離する(スリット受光光学系20の光路とOCT光学系100の光路とを結合する)光路結合分離部材である。ダイクロイックミラー90は、OCT光学系100からの測定光を反射してリレーレンズ71に導くと共に、被検眼Eからの測定光の戻り光を反射してOCT光学系100に導く。また、ダイクロイックミラー90は、リレーレンズ71を介して導かれてきた被検眼Eからの照明光の戻り光を透過させ、リレーレンズ72に導く。
(OCT光学系100)
 図9に、図8のOCT光学系100の構成例を示す。図9において、図8と同様の部分には同一符号を付し、適宜説明を省略する。
 OCT光学系100には、被検眼Eに対してOCT計測(又はOCT撮影)を行うための光学系が設けられている。この光学系は、波長掃引型(波長走査型)光源からの光を測定光と参照光とに分割し、被検眼Eからの測定光の戻り光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光を検出する干渉光学系である。干渉光学系による干渉光の検出結果(検出信号)は、干渉光のスペクトルを示す干渉信号であり、後述の画像形成部70a、及びデータ処理部75a等に送られる。
 OCT光源101は、一般的なスウェプトソースタイプの眼底観察装置と同様に、出射光の波長を掃引(走査)可能な波長掃引型(波長走査型)光源を含んで構成される。波長掃引型光源は、例えば、共振器を含み、中心波長が1050nmの光を発するレーザー光源を含んで構成される。OCT光源101は、人眼では視認できない近赤外の波長帯において、出力波長を時間的に変化させる。
 OCT光源101から出力された光L0は、光ファイバ102により偏波コントローラ103に導かれてその偏波状態が調整される。偏波コントローラ103は、例えばループ状にされた光ファイバ102に対して外部から応力を与えることで、光ファイバ102内を導かれる光L0の偏波状態を調整する。
 偏波コントローラ103により偏波状態が調整された光L0は、光ファイバ104によりファイバカプラ105に導かれて測定光LSと参照光LRとに分割される。
 参照光LRは、光ファイバ110によりコリメータ111に導かれて平行光束に変換され、光路長補正部材112及び分散補償部材113を経由し、光路長変更部114に導かれる。光路長補正部材112は、参照光LRの光路長と測定光LSの光路長とを合わせるよう作用する。分散補償部材113は、参照光LRと測定光LSとの間の分散特性を合わせるよう作用する。
 光路長変更部114は、図9に示す矢印の方向に移動可能とされ、参照光LRの光路長を変更する。この移動により参照光LRの光路の長さが変更される。この光路長の変更は、被検眼Eの眼軸長に応じた光路長の補正や、干渉状態の調整などに利用される。光路長変更部114は、例えばコーナーキューブと、これを移動する移動機構とを含んで構成される。この場合、光路長変更部114のコーナーキューブは、コリメータ111により平行光束とされた参照光LRの進行方向を逆方向に折り返す。コーナーキューブに入射する参照光LRの光路と、コーナーキューブから出射する参照光LRの光路とは平行である。
 光路長変更部114を経由した参照光LRは、分散補償部材113及び光路長補正部材112を経由し、コリメータ116によって平行光束から集束光束に変換され、光ファイバ117に入射する。光ファイバ117に入射した参照光LRは、偏波コントローラ118に導かれてその偏波状態が調整され、光ファイバ119によりアッテネータ120に導かれて光量が調整され、光ファイバ121によりファイバカプラ122に導かれる。
 一方、ファイバカプラ105により生成された測定光LSは、光ファイバ127によりに導かれ、コリメータレンズユニット140により平行光束とされる。平行光束にされた測定光LSは、光スキャナ150により1次元的又は2次元的に偏向される。
 コリメータレンズユニット140は、OCT光学系100に含まれる干渉光学系の光軸に配置されたコリメータレンズを含む。コリメータレンズは、OCT光学系100に接続され測定光LSを導光する光ファイバの端部から出射した測定光の光束を平行光束にする。当該光ファイバの端部は、例えば眼底共役位置Pに配置される。
 光スキャナ150(偏向面)は、瞳孔共役位置Qに配置可能である。1次元的に照明光を偏向する場合、光スキャナ150は、所定の偏向方向を基準に所定の偏向角度範囲で測定光LSを偏向するガルバノスキャナを含む。2次元的に照明光を偏向する場合、光スキャナ150は、第1ガルバノスキャナと、第2ガルバノスキャナとを含む。第1ガルバノスキャナは、OCT光学系100の光軸に直交する水平方向(例えば、x方向)に照射位置を移動するように測定光LSを偏向する。第2ガルバノスキャナは、OCT光学系100の光軸に直交する垂直方向(例えば、y方向)に照射位置を移動するように、第1ガルバノスキャナにより偏向された測定光LSを偏向する。光スキャナ150による測定光LSの照射位置を移動するスキャン態様としては、例えば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋スキャンなどがある。
