WO2017135015A1 - 眼科装置及び眼科検査システム - Google Patents

眼科装置及び眼科検査システム Download PDF

Info

Publication number
WO2017135015A1
WO2017135015A1 PCT/JP2017/001099 JP2017001099W WO2017135015A1 WO 2017135015 A1 WO2017135015 A1 WO 2017135015A1 JP 2017001099 W JP2017001099 W JP 2017001099W WO 2017135015 A1 WO2017135015 A1 WO 2017135015A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
optical
measurement
eye
Prior art date
Application number
PCT/JP2017/001099
Other languages
English (en)
French (fr)
Inventor
林 健史
宏太 藤井
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to US16/066,256 priority Critical patent/US10791922B2/en
Priority to DE112017000673.2T priority patent/DE112017000673T5/de
Publication of WO2017135015A1 publication Critical patent/WO2017135015A1/ja
Priority to US16/686,245 priority patent/US11253148B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/1005Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/103Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes
    • A61B3/1035Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining refraction, e.g. refractometers, skiascopes for measuring astigmatism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers

Definitions

  • This invention relates to an ophthalmic apparatus and an ophthalmic examination system.
  • An ophthalmic apparatus capable of performing a plurality of examinations and measurements on an eye to be examined.
  • Examination and measurement for the eye to be examined include subjective examination and objective measurement.
  • a subjective test is to obtain a result based on a response from the subject.
  • the objective measurement is to acquire information about the eye to be examined mainly using a physical method without referring to a response from the subject.
  • Patent Literature 1 discloses an ophthalmologic apparatus capable of performing subjective examination and objective measurement.
  • This ophthalmologic apparatus can perform a plurality of examinations and measurements including objective refraction measurement, subjective refraction measurement (distance examination, near-distance examination, contrast examination, glare examination), and corneal shape measurement.
  • Optical coherence tomography is very useful as a technique that enables acquisition of an image (tomographic image) representing the internal form of an object to be measured such as the fundus. For example, by referring to an image acquired using optical coherence tomography, it is possible to observe the form of a site of interest such as the vicinity of the macula, and the reliability of the subjective examination result can be improved. It is considered useful to provide an optical system for performing imaging and measurement using such optical coherence tomography in an ophthalmologic apparatus capable of performing a subjective examination.
  • the present invention has been made to solve the above-described problems, and provides an ophthalmic apparatus and an ophthalmic examination system capable of performing subjective examination and imaging and measurement using optical coherence tomography with a simple configuration. With the goal.
  • the ophthalmologic apparatus includes an objective lens, a subjective examination optical system, and an interference optical system.
  • the subjective examination optical system includes an optical element capable of correcting the aberration of the eye to be examined, and projects a visual target onto the eye to be examined through the objective lens and the optical element.
  • the interference optical system divides the light from the light source into reference light and measurement light, irradiates the eye under measurement via the objective lens and the optical element, and generates interference light between the return light and the reference light. , Detecting the generated interference light.
  • An ophthalmic examination system includes a left examination unit for examining a left examination eye and a right examination unit for examining a right examination eye, and at least one of the left examination unit and the right examination unit Includes the ophthalmologic apparatus according to the embodiment.
  • the ophthalmic apparatus and the ophthalmic examination system it is possible to perform subjective examination and photographing and measurement using optical coherence tomography with a simple configuration.
  • the ophthalmologic apparatus which concerns on embodiment can perform at least one of arbitrary subjective tests and arbitrary objective measurements.
  • information such as a visual target
  • the subjective examination includes a subjective examination such as a distance examination, a near examination, a contrast examination, a glare examination, and a visual field examination.
  • objective measurement light is irradiated on the eye to be examined, and information on the eye to be examined is acquired based on the detection result of the return light.
  • the objective measurement includes measurement for obtaining the characteristics of the eye to be examined and photographing for obtaining an image of the eye to be examined.
  • OCT optical coherence tomography
  • the ophthalmologic apparatus can execute a distance test and a near-field test as a subjective test, and can execute an objective refraction measurement, a corneal shape measurement, an OCT imaging, and the like as an objective measurement.
  • the configuration of the ophthalmologic apparatus according to the embodiment is not limited to this.
  • an ophthalmologic apparatus can perform OCT imaging using a swept source OCT technique.
  • OCT imaging may use a type other than the swept source, for example, a spectral domain OCT technique.
  • a time domain type OCT technique can also be used.
  • the ophthalmologic apparatus includes a face receiving portion fixed to the base and a gantry that can move back and forth and from side to side with respect to the base.
  • the gantry is provided with a head unit in which an optical system for inspecting (measuring) the eye to be examined is housed.
  • the face receiving unit and the head unit can be relatively moved. Further, the ophthalmologic apparatus can automatically move the face receiving portion and the head portion relative to each other by executing alignment described later.
  • FIGS. 1 to 3 show configuration examples of the optical system of the ophthalmologic apparatus according to the embodiment.
  • the ophthalmologic apparatus as an optical system for inspecting the eye E, includes a Z alignment system 1, an XY alignment system 2, a kerato measurement system 3, a target projection system 4, an observation system 5, a reflex measurement projection system 6, and a reflex measurement.
  • a light receiving system 7 and an OCT optical system 8 are included.
  • the ophthalmologic apparatus includes a processing unit 9.
  • the processing unit 9 controls each unit of the ophthalmologic apparatus.
  • the processing unit 9 can execute various arithmetic processes.
  • the processing unit 9 includes a processor.
  • the functions of the processor are, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (for example, SPLD (Simple Programmable L). And a circuit such as a field programmable gate array (FPGA).
  • the processing unit 9 realizes the function according to the embodiment by reading and executing a program stored in a storage circuit or a storage device, for example.
  • the observation system 5 captures a moving image of the anterior segment of the eye E.
  • Light (infrared light) from the anterior eye part of the eye E passes through the objective lens 51, passes through the dichroic mirror 52, and passes through the aperture of the diaphragm 53.
  • the light that has passed through the aperture of the diaphragm 53 passes through the half mirror 22, passes through the relay lenses 55 and 56, and passes through the half mirror 76.
  • the light transmitted through the half mirror 76 is imaged on the imaging surface of the imaging element 59 (area sensor) by the imaging lens 58.
  • the imaging element 59 performs imaging and signal output at a predetermined rate.
  • An output (video signal) of the image sensor 59 is input to the processing unit 9.
  • the processing unit 9 displays the anterior segment image E ′ based on the video signal on the display screen 10 a of the display unit 10.
  • the anterior segment image E ′ is, for example, an infrared moving image.
  • the observation system 5 may include an illumination light source for illuminating the anterior segment.
  • the Z alignment system 1 irradiates the eye E with light (infrared light) for alignment in the optical axis direction (front-rear direction, Z direction) of the observation system 5.
  • the light output from the Z alignment light source 11 is applied to the cornea K of the eye E, reflected by the cornea K, and imaged on the line sensor 13 by the imaging lens 12.
  • the processing unit 9 obtains the position of the corneal apex of the eye E based on the projection position of the light on the line sensor 13, and executes Z alignment based on this.
  • the XY alignment system 2 irradiates the eye E with light (infrared light) for alignment in a direction (left-right direction (X direction), vertical direction (Y direction)) orthogonal to the optical axis of the observation system 5.
  • the XY alignment system 2 includes an XY alignment light source 21 provided in an optical path branched from the observation system 5 by a half mirror 22. The light output from the XY alignment light source 21 is reflected by the half mirror 22 and irradiated to the eye E through the observation system 5. The reflected light from the cornea K is guided to the image sensor 59 through the observation system 5.
  • This reflected light image (bright spot image) is included in the anterior segment image E ′.
  • the processing unit 9 displays the anterior segment image E ′ including the bright spot image Br and the alignment mark AL on the display screen 10 a.
  • a user such as an examiner or a subject performs an operation of moving the optical system so as to guide the bright spot image Br in the alignment mark AL.
  • the processing unit 9 controls a mechanism for moving the optical system so that the displacement of the bright spot image Br with respect to the alignment mark AL is cancelled.
  • the kerato measurement system 3 projects a ring-shaped light beam (infrared light) for measuring the shape of the cornea K onto the cornea K.
  • the kerato plate 31 is disposed between the objective lens 51 and the eye E.
  • a kerato ring light source 32 is provided on the back side of the kerato plate 31 (objective lens 51 side).
  • a ring-shaped light beam is projected onto the cornea K by illuminating the kerato plate 31 with light from the kerato ring light source 32.
  • the reflected light (keratling image) is detected by the image sensor 59 together with the anterior segment image.
  • the processing unit 9 calculates a corneal shape parameter by performing a known calculation based on the keratoling image.
  • the target projection system 4 presents various targets such as a fixation target and a target for subjective examination to the eye E.
  • the liquid crystal panel 41 displays a pattern representing a visual target under the control of the processing unit 9.
  • Light (visible light) output from the liquid crystal panel 41 passes through the relay lens 42 and the focusing lens 43 and passes through the dichroic mirror 81.
  • the light transmitted through the dichroic mirror 81 passes through the relay lens 44, the pupil lens 45 and the VCC lens 46, is reflected by the reflection mirror 47, passes through the dichroic mirror 69, and is reflected by the dichroic mirror 52.
  • the light reflected by the dichroic mirror 52 passes through the objective lens 51 and is projected onto the fundus oculi Ef.
  • the focusing lens 43 is movable along the optical axis of the target projection system 4. The position of the focusing lens 43 is adjusted so that the liquid crystal panel 41 and the fundus oculi Ef are optically conjugate.
  • the VCC lens 46 can adjust the astigmatism of the eye to be examined (that is, the aberration of the eye to be examined can be corrected). Specifically, the VCC lens 46 is controlled by the processing unit 9 and can change the astigmatism power and the astigmatic axis angle added to the eye E, and at least the astigmatism power and the astigmatism axis of the eyeball aberration of the eye to be examined. The angle can be corrected. Thereby, the astigmatism state of the eye E is corrected.
  • the liquid crystal panel 41 can display a pattern representing a fixation target for fixing the eye E under the control of the processing unit 9. By sequentially changing the display position of the pattern representing the fixation target on the liquid crystal panel 41, the fixation position can be moved to induce fixation.
  • the target projection system 4 may include a glare inspection optical system for projecting glare light onto the eye E together with the above-described target.
  • the processing unit 9 controls the liquid crystal panel 41, the focusing lens 43, and the VCC lens 46 based on the result of objective measurement.
  • the processing unit 9 causes the liquid crystal panel 41 to display the visual target selected by the examiner or the processing unit 9. Thereby, the target is presented to the subject. The subject responds to the target.
  • the processing unit 9 Upon receiving the response content, the processing unit 9 performs further control and calculation of the subjective test value. For example, in the visual acuity measurement, the processing unit 9 selects and presents the next target based on the response to the Landolt ring or the like, and repeats this to determine the visual acuity value.
  • objective measurement such as objective refraction measurement
  • a landscape chart is projected onto the fundus oculi Ef. Alignment is performed while the subject is staring at the scenery chart, and the eye refractive power is measured in a clouded state.
  • the reflex measurement projection system 6 and the reflex measurement light receiving system 7 are used for objective refraction measurement (ref measurement).
  • the reflex measurement projection system 6 projects a ring-shaped light beam (infrared light) for objective measurement onto the fundus oculi Ef.
  • the ring-shaped light beam includes a light beam having a shape in which a part of the ring is interrupted.
  • the ref measurement light receiving system 7 receives the return light from the eye E of the ring-shaped light flux.
  • the light source unit 60 includes a reflex measurement light source 61, a condenser lens 62, a conical prism 63, and a ring aperture plate 64.
  • the light source unit 60 is movable along the optical axis of the reflex measurement projection system 6.
  • the reflex measurement light source 61 is disposed at a position optically conjugate with the fundus oculi Ef.
  • the light output from the reflex measurement light source 61 passes through the condenser lens 62, passes through the conical prism 63, passes through the ring-shaped opening of the ring aperture plate 64, and becomes a ring-shaped light beam.
  • the ring-shaped light beam formed by the ring aperture plate 64 passes through the relay lens 65 and the pupil lens 66, is reflected by the reflecting surface of the perforated prism 67, passes through the rotary prism 68, and is reflected by the dichroic mirror 69.
  • the light reflected by the dichroic mirror 69 is reflected by the dichroic mirror 52, passes through the objective lens 51, and is projected onto the fundus oculi Ef.
  • the rotary prism 68 is used to average the light amount distribution of the ring-shaped light flux with respect to the blood vessels of the fundus oculi Ef and the diseased part.
  • the return light of the ring-shaped light beam projected on the fundus oculi Ef passes through the objective lens 51 and is reflected by the dichroic mirrors 52 and 69.
  • the return light reflected by the dichroic mirror 69 passes through the rotary prism 68, passes through the hole of the perforated prism 67, passes through the pupil lens 71, and is reflected by the reflecting mirror 72.
  • the light reflected by the reflection mirror 72 passes through the relay lens 73 and the focusing lens 74 and is reflected by the reflection mirror 75.
  • the light reflected by the reflection mirror 75 is reflected by the half mirror 76 and imaged on the imaging surface of the imaging element 59 by the imaging lens 58.
  • the processing unit 9 calculates the spherical power S, the astigmatism power C, and the astigmatism axis angle A of the eye E by performing a known calculation based on the output from the image sensor 59.
  • the processing unit 9 moves the light source unit 60 and the focusing lens 74 in the optical axis direction to positions where the reflex measurement light source 61, the fundus oculi Ef, and the image sensor 59 are conjugate. . Further, the processing unit 9 moves the focusing lens 43 in the optical axis direction in conjunction with the movement of the light source unit 60 and the focusing lens 74. The processing unit 9 may move the focusing lens 82 of the OCT optical system 8 in the optical axis direction in conjunction with the movement of the light source unit 60 and the focusing lens 74.
  • the OCT optical system 8 is an optical system for performing OCT imaging.
  • the position of the focusing lens 82 is adjusted so that the end face of the optical fiber f2 is conjugated to the fundus oculi Ef and the optical system based on the result of the reflex measurement performed before the OCT imaging.
  • the optical path of the OCT optical system 8 is coupled to the optical path of the target projection system 4 by a dichroic mirror 81. Thereby, the optical axes of the OCT optical system 8 and the target projection system 4 can be coupled coaxially.
  • the OCT optical system 8 includes an OCT unit 90.
  • an OCT light source 91 is a wavelength sweep type (wavelength scanning type) light source capable of sweeping (scanning) the wavelength of emitted light in the same manner as a general swept source type OCT apparatus. It is comprised including.
  • the swept wavelength light source includes a laser light source including a resonator.
  • the OCT light source 91 temporally changes the output wavelength in the near-infrared wavelength band that cannot be visually recognized by the human eye.
  • the light (infrared light, broadband light) L0 output from the OCT light source 91 is split into measurement light LS and reference light LR by a fiber coupler 92 guided through an optical fiber f1.
  • the measurement light LS is guided to the collimating lens 86 through the optical fiber f2.
  • the reference light LR is guided to the reference optical path length changing unit 94 through the optical fiber f4.
  • the reference optical path length changing unit 94 changes the optical path length of the reference light LR.
  • the reference light LR guided to the reference optical path length changing unit 94 is converted into a parallel light beam by the collimating lens 95 and guided to the corner cube 96.
  • the corner cube 96 folds the traveling direction of the reference light LR made into a parallel light beam by the collimating lens 95 in the reverse direction.
  • the optical path of the reference light LR incident on the corner cube 96 and the optical path of the reference light LR emitted from the corner cube 96 are parallel. Further, the corner cube 96 is movable in a direction along the incident optical path and the outgoing optical path of the reference light LR. By this movement, the length of the optical path of the reference light LR is changed.
  • the reference light LR emitted from the corner cube 96 is converted from a parallel light beam into a focused light beam by the collimator lens 97, enters the optical fiber f5, and is guided to the fiber coupler 93.
  • a delay member or a dispersion compensation member may be provided between the collimating lens 95 and the corner cube 96 or between the corner cube 96 and the collimating lens 97.
  • the delay member is an optical member for matching the optical path length (optical distance) of the reference light LR with the optical path length of the measurement light LS.
  • the dispersion compensation member is an optical member for matching the dispersion characteristics between the reference light LR and the measurement light LS.
  • the measurement light LS converted into a parallel light beam by the collimator lens 86 is deflected one-dimensionally or two-dimensionally by the optical scanner 84.
  • the optical scanner 84 includes a galvanometer mirror 84X and a galvanometer mirror 84Y.
  • the galvanometer mirror 84X deflects the measurement light LS so as to scan the fundus oculi Ef in the X direction.
  • the galvanometer mirror 84Y deflects the measurement light LS deflected by the galvanometer mirror 84X so as to scan the fundus oculi Ef in the Y direction.
  • Examples of the scanning mode of the measurement light LS by the optical scanner 84 include horizontal scanning, vertical scanning, cross scanning, radial scanning, circular scanning, concentric scanning, and helical scanning.
  • the measurement light LS deflected by the optical scanner 84 is reflected by the dichroic mirror 81 via the reflection mirror 83 and the focusing lens 82.
  • the measurement light LS reflected by the dichroic mirror 81 is guided to the dichroic mirror 52 through the target projection system 4 and reflected by the dichroic mirror 52.
  • the light reflected by the dichroic mirror 52 passes through the objective lens 51 and is irradiated to the eye E.
  • the measurement light LS is scattered (including reflection) at various depth positions of the eye E.
  • the return light of the measurement light LS including such backscattered light travels in the reverse direction on the same path as the forward path, is guided to the fiber coupler 92, and reaches the fiber coupler 93 via the optical fiber f3.
  • the fiber coupler 93 generates interference light by combining (interfering) the measurement light LS incident via the optical fiber f3 and the reference light LR incident via the optical fiber f5.
  • the fiber coupler 93 branches the interference light between the measurement light LS and the reference light LR at a predetermined branching ratio (for example, 1: 1), thereby generating a pair of interference lights LC.
  • the pair of interference lights LC emitted from the fiber coupler 93 are guided to the detector 98 by optical fibers f6 and f7, respectively.
  • the detector 98 is, for example, a balanced photodiode (BPD) that has a pair of photodetectors that respectively detect a pair of interference lights LC and outputs a difference between detection results obtained by these. Based on the clock generated in synchronization with the output timing of each wavelength swept (scanned) within a predetermined wavelength range by the OCT light source 91, the difference between the detection results output from the detector 98 is sampled.
