WO2023185009A1 - 一种液力缓速器 - Google Patents

一种液力缓速器 Download PDF

Info

Publication number
WO2023185009A1
WO2023185009A1 PCT/CN2022/132942 CN2022132942W WO2023185009A1 WO 2023185009 A1 WO2023185009 A1 WO 2023185009A1 CN 2022132942 W CN2022132942 W CN 2022132942W WO 2023185009 A1 WO2023185009 A1 WO 2023185009A1
Authority
WO
WIPO (PCT)
Prior art keywords
input shaft
box
channel
chamber
bearing
Prior art date
Application number
PCT/CN2022/132942
Other languages
English (en)
French (fr)
Inventor
李天维
王天斌
陆锁
曾探
程捷
韩继成
Original Assignee
贵阳丽天苍泰科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵阳丽天苍泰科技有限公司 filed Critical 贵阳丽天苍泰科技有限公司
Publication of WO2023185009A1 publication Critical patent/WO2023185009A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • F16D57/02Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders with blades or like members braked by the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0421Guidance of lubricant on or within the casing, e.g. shields or baffles for collecting lubricant, tubes, pipes, grooves, channels or the like
    • F16H57/0424Lubricant guiding means in the wall of or integrated with the casing, e.g. grooves, channels, holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0469Bearings or seals
    • F16H57/0471Bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0473Friction devices, e.g. clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N1/00Constructional modifications of parts of machines or apparatus for the purpose of lubrication

