WO2023181860A1 - 改質処理装置 - Google Patents

改質処理装置 Download PDF

Info

Publication number
WO2023181860A1
WO2023181860A1 PCT/JP2023/008136 JP2023008136W WO2023181860A1 WO 2023181860 A1 WO2023181860 A1 WO 2023181860A1 JP 2023008136 W JP2023008136 W JP 2023008136W WO 2023181860 A1 WO2023181860 A1 WO 2023181860A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reforming
temperature
steam
raw material
Prior art date
Application number
PCT/JP2023/008136
Other languages
English (en)
French (fr)
Inventor
池田耕一郎
中神翔
松村南月
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Publication of WO2023181860A1 publication Critical patent/WO2023181860A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a desulfurizer that desulfurizes raw material gas supplied by a compressor, a reforming reaction tube that produces reformed gas by steam reforming the raw material gas from the desulfurizer, and the reformer.
  • a reformer equipped with a reforming burner that heats a reaction tube, a heat exchanger for heating the raw material gas that heats the raw material gas with the reformed gas from the reformer, and a heat exchanger for heating the raw material gas.
  • Cooling that has a carbon monoxide shift catalyst that converts carbon monoxide contained in the reformed gas from the reformed gas into carbon dioxide to generate a shift gas, and flows cooling water to cool the carbon monoxide shift catalyst.
  • a CO shift converter including a pipe; a heat exchanger for steam generation that heats water for steam generation with the combustion gas of the reforming burner to generate steam to be mixed with the raw material gas after the desulfurization treatment;
  • the present invention relates to a reforming treatment apparatus equipped with a steam separation section that separates steam from gas.
  • Such a reforming treatment device supplies raw material gas, which is a hydrocarbon gas such as natural gas or naphtha, to a desulfurizer and performs desulfurization treatment, and supplies the raw material gas after the desulfurization treatment to a reforming reaction tube in a mixed state of steam.
  • raw material gas which is a hydrocarbon gas such as natural gas or naphtha
  • a desulfurizer performs desulfurization treatment
  • the reformed gas is reformed with a large amount of hydrogen components in a reformer, and the carbon monoxide contained in the reformed gas is converted into carbon dioxide in a CO converter.
  • This results in the production of a metamorphosed gas with a low concentration of carbon monoxide see, for example, Patent Document 1).
  • the CO shift converter has a carbon monoxide shift catalyst that converts carbon monoxide contained in reformed gas into carbon dioxide, and
  • the carbon monoxide shift catalyst is configured to include a cooling pipe through which cooling water flows to cool the carbon monoxide shift catalyst (see, for example, Patent Document 2).
  • the reaction that converts carbon monoxide into carbon dioxide in the CO converter is an exothermic reaction, so by flowing cooling water through the cooling pipe, the temperature of the CO converter can be adjusted to convert carbon monoxide into carbon dioxide. It will be maintained at a temperature suitable for processing (eg, 180°C to 190°C).
  • the modified gas generated in the reforming processing equipment is supplied to, for example, a pressure fluctuation adsorption type hydrogen purification equipment, and the hydrogen component is removed by adsorption and removal of miscellaneous gases other than the hydrogen component in the modified gas.
  • a highly concentrated product gas will be produced.
  • the supply of raw material gas to the compressor is stopped and the reforming burner is stopped.
  • the heating gas e.g., hydrogen
  • start-up operation is performed to raise the temperature of the desulfurizer, reforming tube, and CO shift converter by circulating the flow through the exchanger, desulfurizer, reforming reaction tube, heat exchanger for heating raw material gas, CO shift converter, and steam separation section.
  • steady operation is performed in which the compressor supplies raw material gas to the desulfurizer.
  • the hydrogen gas will be used as the temperature raising gas for startup operation. It turns out.
  • the reformer's internal flow path is filled with inert gas (for example, nitrogen gas) when the reformer is stopped and stored, A hydrogen gas purge process is performed in which an inert gas (e.g., nitrogen gas) is discharged outside the equipment while supplying hydrogen gas to the flow path, and then the hydrogen gas filled in the reforming equipment is used as a heating gas. , start-up operation will be performed.
  • inert gas for example, nitrogen gas
  • the present invention has been made in view of the above-mentioned circumstances, and its purpose is to be able to quickly raise the temperature of the desulfurizer and CO shift converter during start-up operation while effectively utilizing the existing configuration.
  • the object of the present invention is to provide a reforming treatment device.
  • the reforming processing apparatus of the present invention includes a desulfurizer that desulfurizes raw material gas supplied by a compressor, and a reforming reaction that produces reformed gas by steam reforming the raw material gas from the desulfurizer.
  • a reformer including a reforming burner that heats a tube and the reforming reaction tube; a heat exchanger for heating the raw material gas that heats the raw material gas with the reformed gas from the reformer; and a heat exchanger for heating the raw material gas.
  • a cooling device that includes a carbon monoxide shift catalyst that converts carbon monoxide contained in the reformed gas from the gas heating heat exchanger into carbon dioxide to generate a shifted gas, and that cools the carbon monoxide shift catalyst.
  • a CO shift converter equipped with a cooling pipe for flowing water, and a heat exchanger for steam generation that heats water for steam generation with the combustion gas of the reforming burner to generate steam to be mixed with the raw material gas after the desulfurization treatment. and a steam separation section that separates steam from the transformed gas, the characteristic configuration of which is as follows:
  • the operation control unit stops the supply of the raw material gas to the compressor when starting the operation from the stopped state in which the supply of the raw material gas and the combustion of the reforming burner are stopped. In a state where the reforming burner is combusted, the temperature increasing gas is discharged from the steam separation section and returned to the upstream side of the compressor through a return path.
  • the present invention is characterized in that a steam mixing process is performed in which the steam is mixed and the steam is separated from the temperature-raising gas in the steam separation section.
  • the carbon monoxide shift catalyst will deteriorate, but if the temperature of the CO shift converter rises above the set intermediate temperature that can avoid water vapor condensation, it will pass through the desulfurizer.
  • the steam generated in the heat exchanger for steam generation is mixed with the heating gas after heating, and a steam mixing process is performed in which the steam is separated from the heating gas in the steam separation section. .
  • the temperature-raising gas mixed with steam is heated in the reforming burner. After passing through the reforming reaction tube, it flows to the raw material gas heating heat exchanger and the CO shift converter, where the raw material gas is heated and the carbon monoxide shift catalyst of the CO shift converter is heated. It will heat up.
  • the amount of heat required to heat the raw material gas in the raw material gas heating heat exchanger is Also, the amount of heating for heating the carbon monoxide shift catalyst of the CO shift converter increases, and as a result, the temperature of the desulfurizer and the CO shift converter can be quickly raised during start-up operation.
  • the characteristic configuration of the reforming treatment apparatus of the present invention it is possible to quickly raise the temperature of the desulfurizer and the CO shift converter during start-up operation while effectively utilizing the existing configuration.
  • a further characteristic configuration of the reforming treatment apparatus of the present invention is that the operation control unit controls the water supply source from the start of the startup operation until the temperature of the CO shift converter rises to the set intermediate temperature or higher. water from the water vapor is supplied to the steam generation heat exchanger, and temperature raising steam generated in the steam generation heat exchanger is supplied to the cooling pipe.
  • startup operation is performed as described above, but from the start of startup operation until the temperature of the CO transformer rises above the set intermediate temperature.
  • water from the water supply source is supplied to the steam generation heat exchanger to generate temperature raising steam, and the temperature raising steam is supplied to the cooling pipe of the CO transformer. do.
  • the CO shift converter when starting up, in addition to heating the CO shift converter with the heating gas, it is also possible to heat the CO shift converter with the heating steam supplied to the cooling pipe. During operation, the temperature of the CO shift converter can be quickly raised. In other words, it is possible to quickly raise the temperature of the CO transformer during start-up operation while effectively utilizing the existing configuration, that is, the steam generation heat exchanger and the cooling pipe of the CO transformer.
  • water from the water supply source is supplied as cooling water to the cooling pipe of the CO transformer, and the cooling The water after flowing through the pipe is supplied to the steam generation heat exchanger as water for steam generation.
  • a further characteristic configuration of the reforming treatment apparatus of the present invention is that the compressor includes an intercooler between a front-stage compression section and a rear-stage compression section, In the middle of the return path, a main line and a bypass line having a higher passage resistance than the main line are installed in parallel, A line switching unit is provided that switches between a main line flow state in which the temperature raising gas flows through the main line and a bypass line flow state in which the temperature raising gas flows through the bypass line, During the start-up operation, the operation control unit maintains the main line flow state and the CO shift converter from the start of the start-up operation until the temperature of the CO shift converter rises to the set intermediate temperature or higher. After the temperature of the vessel rises to the set intermediate temperature or higher, the line switching section is switched to the bypass line flow state while cooling of the intercooler is stopped.