 光スキャナ150により偏向された測定光LSは、合焦レンズ151を通過し、ダイクロイックミラー90により反射され、穴鏡30の穴部を通過し、第1楕円面鏡40の反射面に導かれ、スリット投影光学系10からの照明光と同様の経路で被検眼Eに導かれる。合焦レンズ151は、測定光LSの光路(OCT光学系100の光軸)に沿って移動可能である。合焦レンズ151は、後述の制御部からの制御を受け、図示しない移動機構により測定光LSの光路に沿って移動される。
 第2楕円面鏡50の反射面により反射された測定光LSは、第2焦点F4(被検眼位置)における被検眼Eの瞳孔を通じて眼内に入射する。測定光LSは、被検眼Eの様々な深さ位置において散乱(反射を含む)される。このような後方散乱光を含む測定光LSの戻り光は、往路と同じ経路を逆向きに進行してファイバカプラ105に導かれ、光ファイバ128を経由してファイバカプラ122に到達する。
 ファイバカプラ122は、光ファイバ128を介して入射された測定光LSと、光ファイバ121を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバカプラ122は、所定の分岐比(例えば1:1)で、測定光LSと参照光LRとの干渉光を分岐することにより、一対の干渉光LCを生成する。ファイバカプラ122から出射した一対の干渉光LCは、それぞれ光ファイバ123、124により検出器125に導かれる。
 検出器125は、例えば一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを有し、これらによる検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode)である。検出器125は、その検出結果(干渉信号)をDAQ(Data Acquisition System)130に送る。DAQ130には、OCT光源101からクロックKCが供給される。クロックKCは、OCT光源101において、波長掃引型光源により所定の波長範囲内で掃引(走査)される各波長の出力タイミングに同期して生成される。OCT光源101は、例えば、各出力波長の光L0を分岐することにより得られた2つの分岐光の一方を光学的に遅延させた後、これらの合成光を検出した結果に基づいてクロックKCを生成する。DAQ130は、クロックKCに基づき、検出器125の検出結果をサンプリングする。DAQ130は、サンプリングされた検出器125の検出結果を画像形成部70a、及びデータ処理部75a等に送る。画像形成部70a(又は、データ処理部75a)は、例えば一連の波長走査毎に(Aライン毎に)、検出器125により得られた検出結果に基づくスペクトル分布にフーリエ変換等を施すことにより、各Aラインにおける反射強度プロファイルを形成する。更に、画像形成部70aは、各Aラインの反射強度プロファイルを画像化することにより画像データを形成する。
 なお、図9では、参照光の光路長を変更することにより測定光と参照光との光路長差を変更するが、実施形態に係る構成はこれに限定されるものではない。例えば、測定光の光路長を変更することにより測定光と参照光との光路長差を変更するように構成されていてもよい。
 図10に、第2実施形態に係る眼底観察装置1aの処理系の構成例を示す。図10において、図6、図8又は図9と同様の部分には同一符号を付し、適宜説明を省略する。
 眼底観察装置1aの処理系の構成が眼底観察装置1の処理系の構成と異なる点は、制御部60に代えて制御部60aが設けられた点と、画像形成部70に代えて画像形成部70aが設けられた点と、データ処理部75a及びOCT光学系100が追加された点である。
 制御部60aは、主制御部61aと、記憶部62aとを含み、制御部60が実行可能な制御に加えて、画像形成部70a、データ処理部75a、及びOCT光学系100に対する制御を実行する。主制御部61aの機能は、主制御部61と同様に、例えばプロセッサにより実現される。記憶部62aには、記憶部62と同様に、眼底観察装置1aを制御するためのコンピュータプログラムがあらかじめ格納される。このコンピュータプログラムには、照明光源制御用プログラム、イメージセンサ制御用プログラム、穴鏡制御用プログラム、画像形成用プログラム、データ処理用プログラム、OCT光学系制御用プログラム、及びユーザインターフェイス用プログラムなどが含まれる。このようなコンピュータプログラムに従って主制御部61aが動作することにより、制御部60aは制御処理を実行する。
 主制御部61aは、スリット投影光学系10、スリット受光光学系20、穴鏡30、画像形成部70a、データ処理部75a、OCT光学系100、及びUI部80の各部を制御する。
 OCT光学系100に対する制御には、OCT光源101に対する制御、偏波コントローラ103、118の動作制御、光路長変更部114の移動制御、アッテネータ120の動作制御、検出器125に対する制御、DAQ130に対する制御、光スキャナ150に対する制御、移動機構151Dに対する制御などがある。
 OCT光源101に対する制御には、光源の点灯、消灯、光量調整、絞り調整などがある。検出器125に対する制御には、検出素子の露光調整やゲイン調整や検出レート調整などがある。光スキャナ150に対する制御には、光スキャナ150によるスキャン位置やスキャン範囲やスキャン速度の制御などがある。
