WO2023188053A1 - Light distribution control device, light distribution control system, and light distribution control method - Google Patents

Light distribution control device, light distribution control system, and light distribution control method Download PDF

Info

Publication number
WO2023188053A1
WO2023188053A1 PCT/JP2022/015757 JP2022015757W WO2023188053A1 WO 2023188053 A1 WO2023188053 A1 WO 2023188053A1 JP 2022015757 W JP2022015757 W JP 2022015757W WO 2023188053 A1 WO2023188053 A1 WO 2023188053A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
oncoming vehicle
light distribution
distribution control
control device
Prior art date
Application number
PCT/JP2022/015757
Other languages
French (fr)
Japanese (ja)
Inventor
行弘 沖本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024502608A priority Critical patent/JP7496950B2/en
Priority to PCT/JP2022/015757 priority patent/WO2023188053A1/en
Publication of WO2023188053A1 publication Critical patent/WO2023188053A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/14Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights having dimming means

Definitions

  • the present disclosure relates to a light distribution control device, a light distribution control system, and a light distribution control method, which quickly switch from low beam to high beam when passing an oncoming vehicle, for example.
  • the headlight control device described in Patent Document 1 aims to quickly switch from low beam to high beam when passing an oncoming vehicle on a curved road.
  • the headlight control device detects the presence of the oncoming vehicle using a camera. Thereby, for example, due to the time required to take a plurality of images and the time required to process the plurality of images taken, the detection of passing the oncoming vehicle is completed. things are delayed. As a result, there was a problem in that switching from low beam to high beam was delayed.
  • An object of the present disclosure is to provide a light distribution control device, a light distribution control system, and a light distribution control method that can suppress the delay in switching from low beam to high beam.
  • a light distribution control device includes a front recognition unit that recognizes the presence of an oncoming vehicle based on an image of the oncoming vehicle taken in front of the own vehicle, and a front recognition unit that recognizes the presence of an oncoming vehicle based on an image of the oncoming vehicle taken in front of the own vehicle.
  • the side recognition unit Based on the distance between the oncoming vehicle and the host vehicle detected by the distance sensor, the side recognition unit recognizes when the host vehicle and the oncoming vehicle pass each other, and when the front recognition unit recognizes the presence of an oncoming vehicle, the illumination light is activated. and a control unit that switches the illumination lamp from the low beam to the high beam when the side recognition unit recognizes that the vehicle has passed the oncoming vehicle after the vehicle has switched from the high beam to the low beam.
  • the light distribution control device According to the light distribution control device according to the present disclosure, it is possible to suppress the delay in switching from low beam to high beam.
  • FIG. 2 is a functional block diagram of a light distribution control device HSD according to the first embodiment.
  • 1 shows a hardware configuration of a light distribution control device HSD according to the first embodiment.
  • 3 is a flowchart showing the operation of the light distribution control device HSD of the first embodiment.
  • the positional relationship between the host vehicle JS and the oncoming vehicle TS in Embodiment 2 is shown.
  • the positional relationship between the host vehicle JS and the oncoming vehicle TS in Embodiment 3 is shown.
  • the positional relationship between the host vehicle JS and the oncoming vehicle TS in Embodiment 4 is shown.
  • Embodiment 1 The light distribution control device HSD of Embodiment 1 will be described.
  • FIG. 1 shows the positional relationship among the host vehicle JS, the oncoming vehicle TS, and the pedestrian HK in the first embodiment.
  • the light distribution control device HSD of Embodiment 1 is used when the own vehicle JS is running with the illumination light ST (shown in FIG. 2) of the high beam hb (not shown in FIG. 1).
  • the illumination lamp ST is switched from the high beam hb to the low beam LB.
  • the light distribution control device HSD of Embodiment 1 detects that the host vehicle JS and the oncoming vehicle TS have passed each other, for example, in order to visually recognize a pedestrian HK that may exist in the blind spot SK of the oncoming vehicle TS.
  • the illumination lamp ST is switched from low beam LB to high beam HB, that is, returned to high beam HB.
  • the illumination lamp ST is a matrix beam
  • a beam without glare is called a low beam
  • a beam with glare is called a high beam.
  • the high beam before detecting the oncoming vehicle TS is expressed as a high beam hb
  • the high beam after returning after detecting a mismatch between the host vehicle JS and the oncoming vehicle TS is expressed as a high beam HB.
  • FIG. 2 is a functional block diagram of the light distribution control device HSD of the first embodiment.
  • the light distribution control device HSD of the first embodiment includes a front recognition section ZN, a side recognition section SN, and a control section SG.
  • the light distribution control system HSS of Embodiment 1 includes the above-described light distribution control device HSD, an imaging section SE, a detection section KS, and an illumination lamp ST.
  • the front recognition unit ZN corresponds to a “front recognition unit”
  • the side recognition unit SN corresponds to a “side recognition unit”
  • the control unit SG corresponds to a “control unit”.
  • the photographing unit SE photographs an image GZ in front of the own vehicle JS (shown in FIG. 1), for example, an image GZ including an oncoming vehicle TS (shown in FIG. 1).
  • the photographing unit SE is, for example, a camera attached to the front of the host vehicle JS.
  • the detection unit KS detects the distance KR (for example, shown in FIG. 5) between the own vehicle JS and an object present on the side of the own vehicle JS.
  • the detection unit KS is, for example, a distance measurement sensor provided on the side surface of the host vehicle JS.
  • the distance measuring sensor may be any type of sensor that can emit light toward the side of the own vehicle JS, in other words, toward the oncoming lane, such as sonar, radar, or LiDAR. Note that, as is well known, the distance measuring sensor is irradiated with a spread beam at a predetermined irradiation angle.
  • the forward recognition unit ZN recognizes whether or not an oncoming vehicle TS exists based on the image GZ photographed by the photographing unit SE.
  • the front recognition unit ZN also recognizes whether the brightness in front of the own vehicle JS is greater than a predetermined threshold value based on the image GZ.
  • the front recognition unit ZN may recognize the pedestrian HK instead of or together with the oncoming vehicle TS.
  • the side recognition unit SN recognizes whether or not there is a difference between the host vehicle JS and the oncoming vehicle TS based on the distance KR detected by the detection unit KS.
  • the control unit SG controls the operation of the illumination lamp ST based on the recognition result of the presence or absence of the oncoming vehicle TS by the front recognition unit ZN and the recognition result of the presence or absence of the above-mentioned passing by the side recognition unit SN. .
  • FIG. 3 shows the hardware configuration of the light distribution control device HSD of the first embodiment.
  • the light distribution control device HSD of Embodiment 1 includes a processor P, a memory M, and a storage medium K, as shown in FIG. 3, in order to perform the above-mentioned functions. and an output section S.
  • the processor P is the core of a well-known computer that operates the hardware according to the software.
  • the memory M includes, for example, DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory).
  • the storage medium K includes, for example, a hard disk drive (HDD), a solid state drive (SSD), and a ROM (Read Only Memory).
  • the storage medium K stores the program PR.
  • the program PR is a group of instructions that defines the content of processing that the processor P should execute.
  • the input section N and the output section S include, for example, an input interface and an output interface for exchanging input signals NS and output signals SS related to the operation of the processor P with the outside of the light distribution control device HSD. be done.
  • the processor P executes the program PR stored in the storage medium K using the memory M, and also executes the program PR stored in the storage medium K as necessary.
  • the input section N, and the output section S, the functions of each section from the front recognition section ZN to the control section SG are realized.
  • FIG. 4 is a flowchart showing the operation of the light distribution control device HSD of the first embodiment. The operation of the light distribution control device HSD of the first embodiment will be described with reference to the flowchart of FIG. 4.
  • Step ST11 When the host vehicle JS is running at night, the front recognition unit ZN (shown in FIG. 2) captures an image GZ (shown in FIG. 2) taken by the photography unit SE (shown in FIG. 2). ), it is recognized whether or not there is an oncoming vehicle TS. When it is recognized that the oncoming vehicle TS exists, the process proceeds to step ST14, and on the other hand, when it is not recognized that the oncoming vehicle TS exists, the process proceeds to step ST12. Here, under the above assumption (2), the process proceeds to step ST14.
  • Step ST12 The front recognition unit ZN recognizes whether the brightness in front of the own vehicle JS is greater than the above-mentioned threshold value.
  • the threshold value that is, when the front of the host vehicle JS is sufficiently bright, there is no need to irradiate the high beam, so the process proceeds to step ST14, and on the other hand, the host vehicle
  • the process proceeds to step ST13.
  • Step ST13 The control unit SG (shown in FIG. 2) continues to irradiate the illumination lamp ST (shown in FIG. 2) with the high beam hb of assumption (1) described above.
  • Step ST14 In step ST11, when the presence of the oncoming vehicle TS is recognized by the forward recognition unit ZN, the control unit SG changes the illumination lamp ST from the high beam hb to the low beam LB (shown in FIG. 1) in order to suppress glare. Switch.
  • Step ST15 The side recognition unit SN (shown in FIG. 2) determines the distance between the own vehicle JS and the oncoming vehicle TS based on the distance KR (shown in FIG. 2) detected by the detection unit KS (shown in FIG. 2). Recognize whether there is any discrepancy between the two. When it is recognized that there is a passing difference, the process proceeds to step ST16, and on the other hand, when it is recognized that there is no passing each other, the process ends. Under the above assumption (3), the process proceeds to step ST16.
  • Step ST16 In step ST15, when the front recognition unit ZN recognizes that the host vehicle JS and the oncoming vehicle TS have passed each other, the control unit SG changes the illumination lamp ST from the low beam LB to the high beam HB (shown in FIG. 1). Switch.
  • the forward recognition unit ZN recognizes the presence of the oncoming vehicle TS based on the image GZ photographed by the photographing unit SE, so that the control unit SG Switch the light ST from high beam hb to low beam LB.
  • the side recognition unit SN detects the distance between the host vehicle JS and the oncoming vehicle TS based on the distance KR detected by the detection unit KS, which is a distance measurement sensor, for example. By recognizing the difference, the control unit SG switches the illumination lamp ST from the low beam LB to the high beam HB. Thereby, a delay in switching from low beam LB to high beam HB can be suppressed. As a result, the visibility of the driver of the host vehicle JS can be restored quickly.
  • Embodiment 2 The light distribution control device HSD of Embodiment 2 will be described.
  • FIG. 5 shows the positional relationship between the host vehicle JS and the oncoming vehicle TS in the second embodiment.
  • the light distribution control device HSD of Embodiment 2 is configured such that when the own vehicle JS detects an oncoming vehicle TS when the own vehicle JS is traveling with the low beam LB illumination lamp ST, , when the front corner of the oncoming vehicle TS is detected, it is recognized that there is a mismatch between the host vehicle JS and the oncoming vehicle TS.
  • Embodiment 2 The functions and hardware configuration of the light distribution control device HSD of the second embodiment are similar to those of the light distribution control device HSD of the first embodiment (shown in FIGS. 2 and 3).
  • Embodiment 2 The operation of the light distribution control device HSD of the second embodiment will be described with reference to FIG. 5.
  • time T3 This is the period during which the own vehicle JS and the oncoming vehicle TS are passing each other.
  • the side recognition unit SN determines that the distance KR between the own vehicle JS and the oncoming vehicle TS at time T1 is smaller than the distance KR between own vehicle JS and oncoming vehicle TS before time T1. Based on the fact that the distance KR is extremely short, a characteristic part of the shape of the oncoming vehicle TS, for example, a front corner (for example, the right end of the front bumper) is recognized.