  • This sampling data is sent to the arithmetic processing unit 120 of the processing unit 9. For example, for each series of wavelength scans (for each A line), the arithmetic processing unit 120 forms a reflection intensity profile in each A line by performing Fourier transform or the like on the spectrum distribution based on the sampling data. Further, the arithmetic processing unit 120 forms image data by imaging the reflection intensity profile of each A line.
  • BPD balanced photodiode
  • the OCT optical system 8 divides the light L0 from the OCT light source 91 into the reference light LR and the measurement light LS, irradiates the eye E with the measurement light LS, and the return light and the reference light LR.
  • An interference optical system that generates the interference light LC and detects the generated interference light.
  • the interference optical system irradiates the eye E with the measurement light LS via the objective lens 51 and the VCC lens 46.
  • Such an OCT optical system 8 is coupled to the optical path of the target projection system 4 by a dichroic mirror 81.
  • the optical system is configured to pass the measurement light through the hole of the perforated prism. It is necessary to consider the vignetting of the return light.
  • the OCT optical system 8 is coupled to another optical system (reflective measurement projection system 6 and reflex measurement light receiving system 7) that uses light having a wavelength close to the wavelength of the measurement light, separation becomes difficult because the wavelengths are close to each other. , Efficiency will be reduced.
  • the configuration of the optical system can be simplified and the degree of freedom in designing the optical system is improved. Can be made. Moreover, it becomes easy to add another optical system, and it can be set as the structure provided with the expandability.
  • the measurement light LS is irradiated to the fundus oculi Ef through the VCC lens 46 and is more easily converged to one point at the measurement site. Become.
  • an interference signal based on the detection result of the interference light can be acquired with sufficient intensity with an optimal lateral resolution.
  • the intermediate position between the VCC lens 46 and the pupil lens 45 is disposed at a position optically conjugate with the pupil of the eye E (pupil conjugate position Q).
  • an intermediate position between the galvanometer mirror 84X and the galvanometer mirror 84Y is disposed at a position optically conjugate with the pupil of the eye E to be examined.
  • the focusing lens 82 is moved in the optical axis direction so that the fundus oculi Ef of the eye E and the fiber end surface of the optical fiber f2 are in an optically conjugate position (fundus conjugate position P).
  • the fundus conjugate position P can be made closer, and the target projection system 4 and The OCT optical system 8 can be made small.
  • FIG. 4 illustrates an example of a functional block diagram of a processing system of the ophthalmologic apparatus according to the embodiment.
  • the processing unit 9 includes a control unit 110 and an arithmetic processing unit 120.
  • the ophthalmologic apparatus according to the embodiment includes a display unit 170, an operation unit 180, a communication unit 190, and a movement mechanism 200.
  • the moving mechanism 200 is an optical system such as a Z alignment system 1, an XY alignment system 2, a kerato measurement system 3, a target projection system 4, an observation system 5, a reflex measurement projection system 6, a reflex measurement light receiving system 7, and an OCT optical system 8.
  • the moving mechanism 200 is provided with an actuator that generates a driving force for moving the moving mechanism 200 and a transmission mechanism that transmits the driving force.
  • the actuator is constituted by, for example, a pulse motor.
  • the transmission mechanism is configured by, for example, a combination of gears, a rack and pinion, or the like.
  • the control unit 110 main control unit 111) controls the moving mechanism 200 by sending a control signal to the actuator.
  • the control unit 110 includes a processor and controls each unit of the ophthalmologic apparatus.
  • the control unit 110 includes a main control unit 111 and a storage unit 112.
  • the storage unit 112 stores in advance a computer program for controlling the ophthalmologic apparatus.
  • the computer program includes a light source control program, a detector control program, an optical scanner control program, an optical system control program, an arithmetic processing program, a user interface program, and the like.
  • the control unit 110 executes control processing.
  • the main control unit 111 performs various controls of the ophthalmologic apparatus as a measurement control unit.
  • Controls for the Z alignment system 1 include control of the Z alignment light source 11 and control of the line sensor 13.
  • Control of the Z alignment light source 11 includes turning on and off the light source, adjusting the light amount, adjusting the aperture, and the like.
  • Control of the line sensor 13 includes exposure adjustment of the detection element, gain adjustment, detection rate adjustment, and the like. Thereby, lighting and non-lighting of the Z alignment light source 11 are switched, or the amount of light is changed.
  • the main control unit 111 takes in a signal detected by the line sensor 13 and specifies a projection position of light on the line sensor 13 based on the taken-in signal.
  • the main control unit 111 obtains the position of the corneal apex of the eye E based on the specified projection position, and controls the moving mechanism 200 based on this to move the head unit in the front-rear direction (Z alignment).
  • Control over the XY alignment system 2 includes control of the XY alignment light source 21.
  • Control of the XY alignment light source 21 includes turning on / off the light source, adjusting the light amount, adjusting the aperture, and the like. Thereby, lighting and non-lighting of the XY alignment light source 21 are switched, or the light amount is changed.
  • the main control unit 111 captures a signal detected by the image sensor 59 and specifies the position of the bright spot image based on the return light of the light from the XY alignment light source 21 based on the captured signal.
  • the main control unit 111 controls the moving mechanism 200 so as to cancel the displacement of the bright spot image position with respect to a predetermined target position (for example, the center position of the alignment mark), and moves the head part in the horizontal and vertical directions. (XY alignment).
  • Control for the kerato measurement system 3 includes control of the kerato ring light source 32 and the like.
  • Control of the kerating light source 32 includes turning on and off the light source, adjusting the light amount, adjusting the aperture, and the like. Thereby, the lighting and non-lighting of the kerato ring light source 32 are switched or the light amount is changed.
  • the main control unit 111 causes the arithmetic processing unit 120 to execute a known calculation on the keratoling image detected by the image sensor 59. Thereby, the corneal shape parameter of the eye E is obtained.
  • Control over the target projection system 4 includes control of the liquid crystal panel 41, control of the focusing lens 43, control of the VCC lens 46, and the like.
  • Control of the liquid crystal panel 41 includes turning on / off the display of the visual target and the fixation target, and switching the display position of the fixation target. Thereby, a visual target or a fixation target is projected onto the fundus oculi Ef of the eye E to be examined.
  • Control of the focusing lens 43 includes movement control of the focusing lens 43 in the optical axis direction.
  • the target projection system 4 includes a moving mechanism that moves the focusing lens 43 in the optical axis direction.
  • the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the focusing lens 43 in the optical axis direction. Thereby, the position of the focusing lens 43 is adjusted so that the liquid crystal panel 41 and the fundus oculi Ef are optically conjugate.
  • the control of the VCC lens 46 includes control for changing the astigmatism power and the astigmatism axis angle.
  • the VCC lens 46 includes a pair of concave and convex cylinder lenses provided so as to be relatively rotatable about the optical axis.
  • the main control unit 111 relatively rotates the pair of cylinder lenses so as to correct the astigmatism state (astigmatism power, astigmatism axis angle) of the eye E to be obtained separately such as a reflex measurement described later.
  • Control for the observation system 5 includes control of the image sensor 59 and the like.
  • the control of the image sensor 59 includes exposure adjustment, gain adjustment, detection rate adjustment, and the like of the image sensor 59.
  • the main control unit 111 captures a signal detected by the image sensor 59 and causes the arithmetic processing unit 120 to execute processing such as image formation based on the captured signal.
  • the main control unit 111 can control the illumination light source.
  • Control for the reflex measurement projection system 6 includes control of the light source unit 60 and control of the rotary prism 68.
  • Control of the light source unit 60 includes control of the reflex measurement light source 61 and control of the light source unit 60.
  • Control of the reflex measurement light source 61 includes turning on / off the light source, adjusting the light amount, adjusting the aperture, and the like. Thereby, lighting and non-lighting of the reflex measurement light source 61 are switched, or the light quantity is changed.
  • Control of the light source unit 60 includes movement control of the light source unit 60 in the optical axis direction.
  • the reflex measurement projection system 6 includes a moving mechanism that moves the light source unit 60 in the optical axis direction.
  • the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the light source unit 60 in the optical axis direction.
  • the control of the rotary prism 68 includes rotation control of the rotary prism 68 and the like.
  • a rotation mechanism that rotates the rotary prism 68 is provided, and the main control unit 111 rotates the rotary prism 68 by controlling the rotation mechanism.
  • Control of the reflex measurement light receiving system 7 includes control of the focusing lens 74 and the like.
  • Control of the focusing lens 74 includes movement control of the focusing lens 74 in the optical axis direction.
  • the reflex measurement light receiving system 7 includes a moving mechanism that moves the focusing lens 74 in the optical axis direction. Similar to the moving mechanism 200, the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the focusing lens 74 in the optical axis direction.
  • the main control unit 111 moves the light source unit 60 and the focusing lens 74 to the optical axis according to the refractive power of the eye E, for example, so that the reflex measurement light source 61, the fundus oculi Ef, and the image sensor 59 are optically conjugate. It is possible to move in the direction.
  • Control for the OCT optical system 8 includes control of the OCT light source 91, control of the optical scanner 84, control of the focusing lens 82, control of the corner cube 96, control of the detector 98, and the like.
  • Control of the OCT light source 91 includes turning on and off the light source, adjusting the light amount, adjusting the aperture, and the like.
  • Control of the optical scanner 84 includes control of the scanning position, scanning range, and scanning speed by the galvanometer mirror 84X, and control of the scanning position, scanning range, and scanning speed by the galvanometer mirror 84Y.
  • Control of the focusing lens 82 includes movement control of the focusing lens 82 in the optical axis direction.
  • the OCT optical system 8 includes a moving mechanism that moves the focusing lens 82 in the optical axis direction. Similar to the moving mechanism 200, the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the focusing lens 82 in the optical axis direction. For example, after moving the focusing lens 82 in conjunction with the movement of the focusing lens 43, the main control unit 111 may move only the focusing lens 82 based on the intensity of the interference signal. Control of the corner cube 96 includes movement control of the corner cube 96 in the optical axis direction.
  • the OCT optical system 8 includes a moving mechanism that moves the corner cube 96 in the optical axis direction. Similar to the moving mechanism 200, the moving mechanism is provided with an actuator that generates a driving force for moving the moving mechanism and a transmission mechanism that transmits the driving force.
  • the main control unit 111 controls the moving mechanism by sending a control signal to the actuator, and moves the corner cube 96 in the optical axis direction. Thereby, the length of the optical path of the reference light LR is changed.
  • the control of the detector 98 includes exposure adjustment of the detection element, gain adjustment, detection rate adjustment, and the like.
  • the main control unit 111 samples the signal detected by the detector 98 and causes the arithmetic processing unit 120 (image forming unit 122) to execute processing such as image formation based on the sampled signal.
  • the main control unit 111 performs a process of writing data to the storage unit 112 and a process of reading data from the storage unit 112.
  • the storage unit 112 stores various data.
  • the data stored in the storage unit 112 includes, for example, subjective test results, objective measurement results, tomographic image data, fundus image data, eye information to be examined, and the like.
  • the eye information includes information about the subject such as patient ID and name, and information about the eye such as left / right eye identification information.
  • the storage unit 112 stores various programs and data for operating the ophthalmologic apparatus.
  • the arithmetic processing unit 120 includes an eye refractive power calculation unit 121, an image forming unit 122, and a data processing unit 123.
  • the eye refractive power calculation unit 121 is a ring image (pattern image) obtained by the imaging element 59 receiving the return light of the ring-shaped light beam (ring-shaped measurement pattern) projected onto the fundus oculi Ef by the reflex measurement projection system 6. ).
  • the eye refractive power calculation unit 121 obtains the barycentric position of the ring image from the luminance distribution in the image in which the obtained ring image is drawn, and obtains the luminance distribution along a plurality of scanning directions extending radially from the barycentric position.
  • the ring image is specified from this luminance distribution.
  • the eye refractive power calculation unit 121 obtains an approximate ellipse of the specified ring image, and substitutes the major axis and minor axis of the approximate ellipse into known formulas to thereby obtain the spherical power S, the astigmatic power C, and the astigmatic axis angle. Find A.
  • the eye refractive power calculation unit 121 can obtain the eye refractive power parameter based on the deformation and displacement of the ring image with respect to the reference pattern.
  • the eye refractive power calculation unit 121 calculates the corneal refractive power, the corneal astigmatism, and the corneal astigmatism axis angle based on the keratoling image acquired by the observation system 5. For example, the eye refractive power calculation unit 121 calculates the corneal curvature radius of the strong main meridian and the weak main meridian on the front surface of the cornea by analyzing the keratling image, and calculates the parameter based on the corneal curvature radius.
  • the image forming unit 122 forms tomographic image data of the fundus oculi Ef based on the signal detected by the detector 98. That is, the image forming unit 122 forms image data of the eye E based on the detection result of the interference light LC by the interference optical system.
  • This process includes processes such as filter processing, FFT (Fast Fourier Transform), and the like, similar to the conventional swept source type OCT.
  • the image data acquired in this way is a data set including a group of image data formed by imaging reflection intensity profiles in a plurality of A lines (paths of the measurement light LS in the eye E). is there.
  • the data processing unit 123 performs various data processing (image processing) and analysis processing on the tomographic image formed by the image forming unit 122. For example, the data processing unit 123 executes correction processing such as image brightness correction and dispersion correction. In addition, the data processing unit 123 performs various types of image processing and analysis processing on an image (anterior eye image or the like) obtained using the observation system 5.
  • the data processing unit 123 can form volume data (voxel data) of the eye E by performing known image processing such as interpolation processing for interpolating pixels between tomographic images.
  • image processing such as interpolation processing for interpolating pixels between tomographic images.
  • the data processing unit 123 performs a rendering process on the volume data to form a pseudo three-dimensional image when viewed from a specific viewing direction.
  • the display unit 170 displays information under the control of the control unit 110 as a user interface unit.
  • the display unit 170 includes the display unit 10 shown in FIG.
  • the operation unit 180 is used as a user interface unit for operating the ophthalmologic apparatus.
  • the operation unit 180 includes various hardware keys (joysticks, buttons, switches, etc.) provided in the ophthalmologic apparatus.
  • the operation unit 180 may include various software keys (buttons, icons, menus, etc.) displayed on the touch panel display screen 10a.
  • At least a part of the display unit 170 and the operation unit 180 may be integrally configured.
  • a typical example is a touch panel display screen 10a.
  • the communication unit 190 has a function for communicating with an external device (not shown).
  • the communication unit 190 may be provided in the processing unit 9, for example.
  • the communication unit 190 has a configuration corresponding to the form of communication with an external device.
  • the VCC lens 46 is an example of an “optical element” according to this embodiment.
  • the target projection system 4 is an example of a “subjective inspection optical system” according to this embodiment.
  • the OCT optical system 8 is an example of an “interference optical system” according to this embodiment.
  • the dichroic mirror 81 is an example of the “first optical path coupling member” according to this embodiment.
  • the focusing lens 43 is an example of a “first focusing lens” according to this embodiment.
  • the focusing lens 82 is an example of a “second focusing lens” according to this embodiment.
  • the reflex measurement projection system 6, the reflex measurement light receiving system 7, and a part of the observation system 5 are examples of the “objective measurement optical system” according to this embodiment. .
  • the dichroic mirror 69 is an example of a “second optical path coupling member” according to this embodiment.
  • FIG. 5 shows a flowchart of an operation example of the ophthalmologic apparatus according to this embodiment.
  • the head portion After fixing the subject's face at the face receiving portion, the head portion is moved to the inspection position of the eye E by XY alignment by the XY alignment system 2 and Z alignment by the Z alignment system 1.
  • the inspection position is a position where the eye E can be inspected.
  • the processing unit 9 (the control unit 110) acquires an imaging signal of the anterior segment image formed on the imaging surface of the imaging element 59, and displays the anterior segment on the display unit 170 (the display screen 10a of the display unit 10).
  • the partial image E ′ is displayed.
  • the head portion is moved to the inspection position of the eye E by the XY alignment and the Z alignment.
  • the movement of the head unit is executed by the control unit 110 in accordance with an instruction from the control unit 110, but may be executed by the control unit 110 in accordance with an operation or instruction by a user.
  • control unit 110 moves the reflex measurement light source 61, the focusing lens 74, and the focusing lens 43 to move along the optical axis to the origin, for example, a position corresponding to 0D.
  • the control unit 110 displays a fixation target on the liquid crystal panel 41. Thereby, the eye E is gaze at a desired fixation position.
  • the control part 110 performs objective measurement. That is, the control unit 110 causes the reflex measurement projection system 6 to project a ring-shaped light beam onto the fundus oculi Ef of the eye E to be examined, and produces a ring image based on the return light detected by the image sensor 59 through the reflex measurement light receiving system 7.
  • the calculation unit 121 is caused to analyze.
  • the eye refractive power calculation unit 121 obtains the spherical power S, the astigmatism power C, and the astigmatism axis angle A as described above.
  • the calculated spherical power S and the like are stored in the storage unit 112.
  • the control unit 110 can execute the kerato measurement.
  • the control unit 110 turns on the keratoling light source 32 and causes the eye refractive power calculation unit 121 to analyze the keratoling image detected by the image sensor 59.
  • the eye refractive power calculation unit 121 calculates the corneal curvature radius by analyzing the keratling image as described above, and calculates the corneal refractive power, the corneal astigmatism, and the corneal astigmatism axis angle from the calculated corneal curvature radius.
  • the calculated corneal refractive power and the like are stored in the storage unit 112.
  • control part 110 performs a subjective examination.
  • the control unit 110 controls the focusing lens 43 and the VCC lens 46 so that the spherical power S, the astigmatic power C, and the astigmatic axis angle A obtained in S3 are corrected.
  • the control unit 110 displays a desired target by controlling the liquid crystal panel 41 based on a user instruction to the operation unit 180, for example.
  • the subject responds to the visual target projected onto the fundus oculi Ef. For example, in the case of a visual target for visual acuity measurement, the visual acuity value of the eye to be examined is determined by the response of the subject.
  • the selection of the target and the response of the subject to the selection are repeatedly performed based on the judgment of the examiner or the control unit 110.
  • the examiner or control unit 110 determines a visual acuity value or a prescription value (S, C, A) based on a response from the subject.