 移動機構151Dは、合焦レンズ151をOCT光学系100の光軸方向に移動する。主制御部61aは、移動機構151Dを制御することにより、合焦レンズ151をOCT光学系100の光軸方向に移動させ、測定光の合焦位置を変更することが可能である。測定光LSの合焦位置は、測定光LSのビームウェストの深さ位置(z位置)に相当する。
 画像形成部70aに対する制御には、イメージセンサ21により得られた受光結果から被検眼Eの画像を形成する画像形成制御に加えて、OCT光学系100により得られた干渉光の検出結果に基づくOCT画像の形成制御などがある。
 データ処理部75aに対する制御には、画像形成部70aにより形成された画像に対する画像処理の制御、画像の解析処理の制御などがある。
 画像形成部70aは、画像形成部70と同様に、イメージセンサ21から読み出された受光結果に基づいて、仮想的に設定された任意の開口範囲(受光可能範囲)に対応した受光像(眼底像)を形成することが可能である。画像形成部70aは、仮想的な開口範囲に対応した受光像を順次に形成し、形成された複数の受光像から被検眼Eの画像を形成することが可能である。
 また、画像形成部70aは、DAQ130(検出器125)から入力される検出信号と、制御部60aから入力される画素位置信号とに基づいて、OCT画像(断層像)の画像データを形成する。画像形成部70aにより形成されるOCT画像には、Aスキャン画像、Bスキャン画像などがある。Bスキャン画像は、例えば、Aスキャン画像をBスキャン方向に配列することにより形成される。この処理には、従来のスウェプトソースタイプのOCTと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、分散補償、FFT(Fast Fourier Transform)などの処理が含まれている。他のタイプのOCT装置の場合、画像形成部70aは、そのタイプに応じた公知の処理を実行する。画像形成部70aにより形成された各種の画像(画像データ)は、例えば記憶部62aに保存される。
 データ処理部75aは、スリット受光光学系20により得られた受光結果に基づいて形成された画像、又は被検眼Eに対するOCT計測により取得されたデータを処理する。データ処理部75aは、画像形成部70aにより形成された画像に対して各種の画像処理や解析処理を施すことが可能である。例えば、データ処理部75aは、画像の輝度補正等の各種補正処理を実行する。
 データ処理部75aは、OCT画像の間の画素を補間する補間処理などの公知の画像処理を実行して、眼底Efの3次元画像の画像データを形成する。なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、データ処理部75aは、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。UI部80に含まれる表示デバイスには、この擬似的な3次元画像が表示される。
 また、3次元画像の画像データとして、複数の断層像のスタックデータを形成することも可能である。スタックデータは、複数のスキャンラインに沿って得られた複数の断層像を、スキャンラインの位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層像を、1つの3次元座標系により表現する(つまり1つの3次元空間に埋め込む)ことにより得られる画像データである。
 データ処理部75aは、取得された3次元データセット(ボリュームデータ、スタックデータ等)に各種のレンダリングを施すことで、任意断面におけるBモード画像(縦断面像、軸方向断面像)、任意断面におけるCモード画像(横断面像、水平断面像)、プロジェクション画像、シャドウグラムなどを形成することができる。Bモード画像やCモード画像のような任意断面の画像は、指定された断面上の画素(ピクセル、ボクセル)を3次元データセットから選択することにより形成される。プロジェクション画像は、3次元データセットを所定方向(z方向、深さ方向、軸方向)に投影することによって形成される。シャドウグラムは、3次元データセットの一部(例えば、特定層に相当する部分データ)を所定方向に投影することによって形成される。Cモード画像、プロジェクション画像、シャドウグラムのような、被検眼の正面側を視点とする画像を正面画像(en-face画像)と呼ぶ。
 データ処理部75aは、OCTにより時系列に収集されたデータ(例えば、Bスキャン画像データ)に基づいて、網膜血管や脈絡膜血管が強調されたBモード画像や正面画像(血管強調画像、アンギオグラム)を構築することができる。例えば、被検眼Eの略同一部位を反復的にスキャンすることにより、時系列のOCTデータを収集することができる。
 いくつかの実施形態では、データ処理部75aは、略同一部位に対するBスキャンにより得られた時系列のBスキャン画像を比較し、信号強度の変化部分の画素値を変化分に対応した画素値に変換することにより当該変化部分が強調された強調画像を構築する。更に、データ処理部75aは、構築された複数の強調画像から所望の部位における所定の厚さ分の情報を抽出してen-face画像として構築することでOCTA像を形成する。
 データ処理部75aにより生成された画像(例えば、3次元画像、Bモード画像、Cモード画像、プロジェクション画像、シャドウグラム、OCTA像)もまたOCT画像に含まれる。