  • the line switching section is switched to the main line flow state from the start of start-up operation until the temperature of the CO transformer rises above the set intermediate temperature, and the temperature of the CO transformer remains at the set intermediate temperature. After the temperature rises above the temperature, the line switching section is switched to the bypass line flow state while cooling of the intercooler is stopped.
  • the pressure of the heating gas flowing to the upstream side of the compressor through the return path decreases, so when the compressor raises the heating gas to the set target pressure.
  • the heating gas becomes hot, and since the cooling of the intercooler is stopped, the heating gas is circulated in a high temperature state, so water vapor is mixed in. The heating gas becomes hot.
  • the temperature of the desulfurizer and the CO shift converter can be raised more quickly during startup operation.
  • a further characteristic configuration of the reforming treatment apparatus of the present invention is that the reformer is configured to include a reforming furnace in which a cylindrical side wall is disposed between a ceiling wall and a bottom wall, The reforming burner is provided at the center of the ceiling wall in a downward combustion state, and the reforming reaction tube is provided around the reforming burner in a position hanging from the ceiling wall, A discharge part for discharging the combustion gas of the reforming burner is opened at an upper part of the side wall, A cylindrical outer wall is provided at an outer location of the side wall and is disposed between the ceiling wall and the bottom wall, The steam generation heat exchanger is arranged in an external space between the side wall and the outer wall,
  • the present invention is characterized in that an external discharge port is provided at a lower portion of the outer wall to discharge the combustion gas of the reforming burner flowing from the discharge portion through the external space.
  • a cylindrical outer wall is provided at the outer side of the side wall of the reforming furnace so as to be disposed between the ceiling wall and the bottom wall, and the combustion gas discharged from the discharge section is The fluid flows through the external space between the side wall and the outer wall and is discharged to the outside from the external outlet at the lower part of the outer wall.
  • the steam generation heat exchanger is placed in the external space between the side wall and the outer wall where combustion gas flows, the steam generation heat exchanger and the reforming furnace must be placed in separate locations.
  • the steam generation heat exchanger and the reforming furnace can be arranged more compactly than in the case where they are arranged in the same manner.
  • the characteristic configuration of the reforming treatment apparatus of the present invention it is possible to sufficiently reduce the combustion amount of the burner while maintaining the catalyst inside the reforming reaction tube at an appropriate reaction temperature, and, moreover, The heat exchanger for steam generation and the reforming furnace can be arranged compactly.
  • a further characteristic configuration of the reforming treatment apparatus of the present invention is that the CO shift converter includes a cylindrical shift furnace body having a reformed gas inlet at one end and a shift gas outlet after the shift treatment at the other end. configured in a form that provides A columnar filling body is disposed at a radially central location inside the shift furnace main body in a direction from the one end side to the other end side, and in a space outside the filling body inside the shift furnace main body. , the cooling pipe is arranged spirally and filled with the carbon monoxide shift catalyst.
  • a columnar packing body is arranged at the center in the radial direction inside the cylindrical converter main body, with one end facing toward the other end, and the columnar packing body is placed in the outer space of the packing body inside the converter main body. Since the cooling pipes are arranged in a spiral and are filled with a carbon monoxide shift catalyst, the entire carbon monoxide shift catalyst, which converts carbon monoxide contained in the reformed gas into carbon dioxide, is placed in the cooling pipe. This allows for good cooling to the appropriate temperature.
  • the carbon monoxide shift catalyst would also be filled in the radial center of the cylindrical shift furnace body;
  • the carbon monoxide shift catalyst which is packed in the center of the radial direction, is located in the center of the cooling pipe, which is arranged spirally inside the converter main body.
  • the presence of the columnar packing body in the radial center of the cylindrical shift reactor body cools the entire carbon monoxide shift catalyst.
  • the tube can be cooled to an appropriate temperature.
  • the entire carbon monoxide shift catalyst can be well cooled to an appropriate temperature using the cooling pipe, the entire reformed gas flowing through the carbon monoxide shift catalyst of the CO shift converter can be successfully shifted. Can be done.
  • FIG. 1 is a schematic configuration diagram of a hydrogen production device.
  • FIG. 3 is a diagram showing a gas flow state during startup operation (first half).
  • FIG. 6 is a diagram showing a gas flow state during startup operation (late stage). Diagram showing the flow state of pure water in start-up operation mode (first half) It is a figure which shows the flow state of pure water in startup operation mode (later period) and steady operation.
  • FIG. 2 is a longitudinal sectional front view showing a CO transformer.
  • FIG. 2 is a longitudinal sectional front view showing a reforming furnace.
  • FIG. 2 is a plan view showing an arrangement of reaction tubes in a reforming furnace.
  • FIG. 2 is a partially omitted vertical sectional front view showing a reforming reaction tube.
  • FIG. 7 is a diagram showing a gas flow state during startup operation (first half) of another embodiment.
  • FIG. 7 is a diagram showing a gas flow state during startup operation (late stage) of another embodiment.
  • FIG. 1 is an example of a steady operation in which hydrogen purification operation is being performed. Channels that are not in flow are indicated by thin lines. Regarding valves that open and close the flow paths, those in the open state are shown in white, and those in the closed state are shown in black.
  • FIG. 2 shows a state in which the first half of the startup operation is being performed
  • FIG. 3 shows a state in which the second half of the startup operation is being performed
  • FIG. 4 shows the flow state of pure water in the first half of the startup operation mode, as well as the startup operation.
  • FIG. 5 shows the flow state of pure water in the latter half of the mode and the steady operation mode.
  • the hydrogen production device 100 includes a reforming section R (an example of a reforming processing device), and adsorbs and removes impurities (miscellaneous gas) contained in the converted gas supplied from the reforming section R to increase the hydrogen concentration.
  • a pressure fluctuation adsorption type hydrogen separation unit 20 is provided to purify a product gas having a high content.
  • the operation control section M is configured to control the operation of the reforming section R and the hydrogen separation section 20.
  • the reforming section R includes a desulfurizer P that desulfurizes the raw material gas G, which is a hydrocarbon gas supplied under pressure by the compressor D, and a desulfurizer P that desulfurizes the raw material gas G, which is a hydrocarbon-based gas supplied under pressure by the compressor D, and the raw material gas G after desulfurization is supplied in a mixed state of water vapor.
  • a reformer H, and a CO shift converter Q that generates a reformed gas by converting carbon monoxide contained in the reformed gas K (see FIG.
  • the raw material gas G that is pressure-fed by the compressor D is supplied to the desulfurizer P through the first flow path L1 and the heat exchanger W for heating the raw material gas.
  • the desulfurizer P is filled with a Ni-Mo-based, ZnO-based, etc. desulfurization catalyst, and is configured to remove sulfur components such as odorants from the raw material gas G using the desulfurization catalyst.
  • the raw material gas G after desulfurization is supplied to the reformer H through the second flow path L2.
  • the second flow path L2 is supplied with water vapor generated in the steam generation heat exchanger J, and the water vapor is mixed with the raw material gas G flowing through the second flow path L2.
  • FIG. 1 schematically shows the configuration of the reformer H, and the description of the configuration for supplying combustion air to the reforming burner B is omitted.
  • Q is supplied.
  • the CO shift converter Q is filled with a carbon monoxide shift catalyst Z (see FIG. 6), and carbon monoxide in the reformed gas is reacted with water vapor to be shift-converted into hydrogen and carbon dioxide.
  • the reformed gas K becomes a reformed gas containing hydrogen, carbon monoxide, carbon dioxide, and methane (hydrogen concentration is 64 to 96% by volume).
  • the desulfurization reaction in the desulfurizer P is an endothermic reaction
  • the CO shift reaction in the CO shift converter Q is an exothermic reaction.
  • the transformed gas discharged from the CO transformer Q is cooled by exchanging heat with the cooling water in the cooling water heat exchanger 18 while flowing through the fourth flow path L4, and the water vapor is liquefied. Moisture (water vapor) is removed, and then guided to the hydrogen separation section 20 through the fifth flow path L5.
  • the fifth flow path L5 is provided with a converted gas valve V5 that opens and closes the fifth flow path L5.
  • the return path L10 is provided with a return valve V10 that opens and closes the return path L10.
  • a return line for desulfurization treatment is provided to return the converted gas from which moisture has been removed in the steam separation section 19 to the upstream side of the compressor D for desulfurization treatment in the desulfurizer P.
  • a desulfurization treatment on-off valve that opens and closes this desulfurization treatment return line is provided.
  • the desulfurization treatment on-off valve is opened during hydrogen purification operation (steady operation) and closed at other times.