Definitions

  • the invention relates to the field of automobile technology, and in particular to a hydraulic retarder.
  • hydraulic retarder As an auxiliary braking device for rolling stock, hydraulic retarder is widely used in heavy-duty vehicles such as urban buses, heavy trucks, military vehicles, and large buses. It can provide assistance to vehicles during high-speed driving or downhill periods. braking torque to reduce the number of times the brake pads are used, thereby greatly improving the overall safety of the vehicle.
  • the working medium of the existing hydraulic retarder usually uses a specific variety of liquid medium, so that the working medium can not only act as a damping fluid, but also act as a lubricant for the bearings; when the hydraulic retarder is loaded with air, external impurities Air often enters the interior of the retarder and is affected by external impurities; on the one hand, the working medium is easily mixed with too many impurities and accelerates its deterioration; on the other hand, when lubricating bearings, the working medium mixed with impurities will also Increase the wear of bearings and shorten the service life of bearings.
  • the main technical problem solved by the present invention is to provide a hydraulic retarder, aiming to reduce the use cost of the retarder and improve the reliability of the retarder.
  • a hydraulic retarder including:
  • the box piece has a first channel
  • the stator part is fixed in the box part
  • the rotor part is arranged in the box part, and the rotor part and the stator part cooperate with each other to form a working chamber for accommodating the working medium therebetween;
  • the input shaft has a second channel that runs through it along its axial direction.
  • the input shaft is arranged through the box member, the rotor member and the stator member in sequence; wherein the rotor member is fixed to the input shaft, and the box member is fixed to the input shaft.
  • a lubrication chamber is formed between the input shafts and between the stator member and the input shaft; the first channel and the second channel are communicated to form a liquid flow channel connected to the lubrication cavity, and the liquid flow channel is used for The lubricating medium enters and exits the lubrication chamber; and
  • Bearing parts are arranged in the lubrication chamber, and the box part and the stator part are connected to the input shaft through corresponding bearing parts.
  • the lubrication chamber formed between the input shaft and the stator component is a rear end lubrication chamber, and the bearing component arranged in the rear end lubrication chamber is a rear bearing;
  • the input shaft is provided with an impeller structure, which is arranged along the axial direction of the input shaft on a side of the rear bearing facing away from the rotor; the impeller structure is used to drive the fluid in the liquid flow channel when rotating with the input shaft.
  • the lubricating medium enters and exits the rear end lubrication chamber to lubricate the rear bearing.
  • the impeller structure includes an annular groove structure, and the annular groove structure is opened on the outer peripheral surface of the input shaft around the axial direction of the input shaft.
  • a rear oil seal is also included, and a rear end seal cavity is formed between the stator member and the input shaft.
  • the rear end seal cavity is arranged along the axial direction of the input shaft on the side of the rear bearing facing the rotor member.
  • the rear oil seal is arranged in the rear end seal chamber to isolate the working chamber and the rear end lubrication chamber.
  • an ejection channel structure is provided between the working chamber and the rear end sealing chamber to connect the two.
  • the ejection channel structure is used to guide the working medium in the working chamber to reduce the The pressure on the rear oil seal.
  • the input shaft is provided with a first liquid flow hole connecting the rear end seal cavity and the second channel at a position where the rear oil seal is matched, and the first liquid flow hole is used for lubricating medium to enter and exit the rear end seal cavity, To lubricate the rear oil seal.
  • the box member is provided with an oil storage tank, the oil storage tank is provided in communication with the first channel, and the oil storage tank is used to store lubricating medium and to supply lubricating medium to the lubricating chamber.
  • the lubrication chamber formed between the input shaft and the box member is a front-end lubrication chamber, and the bearing member arranged in the front-end lubrication chamber is a front bearing;
  • the oil storage tank extends along the circumferential direction of the input shaft and is arranged on the side of the box member facing away from the rotor member along the axial direction of the input shaft; the front end lubrication chamber is connected to the first channel through the oil storage tank.
  • the box body includes a front box and a middle box.
  • the front box and the middle box are assembled relative to each other along the axial direction of the input shaft and sealed and fixed as one body to form a space between them.
  • the accommodation space accommodating the rotor part and the stator part; wherein the rotor part is arranged in the front box; the stator part is arranged in the middle box and fixed with the front box and/or the middle box;
  • the first channel is provided through the front box and the middle box, and a lubrication chamber is formed between the input shaft and the front box;
  • the stator component includes a stator and a bearing seat that are fixedly connected, and the stator and/or the bearing seat are fixed to the box component;
  • the input shaft includes a shaft body part and a bearing sleeve, and the bearing sleeve is sleeved and fixed to the shaft body part , a lubricating cavity is formed between the bearing seat and the bearing sleeve.
  • the box member is configured to be matched with the housing of the gearbox, and the input shaft is configured to be matched with the power end of the gearbox, so that the fluid flow channel can be connected with the gearbox.
  • Internal communication allows the internal oil of the gearbox to circulate between the hydraulic retarder and the gearbox as a lubricating medium.
  • the hydraulic retarder includes a box member with a first channel, a stator member and a rotor member arranged in the box member to cooperate to form a working chamber, and an input shaft with a second channel; wherein, the input The shafts are arranged through the box body, the rotor body and the stator body in sequence.
  • a lubricating cavity for accommodating the bearing parts is formed between the input shaft and the box body and between the input shaft and the stator part.
  • the first channel is connected with the second channel.
  • the gearbox oil can be used as the lubricating medium.
  • other liquid media including antifreeze fluid can be used as the working medium as needed, which not only helps reduce the retarder's The use cost also creates conditions for reducing the loss of bearings, oil seals and other components and improving the reliability of the retarder.
  • Figure 1 is an axial half-section structural schematic diagram of a hydraulic retarder according to an embodiment.
  • Figure 2 is a schematic diagram of the flow path identification of the lubricating medium of the hydraulic retarder according to an embodiment.
  • Figure 3 is an enlarged view of the partial structure of the V region in Figure 2.
  • Figure 4 is a partial structural schematic diagram of a hydraulic retarder from a left perspective according to an embodiment.
  • Figure 5 is a schematic structural diagram of an oil storage tank in a hydraulic retarder according to an embodiment.
  • Input shaft 20a, second channel; 20b, first liquid flow hole; 21, shaft body; 22, bearing sleeve; 23, second sealing ring; 24, impeller structure;
  • connection and “connection” mentioned in this application include direct and indirect connections (connections) unless otherwise specified.
  • This application provides a hydraulic retarder.
  • the retarder can use the internal oil of the gearbox (collectively referred to as Transmission oil) is used as a lubricating medium to lubricate moving or sealing parts such as bearings and oil seals of the retarder.
  • the working medium of the retarder itself (that is, the liquid medium working in the working chamber) only acts as the damping fluid between the rotor and the stator of the retarder, it does not need to bear the role of lubrication; therefore, there is no need to use suitable For specific oil products (such as lubricants, etc.) for moving parts or sealing parts, the working medium can use all liquid media including antifreeze and lubricating oil according to actual needs, thus effectively reducing the use cost of the retarder.
  • one embodiment provides a hydraulic retarder, which includes a box member 10 , an input shaft 20 , a stator member 30 , a rotor member 40 and a bearing member; the details are described below.
  • the box part 10 is mainly used to provide a relatively closed structural assembly space for other components of the retarder such as the stator part 30 and the rotor part 40;
  • the box part 10 includes a front box The front box 11 and the middle box 12; among them, the front box 11 is a box structure with an open rear end, and a joint through hole (not marked in the figure) is provided through the front side wall of the front box 11, and in the front box
  • the outer side of the front side wall of the body 11 is provided with an end sleeve structure 11a arranged around the joint through hole;
  • the middle box 12 is a box structure with an open front end and a closed rear end.
  • the rear port of the front box 11 and the middle box 12 The front ports are butt-joined and sealed (for example, sealed by providing a first sealing ring 13 between the two), and then can be assembled to form a box 10 that is relatively closed and has a certain volume.
  • a first pipeline 11b running in a generally "L" shape is opened in the side wall of the front box 11.
  • the first pipeline 11b starts from the end sleeve structure 11a (that is, equivalent to the first pipeline