  • the control unit SG switches the illumination lamp ST from the low beam LB to the high beam HB.
  • time T3 This is the period after the own vehicle JS and the oncoming vehicle TS have finished passing each other.
  • the side recognition unit SN detects that the distance KR at time T3 is extremely longer than the distance KR before time T3, so that the passing between the host vehicle JS and the oncoming vehicle TS is completed. Recognize what you did. Based on the above recognition, the control unit SG causes the illumination lamp ST to continue emitting the high beam HB.
  • the side recognition unit SN recognizes the front corner of the oncoming vehicle TS, thereby detecting the start of passing each other between the host vehicle JS and the oncoming vehicle TS. gain Since the front corner of the oncoming vehicle TS is a characteristic part in terms of the shape of the oncoming vehicle TS, it is possible to reduce the possibility of erroneously recognizing the presence or absence of the front corner, in other words, the presence or absence of the start of passing each other. I can do it.
  • the front corner of the oncoming vehicle TS is the part of the body of the oncoming vehicle TS that is closest to the body of the own vehicle JS, by recognizing the presence of the front corner of the oncoming vehicle TS, the oncoming vehicle Compared to recognizing other parts of the TS, it is possible to switch the illumination lamp ST from the low beam LB to the high beam HB earlier.
  • Embodiment 3 The light distribution control device HSD of Embodiment 3 will be described.
  • FIG. 6 shows the positional relationship between the host vehicle JS and the oncoming vehicle TS in the third embodiment.
  • the light distribution control device HSD of the third embodiment changes the illumination lamp ST of the own vehicle JS to the low beam LB when the own vehicle JS and the oncoming vehicle TS pass each other, as in the second embodiment. Switch from to high beam HB.
  • the light distribution control device HSD of the third embodiment differs from the second embodiment in that the light distribution control device HSD of the oncoming vehicle TS is used instead of the front corner of the oncoming vehicle TS, which is a characteristic part of the shape of the oncoming vehicle TS.
  • the switching is performed based on the side surface of the oncoming vehicle TS, which is a characteristically wide portion in shape.
  • Embodiment 3 The functions and hardware configuration of the light distribution control device HSD of the third embodiment are similar to those of the light distribution control device HSD of the first embodiment (shown in FIGS. 2 and 3).
  • Embodiment 3 The operation of the light distribution control device HSD of the third embodiment will be described with reference to FIG. 6.
  • time T1 This is the period before the host vehicle JS and the oncoming vehicle TS start passing each other.
  • the control unit SG (shown in FIG. 2) causes the illumination lamp ST (shown in FIG. 2) to emit the low beam LB.
  • time T3 This is the period during which the own vehicle JS and the oncoming vehicle TS are passing each other.
  • the control unit SG immediately performs , do not switch the illumination lamp ST from low beam LB to high beam HB.
  • the side recognition unit SN determines that the distance KR at time T2 is greater than the distance KR before time T1. From the fact that the distance KR is extremely short when the oncoming vehicle TS Recognize side parts (e.g., doors) that are characteristically wide parts of the shape of a vehicle. In response to the recognition, the control unit SG switches the illumination lamp ST from the low beam LB to the high beam HB.
  • the side part is recognized as a side part, for example, if the distance KR is obtained a plurality of times and the distances KR are substantially the same distance. That is, it means that the distances KR acquired from time T1 to time T2 are substantially the same distance.
  • time T3 This is the period after the own vehicle JS and the oncoming vehicle TS have finished passing each other.
  • the side recognition unit SN recognizes the fact that the distance KR at time T3 is extremely longer than the distance KR before time T3. , recognizes that the passing between the own vehicle JS and the oncoming vehicle TS has been completed. Based on the above recognition, the control unit SG causes the illumination lamp ST to continue emitting the high beam HB.
  • the side recognition unit SN performs recognition of passing each other based on the side surface portion, which is a characteristically wide portion of the shape of the oncoming vehicle TS. Since the side portion is wider and flatter than the front corner portion of the second embodiment, the distance KR can be detected more stably than the distance KR of the second embodiment. It becomes possible. In other words, it is possible to reduce erroneous recognition of the presence or absence of passing each other, which may occur in the light distribution control device HSD of the second embodiment.
  • Embodiment 4 The light distribution control device HSD of Embodiment 4 will be described.
  • FIG. 7 shows the positional relationship between the host vehicle JS and the oncoming vehicle TS in the fourth embodiment.
  • the own vehicle JS when the own vehicle JS is traveling with the illumination lamp ST of the low beam LB, the own vehicle JS is configured to control a plurality of oncoming vehicles TS, i.e. , when passing the first oncoming vehicle TSa and the second oncoming vehicle TS2b, more specifically, the passing with the second oncoming vehicle TSb begins immediately after the passing with the first oncoming vehicle TSa ends.
  • the control unit SG maintains the illumination lamp ST at the low beam LB without switching the illumination lamp ST from low beam LB to high beam HB to low beam LB.
  • Embodiment 4 The functions and hardware configuration of the light distribution control device HSD of the fourth embodiment are similar to the functions and hardware configuration of the light distribution control device HSD of the first embodiment (shown in FIGS. 2 and 3).
  • Embodiment 4 The operation of the light distribution control device HSD of Embodiment 4 will be described with reference to FIG. 7.
  • time T1 This is a period before the host vehicle JS and the first oncoming vehicle TSa start passing each other.
  • the control unit SG (shown in FIG. 2) causes the illumination lamp ST (shown in FIG. 2) to emit the low beam LB.
  • time T3 This is a period during which the own vehicle JS and the first oncoming vehicle TSa are passing each other.
  • the control unit SG does not activate the control unit even if the side recognition unit SN (shown in FIG. 2) recognizes that the passing has ended.
  • the SG does not immediately switch the illumination lamp ST from the low beam LB to the high beam HB.
  • the control unit SG causes the first oncoming vehicle TSa to pass by another vehicle, for example, the second oncoming vehicle TSb, until a predetermined threshold time Tth elapses starting from time T3. Wait until it becomes clear whether or not there is a discrepancy.
  • time T3 when the own vehicle JS finishes passing the first oncoming vehicle TSa to time T4 when the own vehicle JS starts passing the second oncoming vehicle TSb. It is assumed that the time Tab is shorter than the threshold time Tth described above.
  • the side recognition unit SN recognizes that passing by the second oncoming vehicle TSb has started before the threshold time Tth described above has elapsed.
  • the control unit SG causes the illumination lamp ST to continue emitting the low beam LB.
  • the side recognition unit SN recognizes that passing the second oncoming vehicle TSb has been completed. Similarly to the time T3 described above, the control unit SG does not immediately switch the illumination lamp ST from the low beam LB to the high beam HB, but instead switches the second illumination lamp ST from the time T5 until the threshold time Tth elapses. The oncoming vehicle TSb waits until it becomes clear whether or not there is another vehicle passing the oncoming vehicle TSb.
  • the side recognition unit SN recognizes that the second oncoming vehicle TSb does not begin to pass another vehicle following it within the threshold time Tth from time T5.
  • the control unit SG switches the illumination lamp ST from the low beam LB to the high beam HB.
  • the second oncoming vehicle TSa is detected during the elapse of the threshold time Tth starting from the time T3 when passing the preceding first oncoming vehicle TSa is completed.
  • the control unit SG continues the low beam LB without switching the illumination lamp ST from the low beam LB to the high beam HB.
  • the illumination lamp ST is changed from the low beam LB to the high beam HB. It is possible to avoid a situation in which the driver of the second oncoming vehicle TSb may feel uncomfortable, such as switching the illumination lamp ST from the high beam HB to the low beam LB.
  • the control unit SG controls the illumination lamp ST (shown in FIG. 2) when the oncoming vehicle TS (shown in FIG. 1) is stopped. does not switch from high beam hb (not shown in FIG. 1) to low beam LB (shown in FIG. 1). More specifically, in the control unit SG, a distance sensor measures the distance between the oncoming vehicle TS and the host vehicle JS (shown in FIG. 1), and a vehicle speed sensor (not shown) measures the vehicle speed of the host vehicle JS.
  • Embodiment 6 In the light distribution control device HSD of the sixth embodiment, the control unit SG (shown in FIG. 2) switches the illumination lamp ST (shown in FIG. 2) from the low beam LB (shown in FIG. 1) to the high beam HB (shown in FIG. 1). ), the optical axis of the illumination lamp ST is displaced so that the optical axis of the illumination lamp ST approaches the oncoming traffic lane TA (shown in FIG. 1).
  • a pedestrian HK shown in FIG. 1
  • the driver of the own vehicle JS can quickly recognize the presence of the pedestrian HK.
  • Embodiment 7 When the brightness in front of the host vehicle JS (shown in FIG. 1) detected by the front recognition unit ZN (shown in FIG. 2) exceeds the threshold value described in the first embodiment, the control unit SG controls the control unit SG. Originally, in step ST14 (shown in FIG. 4), the illumination lamp ST (shown in FIG. 2) should be switched from high beam hb (not shown in FIG. 1) to low beam LB (shown in FIG. 1). It is.
  • the light distribution control device HSD of the seventh embodiment when the brightness in front of the own vehicle JS detected by the front recognition unit ZN exceeds the threshold, the light distribution control device HSD When a sidewalk OH (shown in FIG. 1) exists, the illumination lamp ST is maintained at the high beam hb until the host vehicle JS finishes passing the crosswalk OH. This allows the driver of the own vehicle JS to quickly recognize that the pedestrian HK is walking on the crosswalk OH.
  • Embodiment 8 In the light distribution control device HSD of the eighth embodiment, the control unit SG (shown in FIG. 2) switches the illumination lamp ST (shown in FIG. 2) from the low beam LB (shown in FIG. 1) to the high beam HB (shown in FIG. 1). Immediately after switching to (as shown in the figure), the high beam HB is intermittently irradiated, that is, the high beam HB is blinked. As a result, for example, immediately after a large oncoming vehicle TS (illustrated in FIG. 1), for example a truck, passes, a pedestrian HK (illustrated in FIG. 1) existing in a blind spot SK (illustrated in FIG. 1) can be alerted to the fact that the host vehicle JS is traveling.
  • a large oncoming vehicle TS illustrated in FIG. 1
  • a pedestrian HK illustrated in FIG. 1 existing in a blind spot SK (illustrated in FIG. 1) can be alerted to the fact that the host vehicle JS is traveling.
  • Embodiment 9 In the light distribution control device HSD of the ninth embodiment, after switching the illumination lamp ST from low beam LB (illustrated in FIG. 1) to high beam HB (illustrated in FIG. 1) in step ST16 (illustrated in FIG. 4), When the recognition unit ZN (shown in FIG. 2) recognizes a pedestrian HK (shown in FIG. 1), the illumination lamp ST changes from high beam HB (shown in FIG. 1) to low beam LB (low beam shown in FIG. 1). (same mode as LB). Thereby, it is possible to prevent glare (dazzle) from being given to pedestrians HK.
  • Embodiment 10 In the light distribution control device HSD of the tenth embodiment, after switching the illumination lamp ST from low beam LB (illustrated in FIG. 1) to high beam HB (illustrated in FIG. 1) in step ST16 (illustrated in FIG. 4), the automatic When the braking unit (not shown) starts automatic braking in response to recognizing the presence of a pedestrian HK (shown in Figure 1) in front of the own vehicle JS (shown in Figure 1). , the control unit SG (shown in FIG. 2) changes the illumination lamp ST (shown in FIG. 2) from the high beam HB (shown in FIG. 1) to the low beam LB (in the same manner as the low beam LB shown in FIG. 1). Switch again. Thereby, similarly to the ninth embodiment, it is possible to prevent glare (dazzle) from being given to the pedestrian HK.
  • glare glare
  • the light distribution control device can be used to suppress the delay in switching from low beam to high beam.
  • GZ image HB high beam, HB high beam, HK pedestrian, HSD light distribution control device, HSS light distribution control system, JS own vehicle, K storage medium, KR distance, KS detection section, LB low beam, M memory, N input section, NS input signal, OH crosswalk, P processor, PR program, S output unit, SE photography unit, SG control unit, SK blind spot, SN side recognition unit, SS output signal, ST illumination light, TA oncoming lane, TS oncoming vehicle , TSa: first oncoming vehicle, TSb: second oncoming vehicle, Tth: threshold time, ZN: forward recognition unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