  • a pure water supply pump 25 is supplied from a pure water tank 24 (an example of a water supply source) that stores pure water as water for steam generation.
  • a pure water heat exchanger 26 is provided to exchange heat between the supplied pure water and the converted gas.
  • an exhaust path L12 is branched from the fifth flow path L5 to exhaust the gas flowing through the fifth flow path L5 to the outside.
  • the exhaust path L12 is provided with an exhaust valve V12 that opens and closes the exhaust path L12.
  • the gas discharged from the steam separation section 19 is transferred upstream of the compressor D using the first flow path L1, the second flow path L2, the third flow path L3, the fourth flow path L4, and the return path L10.
  • the gas is returned to the side via the compressor D, the heat exchanger W for heating raw material gas, the desulfurizer P, the reformer H, the heat exchanger W for heating raw material gas, the CO shift converter Q, and the steam separation section 19. It is configured such that a closed circulation path C for circulating gas can be formed (see FIG. 2).
  • the hydrogen separation unit 20 is a pressure swing adsorption type that separates impurities other than hydrogen (miscellaneous gases) contained in the metamorphosed gas that has been metamorphosed in the CO shift converter Q and purifies the product gas with a high concentration of hydrogen gas. It includes a PSA device 22, a product tank 23 that stores purified product gas, and an off-gas tank 21 that stores off-gas discharged from the PSA device 22.
  • the PSA device 22 is equipped with a plurality of (three in this embodiment) adsorption towers 20a, 20b, and 20c.
  • Each adsorption tower 20a, 20b, 20c is filled with a combination of zeolite adsorbent, activated carbon, silica gel, etc. as an adsorbent to adsorb miscellaneous gases.
  • an adsorption step, a pressure reduction step, a purge step, and a pressure increase step (PSA method process) are executed in different phases in the plurality of adsorption towers 20a, 20b, 20c.
  • the system is configured to purify product gas with a high hydrogen gas concentration.
  • FIG. 1 shows a state in which the adsorption tower 20a is performing an adsorption process in which a modified gas is passed through and a product gas is obtained.
  • the product gas purified by the PSA device 22 is supplied to the product tank 23 through the sixth flow path L6, and the product gas stored in the product tank 23 is stably supplied to the hydrogen usage area.
  • the sixth flow path L6 is provided with a product gas valve V6 that opens and closes the sixth flow path L6.
  • the off-gas (miscellaneous gas) after hydrogen has been separated in the PSA device 22 is supplied to the off-gas tank 21 through the seventh flow path L7.
  • the seventh flow path L7 is provided with an off-gas valve V7 that opens and closes the seventh flow path L7.
  • the off-gas stored in the off-gas tank 21 contains flammable gases such as methane and hydrogen, it is guided to the fuel gas supply section 10 via the off-gas flow path L8, and reformed from the fuel gas supply section 10 as fuel gas. is supplied to burner B for use.
  • the off-gas flow path L8 is provided with an off-gas return valve V8 that opens and closes the off-gas flow path L8.
  • FIG. 1 only shows the flow of product gas, there are times when delivery of product gas and delivery of off-gas are performed simultaneously to different adsorption towers 20a, 20b, and 20c.
  • a hydrogen supply path L11 is provided for supplying hydrogen gas from the product tank 23 to the return path L10 in order to perform a hydrogen purge process to be described later.
  • the hydrogen supply path L11 is provided with a hydrogen gas valve V11 that opens and closes the hydrogen supply path L11.
  • the raw material gas G passes through the raw material gas valve V1, is then pressure-fed by the compressor D, flows through the first flow path L1, and then passes through the raw material gas valve V1. It passes through a heating heat exchanger W and is guided to a desulfurizer P where it is desulfurized. Thereafter, the raw material gas G mixed with steam is guided to the reformer H and subjected to steam reforming treatment to generate a reformed gas K.
  • the reformed gas K is transformed in a CO transformer Q, the transformed gas is cooled in a pure water heat exchanger 26 and a cooling water heat exchanger 18, and water vapor (moisture) is removed in a steam separation section 19. After that, the product gas (hydrogen gas) is introduced into the hydrogen separation unit 20 through the fifth flow path L5 and purified.
  • the reformer H is for reforming a hydrocarbon-based raw material gas G such as natural gas or naphtha into a reformed gas K with a large hydrogen component through steam reforming treatment.
  • the reforming furnace 2 is equipped with a reforming reaction tube A and a reforming burner B for heating the reforming reaction tube A.
  • the reforming furnace 2 is configured to include a ceiling wall 2U, a bottom wall 2D, and a cylindrical side wall 2S disposed between the ceiling wall 2U and the bottom wall 2D.
  • a reforming burner B is installed in the center of the ceiling wall 2U of the reformer H in a downward combustion manner, and the combustion gas E of the reforming burner B is discharged to an upper part of the side wall 2S.
  • the discharge section 2E is open.
  • a plurality of reforming reaction tubes A are arranged in a manner that they hang down from the ceiling wall 2U of the reformer H and are spaced apart from each other along the periphery of the reforming burner B. It is provided in the form of In this embodiment, a case where four reforming reaction tubes A are provided as the plurality of reforming reaction tubes A is illustrated, but it may be implemented in a form in which three or five or more reforming reaction tubes A are provided. Good too.
  • a cylindrical outer wall 2G is provided at the outer side of the side wall 2S of the reformer H, and is disposed between the ceiling wall 2U and the bottom wall 2D. ing.
  • a steam generation heat exchanger J is arranged in the external space F between the side wall 2S and the outer wall 2G, and is arranged to generate steam to be mixed with the raw material gas G supplied to the upper part of the reforming reaction tube A.
  • An external exhaust port 2Z is provided at a lower portion of the outer wall 2G to exhaust the combustion gas E flowing through the external space F from the exhaust portion 2E.
  • an air preheating heat exchanger for preheating the combustion air AR supplied to the reforming burner B is provided between the steam generation heat exchanger J and the outer wall 2G in the external space F.
  • a container N is provided.
  • the reforming reaction tube A includes an outer tube 3 with a closed bottom and an inner tube 4 disposed inside the outer tube 3, with the inner tube 4 having an open bottom.
  • a filling portion filled with granular reforming catalyst S is formed between the outer tube 3 and the inner tube 4 so as to face in the vertical direction.
  • the upper end portion of the outer tube 3 passes through the ceiling wall 2U of the reformer H and is supported by the ceiling wall 2U, and the upper end portion of the inner tube 4 passes through the upper tube wall 3u of the outer tube 3. In this state, it is supported by the upper wall 3u of the tube.
  • a porous catalyst support portion T is provided between the outer tube 3 and the inner tube 4 to receive and support the reforming catalyst S.
  • the catalyst support portion T is formed with a flow hole through which the reformed gas K flowing through between the outer tube 3 and the inner tube 4 flows toward the bottom side of the outer tube 3, and It is supported at the lower end of 4.
  • a perforated plate-like form in which communication holes are formed throughout the catalyst support part T is illustrated, but for example, the communication holes are arranged in a line along the circumferential direction.
  • the catalyst support part T may be formed in a variety of shapes as long as it has a through hole that receives the reforming catalyst S and allows the reformed gas K to flow therethrough, such as a plate-shaped configuration. It can be configured in the form of
  • a raw material gas introduction pipe 5a for introducing raw material gas G mixed with water vapor is connected to a portion of the outer tube 3 that protrudes from the ceiling wall 2U of the reformer H. .
  • this raw material gas introduction pipe 5a is connected to an annular raw material gas distribution pipe 5b, and a raw material gas pipe 5 for supplying raw material gas G mixed with water vapor is connected to this raw material gas distribution pipe 5b. It is connected. That is, the raw material gas G mixed with water vapor was supplied from the raw material gas pipe 5 to the annular raw material gas distribution pipe 5b, and the steam was mixed from the circular raw material gas distribution pipe 5b to the plurality of reforming reaction tubes A. It is configured such that raw material gas G is supplied.
  • the raw material gas pipe 5 is supplied with steam generated in the steam generation heat exchanger J as described later, and the raw material gas G and the raw material gas G are supplied through the raw material gas pipe 5. It is supplied to the outer tube 3 in a mixed state with water vapor.
  • a discharge pipe 6a for discharging the reformed gas K is connected to a portion of the inner pipe 4 that protrudes from the outer pipe 3.
  • the discharge pipe 6a is connected to an annular merging pipe 6b, and a guide pipe 6 for guiding the reformed gas K is connected to the merging pipe 6b. That is, the reformed gas K is discharged from the reforming reaction tube A through the discharge pipe 6a, and the reformed gas K flows toward the CO shift converter Q through the guide pipe 6 via the annular merging pipe 6b. become.