  • the front port of 11b is located in the end sleeve structure 11a), extends along the side wall contour of the front box 11 and penetrates to the end face of the rear port of the front box 11, so that the front port of the first pipeline 11b is in contact with the box member 10 (ie: the external space of the front box 11) is connected.
  • a second pipeline 12a running in a generally "Y" shape is opened in the side wall of the middle box 12.
  • the second pipeline 12a starts from the end surface of the front port of the middle box 12.
  • first pipeline 11b and the second pipeline 12a can be connected and connected, which is equivalent to forming a will in the side wall of the box member 10.
  • the pipeline channel connecting the external space of the box member 10 and its internal space is defined as the first channel 10a for ease of distinction and description.
  • the box member 10 may also adopt other structural forms, such as configuring one of the front box 11 and the middle box 12 as a box structure with an opening, and arranging the front box 11 and the middle box 12 as a box structure.
  • the other one is configured as an end cap structure; in this way, it can also be assembled to form a complete box piece 10, and the box piece 10 has the first channel 10a; at the same time, it can also be a component placed inside the box piece 10 (such as the rotor part 40, the stator part 30, etc.) provides convenient conditions for disassembly and assembly.
  • the input shaft 20 serves as the power input end of the retarder and includes a shaft body 21 and a bearing sleeve 22.
  • the shaft body 21 penetrates the front through the joint through hole of the front box 11.
  • the box body 11 is arranged such that the axial rear end surface of the shaft body part 21 is facing and adjacent to the rear side wall of the middle box body 12, so that there is a gap between the axial rear end surface of the shaft body part 21 and the rear side wall of the middle box body 12.
  • the through hole structure is defined as the second channel 20a.
  • the distance maintained between 12 can create structural conditions for the rear port of the second channel 20a to maintain communication with the rear port of the first passage 10a (that is, the rear port of the second pipeline 12a).
  • the bearing sleeve 22 is fixedly placed on the shaft end of the shaft body part 21, and the rear end surface of the bearing sleeve 22 and the rear end surface of the shaft body part 21 can be arranged substantially flush.
  • the structural characteristics of the end sleeve structure 11a distributed around the joint through hole can be used to connect it with the input shaft 20 (specifically, the shaft body part 21)
  • the front end portion maintains a certain gap, thereby forming a cavity space with an open front end and a certain volume between the two.
  • This cavity space can be used to accommodate the bearing member, so that the bearing member can be used between the input shaft 20 and the box member 10 A relatively rotatable structural connection relationship is established between them; for the convenience of distinction and description, the cavity space is defined as the front-end lubrication chamber A, and the bearing installed in the front-end lubrication chamber A is defined as the front bearing 51; during specific implementation, it can be A channel (such as the oil storage tank 10b, etc. mentioned below) that connects the first channel 10a with the internal space of the front end lubrication chamber A is opened in the end sleeve structure 11a.
  • the input shaft 20 may also adopt an integrated structure, such as omitting the bearing sleeve 22 .
  • the stator part 30 and the rotor part 40 are both arranged in the box part 10 .
  • the rotor part 40 and the stator part 30 face each other along the axial direction (or front-rear direction) of the input shaft 20 and They are arranged in cooperation with each other to form a working chamber B for accommodating the working medium; wherein, the rotor part 40 is arranged in the front box 11 and fixed with the input shaft 20 (specifically, the shaft body part 21), So that the rotor part 40 can rotate relative to the box part 10 and the stator part 30 driven by the input shaft 20 .
  • the stator component 30 is arranged in the middle box 12 and is located in a space or position corresponding to the bearing sleeve 22. It includes a stator 31 and a bearing seat 32 fixedly arranged in the middle box 12; wherein, the stator 31 and the rotor component 40 Facing each other, the bearing seat 32 is fixedly connected to the side of the stator 31 facing away from the rotor member 40 along the axial direction of the input shaft 20; in this way, by utilizing the structural matching relationship between the bearing seat 32 and the bearing sleeve 22, it is possible to There is formed a cavity space with at least an open rear end and a certain volume.
  • This cavity space can also be used to accommodate bearing components, so as to establish a relative relationship between the input shaft 20 and the stator component 30 with the help of the bearing components installed in the cavity space.
  • Rotating structural connection relationship for ease of distinction and description, the box space is defined as the rear end lubrication chamber C, and the bearing installed in the rear end lubrication chamber C is defined as the rear bearing 52.
  • the rear port of the first channel 10a (specifically, the rear port of the second pipeline 12a) can be arranged at a position opposite to the rear end lubrication chamber C along the axial direction of the input shaft 20, and at the same time, the bearing seat
  • the rear end surface of 32 maintains a certain distance from the rear side wall of the middle box 12. Since the rear end surface of the input shaft 20 also maintains a certain distance from the rear end surface of the middle box 12, the bearing seat 32, the input shaft 20, the middle box
  • the structural gap between the bodies 12 can keep the rear port of the first channel 10a, the rear port of the second channel 20a and the rear end lubrication chamber C connected, so as to build a retarder internally connected to the rear end lubrication chamber C. Liquid flow channel.
  • a sealing element 33 is added between the stator 31 and the bearing seat 32 to eliminate the structural gap between the two and prevent lubricating medium from entering the working chamber B through the structural gap between the two; based on the same principle, on the shaft body
  • a second sealing ring 23 is provided between the bearing sleeve 21 and the shaft sleeve portion 22.
  • the second sealing ring 23 is disposed between the rear end lubrication chamber C and the working chamber B to eliminate the bearing sleeve 22 and the shaft body portion 21. The structural gap between them prevents the lubricating medium from leaking into the working chamber B.
  • stator component 30 may also adopt other structural forms; for example, the stator 31 and the bearing seat 32 may be integrally formed.
  • the basic working principle of the retarder that is: the stator part and the rotor part of the retarder cooperate with each other to use the working medium in the working chamber B to make the retarder generate auxiliary The principle of braking function; therefore, this article does not describe too much about the working principle of the retarder.
  • the box body 10 (specifically, such as the front box body 11 ) can be configured as a structural structure that can be matched and connected with the box body of the gearbox, and the front end of the input shaft 20 (specifically, such as the front end of the shaft body portion 21 part) is set up as a structural structure that can be matched and connected with the power end of the gearbox, such as by setting a speed-increasing gear 60 at the front end of the input shaft 20 to mesh with the gear of the gearbox; thereby, the retarder is While being integrated with the gearbox, it is ensured that the front port of the first channel 10a and the front port of the second channel 20a are connected to the inside of the gearbox (such as the internal fluid path or internal space), so that the retarder and the transmission can be connected.
  • a closed circuit is formed between the tanks for the internal oil of the gearbox (i.e. gearbox oil) to circulate.
  • the transmission oil When the retarder is operating, the transmission oil may splash into the first channel 10a through the front port of the first channel 10a under the disturbance of the internal components of the transmission (such as gears), so that the transmission oil serves as a lubricating medium and enters the retarder.
  • the lubricating medium In the retarder, and finally discharged from the retarder from the second channel 20a, while the lubricating medium flows inside the retarder, it can enter the front-end lubrication chamber A and the rear-end lubrication chamber C to lubricate the front end of the retarder.
  • Bearing 51, rear bearing 52 and other components are lubricated.
  • a lubricating medium storage container, etc. is added to connect the first channel 10a and the second channel 20a to meet application requirements in different scenarios.
  • An impeller structure 24 is provided at the rear end of the input shaft 20, which is mainly used to drive the liquid flow channel (that is, the structure formed after the first channel 10a and the second channel 20a are connected.
  • the lubricating medium in the passage enters and exits the rear end lubrication chamber C to effectively lubricate the rear bearing 52.
  • the impeller structure 24 is disposed on the outer peripheral surface of the bearing sleeve 22 and is located at a position substantially flush with the rear end surface of the shaft body 21; it can also be understood that the impeller structure 24 is part of the rear end lubrication chamber C. , which is arranged on the side of the rear bearing 52 facing away from the rotor member 40 along the axial direction of the input shaft 20 , and is specifically located at the rear port of the rear end lubrication chamber C.