A light distribution control device (HSD) comprises: a forward recognition unit (ZN) which recognizes the presence of an oncoming vehicle (TS) on the basis of an image (GZ) that is of the oncoming vehicle (TS) and that has been captured forward of an own vehicle (JS); a lateral recognition unit (SN) which, on the basis of the distance (KR) between the oncoming vehicle (TS) and the own vehicle (JS) detected by a distance measurement sensor at a position lateral to the own vehicle (JS), recognizes that the own vehicle (JS) and the oncoming vehicle (TS) passed each other; and a control unit (SG) for changing headlight (ST) from a high beam (HB) to a low beam (LB) when the forward recognition unit (ZN) has recognized the presence of the oncoming vehicle (TS), and thereafter changing the headlight (ST) from the low beam (LB) to the high beam (HB) when the lateral recognition unit (SN) has recognized that the oncoming vehicle (TS) and the own vehicle passed each other.

Description

配光制御装置、配光制御システム、及び配光制御方法Light distribution control device, light distribution control system, and light distribution control method
 本開示は、配光制御装置、配光制御システム、及び配光制御方法であって、例えば対向車両とすれ違った場合にロービームからハイビームへの切り換えが速やかになされるものに関する。 The present disclosure relates to a light distribution control device, a light distribution control system, and a light distribution control method, which quickly switch from low beam to high beam when passing an oncoming vehicle, for example.
 特許文献1に記載の前照灯制御装置は、カーブ形状の道路で対向車両とすれ違う場合、ロービームからハイビームに早期に切り換えることを目的とする。 The headlight control device described in Patent Document 1 aims to quickly switch from low beam to high beam when passing an oncoming vehicle on a curved road.
特許5578145号公報Patent No. 5578145
 しかしながら、前記前照灯制御装置は、前記目的を達成すべく、前記対向車両の存在をカメラにより検出する。これにより、例えば、複数枚の画像を撮影することに要する時間、及び撮影された複数枚の画像を処理することに要する時間に起因して、前記対向車両とのすれ違いを検出することを完了することが遅滞する。その結果、ロービームからハイビームへの切り換えが遅延するとの課題があった。 However, in order to achieve the purpose, the headlight control device detects the presence of the oncoming vehicle using a camera. Thereby, for example, due to the time required to take a plurality of images and the time required to process the plurality of images taken, the detection of passing the oncoming vehicle is completed. things are delayed. As a result, there was a problem in that switching from low beam to high beam was delayed.
 本開示の目的は、ロービームからハイビームへの切り換えの遅延を抑制することが可能な配光制御装置、配光制御システム、及び配光制御方法を提供することにある。 An object of the present disclosure is to provide a light distribution control device, a light distribution control system, and a light distribution control method that can suppress the delay in switching from low beam to high beam.
 上記した課題を解決すべく、本開示に係る配光制御装置は、自車両の前方で撮影される対向車両の画像に基づき対向車両の存在を認識する前方認識部と、自車両の側方で測距センサにより検出される対向車両及び自車両間の距離に基づき、自車両と対向車両とのすれ違いを認識する側方認識部と、前方認識部が対向車両の存在を認識したとき、照射灯をハイビームからロービームへ切り換えた後、側方認識部が対向車両とのすれ違いを認識したとき、照射灯をロービームからハイビームへ切り換える制御部と、を含む。 In order to solve the above problems, a light distribution control device according to the present disclosure includes a front recognition unit that recognizes the presence of an oncoming vehicle based on an image of the oncoming vehicle taken in front of the own vehicle, and a front recognition unit that recognizes the presence of an oncoming vehicle based on an image of the oncoming vehicle taken in front of the own vehicle. Based on the distance between the oncoming vehicle and the host vehicle detected by the distance sensor, the side recognition unit recognizes when the host vehicle and the oncoming vehicle pass each other, and when the front recognition unit recognizes the presence of an oncoming vehicle, the illumination light is activated. and a control unit that switches the illumination lamp from the low beam to the high beam when the side recognition unit recognizes that the vehicle has passed the oncoming vehicle after the vehicle has switched from the high beam to the low beam.
 本開示に係る配光制御装置によれば、ロービームからハイビームへの切り換えの遅延を抑制することができる。 According to the light distribution control device according to the present disclosure, it is possible to suppress the delay in switching from low beam to high beam.
実施形態1の自車両JS、対向車両TS、及び歩行者HK間の位置関係を示す。The positional relationship between the own vehicle JS, the oncoming vehicle TS, and the pedestrian HK in Embodiment 1 is shown. 実施形態1の配光制御装置HSDの機能ブロック図である。FIG. 2 is a functional block diagram of a light distribution control device HSD according to the first embodiment. 実施形態1の配光制御装置HSDのハードウェア構成を示す。1 shows a hardware configuration of a light distribution control device HSD according to the first embodiment. 実施形態1の配光制御装置HSDの動作を示すフローチャートである。3 is a flowchart showing the operation of the light distribution control device HSD of the first embodiment. 実施形態2の自車両JS及び対向車両TSの位置関係を示す。The positional relationship between the host vehicle JS and the oncoming vehicle TS in Embodiment 2 is shown. 実施形態3の自車両JS及び対向車両TS間の位置関係を示す。The positional relationship between the host vehicle JS and the oncoming vehicle TS in Embodiment 3 is shown. 実施形態4の自車両JS及び対向車両TSの位置関係を示す。The positional relationship between the host vehicle JS and the oncoming vehicle TS in Embodiment 4 is shown.
 本開示に係る配光制御装置の実施形態について説明する。 An embodiment of a light distribution control device according to the present disclosure will be described.
実施形態1.
〈実施形態1〉
 実施形態1の配光制御装置HSDについて説明する。
Embodiment 1.
<Embodiment 1>
The light distribution control device HSD of Embodiment 1 will be described.
〈自車両、対向車両、及び歩行者間の位置関係〉
 図1は、実施形態1の自車両JS、対向車両TS、及び歩行者HK間の位置関係を示す。
<Positional relationship between own vehicle, oncoming vehicle, and pedestrian>
FIG. 1 shows the positional relationship among the host vehicle JS, the oncoming vehicle TS, and the pedestrian HK in the first embodiment.
 実施形態1の配光制御装置HSDは、図1に示されるように、自車両JSがハイビームhb(図1に図示せず。)の照射灯ST(図2に図示。)で走行している場合に、自車両JSが対向車両TSを検出したとき、照射灯STをハイビームhbからロービームLBへ切り換える。実施形態1の配光制御装置HSDは、前記切り換えの後に、自車両JSと対向車両TSとのすれ違いを検出したとき、例えば、対向車両TSの死角SKに存在し得る歩行者HKを視認すべく、照射灯STをロービームLBからハイビームHBへ切り換え、即ち、復帰させる。 As shown in FIG. 1, the light distribution control device HSD of Embodiment 1 is used when the own vehicle JS is running with the illumination light ST (shown in FIG. 2) of the high beam hb (not shown in FIG. 1). In this case, when the host vehicle JS detects the oncoming vehicle TS, the illumination lamp ST is switched from the high beam hb to the low beam LB. After the switching, the light distribution control device HSD of Embodiment 1 detects that the host vehicle JS and the oncoming vehicle TS have passed each other, for example, in order to visually recognize a pedestrian HK that may exist in the blind spot SK of the oncoming vehicle TS. , the illumination lamp ST is switched from low beam LB to high beam HB, that is, returned to high beam HB.
 ここで、照射灯STがマトリクスビームであるとき、グレア(眩惑)が無いビームをロービームといい、他方で、グレアがあるビームをハイビームという。なお、便宜上、対向車両TSを検出する前のハイビームをハイビームhbと表現し、自車両JSと対向車両TSとのすれ違いを検出して復帰した後のハイビームをハイビームHBと表現する。 Here, when the illumination lamp ST is a matrix beam, a beam without glare is called a low beam, and a beam with glare is called a high beam. For convenience, the high beam before detecting the oncoming vehicle TS is expressed as a high beam hb, and the high beam after returning after detecting a mismatch between the host vehicle JS and the oncoming vehicle TS is expressed as a high beam HB.
〈実施形態1の機能〉
 図2は、実施形態1の配光制御装置HSDの機能ブロック図である。
<Functions of Embodiment 1>
FIG. 2 is a functional block diagram of the light distribution control device HSD of the first embodiment.
 実施形態1の配光制御装置HSDの機能について、図2を参照して説明する。 The functions of the light distribution control device HSD of Embodiment 1 will be explained with reference to FIG. 2.
 実施形態1の配光制御装置HSDは、図2に示されるように、前方認識部ZNと、側方認識部SNと、制御部SGと、を含む。 As shown in FIG. 2, the light distribution control device HSD of the first embodiment includes a front recognition section ZN, a side recognition section SN, and a control section SG.
 実施形態1の配光制御システムHSSは、図2に示されるように、上記した配光制御装置HSDと、撮影部SEと、検出部KSと、照射灯STと、を含む。 As shown in FIG. 2, the light distribution control system HSS of Embodiment 1 includes the above-described light distribution control device HSD, an imaging section SE, a detection section KS, and an illumination lamp ST.
 前方認識部ZNは、「前方認識部」に対応し、側方認識部SNは、「側方認識部」に対応し、制御部SGは、「制御部」に対応する。 The front recognition unit ZN corresponds to a “front recognition unit”, the side recognition unit SN corresponds to a “side recognition unit”, and the control unit SG corresponds to a “control unit”.
 撮影部SEは、自車両JS(図1に図示。)の前方の画像GZ、例えば、対向車両TS(図1に図示。)を含む画像GZを撮像する。撮影部SEは、例えば、自車両JSの前面に取り付けられたカメラである。 The photographing unit SE photographs an image GZ in front of the own vehicle JS (shown in FIG. 1), for example, an image GZ including an oncoming vehicle TS (shown in FIG. 1). The photographing unit SE is, for example, a camera attached to the front of the host vehicle JS.
 検出部KSは、自車両JSと、自車両JSの側方に存在する物体との間の距離KR(例えば、図5に図示。)を検出する。検出部KSは、例えば、自車両JSの側面に設けられた測距センサである。測距センサは、自車両JSの側方に向けて、換言すれば、対向車線に向けて照射することが可能であればいずれのタイプのセンサでもよく、例えば、ソナー、レーダ、LiDARである。なお、よく知られているように、測距センサは、予め定められた照射角で広がりを持って照射されるものである。 The detection unit KS detects the distance KR (for example, shown in FIG. 5) between the own vehicle JS and an object present on the side of the own vehicle JS. The detection unit KS is, for example, a distance measurement sensor provided on the side surface of the host vehicle JS. The distance measuring sensor may be any type of sensor that can emit light toward the side of the own vehicle JS, in other words, toward the oncoming lane, such as sonar, radar, or LiDAR. Note that, as is well known, the distance measuring sensor is irradiated with a spread beam at a predetermined irradiation angle.
 前方認識部ZNは、撮影部SEにより撮影された画像GZに基づき、対向車両TSが存在するか否かを認識する。前方認識部ZNは、また、画像GZに基づき、自車両JSの前方の明るさが予め定められた閾値より大きいか否かを認識する。前方認識部ZNは、対向車両TSに代えて、又は、対向車両TSと共に、歩行者HKを認識することもある。 The forward recognition unit ZN recognizes whether or not an oncoming vehicle TS exists based on the image GZ photographed by the photographing unit SE. The front recognition unit ZN also recognizes whether the brightness in front of the own vehicle JS is greater than a predetermined threshold value based on the image GZ. The front recognition unit ZN may recognize the pedestrian HK instead of or together with the oncoming vehicle TS.
 側方認識部SNは、検出部KSにより検出された距離KRに基づき、自車両JSと対向車両TSとのすれ違いがあるか否かを認識する。 The side recognition unit SN recognizes whether or not there is a difference between the host vehicle JS and the oncoming vehicle TS based on the distance KR detected by the detection unit KS.
 制御部SGは、前方認識部ZNによる上記の対向車両TSの存否の認識の結果、及び、側方認識部SNによる上記のすれ違いの存否の認識の結果に基づき、照射灯STの動作を制御する。 The control unit SG controls the operation of the illumination lamp ST based on the recognition result of the presence or absence of the oncoming vehicle TS by the front recognition unit ZN and the recognition result of the presence or absence of the above-mentioned passing by the side recognition unit SN. .
〈実施形態1のハードウェア構成〉
 図3は、実施形態1の配光制御装置HSDのハードウェア構成を示す。
<Hardware configuration of embodiment 1>