  • the steam generation heat exchanger J is configured such that heat transfer tubes 7 are spirally arranged along the outer periphery of the side wall 2S of the reformer H. That is, a pure water introduction pipe section 7a for supplying pure water is formed at the lower end of the heat transfer tube 7, and a steam discharge pipe for supplying water vapor to the raw material gas pipe 5 is formed at the upper end of the heat transfer tube 7. A portion 7b is formed.
  • the steam generation heat exchanger J allows the pure water supplied to the pure water introduction pipe section 7a to flow through the inside of the heat transfer pipe 7 heated by the combustion gas flowing in the external space F. , is configured to generate steam, and is configured to supply the generated steam to the raw material gas pipe 5 from the steam discharge pipe section 7b. Further, a branch pipe 7c is connected to the steam discharge pipe section 7b, which supplies the generated steam to the CO shift converter Q as temperature-raising steam U during the first half of the startup operation to be described later.
  • the air preheating heat exchanger N has a cylindrical shape that allows air to flow between a cylindrical inner wall 8n and a cylindrical outer wall 8g.
  • An air introduction section 8d for introducing combustion air AR supplied from a blower (not shown) is provided below the air preheating heat exchanger N.
  • a plurality of air supply pipes 9 connecting the upper part of the air preheating heat exchanger N and the reforming burner B are arranged radially around the reforming burner B, and the reformer It is provided inside the ceiling wall 2U of H.
  • the air preheating heat exchanger N allows the combustion air supplied to the air introduction part 8d to flow between the inner wall 8n and the outer wall 8g, which are heated by the combustion gas flowing in the external space F. , is configured to be heated to a high temperature state, and is configured to supply combustion air heated to a high temperature to the reforming burner B through the air supply pipe 9.
  • a fuel supply pipe 10a connected to the fuel gas supply section 10 is also connected to the reforming burner B. (see FIG. 1) is connected to the fuel gas supply section 10, and is configured to combust the fuel gas supplied from the fuel gas supply section 10 with the combustion air supplied through the air supply pipe 9.
  • the fuel gas supply unit 10 supplies off gas from the off gas tank 21 (see FIG. 1) as fuel gas, and when there is a shortage of off gas, it supplies raw material gas G as fuel gas. Therefore, the fuel gas supply section 10 is configured to include a supply amount adjustment valve that adjusts the supply amount of the off-gas and the supply amount of the raw material gas G, although a detailed explanation will be omitted. Further, a blower (not shown) that blows the combustion air AR to the air introduction portion 8d is configured so that the amount of air supplied can be adjusted by adjusting the output.
  • the CO shift converter Q has a carbon monoxide shift catalyst Z that converts carbon monoxide contained in the reformed gas K into carbon dioxide, and cools the carbon monoxide shift catalyst Z.
  • a cooling pipe 11 for flowing cooling water is provided. That is, the CO shift converter Q is configured to include a cylindrical shift furnace main body 12 that includes a reformed gas inlet 12a at one end and a modified gas outlet 12b after the shift conversion process at the other end.
  • a columnar filling body 13 is disposed at the center in the radial direction of the inside of the shift furnace main body 12 in a state facing from one end side to the other end, and in the outer space of the filling body 13 inside the shift furnace main body 12,
  • a cooling pipe 11 is arranged spirally from one end to the other end, and is filled with a carbon monoxide shift catalyst Z.
  • the filling body 13 is made of, for example, a cylindrical iron pipe.
  • the converter main body 12 includes a bottomed cylindrical main body portion 12A and a reformed gas receiving portion 12B connected by a flange to the upper part of the main body portion 12A.
  • the reformed gas receiving portion 12B is configured as a cylindrical portion into which the reformed gas K is introduced through the third flow path L3 and discharges the introduced reformed gas K toward the main body portion 12A.
  • a porous frame 14 that is formed in a porous shape and has air permeability is placed in the upper part of the interior of the main body portion 12A so as to close the upper end of the filling body 13.
  • a cylindrical gas receiving body 15 forming a plurality of reformed gas inlets 12a in the circumferential direction is connected to the reformed gas receiving portion 12B at a location corresponding to the upper part of the filling body 13, and has a porous lower end portion. It is provided so as to be inserted into the shaped frame 14.
  • the reformed gas K flowing from the reformed gas receiving part 12B to the gas receiving body 15 is discharged from the reformed gas inlet 12a, and the reformed gas K passes through the porous frame 14 to the outer space of the packing body 13. It is configured to flow.
  • a receiving plate 16 for receiving the carbon monoxide conversion catalyst Z is provided at a lower portion inside the main body portion 12A, and a receiving plate 16 is arranged so that the portion facing the packing body 13 is in a non-porous state and is located outside the packing body 13.
  • the portion is porous and is provided at a location corresponding to the lower end of the filling body 13.
  • the space below the receiving plate 16 is filled with a metal spherical body 16a, and the metamorphic gas in the space below is discharged from the metamorphic gas outlet 12b to the fourth flow path L4.
  • the first deionized water supplied by the deionized water supply pump 25 is made to flow into the inlet of the cooling pipe 11.
  • a supply path L13 and a second pure water supply path L14 are provided for causing the pure water discharged from the outlet of the cooling pipe 11 to flow into the pure water introduction pipe section 7a of the heat transfer tube 7.
  • the pure water flowing through the first pure water supply path L13 is diverted to the pure water introduction pipe section of the heat transfer pipe 7 by bypassing the cooling pipe 11.
  • a third pure water supply path L15 which is made to flow into the pure water supply path L15, is provided so as to branch from the first pure water supply path L13 and merge into the second pure water supply path L14.
  • the steam discharged from the branch pipe 7c branching from the steam discharge pipe section 7b of the heat transfer pipe 7 is made to flow into the inlet section of the cooling pipe 11 as steam U for temperature increase.
  • a flow path L16 is provided to join the first pure water supply path L13.
  • a steam exhaust path L17 that causes steam discharged from the outlet of the cooling pipe 11 to flow into the pure water tank 24 is provided so as to branch from the second pure water supply path L14.
  • the steam exhaust path L17 is provided with a steam cooling heat exchanger 27 that cools the steam with cooling water and condenses it.
  • the pure water tank 24 is equipped with a pure water device such as an ion exchange type water purifier that purifies the condensed water that returns through the steam exhaust path L17.
  • a first on-off valve 28 is provided downstream of the branch point of the third pure water supply path L15 in the first pure water supply path L13, and a first on-off valve 28 is provided near the inlet of the cooling pipe 11 in the steam flow path L16.
  • Two on-off valves 29 are provided.
  • a third on-off valve 30 is provided downstream of the branch point of the steam exhaust path L17 in the second pure water supply path L14, and a fourth on-off valve 31 is provided on the steam exhaust path L17. .
  • the mode can be switched to the steady operation mode and the start-up operation mode (late stage).
  • the startup operation mode first half.
  • the pure water flow state switching unit Y that switches the flow state of pure water from the pure water tank 24 between the steady operation mode, the start-up operation mode (later stage), and the start-up operation mode (early stage)
  • the main parts include the first on-off valve 28, the second on-off valve 29, the third on-off valve 30, and the fourth on-off valve 31. Further, the first on-off valve 28, the second on-off valve 29, the third on-off valve 30, and the fourth on-off valve 31 are controlled to open and close by the operation control section M.
  • the product gas (hydrogen gas) is made to flow through the closed circulation path C, and the gas remaining in the closed circulation path C is discharged from the exhaust path L12, while the product gas (hydrogen gas) flows inside the closed circulation path C. (hydrogen gas).
  • the mixing (supply) of steam is stopped, the heating of the reformer H by the reforming burner B is stopped, and the hydrogen gas valve V11 and the exhaust valve V12 are stopped.
  • the return valve V10 by closing the return valve V10, the product gas (hydrogen gas) filled in the closed circulation path C is made to flow through the closed circulation path C, thereby removing the water vapor inside the closed circulation path C. The water vapor will be discharged.
  • compressor D is stopped, water vapor mixing (supply) is continued and stopped, heating of reformer H by reforming burner B is continued and stopped, and hydrogen gas valve V11 and exhaust valve V12 are closed.
  • a hydrogen filling process is performed in which the closed circulation path C is closed and the product gas (hydrogen gas) is filled into the inside of the closed circulation path C.
  • a pressure sensor is provided to detect the internal pressure of the closed circulation path C, and when the internal pressure of the closed circulation path C decreases, the hydrogen gas valve V11 is opened and the product gas ( Hydrogen gas) will be refilled.
  • temperature-raising gas (hydrogen gas filled in closed circulation path C) is When water vapor is discharged from the separation section 19, it is returned to the upstream side of the compressor D through the return path L10. It is configured to circulate through the heating heat exchanger W, CO shift converter Q, and steam separation section 19 to raise the temperature of the desulfurizer P, reforming reaction tube A, and CO shift converter Q to a set target state.