  • the impeller structure 24 is an annular groove structure opened on the outer peripheral surface of the sleeve portion 22 around the axial direction of the input shaft 20 (or along the circumferential direction of the input shaft 20 ); when the retarder is operating, the impeller structure 24 It will rotate with the input shaft 20 to impact the lubricating medium in the liquid flow channel, causing the lubricating medium to splash and fill into the rear end lubrication chamber C, thereby lubricating the rear bearing 52 installed in the rear end lubrication chamber C; at the same time, the lubricating medium is
  • the rotational motion of the impeller structure 24 will also cause the formation of eddy currents in the rear-end lubrication chamber C, thereby forming a certain pressure difference between the inside of the rear-end lubrication chamber C and the inside of the gearbox. It is beneficial to increase the circulation volume of lubricating medium (ie: gearbox oil).
  • the impeller structure 24 may also adopt other structural forms, such as a plurality of groove structures or protruding structures arranged at intervals along the circumferential direction of the input shaft 20 to form the impeller structure 24 .
  • the impeller structure 24 can be directly disposed on the outer peripheral surface of the rear end of the shaft body 21 .
  • Oil seals are provided between the stator component 30 and the input shaft 20 and between the box component 10 and the input shaft 20.
  • the oil seals can be used to connect the front-end lubrication chamber A and the rear-end lubrication chamber C to the working chamber.
  • B is completely isolated; for the convenience of distinction and description, the oil seal between the box member 10 and the input shaft 20 is defined as the front oil seal 71, and the oil seal between the stator member 30 and the input shaft 20 is defined as the rear oil seal 72; detailed description below .
  • a cavity space is formed between the bearing sleeve 22 and the bearing seat 32 and on the side of the rear bearing 52 facing the rotor member 40, which is connected to or isolated from the rear end lubrication chamber C.
  • the cavity space is defined as the rear end sealing cavity D
  • the rear oil seal 72 is installed in the rear end sealing cavity D.
  • a liquid flow hole penetrating from the outer peripheral surface of the bearing sleeve 22 to the second channel 20a is provided along the radial direction of the input shaft 20 (the liquid flow hole is defined as the second channel 20a).
  • a liquid flow hole 20b using the first liquid flow hole 20b to connect the internal space of the rear end sealing chamber D with the second channel 20a, so that the lubricating medium flowing through the second channel 20a can enter and exit through the first liquid flow hole 20b.
  • the end seal cavity D is used to lubricate the rear oil seal 72 placed in the rear end seal cavity D.
  • two rear oil seals 72 are arranged in the rear end seal chamber D along the axial direction of the input shaft 20 , and the port of the first liquid flow hole 20b in the rear end seal chamber D is located in the two rear oil seals 72 in the area between them, so that the lubricating medium can enter or fill the space between the two rear oil seals 72 through the first liquid flow hole 20b, thereby ensuring effective lubrication of the rear oil seals 72; at the same time, along the inner edge of the input shaft 20 It is provided with two first liquid flow holes 20b radially symmetrically to increase the circulation amount of lubricating medium entering and exiting the rear end sealing chamber D.
  • the specific number and extension path of the first liquid flow holes 20b can also be selected and configured according to actual needs, such as three, four, or other more numbers.
  • the rear oil seal 72 can also be set to one or other numbers. The key point is to ensure the isolation and sealing effect of the oil seal on the working chamber B and the rear end lubrication chamber C, as well as the lubrication effect of the oil seal.
  • this cavity space is equivalent to the front bearing arranged along the axial direction of the input shaft 20. 51 faces the side of the rotor member 40.
  • this cavity space is defined as the front end sealing cavity E, and the front oil seal 71 is arranged in the front end sealing cavity E to use the front oil seal 71 to seal the inside of the box member 10 space is isolated from the external space; since the front-end sealing chamber E is formed between the shaft body part 21 and the joint through hole, it can naturally maintain communication with the front-end lubrication chamber A.
  • the lubricating medium in the front-end lubrication chamber A can be used Lubricate the front oil seal 71; during specific implementation, the front oil seal 71 can be selected and configured with reference to the rear oil seal 72, which will not be described in detail here.
  • an oil storage tank 10b is also provided on the outside of the front side wall (specifically, within the end sleeve structure 11a) of the box body 10 (specifically, the front box 11),
  • the oil storage tank 10b extends along the circumferential direction of the input shaft 20, and its overall outline is roughly arc-shaped; the first channel 10a and the front-end lubrication chamber A are respectively connected to the oil storage tank 10b.
  • the oil storage tank 10b is A part of the liquid flow channel, or as the front port of the first channel 10a.
  • the first pipeline 11b and the oil storage tank 10b can be connected by opening a liquid flow hole (for ease of distinction, this liquid flow hole is defined as the second liquid flow hole 10c) in the end sleeve structure 11a.
  • this liquid flow hole is defined as the second liquid flow hole 10c
  • the pipeline formed by the combination of the second liquid flow hole 10c and the first pipeline 11b it is generally in a "Z" shape; at the same time, another liquid flow hole is opened in the oil storage tank 10b (for the convenience of distinction, this one is The liquid flow hole is defined as the third liquid flow hole 10d), so that the front end lubrication chamber A and the oil storage tank 10b are connected by the third liquid flow hole 10d.
  • the gearbox oil can first splash into the oil storage tank 10b, and then be diverted through the oil storage tank 10b to the first channel 10a and the front-end lubrication chamber A; on the other hand, it can also Use the oil storage tank 10b to store a certain amount of transmission oil to continuously supply transmission oil to the retarder (specifically, the front-end lubrication chamber A, the rear-end lubrication chamber C, etc.) to ensure effective lubrication of bearings, oil seals and other components. .
  • oil storage tank 10b is not shown in Figures 1 and 2. Only the thick dashed line with arrows in Figure 2 represents the general flow path or direction of the lubricating medium entering the front-end lubrication chamber A via the oil storage tank 10b. .
  • the cross-sectional shape of the oil storage tank 10b in the radial direction of the input shaft 20 is a "U" shape or a substantially “U” shaped tank structure; alternatively, the third liquid flow hole 10d is Or the cross-sectional shape of the location of the third liquid flow hole 10d in the oil storage tank 10b in the radial direction of the input shaft 20 is a "U" shape or a substantially “U” shape.
  • the oil storage tank 10b can be made relatively independent of the front-end lubrication chamber A and the first channel 10a, and it can also help expand the volume of the oil storage tank 10b and increase the storage capacity of lubricating medium.
  • the oil storage tank 10b may also be formed by the front bearing 51, the input shaft 20 and the front side wall of the front box 11 (that is, the part between the joint through hole and the end sleeve structure 11a); also Alternatively, the cross-sectional shape of the oil reservoir 10b in the radial direction of the input shaft 20 is set to other geometric shapes.
  • the overall outline of the sealing element 33 (as mentioned above) arranged between the stator 31 and the bearing seat 32 can be set as a roughly annular structure, and the outer ring edge of the sealing element 33 is fixed to the bearing seat 32 and the stator 31
  • the inner ring edge of the sealing element 33 extends to a certain length along the axial direction of the input shaft 20 through the shaft hole of the stator 31 toward the rotor member 40 , thereby forming a sleeve portion 33 a of the sealing element 33 .
  • the sleeve portion 33 a is located on the input shaft 20 maintain a certain distance from the input shaft 20 in the radial direction, and the circumferential end surface of the sleeve body portion 33a also maintains a certain distance from the rotor member 40, so that a working cavity can be formed between the input shaft 20, the sleeve body portion 33a and the rotor member 40 B is connected to the first cavity F of the rear end sealing cavity D; at the same time, the sleeve body 33a maintains a certain distance from the inner circumferential surface of the shaft hole of the stator 31 to form a front end that is connected to the working cavity B and the first cavity F at the same time.
  • the second cavity G is provided with a slot structure H at the blade root of the stator 31 that communicates the rear end of the second cavity G with the working chamber B.
  • an ejection channel structure can be constructed between the working chamber B and the rear end sealing chamber D.
  • the working medium in the working chamber B can be directed from the side of the stator 31 to the rotor member 40 at high speed through the slot structure H and the second cavity G, so that in the second A local high-pressure area is formed near the front port of cavity G (that is, near the junction of the first cavity F, the second cavity G, and the working cavity B), causing the first cavity F and the rear end sealing cavity D to naturally form a low-pressure area. ;
  • the working medium in the working chamber B is guided through the ejection channel structure, and the high and low pressure difference effect is used to effectively reduce the pressure on the rear oil seal 72 installed in the rear end sealing chamber D.
  • the thick solid line with an arrow in Figure 3 represents the flow direction or path of the working medium under the guidance of the ejection channel structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