FIG. 3 shows the hardware configuration of the light distribution control device HSD of the first embodiment.
 実施形態1の配光制御装置HSDは、上述した機能を果たすべく、図3に示されるように、プロセッサPと、メモリMと、記憶媒体Kと、を含み、必要に応じて、入力部Nと、出力部Sと、を更に含む。 The light distribution control device HSD of Embodiment 1 includes a processor P, a memory M, and a storage medium K, as shown in FIG. 3, in order to perform the above-mentioned functions. and an output section S.
 プロセッサPは、ソフトウエアに従ってハードウェアを動作させる、よく知られたコンピュータの中核である。メモリMは、例えば、DRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)から構成される。記憶媒体Kは、例えば、ハードディスクドライブ(HDD:Hard Disk Drive)、ソリッドステートドライブ(SSD:Solid State Drive)、ROM(Read Only Memory)から構成される。記憶媒体Kは、プログラムPRを記憶する。プログラムPRは、プロセッサPが実行すべき処理の内容を規定する命令群である。 The processor P is the core of a well-known computer that operates the hardware according to the software. The memory M includes, for example, DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory). The storage medium K includes, for example, a hard disk drive (HDD), a solid state drive (SSD), and a ROM (Read Only Memory). The storage medium K stores the program PR. The program PR is a group of instructions that defines the content of processing that the processor P should execute.
 入力部N及び出力部Sは、例えば、配光制御装置HSDの外部との間でプロセッサPの動作に関連する入力信号NS及び出力信号SSをやりとりするための入力用インターフェイス及び出力用インターフェイスから構成される。 The input section N and the output section S include, for example, an input interface and an output interface for exchanging input signals NS and output signals SS related to the operation of the processor P with the outside of the light distribution control device HSD. be done.
 配光制御装置HSDにおける機能とハードウェア構成との関係については、ハードウェア上で、プロセッサPが、記憶媒体Kに記憶されたプログラムPRを、メモリMを用いて実行すると共に、必要に応じて、入力部N及び出力部Sの動作を制御することにより、前方認識部ZN~制御部SGの各部の機能を実現する。 Regarding the relationship between the functions and hardware configuration of the light distribution control device HSD, on the hardware, the processor P executes the program PR stored in the storage medium K using the memory M, and also executes the program PR stored in the storage medium K as necessary. , the input section N, and the output section S, the functions of each section from the front recognition section ZN to the control section SG are realized.
〈実施形態1の動作〉
 図4は、実施形態1の配光制御装置HSDの動作を示すフローチャートである。実施形態1の配光制御装置HSDの動作について、図4のフローチャートを参照して説明する。
<Operation of Embodiment 1>
FIG. 4 is a flowchart showing the operation of the light distribution control device HSD of the first embodiment. The operation of the light distribution control device HSD of the first embodiment will be described with reference to the flowchart of FIG. 4.
 以下では、説明及び理解を容易にすべく、(1)自車両JS(図1に図示。)が、当初、ハイビームhbで走行しており、(2)次に、対向車両TS(図1に図示。)が現れ、(3)最後に、自車両JSが、対向車両TSとすれ違うことを想定する。 In the following, for ease of explanation and understanding, (1) the own vehicle JS (shown in Figure 1) is initially traveling with high beam hb, (2) next, the oncoming vehicle TS (shown in Figure 1) is ) appears and (3) Finally, it is assumed that the host vehicle JS passes the oncoming vehicle TS.
 ステップST11:自車両JSが夜間に走行しているとき、前方認識部ZN(図2に図示。)は、撮影部SE(図2に図示。)により撮影された画像GZ(図2に図示。)に基づき、対向車両TSが存在するか否かを認識する。対向車両TSが存在することが認識されたとき、処理は、ステップST14に進み、他方で、対向車両TSが存在することが認識されないとき、処理は、ステップST12へ進む。ここでは、上記した想定(2)の下で、処理は、ステップST14へ進む。 Step ST11: When the host vehicle JS is running at night, the front recognition unit ZN (shown in FIG. 2) captures an image GZ (shown in FIG. 2) taken by the photography unit SE (shown in FIG. 2). ), it is recognized whether or not there is an oncoming vehicle TS. When it is recognized that the oncoming vehicle TS exists, the process proceeds to step ST14, and on the other hand, when it is not recognized that the oncoming vehicle TS exists, the process proceeds to step ST12. Here, under the above assumption (2), the process proceeds to step ST14.
 ステップST12:前方認識部ZNは、自車両JSの前方の明るさが、上記した閾値より大きいか否かを認識する。自車両JSの前方の明るさが閾値より大きいとき、即ち、自車両JSの前方が十分に明るいときはハイビームを照射する必要が無いことから、処理は、ステップST14へ進み、他方で、自車両JSの前方の明るさが閾値より大きくないとき、即ち、自車両JSの前方が暗いとき、処理は、ステップST13へ進む。 Step ST12: The front recognition unit ZN recognizes whether the brightness in front of the own vehicle JS is greater than the above-mentioned threshold value. When the brightness in front of the host vehicle JS is greater than the threshold value, that is, when the front of the host vehicle JS is sufficiently bright, there is no need to irradiate the high beam, so the process proceeds to step ST14, and on the other hand, the host vehicle When the brightness in front of the JS is not greater than the threshold value, that is, when the front of the own vehicle JS is dark, the process proceeds to step ST13.
 ステップST13:制御部SG(図2に図示。)は、照射灯ST(図2に図示。)を、上記した想定(1)のハイビームhbで照射させ続ける。 Step ST13: The control unit SG (shown in FIG. 2) continues to irradiate the illumination lamp ST (shown in FIG. 2) with the high beam hb of assumption (1) described above.
 ステップST14:ステップST11で、前方認識部ZNにより対向車両TSの存在が認識されるとグレアを抑止すべく、制御部SGは、照射灯STをハイビームhbからロービームLB(図1に図示。)へ切り換える。 Step ST14: In step ST11, when the presence of the oncoming vehicle TS is recognized by the forward recognition unit ZN, the control unit SG changes the illumination lamp ST from the high beam hb to the low beam LB (shown in FIG. 1) in order to suppress glare. Switch.
 ステップST15:側方認識部SN(図2に図示。)は、検出部KS(図2に図示。)により検出された距離KR(図2に図示。)に基づき、自車両JSと対向車両TSとのすれ違いが存在するか否かを認識する。すれ違いがあると認識されたとき、処理は、ステップST16へ進み、他方で、すれ違いが無いと認識されたとき、処理は、終了する。上記した想定(3)の下で、処理は、ステップST16へ進む。 Step ST15: The side recognition unit SN (shown in FIG. 2) determines the distance between the own vehicle JS and the oncoming vehicle TS based on the distance KR (shown in FIG. 2) detected by the detection unit KS (shown in FIG. 2). Recognize whether there is any discrepancy between the two. When it is recognized that there is a passing difference, the process proceeds to step ST16, and on the other hand, when it is recognized that there is no passing each other, the process ends. Under the above assumption (3), the process proceeds to step ST16.
 ステップST16:ステップST15で、前方認識部ZNにより自車両JSと対向車両TSとのすれ違いが認識されると、制御部SGは、照射灯STをロービームLBからハイビームHB(図1に図示。)へ切り換える。 Step ST16: In step ST15, when the front recognition unit ZN recognizes that the host vehicle JS and the oncoming vehicle TS have passed each other, the control unit SG changes the illumination lamp ST from the low beam LB to the high beam HB (shown in FIG. 1). Switch.
〈実施形態1の効果〉
 上述したように、実施形態1の配光制御装置HSDでは、前方認識部ZNが、撮影部SEにより撮影された画像GZに基づき対向車両TSの存在を認識することにより、制御部SGが、照射灯STをハイビームhbからロービームLBへ切り換える。実施形態1の配光制御装置HSDは、前記切り換えの後、側方認識部SNが、例えば、測距センサである検出部KSにより検出された距離KRに基づき自車両JSと対向車両TSとのすれ違いを認識することにより、制御部SGが、照射灯STをロービームLBからハイビームHBへ切り換える。これにより、ロービームLBからハイビームHBへの切り換えの遅延を抑制することができる。その結果、自車両JSの運転者の視界を早期に回復させることができる。
<Effects of Embodiment 1>
As described above, in the light distribution control device HSD of Embodiment 1, the forward recognition unit ZN recognizes the presence of the oncoming vehicle TS based on the image GZ photographed by the photographing unit SE, so that the control unit SG Switch the light ST from high beam hb to low beam LB. In the light distribution control device HSD of Embodiment 1, after the switching, the side recognition unit SN detects the distance between the host vehicle JS and the oncoming vehicle TS based on the distance KR detected by the detection unit KS, which is a distance measurement sensor, for example. By recognizing the difference, the control unit SG switches the illumination lamp ST from the low beam LB to the high beam HB. Thereby, a delay in switching from low beam LB to high beam HB can be suppressed. As a result, the visibility of the driver of the host vehicle JS can be restored quickly.
実施形態2.
〈実施形態2〉
 実施形態2の配光制御装置HSDについて説明する。
Embodiment 2.
<Embodiment 2>
The light distribution control device HSD of Embodiment 2 will be described.
〈自車両及び対向車両間の位置関係〉
 図5は、実施形態2の自車両JS及び対向車両TSの位置関係を示す。
<Positional relationship between own vehicle and oncoming vehicle>
FIG. 5 shows the positional relationship between the host vehicle JS and the oncoming vehicle TS in the second embodiment.
 実施形態2の配光制御装置HSDは、図5に示されるように、自車両JSがロービームLBの照射灯STで走行している場合に、自車両JSが対向車両TSを検出したとき、特に、対向車両TSの前方角部を検出したとき、自車両JSと対向車両TSとのすれ違いが存在することを認識する。 As shown in FIG. 5, the light distribution control device HSD of Embodiment 2 is configured such that when the own vehicle JS detects an oncoming vehicle TS when the own vehicle JS is traveling with the low beam LB illumination lamp ST, , when the front corner of the oncoming vehicle TS is detected, it is recognized that there is a mismatch between the host vehicle JS and the oncoming vehicle TS.
〈実施形態2の機能及びハードウェア構成〉
 実施形態2の配光制御装置HSDの機能及びハードウェア構成は、実施形態1の配光制御装置HSDの機能及びハードウェア構成(図2、3に図示。)と同様である。
<Functions and hardware configuration of Embodiment 2>
The functions and hardware configuration of the light distribution control device HSD of the second embodiment are similar to those of the light distribution control device HSD of the first embodiment (shown in FIGS. 2 and 3).
〈実施形態2の動作〉
 実施形態2の配光制御装置HSDの動作について、図5を参照して説明する。
<Operation of Embodiment 2>
The operation of the light distribution control device HSD of the second embodiment will be described with reference to FIG. 5.
 時刻T1以前:自車両JSと対向車両TSとが、すれ違いを開始する以前の期間である。配光制御装置HSDでは、前方認識部ZN(図2に図示。)が、対向車両TSの存在を認識していることから、対向車両TSへのグレア(眩惑)を回避すべく、制御部SG(図2に図示。)は、照射灯ST(図2に図示。)にロービームLBを照射させている。 Before time T1: This is the period before the host vehicle JS and the oncoming vehicle TS start passing each other. In the light distribution control device HSD, since the front recognition unit ZN (shown in FIG. 2) recognizes the presence of the oncoming vehicle TS, the control unit SG is activated in order to avoid glare toward the oncoming vehicle TS. (shown in FIG. 2) causes the illumination lamp ST (shown in FIG. 2) to emit a low beam LB.
 時刻T1から時刻T3まで:自車両JSと対向車両TSとが、すれ違いを行っている期間である。時刻T1のとき、配光制御装置HSDでは、側方認識部SN(図2に図示。)が、時刻T1以前での自車両JS及び対向車両TS間の距離KRに比して、時刻T1のときの距離KRが極めて短いとの事実から、対向車両TSの形状上の特徴的な部分、例えば、前方角部(例えば、前方バンパーの右端)を認識する。前記認識に応答して、制御部SGは、照射灯STをロービームLBからハイビームHBへ切り換える。 From time T1 to time T3: This is the period during which the own vehicle JS and the oncoming vehicle TS are passing each other. At time T1, in the light distribution control device HSD, the side recognition unit SN (shown in FIG. 2) determines that the distance KR between the own vehicle JS and the oncoming vehicle TS at time T1 is smaller than the distance KR between own vehicle JS and oncoming vehicle TS before time T1. Based on the fact that the distance KR is extremely short, a characteristic part of the shape of the oncoming vehicle TS, for example, a front corner (for example, the right end of the front bumper) is recognized. In response to the recognition, the control unit SG switches the illumination lamp ST from the low beam LB to the high beam HB.
