WO2023184838A1 - 动力头及旋挖钻机 - Google Patents

动力头及旋挖钻机 Download PDF

Info

Publication number
WO2023184838A1
WO2023184838A1 PCT/CN2022/114671 CN2022114671W WO2023184838A1 WO 2023184838 A1 WO2023184838 A1 WO 2023184838A1 CN 2022114671 W CN2022114671 W CN 2022114671W WO 2023184838 A1 WO2023184838 A1 WO 2023184838A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
power
power output
output member
transmission
Prior art date
Application number
PCT/CN2022/114671
Other languages
English (en)
French (fr)
Inventor
张飞
于卓伟
马宁
Original Assignee
北京三一智造科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210353455.6A external-priority patent/CN114838091A/zh
Priority claimed from CN202210603199.1A external-priority patent/CN114992285A/zh
Application filed by 北京三一智造科技有限公司 filed Critical 北京三一智造科技有限公司
Publication of WO2023184838A1 publication Critical patent/WO2023184838A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B3/00Rotary drilling
    • E21B3/02Surface drives for rotary drilling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/20Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members
    • F16H1/22Toothed gearings for conveying rotary motion without gears having orbital motion involving more than two intermeshing members with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion

Definitions

  • the invention relates to the technical field of engineering machinery, and in particular to a power head and a rotary drilling rig.
  • this application provides a power head and rotary drilling rig, which can realize full casing construction, simplify the structure, avoid disassembly and assembly, and bring convenience to the management, control and transportation of the machine.
  • a power head including:
  • the power input shaft extends into the reduction box
  • a first power output member is provided in the reduction box and is geared with the power input shaft;
  • a torque increasing mechanism is provided in the reduction box, and the torque increasing mechanism includes a second power output member;
  • the power input shaft transmits power to the first power output member, it also transmits it to the torque increasing mechanism.
  • the torque increasing mechanism increases the torque of the power and then outputs it from the second power output member.
  • the torque increasing mechanism includes: a transmission gear shaft geared to the power input shaft;
  • the second power output member is geared to the transmission gear shaft.
  • opposite ends of the transmission gear shaft are respectively supported on the reduction box.
  • a driving gear is provided on the power input shaft, and a first driven gear is provided on the first power output member.
  • the first driven gear meshes with the driving gear. , realizing gear transmission between the first power output member and the power input shaft.
  • the transmission path formed by the power input shaft, the transmission gear shaft and the second power output member includes multiple meshing gear sets.
  • different The number of teeth of the gear increases sequentially according to the transmission sequence.
  • the plurality of meshing gear sets include a first meshing gear set, and the first meshing gear set includes:
  • a driving gear arranged on the power input shaft
  • a first transmission gear is arranged on the transmission gear shaft and meshes with the driving gear, and the number of teeth of the first transmission gear is greater than the number of teeth of the driving gear.
  • the plurality of meshing gear sets include a second meshing gear set, and the second meshing gear set includes:
  • a second transmission gear is provided on the transmission gear shaft, and the number of teeth is smaller than the number of teeth of the first transmission gear
  • a second driven gear is disposed on the second power output member and meshes with the second transmission gear, and has a greater number of teeth than that of the second transmission gear.
  • the number of teeth of the second transmission gear is smaller than the number of teeth of the driving gear.
  • the torque increasing mechanism is a planetary gear mechanism
  • the ring gear of the planetary gear mechanism is fixedly provided on the reduction box
  • the planet carrier of the planetary gear mechanism is connected with the first power
  • the output member is connected
  • the sun gear of the planetary gear mechanism is the second power output member.
  • a plurality of planet gear sets are arranged circumferentially on the planet carrier, and each of the planet gear sets includes a first planet wheel and a first planet wheel that are rotatably disposed on the planet carrier and mesh with each other.
  • the first power output member is a sleeve with a penetrating inner cavity;
  • the planet carrier is a coaxial annular carrier fixed at the bottom end of the sleeve; and
  • the sun gear is a coaxial ring carrier.
  • the shaft is arranged on the hollow wheel on the bottom side of the sleeve.
  • the rotation directions of the first power output member and the second power output member are opposite.
  • both the first power output member and the second power output member are sleeves with a through-hole cavity, and the first power output member is coaxially disposed on the second power output member. The top of the power take-off piece.
  • the top end of the first power output member extends to the outside of the reduction box and is connected to a key sleeve cylinder.
  • the key sleeve cylinder includes: a cylinder, and the The first power output member is fixedly connected and arranged coaxially; the splines are protrudingly arranged on the inner wall of the barrel;
  • the bottom end of the second power output member extends to the outside of the reduction box and is provided with a pin hole.
  • the power head further includes a reducer, and the output shaft of the reducer is the power input shaft extending into the reduction box;
  • the reduction box is connected with a connecting component
  • the connecting component includes: a sliding frame; two connecting frames connecting the sliding frame and the reducing box, and the two connecting frames are respectively located on both sides of the reducing box. and set correctly.
  • a rotary drilling rig including a drill rod, a casing, and a dual-output power head that drives the drill rod and the casing to rotate.
  • the dual-output power head is the above-mentioned power head;
  • the drill rod passes through the first power output member and the second power output member of the power head, wherein the first power output member is configured to drive the drill rod to rotate, and the second power output member is configured to To be able to drive the casing to rotate.
  • both the first power output part and the torque increasing mechanism with the second power output part are arranged in the reduction box, that is, the torque increasing mechanism is integrated into the power head.
  • the torque increasing mechanism is integrated into the power head.
  • the power head structure can greatly simplify the overall structure and reduce the volume, and there is no need to disassemble and assemble the power head. It also enhances the convenience of disassembly and assembly of the machine for long-distance transportation and temporary transfer. Simplify and facilitate the electrical connection and hydraulic control of the machine, the layout of the centralized lubrication system, etc.
  • Figure 1 is a front view of a power head provided by an embodiment of the present application.
  • Figure 2 is a top view of the power head shown in Figure 1;
  • Figure 3 is a cross-sectional view along line A-A of Figure 2;
  • Figure 4 is an isometric view of the driving gear, the first transmission gear, the second transmission gear, the first driven gear and the second driven gear;
  • Figure 5 is a front view of a power head provided by another embodiment of the present application.
  • Figure 6 is a cross-sectional view along line A-A of Figure 5;
  • Figure 7 is a top view of the power head shown in Figure 5;
  • Figure 8 is a B-B cross-sectional view of Figure 7;
  • Figure 9 is a schematic structural diagram of a rotary drilling rig according to an embodiment of the present application.
  • Figure 10 is a structural schematic diagram of the cooperation between the power head, drill pipe and casing.
  • 1-Reduction box 2-Power input shaft; 3-First power output part; 4-Transmission gear shaft; 5-Second power output part; 6-Driving gear; 7-First driven gear; 8-First Transmission gear; 9-second transmission gear; 10-second driven gear; 11-key sleeve body; 12-pin hole; 13-reducer; 14-connection component; 15-slewing bearing; 16-mast; 17-drill pipe; 18-casing; 19-wire rope; 20-driving flower tube; 111-cylinder; 112-spline; 141-sliding frame; 142-connecting frame; 143-support arm; 1411-chute; 1421 -First connecting arm; 1422-Second connecting arm; 1423-Third connecting arm; 30-Twist increasing mechanism; 31-Ring gear; 32-Planet carrier; 33-Sun gear; 34-First planet gear; 35- The second planet wheel; 36-the first circle; 37-the second circle; 38-slewing bearing.
  • the power head includes:
  • the power input shaft 2 extends into the reduction box 1;
  • the first power output part 3 is arranged in the reduction box 1 and is geared to the power input shaft 2;
  • a torque-increasing mechanism is provided in the reduction box 1, and the torque-increasing mechanism includes a second power output member 5;
  • the torque increasing mechanism increases the torque of the power and then outputs it from the second power output member 5.
  • the reduction box 1 is used to accommodate and install the components connected to the output shaft of the reducer 13.
  • the power input shaft 2 is a component that transmits power to the reduction box 1. It can be the output shaft of the reducer 13, or it can be a shaft coaxially connected to the output shaft of the reducer.
  • the power input shaft 2 is arranged in the reduction box 1 inside; the first power output part 3 is one of the power output parts of the power head, which is also arranged in the reduction box 1 (since the top of the first power output part 3 is located outside the reduction box 1 as described in the following content, this
  • the "first power output member 3 is arranged in the reduction box 1" mentioned in the application can be understood as: a larger part of the first power output member 3 is arranged in the reduction box 1, or the main structure of the first power output member 3 It is arranged in the reduction box 1.
  • This first power output member 3 is used to drive the drill pipe 17 of a rotary drilling rig, for example; the second power output member 5 is another power output of the power head.
  • the second power output member 5 is, for example, used to drive the casing 18 of the rotary drilling rig.
  • the top end of the first power output member 3 can extend to the outside of the reduction box 1 and is connected to a key sleeve body 11.
  • the key sleeve body 11 includes: a cylinder body 111, and the first power output member 3. 3 are fixedly connected and arranged coaxially; the splines 112 are protrudingly arranged on the inner wall of the cylinder 111.
  • the bottom end of the second power output member 5 extends to the outside of the reduction box 1 and is provided with a pin hole 12 .
  • the drill rod 17 of the rotary drilling rig passes through the key sleeve body 11 of the power head, the first power output part 3, and the second power output part 5 from top to bottom. While passing through, the key sleeve body 11 and the drill pipe 17 are positioned circumferentially, so that the power head and the drill pipe 17 can be matched, so that the first power output member 3 drives the drill pipe 17 .
  • the bottom end of the second power output member 5 can be inserted into the pin hole 12 through the pin shaft to connect the driving flower tube 20.
  • the driving flower tube 20 is then connected to the protective tube 18, so that the torque output by the second power output member 5 can be transmitted to the protective tube 18.
  • Barrel 18 drives the casing 18 to rotate.
  • both the first power output part 3 and the torque-increasing mechanism with the second power output part 5 are arranged in the reduction box 1, that is, the torque-increasing mechanism is integrated into the power head.
  • the torque-increasing mechanism is integrated into the power head.
  • the power head structure can greatly simplify the overall structure and reduce the volume, and the power head no longer requires disassembly and assembly operations, which enhances the convenience of disassembly and assembly of the machine for long-distance transportation and temporary transfers, and can also perform maintenance on the entire machine. Simplify and facilitate the electrical connections and hydraulic controls, and the layout of the centralized lubrication system.
  • the torque increasing mechanism includes: a transmission gear shaft 4 that is geared to the power input shaft 2 , and the second power output member 5 is geared to the transmission gear shaft 4 .
  • the opposite ends of the transmission gear shaft 4 are supported on the reduction box 1 respectively.
  • the embodiment of the present application provides a power head, which mainly includes a reduction box 1, a power input shaft 2, a first power output part 3, a transmission gear shaft 4 and a second power output Part 5, in which the transmission gear shaft 4 is a specially added component in the reduction box 1, and is gear-driven with both the power input shaft 2 and the second power output member 5, so that the power passes from the power input shaft 2 through the transmission gear shaft 4 During the process of being transmitted to the second power output member 5 , the power can be increased in torque, so that the torque output by the second power output member 5 is greater than the input torque of the power input shaft 2 , or even greater than the torque output by the first power output member 3 . That is to say, the transmission gear shaft 4, the second power output member 5 and the connected gear transmission components serve as a torque increasing mechanism, capable of increasing the torque of the power transmitted to the second power output member 5.
  • the above-mentioned dual output power head by adding a transmission gear shaft 4 and integrating the transmission gear shaft 4 in the reduction box 1, can not only increase the output torque of the dual output power head and meet the needs of the full casing 18 construction, but also
  • the structure can be simplified through integrated settings, eliminating the need for additional external auxiliary equipment, avoiding disassembly and assembly, and bringing convenience to the management, control and transportation of the machine.
  • the structure of using the transmission gear shaft 4 to increase the torque can simplify the structure, reduce the weight, and improve the structural reliability compared with the structure of using the planetary gear mechanism to increase the torque in the prior art.
  • the present application also reverses the rotation directions of the first power output member 3 and the second power output member 5 .
  • the dual output power head is installed on the mast 16 of the rotary drilling rig to drive the drill pipe 17 and the casing 18 to rotate.
  • the mast 16 serves as a component for setting and supporting the dual output power head.
  • the dual output power head will exert a force on the mast 16 in the opposite direction to the rotation direction of the drill pipe 17, which will affect the balance stability of the rotary drilling rig.
  • this application makes the first power output part 3 and the second power output part 5 rotate in opposite directions, so that the rotation directions of the casing 18 and the drill pipe 17 can be opposite, and construction can be performed simultaneously.
  • the counter-rotating casing 18 and drill pipe 17 can offset the reaction forces generated by each other, so that the reaction force borne by the mast 16 is reduced or even disappears, thereby significantly improving the working stability of the rotary drilling rig.
  • a driving gear 6 can be provided on the power input shaft 2
  • a first driven gear 7 can be provided on the first power output member 3
  • the first driven gear 7 can be provided on the first power output member 3.
  • the gear 7 meshes with the driving gear 6 to realize gear transmission between the first power output member 3 and the power input shaft 2 . That is to say, the transmission between the power input shaft 2 and the first power output member 3 is directly realized through two mutually meshing gears, thereby simplifying the structure of the dual-output power head to the greatest extent while ensuring reliable transmission. .