一种液力缓速器,包括具有第一通道(10a)的箱体件(10)、布置于箱体件(10)内以配合形成工作腔(B)的定子件(30)和转子件(40)以及具有第二通道(20a)的输入轴(20);其中,输入轴(20)顺序穿设箱体件(10)、转子件(40)和定子件(30)布置,在输入轴(20)与箱体件(10)之间以及输入轴(20)与定子件(30)之间形成有用于容纳轴承件的润滑腔(A、C),第一通道(10a)与第二通道(20a)连通设置,以形成与润滑腔(A、C)连通的液流通道。

Description

一种液力缓速器 技术领域
本发明涉及汽车技术领域,具体涉及一种液力缓速器。
背景技术
液力缓速器作为一种机车车辆的辅助制动装置,被广泛应用于城市公交车辆、重型卡车、军车及大型客车等重型车辆中,其在车辆高速行驶或下坡时段能够为车辆提供辅助制动扭矩,以减少刹车片的使用次数,从而可大大提高车辆整体的安全性。
现有液力缓速器的工作介质通常采用特定品种的液态介质,以使得工作介质在充当阻尼液的同时,还能够充当轴承的润滑剂;当液力缓速器加载进气时,外界杂质往往会伴随空气进入缓速器内部,受外界杂质的影响;一方面,工作介质容易会因混入过多的杂质而加速其变质;另一方面,润滑轴承时,混有杂质的工作介质也会加剧轴承的磨损,缩短轴承的使用寿命。
技术问题
本发明主要解决的技术问题是提供一种液力缓速器,旨在降低缓速器的使用成本及提升缓速器的可靠性。
技术解决方案
一种实施例中提供一种液力缓速器,包括:
箱体件,具有第一通道;
定子件,固定于所述箱体件内;
转子件,布置于所述箱体件内,所述转子件与定子件相互配合,以在两者之间形成用于容纳工作介质的工作腔;
输入轴,具有沿其轴向贯通设置的第二通道,所述输入轴顺序穿设箱体件、转子件和定子件布置;其中,所述转子件与输入轴固定,所述箱体件与输入轴之间以及定子件与输入轴之间均形成有润滑腔;所述第一通道与第二通道连通设置,以形成与所述润滑腔连通的液流通道,所述液流通道用于润滑介质出入润滑腔;以及
轴承件,布置于所述润滑腔内,所述箱体件和定子件通过对应的轴承件连接输入轴。
一个实施例中,形成于所述输入轴与定子件之间的润滑腔为后端润滑腔,布置于所述后端润滑腔内的轴承件为后轴承;
所述输入轴设有叶轮结构,所述叶轮结构沿输入轴的轴向布置于后轴承背向转子件的一侧;所述叶轮结构用于随输入轴旋转时,驱使所述液流通道内的润滑介质出入后端润滑腔,以润滑所述后轴承。
一个实施例中,所述叶轮结构包括环槽结构,所述环槽结构绕输入轴的轴向开设于输入轴的外周表面。
一个实施例中,还包括后油封,所述定子件与输入轴之间还形成有后端密封腔,所述后端密封腔沿输入轴的轴向布置于后轴承面向转子件的一侧,所述后油封布置于后端密封腔内,用以隔绝所述工作腔与后端润滑腔。
一个实施例中,所述工作腔与后端密封腔之间设有将两者连通的引射通道结构,所述引射通道结构用于对工作腔内的工作介质进行引流,以降低所述后油封承受的压力。
一个实施例中,所述输入轴配合后油封的位置设有将后端密封腔与第二通道连通的第一液流孔,所述第一液流孔用于润滑介质出入后端密封腔,以润滑所述后油封。
一个实施例中,所述箱体件设有储油槽,所述储油槽与第一通道连通设置,所述储油槽用于存储润滑介质和用于向所述润滑腔供给润滑介质。
一个实施例中,形成于所述输入轴与箱体件之间的润滑腔为前端润滑腔,布置于所述前端润滑腔内的轴承件为前轴承;
所述储油槽沿输入轴的周向延伸设置,并沿所述输入轴的轴向布置于箱体件背向转子件的一侧;所述前端润滑腔通过储油槽连通第一通道。
一个实施例中,所述箱体件包括前箱体和中箱体,所述前箱体与中箱体沿输入轴的轴向相对拼装并密封固定为一体,以在两者之间形成用于容纳所述转子件和定子件的收容空间;其中,所述转子件布置于前箱体;所述定子件布置于中箱体,并与所述前箱体和/或中箱体固定;所述第一通道贯通前箱体与中箱体设置,所述输入轴与前箱体之间形成有润滑腔;
和/或
所述定子件包括固定连接的定子和轴承座,所述定子和/或轴承座与箱体件固定;所述输入轴包括轴体部和轴承套,所述轴承套套置并固定于轴体部,所述轴承座与轴承套之间形成有润滑腔。
一个实施例中,所述箱体件被配置成能够匹配连接变速箱的壳体,所述输入轴被配置成能够匹配连接变速箱的动力端,以使所述液流通道能够与变速箱的内部连通,从而使变速箱的内部油液作为润滑介质在所述液力缓速器与变速箱之间循环流动。
有益效果
依据上述实施例的液力缓速器,包括具有第一通道的箱体件、布置于箱体件内以配合形成工作腔的定子件和转子件以及具有第二通道的输入轴;其中,输入轴顺序穿设箱体件、转子件和定子件布置,在输入轴与箱体件之间以及输入轴与定子件之间形成有用于容纳轴承件的润滑腔,第一通道与第二通道连通设置,以形成与润滑腔连通的液流通道。通过将液流通道与润滑腔进行连通设置,可在缓速器内部构建出独立于工作腔的介质流通通道,当缓速器与变速箱组合并工作时,可借助变速箱油作为润滑介质,对润滑腔内的轴承件等进行润滑,由于缓速器的工作介质无需承担润滑的作用,故可根据需要采用包括防冷冻液在内的其他液体介质作为工作介质,不但有利于降低缓速器的使用成本,也为减少轴承和油封等部件的损耗、提高缓速器的可靠性创造了条件。
附图说明
图1为一种实施例的液力缓速器的轴向半剖面结构示意图。
图2为一种实施例的液力缓速器的润滑介质的流路标识示意图。
图3为图2中V区域的局部结构放大图。
图4为一种实施例的液力缓速器在左视视角下的局部结构示意图。
图5为一种实施例的液力缓速器中储油槽的结构构造示意图。
图中:
10、箱体件;10a、第一通道;10b、储油槽;10c、第二液流孔;10d、第三液流孔;11、前箱体;11a、端套结构;11b、第一管路;12、中箱体;12a、第二管路;13、第一密封圈;
20、输入轴;20a、第二通道;20b、第一液流孔;21、轴体部;22、轴承套;23、第二密封圈;24、叶轮结构;
30、定子件;31、定子;32、轴承座;33、密封元件;33a、套体部;
40、转子件;51、前轴承;52、后轴承;60、增速齿轮;71、前油封;72、后油封;
A、前端润滑腔;B、工作腔;C、后端润滑腔;D、后端密封腔;E、前端密封腔;F、第一腔道;G、第二腔道;H、槽孔结构。
本发明的实施方式
其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
本申请提供的一种液力缓速器,通过在缓速器内部构建出独立于工作腔或与工作腔相互隔离的介质流通通道,使得缓速器可以借助变速箱的内部油液(统称为变速箱油)作为润滑介质,对缓速器的轴承、油封等运动或密封部件进行润滑。
一方面,由于润滑介质的供给回路与工作腔是相互独立且隔离的,故不存在外界杂质混入的问题,既能够保证对轴承等部件的有效润滑、减小该类部件的损耗,又能够为提升缓速器工作的可靠性创造有利条件。
另一方面,由于缓速器本身的工作介质(即:工作于工作腔内的液态介质)仅充当了缓速器的转子定子之间的阻尼液,无需承担润滑的作用;因此,无需采用适用于运动部件或密封部件的特定油品(如润滑油剂等),工作介质可根据实际需求采用包括防冷冻液、润滑油在内的所有液态介质,从而能够有效降低缓速器的使用成本。
请参阅图1至图4,一种实施例提供了一种液力缓速器,包括箱体件10、输入轴20、定子件30、转子件40和轴承件;下面具体说明。
请参阅图1、图2和图4,箱体件10主要用于为定子件30、转子件40等缓速器的其他组成部件提供相对封闭的结构装配空间;该箱体件10包括前箱体11和中箱体12;其中,前箱体11为后端开口的箱体构造,在前箱体11的前侧壁贯通地设置有接合通孔(图中未标注),并且在前箱体11的前侧壁的外侧设置有围绕接合通孔设置的端套结构11a;中箱体12为前端开口且后端封闭的箱体构造,前箱体11的后端口与中箱体12的前端口对接并密封固定(如通过设置两者之间的第一密封圈13进行密封),即可拼装形成一相对封闭且具有一定容积的箱体件10。
在前箱体11的侧壁内开设有大致呈“L”形走向的第一管路11b,具体而言,该第一管路11b自端套结构11a起(即:相当于第一管路11b的前端口位于端套结构11a),沿前箱体11的侧壁轮廓走向延伸并贯通至前箱体11的后端口的端面处,以使得第一管路11b的前端口与箱体件10(即:前箱体11的外部空间)连通。相适应地,在中箱体12的侧壁内开设有大致呈“乚”形走向的第二管路12a,具体而言,该第二管路12a自中箱体12的前端口的端面处延伸贯通至中箱体12的后侧壁的中间部位,并从中箱体12的后侧壁的内侧贯通而出,以使得第二管路12a的后端口与箱体件10的内部空间相连通。
当将前箱体11与中箱体12拼装固定为一体后,即可使第一管路11b与第二管路12a对接连通,从而相当于在箱体件10的侧壁内构建形成一将箱体件10的外部空间与其内部空间连通的管路通道,为便于区分和描述,将该管路通道定义为第一通道10a。具体实施时,第一通道10a可以设置为一条,也可以设置为多条;如,第一通道10a设置为两条时,两条第一通道10a可以关于输入轴20呈径向对称布置。
其他实施例中,箱体件10也可采用其他结构形式,如将前箱体11和中箱体12中的一者设置为具有开口的箱体构造,将前箱体11和中箱体12中的另一者设置为端盖构造;如此,亦可拼装形成完整的箱体件10,并使箱体件10具有第一通道10a;同时,也可为置于箱体件10内部的部件(如转子件40、定子件30等)的拆装提供了便利条件。
请参阅图1、图2和图4,输入轴20作为缓速器的动力输入端,包括轴体部21和轴承套22;其中,轴体部21经前箱体11的接合通孔贯穿前箱体11布置,轴体部21的轴向后端面正对并邻近中箱体12的后侧壁,以使轴体部21的轴向后端面与中箱体12的后侧壁之间保持有预设间距;在轴体部21内沿其轴向贯通地设置有通孔结构,为便于区分和描述,将该通孔结构定义为第二通道20a,借助轴体部21与中箱体12之间所保持的间距,可为第二通道20a的后端口与第一通10a的后端口(即:第二管路12a的后端口)保持连通创造结构条件。而轴承套22则固定套置于轴体部21的轴端部,该轴承套22的后端面与轴体部21的后端面可以大致平齐设置。
同时,当输入轴20经接合通孔穿设于箱体件10内部后,可利用端套结构11a围绕接合通孔分布的结构特点,使其与输入轴20(具体为轴体部21)的前端部保持一定的间隙,从而在两者之间形成前端开放且具有一定容积的腔体空间,可利用该腔体空间来容纳轴承件,以借助轴承件在输入轴20与箱体件10之间建立可相对转动的结构连接关系;为便于区分和描述,将该腔体空间定义为前端润滑腔A,将安装于前端润滑腔A内的轴承件定义为前轴承51;具体实施时,可在端套结构11a内开设将第一通道10a与前端润滑腔A的内部空间相连通的孔道(如下文所述及的储油槽10b等)。
其他实施例中,输入轴20也可采用一体式结构,如省略轴承套22。
请参阅图1、图2和图3,定子件30和转子件40均布置于箱体件10内,转子件40与定子件30沿输入轴20的轴向(或前后方向)彼此面对并相互配合设置,以在两者之间围合形成用于容纳工作介质的工作腔B;其中,转子件40布置于前箱体11内并与输入轴20(具体如轴体部21)固定,以使得转子件40能够在输入轴20的带动下相对于箱体件10和定子件30旋转。