  • the compressor D starts operating, and the reformer H is started to be heated by the reforming burner B.
  • the temperature of the desulfurizer P, the reforming reaction tube A, and the CO shift converter Q is raised while flowing the product gas (hydrogen gas) as a temperature-raising gas filled through the closed circulation path C.
  • the internal pressure of the closed circulation path C is increased by opening the hydrogen gas valve V11 and replenishing the product gas (hydrogen gas).
  • the start-up operation includes a start-up operation (early stage) until the temperature of the CO transformer Q rises to a set intermediate temperature (for example, 140°C) that can avoid condensation of water vapor, and a start-up operation (early stage) of the CO transformer Q. It consists of a start-up operation (later stage) after the temperature rises to a set intermediate temperature (for example, 140° C.) that can avoid condensation of water vapor.
  • the outlet pressure of the compressor D is adjusted to the target pressure (for example, 0.8 MPa), and the internal pressure of the closed circulation path C is maintained at a high pressure state.
  • the set target conditions include, for example, the temperature of the reforming catalyst S is 720°C or higher, the inlet temperature of the reforming reaction tube A is 200°C or higher, the lower temperature of the desulfurizer P is 210°C or higher, and the CO shift converter Q This is a state in which the temperature at the lower part of the cylinder is 170°C or higher.
  • the pure water flow state switching unit Y is switched to the start-up operation mode (first half) (see FIG. 4). That is, the pure water from the pure water tank 24 is supplied to the steam generation heat exchanger J, and the temperature raising steam U generated in the steam generation heat exchanger J is supplied to the cooling pipe 11 of the CO transformer Q. configured to supply.
  • the pure water flow state switching unit Y is switched to the start-up operation mode (later stage) (see FIG. 5). Therefore, the steam generated in the steam generating heat exchanger J is mixed with the heating gas after passing through the desulfurizer P, and the steam is separated from the heating gas in the steam separation section 19.
  • a blending process is configured to be performed.
  • the operation control section M switches the pure water flow state switching section Y to the steady operation mode and controls the source gas G
  • the supply of gas will be started and steady operation will be performed to generate converted gas. That is, the source gas valve V1 and the converted gas valve V5 are opened, and the return valve V10 is closed to generate the converted gas and supply the converted gas to the PSA device 22.
  • the PSA device 22 exhausts the purified product gas until the hydrogen concentration of the purified product gas becomes equal to or higher than the set value. When the value exceeds the set value, the purified product gas is stored in the product tank 23.
  • the compressor D When transitioning from standby operation to hydrogen refining operation, first, the compressor D is continuously operated, and the reformer H is continued to be heated by the reforming burner B, and water vapor is mixed (supplied). ), the source gas valve V1 and the converted gas valve V5 are opened, and the return valve V10 is closed to supply the converted gas to the PSA device 22.
  • the PSA device 22 After restarting the operation, the PSA device 22 exhausts the purified product gas until the hydrogen concentration of the purified product gas becomes equal to or higher than the set value. When the value exceeds the set value, the purified product gas is stored in the product tank 23.
  • the compressor D is configured to include an intercooler 34 between a first stage compression section 33A and a second stage compression section 33B.
  • the intercooler 34 is provided with a cooling water stop valve 35 for stopping the flow of the cooling water. Therefore, the intercooler 34 is configured to be able to be switched between a cooling operation state and a cooling stopped state by opening and closing the cooling water stop valve 35.
  • a line switching unit 36 is provided that switches between a main line flow state in which the temperature raising gas flows through the main line Lm and a bypass line flow state in which the temperature raising gas flows through the bypass line Lb.
  • the main line Lm is provided with a main line on-off valve 36a that opens and closes the main line Lm