  • the control unit 110 determines whether to perform tomographic imaging. For example, based on a user operation or instruction on the operation unit 180, the control unit 110 determines whether to perform tomographic imaging. At this time, the objective measurement result obtained in S3 and the subjective examination result obtained in S4 are displayed on the display unit 170, and information for assisting the user in determining whether to perform tomographic imaging is provided. It is possible.
  • the operation of the ophthalmologic apparatus proceeds to S6.
  • the operation of the ophthalmologic apparatus ends (END).
  • control unit 110 can control the ophthalmologic apparatus so as to automatically perform tomography based on at least one of the objective measurement result obtained in S3 and the subjective examination result obtained in S4. It is.
  • control unit 110 causes the OCT optical system 8 to scan a predetermined part of the fundus oculi Ef with measurement light, and causes the arithmetic processing unit 120 to scan the eye E to be examined. A tomographic image is formed.
  • the operation of the ophthalmologic apparatus ends (END).
  • the part on which the ring-shaped light beam is projected in the objective measurement in S3 is scanned with the measurement light, and the obtained tomographic image of the part is displayed on the display unit 170.
  • the examiner or the like can observe the tomographic image of the measurement site on which the ring-shaped light beam is projected, so that the reliability of the objective measurement result acquired in S3 can be confirmed.
  • the accuracy of the objective measurement result in can be improved.
  • a tomographic image of a portion near the macula obtained by scanning the vicinity of the macula of the eye E with the measurement light is displayed on the display unit 170.
  • the examiner or the like can observe the tomographic image of the site in the vicinity of the macula, so that the reliability of the subjective examination result obtained in S4 can be confirmed, and the subjective examination result in S4 can be confirmed. Accuracy can be improved.
  • FIG. 6 and 7 show a configuration example of the optical system of the ophthalmologic apparatus according to the first modification of the embodiment.
  • FIG. 6 the same parts as those in FIG. In FIG. 7, the same parts as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the configuration of the optical system of the ophthalmologic apparatus according to the first modification will be described focusing on differences from the configuration of the optical system of the ophthalmic apparatus according to the embodiment.
  • the configuration of the optical system of the ophthalmic apparatus according to the first modification of the embodiment differs from the configuration of the optical system of the ophthalmic apparatus according to the embodiment in the configuration of the optical scanner 84 in the OCT optical system 8.
  • the reflection mirror 85 and the relay lenses 87A and 87B are disposed between the galvanometer mirror 84Y and the galvanometer mirror 84X.
  • a galvanometer mirror 84X is disposed at the focal position upstream of the relay lens 87B.
  • a galvano mirror 84Y is disposed at a focal position downstream of the relay lens 87A.
  • the reflection mirror 85 is arranged to guide the measurement light LS deflected by the galvanometer mirror 84X to the galvanometer mirror 84Y.
  • each of the galvanometer mirror 84Y and the galvanometer mirror 84X is disposed at a position optically conjugate with the pupil of the eye E (pupil conjugate position Q).
  • the measurement light LS converted into a parallel light beam by the collimator lens 86 is deflected by the galvano mirror 84X so as to scan the fundus oculi Ef in the X direction.
  • the measurement light LS deflected by the galvanometer mirror 84X passes through the relay lenses 87B and 87A and is deflected by the reflection mirror 85.
  • the measurement light LS deflected by the reflection mirror 85 is deflected so as to scan the fundus oculi Ef in the Y direction by the galvanometer mirror 84Y.
  • both the galvanometer mirrors 84X and 84Y are arranged at the pupil conjugate position Q, it becomes possible to detect the interference light with a higher lateral resolution than in the embodiment.
  • the galvanometer mirrors 84X and 84Y are arranged at optically conjugate positions, the tomogram with higher image quality can be obtained by increasing the intensity of the interference signal while maintaining the conjugate relationship even when the focusing lens 82 is moved. Can be acquired.
  • Second Modification In the optical system of the ophthalmologic apparatus according to the embodiment or the first modification thereof, the case where the measurement light LS is deflected by the galvanometer mirrors 84X and 84Y has been described, but the configuration of the ophthalmologic apparatus according to the embodiment is not limited to this. Absent.
  • FIG. 8 and 9 show a configuration example of the optical system of the ophthalmologic apparatus according to the second modification of the embodiment.
  • FIG. 8 the same parts as those in FIG. 9, parts that are the same as those in FIG. 8 are given the same reference numerals, and descriptions thereof will be omitted as appropriate.
  • the configuration of the optical system of the ophthalmic apparatus according to the second modification of the embodiment will be described focusing on differences from the configuration of the optical system of the ophthalmic apparatus according to the embodiment.
  • the configuration of the optical system of the ophthalmic apparatus according to the second modification of the embodiment is different from the configuration of the optical system of the ophthalmic apparatus according to the embodiment in that an image rotator 89 is provided instead of the optical scanner 84. .
  • the image rotator 89 is disposed on the optical axis of the OCT optical system 8 and is provided to be rotatable around the optical axis.
  • the optical axes of the optical fiber f ⁇ b> 2 and the collimating lens 86 are arranged so as to intersect with the optical axis of the image rotator 89. As shown in FIG.
  • the focusing lens 82 is moved so that the fiber end surface of the optical fiber f2 is disposed at a position optically conjugate with the fundus oculi Ef of the eye E (fundus conjugate position P).
  • the image rotator 89 is disposed at a position optically conjugate with the pupil of the eye E (pupil conjugate position Q).
  • the image rotator 89 is rotated around the optical axis of the OCT optical system 8 by a rotation mechanism (not shown). This rotation mechanism rotates the image rotator 89 under the control of the processing unit 9.
  • the measurement light LS converted into a parallel light beam by the collimator lens 86 is deflected in a circle by the rotated image rotator 89.
  • the measurement light LS deflected by the image rotator 89 is deflected toward the focusing lens 82 by the reflection mirror 83.
  • the projection position of the ring-shaped light beam onto the fundus oculi Ef can be scanned with the measurement light LS by arranging the optical fiber f2 and the like so as to be the same size as the ring-shaped light beam projected onto the fundus oculi Ef. .
  • a tomographic image at the projection position of the ring-shaped light beam onto the fundus oculi Ef can be acquired.
  • a mechanism for changing the inclination angle of the optical fiber f2 or the like with respect to the optical axis of the image rotator 89 may be provided, and the inclination angle of the optical fiber f2 or the like may be adjusted by control from the processing unit 9.
  • the rotation control for the image rotator 89 can be performed as described above.
  • the main control unit 111 rotates the image rotator 89 by controlling the rotation mechanism.
  • the fundus oculi Ef of the eye E to be examined can be scanned in a circle with the measurement light LS with a simple configuration.
  • the tomographic image of the measurement site onto which the ring-shaped light beam is projected in objective measurement can be acquired with a simple configuration, so that the reliability of the objective measurement result can be confirmed, and the accuracy of the objective measurement result can be confirmed. Can be improved.
  • the ophthalmologic apparatus according to the embodiment or its modification can be applied to an ophthalmic examination system capable of examining both eyes.
  • FIG. 10 is a block diagram of a configuration example of an ophthalmic examination system to which the ophthalmologic apparatus according to the embodiment or its modification is applied.
  • the ophthalmic examination system includes a measurement head 300.
  • the measuring head 300 is suspended from above by a holding part 350 supported by a support member (not shown).
  • the measurement head 300 includes a moving mechanism 310, a left inspection unit 320L, and a right inspection unit 320R.
  • An optometry window (not shown) is formed in each of the left examination unit 320L and the right examination unit 320R.
  • the subject's left eye (left subject eye) is examined through an optometry window provided in the left examination unit 320L.
  • the subject's right eye (right subject eye) is examined through an optometry window provided in the right examination unit 320R.
  • the left inspection unit 320L and the right inspection unit 320R are moved three-dimensionally by the moving mechanism 310 independently or in conjunction with each other. At least one of the left examination unit 320L and the right examination unit 320R is provided with an ophthalmologic apparatus according to the embodiment or its modification.
  • the moving mechanism 310 includes horizontal moving mechanisms 311L and 311R, rotating mechanisms 312L and 312R, and vertical moving mechanisms 313L and 313R.
  • the horizontal movement mechanism 311L moves the rotation mechanism 312L, the vertical movement mechanism 313L, and the left inspection unit 320L in the horizontal direction (lateral direction (X direction), front-rear direction (Z direction)). Thereby, the horizontal position of the optometry window can be adjusted according to the arrangement position of the left eye to be examined.
  • the horizontal movement mechanism 311L has a known configuration using, for example, a driving unit or a driving force transmission unit that transmits a driving force generated by the driving unit, and receives a control signal from a control device (not shown) to rotate the mechanism. 312L etc. are moved in the horizontal direction.
  • the horizontal movement mechanism 311L can be manually moved in the horizontal direction by the rotation mechanism 312L or the like in response to an operation by the operator.
  • the horizontal movement mechanism 311R moves the rotation mechanism 312R, the vertical movement mechanism 313R, and the right inspection unit 320R in the horizontal direction. Thereby, the horizontal position of the optometry window can be adjusted according to the arrangement position of the right eye to be examined.
  • the horizontal movement mechanism 311R has the same configuration as the horizontal movement mechanism 311L, and moves the rotation mechanism 312R and the like in the horizontal direction in response to a control signal from a control device (not shown).
  • the horizontal movement mechanism 311R can be manually moved in the horizontal direction by the rotation mechanism 312R or the like in response to an operation by the operator.
  • the rotation mechanism 312L rotates the vertical movement mechanism 313L and the left inspection unit 320L about a left-eye rotation axis (left rotation axis) extending in the vertical direction (substantially vertical direction).
  • the angle formed by the rotation axis and the horizontal plane can be changed.
  • the rotation mechanism 312L has a known configuration using, for example, a driving unit or a driving force transmission unit that transmits a driving force generated by the driving unit, and receives the control signal from a control device (not shown) to perform the rotation.
  • the left inspection unit 320L and the like are rotated around the axis.
  • the rotation mechanism 312L can also manually rotate the left inspection unit 320L and the like around the rotation axis in response to an operation by the operator.
  • the rotation mechanism 312R rotates the vertical movement mechanism 313R and the right inspection unit 320R around a rotation axis for the right eye (right rotation axis) extending in the vertical direction.
  • the angle formed by the rotation axis and the horizontal plane can be changed.
  • the right-eye rotation axis is an axis that is disposed at a position separated from the left-eye rotation axis by a predetermined distance. The distance between the left eye rotation axis and the right eye rotation axis is adjustable.
  • the rotation mechanism 312R has the same configuration as the rotation mechanism 312L, and receives a control signal from a control device (not shown) to rotate the right inspection unit 320R and the like around the rotation axis.
  • the rotation mechanism 312R can receive the operation by the operator and manually rotate the right inspection unit 320R and the like around the rotation axis.
  • Rotating the left inspection unit 320L and the right inspection unit 320R by the rotation mechanisms 312L and 312R makes it possible to relatively change the orientation of the left inspection unit 320L and the right inspection unit 320R.
  • the left inspection unit 320L and the right inspection unit 320R are rotated in opposite directions around the eyeball rotation points of the left and right eyes of the subject. Thereby, the eye to be examined can be converged.
  • the vertical movement mechanism 313L moves the left inspection unit 320L in the vertical direction (vertical direction, Y direction). Thereby, the position in the height direction of the optometry window can be adjusted according to the arrangement position of the eye to be examined.
  • the vertical movement mechanism 313L has a known configuration using, for example, a driving means or a driving force transmission means for transmitting a driving force generated by the driving means, and receives a control signal from a control device (not shown) to receive a left inspection unit. Move 320L up and down.
  • the vertical movement mechanism 313L can manually move the left inspection unit 320L in the vertical direction in response to an operation by the operator.
  • the vertical movement mechanism 313R moves the right inspection unit 320R in the vertical direction. Thereby, the position in the height direction of the optometry window can be adjusted according to the arrangement position of the eye to be examined.
  • the vertical movement mechanism 313R may move the right inspection unit 320R in conjunction with the movement by the vertical movement mechanism 313L, or may move the right inspection unit 320R independently of the movement by the vertical movement mechanism 313L.
  • the vertical movement mechanism 313R has the same configuration as the vertical movement mechanism 313L, and moves the right inspection unit 320R in the vertical direction in response to a control signal from a control device (not shown).
  • the vertical movement mechanism 313R can receive the operation by the operator and manually move the right inspection unit 320R in the vertical direction.
  • the left inspection unit 320L and the right inspection unit 320R can be operated individually.
  • the ophthalmologic apparatus includes an objective lens (objective lens 51), a subjective examination optical system (target projection system 4), and an interference optical system (OCT optical system 8).
  • the subjective examination optical system includes an optical element (VCC lens 46) that can correct the aberration of the eye to be examined, and projects a visual target onto the eye to be examined (eye E) through the objective lens and the optical element.
  • the interference optical system divides the light (light L0) from the light source (OCT light source 91) into reference light (reference light LR) and measurement light (measurement light LS), and applies it to the subject's eye via the objective lens and the optical element.
  • the measurement light is irradiated, interference light (interference light LC) between the return light and the reference light is generated, and the generated interference light is detected.
  • the objective lens common to the subjective examination optical system, and to detect the return light, so that the subjective examination and optical coherence tomography can be performed with a simple configuration.
  • Shooting and measurement using graphics are possible.
  • the measurement light can be irradiated to the eye through an optical element capable of correcting the aberration of the eye to be examined, the optical element can be controlled so as to correct the astigmatism state of the eye to be separately obtained. Is possible.
  • the measurement light emitted to the eye to be examined through the optical element is more easily converged to one point at the measurement site, and the interference signal based on the detection result of the interference light can be acquired with sufficient intensity with the optimum lateral resolution.
  • the interference optical system is disposed in the optical path of the subjective examination optical system upstream of the optical element, and the first optical path that couples the optical path of the interference optical system to the optical path of the subjective examination optical system.
  • a coupling member may be included.
  • the configuration of the optical system is simplified compared to the case where a perforated prism is used. And the degree of freedom in designing the optical system can be improved. Moreover, it becomes easy to add another optical system, and it can be set as the structure provided with the expandability.
  • the subjective examination optical system may include a pupil lens (pupil lens 45) disposed between the optical element and the first optical path coupling member.
  • the optical path of the interference optical system and the optical path of the subjective examination optical system are coupled upstream of the pupil lens 45, it becomes possible to bring the conjugate position close to the fundus.
  • the interference optical system and the subjective inspection optical system can be made small.
  • the subjective examination optical system includes a first focusing lens (focusing lens 43) that changes a focal position of the subjective examination optical system, and the first optical path coupling member is a pupil lens. And the first focusing lens.
  • the focal position of the subjective inspection optical system can be changed regardless of the interference optical system.
  • the interference optical system is disposed between the first optical path coupling member and the light source, and the second focusing lens (focusing lens 82) that changes the focal position of the interference optical system. May be included.
  • the focal position of the interference optical system can be changed regardless of the subjective inspection optical system.
  • the focal position of the interference optical system can be adjusted to an arbitrary part such as the anterior segment of the eye to be examined or the choroid with the second focusing lens. it can.
  • the ophthalmologic apparatus may include an objective measurement optical system and an eye refractive power calculation unit.
  • the objective measurement optical system irradiates the fundus (fundus Ef) of the eye to be examined via the objective lens with a ring-shaped measurement pattern, and detects return light from the fundus.
  • the eye refractive power calculation unit obtains the refractive power of the eye to be examined by analyzing the pattern image based on the return light detected by the objective measurement optical system.
  • the objective measurement optical system includes a second optical path coupling member (dichroic mirror 69) that is disposed between the objective lens and the optical element and couples the optical path of the objective measurement optical system to the optical path of the subjective examination optical system.
  • the interference optical system includes an image rotator (image rotator 89) that is arranged on the optical axis of the interference optical system, is arranged to be rotatable about the optical axis, and deflects the measurement light. But you can.
  • the measurement light can be deflected with a simple configuration and control.
  • the interference optical system includes an optical fiber (optical fiber f2) that guides the measurement light, and a collimator lens (collimator lens 86) that converts the measurement light emitted from the output end of the optical fiber into a parallel light beam.
  • the image rotator may deflect the measurement light that has been converted into a parallel light beam by the collimator lens, and the optical fiber and the collimator lens may be arranged so that the optical axis thereof intersects the optical axis of the image rotator.
  • the ophthalmic examination system includes a left examination unit (left examination unit 320L) for examining the left eye and a right examination unit (right examination unit 320R) for examining the right eye. At least one of the left examination unit and the right examination unit includes the ophthalmologic apparatus described in any of the above.
  • an ophthalmic examination system capable of performing subjective examination and imaging and measurement using optical coherence tomography for both eyes with a simple configuration.
  • the dichroic mirror 81 is disposed between the relay lens 44 and the focusing lens 43 in the target projection system 4, but the dichroic mirror 81 is disposed on the focusing lens 43 and the relay lens 42. Between them.
  • the focal position of the OCT optical system 8 can be finely adjusted by the focusing lens 82 after the focal position of the target projection system 4 and the OCT optical system 8 is changed by the focusing lens 43.
  • an image rotator that can rotate around the optical axis of the OCT optical system 8 may be provided instead of the galvanometer mirror 84Y.
  • the interference optical system has been described as performing OCT imaging, but measurement may be performed by OCT.
  • the interference optical system may measure the axial length, corneal pressure, anterior chamber depth, lens thickness, and the like by OCT.
  • an intraocular pressure measurement function is realized by a tonometer
  • the fundus imaging function is realized by a fundus camera, a scanning ophthalmoscope (SLO), etc.
  • the anterior ocular imaging function is realized by a slit lamp, etc.
  • the OCT function is optical
  • the ultrasonic inspection function is realized by an ultrasonic diagnostic apparatus or the like.
  • the present invention can be applied to an apparatus (multifunction machine) having two or more of such functions.
  • Target projection system 5
  • Observation system 6 Ref measurement projection system 7
  • Ref measurement light receiving system 8 OCT optical system 46
  • VCC lens 51 Objective lens 81 Dichroic mirror