 時刻T3以後:自車両JSと対向車両TSとが、すれ違いを終えた後の期間である。配光制御装置HSDでは、側方認識部SNが、時刻T3のときの距離KRが、時刻T3以前での距離KRより極めて長いとの事実から、自車両JS及び対向車両TS間のすれ違いが完了したことを認識する。前記認識の下で、制御部SGは、照射灯STによるハイビームHBの照射を継続させる。 After time T3: This is the period after the own vehicle JS and the oncoming vehicle TS have finished passing each other. In the light distribution control device HSD, the side recognition unit SN detects that the distance KR at time T3 is extremely longer than the distance KR before time T3, so that the passing between the host vehicle JS and the oncoming vehicle TS is completed. Recognize what you did. Based on the above recognition, the control unit SG causes the illumination lamp ST to continue emitting the high beam HB.
〈実施形態2の効果〉
 上述したように、実施形態2の配光制御装置HSDでは、側方認識部SNが、対向車両TSの前方角部を認識することにより、自車両JS及び対向車両TS間のすれ違いの開始を知得する。対向車両TSの前方角部は、対向車両TSの形状上の特徴的な部分であることから、前方角部の存否を、換言すれば、すれ違いの開始の有無を誤認識するおそれを低減することができる。
<Effects of Embodiment 2>
As described above, in the light distribution control device HSD of the second embodiment, the side recognition unit SN recognizes the front corner of the oncoming vehicle TS, thereby detecting the start of passing each other between the host vehicle JS and the oncoming vehicle TS. gain Since the front corner of the oncoming vehicle TS is a characteristic part in terms of the shape of the oncoming vehicle TS, it is possible to reduce the possibility of erroneously recognizing the presence or absence of the front corner, in other words, the presence or absence of the start of passing each other. I can do it.
 対向車両TSの前方角部は、また、対向車両TSの車体のうち、自車両JSの車体に最も近い部分であることから、対向車両TSの前方角部の存在を認識することより、対向車両TSの他の部分を認識することに比して、照射灯STをロービームLBからハイビームHBへ切り換えることを早期に行うことが可能となる。 Also, since the front corner of the oncoming vehicle TS is the part of the body of the oncoming vehicle TS that is closest to the body of the own vehicle JS, by recognizing the presence of the front corner of the oncoming vehicle TS, the oncoming vehicle Compared to recognizing other parts of the TS, it is possible to switch the illumination lamp ST from the low beam LB to the high beam HB earlier.
実施形態3.
〈実施形態3〉
 実施形態3の配光制御装置HSDについて説明する。
Embodiment 3.
<Embodiment 3>
The light distribution control device HSD of Embodiment 3 will be described.
〈自車両及び対向車両間の位置関係〉
 図6は、実施形態3の自車両JS及び対向車両TS間の位置関係を示す。
<Positional relationship between own vehicle and oncoming vehicle>
FIG. 6 shows the positional relationship between the host vehicle JS and the oncoming vehicle TS in the third embodiment.
 実施形態3の配光制御装置HSDは、図6に示されるように、実施形態2と同様に、自車両JSと対向車両TSとのすれ違いを契機に、自車両JSの照射灯STをロービームLBからハイビームHBへ切り換える。 As shown in FIG. 6, the light distribution control device HSD of the third embodiment changes the illumination lamp ST of the own vehicle JS to the low beam LB when the own vehicle JS and the oncoming vehicle TS pass each other, as in the second embodiment. Switch from to high beam HB.
 実施形態3の配光制御装置HSDは、他方で、実施形態2と相違し、対向車両TSの形状上の特徴的な部分である、対向車両TSの前方角部に代えて、対向車両TSの形状上の特徴的な広がりある部分である、対向車両TSの側面部に基づき、前記切り換えを行う。 On the other hand, the light distribution control device HSD of the third embodiment differs from the second embodiment in that the light distribution control device HSD of the oncoming vehicle TS is used instead of the front corner of the oncoming vehicle TS, which is a characteristic part of the shape of the oncoming vehicle TS. The switching is performed based on the side surface of the oncoming vehicle TS, which is a characteristically wide portion in shape.
〈実施形態3の機能及びハードウェア構成〉
 実施形態3の配光制御装置HSDの機能及びハードウェア構成は、実施形態1の配光制御装置HSDの機能及びハードウェア構成(図2、3に図示。)と同様である。
<Functions and hardware configuration of Embodiment 3>
The functions and hardware configuration of the light distribution control device HSD of the third embodiment are similar to those of the light distribution control device HSD of the first embodiment (shown in FIGS. 2 and 3).
〈実施形態3の動作〉
 実施形態3の配光制御装置HSDの動作について、図6を参照して説明する。
<Operation of Embodiment 3>
The operation of the light distribution control device HSD of the third embodiment will be described with reference to FIG. 6.
 時刻T1以前:自車両JSと対向車両TSとが、すれ違いを開始する以前の期間である。実施形態2での時刻T1以前と同様に、制御部SG(図2に図示。)は、照射灯ST(図2に図示。)にロービームLBを照射させている。 Before time T1: This is the period before the host vehicle JS and the oncoming vehicle TS start passing each other. As before time T1 in the second embodiment, the control unit SG (shown in FIG. 2) causes the illumination lamp ST (shown in FIG. 2) to emit the low beam LB.
 時刻T1から時刻T3まで:自車両JSと対向車両TSとが、すれ違いを行っている期間である。実施形態2と相違し、時刻T1のとき、制御部SGは、自車両JS及び対向車両TS間の距離KRが時刻T1以前のときの距離KRより極めて短いとの事実に基づいては、直ちには、照射灯STをロービームLBからハイビームHBへ切り換えない。 From time T1 to time T3: This is the period during which the own vehicle JS and the oncoming vehicle TS are passing each other. Different from the second embodiment, at time T1, the control unit SG immediately performs , do not switch the illumination lamp ST from low beam LB to high beam HB.
 他方で、時刻T1よりも後である時刻T2のとき、配光制御装置HSDでは、側方認識部SN(図2に図示。)が、時刻T1以前での距離KRに比して時刻T2のときの距離KRが極めて短いとの事実から、より正確には、時刻T1以前での距離KRに比して時刻T1から時刻T2までの期間における距離KRが極めて短いとの事実から、対向車両TSの形状上の特徴的な広がりある部分である側面部(例えば、ドア)を認識する。前記認識に応答して、制御部SGは、照射灯STをロービームLBからハイビームHBへ切り換える。ここで、側面部の認識は、例えば、距離KRを複数回数取得して、その距離KRが実質的に同じ距離になっていれば、側面部であるとする。すなわち、時刻T1から時刻T2までに取得した距離KRが実質的に同じ距離であったということを意味する。 On the other hand, at time T2, which is later than time T1, in the light distribution control device HSD, the side recognition unit SN (shown in FIG. 2) determines that the distance KR at time T2 is greater than the distance KR before time T1. From the fact that the distance KR is extremely short when the oncoming vehicle TS Recognize side parts (e.g., doors) that are characteristically wide parts of the shape of a vehicle. In response to the recognition, the control unit SG switches the illumination lamp ST from the low beam LB to the high beam HB. Here, the side part is recognized as a side part, for example, if the distance KR is obtained a plurality of times and the distances KR are substantially the same distance. That is, it means that the distances KR acquired from time T1 to time T2 are substantially the same distance.
 時刻T3以後:自車両JSと対向車両TSとが、すれ違いを終えた後の期間である。実施形態2の時刻T3以後のときと同様に、配光制御装置HSDでは、側方認識部SNが、時刻T3のときの距離KRが、時刻T3以前での距離KRより極めて長いとの事実から、自車両JS及び対向車両TS間のすれ違いが完了したことを認識する。前記認識の下で、制御部SGは、照射灯STによるハイビームHBの照射を継続させる。 After time T3: This is the period after the own vehicle JS and the oncoming vehicle TS have finished passing each other. As in the case after time T3 in the second embodiment, in the light distribution control device HSD, the side recognition unit SN recognizes the fact that the distance KR at time T3 is extremely longer than the distance KR before time T3. , recognizes that the passing between the own vehicle JS and the oncoming vehicle TS has been completed. Based on the above recognition, the control unit SG causes the illumination lamp ST to continue emitting the high beam HB.
〈実施形態3の効果〉
 上述したように、実施形態3の配光制御装置HSDでは、側方認識部SNが、すれ違いの認識を、対向車両TSの形状上の特徴的な広がりある部分である側面部に基づき行う。前記側面部は、実施形態2の前方角部に比して、広くかつ平らであることから、実施形態2での距離KRの検出に比して、距離KRの検出を安定的に行うことが可能となる。換言すれば、実施形態2の配光制御装置HSDで起こり得る、すれ違いの存否の誤認識を低減することが可能となる。
<Effects of Embodiment 3>
As described above, in the light distribution control device HSD of Embodiment 3, the side recognition unit SN performs recognition of passing each other based on the side surface portion, which is a characteristically wide portion of the shape of the oncoming vehicle TS. Since the side portion is wider and flatter than the front corner portion of the second embodiment, the distance KR can be detected more stably than the distance KR of the second embodiment. It becomes possible. In other words, it is possible to reduce erroneous recognition of the presence or absence of passing each other, which may occur in the light distribution control device HSD of the second embodiment.
実施形態4.
〈実施形態4〉
 実施形態4の配光制御装置HSDについて説明する。
Embodiment 4.
<Embodiment 4>
The light distribution control device HSD of Embodiment 4 will be described.
〈自車両及び対向車両間の位置関係〉
 図7は、実施形態4の自車両JS及び対向車両TSの位置関係を示す。
<Positional relationship between own vehicle and oncoming vehicle>
FIG. 7 shows the positional relationship between the host vehicle JS and the oncoming vehicle TS in the fourth embodiment.
 実施形態4の配光制御装置HSDは、図7に示されるように、自車両JSが、ロービームLBの照射灯STで走行している場合に、自車両JSが、複数の対向車両TS、即ち、第1の対向車両TSa、第2の対向車両TS2bとすれ違うとき、より詳しくは、第1の対向車両TSaとのすれ違いが終わった後に、直ちに、第2の対向車両TSbとのすれ違いが始まったとき、制御部SGは、照射灯STをロービームLB→ハイビームHB→ロービームLBと切り換えることなく、照射灯STをロービームLBに維持させる。 As shown in FIG. 7, in the light distribution control device HSD of the fourth embodiment, when the own vehicle JS is traveling with the illumination lamp ST of the low beam LB, the own vehicle JS is configured to control a plurality of oncoming vehicles TS, i.e. , when passing the first oncoming vehicle TSa and the second oncoming vehicle TS2b, more specifically, the passing with the second oncoming vehicle TSb begins immediately after the passing with the first oncoming vehicle TSa ends. At this time, the control unit SG maintains the illumination lamp ST at the low beam LB without switching the illumination lamp ST from low beam LB to high beam HB to low beam LB.
〈実施形態4の機能及びハードウェア構成〉
 実施形態4の配光制御装置HSDの機能及びハードウェア構成は、実施形態1の配光制御装置HSDの機能及びハードウェア構成(図2、3に図示。)と同様である。
<Functions and hardware configuration of Embodiment 4>
The functions and hardware configuration of the light distribution control device HSD of the fourth embodiment are similar to the functions and hardware configuration of the light distribution control device HSD of the first embodiment (shown in FIGS. 2 and 3).
〈実施形態4の動作〉
 実施形態4の配光制御装置HSDの動作について、図7を参照して説明する。
<Operation of Embodiment 4>
The operation of the light distribution control device HSD of Embodiment 4 will be described with reference to FIG. 7.
 時刻T1以前:自車両JSと第1の対向車両TSaとが、すれ違いを開始する以前の期間である。実施形態2の時刻T1以前と同様に、制御部SG(図2に図示。)は、照射灯ST(図2に図示。)にロービームLBを照射させている。 Before time T1: This is a period before the host vehicle JS and the first oncoming vehicle TSa start passing each other. As before time T1 in the second embodiment, the control unit SG (shown in FIG. 2) causes the illumination lamp ST (shown in FIG. 2) to emit the low beam LB.
 時刻T1から時刻T3まで:自車両JSと第1の対向車両TSaとが、すれ違いを行っている期間である。時刻T3のときに、制御部SGは、実施形態2の時刻T3のときと相違し、側方認識部SN(図2に図示。)が、すれ違いが終わったことを認識しても、制御部SGは、直ちには、照射灯STをロービームLBからハイビームHBへ切り換えない。制御部SGは、時刻T3から起算して予め定められた閾値時間Tthが経過するまでの間に、第1の対向車両TSaに引き続き他の車両とのすれ違い、例えば、第2の対向車両TSbとのすれ違いが存在するか否かが明らかになるまで待機する。 From time T1 to time T3: This is a period during which the own vehicle JS and the first oncoming vehicle TSa are passing each other. At time T3, unlike at time T3 in the second embodiment, the control unit SG does not activate the control unit even if the side recognition unit SN (shown in FIG. 2) recognizes that the passing has ended. The SG does not immediately switch the illumination lamp ST from the low beam LB to the high beam HB. The control unit SG causes the first oncoming vehicle TSa to pass by another vehicle, for example, the second oncoming vehicle TSb, until a predetermined threshold time Tth elapses starting from time T3. Wait until it becomes clear whether or not there is a discrepancy.