该定子件30布置于中箱体12内,并位于轴承套22相对应的空间或位置,其包括固定设置于中箱体12内的定子31和轴承座32;其中,定子31与转子件40彼此面对,轴承座32则沿输入轴20的轴向固定连接在定子31背向转子件40的一侧;如此,利用轴承座32与轴承套22之间结构配合关系,可在两者之间形成至少后端开放且具有一定容积的腔体空间,该腔体空间亦可用来容纳轴承件,以借助安装于该腔体空间的轴承件在输入轴20与定子件30之间建立可相对转动的结构连接关系;为便于区分和描述,将该箱体空间定义为后端润滑腔C,将安装于后端润滑腔C内的轴承件定义为后轴承52。
具体实施时,可将第一通道10a的后端口(具体为第二管路12a的后端口)沿输入轴20的轴向设置在与后端润滑腔C相正对的位置,同时使得轴承座32的后端面与中箱体12的后侧壁保持一定间距,由于输入轴20的后端面亦与中箱体12的后端面保持有一定间距,故借助轴承座32、输入轴20、中箱体12之间的结构间隙,可使得第一通道10a的后端口、第二通道20a的后端口和后端润滑腔C保持连通,以在缓速器内部构建出与后端润滑腔C连通的液流通道。
同时,在定子31与轴承座32之间增设密封元件33,以消除两者之间的结构间隙,防止润滑介质经由两者之间的结构间隙进入工作腔B;基于相同的原理,在轴体部21与轴套部22之间设置有第二密封圈23,该第二密封圈23设置于后端润滑腔C与工作腔B之间的位置,以通过消除轴承套22与轴体部21之间的结构间隙,防止润滑介质渗漏至工作腔B内。
其他实施例中,定子件30也可采用其他结构形式;如,将定子31与轴承座32一体构造成型。另外,需要说明的是,本领域技术人员应当知晓缓速器的基本工作原理,即:缓速器的定子部分与转子部分相互配合,以利用工作腔B内的工作介质使缓速器产生辅助制动功能的原理;故,本文不对缓速器的工作原理作过多描述。
具体实施时,可将箱体件10(具体如前箱体11)设置为能够与变速箱的箱体进行匹配连接的结构构造,将输入轴20的前端部(具体如轴体部21的前端部)设置为能够与变速箱的动力端进行匹配连接的结构构造,如通过在输入轴20的前端部设置增速齿轮60等,以啮合连接变速箱的齿轮;以此,在将缓速器与变速箱组合装配为一体的同时,保证第一通道10a的前端口以及第二通道20a的前端口与变速箱的内部(如内部液路或内部空间)连通,从而可在缓速器与变速箱之间形成可供变速箱的内部油液(即:变速箱油)进行循环流动的闭合回路。
在缓速器工作时,变速箱油可在变速箱内部部件(如齿轮)的扰动作用下,经第一通道10a的前端口溅入第一通道10a,以使得变速箱油作为润滑介质进入缓速器内,并最终自第二通道20a排出缓速器,而润滑介质在缓速器内部流动的过程中,即可进入前端润滑腔A和后端润滑腔C,以对缓速器的前轴承51、后轴承52等部件进行润滑。由于润滑介质的流动通道与缓速器的工作腔B是相互隔离且隔离的,故可解决因工作介质同时充当阻尼液和润滑剂而产生的系列问题,能够有效降低缓速器的使用成本、提高缓速器的可靠性。
需要说明的是,图1和图2中并未示出第一通道10a(或第一管路11b)的前端口,仅在图2中用带箭头的粗实线代表变速箱油溅入缓速器内的大致路径或方向。
当然,根据缓速器的实际应用场景的差异,亦可借助缓速器中润滑介质的流通通道与工作腔相互独立的特点,单独为缓速器配置润滑介质供给装置,如在缓速器上增设将第一通道10a和第二通道20a连通的润滑介质存储容器等,以满足不同场景的应用需求。
一个实施例中,请参阅图1,在输入轴20的后端部设置有叶轮结构24,主要用于驱使液流通道(即:第一通道10a与第二通道20a相连通后所形成的结构通道)内的润滑介质出入后端润滑腔C,以有效润滑后轴承52。具体而言,该叶轮结构24设置于轴承套22的外周表面,并位于与轴体部21的后端面大致平齐的位置;亦可理解为,该叶轮结构24属于后端润滑腔C的一部分,其沿输入轴20的轴向布置于后轴承52背向转子件40的一侧,并具***于后端润滑腔C的后端口处。
本实施例中,叶轮结构24为绕输入轴20的轴向(或沿输入轴20的周向)开设于轴套部22的外周表面的环槽结构;当缓速器工作时,叶轮结构24会随输入轴20旋转,以冲击液流通道内的润滑介质,促使润滑介质飞溅并填充至后端润滑腔C内,从而润滑安装于后端润滑腔C内的后轴承52;同时,在将缓速器与变速箱组合应用时,叶轮结构24的旋转运动也会导致后端润滑腔C内形成涡流,从而使得后端润滑腔C的内部与变速箱的内部之间形成一定的压力差,有利于加大润滑介质(即:变速箱油)的循环量。
另一个实施例中,叶轮结构24也可采用其他结构形式,如沿输入轴20的周向间隔排布多个凹槽结构或凸起结构,以构造形成叶轮结构24。当然,在省略轴承套22的实施例下,可将叶轮结构24直接设置于轴体部21的后端部的外周面上。
请参阅图1和图2,在定子件30与输入轴20之间以及箱体件10与输入轴20之间均设置油封,利用油封可将前端润滑腔A及后端润滑腔C与工作腔B彻底隔绝;为便于区分和描述,将箱体件10与输入轴20之间的油封定义为前油封71,将定子件30与输入轴20之间的油封定义为后油封72;下面具体说明。
请参阅图1和图2,在轴承套22与轴承座32之间且位于后轴承52面向转子件40的一侧还形成有具有一与后端润滑腔C保持连通或隔离的腔体空间,为便于描述,将该腔体空间定义为后端密封腔D,而后油封72则安装于后端密封腔D内。在输入轴20与后端密封腔D相配合的位置,沿输入轴20的径向设置有自轴承套22的外周表面贯通至第二通道20a的液流孔(将该液流孔定义为第一液流孔20b),利用第一液流孔20b将后端密封腔D的内部空间与第二通道20a连通,以便流经第二通道20a的润滑介质能够经由第一液流孔20b出入后端密封腔D,从而润滑放置于后端密封腔D内的后油封72。
本实施例中,在后端密封腔D内沿输入轴20的轴向布置有两个后油封72,而第一液流孔20b在后端密封腔D内的端口则位于两个后油封72之间的区域内,以便润滑介质能够借助第一液流孔20b进入或填充至两个后油封72之间的空间内,从而确保对后油封72的有效润滑;同时,在输入轴20内沿其径向对称地设置有两个第一液流孔20b,以加大出入后端密封腔D的润滑介质的循环量。
其他实施例中,第一液流孔20b的具体数量和延伸路径也可根据实际需求做具体选择配置,如设置为三个、四个等其他更多数量。后油封72也可设置为一个或其他数量,要点在于:保证油封对工作腔B与后端润滑腔C的隔离密封效果,以及对油封的润滑效果。
请参阅图1和图2,在轴体部21与接合通孔的周壁之间形成有另一个具有一定容积的腔体空间,该腔体空间相当于沿输入轴20的轴向布置于前轴承51面向转子件40的一侧,为便于描述,将该腔体空间定义为前端密封腔E,而前油封71则布置于前端密封腔E内,以利用前油封71将箱体件10的内部空间与外部空间进行隔绝;由于该前端密封腔E形成于轴体部21与接合通孔之间,故可自然地与前端润滑腔A保持连通,故而,可借助前端润滑腔A内的润滑介质对前油封71进行润滑;具体实施时,前油封71可参考后油封72进行选择配置,在此不作赘述。
一个实施例中,请参阅5并结合图1和图2,在箱体件10(具体如前箱体11)的前侧壁外侧(具体如端套结构11a内)还设置有储油槽10b,该储油槽10b沿输入轴20的周向延伸设置,其整体轮廓走向大致呈圆弧状;第一通道10a和前端润滑腔A分别与储油槽10b连通设置,亦可理解为,储油槽10b为液流通道的一部分,亦或者作为第一通道10a的前端口。具体实施时,可通过在端套结构11a内开设液流孔(为便于区分,将该液流孔定义为第二液流孔10c),以将第一管路11b与储油槽10b进行连通,而就第二液流孔10c与第一管路11b组合形成的管路而言,其大致呈“Z”字形走向;同时,储油槽10b内开设另一液流孔(为便于区分,将该液流孔定义为第三液流孔10d),以利用第三液流孔10d将前端润滑腔A与储油槽10b进行连通。
在缓速器与变速箱组合应用时,一方面,变速箱油可首先溅入储油槽10b内,而后再通过储油槽10b分流至第一通道10a和前端润滑腔A;另一方面,也可利用储油槽10b存储一定量的变速箱油,以能够连续地向缓速器(具体如前端润滑腔A、后端润滑腔C等)供给变速箱油,确保对轴承、油封等部件的有效润滑。
需要说明的是,图1和图2中并未示出储油槽10b,仅在图2中用带箭头的粗虚线代表经由储油槽10b进入前端润滑腔A内的润滑介质大致的流动路径或方向。
一个实施例中,请参阅图5,储油槽10b在输入轴20的径向上的截面形状为“U”形或大致呈“U”形的槽体结构;亦或者,将第三液流孔10d或储油槽10b中第三液流孔10d所处的部位在输入轴20的径向上的截面形状为“U”形或大致的“U”形。通过对储油槽10b整体或局部形状的选择配置,既可以使储油槽10b较为独立于前端润滑腔A和第一通道10a,也有利于扩大储油槽10b的容积,加大润滑介质的存储量。
其他实施例中,储油槽10b也可以是由前轴承51、输入轴20以及前箱体11的前侧壁(即:接合通孔与端套结构11a之间的部位)共同围合形成;亦或者,储油槽10b在输入轴20的径向上的截面形状设置为其他几何形状。
考虑到利用变速箱油润滑轴承等部件时,受工作腔B压力高等因素的影响,油封等密封件往往需要承受较高的压力,由于油封的承压能力有限,很容易因油封受损而影响其密封性能、甚至影响缓速器的正常使用。鉴于此,一个实施例中,请参阅图3并结合图2,在工作腔B与后端密封腔D之间还设有引射通道结构,在缓速器工作时,该引射通道结构主要用于通过对工作腔B内的工作介质进行引流,来降低后油封72承受的压力,从而确保后油封72的密封性。
举例来说,可将布置于定子31与轴承座32之间密封元件33(前文已述)的整体轮廓设置为大致的环状结构,密封元件33的外环边缘固定于轴承座32与定子31之间,密封元件33的内环边缘沿输入轴20的轴向经由定子31的轴孔朝向转子件40延伸一定长度,从而形成密封元件33的套体部33a,套体部33a在输入轴20的径向上与输入轴20保持一定的间距,套体部33a的周向端面与转子件40亦保持一定间距,从而可在输入轴20、套体部33a与转子件40之间形成将工作腔B与后端密封腔D连通的第一腔道F;同时,套体部33a与定子31的轴孔内周面保持一定的间距,以形成前端同时与工作腔B及第一腔道F连通的第二腔道G,在定子31的叶片根部设置有将第二腔道G的后端与工作腔B连通的槽孔结构H。以此,即可在工作腔B与后端密封腔D之间构造形成引射通道结构。
当缓速器工作时,工作腔B内的工作介质由于向心力的作用,可经由槽孔结构H和第二腔道G的引流下从定子31所在侧高速射向转子件40,从而在第二腔道G的前端口附近(即:第一腔道F、第二腔道G与工作腔B交界处附近)形成局部高压区,致使第一腔道F和后端密封腔D自然形成低压区;以此,通过引射通道结构对工作腔B内的工作介质进行引流,利用高低压差效应,可有效降低安装于后端密封腔D内的后油封72所承受的压力。
需要说明的是,图3中带箭头的粗实线代表工作介质在引射通道结构的引流下的流动方向或路径。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (10)