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

実施形態に係る眼科装置は、対物レンズと、自覚検査光学系と、干渉光学系とを含む。自覚検査光学系は、被検眼の収差を補正可能な光学素子を含み、対物レンズ及び光学素子を介して被検眼に視標を投影する。干渉光学系は、光源からの光を参照光と測定光とに分割し、対物レンズ及び光学素子を介して被検眼に測定光を照射し、その戻り光と参照光との干渉光を生成し、生成された干渉光を検出する。

Description

眼科装置及び眼科検査システム
 この発明は、眼科装置及び眼科検査システムに関する。
 被検眼に対して複数の検査や測定を実行可能な眼科装置が知られている。被検眼に対する検査や測定には、自覚検査や他覚測定がある。自覚検査は、被検者からの応答に基づいて結果を得るものである。他覚測定は、被検者からの応答を参照することなく、主として物理的な手法を用いて被検眼に関する情報を取得するものである。
 例えば、特許文献1には、自覚検査と他覚測定とを実行可能な眼科装置が開示されている。この眼科装置は、他覚屈折測定、自覚屈折測定(遠用検査、近用検査、コントラスト検査、グレアー検査)、角膜形状測定を含む複数の検査や測定を実行することができる。
特開2015-128482号公報
 光コヒーレンストモグラフィは、眼底等の被測定物体の内部形態を表す画像(断層像)の取得を可能にする技術として非常に有用である。例えば、光コヒーレンストモグラフィを用いて取得された画像を参照することにより黄斑の近傍等の注目部位の形態を観察することが可能になり、自覚検査結果の信頼性を向上させることができる。このような光コヒーレンストモグラフィを用いた撮影や計測を行うための光学系を自覚検査の実行が可能な眼科装置に設けることは有用であると考えられる。
 しかしながら、自覚検査を行うための光学系に光コヒーレンストモグラフィを用いた撮影等を行うための光学系を単純に追加するだけでは、装置の大型化などを招くという問題がある。
 本発明は、上記の問題点を解決するためになされたものであり、簡素な構成で自覚検査と光コヒーレンストモグラフィを用いた撮影や計測とが可能な眼科装置及び眼科検査システムを提供することを目的とする。
 実施形態に係る眼科装置は、対物レンズと、自覚検査光学系と、干渉光学系とを含む。自覚検査光学系は、被検眼の収差を補正可能な光学素子を含み、対物レンズ及び光学素子を介して被検眼に視標を投影する。干渉光学系は、光源からの光を参照光と測定光とに分割し、対物レンズ及び光学素子を介して被検眼に測定光を照射し、その戻り光と参照光との干渉光を生成し、生成された干渉光を検出する。
 実施形態に係る眼科検査システムは、左被検眼を検査するための左検査ユニットと、右被検眼を検査するための右検査ユニットと、を含み、前記左検査ユニット及び前記右検査ユニットの少なくとも一方は、実施形態に係る眼科装置を含む。
 この発明に係る眼科装置及び眼科検査システムによれば、簡素な構成で自覚検査と光コヒーレンストモグラフィを用いた撮影や計測とが可能になる。
実施形態に係る眼科装置の光学系の構成例を示す概略図である。 実施形態に係る眼科装置の光学系の構成例を示す概略図である。 実施形態に係る眼科装置の光学系の構成例を示す概略図である。 実施形態に係る眼科装置の処理系の構成例を示す概略図である。 実施形態に係る眼科装置の動作例のフロー図である。 実施形態の第1変形例に係る眼科装置の光学系の構成例を示す概略図である。 実施形態の第1変形例に係る眼科装置の光学系の構成例を示す概略図である。 実施形態の第2変形例に係る眼科装置の光学系の構成例を示す概略図である。 実施形態の第2変形例に係る眼科装置の光学系の構成例を示す概略図である。 実施形態に係る眼科装置が適用された眼科検査システムの構成例を示す概略図である。
 この発明に係る眼科装置及び眼科検査システムの実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書において引用された文献の記載内容や任意の公知技術を、以下の実施形態に援用することが可能である。
<眼科装置>
 実施形態に係る眼科装置は、任意の自覚検査及び任意の他覚測定の少なくとも一方を実行可能である。自覚検査では、被検者に情報(視標など)が呈示され、その情報に対する被検者の応答に基づいて結果が取得される。自覚検査には、遠用検査、近用検査、コントラスト検査、グレアー検査等の自覚屈折測定や、視野検査などがある。他覚測定では、被検眼に光を照射し、その戻り光の検出結果に基づいて被検眼に関する情報が取得される。他覚測定には、被検眼の特性を取得するための測定と、被検眼の画像を取得するための撮影とが含まれる。他覚測定には、他覚屈折測定、角膜形状測定、眼圧測定、眼底撮影、光コヒーレンストモグラフィ(Optical Coherence Tomography:以下、OCT)を用いた断層像撮影(OCT撮影)、OCTを用いた計測等がある。
 以下、実施形態に係る眼科装置は、自覚検査として、遠用検査、近用検査などを実行可能であり、且つ、他覚測定として、他覚屈折測定、角膜形状測定、OCT撮影などを実行可能な装置であるものとする。しかしながら、実施形態に係る眼科装置の構成は、これに限定されるものではない。
 また、OCT撮影においてフーリエドメインタイプのOCTの手法を用いる場合について説明する。特に、以下の実施形態に係る眼科装置は、スウェプトソースOCTの手法を用いてOCT撮影を行うことが可能である。なお、OCT撮影は、スウェプトソース以外のタイプ、例えばスペクトラルドメインOCTの手法を用いてもよい。また、以下の実施形態におけるOCT撮影は、タイムドメインタイプのOCTの手法を用いることも可能である。
[構成]
 実施形態に係る眼科装置は、ベースに固定された顔受け部と、ベースに対して前後左右に移動可能な架台とを備えている。架台には、被検眼の検査(測定)を行うための光学系が収納されたヘッド部が設けられている。検者側の位置に配置された操作部に対して操作を行うことにより、顔受け部とヘッド部とを相対移動することができる。また、眼科装置は、後述のアライメントを実行することにより顔受け部とヘッド部とを自動で相対移動することができる。
 図1~図3に、実施形態に係る眼科装置の光学系の構成例を示す。眼科装置は、被検眼Eの検査を行うための光学系として、Zアライメント系1、XYアライメント系2、ケラト測定系3、視標投影系4、観察系5、レフ測定投影系6、レフ測定受光系7及びOCT光学系8を含む。また、眼科装置は処理部9を含む。
(処理部9)
 処理部9は、眼科装置の各部を制御する。また、処理部9は、各種演算処理を実行可能である。処理部9はプロセッサを含む。プロセッサの機能は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(例えば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路により実現される。処理部9は、例えば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。
(観察系5)
 観察系5は、被検眼Eの前眼部を動画撮影する。被検眼Eの前眼部からの光(赤外光)は、対物レンズ51を通過し、ダイクロイックミラー52を透過し、絞り53の開口を通過する。絞り53の開口を通過した光は、ハーフミラー22を透過し、リレーレンズ55及び56を通過し、ハーフミラー76を透過する。ハーフミラー76を透過した光は、結像レンズ58により撮像素子59(エリアセンサー)の撮像面に結像される。撮像素子59は、所定のレートで撮像及び信号出力を行う。撮像素子59の出力(映像信号)は処理部9に入力される。処理部9は、この映像信号に基づく前眼部像E’を表示部10の表示画面10aに表示させる。前眼部像E’は、例えば赤外動画像である。観察系5は、前眼部を照明するための照明光源を含んでいてもよい。
(Zアライメント系1)
 Zアライメント系1は、観察系5の光軸方向(前後方向、Z方向)におけるアライメントを行うための光(赤外光)を被検眼Eに照射する。Zアライメント光源11から出力された光は、被検眼Eの角膜Kに照射され、角膜Kにより反射され、結像レンズ12によりラインセンサー13に結像される。角膜頂点の位置が前後方向に変化すると、ラインセンサー13に対する光の投影位置が変化する。処理部9は、ラインセンサー13に対する光の投影位置に基づいて被検眼Eの角膜頂点の位置を求め、これに基づきZアライメントを実行する。
(XYアライメント系2)
 XYアライメント系2は、観察系5の光軸に直交する方向(左右方向(X方向)、上下方向(Y方向))のアライメントを行うための光(赤外光)を被検眼Eに照射する。XYアライメント系2は、ハーフミラー22により観察系5から分岐された光路に設けられたXYアライメント光源21を含む。XYアライメント光源21から出力された光は、ハーフミラー22により反射され、観察系5を通じて被検眼Eに照射される。その角膜Kによる反射光は、観察系5を通じて撮像素子59に導かれる。
 この反射光の像(輝点像)は前眼部像E’に含まれる。処理部9は、図1に示すように、輝点像Brを含む前眼部像E’とアライメントマークALとを表示画面10aに表示させる。手動でXYアライメントを行う場合、検者又は被検者等のユーザは、アライメントマークAL内に輝点像Brを誘導するように光学系の移動操作を行う。自動でアライメントを行う場合、処理部9は、アライメントマークALに対する輝点像Brの変位がキャンセルされるように、光学系を移動させるための機構を制御する。
(ケラト測定系3)
 ケラト測定系3は、角膜Kの形状を測定するためのリング状光束(赤外光)を角膜Kに投影する。ケラト板31は、対物レンズ51と被検眼Eとの間に配置されている。ケラト板31の背面側(対物レンズ51側)にはケラトリング光源32が設けられている。ケラトリング光源32からの光でケラト板31を照明することにより、角膜Kにリング状光束が投影される。その反射光(ケラトリング像)は撮像素子59により前眼部像とともに検出される。処理部9は、このケラトリング像を基に公知の演算を行うことで角膜形状パラメータを算出する。
(視標投影系4)
 視標投影系4は、固視標や自覚検査用の視標等の各種視標を被検眼Eに呈示する。液晶パネル41は、処理部9からの制御を受け、視標を表すパターンを表示する。液晶パネル41から出力された光(可視光)は、リレーレンズ42及び合焦レンズ43を通過し、ダイクロイックミラー81を透過する。ダイクロイックミラー81を透過した光は、リレーレンズ44、瞳レンズ45及びVCCレンズ46を通過し、反射ミラー47により反射され、ダイクロイックミラー69を透過し、ダイクロイックミラー52により反射される。ダイクロイックミラー52により反射された光は、対物レンズ51を通過して眼底Efに投影される。
 合焦レンズ43は、視標投影系4の光軸に沿って移動可能である。液晶パネル41と眼底Efとが光学的に共役となるように合焦レンズ43の位置が調整される。VCCレンズ46は、被検眼の非点収差を調整可能である(すなわち、被検眼の収差を補正可能である)。具体的には、VCCレンズ46は、処理部9からの制御を受け、被検眼Eに付加する乱視度数及び乱視軸角度を変更可能であり、被検眼の眼球収差のうち少なくとも乱視度数及び乱視軸角度を補正可能である。それにより、被検眼Eの乱視状態が矯正される。
 液晶パネル41は、処理部9からの制御を受け、被検眼Eを固視させるための固視標を表すパターンを表示することが可能である。液晶パネル41において固視標を表すパターンの表示位置を順次に変更することで固視位置を移動し、固視を誘導することができる。また、視標投影系4は、前述の視標とともにグレアー光を被検眼Eに投影するためのグレアー検査光学系を含んでもよい。
 自覚検査を行う場合、処理部9は、他覚測定の結果に基づき液晶パネル41、合焦レンズ43及びVCCレンズ46を制御する。処理部9は、検者又は処理部9により選択された視標を液晶パネル41に表示させる。それにより、当該視標が被検者に呈示される。被検者は視標に対する応答を行う。応答内容の入力を受けて、処理部9は、更なる制御や、自覚検査値の算出を行う。例えば、視力測定において、処理部9は、ランドルト環等に対する応答に基づいて、次の視標を選択して呈示し、これを繰り返し行うことで視力値を決定する。
 他覚測定(他覚屈折測定など)においては、風景チャートが眼底Efに投影される。この風景チャートを被検者に凝視させつつアライメントが行われ、雲霧視状態で眼屈折力が測定される。
(レフ測定投影系6及びレフ測定受光系7)
 レフ測定投影系6及びレフ測定受光系7は他覚屈折測定(レフ測定)に用いられる。レフ測定投影系6は、他覚測定用のリング状光束(赤外光)を眼底Efに投影する。この明細書において、リング状光束はリングの一部が途切れた形状の光束も含む。レフ測定受光系7は、このリング状光束の被検眼Eからの戻り光を受光する。
 光源ユニット60は、レフ測定光源61、コンデンサレンズ62、円錐プリズム63及びリング開口板64を含む。光源ユニット60は、レフ測定投影系6の光軸に沿って移動可能である。レフ測定光源61は、眼底Efと光学的に共役な位置に配置される。レフ測定光源61から出力された光は、コンデンサレンズ62を通過し、円錐プリズム63を透過し、リング開口板64のリング状開口部を通過してリング状光束となる。リング開口板64により形成されたリング状光束は、リレーレンズ65及び瞳レンズ66を通過し、穴開きプリズム67の反射面により反射され、ロータリープリズム68を通過し、ダイクロイックミラー69により反射される。ダイクロイックミラー69により反射された光は、ダイクロイックミラー52により反射され、対物レンズ51を通過して眼底Efに投影される。
 ロータリープリズム68は、眼底Efの血管や疾患部位に対するリング状光束の光量分布を平均化させるために用いられる。
 眼底Efに投影されたリング状光束の戻り光は、対物レンズ51を通過し、ダイクロイックミラー52及び69により反射される。ダイクロイックミラー69により反射された戻り光は、ロータリープリズム68を通過し、穴開きプリズム67の穴部を通過し、瞳レンズ71を通過し、反射ミラー72により反射される。反射ミラー72により反射された光は、リレーレンズ73及び合焦レンズ74を通過し、反射ミラー75により反射される。反射ミラー75により反射された光は、ハーフミラー76により反射され、結像レンズ58により撮像素子59の撮像面に結像される。処理部9は、撮像素子59からの出力を基に公知の演算を行うことで被検眼Eの球面度数S、乱視度数C及び乱視軸角度Aを算出する。
 処理部9は、算出された屈折値に基づいて、レフ測定光源61と眼底Efと撮像素子59とが共役となる位置に、光源ユニット60と合焦レンズ74とをそれぞれ光軸方向に移動させる。更に、処理部9は、光源ユニット60及び合焦レンズ74の移動に連動して合焦レンズ43をその光軸方向に移動させる。また、処理部9は、光源ユニット60及び合焦レンズ74の移動に連動してOCT光学系8の合焦レンズ82をその光軸方向に移動させてもよい。