 更に、データ処理部75aは、スリット受光光学系20により得られた受光結果に基づいて形成された画像、OCT計測により得られた干渉光の検出結果、又は当該検出結果に基づいて形成されたOCT画像に対して所定の解析処理を行う。所定の解析処理には、被検眼Eにおける所定の部位(組織、病変部)の特定;指定された部位間の距離(層間距離)、面積、角度、比率、密度の算出;指定された計算式による演算;所定の部位の形状の特定;これらの統計値の算出;計測値、統計値の分布の算出;これら解析処理結果に基づく画像処理などがある。所定の組織には、血管、視神経乳頭、中心窩、黄斑などがある。所定の病変部には、白斑、出血などがある。
 眼底観察装置1aは、OCT光学系100をOCT光学系100の光軸に交差する1次元方向又は2次元方向に移動させる移動機構を含んでもよい。この場合、主制御部61aは、この移動機構を制御することにより、ダイクロイックミラー90に対してOCT光学系100をOCT光学系100の光軸に交差する1次元方向又は2次元方向に移動させる。それにより、OCT光学系100の光スキャナ150を用いたスキャン範囲を移動させて、眼底Efにおける広角のスキャン範囲(例えば、SLOの撮影範囲)をスキャンすることが可能になる。
 OCT光学系100は、実施形態に係る「投射光学系」及び「受光光学系」の一例である。
 <動作>
 次に、第2実施形態に係る眼底観察装置1aの動作例について説明する。
 眼底観察装置1aは、図7に示す照明光による眼底Efに対するスキャン制御と並列に、OCT光学系100を用いたOCT計測を実行することが可能である。以下、図7に示す制御と並列に実行可能なOCT計測の制御について説明する。
 図11に、第2実施形態に係る眼底観察装置1aの動作例を示す。図11は、第2実施形態に係る眼底観察装置1aの動作例のフローチャートを表す。記憶部62aには、図11に示す処理を実現するためのコンピュータプログラムが記憶されている。主制御部61aは、このコンピュータプログラムに従って動作することにより、図11に示す処理を実行する。
 図11では、被検眼Eが所定の被検眼位置(図1の第2楕円面鏡50の第2焦点F4)に配置されているものとする。
(S11:スキャン範囲を設定)
 まず、主制御部61aは、光スキャナ150のスキャン範囲を設定する。主制御部61aは、スキャン範囲と共に、光スキャナ150によるスキャン開始位置、スキャン終了位置、スキャン速度(スキャン周波数)等を設定することが可能である。
 いくつかの実施形態では、ユーザは、UI部80における操作デバイスに対する操作によりスキャンモード又は動作モードを指定することが可能である。ユーザによって操作デバイスに対する操作によりスキャンモード(例えば、水平スキャン、垂直スキャン)が指定されたとき、主制御部61aは、操作デバイスからの操作情報を解析して、指定されたスキャンモードを特定する。ユーザによって操作デバイスに対する操作により動作モードが指定されたとき、主制御部61aは、操作情報を解析して、指定された動作モード(OCT計測モード)においてあらかじめ指定されたスキャンモード(例えば、水平スキャン、垂直スキャン)を特定する。
(S12:OCT光源を点灯)
 続いて、主制御部61aは、OCT光源101を制御して、OCT光源101を点灯させる。いくつかの実施形態では、主制御部61aは、図7に示すステップS1における照明光源11の点灯制御に同期して、ステップS12を実行する。
 いくつかの実施形態では、主制御部61aは、フォーカス調整制御及び偏波調整制御を実行する。例えば、主制御部61aは、移動機構151Dを制御して合焦レンズを所定の距離だけ移動させた後、OCT光学系100を制御してOCT計測を実行させる。主制御部61aは、OCT計測により得られた干渉光の検出結果に基づいて測定光LSのフォーカス状態をデータ処理部75aに判定させる。例えば、データ処理部75aは、OCT計測により取得された干渉光の検出結果を解析することで、OCT画像の画質に関する所定の評価値を算出し、算出された評価値に基づいてフォーカス状態を判定する。データ処理部75aによる判定結果に基づいて測定光LSのフォーカス状態が適正ではないと判断されたとき、主制御部61aは、再び移動機構151Dの制御を行い、フォーカス状態が適正であると判断されるまで繰り返す。
 また、例えば、主制御部61aは、偏波コントローラ103、118の少なくとも一方を制御して光L0及び測定光LSの少なくとも一方の偏波状態を所定の量だけ変更した後、OCT光学系100を制御してOCT計測を実行させ、取得された干渉光の検出結果に基づくOCT画像を画像形成部70aに形成させる。主制御部61aは、OCT計測により得られたOCT画像の画質をデータ処理部75aに判定させる。データ処理部75aによる判定結果に基づいて測定光LSの偏波状態が適正ではないと判断されたとき、主制御部61aは、再び偏波コントローラ103、118の制御を行い、偏波状態が適正であると判断されるまで繰り返す。
(S13:OCTスキャンを実行)
 続いて、主制御部61aは、光スキャナ150を制御することによりOCT光源101から出射された光L0に基づいて生成された測定光LSを偏向し、偏向された測定光LSで被検眼Eの眼底Efの所定部位をスキャンさせる。当該OCT計測により取得された干渉光の検出結果は、DAQ130においてサンプリングされ、干渉信号として記憶部62a等に保存される。
(S14:終了?)