  1. 一种液力缓速器,其特征在于,包括:
    箱体件,具有第一通道;
    定子件,固定于所述箱体件内;
    转子件,布置于所述箱体件内,所述转子件与定子件相互配合,以在两者之间形成用于容纳工作介质的工作腔;
    输入轴,具有沿其轴向贯通设置的第二通道,所述输入轴顺序穿设箱体件、转子件和定子件布置;其中,所述转子件与输入轴固定,所述箱体件与输入轴之间以及定子件与输入轴之间均形成有润滑腔;所述第一通道与第二通道连通设置,以形成与所述润滑腔连通的液流通道,所述液流通道用于润滑介质出入润滑腔;以及
    轴承件,布置于所述润滑腔内,所述箱体件和定子件通过对应的轴承件连接输入轴。
  2. 如权利 要求 1 所述的液力缓速器,其特征在于,形成于所述输入轴与定子件之间的润滑腔为后端润滑腔,布置于所述后端润滑腔内的轴承件为后轴承;
    所述输入轴设有叶轮结构,所述叶轮结构沿输入轴的轴向布置于后轴承背向转子件的一侧;所述叶轮结构用于随输入轴旋转时,驱使所述液流通道内的润滑介质出入后端润滑腔,以润滑所述后轴承。
  3. 如权利 要求 2 所述的液力缓速器,其特征在于,所述叶轮结构包括环槽结构,所述环槽结构绕输入轴的轴向开设于输入轴的外周表面。
  4. 如权利 要求 2 所述的液力缓速器,其特征在于,还包括后油封,所述定子件与输入轴之间还形成有后端密封腔,所述后端密封腔沿输入轴的轴向布置于后轴承面向转子件的一侧,所述后油封布置于后端密封腔内,用以隔绝所述工作腔与后端润滑腔。
  5. 如权利 要求 4 所述的液力缓速器,其特征在于,所述工作腔与后端密封腔之间设有将两者连通的引射通道结构,所述引射通道结构用于对工作腔内的工作介质进行引流,以降低所述后油封承受的压力。
  6. 如权利 要求 4 所述的液力缓速器,其特征在于,所述输入轴配合后油封的位置设有将后端密封腔与第二通道连通的第一液流孔,所述第一液流孔用于润滑介质出入后端密封腔,以润滑所述后油封。
  7. 如权利 要求 1 所述的液力缓速器,其特征在于,所述箱体件设有储油槽,所述储油槽与第一通道连通设置,所述储油槽用于存储润滑介质和用于向所述润滑腔供给润滑介质。
  8. 如权利 要求 7 所述的液力缓速器,其特征在于,形成于所述输入轴与箱体件之间的润滑腔为前端润滑腔,布置于所述前端润滑腔内的轴承件为前轴承;
    所述储油槽沿输入轴的周向延伸设置,并沿所述输入轴的轴向布置于箱体件背向转子件的一侧;所述前端润滑腔通过储油槽连通第一通道。
  9. 如权利 要求 1 所述的液力缓速器,其特征在于,所述箱体件包括前箱体和中箱体,所述前箱体与中箱体沿输入轴的轴向相对拼装并密封固定为一体,以在两者之间形成用于容纳所述转子件和定子件的收容空间;其中,所述转子件布置于前箱体;所述定子件布置于中箱体,并与所述前箱体和 / 或中箱体固定;所述第一通道贯通前箱体与中箱体设置,所述输入轴与前箱体之间形成有润滑腔;
    /
    所述定子件包括固定连接的定子和轴承座,所述定子和 / 或轴承座与箱体件固定;所述输入轴包括轴体部和轴承套,所述轴承套套置并固定于轴体部,所述轴承座与轴承套之间形成有润滑腔。
  10. 如权利 要求 1-9 中任一项所述的液力缓速器,其特征在于,所述箱体件被配置成能够匹配连接变速箱的壳体,所述输入轴被配置成能够匹配连接变速箱的动力端,以使所述液流通道能够与变速箱的内部连通,从而使变速箱的内部油液作为润滑介质在所述液力缓速器与变速箱之间循环流动。
PCT/CN2022/132942 2022-03-31 2022-11-18 一种液力缓速器 WO2023185009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210346052.9A CN114718969A (zh) 2022-03-31 2022-03-31 一种液力缓速器
CN202210346052.9 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185009A1 true WO2023185009A1 (zh) 2023-10-05