  • the present application also makes the number of teeth of the first driven gear 7 larger than the number of teeth of the driving gear 6, so that the rotation speed of the first driven gear 7 is smaller than the rotation speed of the driving gear 6, that is, deceleration and torque increase are achieved. In this way, the power output by the first power output member 3 is also decelerated and torque is increased, so that the drill pipe 17 can be driven more reliably.
  • this application also makes the diameter of the first driven gear 7 larger than the diameter of the driving gear 6. The reason for this arrangement is because the first driven gear 7 has a larger diameter than the driving gear 6.
  • the gear 7 is sleeved on the first power output member 3, and the first power output member 3 is preferably a sleeve with a larger diameter (see the following content), so the first driven gear 7 also needs to have a larger diameter. Only then can the installation on the first power output member 3 be realized.
  • the transmission path composed of the power input shaft 2, the transmission gear shaft 4 and the second power output member 5 includes multiple meshing gear sets.
  • any meshing gear set different gears are The number of teeth increases in the transmission sequence. That is to say, in the direction of power transmission, among the multiple gears included in any meshing gear set, the number of teeth of the downstream gear is greater than the number of teeth of the upstream gear with which it meshes. Since the number of teeth of the downstream gear is greater than the number of teeth of the upstream gear, the number of teeth of the downstream gear is The rotational speed will be smaller than the rotational speed of the upstream gear, that is, the downstream gear rotates slower than the upstream gear.
  • the two meshing gear sets are a first meshing gear set and a second meshing gear set respectively.
  • the first meshing gear set includes: a driving gear 6, which is arranged on the power input shaft 2; a first transmission gear 8, which is arranged on the transmission gear shaft 4 and meshes with the driving gear 6, and the number of teeth of the first transmission gear 8 is greater than The number of teeth of driving gear 6.
  • the second meshing gear set includes: a second transmission gear 9, which is provided on the transmission gear shaft 2, and the number of teeth of the second transmission gear 9 is smaller than the number of teeth of the first transmission gear 8; a second driven gear 10, which is provided on the second power
  • the output member 5 is in mesh with the second transmission gear 9 , and the number of teeth of the second driven gear 10 is greater than the number of teeth of the second transmission gear 9 .
  • the gear transmission between the power input shaft 2 and the transmission gear shaft 4 is realized through the meshing of the driving gear 6 and the first transmission gear 8. Since the power is transmitted from the power input shaft 2 to the transmission gear shaft 4, That is, the power is transmitted from the driving gear 6 to the first transmission gear 8, and the power transmission direction is from the driving gear 6 to the first transmission gear 8. That is to say, the driving gear 6 is the upstream gear, and the first transmission gear 8 is the downstream gear, so The number of teeth of the first transmission gear 8 is greater than the number of teeth of the driving gear 6, thus achieving one-stage reduction and torque increase.
  • the gear transmission of the transmission gear shaft 4 and the second power output member 5 is realized through the meshing of the second transmission gear 9 and the second driven gear 10. Since the power is transmitted from the transmission gear shaft 4 to The second power output member 5 is transmitted from the second transmission gear 9 to the second driven gear 10.
  • the transmission direction of the power is from the second transmission gear 9 to the second driven gear 10. That is to say, the second transmission gear 9 is the upstream gear, and the second driven gear 10 is the downstream gear, so the number of teeth of the second driven gear 10 is greater than the number of teeth of the second transmission gear 9, thus achieving two-stage reduction and torque increase.
  • the gap in the number of teeth between the second transmission gear 9 and the second driven gear 10 can be further increased under the premise that the two rotate at the same speed. , making the increasing effect of secondary deceleration and torque more prominent.
  • the structure used to realize the output power deceleration and torque increase of the second power output member 5 is:
  • the power input shaft 2 is provided with a driving gear 6, the transmission gear shaft 4 is provided with a first transmission gear 8 and a second transmission gear 9, and the second power output member 5 is provided with a second driven gear 10, wherein: the first The transmission gear 8 meshes with the driving gear 6 to realize gear transmission between the transmission gear shaft 4 and the power input shaft 2; the second transmission gear 9 meshes with the second driven gear 10 to realize the gear transmission between the transmission gear shaft 4 and the second power output member. 5 gear transmission; and, the number of teeth of the first transmission gear 8 is greater than the number of teeth of the driving gear 6 , and the number of teeth of the second driven gear 10 is greater than the number of teeth of the second transmission gear 9 .
  • the power input shaft 2 drives the driving gear 6 to rotate, and the driving gear 6 drives the first transmission gear 8 meshed with it to rotate.
  • the first transmission gear 8 is provided on the transmission gear shaft 4
  • the second transmission gear 9 is also provided on the transmission gear shaft 4. on the transmission gear shaft 4, so the second transmission gear 9 will rotate synchronously with the first transmission gear 8, thereby driving the second driven gear 10 meshed with the second transmission gear 9 to rotate.
  • the second driven gear 10 is arranged on the on the second power output member 5 , so the second driven gear 10 can drive the second power output member 5 to rotate synchronously, thus realizing the transmission of power from the power input shaft 2 to the second power output member 5 .
  • the number of teeth of the first transmission gear 8 can be greater than the number of teeth of the driving gear 6, so that the rotation speed of the first transmission gear 8 is smaller than the rotation speed of the driving gear 6, so that deceleration can be achieved. increase the torque; at the same time, the number of teeth of the second driven gear 10 is greater than the number of teeth of the second transmission gear 9, so that the rotation speed of the second driven gear 10 is smaller than the rotation speed of the second transmission gear 9, so that between the first transmission gear 8 and the On the basis of the first-level torque increase between the driving gears 6, the second-level torque increase is achieved between the second driven gear 10 and the second transmission gear 9, so that the power output by the second power output member 5 can be obtained. A greater degree of torque increase improves the performance of the dual-output power head.
  • this application also makes the diameter of the second driven gear 10 greater than the diameter of the second transmission gear 9, because the second driven gear 10 It is sleeved on the second power output member 5, and the second power output member 5 is preferably a sleeve with a larger diameter (see the following content), so the second driven gear 10 also needs to have a larger diameter.
  • the installation on the second power output part 5 is realized.
  • the present application also makes the number of teeth of the second transmission gear 9 smaller than the number of teeth of the driving gear 6 .
  • the second transmission gear 9 meshes with and transmits the second driven gear 10
  • the driving gear 6 meshes with and transmits the first driven gear 7,
  • the second transmission gear 9 and the second driven gear 7 mesh and transmit.
  • the respective dimensional parameters of the moving gear 10 need to meet the requirements of meshing with each other to achieve normal transmission.
  • the respective dimensional parameters of the driving gear 6 and the first driven gear 7 also need to meet the requirements of meshing with each other to achieve normal transmission. Therefore, it is necessary to meet the requirements of meshing with each other.
  • the diameter of the second driven gear 10 can be made larger than the diameter of the first driven gear 7, thereby making the second power output member 5 can realize the driving of the casing more reliably.
  • the two power output members 5 are transmitted through the second transmission gear 9 and the second driven gear 10 that mesh with each other, so the rotation directions of the transmission gear shaft 4 and the second power output member 5 are opposite, that is, the power input shaft 2 and the second power output
  • the rotation direction of the member 5 is opposite to that of the transmission gear shaft 4, so the rotation directions of the two parts are the same. Since the rotation directions of the first power output member 3 and the power input shaft 2 are opposite, and the rotation directions of the second power output member 5 and the power input shaft 2 are the same, the aforementioned first power output member 3 and the second power output are realized.
  • the direction of rotation of piece 5 is opposite.
  • the first power output member 3 and the second power output member 5 are both sleeves with penetrating inner cavities, and the first power output member 3 is coaxially disposed on the second power output member 3.
  • the top of the power output member 5 and the transmission gear shaft 4 are arranged in parallel outside the first power output member 3 and the second power output member 5 .
  • the reason why both the first power output member 3 and the second power output member 5 are sleeves is to enable the drill rod 17 to pass through the interior thereof, which is conducive to cooperation with the drill rod 17.
  • the external setting method allows the components to be set more compactly, reducing the size of the dual-output power head.
  • the drill pipe 17 passes through the first power output member 3 and the second power output member 5, the drill pipe 17, the first power output member 3, the second power output member 5 and the second power output member 5 are The connected sheaths are all coaxially arranged to improve the force balance of each component, allowing the dual-output power head and rotary drilling rig to work more reliably.
  • the first power output part 3 and the second power output part 5 can also be solid parts, and the drill pipe 17 is arranged in parallel on its sides.
  • the casing 18 and the drill pipe 17 can be successfully sleeved during the construction of the full casing 18, that is, the drill pipe 17 driven by the first power output member 3 and the drill pipe 17 driven by the second power output can be realized.
  • the coaxial arrangement of the casing 18 driven by part 5 makes the structure of the dual-output power head and the rotary drilling rig more compact and the working stability higher.
  • the transmission gear shaft 4 is arranged in parallel outside the first power output member 3 and the second power output member 5, so that the transmission gear shaft 4 and the drill rod 17 are located inside and outside the sleeve respectively, which can avoid the transmission gear shaft 4 and the The drill pipe 17 interferes, which is more conducive to the layout and cooperation between components.
  • the first power output member 3 and the second power output member 5 can also have larger inner diameters, and the power input shaft 2 and the transmission gear shaft 4 can be disposed between the first power output member 3 and the second power output member 5
  • the power input shaft 2 and the transmission gear shaft 4 realize gear transmission through the internal ring gears provided on the inner walls of the first power output part 3 and the second power output part 5.
  • the drill rod 17 also passes through the first power output part 3 and the second power output part 5.
  • a slewing bearing 15 is also installed between the second driven gear 10 and the first power output member 3 , to achieve the transfer of pressure.
  • the top end of the first power output member 3 extends to the outside of the reduction box 1 and is connected to a key sleeve body 11.
  • the key sleeve body 11 includes: a cylinder body 111, Fixedly connected to the first power output member 3 and arranged coaxially; the splines 112 are protrudingly arranged on the inner wall of the cylinder 111.
  • the top end of the first power output member 3 extends from the top of the reduction box 1 and is used to output power to the drill pipe 17, and through
  • the key sleeve body 11 and the drill pipe 17 are circumferentially positioned (because the drill pipe 17 needs to be drilled into the ground, that is, the drill pipe 17 needs to move axially, so the connection between the drill pipe 17 and the key sleeve body 11 is only circumferentially connected to the drill pipe 17 Positioning to ensure that the drill pipe 17 can be rotated normally without affecting the downward movement of the drill pipe 17 axis).
  • the cylinder 111 when the cylinder 111 is fixedly connected to the first power output member 3, bolts are used to coaxially fix the cylinder 111 to the top of the transmission sleeve.
  • the splines 112 provided on the inner wall of the cylinder 111 can be connected to the cylinder 111.
  • the integrated structure can also be a split structure that is connected to the barrel 111 through assembly.
  • this application prefers that the spline 112 and the barrel 111 have a split structure, and the inner wall of the barrel 111 is provided with a spline for connecting with the spline.
  • the spline 112 When the spline 112 is installed in the groove, it simultaneously extends into the key bar of the drill pipe 17, and transmits the torque and pressure output by the dual output power head to the drill pipe 17 by cooperating with the key bar. , so that the drill pipe 17 can rotate synchronously with the first power output member 3 .
  • the bottom end of the second power output member 5 extends to the outside of the reduction box 1 and is provided with a pin hole 12 . Since the second power output member 5 is disposed at the bottom of the first power output member 3 , in this application, the bottom end of the second power output member 5 extends from the bottom of the reduction box 1 and is used to output power to the casing 18 .
  • the pin hole 12 provided at the bottom end of the second power output member 5 is used to connect with the pin shaft. Through the cooperation of the pin shaft and the pin shaft hole 12, the connection between the second power output member 5 and the driving fascia 20 described later is achieved.
  • a reducer 13 is provided on the top of the reduction box 1.
  • the output shaft of the reducer 13 is the power input shaft 2 extending into the reduction box 1, and there are two reducers 13.
  • two transmission gear shafts 4 are also provided.
  • the two transmission gear shafts 4 are respectively geared to the output shafts of different reducers 13 through the first transmission gears 8 provided on them, and the two transmission gear shafts 4 are configured through
  • the second transmission gears 9 on each are geared to the second power output member 5, so that the power head has greater output power.
  • the reduction box 1 is also connected to a connecting component 14.
  • the connecting component 14 includes: a sliding frame 141; a plurality of connecting frames 142 connecting the sliding frame 141 and the reducing box 1. All connecting frames 142 They are respectively located on both sides of the reduction box 1 and are arranged in alignment. Among them, there can be two connecting frames 142, and the two connecting frames 142 are aligned on both sides of the reduction box 1.
  • the connecting frames 142 can be a planar frame made of slats connected in the same plane, or a flat plate. Formed by cutting, drilling and other operations.
  • the connecting frame 142 includes a first connecting arm 1421 for connecting to the outer wall of the reduction box 1, a second connecting arm 1422 that is vertically connected to the first connecting arm 1421 and located at one end of the first connecting arm 1421, and a second connecting arm 1422 connected to the first connecting arm 1421. And the third connecting arm 1423 of the second connecting arm 1422, the three connecting arms form a right triangle shape to improve the connection firmness.
  • a support arm 143 can also be provided between two aligned connecting brackets 142, as shown in FIG. 2 .
  • the sliding frame 141 is connected to the second connecting arm 1422 and is located in a position aligned with the reduction box 1 , that is, the two connecting frames 142 are also located on both sides of the sliding frame 141 .