(OCT光学系8)
 OCT光学系8は、OCT撮影を行うための光学系である。OCT撮影よりも前に実施されたレフ測定結果に基づいて、光ファイバーf2の端面が眼底Efと光学系に共役となるように合焦レンズ82の位置が調整される。
 OCT光学系8の光路は、ダイクロイックミラー81により視標投影系4の光路に結合される。それにより、OCT光学系8及び視標投影系4のそれぞれの光軸を同軸で結合することができる。
 OCT光学系8は、OCTユニット90を含む。図2に示すように、OCTユニット90において、OCT光源91は、一般的なスウェプトソースタイプのOCT装置と同様に、出射光の波長を掃引(走査)可能な波長掃引型(波長走査型)光源を含んで構成される。波長掃引型光源は、共振器を含むレーザー光源を含んで構成される。OCT光源91は、人眼では視認できない近赤外の波長帯において、出力波長を時間的に変化させる。
 OCT光源91から出力された光(赤外光、広帯域光)L0は、光ファイバーf1を通じて導かれたファイバーカプラー92により測定光LSと参照光LRとに分割される。測定光LSは、光ファイバーf2を通じてコリメートレンズ86に導かれる。一方、参照光LRは、光ファイバーf4を通じて参照光路長変更部94に導かれる。
 参照光路長変更部94は、参照光LRの光路長を変更する。参照光路長変更部94に導かれた参照光LRは、コリメートレンズ95により平行光束とされてコーナーキューブ96に導かれる。コーナーキューブ96は、コリメートレンズ95により平行光束とされた参照光LRの進行方向を逆方向に折り返す。コーナーキューブ96に入射する参照光LRの光路と、コーナーキューブ96から出射する参照光LRの光路とは平行である。また、コーナーキューブ96は、参照光LRの入射光路及び出射光路に沿う方向に移動可能とされている。この移動により参照光LRの光路の長さが変更される。コーナーキューブ96から出射する参照光LRは、コリメートレンズ97によって平行光束から集束光束に変換されて光ファイバーf5に入射し、ファイバーカプラー93に導かれる。コリメートレンズ95とコーナーキューブ96との間やコーナーキューブ96とコリメートレンズ97との間に、遅延部材や分散補償部材が設けられていてもよい。遅延部材は、参照光LRの光路長(光学距離)と測定光LSの光路長とを合わせるための光学部材である。分散補償部材は、参照光LRと測定光LSとの間の分散特性を合わせるための光学部材である。
 コリメートレンズ86により平行光束とされた測定光LSは、光スキャナー84により1次元的又は2次元的に偏向される。光スキャナー84は、ガルバノミラー84Xと、ガルバノミラー84Yとを含む。ガルバノミラー84Xは、眼底EfをX方向にスキャンするように測定光LSを偏向する。ガルバノミラー84Yは、眼底EfをY方向にスキャンするように、ガルバノミラー84Xにより偏向された測定光LSを偏向する。このような光スキャナー84による測定光LSの走査態様としては、例えば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋スキャンなどがある。
 光スキャナー84により偏向された測定光LSは、反射ミラー83及び合焦レンズ82を経由して、ダイクロイックミラー81により反射される。ダイクロイックミラー81により反射された測定光LSは、視標投影系4を通じてダイクロイックミラー52に導かれ、ダイクロイックミラー52により反射される。ダイクロイックミラー52により反射された光は、対物レンズ51を通過して被検眼Eに照射される。測定光LSは、被検眼Eの様々な深さ位置において散乱(反射を含む)される。このような後方散乱光を含む測定光LSの戻り光は、往路と同じ経路を逆向きに進行してファイバーカプラー92に導かれ、光ファイバーf3を経由してファイバーカプラー93に到達する。
 ファイバーカプラー93は、光ファイバーf3を介して入射された測定光LSと、光ファイバーf5を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバーカプラー93は、所定の分岐比(例えば1:1)で、測定光LSと参照光LRとの干渉光を分岐することにより、一対の干渉光LCを生成する。ファイバーカプラー93から出射した一対の干渉光LCは、それぞれ光ファイバーf6及びf7により検出器98に導かれる。
 検出器98は、例えば一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを有し、これらによる検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode:BPD)である。OCT光源91により所定の波長範囲内で掃引(走査)される各波長の出力タイミングに同期して生成されたクロックに基づいて、検出器98から出力された検出結果の差分がサンプリングされる。このサンプリングデータは、処理部9の演算処理部120に送られる。演算処理部120は、例えば一連の波長走査毎に(Aライン毎に)、サンプリングデータに基づくスペクトル分布にフーリエ変換等を施すことにより、各Aラインにおける反射強度プロファイルを形成する。更に、演算処理部120は、各Aラインの反射強度プロファイルを画像化することにより画像データを形成する。
 以上のように、OCT光学系8は、OCT光源91からの光L0を参照光LRと測定光LSとに分割し、被検眼Eに測定光LSを照射し、その戻り光と参照光LRとの干渉光LCを生成し、生成された干渉光を検出する干渉光学系を含む。この干渉光学系は、対物レンズ51及びVCCレンズ46を介して被検眼Eに測定光LSを照射する。
 このようなOCT光学系8は、ダイクロイックミラー81により視標投影系4の光路に結合される。例えば穴開きプリズムを用いてOCT光学系8の光路を他の光学系の光路に結合する場合、穴開きプリズムの穴部に測定光を通過させるように光学系が構成されるため、測定光やその戻り光のケラレ等を考慮する必要が生じる。また、OCT光学系8を測定光の波長に近い波長の光を用いる他の光学系(レフ測定投影系6及びレフ測定受光系7)に結合する場合、互いに波長が近くなるため分離が難しくなり、効率が低下してしまう。これに対して、OCT光学系8の光路をダイクロイックミラー81を用いて他の光学系の光路に結合するようにしたので、光学系の構成を簡素化でき、光学系の設計の自由度を向上させることができる。また、他の光学系を追加しやすくなり、拡張性を備えた構成とすることができる。
 更に、VCCレンズ46よりも光源側(上流側)で上記の2つの光路を結合するようにしたので、VCCレンズ46を通じて測定光LSが眼底Efに照射され、測定部位においてより一点に収束されやすくなる。それにより、最適な横分解能で、干渉光の検出結果に基づく干渉信号を十分な強度で取得できるようになる。
 図3に示すように、VCCレンズ46と瞳レンズ45との中間位置は、被検眼Eの瞳と光学的に共役な位置(瞳共役位置Q)に配置されている。同様に、ガルバノミラー84Xとガルバノミラー84Yとの中間位置は、被検眼Eの瞳と光学的に共役な位置に配置されている。更に、被検眼Eの眼底Efと光ファイバーf2のファイバー端面とが光学的に共役な位置(眼底共役位置P)となるように合焦レンズ82が光軸方向に移動される。瞳レンズ45よりも光源側でOCT光学系8の光路と視標投影系4の光路とを結合するようにしたので、眼底共役位置Pを近くすることが可能になり、視標投影系4やOCT光学系8を小さくすることができる。
(処理系の構成)
 実施形態に係る眼科装置の処理系について説明する。眼科装置の処理系の機能的構成の例を図4に示す。図4は、実施形態に係る眼科装置の処理系の機能ブロック図の一例を表したものである。処理部9は、制御部110と演算処理部120とを含む。また、実施形態に係る眼科装置は、表示部170と、操作部180と、通信部190と、移動機構200とを含む。
 移動機構200は、Zアライメント系1、XYアライメント系2、ケラト測定系3、視標投影系4、観察系5、レフ測定投影系6、レフ測定受光系7及びOCT光学系8等の光学系が収納されたヘッド部を前後左右方向に移動させるための機構である。例えば、移動機構200には、移動機構200を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。アクチュエータは、例えばパルスモータにより構成される。伝達機構は、例えば歯車の組み合わせやラック・アンド・ピニオンなどによって構成される。制御部110(主制御部111)は、アクチュエータに対して制御信号を送ることにより移動機構200に対する制御を行う。
(制御部110)
 制御部110は、プロセッサを含み、眼科装置の各部を制御する。制御部110は、主制御部111と、記憶部112とを含む。記憶部112には、眼科装置を制御するためのコンピュータプログラムがあらかじめ格納される。コンピュータプログラムには、光源制御用プログラム、検出器制御用プログラム、光スキャナー制御用プログラム、光学系制御用プログラム、演算処理用プログラム及びユーザインターフェイス用プログラムなどが含まれる。このようなコンピュータプログラムに従って主制御部111が動作することにより、制御部110は制御処理を実行する。
 主制御部111は、測定制御部として眼科装置の各種制御を行う。Zアライメント系1に対する制御には、Zアライメント光源11の制御、ラインセンサー13の制御などがある。Zアライメント光源11の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。ラインセンサー13の制御には、検出素子の露光調整やゲイン調整や検出レート調整などがある。それにより、Zアライメント光源11の点灯と非点灯とが切り替えられたり、光量が変更されたりする。主制御部111は、ラインセンサー13により検出された信号を取り込み、取り込まれた信号に基づいてラインセンサー13に対する光の投影位置を特定する。主制御部111は、特定された投影位置に基づいて被検眼Eの角膜頂点の位置を求め、これに基づき移動機構200を制御してヘッド部を前後方向に移動させる(Zアライメント)。
 XYアライメント系2に対する制御には、XYアライメント光源21の制御などがある。XYアライメント光源21の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。それにより、XYアライメント光源21の点灯と非点灯とが切り替えられたり、光量が変更されたりする。主制御部111は、撮像素子59により検出された信号を取り込み、取り込まれた信号に基づいてXYアライメント光源21からの光の戻り光に基づく輝点像の位置を特定する。主制御部111は、所定の目標位置(例えば、アライメントマークの中心位置)に対する輝点像の位置との変位がキャンセルされるように移動機構200を制御してヘッド部を左右上下方向に移動させる(XYアライメント)。
 ケラト測定系3に対する制御には、ケラトリング光源32の制御などがある。ケラトリング光源32の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。それにより、ケラトリング光源32の点灯と非点灯とが切り替えられたり、光量が変更されたりする。主制御部111は、撮像素子59により検出されたケラトリング像に対する公知の演算を演算処理部120に実行させる。それにより、被検眼Eの角膜形状パラメータが求められる。
 視標投影系4に対する制御には、液晶パネル41の制御、合焦レンズ43の制御、VCCレンズ46の制御などがある。液晶パネル41の制御には、視標や固視標の表示のオン・オフや、固視標の表示位置の切り替えなどがある。それにより、被検眼Eの眼底Efに視標や固視標が投影される。合焦レンズ43の制御には、合焦レンズ43の光軸方向への移動制御などがある。例えば、視標投影系4は、合焦レンズ43を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、合焦レンズ43を光軸方向に移動させる。それにより、液晶パネル41と眼底Efとが光学的に共役となるように合焦レンズ43の位置が調整される。VCCレンズ46の制御には、乱視度数及び乱視軸角度の変更制御などがある。VCCレンズ46は、その光軸を中心として相対的に回転可能に設けられた凹凸一対のシリンダーレンズを含む。主制御部111は、例えば後述のレフ測定など別途に得られた被検眼Eの乱視状態(乱視度数、乱視軸角度)を矯正するように一対のシリンダーレンズを相対的に回転させる。
 観察系5に対する制御には、撮像素子59の制御などがある。撮像素子59の制御には、撮像素子59の露光調整やゲイン調整や検出レート調整などがある。主制御部111は、撮像素子59により検出された信号を取り込み、取り込まれた信号に基づく画像の形成等の処理を演算処理部120に実行させる。なお、観察系5が照明光源を含んで構成されている場合、主制御部111は照明光源を制御することが可能である。
 レフ測定投影系6に対する制御には、光源ユニット60の制御、ロータリープリズム68の制御などがある。光源ユニット60の制御には、レフ測定光源61の制御や光源ユニット60の制御などがある。レフ測定光源61の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。それにより、レフ測定光源61の点灯と非点灯とが切り替えられたり、光量が変更されたりする。光源ユニット60の制御には、光源ユニット60の光軸方向への移動制御などがある。例えば、レフ測定投影系6は、光源ユニット60を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、光源ユニット60を光軸方向に移動させる。ロータリープリズム68の制御には、ロータリープリズム68の回転制御などがある。例えば、ロータリープリズム68を回転させる回転機構が設けられており、主制御部111は、この回転機構を制御することによりロータリープリズム68を回転させる。
 レフ測定受光系7に対する制御には、合焦レンズ74の制御などがある。合焦レンズ74の制御には、合焦レンズ74の光軸方向への移動制御などがある。例えば、レフ測定受光系7は、合焦レンズ74を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、合焦レンズ74を光軸方向に移動させる。主制御部111は、レフ測定光源61と眼底Efと撮像素子59とが光学的に共役となるように、例えば被検眼Eの屈折力に応じて光源ユニット60及び合焦レンズ74をそれぞれ光軸方向に移動させることが可能となる。