  • the bypass line Lb is provided with a bypass line on-off valve that opens and closes the bypass line Lb and provides passage resistance in the open state. 36b is provided. Therefore, by opening the main line on-off valve 36a and closing the bypass line on-off valve 36b, the main line flow state is established, and by closing the main line on-off valve 36a and opening the bypass line on-off valve 36b, the bypass line flow state is established. The state is configured to appear.
  • the line switching unit 36 is configured to switch the bypass line to the flow state while the cooling of the intercooler 34 is stopped.
  • the operation control unit M controls the operation of the compressor D so that the outlet pressure of the compressor D becomes the target pressure (for example, 0.8 MPa), and the inside of the closed circulation path C is The pressure will be maintained at high pressure. That is, the compressor D, for example, pressurizes the received gas to an intermediate pressure of the target pressure in the first stage compression section 33A, and increases the pressure to the target pressure in the second stage compression section 33B.
  • the target pressure for example, 0.8 MPa
  • the pressure of the temperature-raising gas received by the compressor D is lower than in the main line flow state, so the compression amount of the temperature-raising gas in the first-stage compression section 33A and the second-stage compression section 33B is In the bypass line flow state, the temperature is higher than in the main line flow state, and the temperature of the heating gas becomes higher in the bypass line flow state than in the main line flow state.
  • the intercooler 34 is switched to a state in which cooling is stopped, so that the temperature of the heating gas becomes even higher.
  • the temperature-raising steam U generated in the steam cooling heat exchanger 27 is transferred to the CO shift converter Q. It may also be implemented in a form where it flows into the inlet of the cooling pipe 11.
  • the reformer H having a plurality of reforming reaction tubes A is illustrated, but the reformer H having a single reforming reaction tube A may also be used.
  • the present invention is applicable.
  • the reformer H includes the steam generation heat exchanger J and the air preheating heat exchanger N, but the steam generation heat exchanger J and the air preheating heat exchanger
  • the air preheating heat exchanger N may be formed at a location different from the reformer H.
  • the hydrogen separation unit 20 is provided for separating hydrogen gas from the converted gas from the reforming unit R is illustrated, but the converted gas is used as the product gas.
  • the modified gas may be used as it is, such as by being supplied to an engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

既設の構成を有効利用しながら、起動運転の際に脱硫器及びCO変成器を迅速に昇温させることができる改質処理装置を提供する。 運転制御部Mが、運転停止状態から運転を開始する際に、昇温用ガスを、水蒸気分離部19から排出されると返送路L10を通して圧縮機Dの上流側箇所に戻す形態で、圧縮機D、原料ガス加熱用熱交換器W、脱硫器P、改質反応管A、原料ガス加熱用熱交換器W、CO変成器Q、水蒸気分離部19を通して循環させる起動運転を行った後に、定常運転を実行し、且つ、起動運転において、CO変成器Qの温度が水蒸気の結露を回避できる設定中間温度以上に昇温すると、脱硫器Pを通過した後の昇温用ガスに水蒸気生成用熱交換器Jにて生成された水蒸気を混合し、かつ、水蒸気分離部19にて昇温用ガスから水蒸気を分離する水蒸気混合処理を実行する。

Description

改質処理装置
 本発明は、圧縮機にて供給される原料ガスを脱硫処理する脱硫器と、当該脱硫器からの前記原料ガスを水蒸気改質処理して改質ガスを生成する改質反応管及び当該改質反応管を加熱する改質用バーナを備える改質器と、当該改質器からの前記改質ガスにて前記原料ガスを加熱する原料ガス加熱用熱交換器と、当該原料ガス加熱用熱交換器からの前記改質ガスに含まれる一酸化炭素を二酸化炭素に変成処理して変成ガスを生成する一酸化炭素変成触媒を有し且つ当該一酸化炭素変成触媒を冷却する冷却水を流動させる冷却管を備えるCO変成器と、水蒸気生成用水を前記改質用バーナの燃焼ガスにて加熱して前記脱硫処理後の前記原料ガスに混合する水蒸気を生成する水蒸気生成用熱交換器と、前記変成ガスから水蒸気を分離する水蒸気分離部と、が備えられた改質処理装置に関する。
 かかる改質処理装置は、天然ガスやナフサ等の炭化水素系ガスである原料ガスを脱硫器に供給して脱硫処理し、脱硫処理後の原料ガスを水蒸気の混合状態で改質反応管に供給することにより、改質器にて水素成分が多い改質ガスに改質し、改質ガスに含まれる一酸化炭素をCO変成器にて二酸化炭素に変成処理することにより、水素成分が多く且つ一酸化炭素の濃度が低い変成ガスを生成することになる(例えば、特許文献1参照)。
 特許文献1においては、CO変成器の詳細な説明が省略されているが、CO変成器は、改質ガスに含まれる一酸化炭素を二酸化炭素に変成処理する一酸化炭素変成触媒を有し且つ当該一酸化炭素変成触媒を冷却する冷却水を流動させる冷却管を備える形態に構成されることになる(例えば、特許文献2参照)。
 つまり、CO変成器における一酸化炭素を二酸化炭素に変成処理する反応は発熱反応であるから、冷却管を通して冷却水を流動させることにより、CO変成器の温度を、一酸化炭素を二酸化炭素に変成処理するのに適する温度(例えば、180℃~190℃)に維持することになる。
 ちなみに、改質処理装置にて生成された変成ガスは、例えば、圧力変動吸着式の水素精製装置に供給されて、変成ガス中の水素成分以外の雑ガスを吸着除去することにより、水素成分の濃度が高い製品ガスが製造されることになる。
特開2001-335304号公報 特開平9-268001号公報
 改質処理装置においては、原料ガスの供給を停止しかつ改質用バーナの燃焼を停止させた運転停止状態から運転を開始する際には、圧縮機への原料ガスの供給を停止しかつ改質用バーナの燃焼を開始させた状態で、昇温用ガス(例えば、水素)を、水蒸気分離部から排出されると圧縮機の上流側箇所に戻す形態で、圧縮機、原料ガス加熱用熱交換器、脱硫器、改質反応管、原料ガス加熱用熱交換器、CO変成器、水蒸気分離部を通して循環流動させて、脱硫器、改質管、CO変成器を昇温させる起動運転を行い、その後、圧縮機にて原料ガスを脱硫器に供給する定常運転を行うことになる。
 ちなみに、改質処理装置を停止しておくときに、改質処理装置の内部流路に水素ガスを充填させておく場合には、その水素ガスを昇温用ガスとして用いて、起動運転を行うことになる。
 また、改質処理装置を停止して保管しておくときに、改質処理装置の内部流路に不活性ガス(例えば、窒素ガス)を充填させておく場合には、改質処理装置の内部流路に水素ガスを供給しながら不活性ガス(例えば、窒素ガス)を装置外に排出する水素ガスパージ処理を行い、その後、改質処理装置に充填された水素ガスを昇温用ガスとして用いて、起動運転を行うことになる。
 起動運転を行うと、改質管は改質用バーナの燃焼により迅速に昇温させ易いものであるが、脱硫器に供給する原料ガスが原料ガス加熱用熱交換器にて昇温用ガスにより加熱されることになるものの、脱硫器を迅速に昇温させ難い傾向となる。また、CO変成器は、冷却管に冷却水を流動させることを停止して、通流する昇温用ガスの加熱により昇温されるものの、迅速に昇温させ難い傾向となる。
 尚、脱硫器やCO変成器を迅速に昇温させるために、起動運転用のヒータを設置することが考えられるが、この場合、イニシャルコスト、ランニングコストが大幅に増加することになるため、実用し難いものである。