 ここで、図7に示されるように、自車両JSが第1の対向車両TSaとのすれ違いが終わった時刻T3から自車両JSが第2の対向車両TSbとのすれ違いを始めた時刻T4までの時間Tabが、上記した閾値時間Tthより短いことを想定する。 Here, as shown in FIG. 7, from time T3 when the own vehicle JS finishes passing the first oncoming vehicle TSa to time T4 when the own vehicle JS starts passing the second oncoming vehicle TSb. It is assumed that the time Tab is shorter than the threshold time Tth described above.
 時刻T4のとき:側方認識部SNが、上記した閾値時間Tthを経過するまでに第2の対向車両TSbとのすれ違いが開始したことを認識する。前記認識に応答して、制御部SGは、照射灯STにロービームLBの照射を継続させる。 At time T4: The side recognition unit SN recognizes that passing by the second oncoming vehicle TSb has started before the threshold time Tth described above has elapsed. In response to the recognition, the control unit SG causes the illumination lamp ST to continue emitting the low beam LB.
 時刻T5のとき:側方認識部SNが、第2の対向車両TSbとのすれ違いが完了したことを認識する。上記した時刻T3のときと同様に、制御部SGは、直ちに照射灯STをロービームLBからハイビームHBへ切り換えることなく、時刻T5から起算して閾値時間Tthが経過するまでの間に、第2の対向車両TSbに引き続き他の車両とのすれ違いが存在するか否かが明らかになるまで待機する。 At time T5: The side recognition unit SN recognizes that passing the second oncoming vehicle TSb has been completed. Similarly to the time T3 described above, the control unit SG does not immediately switch the illumination lamp ST from the low beam LB to the high beam HB, but instead switches the second illumination lamp ST from the time T5 until the threshold time Tth elapses. The oncoming vehicle TSb waits until it becomes clear whether or not there is another vehicle passing the oncoming vehicle TSb.
 時刻T6のとき:側方認識部SNは、時刻T5から閾値時間Tth以内に、第2の対向車両TSbに後続する他の車両とのすれ違いが開始しないことを認識する。前記認識に応答して、時刻T6から閾値時間Tthを経過した時刻T6のとき、制御部SGは、照射灯STをロービームLBからハイビームHBへ切り換える。 At time T6: The side recognition unit SN recognizes that the second oncoming vehicle TSb does not begin to pass another vehicle following it within the threshold time Tth from time T5. In response to the recognition, at time T6, when a threshold time Tth has elapsed since time T6, the control unit SG switches the illumination lamp ST from the low beam LB to the high beam HB.
〈実施形態4の効果〉
 上述したように、実施形態4の配光制御装置HSDでは、先行する第1の対向車両TSaとのすれ違いが完了した時刻T3から起算して閾値時間Tthが経過までの間に、第2の対向車両TSbとのすれ違いが開始したことを認識すると、制御部SGは、照射灯STをロービームLBからハイビームHBへ切り換えることなく、ロービームLBを継続させる。これにより、第1の対向車両TSaとのすれ違いが完了した時刻T3と第2の対向車両TSbとのすれ違いが開始された時刻T4との間の時間Tabに、照射灯STをロービームLBからハイビームHBへ切り換えること、及び、照射灯STを更にハイビームHBからロービームLBへ切り換えることという、第2の対向車両TSbの運転者にとって不快感を与えるおそれがある事態を回避することが可能となる。
<Effects of Embodiment 4>
As described above, in the light distribution control device HSD of Embodiment 4, the second oncoming vehicle TSa is detected during the elapse of the threshold time Tth starting from the time T3 when passing the preceding first oncoming vehicle TSa is completed. When recognizing that the vehicle TSb has started to pass each other, the control unit SG continues the low beam LB without switching the illumination lamp ST from the low beam LB to the high beam HB. As a result, at the time Tab between the time T3 when passing the first oncoming vehicle TSa is completed and the time T4 when passing the second oncoming vehicle TSb has started, the illumination lamp ST is changed from the low beam LB to the high beam HB. It is possible to avoid a situation in which the driver of the second oncoming vehicle TSb may feel uncomfortable, such as switching the illumination lamp ST from the high beam HB to the low beam LB.
実施形態5.
 実施形態5の配光制御装置HSDでは、制御部SG(図2に図示。)は、対向車両TS(図1に図示。)が停止しているとき、照射灯ST(図2に図示。)をハイビームhb(図1に図示せず。)からロービームLB(図1に図示。)へ切り換えない。制御部SGは、より詳しくは、測距センサが対向車両TS及び自車両JS(図1に図示。)間の距離を測定し、かつ、車速センサ(図示せず。)が自車両JSの車速を検出することにより、対向車両TS及び自車両JS間の相対速度と自車両JSの速度との間の速度に基づき、対向車両TSが停止しているか否かを判断する。上記したハイビームhbからロービームLBへの切り換えを行わないことにより、自車両JSの運転者の視界を妨げることになる無用な切り換えを防止することができる。
Embodiment 5.
In the light distribution control device HSD of the fifth embodiment, the control unit SG (shown in FIG. 2) controls the illumination lamp ST (shown in FIG. 2) when the oncoming vehicle TS (shown in FIG. 1) is stopped. does not switch from high beam hb (not shown in FIG. 1) to low beam LB (shown in FIG. 1). More specifically, in the control unit SG, a distance sensor measures the distance between the oncoming vehicle TS and the host vehicle JS (shown in FIG. 1), and a vehicle speed sensor (not shown) measures the vehicle speed of the host vehicle JS. By detecting this, it is determined whether the oncoming vehicle TS is stopped based on the speed between the relative speed between the oncoming vehicle TS and the own vehicle JS and the speed of the own vehicle JS. By not switching from the high beam hb to the low beam LB as described above, it is possible to prevent unnecessary switching that would obstruct the driver's view of the own vehicle JS.
実施形態6.
 実施形態6の配光制御装置HSDでは、制御部SG(図2に図示。)は、照射灯ST(図2に図示。)をロービームLB(図1に図示。)からハイビームHB(図1に図示。)へ切り換えるとき、照射灯STの光軸が対向車線TA(図1に図示。)に近づくように照射灯STの光軸を変位させる。これにより、例えば、対向車両TSの背後である、自車両JSの運転者にとっての死角SK(図1に図示。)に歩行者HK(図1に図示。)がいるときに、歩行者HKに向けて照射することになり、自車両JSの運転者が歩行者HKの存在を早期に認識することができる。
Embodiment 6.
In the light distribution control device HSD of the sixth embodiment, the control unit SG (shown in FIG. 2) switches the illumination lamp ST (shown in FIG. 2) from the low beam LB (shown in FIG. 1) to the high beam HB (shown in FIG. 1). ), the optical axis of the illumination lamp ST is displaced so that the optical axis of the illumination lamp ST approaches the oncoming traffic lane TA (shown in FIG. 1). As a result, for example, when a pedestrian HK (shown in FIG. 1) is behind the oncoming vehicle TS and is in a blind spot SK (shown in FIG. 1) for the driver of the host vehicle JS, The driver of the own vehicle JS can quickly recognize the presence of the pedestrian HK.
実施形態7.
 制御部SGは、前方認識部ZN(図2に図示。)により検出された自車両JS(図1に図示。)の前方の明るさが、実施形態1で説明した閾値を超えている場合には、本来、ステップST14(図4に図示。)で、照射灯ST(図2に図示。)をハイビームhb(図1に図示せず。)からロービームLB(図1に図示。)へ切り換えるべきである。
Embodiment 7.
When the brightness in front of the host vehicle JS (shown in FIG. 1) detected by the front recognition unit ZN (shown in FIG. 2) exceeds the threshold value described in the first embodiment, the control unit SG controls the control unit SG. Originally, in step ST14 (shown in FIG. 4), the illumination lamp ST (shown in FIG. 2) should be switched from high beam hb (not shown in FIG. 1) to low beam LB (shown in FIG. 1). It is.
 実施形態7の配光制御装置HSDでは、上述とは対照的に、前方認識部ZNにより検出された自車両JSの前方の明るさが閾値を超えている場合に、自車両JSの前方に横断歩道OH(図1に図示。)が存在するときには、自車両JSが横断歩道OHを通過し終えるまで、照射灯STをハイビームhbに維持する。これにより、自車両JSの運転者が、横断歩道OHを歩行者HKが歩行していることを早期に認識することが可能となる。 In contrast to the above, in the light distribution control device HSD of the seventh embodiment, when the brightness in front of the own vehicle JS detected by the front recognition unit ZN exceeds the threshold, the light distribution control device HSD When a sidewalk OH (shown in FIG. 1) exists, the illumination lamp ST is maintained at the high beam hb until the host vehicle JS finishes passing the crosswalk OH. This allows the driver of the own vehicle JS to quickly recognize that the pedestrian HK is walking on the crosswalk OH.
実施形態8.
 実施形態8の配光制御装置HSDでは、制御部SG(図2に図示。)は、照射灯ST(図2に図示。)をロービームLB(図1に図示。)からハイビームHB(図1に図示。)へ切り換えた直後に、ハイビームHBを断続的に照射させ、即ち、ハイビームHBを点滅させる。これにより、例えば、大型である対向車両TS(図1に図示。)、例えば、トラックが通過した直後に、トラックの背後である死角SK(図1に図示。)に存在する歩行者HK(図1に図示。)に、自車両JSが走行していることについて注意を喚起させることができる。
Embodiment 8.
In the light distribution control device HSD of the eighth embodiment, the control unit SG (shown in FIG. 2) switches the illumination lamp ST (shown in FIG. 2) from the low beam LB (shown in FIG. 1) to the high beam HB (shown in FIG. 1). Immediately after switching to (as shown in the figure), the high beam HB is intermittently irradiated, that is, the high beam HB is blinked. As a result, for example, immediately after a large oncoming vehicle TS (illustrated in FIG. 1), for example a truck, passes, a pedestrian HK (illustrated in FIG. 1) existing in a blind spot SK (illustrated in FIG. 1) can be alerted to the fact that the host vehicle JS is traveling.
実施形態9.
 実施形態9の配光制御装置HSDでは、ステップST16(図4に図示。)で照射灯STをロービームLB(図1に図示。)からハイビームHB(図1に図示。)へ切り換えた後に、前方認識部ZN(図2に図示。)が歩行者HK(図1に図示。)を認識したとき、照射灯STをハイビームHB(図1に図示。)からロービームLB(図1に図示されたロービームLBと同一の態様)へ再び切り換える。これにより、歩行者HKにグレア(眩惑)を与えることを抑止することができる。
Embodiment 9.
In the light distribution control device HSD of the ninth embodiment, after switching the illumination lamp ST from low beam LB (illustrated in FIG. 1) to high beam HB (illustrated in FIG. 1) in step ST16 (illustrated in FIG. 4), When the recognition unit ZN (shown in FIG. 2) recognizes a pedestrian HK (shown in FIG. 1), the illumination lamp ST changes from high beam HB (shown in FIG. 1) to low beam LB (low beam shown in FIG. 1). (same mode as LB). Thereby, it is possible to prevent glare (dazzle) from being given to pedestrians HK.
実施形態10.
 実施形態10の配光制御装置HSDでは、ステップST16(図4に図示。)で照射灯STをロービームLB(図1に図示。)からハイビームHB(図1に図示。)へ切り換えた後に、自動制動部(図示せず。)が、自車両JS(図1に図示。)の前方における歩行者HK(図1に図示。)の存在を認識したことに応答して、自動制動を開始したとき、制御部SG(図2に図示。)は、照射灯ST(図2に図示。)をハイビームHB(図1に図示。)からロービームLB(図1に図示のロービームLBと同一の態様)へ再び切り換える。これにより、実施形態9と同様に、歩行者HKにグレア(眩惑)を与えることを抑止することができる。
Embodiment 10.
In the light distribution control device HSD of the tenth embodiment, after switching the illumination lamp ST from low beam LB (illustrated in FIG. 1) to high beam HB (illustrated in FIG. 1) in step ST16 (illustrated in FIG. 4), the automatic When the braking unit (not shown) starts automatic braking in response to recognizing the presence of a pedestrian HK (shown in Figure 1) in front of the own vehicle JS (shown in Figure 1). , the control unit SG (shown in FIG. 2) changes the illumination lamp ST (shown in FIG. 2) from the high beam HB (shown in FIG. 1) to the low beam LB (in the same manner as the low beam LB shown in FIG. 1). Switch again. Thereby, similarly to the ninth embodiment, it is possible to prevent glare (dazzle) from being given to the pedestrian HK.
 本開示の要旨を逸脱しない範囲で、上述した実施形態同士を組み合わせてもよく、また、各実施形態中の構成要素を適宜、削除し、変更し、または、他の構成要素を追加してもよい。 The embodiments described above may be combined with each other without departing from the gist of the present disclosure, and components in each embodiment may be deleted or changed, or other components may be added as appropriate. good.
 本開示に係る配光制御装置は、ロービームからハイビームへの切り換えの遅延を抑制することに利用可能である。 The light distribution control device according to the present disclosure can be used to suppress the delay in switching from low beam to high beam.
GZ 画像、hb ハイビーム、HB ハイビーム、HK 歩行者、HSD 配光制御装置、HSS 配光制御システム、JS 自車両、K 記憶媒体、KR 距離、KS 検出部、LB ロービーム、M メモリ、N 入力部、NS 入力信号、OH 横断歩道、P プロセッサ、PR プログラム、S 出力部、SE 撮影部、SG 制御部、SK 死角、SN 側方認識部、SS 出力信号、ST 照射灯、TA 対向車線、TS 対向車両、TSa 第1の対向車両、TSb 第2の対向車両、Tth 閾値時間、ZN 前方認識部。 GZ image, HB high beam, HB high beam, HK pedestrian, HSD light distribution control device, HSS light distribution control system, JS own vehicle, K storage medium, KR distance, KS detection section, LB low beam, M memory, N input section, NS input signal, OH crosswalk, P processor, PR program, S output unit, SE photography unit, SG control unit, SK blind spot, SN side recognition unit, SS output signal, ST illumination light, TA oncoming lane, TS oncoming vehicle , TSa: first oncoming vehicle, TSb: second oncoming vehicle, Tth: threshold time, ZN: forward recognition unit.