  • the sliding frame 141 is provided with a sliding groove 1411 .
  • the extending direction of the sliding groove 1411 is parallel to the axis of the first power output member 3 .
  • the sliding groove 1411 is used to accommodate and slidingly connect the guide rails provided on the mast 16 .
  • the torque increasing mechanism may also have other structural forms.
  • a power head with a torque increasing mechanism provided by another embodiment of the present application will be described in detail below based on FIGS. 5-8 .
  • the embodiment of the present application provides a power head.
  • the power head includes: a reduction box 1.
  • This reduction box 1 is used to accommodate and install a reducer 13 (the reducer 13 is the power head).
  • the first power output part 3 is arranged in the reduction box 1, specifically in the reduction box 1 so that it can rotate around its own axis, so as to Receive the power transmitted from the reducer 13; when the first power output member 3 is set in the reducer 1, one end thereof extends to the outside of the reducer 1 (because the first power output 3 has a smaller part located in the reducer 1 outside, so the "first power output member 3 is disposed in the reduction box 1" mentioned in this application can be understood as: a larger part of the first power output member 3 is disposed in the reduction box 1, or the first power output
  • the main structure of the component 3 is arranged in the reduction box 1.
  • the sun gear 33 described below is the same as the first power output end.
  • This first power output end is, for example, used to drive the drill pipe 17 of the rotary drilling rig; the power head It also includes a torque-increasing mechanism 30.
  • the torque-increasing mechanism 30 When the torque-increasing mechanism 30 is installed on the power head, it is arranged inside the reduction box 1, that is, the torque-increasing mechanism 30 and the power head are integrated into a whole, so that the torque-increasing mechanism 30 becomes the power head.
  • the torque increasing mechanism 30 is connected to the first power output member 3, so that the first power output member 3 transmits power to the torque increasing mechanism 30, and this part of the power passes through the torque increasing mechanism 30.
  • the second power output member 5 After deceleration and torque increase, the second power output member 5 extending from the torque increase mechanism 30 to the outside of the reduction box 1 is output. This second power output member 5 is used to drive the casing 18 of the rotary drilling rig, for example
  • the present application also reverses the rotation directions of the second power output member 5 and the first power output member 3 .
  • the power head is set on the mast 16 of the rotary drilling rig to drive the drill pipe 17 and the casing 18 to rotate.
  • the mast 16 serves as a component for setting and supporting the power head.
  • the power head The head will exert a force on the mast 16 opposite to the rotation direction of the drill pipe 17, which will affect the balance stability of the rotary drilling rig. Therefore, in order to improve the working stability of the rotary drilling rig, this application reverses the rotation directions of the second power output member 5 and the first power output member 3, that is, the rotation directions of the second power output member 5 and the first power output end are reversed.
  • the rotation directions of the casing 18 and the drill pipe 17 can be opposite.
  • the counter-rotating casing 18 and the drill pipe 17 can offset the reaction forces generated by each other, so that the reaction force borne by the mast 16 is reduced. Small or even disappear, thereby significantly improving the working stability of the rotary drilling rig.
  • the torque increasing mechanism 30 is preferably a planetary gear mechanism, and the ring gear 31 of the planetary gear mechanism is fixedly provided on the reduction box 1.
  • the ring 31 is set as a partial circumferential side wall of the reduction box 1
  • the planet carrier 32 of the planetary gear mechanism is the power input member of the planetary gear mechanism connected to the first power output member 3
  • the sun gear 33 of the planetary gear mechanism is the The second power output part 5.
  • the planetary gear mechanism has a central axis (i.e., the axis of the sun gear 33 ) component, so it can be conveniently arranged coaxially with the first power output part 3, so that the planetary gear mechanism, as a component of the power head, can better cooperate with the power head and other components of the rotary drilling rig, that is, it can be realized
  • the coaxial arrangement of the drill rod 17 driven by the first power output part 3 and the casing 18 driven by the planetary gear mechanism makes the structure of the power head and the rotary drilling rig more compact and the working stability higher.
  • the torque increasing mechanism 30 may also be of other structures, such as a large gear or a large ring gear with a larger number of teeth meshing with the gear on the first power output member 3 .
  • the torque increasing mechanism 30 is a planetary gear mechanism, as shown in Figure 8
  • the planet carrier 32 of the planetary gear mechanism is further used as the power input part, and the sun gear 33 is the power output part, and the ring gear 31 is fixed It is installed on the inner wall of the reduction box 1.
  • the planet carrier 32 is connected to the first power output member 3 , for example, the planet carrier 32 is fixedly connected to the first power output member 3 using bolts to achieve synchronization of the planet carrier 32 and the first power output member 3 .
  • the sun gear 33 rotates, and the sun gear 33 realizes the rotation setting in the reduction box 1 through the slewing bearing 38 arranged between the sun gear 33 and the bottom wall of the reduction box 1 and between the sun gear 33 and the planet carrier 32 , and with the planet.
  • the planet gears provided on the planet carrier 32 are meshed with the ring gear 31 and the sun gear 33.
  • the first power output part 3 drives the planet carrier 32 as the power input part to rotate. Since the ring gear 31 is fixed on the reduction box 1, the meshing transmission between the planet gear, the ring gear 31 and the sun gear 33 Next, the sun gear 33 serving as the second power output member 5 is driven to rotate. In this way, the torque transmitted from the first power output member 3 is amplified through the deceleration meshing transmission of the ring gear 31, the planet gear and the sun gear 33, so as to achieve the purpose of decelerating and increasing torque.
  • the planetary gear mechanism can adopt a traditional power transmission method, that is, multiple power transmission modes provided on the planet carrier 32
  • the planetary gears do not interfere with each other, and each independently working planetary gear is meshed with the ring gear 31 and the sun gear 33.
  • the planet carrier 32 as the power input member and the sun gear 33 as the power output member rotate in the same direction.
  • the planetary gear mechanism can be improved as follows.
  • the planet carrier 32 is provided with multiple planetary gear sets in the circumferential direction.
  • Each planetary gear set includes a first planet gear 34 and a second planet gear 35 that are rotatably arranged on the planet carrier 32 and mesh with each other.
  • the first planet gear 34 meshes with the ring gear 31
  • the second planet gear 35 meshes with the sun gear 33 .
  • the outer side of the first planet gear 34 away from the sun gear 33 meshes with the ring gear 31
  • the inner side close to the sun gear 33 meshes with the second planet gear 35
  • the outer side of the second planet gear 35 away from the sun gear 35 meshes with the ring gear 31 .
  • the outer side of 33 meshes with the first planet gear 34
  • the inner side close to the sun gear 33 meshes with the sun gear 33 .
  • the sun gear 33 rotates clockwise
  • the second planet gear 35 meshing with the sun gear 33 rotates counterclockwise
  • the first planet gear 34 meshing with the second planet gear 35 also rotates clockwise.
  • the ring gear 31 is fixed on the reduction box 1, so the clockwise rotating first planet gear 34 will drive the planet carrier 32 to rotate counterclockwise, thus realizing the reverse rotation of the planet carrier 32 and the sun gear 33, so when When the first power output part 3 fixedly connected to the planet carrier 32 drives the drill pipe 17 to rotate forward, the sun gear 33 as the second power output part 5 drives the casing 18 to rotate in the reverse direction, so that the reaction force borne by the mast 16 can be reduced. or eliminate.
  • the first planetary gear 34 and the second planetary gear 35 are gears of the same type, and the first planetary gear 34 of all planetary gear sets is The axes are all located on the first circle 36, and the axes of the second planet gears 35 of all planetary gear sets are all located on the second circle 37.
  • the centers of the first circle 36 and the second circle 37 are both the axes of the sun gear 33.
  • the radius of the first circle 36 is larger than the radius of the second circle 37, as shown in Figure 6.
  • the first power output member 3 is a sleeve with a penetrating inner cavity;
  • the planet carrier 32 is a coaxial annular carrier fixed at the bottom end of the sleeve, and the sun gear 33 is a coaxial ring carrier.
  • the shaft is arranged on the hollow wheel on the bottom side of the sleeve, and the sun gear 33 is the second power output member 5 , that is, the second power output member 5 is also a sleeve with a penetrating inner cavity.
  • the first power output member 3, planet carrier 32 and sun gear 33 of this structure can allow the drill rod 17 to pass through the interior, which is beneficial to cooperating with the drill rod 17.
  • the drill rod 17 Compared to the way the drill rod 17 is arranged on the outside, This allows components to be arranged more compactly and reduces the size of the power head. Further, when the drill rod 17 passes through the first power output member 3, the planet carrier 32 and the sun gear 33, the drill rod 17, the first power output member 3, the planet carrier 32, the sun gear 33 and the sun gear 33 are connected. The sheaths are all coaxially arranged to improve the balance of force on each component, so that the power head and rotary drilling rig can work more reliably.
  • the first power output part 3, the planet carrier 32 and the sun gear 33 can also be solid parts, and the drill pipe 17 is arranged parallel to its sides.
  • the planet carrier 32 is provided with a connecting column, which extends parallel to the first power output member 3 to the bottom side of the first power output member 3, so that the first planetary gear 34 and the second planetary gear 34 disposed thereon are connected to each other.
  • the planet gear 35 can be arranged at the same height as the sun gear 33 and the ring gear 31 , thereby ensuring the normal meshing of the first planet gear 34 and the ring gear 31 and the normal meshing of the second planet gear 35 and the sun gear 33 .
  • the top end of the first power output member 3 is the first power output end and is connected to a key sleeve body 11.
  • the key sleeve body 11 includes: The cylinder 111 is fixedly connected to the first power output member 3 and arranged coaxially; the splines 112 are protrudingly arranged on the inner wall of the cylinder 111. Since the planet carrier 32 is connected to the bottom end of the first power output member 3 and the sun gear 33 is disposed on the bottom side of the first power output member 3, the top end of the first power output member 3 is used for drilling in this application.
  • the first power output end of the rod 17 outputs power, and is circumferentially positioned with the drill rod 17 through the key sleeve body 11 (because the drill rod 17 needs to be drilled into the ground, that is, the drill rod 17 needs to move axially, so the drill rod 17 is connected
  • the key sleeve body 11 of the first power output member 3 is only positioned circumferentially with the drill rod 17 to ensure that the drill rod 17 can be rotated normally without affecting the axial downward movement of the drill rod 17).
  • bolts are used to coaxially fix the cylinder 111 to the top of the transmission sleeve.
  • the splines 112 provided on the inner wall of the cylinder 111 can be connected to the cylinder 111.
  • the integrated structure can also be a split structure that is connected to the barrel 111 through assembly.
  • this application prefers that the spline 112 and the barrel 111 have a split structure, and the inner wall of the barrel 111 is provided with a spline for connecting with the spline.
  • a reducer 13 is provided on the top of the reduction box 1.
  • the output shaft of the reducer 13 extends into the reduction box 1 and is connected to the first power output member 3 through a gear set. That is to say, the output shaft of the reducer 13 is the power input shaft 2 that extends into the reducer 1.
  • the power of the power head is decelerated by the reducer 13 and then enters the reducer 1, and then passes through the gear set in the reducer 1.
  • the transmission of the first power output member 3 meshed with the gear set drives the drill pipe 17 to rotate, and the deceleration and torque increase of the torque increasing mechanism 30 drives the casing 18 to reversely rotate.
  • the connecting component 14 includes: a sliding frame 141; a plurality of connecting frames 142 connecting the sliding frame 141 and the reducing gear box 1. All connecting frames 142 They are respectively located on both sides of the reduction box 1 and are arranged in alignment. Among them, there can be two connecting frames 142, and the two connecting frames 142 are aligned on both sides of the reduction box 1.
  • the connecting frames 142 can be a planar frame made of slats connected in the same plane, or a flat plate. Formed by cutting, drilling and other operations.
  • the connecting frame 142 includes a first connecting arm 1421 for connecting to the outer wall of the reduction box 1, a second connecting arm 1422 that is vertically connected to the first connecting arm 1421 and located at one end of the first connecting arm 1421, and a second connecting arm 1422 connected to the first connecting arm 1421. And the third connecting arm 1423 of the second connecting arm 1422, the three connecting arms form a right triangle shape to improve the connection firmness.
  • a support arm 143 can also be provided between two aligned connecting brackets 142, as shown in FIG. 3 .
  • the sliding frame 141 is connected to the second connecting arm 1422 and is located in a position aligned with the reduction box 1 , that is, the two connecting frames 142 are also located on both sides of the sliding frame 141 .
  • the sliding frame 141 is provided with a sliding groove 1411 .
  • the extending direction of the sliding groove 1411 is parallel to the axis of the first power output member 3 .
  • the sliding groove 1411 is used to accommodate and slidingly connect the guide rails provided on the mast 16 .
  • this application also provides a rotary drilling rig, including a mast 16, a drill rod 17, a casing 18, and a dual-output power head disposed on the mast 16 and driving the drill rod 17 and the casing 18 to rotate.
  • the dual-output power head is the above-mentioned power head.
  • the drill pipe 17 passes through the first power output member 3 and the second power output member 5 of the power head.
  • the first power output member 3 is configured to drive the drill pipe 17 to rotate
  • the second power output member 5 is configured to drive the drill pipe 17 to rotate.
  • the barrel 18 rotates.
  • the top end of the first power output member 3 can be connected to the key sleeve body 11, and the key sleeve body 11 cooperates with the drill pipe 17 to drive the drill pipe 17 to rotate.
  • the bottom end of the second power output member 5 can be connected to the driving flower tube 20.
  • the driving flower tube 20 drives the protective tube 18 to rotate.
  • the second power output part 5 of the dual-output power head is connected to the casing 18 through the driving spigot 20.
  • the driving spigot 20 is connected to the second power output part 5.
  • the components between it and the sheath 18 play a transitional connection role.
  • the lower end of the second power output part 5 is provided with a pin hole 12, and the driving flower tube 20 is connected to the second power output part 5 through a pin inserted into the pin hole 12.
  • the driving flower tube 20 is then connected to the second power output part 5 through a U-shaped key.
  • each piece or each step can be decomposed and/or recombined. These decompositions and/or recombinations shall be considered equivalent versions of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Gear Transmission (AREA)