 OCT光学系8に対する制御には、OCT光源91の制御、光スキャナー84の制御、合焦レンズ82の制御、コーナーキューブ96の制御、検出器98の制御などがある。OCT光源91の制御には、光源の点灯、消灯、光量調整、絞り調整などがある。光スキャナー84の制御には、ガルバノミラー84Xによる走査位置や走査範囲や走査速度の制御、ガルバノミラー84Yによる走査位置や走査範囲や走査速度の制御などがある。合焦レンズ82の制御には、合焦レンズ82の光軸方向への移動制御などがある。例えば、OCT光学系8は、合焦レンズ82を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、合焦レンズ82を光軸方向に移動させる。主制御部111は、例えば、合焦レンズ43の移動に連動して合焦レンズ82を移動させた後、干渉信号の強度に基づいて合焦レンズ82だけを移動させるようにしてもよい。コーナーキューブ96の制御には、コーナーキューブ96の光軸方向への移動制御などがある。例えば、OCT光学系8は、コーナーキューブ96を光軸方向に移動する移動機構を含む。この移動機構には、移動機構200と同様に、当該移動機構を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とが設けられる。主制御部111は、アクチュエータに対して制御信号を送ることにより移動機構に対する制御を行い、コーナーキューブ96を光軸方向に移動させる。それにより、参照光LRの光路の長さが変更される。検出器98の制御には、検出素子の露光調整やゲイン調整や検出レート調整などがある。主制御部111は、検出器98により検出された信号をサンプリングし、サンプリングされた信号に基づく画像の形成等の処理を演算処理部120(画像形成部122)に実行させる。
 また、主制御部111は、記憶部112にデータを書き込む処理や、記憶部112からデータを読み出す処理を行う。
(記憶部112)
 記憶部112は、各種のデータを記憶する。記憶部112に記憶されるデータとしては、例えば自覚検査の検査結果、他覚測定の測定結果、断層像の画像データ、眼底像の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。また、記憶部112には、眼科装置を動作させるための各種プログラムやデータが記憶されている。
(演算処理部120)
 演算処理部120は、眼屈折力算出部121と、画像形成部122と、データ処理部123とを含む。
 眼屈折力算出部121は、レフ測定投影系6により眼底Efに投影されたリング状光束(リング状の測定パターン)の戻り光を撮像素子59が受光することにより得られたリング像(パターン像)を解析する。例えば、眼屈折力算出部121は、得られたリング像が描出された画像における輝度分布からリング像の重心位置を求め、この重心位置から放射状に延びる複数の走査方向に沿った輝度分布を求め、この輝度分布からリング像を特定する。続いて、眼屈折力算出部121は、特定されたリング像の近似楕円を求め、この近似楕円の長径及び短径を公知の式に代入することによって球面度数S、乱視度数C及び乱視軸角度Aを求める。或いは、眼屈折力算出部121は、基準パターンに対するリング像の変形及び変位に基づいて眼屈折力のパラメータを求めることができる。
 また、眼屈折力算出部121は、観察系5により取得されたケラトリング像に基づいて、角膜屈折力、角膜乱視度及び角膜乱視軸角度を算出する。例えば、眼屈折力算出部121は、ケラトリング像を解析することにより角膜前面の強主経線や弱主経線の角膜曲率半径を算出し、角膜曲率半径に基づいて上記パラメータを算出する。
 画像形成部122は、検出器98により検出された信号に基づいて、眼底Efの断層像の画像データを形成する。すなわち、画像形成部122は、干渉光学系による干渉光LCの検出結果に基づいて被検眼Eの画像データを形成する。この処理には、従来のスウェプトソースタイプのOCTと同様に、フィルタ処理、FFT(Fast Fourier Transform)などの処理が含まれている。このようにして取得される画像データは、複数のAライン(被検眼E内における各測定光LSの経路)における反射強度プロファイルを画像化することにより形成された一群の画像データを含むデータセットである。
 画質を向上させるために、同じパターンでのスキャンを複数回繰り返して収集された複数のデータセットを重ね合わせる(加算平均する)ことができる。
 データ処理部123は、画像形成部122により形成された断層像に対して各種のデータ処理(画像処理)や解析処理を施す。例えば、データ処理部123は、画像の輝度補正や分散補正等の補正処理を実行する。また、データ処理部123は、観察系5を用い得られた画像(前眼部像等)に対して各種の画像処理や解析処理を施す。
 データ処理部123は、断層像の間の画素を補間する補間処理などの公知の画像処理を実行することにより、被検眼Eのボリュームデータ(ボクセルデータ)を形成することができる。ボリュームデータに基づく画像を表示させる場合、データ処理部123は、このボリュームデータに対してレンダリング処理を施して、特定の視線方向から見たときの擬似的な3次元画像を形成する。
(表示部170、操作部180)
 表示部170は、ユーザインターフェイス部として、制御部110による制御を受けて情報を表示する。表示部170は、図1などに示す表示部10を含む。
 操作部180は、ユーザインターフェイス部として、眼科装置を操作するために使用される。操作部180は、眼科装置に設けられた各種のハードウェアキー(ジョイスティック、ボタン、スイッチなど)を含む。また、操作部180は、タッチパネル式の表示画面10aに表示される各種のソフトウェアキー(ボタン、アイコン、メニューなど)を含んでもよい。
 表示部170及び操作部180の少なくとも一部が一体的に構成されていてもよい。その典型例として、タッチパネル式の表示画面10aがある。
(通信部190)
 通信部190は、図示しない外部装置と通信するための機能を有する。通信部190は、例えば処理部9に設けられていてもよい。通信部190は、外部装置との通信の形態に応じた構成を有する。
 VCCレンズ46は、この実施形態に係る「光学素子」の一例である。視標投影系4は、この実施形態に係る「自覚検査光学系」の一例である。OCT光学系8は、この実施形態に係る「干渉光学系」の一例である。ダイクロイックミラー81は、この実施形態に係る「第1光路結合部材」の一例である。合焦レンズ43は、この実施形態に係る「第1合焦レンズ」の一例である。合焦レンズ82は、この実施形態に係る「第2合焦レンズ」の一例である。レフ測定投影系6、レフ測定受光系7及び観察系5の一部(ハーフミラー76、結像レンズ58及び撮像素子59)は、この実施形態に係る「他覚測定光学系」の一例である。ダイクロイックミラー69は、この実施形態に係る「第2光路結合部材」の一例である。
[動作例]
 この実施形態に係る眼科装置の動作例について説明する。
 図5に、この実施形態に係る眼科装置の動作例のフロー図を示す。
(S1)
 被検者の顔を顔受け部で固定した後、XYアライメント系2によるXYアライメントとZアライメント系1によるZアライメントとによりヘッド部が被検眼Eの検査位置に移動される。検査位置とは、被検眼Eの検査を行うことが可能な位置である。例えば、処理部9(制御部110)は、撮像素子59の撮像面上に結像された前眼部像の撮像信号を取得し、表示部170(表示部10の表示画面10a)に前眼部像E’を表示させる。その後、上記のXYアライメントとZアライメントとによりヘッド部が被検眼Eの検査位置に移動される。ヘッド部の移動は、制御部110による指示に従って、制御部110によって実行されるが、ユーザによる操作若しくは指示に従って制御部110によって実行されてもよい。
 また、制御部110は、レフ測定光源61、合焦レンズ74及び合焦レンズ43を連動させて、光軸に沿って原点、例えば、0Dに相当する位置に移動させる。
(S2)
 制御部110は、液晶パネル41に固視標を表示させる。それにより、所望の固視位置に被検眼Eを注視させる。
(S3)
 次に、制御部110は、他覚測定を実行する。すなわち、制御部110は、レフ測定投影系6によりリング状光束を被検眼Eの眼底Efに投影させ、レフ測定受光系7を通じて撮像素子59により検出された戻り光に基づくリング像を眼屈折力算出部121に解析させる。眼屈折力算出部121は、上記のように球面度数S、乱視度数C及び乱視軸角度Aを求める。制御部110では、算出された球面度数Sなどが記憶部112に記憶される。
 また、レフ測定前又はレフ測定後に、制御部110は、ケラト測定を実行することが可能である。この場合、制御部110は、ケラトリング光源32を点灯させ、撮像素子59により検出されたケラトリング像を眼屈折力算出部121に解析させる。眼屈折力算出部121は、上記のようにケラトリング像を解析することにより角膜曲率半径を算出し、算出された角膜曲率半径から角膜屈折力、角膜乱視度及び角膜乱視軸角度を算出する。制御部110では、算出された角膜屈折力などが記憶部112に記憶される。
(S4)
 次に、制御部110は、自覚検査を実行する。まず、制御部110は、S3において求められた球面度数S、乱視度数C及び乱視軸角度Aが矯正されるように合焦レンズ43及びVCCレンズ46を制御する。次に、制御部110は、例えば、操作部180に対するユーザの指示に基づき、液晶パネル41を制御することにより所望の視標を表示させる。被検者は、眼底Efに投影された視標に対する応答を行う。例えば、視力測定用の視標の場合には、被検者の応答により被検眼の視力値が決定される。視標の選択とそれに対する被検者の応答が、検者又は制御部110の判断により繰り返し行われる。検者又は制御部110は、被検者からの応答に基づいて視力値或いは処方値(S、C、A)を決定する。
(S5)
 制御部110は、断層像撮影を行うか否かを判定する。例えば、操作部180に対するユーザの操作又は指示に基づいて、制御部110は、断層像撮影を行うか否かを判定する。このとき、S3において得られた他覚測定結果やS4において得られた自覚検査結果を表示部170に表示させ、ユーザに断層像撮影を行うか否かの判断を補助するための情報を提供することが可能である。断層像撮影を行うと判定されたとき(S5:Y)、眼科装置の動作はS6に移行する。断層像撮影を行わないと判定されたとき(S5:N)、眼科装置の動作は終了する(エンド)。
 また、制御部110が、S3において得られた他覚測定結果及びS4において得られた自覚検査結果の少なくとも1つに基づいて自動で断層像撮影を行うように眼科装置の制御を行うことが可能である。
(S6)
 S5において断層像撮影を行うと判定されたとき(S5:Y)、制御部110は、OCT光学系8により眼底Efの所定の部位を測定光でスキャンさせ、演算処理部120に被検眼Eの断層像を形成させる。以上で、眼科装置の動作は、終了となる(エンド)。
 例えば、S3における他覚測定においてリング状光束が投影された部位を測定光でスキャンし、得られた当該部位の断層像を表示部170に表示させる。それにより、検者等は、リング状光束が投影された測定部位の断層像を観察することができるため、S3において取得された他覚測定結果の信頼性を確認することが可能になり、S3における他覚測定結果の精度を向上させることができる。
 例えば、被検眼Eの黄斑の近傍を測定光でスキャンすることにより得られた黄斑の近傍の部位の断層像を表示部170に表示させる。この場合、検者等は、黄斑の近傍の部位の断層像を観察することができるため、S4において取得された自覚検査結果の信頼性を確認することが可能になり、S4における自覚検査結果の精度を向上させることができる。
<<第1変形例>>
 実施形態に係る眼科装置の光学系の構成は、図1及び図2において説明した構成に限定されるものではない。
 図6及び図7に、実施形態の第1変形例に係る眼科装置の光学系の構成例を示す。図6において、図1と同様の部分には同一符号を付し、適宜説明を省略する。図7において、図6と同様の部分には同一符号を付し、適宜説明を省略する。以下では、第1変形例に係る眼科装置の光学系の構成について、実施形態に係る眼科装置の光学系の構成との相違点を中心に説明する。
 実施形態の第1変形例に係る眼科装置の光学系の構成が実施形態に係る眼科装置の光学系の構成と異なる点は、OCT光学系8における光スキャナー84の構成である。具体的には、ガルバノミラー84Yとガルバノミラー84Xとの間に反射ミラー85、リレーレンズ87A及び87Bが配置されている。リレーレンズ87Bの上流側の焦点位置にガルバノミラー84Xが配置されている。リレーレンズ87Aの下流側の焦点位置にガルバノミラー84Yが配置されている。反射ミラー85は、ガルバノミラー84Xにより偏向された測定光LSをガルバノミラー84Yに導くように配置されている。図7に示すように、ガルバノミラー84Y及びガルバノミラー84Xのそれぞれは、被検眼Eの瞳と光学的に共役な位置(瞳共役位置Q)に配置されている。
 コリメートレンズ86により平行光束とされた測定光LSは、ガルバノミラー84Xにより眼底EfをX方向にスキャンするように偏向される。ガルバノミラー84Xにより偏向された測定光LSは、リレーレンズ87B及び87Aを通過し、反射ミラー85により偏向される。反射ミラー85により偏向された測定光LSは、ガルバノミラー84Yにより眼底EfをY方向にスキャンするように偏向される。
 実施形態の第1変形例に係る眼科装置の動作は実施形態に係る眼科装置の動作と同様であるため、説明を省略する。
 第1変形例によれば、ガルバノミラー84X及び84Yの双方が瞳共役位置Qに配位置されるため、実施形態よりも高い横分解能で干渉光の検出が可能になる。また、ガルバノミラー84X及び84Yが光学的に共役な位置に配置されているため、合焦レンズ82を移動しても共役関係を維持しつつ、干渉信号の強度を高めてより高画質な断層像の取得が可能になる。
<<第2変形例>>
 実施形態又はその第1変形例に係る眼科装置の光学系ではガルバノミラー84X及び84Yにより測定光LSを偏向する場合について説明したが、実施形態に係る眼科装置の構成はこれに限定されるものではない。
 図8及び図9に、実施形態の第2変形例に係る眼科装置の光学系の構成例を示す。図8において、図1と同様の部分には同一符号を付し、適宜説明を省略する。図9において、図8と同様の部分には同一符号を付し、適宜説明を省略する。以下では、実施形態の第2変形例に係る眼科装置の光学系の構成について、実施形態に係る眼科装置の光学系の構成との相違点を中心に説明する。
 実施形態の第2変形例に係る眼科装置の光学系の構成が実施形態に係る眼科装置の光学系の構成と異なる点は、光スキャナー84に代えてイメージローテーター89が設けられている点である。イメージローテーター89は、OCT光学系8の光軸に配置され、当該光軸を中心に回転可能に設けられる。光ファイバーf2及びコリメートレンズ86の光軸は、イメージローテーター89の光軸と交差するように配置される。図9に示すように、光ファイバーf2のファイバー端面は、被検眼Eの眼底Efと光学的に共役な位置(眼底共役位置P)に配置されるように、合焦レンズ82が移動される。イメージローテーター89は、被検眼Eの瞳と光学的に共役な位置(瞳共役位置Q)に配置されている。