Family

ID=82241248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132942 WO2023185009A1 (zh) 2022-03-31 2022-11-18 一种液力缓速器

Country Status (2)

Country Link
CN (1) CN114718969A (zh)
WO (1) WO2023185009A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704564B (zh) * 2022-03-31 2024-06-14 贵阳丽天苍泰科技有限公司 一种液力缓速器
CN114718969A (zh) * 2022-03-31 2022-07-08 贵阳丽天苍泰科技有限公司 一种液力缓速器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673735A (zh) * 2016-03-01 2016-06-15 宁波华盛联合制动科技有限公司 一种液力缓速器的油封润滑结构
CN105909696A (zh) * 2016-06-22 2016-08-31 陕西法士特齿轮有限责任公司 一种花键轴及基于该花键轴的缓速器油路结构及润滑方法
CN109578467A (zh) * 2018-12-06 2019-04-05 陕西法士特汽车传动集团有限责任公司 一种液力缓速器
CN213064414U (zh) * 2020-08-19 2021-04-27 一汽解放汽车有限公司 一种液力缓速器
DE102020107733A1 (de) * 2020-03-20 2021-09-23 Voith Patent Gmbh Retarder mit gekühltem Dichtungssystem
CN114718969A (zh) * 2022-03-31 2022-07-08 贵阳丽天苍泰科技有限公司 一种液力缓速器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950100B2 (ja) * 1993-05-10 1999-09-20 トヨタ自動車株式会社 電気自動車用パワートレーンの潤滑装置
KR200406256Y1 (ko) * 2005-10-26 2006-01-20 (주)엠에스정밀 자동변속기의 메인샤프트 오일순환구조
DE102007029018A1 (de) * 2007-06-23 2009-01-02 Voith Patent Gmbh Hydrodynamische Maschine
DE102018122937A1 (de) * 2018-09-19 2020-03-19 Voith Patent Gmbh Hydrodynamischer Retarder mit Synchronisation
CN110848291A (zh) * 2019-12-10 2020-02-28 长春中誉集团有限公司 一种用于液力缓速器的前壳体
CN111043198B (zh) * 2020-02-22 2024-07-05 富奥汽车零部件股份有限公司 一种定子前置液力缓速器
DE102020107729B3 (de) * 2020-03-20 2021-06-10 Voith Patent Gmbh Retarder mit gekühltem Dichtungssystem

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673735A (zh) * 2016-03-01 2016-06-15 宁波华盛联合制动科技有限公司 一种液力缓速器的油封润滑结构
CN105909696A (zh) * 2016-06-22 2016-08-31 陕西法士特齿轮有限责任公司 一种花键轴及基于该花键轴的缓速器油路结构及润滑方法
CN109578467A (zh) * 2018-12-06 2019-04-05 陕西法士特汽车传动集团有限责任公司 一种液力缓速器
DE102020107733A1 (de) * 2020-03-20 2021-09-23 Voith Patent Gmbh Retarder mit gekühltem Dichtungssystem
CN213064414U (zh) * 2020-08-19 2021-04-27 一汽解放汽车有限公司 一种液力缓速器
CN114718969A (zh) * 2022-03-31 2022-07-08 贵阳丽天苍泰科技有限公司 一种液力缓速器

Also Published As

Publication number Publication date
CN114718969A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2023185009A1 (zh) 一种液力缓速器
EP3957821B1 (en) Hydraulic machine with stepped roller vane and fluid power system including hydraulic machine with starter motor capability
JP5214644B2 (ja) 自動変速機用オイルポンプの空気抜き構造
US20100011896A1 (en) Automatic transmission
CN102996749B (zh) 用于有限滑动差动组件的有效冷却***
CA1246472A (en) Fan clutch
CN107100991B (zh) 一种变速箱
CN103016697B (zh) 一种改进的差速器润滑装置
US6860366B2 (en) Oil passage structure in rotary shaft
WO2023185010A1 (zh) 一种液力缓速器
US10876620B2 (en) Vacuum driven hydraulic balance system
CN212985978U (zh) 一种行星轮系减速机构的润滑结构及行星轮系减速机
US8316640B2 (en) Drain structure of torque converter
CN201090719Y (zh) 轮式装载机动力换挡变速箱支承轴承润滑结构
CN104285086A (zh) 用于转矩变换器的密封组件
CN114321323A (zh) 齿轮装置
CN216742504U (zh) 动力传递装置、电驱动总成***和车辆
CN211166441U (zh) 变速器及汽车
EP3850247A1 (en) Planetary gearset and a vehicle or stationary unit comprising such gearset
CN213808065U (zh) 一种具备反转保护功能的液压泵、变速器及汽车
JP2767523B2 (ja) タンデム式駆動軸の潤滑装置
CN219691666U (zh) 具有冲洗功能的液压马达
CN216241549U (zh) 一种液压马达轴承润滑***及作业机械
JPH10281266A (ja) 終減速装置およびその組立方法
CN116647081B (zh) 一种驱动总成冷却润滑***及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934827

Country of ref document: EP

Kind code of ref document: A1