 続いて、主制御部61aは、眼底Efに対するOCTスキャンを終了するか否かを判定する。例えば、主制御部61aは、順次に変更される光スキャナ150の偏向面の偏向角度が所定の偏向角度範囲以内であるか否かを判定することにより、眼底Efに対するOCTスキャンを終了するか否かを判定することができる。
 眼底Efに対するOCTスキャンを終了すると判定されたとき(S14:Y)、眼底観察装置1aの動作はステップS15に移行する。眼底Efに対するOCTスキャンを終了しないと判定されたとき(S14:N)、眼底観察装置1aの動作はステップS13に移行する。
(S15:OCT画像を形成)
 ステップS14において、眼底Efに対するOCTスキャンを終了すると判定されたとき(S14:Y)、主制御部61aは、ステップS14において取得された干渉信号に基づいてBスキャン方向に沿って眼底Efの複数のAスキャン画像を画像形成部70aに形成させる。いくつかの実施形態では、主制御部61aは、データ処理部75aを制御して、3次元のOCT画像、Bモード画像、Cモード画像、プロジェクション画像、シャドウグラム、OCTA像などのOCT画像を形成させる。
 以上で、眼底観察装置1aの動作は終了である。
 図12に、第2実施形態に係る眼底観察装置1aの動作の説明図を示す。
 図12に示すように、穴鏡30を用いて照明光を偏向することにより実現される眼底Efにおける照明光のスキャンと、光スキャナ150を用いて測定光LSを偏向することにより実現される眼底EfにおけるOCTスキャンとが並列に実行される。それにより、眼底Efにおいてスキャン範囲SC1(水平方向H0×垂直方向V0)で照明光のスキャンが行われているときに、スキャン範囲SC1内の任意の位置のスキャン範囲SC0に対してOCTスキャンを実行することができる。
 その結果、スキャン範囲SC1に対する照明光のスキャンにより大広角で観察している眼底の任意の位置に対して、OCT計測(OCT撮影)を行うことが可能になる。
 以上説明したように、第2実施形態によれば、第1実施形態により得られる効果に加えて、偏向部材としての穴鏡30の透過側において(穴鏡の穴を通して)OCT光学系100を光学的に結合することで、広角の照明光の光路とその戻り光の光路を低コストで分離することができる。また、OCTスキャン用の光スキャナと照明光の偏向用の光スキャナとを共有させることなく、大広角で観察している眼底の任意の位置に対してOCT計測(OCT撮影)を行うことが可能になる。
 <第3実施形態>
 第1実施形態及び第2実施形態では、第2楕円面鏡50が、第1楕円面鏡40の第1焦点F1と第2焦点F2とを結ぶ直線と、第2楕円面鏡50の第1焦点F3と第2焦点F4とを結ぶ直線とのなす角の角度αが30度になるように配置される場合について説明した。しかしながら、実施形態に係る構成は、これに限定されるものではない。例えば、第1楕円面鏡40の第1焦点F1と第2焦点F2とを結ぶ直線と、第2楕円面鏡50の第1焦点F3と第2焦点F4とを結ぶ直線とのなす角の角度αは、略0度であってよい。
 図13に、第3実施形態に係る眼底観察装置の光学系の構成例を示す。図13において、図8と同様の部分には同一符号を付し、適宜説明を省略する。
 第3実施形態に係る眼底観察装置1bの光学系の構成が第2実施形態に係る眼底観察装置1aの光学系の構成と異なる点は、第1楕円面鏡40に対する第2楕円面鏡50の配置である。眼底観察装置1bでは、第2楕円面鏡50は、第1楕円面鏡40の第1焦点F1と第2焦点F2とを結ぶ直線と、第2楕円面鏡50の第1焦点F3と第2焦点F4とを結ぶ直線とのなす角の角度αが0.2度(略0度)になるように配置される。
 なお、図13では、眼底観察装置1bには、OCT光学系100が設けられているが、眼底観察装置1bは、図1と同様に、OCT光学系100が省略された構成を有していてもよい。
 上記の角度αに応じて、広角の範囲と共に、被検眼Eに対する観察範囲の対称性が変化する。第3実施形態によれば、第2実施形態と比較して、被検眼Eに対して対称となる広角の範囲で眼底Efを観察することが可能になる。
 <第4実施形態>
 第1実施形態では、穴鏡30を用いて照明光を偏向する場合について説明したが、実施形態に係る構成はこれに限定されるものではない。第1実施形態において、例えば、第1楕円面鏡40の第1焦点F1に反射ミラーを配置し、被検眼Eの瞳孔と光学的に略共役な位置に穴鏡を配置するようにしてもよい。
 図14に、第4実施形態に係る眼底観察装置の光学系の構成例を示す。図14において、図1と同様の部分には同一符号を付し、適宜説明を省略する。
 第4実施形態に係る眼底観察装置1cの光学系の構成が第1実施形態に係る眼底観察装置1の光学系の構成と異なる点は、第1楕円面鏡40の第1焦点F1に穴鏡30に代えて反射ミラー31が配置される点と、第1焦点F1から離れた瞳孔共役位置Qに穴鏡32が配置される点と、穴鏡32とスリット投影光学系10との間に光スキャナ17が配置される点と、瞳孔共役位置Qをリレーするためのリレーレンズ33、15、16が追加された点である。
 反射ミラー31の偏向面の向きは、固定される。リレーレンズ33は、反射ミラー31と穴鏡32との間に配置される。穴鏡32は、スリット投影光学系10の光路とスリット受光光学系20の光路とを分離又は結合する。穴鏡32の偏向面の向きは、固定される。穴鏡32とスリット投影光学系10との間に、リレーレンズ16、光スキャナ17、リレーレンズ15が配置される。光スキャナ17は、穴鏡30と同様の照明光の偏向動作を行う一軸の光スキャナである。