Claims (12)

  1.  自車両の前方で撮影される対向車両の画像に基づき前記対向車両の存在を認識する前方認識部と、
     前記自車両の側方で測距センサにより検出される前記対向車両及び前記自車両間の距離に基づき、前記自車両と前記対向車両とのすれ違いを認識する側方認識部と、
     前記前方認識部が前記対向車両の存在を認識したとき、照射灯をハイビームからロービームへ切り換えた後、前記側方認識部が前記対向車両とのすれ違いを認識したとき、前記照射灯を前記ロービームから前記ハイビームへ切り換える制御部と、
     を含む配光制御装置。
    a front recognition unit that recognizes the presence of the oncoming vehicle based on an image of the oncoming vehicle taken in front of the host vehicle;
    a side recognition unit that recognizes whether the own vehicle and the oncoming vehicle pass each other based on the distance between the oncoming vehicle and the own vehicle detected by a distance sensor on the side of the own vehicle;
    When the front recognition unit recognizes the presence of the oncoming vehicle, it switches the illumination lights from high beam to low beam, and then when the side recognition unit recognizes the passing of the oncoming vehicle, switches the illumination lights from low beam to low beam. a control unit that switches to the high beam;
    Light distribution control device including.
  2.  前記側方認識部は、前記対向車両の前方角部を認識する、
     請求項1に記載の配光制御装置。
    The side recognition unit recognizes a front corner of the oncoming vehicle.
    The light distribution control device according to claim 1.
  3.  前記側方認識部は、前記対向車両の側面部を認識する、
     請求項1に記載の配光制御装置。
    The side recognition unit recognizes a side part of the oncoming vehicle.
    The light distribution control device according to claim 1.
  4.  前記制御部は、前記対向車両とのすれ違いを認識してから、前記対向車両に後続する他の対向車両とのすれ違いを認識するまでの時間が予め定められた時間より短いとき、前記照射灯を前記ロービームから前記ハイビームへ切り換えず、前記他の対向車両とのすれ違いを認識したとき、前記照射灯を前記ロービームから前記ハイビームへ切り換える、
     請求項1に記載の配光制御装置。
    When the time from when the oncoming vehicle is recognized to when another oncoming vehicle following the oncoming vehicle is recognized is shorter than a predetermined time, the control unit turns on the illumination light. switching the illumination lamp from the low beam to the high beam when recognizing that you have passed the other oncoming vehicle without switching from the low beam to the high beam;
    The light distribution control device according to claim 1.
  5.  前記制御部は、前記対向車両が停止しているとき、前記照射灯をハイビームから前記ロービームへ切り換えない、
     請求項1に記載の配光制御装置。
    The control unit does not switch the illumination lamp from the high beam to the low beam when the oncoming vehicle is stopped.
    The light distribution control device according to claim 1.
  6.  前記制御部は、前記ハイビームへ切り換えた前記照射灯の光軸が対向車線に近づくように前記照射灯の光軸を変位させる、
     請求項1に記載の配光制御装置。
    The control unit displaces the optical axis of the illumination lamp so that the optical axis of the illumination lamp that has been switched to the high beam approaches an oncoming lane.
    The light distribution control device according to claim 1.
  7.  前記制御部は、前記自車両の前方の明るさが予め定められた閾値を超えている場合に、自車両の前方に横断歩道があるとき、前記自車両が前記横断歩道を通過し終えるまで前記照射灯をハイビームに維持する、
    請求項1に記載の配光制御装置。
    When the brightness in front of the host vehicle exceeds a predetermined threshold and there is a crosswalk in front of the host vehicle, the control unit controls the control unit until the host vehicle finishes passing through the crosswalk. Keep the lights on high beam,
    The light distribution control device according to claim 1.
  8.  前記制御部は、前記照射灯を前記ロービームから前記ハイビームへ切り換えた後に、前記照射灯に前記ハイビームを断続的に照射させる、
     請求項1に記載の配光制御装置。
    The control unit causes the illumination lamp to intermittently emit the high beam after switching the illumination lamp from the low beam to the high beam.
    The light distribution control device according to claim 1.
  9.  前記制御部は、前記照射灯を前記ロービームから前記ハイビームへ切り換えた後に、前記自車両の前方に歩行者が存在するとき、前記照射灯を前記ハイビームから前記ロービームへ切り換える、
     請求項1に記載の配光制御装置。
    The control unit switches the illumination lamp from the high beam to the low beam when a pedestrian is present in front of the host vehicle after switching the illumination lamp from the low beam to the high beam.
    The light distribution control device according to claim 1.
  10.  前記照射灯を前記ロービームから前記ハイビームへ切り換えた後に、前記自車両の前方に歩行者が存在することに起因して、自動制動が開始されたとき、前記制御部は、前記照射灯を前記ハイビームから前記ロービームへ切り換える、
     請求項1に記載の配光制御装置。
    After switching the illumination lamp from the low beam to the high beam, when automatic braking is started due to the presence of a pedestrian in front of the host vehicle, the control unit switches the illumination lamp from the high beam to the high beam. switching from to the low beam,
    The light distribution control device according to claim 1.
  11.  請求項1に記載の配光制御装置と、
     前記対向車両の画像を撮影する撮影部と、
     前記測距センサを有し、前記対向車両及び前記自車両間の距離を検出する検出部と、
     前記照射灯と、
     を含む配光制御システム。
    A light distribution control device according to claim 1;
    a photographing unit that photographs an image of the oncoming vehicle;
    a detection unit having the distance measuring sensor and detecting a distance between the oncoming vehicle and the host vehicle;
    The irradiation lamp;
    Light distribution control system including.
  12.  前方認識部が、自車両の前方で撮影される対向車両の画像に基づき前記対向車両の存在を認識し、
     側方認識部が、前記自車両の側方で測距センサにより検出される前記対向車両及び前記自車両間の距離に基づき、前記自車両と前記対向車両とのすれ違いを認識し、
     制御部が、前記前方認識部が前記対向車両の存在を認識したとき、照射灯をハイビームからロービームへ切り換えた後、前記側方認識部が前記対向車両とのすれ違いを認識したとき、前記照射灯を前記ロービームから前記ハイビームへ切り換える、
     配光制御方法。
    a front recognition unit recognizes the presence of the oncoming vehicle based on an image of the oncoming vehicle taken in front of the own vehicle;
    a side recognition unit recognizes a passing of the own vehicle and the oncoming vehicle based on the distance between the oncoming vehicle and the own vehicle detected by a distance sensor on the side of the own vehicle;
    When the front recognition unit recognizes the presence of the oncoming vehicle, the control unit switches the illumination lights from high beam to low beam, and when the side recognition unit recognizes passing the oncoming vehicle, switches the illumination lights. switching from the low beam to the high beam;
    Light distribution control method.
PCT/JP2022/015757 2022-03-30 2022-03-30 Light distribution control device, light distribution control system, and light distribution control method WO2023188053A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024502608A JP7496950B2 (en) 2022-03-30 2022-03-30 Light distribution control device, light distribution control system, and light distribution control method
PCT/JP2022/015757 WO2023188053A1 (en) 2022-03-30 2022-03-30 Light distribution control device, light distribution control system, and light distribution control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/015757 WO2023188053A1 (en) 2022-03-30 2022-03-30 Light distribution control device, light distribution control system, and light distribution control method