Abstract

本申请提供了一种动力头及旋挖钻机,包括:减速箱;动力输入轴,伸入到减速箱内;第一动力输出件,设置在减速箱内,并与动力输入轴齿轮传动;增扭机构,设置在所述减速箱内,所述增扭机构包括第二动力输出件;其中,动力从所述动力输入轴传递至所述第一动力输出件时,还传递至所述增扭机构,所述增扭机构对动力增扭后由所述第二动力输出件输出。通过将增扭机构集成在减速箱内,不仅能增大动力头的输出扭矩,满足全护筒施工的需求,而且还能简化结构,无需再外接额外辅助设备,避免了拆装,给机器的管控和运输带来了便利。同时,使用传动齿轮轴实现增扭,相比于使用行星齿轮机构实现增扭,能简化结构、减小重量、提高结构可靠性。

Description

动力头及旋挖钻机 技术领域
本发明涉及工程机械技术领域,具体涉及一种动力头及旋挖钻机。
背景技术
目前,越来越多的桩基施工采用全护筒施工方式,但局限于旋挖钻机的动力头扭矩较小,使用动力头驱动护筒旋转的全护筒施工方式仅能满足小直径或较浅深度的护筒埋设。在大桩径需设置护筒的情况下,动力头本身的扭矩无法满足工程需求,所以需要在动力头上连接增扭装置、全回转钻机、搓管机或履带吊配振动锤等额外辅助设备来进行护筒施工,这样不仅会因为增加额外辅助设备而使得结构较为复杂,不利于机器的管控和运输,而且还会增加巨大的拆装工作量。
发明内容
有鉴于此,本申请提供了一种动力头及旋挖钻机,其能实现全护筒施工的同时,还能够简化结构,避免拆装,给机器的管控和运输带来了便利。
为了达到上述目的,本申请提供如下技术方案:
根据本申请的一个方面,提供一种动力头,包括:
减速箱;
动力输入轴,伸入到所述减速箱内;
第一动力输出件,设置在所述减速箱内,并与所述动力输入轴齿轮传动;增扭机构,设置在所述减速箱内,所述增扭机构包括第二动力输出件;
其中,所述动力输入轴将动力传递至所述第一动力输出件时,还传递至所述增扭机构,所述增扭机构对动力增扭后由所述第二动力输出件输出。
在一种可能的实施例中,所述增扭机构包括:传动齿轮轴,与所述动力输入轴齿轮传动;
所述第二动力输出件与所述传动齿轮轴齿轮传动。
在一种可能的实施例中,所述传动齿轮轴的相对的两端分别支撑在所述减速箱上。
在一种可能的实施例中,所述动力输入轴上设置有主动齿轮,所述第一动力输出件上设置有第一从动齿轮,所述第一从动齿轮通过与所述主动齿轮啮合,实现第一动力输出件与所述动力输入轴的齿轮传动。
在一种可能的实施例中,所述动力输入轴、所述传动齿轮轴和所述第二动力输出件构成的传动路径中包括多个啮合齿轮组,在任一所述啮合齿轮组中,不同齿轮依据传动顺序其齿数依次增大。
在一种可能的实施例中,所述多个啮合齿轮组包括第一啮合齿轮组,所述第一啮合齿轮组包括:
主动齿轮,设置在所述动力输入轴上;
第一传动齿轮,设置在所述传动齿轮轴上并与所述主动齿轮啮合,且所述第一传动齿轮的齿 数大于所述主动齿轮的齿数。
在一种可能的实施例中,所述多个啮合齿轮组包括第二啮合齿轮组,所述第二啮合齿轮组包括:
第二传动齿轮,设置在所述传动齿轮轴上,且齿数小于所述第一传动齿轮的齿数;
第二从动齿轮,设置在所述第二动力输出件上并与所述第二传动齿轮啮合,且齿数大于所述第二传动齿轮的齿数。
在一种可能的实施例中,所述第二传动齿轮的齿数小于所述主动齿轮的齿数。
在一种可能的实施例中,所述增扭机构为行星齿轮机构,所述行星齿轮机构的齿圈固定设置在所述减速箱上,所述行星齿轮机构的行星架与所述第一动力输出件连接,所述行星齿轮机构的太阳轮为所述第二动力输出件。
在一种可能的实施例中,所述行星架上周向设置有多个行星轮组,每个所述行星轮组均包括旋转设置在所述行星架上并相互啮合的第一行星轮和第二行星轮,所述第一行星轮与所述齿圈啮合,所述第二行星轮与所述太阳轮啮合。
在一种可能的实施例中,所述第一动力输出件为具有贯通内腔的套筒;所述行星架为同轴的固定在所述套筒底端的环形架,所述太阳轮为同轴设置在所述套筒底侧的空心轮。
在一种可能的实施例中,所述第一动力输出件和所述第二动力输出件的旋转方向相反。
在一种可能的实施例中,所述第一动力输出件和所述第二动力输出件均为具有贯通内腔的套筒,且所述第一动力输出件同轴设置在所述第二动力输出件的顶部。
在一种可能的实施例中,所述第一动力输出件的顶端伸出至所述减速箱的外部,并连接有键套筒体,所述键套筒体包括:筒体,与所述第一动力输出件固定连接并同轴设置;花键,凸出的设置在所述筒体的内壁上;
所述第二动力输出件的底端伸出至所述减速箱的外部,并设置有销轴孔。
在一种可能的实施例中,所述动力头还包括减速机,所述减速机的输出轴为伸入到所述减速箱中的所述动力输入轴;
所述减速箱上连接有连接组件,所述连接组件包括:滑架;连接所述滑架和所述减速箱的两个连接架,两个所述连接架分别位于所述减速箱的两侧并对正设置。
根据本申请的另一方面,还提供一种旋挖钻机,包括钻杆、护筒以及驱动所述钻杆和所述护筒旋转的双输出动力头,所述双输出动力头为上述所述的动力头;并且,
所述钻杆穿过所述动力头的第一动力输出件和第二动力输出件,其中,所述第一动力输出件设置为能够驱动所述钻杆旋转,所述第二动力输出件设置为能够驱动所述护筒旋转。
本申请提供的技术方案,将第一动力输出件和具有第二动力输出件的增扭机构均设置在减速箱内,即动力头上集成增扭机构。相比现有技术中借助额外辅助设备如采用全回转钻机、搓管机或履带吊配振动锤进行护筒施工,或者在动力头下方吊挂增扭器的方式驱动护筒,本申请采用集成的动力头结构可以使得整体结构大大的简化,体积减小,而且也无需对该动力头再进行拆装操作,并增强了机器长途运输和临时转场的拆装便利性,同时也能对整机的电气连接和液压控制、集中润滑 ***的布置等进行简化并给其提供便利。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请的一个实施例提供的动力头的主视图;
图2为图1所示的动力头的俯视图;
图3为图2的A-A剖视图;
图4为主动齿轮、第一传动齿轮、第二传动齿轮、第一从动齿轮和第二从动齿轮配合的轴测图;
图5为本申请的另一实施例提供的动力头的主视图;
图6为图5的A-A剖视图;
图7为图5所示的动力头的俯视图;
图8为图7的B-B剖视图;
图9为根据本申请的一个实施例提供的旋挖钻机的结构示意图;
图10为动力头与钻杆、护筒配合的结构示意图。
附图标记说明:
1-减速箱;2-动力输入轴;3-第一动力输出件;4-传动齿轮轴;5-第二动力输出件;6-主动齿轮;7-第一从动齿轮;8-第一传动齿轮;9-第二传动齿轮;10-第二从动齿轮;11-键套筒体;12-销轴孔;13-减速机;14-连接组件;15-回转支承;16-桅杆;17-钻杆;18-护筒;19-钢丝绳;20-驱动花筒;111-筒体;112-花键;141-滑架;142-连接架;143-支撑臂;1411-滑槽;1421-第一连接臂;1422-第二连接臂;1423-第三连接臂;30-增扭机构;31-齿圈;32-行星架;33-太阳轮;34-第一行星轮;35-第二行星轮;36-第一圆;37-第二圆;38-回转支承。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的实施例提供了一种动力头,可适用于旋挖钻机,如图1-8所示,所述动力头包括:
减速箱1;
动力输入轴2,伸入到减速箱1内;
第一动力输出件3,设置在减速箱1内,并与动力输入轴2齿轮传动;
增扭机构,设置在减速箱1内,所述增扭机构包括第二动力输出件5;
其中,动力输入轴2将动力传递至第一动力输出件3时,还传递至增扭机构,增扭机构对动力增扭后由第二动力输出件5输出。
其中,减速箱1用于容纳、安装与减速机13的输出轴连接的部件。动力输入轴2为将动力传递至减速箱1内的部件,其可以为减速机13的输出轴,也可以为同轴连接在减速机输出轴上的轴,动力输入轴2设置在减速箱1内;第一动力输出件3为动力头的其中一个动力输出部件,其同样设置在减速箱1内(由于第一动力输出件3如后续内容所说其顶端位于减速箱1的外部,所以本申请提及的“第一动力输出件3设置在减速箱1内”可以理解为:第一动力输出件3的较大局部设置在减速箱1内,或者说第一动力输出件3的主体结构设置在减速箱1内。第二动力输出件5同理),此第一动力输出件3例如用于驱动旋挖钻机的钻杆17;第二动力输出件5为动力头的另一个动力输出部件,其也设置在减速箱1的内部,此第二动力输出件5例如用于驱动旋挖钻机的护筒18。
在一个实施方式中,第一动力输出件3的顶端可以伸出至减速箱1的外部,并连接有键套筒体11,键套筒体11包括:筒体111,与第一动力输出件3固定连接并同轴设置;花键112,凸出的设置在筒体111的内壁上。第二动力输出件5的底端伸出至减速箱1的外部,并设置有销轴孔12。
在该动力头用于驱动旋挖钻机时,旋挖钻机的钻杆17从上到下依次穿过动力头的键套筒体11、第一动力输出件3、第二动力输出件5,在穿过的同时还使键套筒体11与钻杆17周向定位,如此就能够实现动力头和钻杆17的配合,以使得第一动力输出件3对钻杆17进行驱动。
第二动力输出件5的底端可以通过销轴***到销轴孔12中连接驱动花筒20,驱动花筒20再与护筒18连接,这样第二动力输出件5输出的扭矩就可以传递给护筒18,驱动护筒18旋转。