 本発明は、上記実状に鑑みて為されたものであって、その目的は、既設の構成を有効利用しながら、起動運転の際に脱硫器及びCO変成器を迅速に昇温させることができる改質処理装置を提供する点にある。
 本発明の改質処理装置は、圧縮機にて供給される原料ガスを脱硫処理する脱硫器と、当該脱硫器からの前記原料ガスを水蒸気改質処理して改質ガスを生成する改質反応管及び当該改質反応管を加熱する改質用バーナを備える改質器と、当該改質器からの前記改質ガスにて前記原料ガスを加熱する原料ガス加熱用熱交換器と、当該原料ガス加熱用熱交換器からの前記改質ガスに含まれる一酸化炭素を二酸化炭素に変成処理して変成ガスを生成する一酸化炭素変成触媒を有し且つ当該一酸化炭素変成触媒を冷却する冷却水を流動させる冷却管を備えるCO変成器と、水蒸気生成用水を前記改質用バーナの燃焼ガスにて加熱して前記脱硫処理後の前記原料ガスに混合する水蒸気を生成する水蒸気生成用熱交換器と、前記変成ガスから水蒸気を分離する水蒸気分離部と、が備えられたものであって、その特徴構成は、
 運転制御部が、前記原料ガスの供給を停止しかつ前記改質用バーナの燃焼を停止させた運転停止状態から運転を開始する際に、前記圧縮機への前記原料ガスの供給を停止しかつ前記改質用バーナを燃焼させた状態で、昇温用ガスを、前記水蒸気分離部から排出されると返送路を通して前記圧縮機の上流側箇所に戻す形態で、前記圧縮機、前記原料ガス加熱用熱交換器、前記脱硫器、前記改質反応管、前記原料ガス加熱用熱交換器、前記CO変成器、前記水蒸気分離部を通して循環させて、前記脱硫器、前記改質反応管、前記CO変成器を設定目標状態に昇温する起動運転を行った後に、前記圧縮機への前記原料ガスの供給を開始して前記変成ガスを生成する定常運転を実行し、且つ、前記起動運転において、前記CO変成器の温度が水蒸気の結露を回避できる設定中間温度以上に昇温すると、前記脱硫器を通過した後の前記昇温用ガスに前記水蒸気生成用熱交換器にて生成された水蒸気を混合し、かつ、前記水蒸気分離部にて前記昇温用ガスから水蒸気を分離する水蒸気混合処理を実行する点にある。
 すなわち、原料ガスの供給を停止しかつ改質用バーナの燃焼を停止させた運転停止状態から運転を開始する際には、圧縮機への原料ガスの供給を停止しかつ改質用バーナを燃焼させた状態で、昇温用ガスを、水蒸気分離部から排出されると返送路を通して圧縮機の上流側箇所に戻す形態で、圧縮機、原料ガス加熱用熱交換器、脱硫器、改質反応管、原料ガス加熱用熱交換器、CO変成器、水蒸気分離部を通して循環させる起動運転を実行することになる。そして、その起動運転において、CO変成器の温度が水蒸気の結露を回避できる設定中間温度以上に昇温すると、脱硫器を通過した後の昇温用ガスに水蒸気生成用熱交換器にて生成された水蒸気を混合し、かつ、水蒸気分離部にて昇温用ガスから水蒸気を分離する水蒸気混合処理が実行されることになる。
 つまり、CO変成器にて結露が発生すると、一酸化炭素変成触媒が劣化することになるが、CO変成器の温度が水蒸気の結露を回避できる設定中間温度以上に昇温すると、脱硫器を通過した後の昇温用ガスに水蒸気生成用熱交換器にて生成された水蒸気が混合され、かつ、水蒸気分離部にて昇温用ガスから水蒸気を分離する水蒸気混合処理が実行されることになる。
 脱硫器を通過した後の昇温用ガスに水蒸気生成用熱交換器にて生成された水蒸気が混合されると、水蒸気が混合された昇温用ガスが、改質用バーナにて加熱された改質反応管を経由した後、原料ガス加熱用熱交換器及びCO変成器に流動して、原料ガス加熱用熱交換器にて原料ガスを加熱し、CO変成器の一酸化炭素変成触媒を加熱することになる。
 そして、水蒸気が混合された昇温用ガスは、昇温用ガスが単独で存在する場合よりも保有熱量が大きなものであるから、原料ガス加熱用熱交換器にて原料ガスを加熱する加熱量や、CO変成器の一酸化炭素変成触媒を加熱する加熱量が増加することになり、その結果、起動運転の際に脱硫器及びCO変成器を迅速に昇温させることができる。
 つまり、既設の構成、つまり、水蒸気生成用熱交換器等を有効利用しながら、起動運転の際にCO変成器を迅速に昇温させることができるのである。
 要するに、本発明の改質処理装置の特徴構成によれば、既設の構成を有効利用しながら、起動運転の際に脱硫器及びCO変成器を迅速に昇温させることができる。
 本発明の改質処理装置の更なる特徴構成は、前記運転制御部が、前記起動運転を開始してから前記CO変成器の温度が前記設定中間温度以上に昇温するまでは、水供給源からの水を前記水蒸気生成用熱交換器に供給し、当該水蒸気生成用熱交換器にて生成された昇温用蒸気を前記冷却管に供給する点にある。
 すなわち、運転停止状態から運転を開始する際には、上述の如く、起動運転を行うことになるが、その起動運転を開始してからCO変成器の温度が設定中間温度以上に昇温するまで、つまり、水蒸気混合処理を行うまでは、水供給源からの水を水蒸気生成用熱交換器に供給して昇温用蒸気を生成し、当該昇温用蒸気をCO変成器の冷却管に供給する。
 従って、起動運転を行うときに、昇温用ガスによりCO変成器を加熱することに加えて、冷却管に供給される昇温用蒸気にてもCO変成器を加熱することができるから、起動運転を行う際に、CO変成器を迅速に昇温させることができる。
 つまり、既設の構成、つまり、水蒸気生成用熱交換器及びCO変成器の冷却管を有効利用しながら、起動運転の際にCO変成器を迅速に昇温させることができるのである。
 ちなみに、圧縮機への原料ガスの供給を開始して変成ガスを生成する定常運転を実行する際には、水供給源からの水を冷却水としてCO変成器の冷却管に供給し、当該冷却管を流動した後の水を水蒸気生成用水として水蒸気生成用熱交換器に供給することになる。
 要するに、本発明の改質処理装置の特徴構成によれば、既設の構成を有効利用しながら、起動運転の際にCO変成器を迅速に昇温させることができる。
 本発明の改質処理装置の更なる特徴構成は、前記圧縮機が、前段圧縮部と後段圧縮部との間にインタークーラーを備え、
 前記返送路の途中に、メインラインと、当該メインラインよりも通過抵抗が大きなバイパスラインとが並設され、
 前記メインラインを通して前記昇温用ガスを流動させるメインライン流動状態と前記バイパスラインを通して前記昇温用ガスを流動させるバイパスライン流動状態とを切換えるライン切換部が設けられ、
 前記運転制御部が、前記起動運転において、前記起動運転を開始してから前記CO変成器の温度が前記設定中間温度以上に昇温するまでは、前記メインライン流動状態に、且つ、前記CO変成器の温度が前記設定中間温度以上に昇温してからは、前記インタークーラーの冷却を停止させた状態で前記バイパスライン流動状態に、前記ライン切換部を切換える点にある。
 すなわち、起動運転において、起動運転を開始してからCO変成器の温度が設定中間温度以上に昇温するまでは、ライン切換部がメインライン流動状態に切換えられ、CO変成器の温度が設定中間温度以上に昇温してからは、インタークーラーの冷却を停止させた状態でライン切換部がバイパスライン流動状態に切換えられることになる。
 従って、バイパスライン流動状態に切換えられると、返送路を通して圧縮機の上流側箇所に流動する昇温用ガスの圧力が低下するため、圧縮機が昇温用ガスを設定目標圧力に昇圧する際の圧縮量が増加して、昇温用ガスが高温になり、しかも、インタークーラーの冷却が停止されているため、昇温用ガスが高温状態のまま循環されることになるから、水蒸気が混合された昇温用ガスが高温になる。
 つまり、バイパスライン流動状態に切換えられると、水蒸気が混合された昇温用ガスの循環流量が減少するものの、水蒸気が混合された昇温用ガスが高温になり、原料ガス加熱用熱交換器にて原料ガスを加熱する加熱量や、CO変成器の一酸化炭素変成触媒を加熱する加熱量が増加することになり、その結果、起動運転の際に脱硫器及びCO変成器を一層迅速に昇温させることができる。
 要するに、本発明の改質処理装置の更なる特徴構成によれば、起動運転の際に脱硫器及びCO変成器を一層迅速に昇温させることができる。
 本発明の改質処理装置の更なる特徴構成は、前記改質器が、天井壁と底壁との間に円筒状の側壁が配置された改質炉を備える形態に構成され、
 前記天井壁の中央箇所に、前記改質用バーナが下向きに燃焼する状態で設けられ、当該改質用バーナの周囲に、前記改質反応管が前記天井壁から垂下する姿勢で設けられ、
 前記側壁の上方側箇所に、前記改質用バーナの燃焼ガスを排出する排出部が開口され、
 前記側壁の外方側箇所に、前記天井壁と前記底壁との間に配置される形態で円筒状の外方壁が設けられ、
 前記水蒸気生成用熱交換器が、前記側壁と前記外方壁との間の外部空間に配置され、
 前記外方壁の下方側箇所に、前記排出部から前記外部空間を通して流動する前記改質用バーナの燃焼ガスを排出する外部排出口が設けられている点にある。
 すなわち、改質炉の側壁の外方側箇所に、円筒状の外方壁が、天井壁と底壁との間に配置される状態で設けられて、排出部から排出される燃焼ガスが、側壁と外方壁との間の外部空間を通して流動して、外方壁の下方側箇所の外部排出口から外部に排出されることになるから、炉本体の側壁の外方側箇所を外方壁にて覆うこと、および、側壁と外方壁との間の外部空間を通して燃焼ガスが流動することにより、バーナの燃焼により発生する熱が、炉本体の外部に逃げることを抑制する断熱性を向上させることができることになり、その結果、改質反応管の内部の触媒を適正な反応温度に維持しながらもバーナの燃焼量の低下を十分に図ることができる。
 しかも、側壁と外方壁との間の燃焼ガスが流動する外部空間に、水蒸気生成用熱交換器を配置するものであるから、水蒸気生成用熱交換器と改質炉とを別の箇所に配置する場合に較べて、水蒸気生成用熱交換器と改質炉とをコンパクトに配置することができる。
 要するに、本発明の改質処理装置の特徴構成によれば、改質反応管の内部の触媒を適正な反応温度に維持しながらもバーナの燃焼量の低下を十分に図ることができ、しかも、水蒸気生成用熱交換器と改質炉とをコンパクトに配置することができる。
 本発明の改質処理装置の更なる特徴構成は、前記CO変成器が、改質ガス入口を一端側に備えかつ変成処理後の変成ガス出口を他端側に備える筒状の変成炉本体を備える形態に構成され、
 前記変成炉本体の内部の径方向の中央箇所に、柱状の充填体が前記一端側から前記他端側に向かう状態で配置され、前記変成炉本体の内部における前記充填体の外方側空間に、前記冷却管が螺旋状に配置され且つ前記一酸化炭素変成触媒が充填されている点にある。
 すなわち、筒状の変成炉本体の内部の径方向の中央箇所に、柱状の充填体が一端側から他端側に向かう状態で配置され、変成炉本体の内部における充填体の外方側空間に、冷却管が螺旋状に配置され且つ一酸化炭素変成触媒が充填されているから、改質ガスに含まれる一酸化炭素を二酸化炭素に変成処理する一酸化炭素変成触媒の全体を、冷却管にて適正温度に良好に冷却できるものとなる。