 イメージローテーター89は、図示しない回転機構によりOCT光学系8の光軸を中心に回転される。この回転機構は、処理部9からの制御を受け、イメージローテーター89を回転させる。コリメートレンズ86により平行光束とされた測定光LSは、回転されるイメージローテーター89によりサークル状に偏向される。イメージローテーター89により偏向された測定光LSは、反射ミラー83により合焦レンズ82に向けて偏向される。
 例えば、眼底Efに投影されるリング状光束と同じ大きさになるように光ファイバーf2等を傾けて配置することにより、眼底Efへのリング状光束の投影位置を測定光LSでスキャンすることができる。それにより、眼底Efへのリング状光束の投影位置における断層像を取得することができる。なお、イメージローテーター89の光軸に対する光ファイバーf2等の傾斜角度を変更する機構を設け、処理部9からの制御により光ファイバーf2等の傾斜角度を調整するようにしてもよい。
 第2変形例に係る眼科装置の処理系では、上記のようにイメージローテーター89に対する回転制御が可能になっている。例えば、主制御部111が、回転機構を制御することによりイメージローテーター89を回転させる。
 第2変形例によれば、簡素な構成で、被検眼Eの眼底Efを測定光LSでサークル状にスキャンすることが可能になる。それにより、他覚測定においてリング状光束が投影された測定部位の断層像を簡素な構成で取得できるため、他覚測定結果の信頼性を確認することが可能になり、他覚測定結果の精度を向上させることができる。
<眼科検査システム>
 実施形態又はその変形例に係る眼科装置は、両眼を検査可能な眼科検査システムに適用すること可能である。
 図10に、実施形態又はその変形例に係る眼科装置が適用された眼科検査システムの構成例のブロック図である。
 眼科検査システムは、測定ヘッド300を含む。測定ヘッド300は、図示しない支持部材により支持された保持部350により上方から吊り下げられる。測定ヘッド300は、移動機構310と、左検査ユニット320Lと、右検査ユニット320Rとを含む。左検査ユニット320L及び右検査ユニット320Rのそれぞれには、図示しない検眼窓が形成されている。被検者の左眼(左被検眼)は、左検査ユニット320Lに設けられた検眼窓を通じて検査が行われる。被検者の右眼(右被検眼)は、右検査ユニット320Rに設けられた検眼窓を通じて検査が行われる。
 左検査ユニット320L及び右検査ユニット320Rは、移動機構310により独立に又は連動して3次元的に移動される。左検査ユニット320L及び右検査ユニット320Rの少なくとも一方には、実施形態又はその変形例に係る眼科装置が設けられる。
 移動機構310は、水平動機構311L、311Rと、回動機構312L、312Rと、上下動機構313L、313Rとを含む。
 水平動機構311Lは、回動機構312L、上下動機構313L及び左検査ユニット320Lを水平方向(横方向(X方向)、前後方向(Z方向))に移動する。それにより、左被検眼の配置位置に応じて、検眼窓の水平方向の位置を調整することができる。水平動機構311Lは、例えば、駆動手段や駆動手段により発生された駆動力を伝達する駆動力伝達手段などを用いた公知の構成を備え、図示しない制御装置からの制御信号を受けて回動機構312L等を水平方向に移動する。水平動機構311Lは、操作者による操作を受け、回動機構312L等を水平方向に手動で移動することも可能である。
 水平動機構311Rは、回動機構312R、上下動機構313R及び右検査ユニット320Rを水平方向に移動する。それにより、右被検眼の配置位置に応じて、検眼窓の水平方向の位置を調整することができる。水平動機構311Rは、水平動機構311Lと同様の構成を備え、図示しない制御装置からの制御信号を受けて回動機構312R等を水平方向に移動する。水平動機構311Rは、操作者による操作を受け、回動機構312R等を水平方向に手動で移動することも可能である。
 回動機構312Lは、鉛直方向(略鉛直方向)に延びる左眼用の回動軸(左回動軸)を中心に上下動機構313L及び左検査ユニット320Lを回動する。この回動軸と水平面とのなす角は、変更可能である。回動機構312Lは、例えば、駆動手段や駆動手段により発生された駆動力を伝達する駆動力伝達手段などを用いた公知の構成を備え、図示しない制御装置からの制御信号を受けて当該回動軸を中心に左検査ユニット320L等を回動する。回動機構312Lは、操作者による操作を受け、当該回動軸を中心に左検査ユニット320L等を手動で回動することも可能である。
 回動機構312Rは、鉛直方向に延びる右眼用の回動軸(右回動軸)を中心に上下動機構313R及び右検査ユニット320Rを回動する。この回動軸と水平面とのなす角は、変更可能である。右眼用の回動軸は、左眼用の回動軸から所定の距離だけ離間した位置に配置された軸である。左眼用の回動軸と右眼用の回動軸との間の距離は、調整可能である。回動機構312Rは、回動機構312Lと同様の構成を備え、図示しない制御装置からの制御信号を受けて当該回動軸を中心に右検査ユニット320R等を回動する。回動機構312Rは、操作者による操作を受け、当該回動軸を中心に右検査ユニット320R等を手動で回動することも可能である。
 回動機構312L、312Rにより左検査ユニット320L及び右検査ユニット320Rを回動することにより、左検査ユニット320Lと右検査ユニット320Rとの向きを相対的に変更することが可能である。例えば、左検査ユニット320Lと右検査ユニット320Rとが、被検者の左右眼の眼球回旋点を中心にそれぞれ逆方向に回転される。それにより、被検眼を輻輳させることができる。
 上下動機構313Lは、左検査ユニット320Lを上下方向(鉛直方向、Y方向)に移動する。それにより、被検眼の配置位置に応じて、検眼窓の高さ方向の位置を調整することができる。上下動機構313Lは、例えば、駆動手段や駆動手段により発生された駆動力を伝達する駆動力伝達手段などを用いた公知の構成を備え、図示しない制御装置からの制御信号を受けて左検査ユニット320Lを上下方向に移動する。上下動機構313Lは、操作者による操作を受け、左検査ユニット320Lを上下方向に手動で移動することも可能である。
 上下動機構313Rは、右検査ユニット320Rを上下方向に移動する。それにより、被検眼の配置位置に応じて、検眼窓の高さ方向の位置を調整することができる。上下動機構313Rは、上下動機構313Lによる移動に連動して右検査ユニット320Rを移動してもよいし、上下動機構313Lによる移動とは独立に右検査ユニット320Rを移動してもよい。上下動機構313Rは、上下動機構313Lと同様の構成を備え、図示しない制御装置からの制御信号を受けて右検査ユニット320Rを上下方向に移動する。上下動機構313Rは、操作者による操作を受け、右検査ユニット320Rを上下方向に手動で移動することも可能である。
 左検査ユニット320L及び右検査ユニット320Rは、個別に動作可能である。
 このような眼科検査システムによれば、両眼について自覚検査や他覚測定を簡便に行うことができる。
(作用・効果)
 実施形態に係る眼科装置及び眼科検査システムの作用及び効果について説明する。
 実施形態に係る眼科装置は、対物レンズ(対物レンズ51)と、自覚検査光学系(視標投影系4)と、干渉光学系(OCT光学系8)とを含む。自覚検査光学系は、被検眼の収差を補正可能な光学素子(VCCレンズ46)を含み、対物レンズ及び光学素子を介して被検眼(被検眼E)に視標を投影する。干渉光学系は、光源(OCT光源91)からの光(光L0)を参照光(参照光LR)と測定光(測定光LS)とに分割し、対物レンズ及び光学素子を介して被検眼に測定光を照射し、その戻り光と参照光との干渉光(干渉光LC)を生成し、生成された干渉光を検出する。
 このような構成によれば、自覚検査光学系と共通の対物レンズを介して被検眼に測定光を照射し、その戻り光を検出することができるので、簡素な構成で自覚検査と光コヒーレンストモグラフィを用いた撮影や計測とが可能になる。特に、被検眼の収差を補正可能な光学素子を介して測定光を被検眼に照射することができるので、別途に取得された被検眼の乱視状態を矯正するように光学素子を制御することが可能である。それにより、光学素子を通じて被検眼に照射された測定光は測定部位においてより一点に収束されやすくなり、最適な横分解能で、干渉光の検出結果に基づく干渉信号を十分な強度で取得できるようになる。
 また、実施形態に係る眼科装置では、干渉光学系は、光学素子よりも上流側の自覚検査光学系の光路に配置され、自覚検査光学系の光路に干渉光学系の光路を結合する第1光路結合部材(ダイクロイックミラー81)を含んでもよい。
 このような構成によれば、第1光路結合部材により干渉光学系の光路を自覚検査光学系の光路に結合するようにしたので、穴開きプリズムを用いる場合等と比べて光学系の構成を簡素化でき、光学系の設計の自由度を向上させることができる。また、他の光学系を追加しやすくなり、拡張性を備えた構成とすることができる。
 また、実施形態に係る眼科装置では、自覚検査光学系は、光学素子と第1光路結合部材との間に配置されている瞳レンズ(瞳レンズ45)を含んでもよい。
 このような構成によれば、瞳レンズ45よりも上流側で干渉光学系の光路と自覚検査光学系の光路とを結合するようにしたので、眼底に共役な位置を近くすることが可能になり、干渉光学系や自覚検査光学系を小さくすることができる。
 また、実施形態に係る眼科装置では、自覚検査光学系は、当該自覚検査光学系の焦点位置を変更する第1合焦レンズ(合焦レンズ43)を含み、第1光路結合部材は、瞳レンズと第1合焦レンズとの間に配置されていてもよい。
 このような構成によれば、干渉光学系にかかわらず自覚検査光学系の焦点位置を変更することができる。
 また、実施形態に係る眼科装置では、干渉光学系は、第1光路結合部材と光源との間に配置され、当該干渉光学系の焦点位置を変更する第2合焦レンズ(合焦レンズ82)を含んでもよい。
 このような構成によれば、自覚検査光学系にかかわらず干渉光学系の焦点位置を変更することができる。それにより、自覚検査光学系及び干渉光学系のそれぞれに最適な焦点位置に変更することができる。例えば、第1合焦レンズにより自覚検査光学系の焦点位置を変更しつつ、第2合焦レンズにより被検眼の前眼部や脈絡膜などの任意の部位に干渉光学系の焦点位置を合わせることができる。
 また、実施形態に係る眼科装置は、他覚測定光学系と、眼屈折力算出部とを含んでもよい。他覚測定光学系は、対物レンズを介して被検眼の眼底(眼底Ef)にリング状の測定パターンを照射し、眼底からの戻り光を検出する。眼屈折力算出部は、他覚測定光学系により検出された戻り光に基づくパターン像を解析することにより被検眼の屈折力を求める。他覚測定光学系は、対物レンズと光学素子との間に配置され、自覚検査光学系の光路に他覚測定光学系の光路を結合する第2光路結合部材(ダイクロイックミラー69)を含む。
 このような構成によれば、自覚検査光学系と共通の対物レンズを介して他覚測定を行うようにしたので、簡素な構成で自覚検査と光コヒーレンストモグラフィを用いた撮影や計測と他覚測定とが可能になる。
 また、実施形態に係る眼科装置では、干渉光学系は、当該干渉光学系の光軸に配置され、光軸を中心に回転可能に配置され測定光を偏向するイメージローテーター(イメージローテーター89)を含んでもよい。
 このような構成によれば、簡素な構成および制御で測定光を偏向することができる。
 また、実施形態に係る眼科装置では、干渉光学系は、測定光を導光する光ファイバー(光ファイバーf2)と、光ファイバーの出射端から出射された測定光を平行光束にするコリメートレンズ(コリメートレンズ86)と、を含み、イメージローテーターは、コリメートレンズにより平行光束とされた測定光を偏向し、光ファイバー及びコリメートレンズは、その光軸がイメージローテーターの光軸と交差するように配置されていてもよい。
 このような構成によれば、リング状の測定パターンが投影された被検眼の部位に対して簡素な構成で測定光でサークル状にスキャンし、当該部位の断層像を取得することが可能になる。それにより、他覚測定結果の信頼性を向上させることができる。
 実施形態に係る眼科検査システムは、左被検眼を検査するための左検査ユニット(左検査ユニット320L)と、右被検眼を検査するための右検査ユニット(右検査ユニット320R)と、を含み、左検査ユニット及び右検査ユニットの少なくとも一方は、上記のいずれかに記載の眼科装置を含む。
 このような構成によれば、簡素な構成で、両眼について自覚検査と光コヒーレンストモグラフィを用いた撮影や計測とが可能な眼科検査システムを提供することができる。
(その他の変形例)
 以上に示された実施形態は、この発明を実施するための一例に過ぎない。この発明を実施しようとする者は、この発明の要旨の範囲内において任意の変形、省略、追加等を施すことが可能である。
 上記の実施形態又はその変形例では、視標投影系4においてダイクロイックミラー81がリレーレンズ44と合焦レンズ43との間に配置されていたが、ダイクロイックミラー81が合焦レンズ43とリレーレンズ42との間に配置されていてもよい。この場合、合焦レンズ43により視標投影系4及びOCT光学系8の焦点位置を変更した後、合焦レンズ82によりOCT光学系8の焦点位置を微調整することができる。
 上記の実施形態又はその変形例において、ガルバノミラー84Yに代えて、OCT光学系8の光軸を中心に回転可能なイメージローテーターが設けられていてもよい。
 上記の実施形態又はその変形例では、干渉光学系はOCT撮影を行うものとして説明したが、OCTにより計測を行うものであってもよい。例えば、干渉光学系は、OCTにより、眼軸長、角膜圧、前房深度、水晶体厚などを計測するものであってもよい。
 眼圧測定機能、眼底撮影機能、前眼部撮影機能、光干渉断層撮影(OCT)機能、超音波検査機能など、眼科分野において使用可能な任意の機能を有する装置に対して、上記の実施形態に係る発明を適用することが可能である。なお、眼圧測定機能は眼圧計等により実現され、眼底撮影機能は眼底カメラや走査型検眼鏡(SLO)等により実現され、前眼部撮影機能はスリットランプ等により実現され、OCT機能は光干渉断層計等により実現され、超音波検査機能は超音波診断装置等により実現される。また、このような機能のうち2つ以上を具備した装置(複合機)に対してこの発明を適用することも可能である。
4 視標投影系
5 観察系
6 レフ測定投影系
7 レフ測定受光系
8 OCT光学系
46 VCCレンズ
51 対物レンズ
81 ダイクロイックミラー