本申请提供的技术方案,将第一动力输出件3和具有第二动力输出件5的增扭机构均设置在减速箱1内,即动力头上集成增扭机构。相比现有技术中借助额外辅助设备如采用全回转钻机、搓管机或履带吊配振动锤进行护筒施工,或者在动力头下方吊挂增扭器的方式驱动护筒,本申请采用集成的动力头结构可以使得整体结构得到大大的简化,体积减小,而且该动力头也无需再进行拆装操作,增强了机器长途运输和临时转场的拆装便利性,同时也能对整机的电气连接和液压控制、集中润滑***的布置等进行简化并给其提供便利。
在一些实施例中,所述增扭机构包括:传动齿轮轴4,与动力输入轴2齿轮传动,第二动力输出件5与传动齿轮轴4齿轮传动。
其中,可选地,传动齿轮轴4的相对的两端分别支撑在减速箱1上。
下面结合图1-图4,具体描述本申请的一些实施例提供的动力头。
如图1-图4所示,本申请实施例提供了一种动力头,该动力头主要包括减速箱1、动力输入轴2、第一动力输出件3、传动齿轮轴4和第二动力输出件5,其中,传动齿轮轴4为在减速箱1内专门增设的部件,并且与动力输入轴2以及第二动力输出件5均齿轮传动,从而使得动力从动力输入轴2通过传动齿轮轴4传递至第二动力输出件5的过程中,能够对动力实现增扭,使得第二动力输出件5输出的扭矩大于动力输入轴2的输入扭矩,甚至大于第一动力输出件3输出的扭矩。也就是说,该传动齿轮轴4、第二动力输出件5及其相连接的齿轮传动部件作为增扭机构,能够对传递 至第二动力输出件5的动力进行增扭。
上述的双输出动力头,通过增设传动齿轮轴4,并将传动齿轮轴4集成在减速箱1内,不仅能够增大双输出动力头的输出扭矩,满足全护筒18施工的需求,而且还能够通过集成设置的方式简化结构,无需再外接额外辅助设备,避免了拆装,给机器的管控和运输带来了便利。同时,使用传动齿轮轴4实现增扭的结构,与现有技术中使用行星齿轮机构实现增扭的结构相比,能够简化结构、减小重量、提高结构可靠性。
在一可选实施例中,本申请还令第一动力输出件3和第二动力输出件5的旋转方向相反。在实际使用中,将双输出动力头设置在旋挖钻机的桅杆16上以驱动钻杆17和护筒18旋转,桅杆16作为设置、支撑双输出动力头的部件,在钻杆17钻地的过程中,双输出动力头会对桅杆16施加与钻杆17旋转方向相反的作用力,这会影响旋挖钻机的平衡稳定性。所以为了提升旋挖钻机的工作稳定性,本申请令第一动力输出件3与第二动力输出件5的旋转方向相反,如此就能够令护筒18和钻杆17的旋转方向相反,同步施工时,反向旋转的护筒18和钻杆17可以相互抵消各自产生的反作用力,使得桅杆16承受的反作用力减小甚至消失,进而令旋挖钻机的工作稳定性得到显著提升。具体的,实现第一动力输出件3和第二动力输出件5反向旋转的结构请参见后述内容。
在可选的实施例中,如图3和图4所示,可以令动力输入轴2上设置有主动齿轮6,第一动力输出件3上设置有第一从动齿轮7,第一从动齿轮7通过与主动齿轮6啮合,实现第一动力输出件3与动力输入轴2的齿轮传动。也就是说,动力输入轴2和第一动力输出件3之间的传动直接通过两个相互啮合的齿轮来实现,从而在保证可靠传动的前提下,能最大程度的简化双输出动力头的结构。另外,在具体设置时,本申请还令第一从动齿轮7的齿数大于主动齿轮6的齿数,从而使得第一从动齿轮7的转速小于主动齿轮6的转速,即实现了减速增扭,如此就令第一动力输出件3输出的动力也得到了减速增扭,从而可以更加可靠的实现对钻杆17的驱动。此外,基于第一从动齿轮7的齿数大于主动齿轮6的齿数的情况,本申请还令第一从动齿轮7的直径大于主动齿轮6的直径,之所以如此设置,是因为第一从动齿轮7套设在了第一动力输出件3上,而第一动力输出件3优选为直径较大的套筒(参见后述内容),所以第一从动齿轮7也需要具有较大的直径才能够实现在第一动力输出件3上的套设。
具体的,如图3和图4所示,动力输入轴2、传动齿轮轴4和第二动力输出件5构成的传动路径中包括多个啮合齿轮组,在任一啮合齿轮组中,不同齿轮依据传动顺序其齿数依次增大。也就是说,在动力的传递方向上,任一啮合齿轮组包括的多个齿轮中,下游齿轮的齿数大于与其啮合的上游齿轮的齿数,由于下游齿轮的齿数大于上游齿轮的齿数,所以下游齿轮的转速会小于上游齿轮的转速,即下游齿轮相较于上游齿轮转动的更慢,如此就实现了动力传递过程中的减速增扭,进而令第二动力输出件5输出的扭矩更大,使其可以满足护筒18的驱动要求。而将啮合齿轮组设置为多个,就可以在动力传递的过程中实现多级增扭,使得第二动力输出件5输出的扭矩进一步增大,为全护筒施工提供了更加可靠的保障。
在上述结构中,优选啮合齿轮组设置有两个,两个啮合齿轮组分别为第一啮合齿轮组和第二啮合齿轮组。其中,第一啮合齿轮组包括:主动齿轮6,设置在动力输入轴2上;第一传动齿轮8, 设置在传动齿轮轴4上并与主动齿轮6啮合,且第一传动齿轮8的齿数大于主动齿轮6的齿数。第二啮合齿轮组包括:第二传动齿轮9,设置在传动齿轮轴2上,且第二传动齿轮9的齿数小于第一传动齿轮8的齿数;第二从动齿轮10,设置在第二动力输出件5上并与第二传动齿轮9啮合,且第二从动齿轮10的齿数大于第二传动齿轮9的齿数。
在第一啮合齿轮组中,通过主动齿轮6和第一传动齿轮8的啮合实现了动力输入轴2和传动齿轮轴4的齿轮传动,由于动力是从动力输入轴2传递至传动齿轮轴4,即从主动齿轮6传递至第一传动齿轮8,动力的传递方向是从主动齿轮6到达第一传动齿轮8,也就是说,主动齿轮6为上游齿轮,第一传动齿轮8为下游齿轮,所以第一传动齿轮8的齿数大于主动齿轮6的齿数,如此就实现了一级减速增扭。
在第二啮合齿轮组中,通过第二传动齿轮9和第二从动齿轮10的啮合实现了传动齿轮轴4和第二动力输出件5的齿轮传动,由于动力是从传动齿轮轴4传递至第二动力输出件5,即从第二传动齿轮9传递至第二从动齿轮10,动力的传递方向是从第二传动齿轮9到达第二从动齿轮10,也就是说,第二传动齿轮9为上游齿轮,第二从动齿轮10为下游齿轮,所以第二从动齿轮10的齿数大于第二传动齿轮9的齿数,如此就实现了二级减速增扭。而令第一传动齿轮8的齿数大于第二传动齿轮9的齿数,则可以在此两者同速转动的前提下进一步增大第二传动齿轮9和第二从动齿轮10之间的齿数差距,令二级减速增扭的增加效果更加突出。综上,用于实现第二动力输出件5输出动力减速增扭的结构为:
动力输入轴2上设置有主动齿轮6,传动齿轮轴4上设置有第一传动齿轮8和第二传动齿轮9,第二动力输出件5上设置有第二从动齿轮10,其中:第一传动齿轮8通过与主动齿轮6啮合,实现传动齿轮轴4与动力输入轴2的齿轮传动;第二传动齿轮9通过与第二从动齿轮10啮合,实现传动齿轮轴4与第二动力输出件5的齿轮传动;并且,第一传动齿轮8的齿数大于主动齿轮6的齿数,第二从动齿轮10的齿数大于第二传动齿轮9的齿数。
上述结构中,动力输入轴2带动主动齿轮6转动,主动齿轮6带动与其啮合的第一传动齿轮8转动,由于第一传动齿轮8设置在传动齿轮轴4上,第二传动齿轮9也设置在传动齿轮轴4上,所以第二传动齿轮9会随同第一传动齿轮8同步转动,进而带动与第二传动齿轮9啮合的第二从动齿轮10转动,由于第二从动齿轮10设置在第二动力输出件5上,所以第二从动齿轮10可以带动第二动力输出件5同步转动,如此就实现了动力从动力输入轴2向第二动力输出件5的传递。在动力如此传递的基础之上,具体设置时,可以使第一传动齿轮8的齿数大于主动齿轮6的齿数,从而使得第一传动齿轮8的转速小于主动齿轮6的转速,如此就可以实现减速增扭;同时,使第二从动齿轮10的齿数大于第二传动齿轮9的齿数,从而使得第二从动齿轮10的转速小于第二传动齿轮9的转速,如此在第一传动齿轮8和主动齿轮6之间实现一级增扭的基础之上,又在第二从动齿轮10和第二传动齿轮9之间实现二级增扭,从而可以使得第二动力输出件5输出的动力得到更大程度的增扭,提升了双输出动力头的工作性能。
同样的,基于第二从动齿轮10的齿数大于第二传动齿轮9齿数的情况,本申请也令第二从动齿轮10的直径大于第二传动齿轮9的直径,因为第二从动齿轮10套设在了第二动力输出件5上, 而第二动力输出件5优选为直径较大的套筒(参见后述内容),所以第二从动齿轮10也需要具有较大的直径才能够实现在第二动力输出件5上的套设。
在上述基础之上,本申请还令第二传动齿轮9的齿数小于主动齿轮6的齿数。如图3和图4所示,因为第二传动齿轮9与第二从动齿轮10啮合并传动,主动齿轮6与第一从动齿轮7啮合并传动,所以第二传动齿轮9和第二从动齿轮10各自的尺寸参数需要满足彼此啮合的要求才能实现正常的传动,主动齿轮6和第一从动齿轮7各自的尺寸参数也需要满足彼此啮合的要求才能实现正常的传动,因此在需要满足啮合要求的前提下,通过令第二传动齿轮9的齿数小于主动齿轮6的齿数,就能够使得第二从动齿轮10的直径大于第一从动齿轮7的直径,从而使得第二动力输出件5可以更加可靠的实现对护筒的驱动。
另外,在上述的传动结构中,由于动力输入轴2与第一动力输出件3之间通过相互啮合的主动齿轮6和第一从动齿轮7实现传动,所以动力输入轴2与第一动力输出件3的旋转方向相反。由于动力输入轴2与传动齿轮轴4之间通过相互啮合的主动齿轮6和第一传动齿轮8传动,所以动力输入轴2与传动齿轮轴4的旋转方向相反,又由于传动齿轮轴4和第二动力输出件5通过相互啮合的第二传动齿轮9和第二从动齿轮10传动,所以传动齿轮轴4和第二动力输出件5的旋转方向相反,即动力输入轴2和第二动力输出件5均与传动齿轮轴4的旋转方向相反,所以此两者的旋转方向相同。由于第一动力输出件3与动力输入轴2的旋转方向相反,第二动力输出件5与动力输入轴2的旋转方向相同,如此就实现了前述的第一动力输出件3和第二动力输出件5的旋转方向相反。