 この場合、スリット投影光学系10からの照明光は、リレーレンズ15を通過し、光スキャナ17により偏向される。光スキャナ17により偏向された照明光は、リレーレンズ16を通過し、穴鏡32に形成された穴部の周辺領域で偏向されてリレーレンズ33に導かれる。リレーレンズ33に導かれてきた照明光は、反射ミラー31により反射されて、第1楕円面鏡40の反射面に導かれる。被検眼Eの眼底Efからの照明光の戻り光は、反射ミラー31により偏向され、リレーレンズ33を通過し、穴鏡32の穴部を通過し、スリット受光光学系20に導かれる。
 第4実施形態によれば、第1実施形態と比較して、第1楕円面鏡40の第1焦点F1の近傍に光学系を配置するスペースの余裕がなくても、瞳孔共役位置Qをリレーすることで、スリット投影光学系10及びスリット受光光学系20の配置の自由度を向上させることができる。
 <第5実施形態>
 第2実施形態では、穴鏡30を用いて照明光を偏向する場合について説明したが、実施形態に係る構成はこれに限定されるものではない。第2実施形態において、第4実施形態と同様に、例えば、第1楕円面鏡40の第1焦点F1の反射ミラーを配置し、被検眼Eの瞳孔と光学的に略共役な位置に穴鏡を配置するようにしてもよい。
 図15に、第5実施形態に係る眼底観察装置の光学系の構成例を示す。図15において、図8又は図14と同様の部分には同一符号を付し、適宜説明を省略する。
 第5実施形態に係る眼底観察装置1dの光学系の構成が第2実施形態に係る眼底観察装置1aの光学系の構成と異なる点は、第1楕円面鏡40の第1焦点F1に穴鏡30に代えて反射ミラー31が配置される点と、第1焦点F1から離れた瞳孔共役位置Qに穴鏡32が配置される点と、穴鏡32とスリット投影光学系10との間に光スキャナ17が配置される点と、瞳孔共役位置Qをリレーするためのリレーレンズ15、16が追加された点である。
 第4実施形態と同様に、反射ミラー31と穴鏡32の偏向面の向きは、固定される。瞳孔共役位置Qは、リレーレンズ71、72によりリレーされる。穴鏡32は、スリット投影光学系10の光路とスリット受光光学系20の光路とを分離又は結合する。穴鏡32とスリット投影光学系10との間に、リレーレンズ16、光スキャナ17、リレーレンズ15が配置される。光スキャナ17は、穴鏡30と同様の照明光の偏向動作を行う一軸の光スキャナである。
 この場合、スリット投影光学系10からの照明光は、リレーレンズ15を通過し、光スキャナ17により偏向される。光スキャナ17により偏向された照明光は、リレーレンズ16を通過し、穴鏡32に形成された穴部の周辺領域で偏向され、リレーレンズ72、ダイクロイックミラー90、及びリレーレンズ71を通過し、反射ミラー31により反射されて、第1楕円面鏡40の反射面に導かれる。被検眼Eの眼底Efからの照明光の戻り光は、反射ミラー31により偏向され、リレーレンズ71、ダイクロイックミラー90、及びリレーレンズ72を通過し、穴鏡32の穴部を通過し、スリット受光光学系20に導かれる。
 第5実施形態によれば、第2実施形態と比較して、第1楕円面鏡40の第1焦点F1の近傍に光学系を配置するスペースに余裕がなくても、瞳孔共役位置Qをリレーすることで、スリット投影光学系10及びスリット受光光学系20の配置の自由度を向上させることができる。
 [作用]
 実施形態に係る眼底観察装置について説明する。
 実施形態の第1態様は、光源(照明光源11、OCT光源101)からの光を被検眼(E)の眼底(Ef)に投射し、眼底からの戻り光を受光する光学系(スリット投影光学系10及びスリット受光光学系20、OCT光学系100)と、それぞれが凹面状の反射面を有し、光学系からの光を眼底に導くと共に戻り光を光学系に導く2つの凹面鏡(第1楕円面鏡40、第2楕円面鏡)と、2つの凹面鏡を保持する保持部材(45)と、を含む眼底観察装置(1、1a、1b、1c、1d)である。保持部材45は、所定の1次元方向又は2次元方向に既定の相対位置になるように両面に配置された状態で2つの凹面鏡を保持可能である。
 このような態様によれば、2つの凹面鏡について3次元方向のうち1次元方向又は2次元方向に所定の位置関係で固定されるため、2つの凹面鏡の位置関係を調整すべき方向の数を低減することができる。それにより、高精度に設計された光学的な計測条件を簡便に実現しつつ、眼底観察の精度を低コストで向上させることが可能になる。特に、凹面鏡等の光学部材を高精度な加工技術で製造することで、位置合わせ精度に起因した光学的な計測精度の劣化を抑えることが可能になる。
 実施形態の第2態様では、第1態様において、保持部材は、光学系の光軸方向に既定の距離を置いて両面に2つの凹面鏡を保持する。
 このような態様によれば、光学系の光軸方向に交差する2次元方向に調整するだけで、高精度に設計された光学的な計測条件を簡便に実現することが可能になる。
 実施形態の第3態様では、第1態様又は第2態様において、2つの凹面鏡は、周縁部に第1フランジが形成され、光を反射する凹面状の第1反射面を有する第1凹面鏡(第1楕円面鏡40)と、周縁部に第2フランジが形成され、第1凹面鏡により反射された光を眼底に導く凹面状の第2反射面を有する第2凹面鏡(第2楕円面鏡50)と、を含む。保持部材は、第1フランジと第2フランジとが略平行になるように第1凹面鏡及び第2凹面鏡を保持する。
 このような態様によれば、第1凹面鏡及び第2凹面鏡の少なくとも1つを互いに平行に移動することで、簡便に、2つの凹面鏡の位置合わせ等の調整を高精度に行うことができるようになる。