 

Claims (9)

  1.  対物レンズと、
     被検眼の収差を補正可能な光学素子を含み、前記対物レンズ及び前記光学素子を介して前記被検眼に視標を投影する自覚検査光学系と、
     光源からの光を参照光と測定光とに分割し、前記対物レンズ及び前記光学素子を介して前記被検眼に前記測定光を照射し、その戻り光と前記参照光との干渉光を生成し、生成された前記干渉光を検出する干渉光学系と、
     を含む眼科装置。
  2.  前記干渉光学系は、前記光学素子よりも上流側の前記自覚検査光学系の光路に配置され、前記自覚検査光学系の光路に前記干渉光学系の光路を結合する第1光路結合部材を含む
     ことを特徴とする請求項1に記載の眼科装置。
  3.  前記自覚検査光学系は、前記光学素子と前記第1光路結合部材との間に配置されている瞳レンズを含む
     ことを特徴とする請求項2に記載の眼科装置。
  4.  前記自覚検査光学系は、当該自覚検査光学系の焦点位置を変更する第1合焦レンズを含み、
     前記第1光路結合部材は、前記瞳レンズと前記第1合焦レンズとの間に配置されている
     ことを特徴とする請求項3に記載の眼科装置。
  5.  前記干渉光学系は、前記第1光路結合部材と前記光源との間に配置され、当該干渉光学系の焦点位置を変更する第2合焦レンズを含む
     ことを特徴とする請求項4に記載の眼科装置。
  6.  前記対物レンズを介して前記被検眼の眼底にリング状の測定パターンを照射し、前記眼底からの戻り光を検出する他覚測定光学系と、
     前記他覚測定光学系により検出された前記戻り光に基づくパターン像を解析することにより前記被検眼の屈折力を求める眼屈折力算出部と、
     を含み、
     前記他覚測定光学系は、前記対物レンズと前記光学素子との間に配置され、前記自覚検査光学系の光路に前記他覚測定光学系の光路を結合する第2光路結合部材を含む
     ことを特徴とする請求項1~請求項5のいずれか一項に記載の眼科装置。
  7.  前記干渉光学系は、当該干渉光学系の光軸に配置され、前記光軸を中心に回転可能に配置され前記測定光を偏向するイメージローテーターを含む
     ことを特徴とする請求項6に記載の眼科装置。
  8.  前記干渉光学系は、
     前記測定光を導光する光ファイバーと、
     前記光ファイバーの出射端から出射された前記測定光を平行光束にするコリメートレンズと、
     を含み、
     前記イメージローテーターは、前記コリメートレンズにより平行光束とされた前記測定光を偏向し、
     前記光ファイバー及び前記コリメートレンズは、その光軸が前記イメージローテーターの光軸と交差するように配置されている
     ことを特徴とする請求項7に記載の眼科装置。
  9.  左被検眼を検査するための左検査ユニットと、
     右被検眼を検査するための右検査ユニットと、
     を含み、
     前記左検査ユニット及び前記右検査ユニットの少なくとも一方は、請求項1~請求項8のいずれか一項に記載の眼科装置を含む
     ことを特徴とする眼科検査システム。

     
PCT/JP2017/001099 2016-02-04 2017-01-13 眼科装置及び眼科検査システム WO2017135015A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/066,256 US10791922B2 (en) 2016-02-04 2017-01-13 Ophthalmological device and ophthalmological inspection system
DE112017000673.2T DE112017000673T5 (de) 2016-02-04 2017-01-13 Ophthalmologisches Gerät und Ophthalmologisches Untersuchungssystem
US16/686,245 US11253148B2 (en) 2016-02-04 2019-11-18 Ophthalmological device and ophthalmological inspection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016019388A JP6685144B2 (ja) 2016-02-04 2016-02-04 眼科装置及び眼科検査システム
JP2016-019388 2016-02-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/066,256 A-371-Of-International US10791922B2 (en) 2016-02-04 2017-01-13 Ophthalmological device and ophthalmological inspection system
US16/686,245 Division US11253148B2 (en) 2016-02-04 2019-11-18 Ophthalmological device and ophthalmological inspection system

Publications (1)

Publication Number Publication Date
WO2017135015A1 true WO2017135015A1 (ja) 2017-08-10

Family

ID=59499532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001099 WO2017135015A1 (ja) 2016-02-04 2017-01-13 眼科装置及び眼科検査システム

Country Status (4)

Country Link
US (2) US10791922B2 (ja)
JP (1) JP6685144B2 (ja)
DE (1) DE112017000673T5 (ja)
WO (1) WO2017135015A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3539461A1 (en) * 2018-03-16 2019-09-18 Topcon Corporation Ophtalmologic apparatus
EP3545817A1 (en) * 2018-03-27 2019-10-02 Topcon Corporation Ophtalmologic apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685144B2 (ja) * 2016-02-04 2020-04-22 株式会社トプコン 眼科装置及び眼科検査システム
JP7244211B2 (ja) 2018-03-27 2023-03-22 株式会社トプコン 眼科装置、及び眼科装置の制御方法
JP7164328B2 (ja) * 2018-06-14 2022-11-01 株式会社トプコン 眼科装置、及び眼科装置の制御方法
JP7281877B2 (ja) * 2018-07-12 2023-05-26 株式会社トプコン 眼科装置
JP2020010878A (ja) * 2018-07-19 2020-01-23 株式会社トプコン 眼科装置、及びその制御方法
JP7134014B2 (ja) 2018-08-09 2022-09-09 株式会社トプコン 眼科装置、及びその制御方法
JP7101578B2 (ja) * 2018-09-21 2022-07-15 株式会社トプコン 眼科装置及びその作動方法
JP7250626B2 (ja) * 2019-06-13 2023-04-03 株式会社トプコン 眼科装置及び眼科装置の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031634A (ja) * 2011-06-30 2013-02-14 Canon Inc 撮像装置
JP2015033472A (ja) * 2013-08-08 2015-02-19 株式会社トプコン 眼科撮影装置
JP2015128482A (ja) * 2014-01-06 2015-07-16 株式会社トプコン 眼科装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8016420B2 (en) 2007-05-17 2011-09-13 Amo Development Llc. System and method for illumination and fixation with ophthalmic diagnostic instruments
JP2010259492A (ja) 2009-04-30 2010-11-18 Topcon Corp 眼底観察装置
JP6367563B2 (ja) * 2014-01-28 2018-08-01 株式会社トプコン 眼科装置
JP2015205176A (ja) 2014-04-08 2015-11-19 株式会社トプコン 眼科装置
JP6685144B2 (ja) * 2016-02-04 2020-04-22 株式会社トプコン 眼科装置及び眼科検査システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031634A (ja) * 2011-06-30 2013-02-14 Canon Inc 撮像装置
JP2015033472A (ja) * 2013-08-08 2015-02-19 株式会社トプコン 眼科撮影装置
JP2015128482A (ja) * 2014-01-06 2015-07-16 株式会社トプコン 眼科装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3539461A1 (en) * 2018-03-16 2019-09-18 Topcon Corporation Ophtalmologic apparatus
US10980414B2 (en) 2018-03-16 2021-04-20 Topcon Corporation Ophthalmologic apparatus
EP3545817A1 (en) * 2018-03-27 2019-10-02 Topcon Corporation Ophtalmologic apparatus
US11497397B2 (en) 2018-03-27 2022-11-15 Topcon Corporation Ophthalmologic apparatus

Also Published As

Publication number Publication date
US20200077888A1 (en) 2020-03-12
JP2017136215A (ja) 2017-08-10
US20190008378A1 (en) 2019-01-10
US10791922B2 (en) 2020-10-06
DE112017000673T5 (de) 2018-10-18
JP6685144B2 (ja) 2020-04-22
US11253148B2 (en) 2022-02-22

Similar Documents

Publication Publication Date Title
US11253148B2 (en) Ophthalmological device and ophthalmological inspection system
JP6616704B2 (ja) 眼科装置及び眼科検査システム
US10849499B2 (en) Ophthalmologic apparatus and method of controlling the same
JP2019154985A (ja) 眼科装置
EP3607871B1 (en) Ophthalmologic apparatus and method of controlling the same
JP2017136217A (ja) 眼科装置及び眼科検査システム
JP7394948B2 (ja) 眼科装置
JP6833081B2 (ja) 眼科装置及び眼科検査システム
JP7164328B2 (ja) 眼科装置、及び眼科装置の制御方法
JP7106320B2 (ja) 眼科装置、及び眼科装置の制御方法
JP7030577B2 (ja) 眼科装置
JP7103814B2 (ja) 眼科装置
JP7244211B2 (ja) 眼科装置、及び眼科装置の制御方法
JP7281877B2 (ja) 眼科装置
JP7133995B2 (ja) 眼科装置、及びその制御方法
JP7103813B2 (ja) 眼科装置
JP7116572B2 (ja) 眼科装置、及び眼科情報処理プログラム
JP2023126596A (ja) 眼科装置、及びその制御方法
US20200205659A1 (en) Ophthalmologic apparatus and method for controlling the same
JP2023102006A (ja) 眼科装置
JP2023102032A (ja) 眼科装置
JP2020199209A (ja) 眼科装置及び眼科装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747177

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000673

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747177

Country of ref document: EP

Kind code of ref document: A1