本申请中,如图3和图4所示,令第一动力输出件3和第二动力输出件5均为具有贯通内腔的套筒,且第一动力输出件3同轴设置在第二动力输出件5的顶部;传动齿轮轴4平行的设置在第一动力输出件3和第二动力输出件5的外部。之所以令第一动力输出件3和第二动力输出件5均为套筒,是为了使钻杆17能够从其内部穿过,有利于与钻杆17进行配合,相对于钻杆17在其外部设置的方式,使得部件可以设置的更加紧凑,减小了双输出动力头的体积。进一步的,在钻杆17穿过第一动力输出件3和第二动力输出件5时,令钻杆17、第一动力输出件3、第二动力输出件5以及与第二动力输出件5连接的护套均同轴设置,以提高各部件的受力均衡性,使得双输出动力头和旋挖钻机可以更加可靠地进行工作。此外,第一动力输出件3和第二动力输出件5也可以为实心部件,并令钻杆17在其侧方平行设置。
采用上述的套筒结构后,能够在进行全护筒18施工时使护筒18和钻杆17顺利实现套设,即实现被第一动力输出件3驱动的钻杆17和被第二动力输出件5驱动的护筒18的同轴设置,使得双输出动力头及旋挖钻机的结构更加紧凑,工作稳定性更高。
而将传动齿轮轴4平行地设置在第一动力输出件3和第二动力输出件5的外部,使得传动齿轮轴4和钻杆17分别位于套筒的内外侧,可以避免传动齿轮轴4与钻杆17发生干涉,更利于部件之间的布局以及配合。或者,也可以令第一动力输出件3和第二动力输出件5具有更大的内径,并将动力输入轴2和传动齿轮轴4设置在第一动力输出件3和第二动力输出件5的内腔中,动力输入轴2和传动齿轮轴4通过与设置在第一动力输出件3和第二动力输出件5内壁上的内齿圈实现齿轮传动,同时钻杆17也穿过第一动力输出件3和第二动力输出件5的内腔。
另外,在第一动力输出件3和第二动力输出件5同轴设置的基础上,如图3所示,第二从动齿轮10和第一动力输出件3之间还安装有回转支承15,以实现加压力的传递。
在一可选实施例中,如图3所示,第一动力输出件3的顶端伸出至减速箱1的外部并连接有键套筒体11,键套筒体11包括:筒体111,与第一动力输出件3固定连接并同轴设置;花键112,凸出的设置在筒体111的内壁上。由于第一动力输出件3设置在了第二动力输出件5的顶部,所以本申请令第一动力输出件3的顶端从减速箱1的顶部伸出并用于向钻杆17输出动力,且通过键套筒体11与钻杆17周向定位(由于钻杆17需要钻入地下,即钻杆17需要进行轴向移动,所以连接钻杆17和键套筒体11仅与钻杆17周向定位,以保证在不影响钻杆17轴向下移的同时还能够正常带动钻杆17旋转)。其中,筒体111在与第一动力输出件3固定连接时,使用螺栓将筒体111同轴固定在传动套筒的顶端,设置在筒体111内壁上的花键112可以与筒体111为一体结构,也可以为与筒体111通过组装实现连接的分体结构,为了方便进行维护,本申请优选花键112和筒体111为分体结构,并且令筒体111内壁设置有用于与花键112连接的凹槽,花键112安装在凹槽内时同时伸入到钻杆17的键条中,并通过与键条配合将双输出动力头输出的扭矩和加压力传递给钻杆17,使得钻杆17能够与第一动力输出件3同步旋转。
同时,第二动力输出件5的底端伸出至减速箱1的外部,并设置有销轴孔12。由于第二动力输出件5设置在了第一动力输出件3的底部,所以本申请令第二动力输出件5的底端从减速箱1的底部伸出并用于向护筒18输出动力。而设置在第二动力输出件5底端的销轴孔12则用于与销轴连接,通过销轴和销轴孔12的配合实现第二动力输出件5与后述的驱动花筒20的连接。
如图2-图4所示,减速箱1的顶部设置有减速机13,减速机13的输出轴为伸入到减速箱1中的动力输入轴2,且减速机13设置有两个,基于此,传动齿轮轴4也设置为两个,两个传动齿轮轴4通过设置在各自上的第一传动齿轮8分别与不同减速机13的输出轴齿轮传动,且两个传动齿轮轴4通过设置在各自上的第二传动齿轮9均与第二动力输出件5齿轮传动,从而使动力头具有更大的输出动力。
另外,如图1和图2所示,减速箱1上还连接有连接组件14,连接组件14包括:滑架141;连接滑架141和减速箱1的多个连接架142,全部连接架142分别位于减速箱1的两侧并对正设置。其中,连接架142可以设置为两个,两个连接架142在减速箱1的两侧对正设置,连接架142可以为由板条在同一平面内连接而成的的平面架,或者由平板通过裁切、开孔等操作形成。连接架142包括用于与减速箱1的外壁连接的第一连接臂1421、与第一连接臂1421垂直连接并位于第一连接臂1421一端的第二连接臂1422,以及连接第一连接臂1421和第二连接臂1422的第三连接臂1423,三个连接臂构成直角三角形的形状,以提高连接牢固性。另外,为了进一步提高连接牢固性,还可在两个对正设置的连接架142之间设置支撑臂143,如图2所示。滑架141连接在第二连接臂1422上,并位于与减速箱1对正的位置,即两个连接架142也位于滑架141两侧。滑架141上开设有滑槽1411,滑槽1411的延伸方向平行于第一动力输出件3的轴线,滑槽1411用于容纳并滑动连接设置在桅杆16上的导轨。
在另外的实施方式中,增扭机构还可以是其它的结构形式。
下面根据图5-图8具体描述本申请的另外的实施例提供的具有增扭机构的动力头。
如图5-图8所示,本申请实施例提供了一种动力头,该动力头包括:减速箱1,此减速箱1用于容纳、安装与减速机13(减速机13为动力头的组成部分,详见后述内容)的输出轴连接的部件;第一动力输出件3,设置在减速箱1内,具体是在减速箱1内使其能够绕自身轴线转动的方式设置,用以接收从减速机13传递来的动力;第一动力输出件3在减速箱1内设置时令其一端伸出至减速箱1的外部(由于第一动力输出件3具有较小的局部位于减速箱1的外部,所以本申请提及的“第一动力输出件3设置在减速箱1内”可以理解为:第一动力输出件3的较大局部设置在减速箱1内,或者说第一动力输出件3的主体结构设置在减速箱1内。后述的太阳轮33同理),以作为第一动力输出端,此第一动力输出端例如用于驱动旋挖钻机的钻杆17;动力头还包括增扭机构30,此增扭机构30在动力头上设置时将其设置在减速箱1的内部,即令增扭机构30与动力头集成为一个整体,使得增扭机构30成为动力头的组成部分,在减速箱1内设置时,令增扭机构30与第一动力输出件3连接,从而令第一动力输出件3将动力传递给增扭机构30,此部分动力经过增扭机构30的减速增扭后,从增扭机构30的伸出至减速箱1外部的第二动力输出件5输出,此第二动力输出件5例如用于驱动旋挖钻机的护筒18。
上述的动力头,通过增设增扭机构30,并使增扭机构30与动力头集成为一个整体,不仅能够增大动力头的输出扭矩,满足全护筒施工的需求,而且还能够通过集成设置的方式简化结构,避免拆装,给机器的管控和运输带来了便利。
在一可选实施例中,本申请还令第二动力输出件5和第一动力输出件3的旋转方向相反。在实际使用中,将动力头设置在旋挖钻机的桅杆16上以驱动钻杆17和护筒18旋转,桅杆16作为设置、支撑动力头的部件,在钻杆17钻地的过程中,动力头会对桅杆16施加与钻杆17旋转方向相反的作用力,这会影响旋挖钻机的平衡稳定性。所以为了提升旋挖钻机的工作稳定性,本申请令第二动力输出件5与第一动力输出件3的旋转方向反向,也就是使第二动力输出件5与第一动力输出端的旋转方向相反,如此就能够令护筒18和钻杆17的旋转方向相反,同步施工时,反向旋转的护筒18和钻杆17可以相互抵消各自产生的反作用力,使得桅杆16承受的反作用力减小甚至消失,进而令旋挖钻机的工作稳定性得到显著提升。具体的,实现第二动力输出件5和第一动力输出件3反向旋转的结构请参见后述内容。
如图6和图8所示,增扭机构30优选为行星齿轮机构,并且使行星齿轮机构的齿圈31固定设置在减速箱1上,例如可以设置在减速箱1的内壁上或直接将齿圈31设置为减速箱1的部分圆周侧壁,行星齿轮机构的行星架32为与第一动力输出件3连接的行星齿轮机构的动力输入件,行星齿轮机构的太阳轮33为行星齿轮机构的第二动力输出件5。之所以将增扭机构30设置为行星齿轮机构,是因为在进行全护筒施工时,需要使护筒18和钻杆17套设,行星齿轮机构由于为具有中心轴线(即太阳轮33的轴线)的组件,所以可以方便的与第一动力输出件3同轴设置,而令行星齿轮机构作为动力头的组成部分能够更好的与动力头及旋挖钻机的其他部件进行配合,即实现被第一动力输出件3驱动的钻杆17和被行星齿轮机构驱动的护筒18的同轴设置,使得动力头及旋挖钻机的结构更加紧凑,工作稳定性更高。此外,增扭机构30还可以为其他结构,例如为与第一动力输出件3 上的齿轮啮合的齿数更多的大齿轮或大齿圈等。
在增扭机构30为行星齿轮机构的基础之上,如图8所示,进一步令行星齿轮机构的行星架32为动力输入件,而太阳轮33则为动力输出件,并将齿圈31固定设置在了减速箱1的内壁上。具体的是,将行星架32和第一动力输出件3进行连接,例如使用螺栓将行星架32固定连接在第一动力输出件3上,以实现行星架32和第一动力输出件3的同步旋转,太阳轮33则通过设置在太阳轮33和减速箱1的底壁之间以及设置在太阳轮33和行星架32之间的回转支承38实现在减速箱1内的旋转设置,以及与行星架32之间的加压力传递,同时为了保证行星架32和太阳轮33的正常旋转、配合,令设置在行星架32上的行星轮与齿圈31和太阳轮33啮合。在动力头工作时,第一动力输出件3带动作为动力输入件的行星架32进行旋转,由于齿圈31固定在减速箱1上,所以在行星轮与齿圈31及太阳轮33的啮合传动下,实现了带动作为第二动力输出件5的太阳轮33的旋转。如此通过齿圈31、行星轮和太阳轮33减速啮合传动将从第一动力输出件3传递来的扭矩放大以达到减速增扭的目的。