Publications (1)

Publication Number Publication Date
WO2023188053A1 true WO2023188053A1 (en) 2023-10-05

Family

ID=88200272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015757 WO2023188053A1 (en) 2022-03-30 2022-03-30 Light distribution control device, light distribution control system, and light distribution control method

Country Status (2)

Country Link
JP (1) JP7496950B2 (en)
WO (1) WO2023188053A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064533A (en) * 2008-09-08 2010-03-25 Koito Mfg Co Ltd Vehicular headlamp, and control method thereof
JP5578145B2 (en) * 2011-08-03 2014-08-27 三菱自動車工業株式会社 Headlight control device
JP2018092505A (en) * 2016-12-07 2018-06-14 スズキ株式会社 Driving support apparatus
JP2020172123A (en) * 2019-04-08 2020-10-22 トヨタ自動車株式会社 Headlight control device of vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064533A (en) * 2008-09-08 2010-03-25 Koito Mfg Co Ltd Vehicular headlamp, and control method thereof
JP5578145B2 (en) * 2011-08-03 2014-08-27 三菱自動車工業株式会社 Headlight control device
JP2018092505A (en) * 2016-12-07 2018-06-14 スズキ株式会社 Driving support apparatus
JP2020172123A (en) * 2019-04-08 2020-10-22 トヨタ自動車株式会社 Headlight control device of vehicle

Also Published As

Publication number Publication date
JP7496950B2 (en) 2024-06-07
JPWO2023188053A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
US10286834B2 (en) Vehicle exterior environment recognition apparatus
JP5413511B2 (en) Vehicle light distribution control device and method
US10503985B2 (en) Pedestrian determination method and determination device
JP6200481B2 (en) Outside environment recognition device
JP4458141B2 (en) Light control device
JP6158523B2 (en) Inter-vehicle distance control device
JP7108916B2 (en) vehicle controller
JP6723290B2 (en) Headlamp system for vehicle and control method thereof
US20190031163A1 (en) Driving assist device and driving assist method
JP2019151185A (en) Driving support device
JP2008207677A (en) Image processing apparatus, image processing method and image processing system
US9586515B2 (en) Method and device for recognizing an illuminated roadway ahead of a vehicle
JP2009134455A (en) Traveling support device, inter-vehicle distance setting method
WO2018110389A1 (en) Vehicle lighting system and vehicle
JP2019098911A (en) Parking support device, parking support method and computer program
WO2018173674A1 (en) Driving assistance device and driving assistance method for vehicles
JP2006330980A (en) Preceding vehicle detection device
JP5859896B2 (en) Vehicle detection device
US11890939B2 (en) Driver assistance system
WO2023188053A1 (en) Light distribution control device, light distribution control system, and light distribution control method
WO2013180111A1 (en) Device and method for controlling illumination range of vehicle light
JP5667473B2 (en) Vehicle headlamp control device and vehicle headlamp system
JP7000084B2 (en) Vehicle headlight control device
JP2004094733A (en) Vehicular driving support device
WO2017138658A1 (en) Drive assistance device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024502608

Country of ref document: JP