 実施形態の第4態様では、第1態様~第3態様のいずれかにおいて、2つの凹面鏡の少なくとも1つの所定の第1方向(楕円面鏡の長軸方向)の両端部は、第1方向に交差する平面で切断された形状を有する。
 このような態様によれば、広角の眼底観察に必要な反射面のサイズを確保しつつ、眼底観察装置の軽量化及び小型化を図ることができるようになる。特に、被検者の口や顎が凹面鏡に干渉する事態を回避することができるようになり、被検者は反射面に対して正面を向いた状態で被検眼を観察することが可能になる。
 実施形態の第5態様では、第1態様~第4態様のいずれかにおいて、2つの凹面鏡のうち少なくとも1つは、楕円面鏡(第1楕円面鏡40、第2楕円面鏡50)である。
 このような態様によれば、楕円面鏡を簡便、且つ、高精度に位置合わせを行うことができる眼底観察装置を提供することができるようになる。
 実施形態の第6態様では、第1態様~第4態様のいずれかにおいて、2つの凹面鏡は、第1楕円面鏡(40)と、第2楕円面鏡(50)とを含み、第1楕円面鏡の2つの焦点の一方(第2焦点F2)は、第2楕円面鏡の2つの焦点の一方(第1焦点F3)に配置され、光学系からの光を第2楕円面鏡の2つの焦点の他方(第2焦点F4)に導く。
 このような態様によれば、2つの楕円面鏡を用いた眼底観察装置において、簡便、且つ、低コストで凹面鏡を高精度に位置合わせすることが可能になる。
 実施形態の第7態様では、第6態様において、光学系は、光源からの光を投射する投射光学系(スリット投影光学系10、OCT光学系100)と、戻り光を受光する受光光学系(スリット受光光学系20、OCT光学系100)と、第1楕円面鏡の2つの焦点の他方(第1焦点F1)に配置され、光源からの光を偏向し、戻り光を受光光学系に導く偏向部材(穴鏡30)と、を含む。
 このような態様によれば、低コスト、且つ、コンパクトな構成で、光学系だけで80度を超える撮影画角を確保しつつ、広角な光の光路と戻り光の光路との共有光学系を容易に配置することが可能になる。
 実施形態の第8態様では、第6態様において、光学系は、偏向部材(光スキャナ17)を含み、光源からの光を偏向して投射する投射光学系(スリット投影光学系10)と、戻り光を受光する受光光学系(スリット受光光学系20)と、投射光学系の光路と受光光学系の光路とを光学的に結合する光路結合部材(穴鏡32)と、第1楕円面鏡の2つの焦点の他方(第1焦点F1)に配置され、光路結合部材により結合された光路を導かれてきた光源からの光を第1楕円面鏡に導く反射部材(反射ミラー31)と、を含む。
 このような態様によれば、第1楕円面鏡の第2焦点の近傍に光学系を配置するスペースの余裕がない場合に、投射光学系及び受光光学系の配置の自由度を向上させることができる。
 <その他>
 以上に示された実施形態は、この発明を実施するための一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内において任意の変形、省略、追加等を施すことが可能である。
 いくつかの実施形態では、上記の眼底観察装置の制御方法の各ステップをプロセッサ(コンピュータ)に実行させるためのプログラムが提供される。このようなプログラムを、コンピュータによって読み取り可能な任意の非一時的な記録媒体(記憶媒体)に記憶させることができる。この記録媒体としては、例えば、半導体メモリ、光ディスク、光磁気ディスク(CD-ROM/DVD-RAM/DVD-ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。また、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。
1、1a、1b、1c、1d 眼底観察装置
10 スリット投影光学系
17、150 光スキャナ
20 スリット受光光学系
30、32 穴鏡
31 反射ミラー
40 第1楕円面鏡
45 保持部材
50 第2楕円面鏡
100 OCT光学系
E 被検眼
F1、F3 第1焦点
F2、F4 第2焦点
P 眼底共役位置
Q 瞳孔共役位置

Claims (8)

  1.  光源からの光を被検眼の眼底に投射し、前記眼底からの戻り光を受光する光学系と、
     それぞれが凹面状の反射面を有し、前記光学系からの前記光を前記眼底に導くと共に前記戻り光を前記光学系に導く2つの凹面鏡と、
     所定の1次元方向又は2次元方向に既定の相対位置になるように両面に配置された状態で前記2つの凹面鏡を保持可能な保持部材と、
     を含む、眼底観察装置。
  2.  前記保持部材は、前記光学系の光軸方向に既定の距離を置いて両面に前記2つの凹面鏡を保持する
     ことを特徴とする請求項1に記載の眼底観察装置。
  3.  前記2つの凹面鏡は、
     周縁部に第1フランジが形成され、前記光を反射する凹面状の第1反射面を有する第1凹面鏡と、
     周縁部に第2フランジが形成され、前記第1凹面鏡により反射された光を前記眼底に導く凹面状の第2反射面を有する第2凹面鏡と、
     を含み、
     前記保持部材は、前記第1フランジと前記第2フランジとが略平行になるように前記第1凹面鏡及び前記第2凹面鏡を保持する
     ことを特徴とする請求項1又は請求項2に記載の眼底観察装置。
  4.  前記2つの凹面鏡の少なくとも1つの所定の第1方向の両端部は、前記第1方向に交差する平面で切断された形状を有する
     ことを特徴とする請求項1~請求項3のいずれか一項に記載の眼底観察装置。