在不考虑上述桅杆16承受反作用力的情况下,即在不减小或消除桅杆16承受的反作用力的情况下,行星齿轮机构可以采用传统的动力传递方式,即行星架32上设置的多个行星轮之间互不干涉,且每个独立工作的行星轮均与齿圈31和太阳轮33啮合,此时作为动力输入件的行星架32和作为动力输出件的太阳轮33同向旋转。而当需要减小或消除桅杆16承受的反作用力时,则可以对行星齿轮机构进行如下改进。
如图6所示,令行星架32上周向设置有多个行星轮组,每个行星轮组均包括旋转设置在行星架32上并相互啮合的第一行星轮34和第二行星轮35,第一行星轮34与齿圈31啮合,第二行星轮35与太阳轮33啮合。其中,每个行星轮组中,第一行星轮34的远离太阳轮33的外侧与齿圈31啮合,靠近太阳轮33的内侧与第二行星轮35啮合,第二行星轮35的远离太阳轮33的外侧与第一行星轮34啮合,靠近太阳轮33的内侧与太阳轮33啮合。在工作过程中,如果太阳轮33顺时针旋转,则与太阳轮33啮合的第二行星轮35逆时针旋转,而与第二行星轮35啮合的第一行星轮34则同样顺时针旋转,由于齿圈31在减速箱1上固定不动,所以顺时针旋转的第一行星轮34会带动行星架32逆时针旋转,如此就实现了行星架32和太阳轮33的反向旋转,因此当与行星架32固定连接的第一动力输出件3带动钻杆17正向旋转时,太阳轮33作为第二动力输出件5则带动护筒18反向旋转,使得桅杆16承受的反作用力可以减小或消除。在此结构中,为了保证行星齿轮机构的减速增扭效果不发生改变,本申请优选第一行星轮34和第二行星轮35为同型号齿轮,并且全部行星轮组的第一行星轮34的轴心均位于第一圆36上,全部行星轮组的第二行星轮35的轴线均位于第二圆37上,第一圆36和第二圆37的圆心均为太阳轮33的轴心,且第一圆36的半径大于第二圆37的半径,如图6所示。
此外,还可以采用其他的方式实现反向旋转,例如在第一动力输出件3上设置齿轮,在行星架32上也固定设置与行星架32同轴的齿轮,并使这两个齿轮相互啮合,通过啮合齿轮反向旋转的原理来实现钻杆17和护筒18的反向旋转,此时行星齿轮机构可以采用上述的传统动力传递方式。在此基础之上,为了实现护筒18对钻杆17的正常套设,可以使护筒18具有足够大的内径,并使钻 杆17位于护筒18内的偏心位置。
本申请中,如图7和图8所示,令第一动力输出件3为具有贯通内腔的套筒;行星架32为同轴的固定在套筒底端的环形架,太阳轮33为同轴设置在套筒底侧的空心轮,且太阳轮33为第二动力输出件5,即第二动力输出件5也为具有贯通内腔的套筒。此种结构的第一动力输出件3、行星架32和太阳轮33可以使钻杆17从其内部穿过,有利于与钻杆17进行配合,相对于钻杆17在其外部设置的方式,使得部件可以设置的更加紧凑,减小了动力头的体积。进一步的,在钻杆17穿过第一动力输出件3、行星架32和太阳轮33时,令钻杆17、第一动力输出件3、行星架32、太阳轮33以及与太阳轮33连接的护套均同轴设置,以提高各部件的受力均衡性,使得动力头和旋挖钻机可以更加可靠的进行工作。此外,第一动力输出件3、行星架32和太阳轮33也可以为实心部件,并令钻杆17在其侧方平行设置。
具体的,行星架32上设置有连接柱,此连接柱平行于第一动力输出件3向第一动力输出件3的底侧延伸,以使设置在其上的第一行星轮34和第二行星轮35能够与太阳轮33和齿圈31设置在同一高度,从而保证第一行星轮34和齿圈31的正常啮合、第二行星轮35和太阳轮33的正常啮合。
在一可选实施例中,如图5、图7和图8所示,第一动力输出件3的顶端为第一动力输出端并连接有键套筒体11,键套筒体11包括:筒体111,与第一动力输出件3固定连接并同轴设置;花键112,凸出的设置在筒体111的内壁上。由于行星架32连接在了第一动力输出件3的底端,太阳轮33设置在了第一动力输出件3的底侧,所以本申请令第一动力输出件3的顶端为用于向钻杆17输出动力的第一动力输出端,并通过键套筒体11与钻杆17周向定位(由于钻杆17需要钻入地下,即钻杆17需要进行轴向移动,所以连接钻杆17和第一动力输出件3的键套筒体11仅与钻杆17周向定位,以保证在不影响钻杆17轴向下移的同时还能够正常带动钻杆17旋转)。其中,筒体111在与第一动力输出件3固定连接时,使用螺栓将筒体111同轴固定在传动套筒的顶端,设置在筒体111内壁上的花键112可以与筒体111为一体结构,也可以为与筒体111通过组装实现连接的分体结构,为了方便进行维护,本申请优选花键112和筒体111为分体结构,并且令筒体111内壁设置有用于与花键112连接的凹槽,花键112安装在凹槽内时同时伸入到钻杆17的键条中,并通过与键条配合将动力头输出的扭矩和加压力传递给钻杆17,使得钻杆17能够与第一动力输出件3同步旋转。
如图7和图8所示,减速箱1的顶部设置有减速机13,减速机13的输出轴伸入到减速箱1中,并通过齿轮组与第一动力输出件3连接。也就是说,减速机13的输出轴为伸入到减速箱1内的动力输入轴2,动力头的动力通过减速机13减速后进入到减速箱1中,再在减速箱1内通过齿轮组和与齿轮组啮合的第一动力输出件3的传递带动钻杆17旋转,以及通过增扭机构30的减速增扭带动护筒18反向旋转。
另外,如图5和图7所示,减速箱1上还连接有连接组件14,连接组件14包括:滑架141;连接滑架141和减速箱1的多个连接架142,全部连接架142分别位于减速箱1的两侧并对正设置。其中,连接架142可以设置为两个,两个连接架142在减速箱1的两侧对正设置,连接架142可以为由板条在同一平面内连接而成的的平面架,或者由平板通过裁切、开孔等操作形成。连接架142包括用于与减速箱1的外壁连接的第一连接臂1421、与第一连接臂1421垂直连接并位于第一连接 臂1421一端的第二连接臂1422,以及连接第一连接臂1421和第二连接臂1422的第三连接臂1423,三个连接臂构成直角三角形的形状,以提高连接牢固性。另外,为了进一步提高连接牢固性,还可在两个对正设置的连接架142之间设置支撑臂143,如图3所示。滑架141连接在第二连接臂1422上,并位于与减速箱1对正的位置,即两个连接架142也位于滑架141两侧。滑架141上开设有滑槽1411,滑槽1411的延伸方向平行于第一动力输出件3的轴线,滑槽1411用于容纳并滑动连接设置在桅杆16上的导轨。
如图9所示,本申请还提供一种旋挖钻机,包括桅杆16、钻杆17、护筒18以及设置在桅杆16上并驱动钻杆17和护筒18旋转的双输出动力头,此双输出动力头为上述的动力头。
钻杆17穿过动力头的第一动力输出件3和第二动力输出件5,其中,第一动力输出件3设置为能够驱动钻杆17旋转,第二动力输出件5设置为能够驱动护筒18旋转。
具体的,第一动力输出件3的顶端可连接键套筒体11,通过键套筒体11与钻杆17配合带动钻杆17旋转,第二动力输出件5的底端可连接驱动花筒20,由驱动花筒20带动护筒18旋转。
在采用上述结构的基础之上,进行旋挖作业时,如图9所示,钻杆17被钢丝绳19竖直吊起,并使钻杆17从上到下依次穿过双输出动力头的键套筒体11、第一动力输出件3和第二动力输出件5,在穿过的同时还使键套筒体11与钻杆17周向定位。如此就能够实现双输出动力头和钻杆17的配合以及对钻杆17的驱动。
在设置护筒18时,如图9和图10所示,令双输出动力头的第二动力输出件5通过驱动花筒20与护筒18连接,驱动花筒20是连接在第二动力输出件5和护筒18之间的部件,起到过渡连接作用。具体的是,第二动力输出件5的下端设有销轴孔12,驱动花筒20通过***到销轴孔12中的销轴和第二动力输出件5连接,驱动花筒20再通过U型键和其他的销轴与护筒18连接,这样第二动力输出件5输出的扭矩和加压力就可以传递给护筒18,并且由于双输出动力头通过上述的连接组件14与旋挖钻机的桅杆16滑动连接,所以双输出动力头带动护筒18沿桅杆16滑动就能够实现护筒18的埋设施工。
此外,旋挖钻机由双输出动力头带来的其他有益效果,请参见上述有关双输出动力头的描述内容,在此不再赘述。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
本申请中涉及的器件、装置、设备、***的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、***。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
还需要指出的是,在本申请的装置、设备和方法中,各件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本申请的等效方案。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
应当理解,本申请实施例描述中所用到的限定词“第一”、“第二”、“第三”、“第四”、“第五”和“第六”仅用于更清楚的阐述技术方案,并不能用于限制本申请的保护范围。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。

Claims (16)

  1. 一种动力头,其特征在于,包括:
    减速箱;
    动力输入轴,伸入到所述减速箱内;
    第一动力输出件,设置在所述减速箱内,并与所述动力输入轴齿轮传动;增扭机构,设置在所述减速箱内,所述增扭机构包括第二动力输出件;
    其中,所述动力输入轴将动力传递至所述第一动力输出件时,还传递至所述增扭机构,所述增扭机构对动力增扭后由所述第二动力输出件输出。
  2. 根据权利要求1所述的动力头,其特征在于,所述增扭机构包括:传动齿轮轴,与所述动力输入轴齿轮传动;
    所述第二动力输出件与所述传动齿轮轴齿轮传动。
  3. 根据权利要求2所述的动力头,其特征在于,所述传动齿轮轴的相对的两端分别支撑在所述减速箱上。
  4. 根据权利要求2所述的动力头,其特征在于,所述动力输入轴上设置有主动齿轮,所述第一动力输出件上设置有第一从动齿轮,所述第一从动齿轮通过与所述主动齿轮啮合,实现第一动力输出件与所述动力输入轴的齿轮传动。
  5. 根据权利要求2所述的动力头,其特征在于,所述动力输入轴、所述传动齿轮轴和所述第二动力输出件构成的传动路径中包括多个啮合齿轮组,在任一所述啮合齿轮组中,不同齿轮依据传动顺序其齿数依次增大。
  6. 根据权利要求5所述的动力头,其特征在于,所述多个啮合齿轮组包括第一啮合齿轮组,所述第一啮合齿轮组包括:
    主动齿轮,设置在所述动力输入轴上;
    第一传动齿轮,设置在所述传动齿轮轴上并与所述主动齿轮啮合,且所述第一传动齿轮的齿数大于所述主动齿轮的齿数。
  7. 根据权利要求6所述的动力头,其特征在于,所述多个啮合齿轮组包括第二啮合齿轮组,所述第二啮合齿轮组包括:
    第二传动齿轮,设置在所述传动齿轮轴上,且齿数小于所述第一传动齿轮的齿数;
    第二从动齿轮,设置在所述第二动力输出件上并与所述第二传动齿轮啮合,且齿数大于所述第二传动齿轮的齿数。
  8. 根据权利要求7所述的动力头,其特征在于,所述第二传动齿轮的齿数小于所述主动齿轮的齿数。
  9. 根据权利要求1所述的动力头,其特征在于,所述增扭机构为行星齿轮机构,所述行星齿轮机构的齿圈固定设置在所述减速箱上,所述行星齿轮机构的行星架与所述第一动力输出件连接,所述行星齿轮机构的太阳轮为所述第二动力输出件。
  10. 根据权利要求9所述的动力头,其特征在于,所述行星架上周向设置有多个行星轮组, 每个所述行星轮组均包括旋转设置在所述行星架上并相互啮合的第一行星轮和第二行星轮,所述第一行星轮与所述齿圈啮合,所述第二行星轮与所述太阳轮啮合。
  11. 根据权利要求10所述的动力头,其特征在于,所述第一动力输出件为具有贯通内腔的套筒;所述行星架为同轴的固定在所述套筒底端的环形架,所述太阳轮为同轴设置在所述套筒底侧的空心轮。
  12. 根据权利要求1-11中任一项所述的动力头,其特征在于,所述第一动力输出件和所述第二动力输出件的旋转方向相反。
  13. 根据权利要求1-11中任一项所述的动力头,其特征在于,所述第一动力输出件和所述第二动力输出件均为具有贯通内腔的套筒,且所述第一动力输出件同轴设置在所述第二动力输出件的顶部。
  14. 根据权利要求13所述的动力头,其特征在于:
    所述第一动力输出件的顶端伸出至所述减速箱的外部,并连接有键套筒体,所述键套筒体包括:筒体,与所述第一动力输出件固定连接并同轴设置;花键,凸出的设置在所述筒体的内壁上;
    所述第二动力输出件的底端伸出至所述减速箱的外部,并设置有销轴孔。
  15. 根据权利要求1-11中任一项所述的动力头,其特征在于,所述动力头还包括减速机,所述减速机的输出轴为伸入到所述减速箱中的所述动力输入轴;
    所述减速箱上连接有连接组件,所述连接组件包括:滑架;连接所述滑架和所述减速箱的两个连接架,两个所述连接架分别位于所述减速箱的两侧并对正设置。
  16. 一种旋挖钻机,其特征在于,包括钻杆、护筒以及驱动所述钻杆和所述护筒旋转的双输出动力头,所述双输出动力头为上述权利要求1-15中任一项所述的动力头;并且,
    所述钻杆穿过所述动力头的第一动力输出件和第二动力输出件,其中,所述第一动力输出件设置为能够驱动所述钻杆旋转,所述第二动力输出件设置为能够驱动所述护筒旋转。
PCT/CN2022/114671 2022-04-02 2022-08-25 动力头及旋挖钻机 WO2023184838A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210353455.6A CN114838091A (zh) 2022-04-02 2022-04-02 一种动力头及旋挖钻机
CN202210353455.6 2022-04-02
CN202210603199.1 2022-05-25
CN202210603199.1A CN114992285A (zh) 2022-05-25 2022-05-25 一种双输出动力头及旋挖钻机

Publications (1)

Publication Number Publication Date
WO2023184838A1 true WO2023184838A1 (zh) 2023-10-05

Family

ID=88198916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114671 WO2023184838A1 (zh) 2022-04-02 2022-08-25 动力头及旋挖钻机

Country Status (1)

Country Link
WO (1) WO2023184838A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090002372A (ko) * 2007-06-28 2009-01-09 마천건설 주식회사 케이싱 구동부 구비형 오거용 구동장치
CN203361140U (zh) * 2013-06-27 2013-12-25 宜兴市开岩机械设备有限公司 一种双向搅拌桩机
CN104790871A (zh) * 2015-05-11 2015-07-22 徐州徐工基础工程机械有限公司 旋挖钻机的动力头和旋挖钻机
CN110552614A (zh) * 2019-10-12 2019-12-10 赛达(上海)传动工程有限公司 旋挖钻机动力头及相应的旋挖钻机
CN114838091A (zh) * 2022-04-02 2022-08-02 北京三一智造科技有限公司 一种动力头及旋挖钻机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090002372A (ko) * 2007-06-28 2009-01-09 마천건설 주식회사 케이싱 구동부 구비형 오거용 구동장치
CN203361140U (zh) * 2013-06-27 2013-12-25 宜兴市开岩机械设备有限公司 一种双向搅拌桩机
CN104790871A (zh) * 2015-05-11 2015-07-22 徐州徐工基础工程机械有限公司 旋挖钻机的动力头和旋挖钻机
CN110552614A (zh) * 2019-10-12 2019-12-10 赛达(上海)传动工程有限公司 旋挖钻机动力头及相应的旋挖钻机
CN114838091A (zh) * 2022-04-02 2022-08-02 北京三一智造科技有限公司 一种动力头及旋挖钻机

Similar Documents

Publication Publication Date Title
WO2016179774A1 (zh) 旋挖钻机的动力头和旋挖钻机
CN105484664A (zh) 一种钻机动力输出分时驱动方法
CN108468759A (zh) 一种石油钻机绞车用可换挡式行星齿轮减速箱
CN208845100U (zh) 一种土建施工用钻孔打桩机
WO2023184838A1 (zh) 动力头及旋挖钻机
JP5490870B2 (ja) マルチラムドリルリグおよび操作方法
CN202107466U (zh) 修井机液压绞车控制装置
CN203891755U (zh) 一种气动架柱式钻机
CN114838091A (zh) 一种动力头及旋挖钻机
CN218625338U (zh) 大功率连续采煤机用双输入对称输出减速器及连续采煤机
WO2024037114A1 (zh) 一种平行驱动装置
CN114992285A (zh) 一种双输出动力头及旋挖钻机
CN205532261U (zh) 一种钻机动力输出分时驱动装置
CN201714322U (zh) 连续油管注入头驱动装置
CN217106813U (zh) 多功能基础钻机
CN216240498U (zh) 一种牙嵌式钻杆拆装钳
CN208295045U (zh) 一种石油钻机绞车用可换挡式行星齿轮减速箱
CN217583043U (zh) 一种双输出动力头及旋挖钻机
CN210661218U (zh) 一种垂直输出的齿轮箱
CN111395947B (zh) 一种多工艺顶部电驱动钻井装置
CN201475256U (zh) 双输入角齿轮传动箱
CN210218569U (zh) 一种高稳定性的摆线针轮减速机
CN112360456A (zh) 一种掘进机及其截割动力头装置
CN211693382U (zh) 双速动力头
CN221053613U (zh) 一种多永磁电机驱动配套行星减速机的动力头装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934658

Country of ref document: EP

Kind code of ref document: A1