  5.  前記2つの凹面鏡のうち少なくとも1つは、楕円面鏡である
     ことを特徴とする請求項1~請求項4のいずれか一項に記載の眼底観察装置。
  6.  前記2つの凹面鏡は、第1楕円面鏡と、第2楕円面鏡とを含み、
     前記第1楕円面鏡の2つの焦点の一方は、前記第2楕円面鏡の2つの焦点の一方に配置され、
     前記光学系からの前記光を前記第2楕円面鏡の2つの焦点の他方に導く
     ことを特徴とする請求項1~請求項4のいずれか一項に記載の眼底観察装置。
  7.  前記光学系は、
     前記光源からの光を投射する投射光学系と、
     前記戻り光を受光する受光光学系と、
     前記第1楕円面鏡の2つの焦点の他方に配置され、前記光源からの光を偏向し、前記戻り光を前記受光光学系に導く偏向部材と、
     を含む
     ことを特徴とする請求項6に記載の眼底観察装置。
  8.  前記光学系は、
     偏向部材を含み、前記光源からの光を偏向して投射する投射光学系と、
     前記戻り光を受光する受光光学系と、
     前記投射光学系の光路と前記受光光学系の光路とを光学的に結合する光路結合部材と、
     前記第1楕円面鏡の2つの焦点の他方に配置され、前記光路結合部材により結合された光路を導かれてきた前記光源からの前記光を前記第1楕円面鏡に導く反射部材と、
     を含む
     ことを特徴とする請求項6に記載の眼底観察装置。
PCT/JP2022/047116 2022-03-31 2022-12-21 眼底観察装置 WO2023188614A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022057912 2022-03-31
JP2022-057912 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188614A1 true WO2023188614A1 (ja) 2023-10-05

Family

ID=88200108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047116 WO2023188614A1 (ja) 2022-03-31 2022-12-21 眼底観察装置

Country Status (1)

Country Link
WO (1) WO2023188614A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017221706A (ja) * 2011-01-13 2017-12-21 オプトス ピーエルシー 眼科における改良または眼科に関する改良

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017221706A (ja) * 2011-01-13 2017-12-21 オプトス ピーエルシー 眼科における改良または眼科に関する改良

Similar Documents

Publication Publication Date Title
JP5970682B2 (ja) 眼球計測装置、眼球計測方法
JP6775302B2 (ja) 眼科撮影装置
US10456034B2 (en) Ophthalmic microscope system
US20190059723A1 (en) Ophthalmologic apparatus and method of controlling the same
US10568504B2 (en) Ophthalmologic apparatus
WO2017135015A1 (ja) 眼科装置及び眼科検査システム
JP6734642B2 (ja) 眼科装置
JP6776076B2 (ja) Oct装置
US20230277055A1 (en) Fundus observation apparatus
JP6756498B2 (ja) 眼科撮影装置
JP7027698B2 (ja) 眼科撮影装置
US10045691B2 (en) Ophthalmologic observation apparatus using optical coherence tomography
JP7049147B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
WO2013085042A1 (ja) 眼底観察装置
JP2020110224A (ja) 眼科装置、及びその制御方法
JP2017148097A (ja) 眼科撮影装置
JP2017086311A (ja) 光断層撮像装置および光断層撮像方法
WO2023188614A1 (ja) 眼底観察装置
WO2023188612A1 (ja) 眼底観察装置
JP2022060588A (ja) 眼科装置、及び眼科装置の制御方法
WO2024062893A1 (ja) 眼底撮影装置、眼底撮影装置の制御方法、及び、プログラム
JP6991272B2 (ja) 眼科撮影装置
JP6824659B2 (ja) 眼科撮影装置
JP2019213752A (ja) 眼科装置、及び眼科装置の制御方法
JP7250626B2 (ja) 眼科装置及び眼科装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935741

Country of ref document: EP

Kind code of ref document: A1