 つまり、柱状の充填体が存在しない場合には、筒状の変成炉本体の内部の径方向の中央箇所にも一酸化炭素変成触媒が充填されることになるが、変成炉本体の内部の径方向の中央箇所に充填されている一酸化炭素変成触媒は、変成炉本体の内部に螺旋状に配置される冷却管の内部における径方向の中央箇所に位置することになるため、冷却管にて適正温度に良好に冷却できないものとなる虞があるが、柱状の充填体が筒状の変成炉本体の内部の径方向の中央箇所に存在することにより、一酸化炭素変成触媒の全体を、冷却管にて適正温度に良好に冷却できるものとなる。
 そして、一酸化炭素変成触媒の全体を、冷却管にて適正温度に良好に冷却できることにより、CO変成器の一酸化炭素変成触媒を通して流動する改質ガスの全体に対して良好に変成処理することができる。
 要するに、本発明の改質処理装置の特徴構成によれば、CO変成器の一酸化炭素変成触媒を通して流動する改質ガスの全体に対して良好に変成処理することができる。
水素製造装置の概略構成図である。 起動運転(前期)のガスの流通状態を示す図である。 起動運転(後期)のガスの流通状態を示す図である。 起動運転モード(前期)の純水の流れ状態を示す図 起動運転モード(後期)及び定常運転の純水の流れ状態を示す図である。 CO変成器を示す縦断正面図である。 改質炉を示す縦断正面図である。 改質炉における反応管の配置形態を示す平面図である。 改質反応管を示す一部省略縦断正面図である。 別実施形態の水素製造装置の概略構成図である。 別実施形態の起動運転(前期)のガスの流通状態を示す図である。 別実施形態の起動運転(後期)のガスの流通状態を示す図である。
 〔実施形態〕
 以下に、本発明の実施形態を図面に基づいて説明する。
 (水素製造装置の全体構成)
 図1に基づいて、水素製造装置100について説明する。尚、図1は、水素精製運転を実行している定常運転を例示するものであって、図中、原料ガスG等の各種ガスが流通している流路については太線で示し、各種ガスが流通していない流路については細線で示している。また、流路を開閉するバルブ類に関し、開放状態にあるものは白抜きで示し、閉止状態にあるものは黒塗りで示している。起動運転の前期を実行している状態を示す図2、起動運転の後期を実行している状態を示す図3、起動運転モードの前期の純水の流れ状態を示す図4、並びに、起動運転モードの後期及び定常運転モードの純水の流れ状態を示す図5も同様である。
 水素製造装置100には、改質部R(改質処理装置の一例)、及び、当該改質部Rから供給される変成ガス中に含まれる不純物(雑ガス)を吸着除去して、水素濃度が高い製品ガスを精製する圧力変動吸着式の水素分離部20が備えられている。
 そして、運転制御部Mが、改質部R及び水素分離部20の作動を制御するように構成されている。
 (改質部の詳細)
 改質部Rは、圧縮機Dにより圧送される状態で供給される炭化水素系ガスである原料ガスGを脱硫処理する脱硫器Pと、脱硫後の原料ガスGが水蒸気の混合状態で供給される改質器Hと、改質器Hにて生成された改質ガスK(図7参照)に含まれる一酸化炭素を二酸化炭素に変成処理して変成ガスを生成するCO変成器Qと、改質器Hからの改質ガスKにて脱硫器Pに供給される原料ガスGを加熱する原料ガス加熱用熱交換器W、及び、脱硫処理後の原料ガスGに混合する水蒸気を生成する水蒸気生成用熱交換器Jを備えている。
 尚、原料ガスGの供給を断続しかつ原料ガスGの供給量を調整する原料ガス弁V1が、圧縮機Dの上手側箇所に設けられている。
 圧縮機Dにて圧送される原料ガスGが、第1流路L1を通して、原料ガス加熱用熱交換器Wを経由する状態で脱硫器Pに供給される。脱硫器Pには、Ni-Mo系、ZnO系等の脱硫触媒が充填されており、当該脱硫触媒により、原料ガスG中の付臭剤等の硫黄成分を除去するように構成されている。
 脱硫後の原料ガスGが、第2流路L2を通して改質器Hに供給される。当該第2流路L2には、水蒸気生成用熱交換器Jにて生成された水蒸気が供給されて、第2流路L2を流動する原料ガスGに水蒸気が混合される。
 そして、改質器Hでは、改質用バーナBの燃焼により、改質反応管A(図9参照)を加熱して、水蒸気が混合された原料ガスGを水蒸気改質処理することにより、改質ガスKを生成するように構成されている。
 尚、図1においては、改質器Hの構成を概略的に示すものであり、また、改質用バーナBに対して燃焼用空気を供給する構成の記載を省略する。
 改質器Hで得られた改質ガスKが、第3流路L3を通して、原料ガス加熱用熱交換器Wを経由する状態で改質ガス中の一酸化炭素を水蒸気と反応させるCO変成器Qに供給される。CO変成器Qには、一酸化炭素変成触媒Z(図6参照)が充填され、改質ガス中の一酸化炭素が水蒸気と反応して水素と二酸化炭素に変成処理される。
 CO変成器Qでの反応により、改質ガスKは、水素、一酸化炭素、二酸化炭素およびメタンを含む変成ガス(水素濃度が64~96体積%)となる。
 尚、脱硫器Pにおける脱硫反応は吸熱反応であり、CO変成器QにおけるCO変成反応は発熱反応である。
 (変成ガスの流動について)
 CO変成器Qより排出された変成ガスは、第4流路L4を流動する途中において、冷却水熱交換器18により冷却水と熱交換して降温されて水蒸気が液化され、水蒸気分離部19により水分(水蒸気)が除去され、その後、第5流路L5を通して水素分離部20に導かれる。
 第5流路L5には、当該第5流路L5を開閉する変成ガス弁V5が設けられている。
 第5流路L5には、水蒸気分離部19から排出されたガスを、PSA装置22を迂回して圧縮機Dの上流側箇所に返送する返送路L10が分岐されている。
 返送路L10には、当該返送路L10を開閉する返送弁V10が設けられている。
 尚、図示は省略するが、水蒸気分離部19にて水分が除去された変成ガスを脱硫器Pでの脱硫処理のために、圧縮機Dの上流側に返送する脱硫処理用返送ラインが設けられ、そして、この脱硫処理用返送ラインを開閉する脱硫処理用開閉弁が設けられている。
 脱硫処理用開閉弁は、水素精製運転(定常運転)のときには開かれ、その他のときには、閉じられることになる。
 また、第4流路L4における冷却水熱交換器18よりも上流側箇所には、水蒸気生成用水としての純水を貯留する純水タンク24(水供給源の一例)から純水供給ポンプ25により供給される純水と変成ガスとを熱交換する純水熱交換器26が設けられている。
 また、第5流路L5には、当該第5流路L5を流動するガスを外部に排出する排気路L12が分岐されている。排気路L12には、当該排気路L12を開閉する排気弁V12が設けられている。
 ちなみに、第1流路L1、第2流路L2、第3流路L3、第4流路L4、及び、返送路L10を用いて、水蒸気分離部19から排出されたガスを圧縮機Dの上流側箇所に戻す形態で、圧縮機D、原料ガス加熱用熱交換器W、脱硫器P、改質器H、原料ガス加熱用熱交換器W、CO変成器Q、水蒸気分離部19を経由してガスを循環させる閉循環路Cが形成可能に構成されている(図2参照)。
 (水素分離部の詳細)
 水素分離部20は、CO変成器Qにて変成処理された変成ガスに含まれる水素以外の不純物(雑ガス)を分離して水素ガスの濃度が高い製品ガスを精製する圧力揺動吸着式のPSA装置22と、精製された製品ガスを貯留する製品タンク23と、PSA装置22から排出されるオフガスを貯留するオフガスタンク21とを備えている。
 PSA装置22には、複数(当該実施形態では3つ)の吸着塔20a、20b、20cが備えられている。各吸着塔20a、20b、20cには、吸着材としてゼオライト系吸着材、活性炭、シリカゲルなどを組み合わせたものが充填されて、雑ガスを吸着する。
 各吸着塔20a、20b、20cでは、吸着工程、減圧工程、パージ工程、および昇圧工程のプロセス(PSA法のプロセス)を、複数の吸着塔20a、20b、20cで位相を異ならせて実行することにより水素ガス濃度が高い製品ガスを精製するように構成されている。
 詳細な説明は省略するが、上述のプロセス(PSA法のプロセス)は、運転制御部Mにより、複数の吸着塔20a、20b、20cに接続される各流通路に設けられる複数のバルブ(図示略)の開閉を行って、順次実行される。
 尚、図1では、吸着塔20aが、変成ガスを流通して製品ガスを得る吸着工程が行われている状態を示している。
 PSA装置22にて精製された製品ガスは、第6流路L6を通して製品タンク23に供給され、製品タンク23に貯留された製品ガスが水素使用箇所へ安定供給される。
 第6流路L6には、当該第6流路L6を開閉する製品ガス弁V6が設けられている。
 PSA装置22にて水素が分離された後のオフガス(雑ガス)は、第7流路L7を通してオフガスタンク21に供給される。
 第7流路L7には、当該第7流路L7を開閉するオフガス弁V7が設けられている。
 オフガスタンク21に貯留されたオフガスは、メタン、水素等の可燃性ガスを含むため、オフガス流通路L8を介して燃料ガス供給部10に導かれ、燃料ガスとして、燃料ガス供給部10から改質用バーナBへ供給される。
 オフガス流通路L8には、当該オフガス流通路L8を開閉するオフガス返送弁V8が設けられている。
 図1では、製品ガスの流れのみを示しているが、製品ガスの送出と、オフガスの送出は、異なった吸着塔20a、20b、20cを対象として、同時に行われるタイミングが存在する。
 ちなみに、後述する水素パージ処理を実行するために、製品タンク23から返送路L10に対して水素ガスを供給する水素供給路L11が設けられている。
 水素供給路L11には、当該水素供給路L11を開閉する水素ガス弁V11が設けられている。
 (水素精製運転の詳細)
 図1に示すように、水素精製運転(定常運転)においては、原料ガスGが、原料ガス弁V1を通過した後、圧縮機Dにて圧送され、第1流路L1を流通して原料ガス加熱用熱交換器Wを経由しながら脱硫器Pに導かれて脱硫処理される。その後、水蒸気が混合された原料ガスGが改質器Hに導かれて水蒸気改質処理されて改質ガスKが生成される。改質ガスKが、CO変成器Qで変成処理され、変成ガスが、純水熱交換器26及び冷却水熱交換器18にて冷却され、水蒸気分離部19にて水蒸気(水分)が除去された後、第5流路L5を通して水素分離部20に導入されて、製品ガス(水素ガス)が精製される。
 (改質器の全体構成)
 図7に示すように、改質器Hは、天然ガスやナフサ等の炭化水素系の原料ガスGを水蒸気改質処理により水素成分が多い改質ガスKに改質するものであって、改質反応管A及び当該改質反応管Aを加熱する改質用バーナBを装備した改質炉2を備えている。
 改質炉2が、天井壁2Uと、底壁2Dと、天井壁2Uと底壁2Dとの間に配置される円筒状の側壁2Sを備える形態に構成されている。
 そして、改質器Hにおける天井壁2Uの中央箇所に、改質用バーナBが下向きに燃焼する形態に設けられ、側壁2Sの上方側箇所に、改質用バーナBの燃焼ガスEを排出する排出部2Eが開口されている。
 図7及び図8に示すように、複数の改質反応管Aが、改質器Hの天井壁2Uから垂下する姿勢で、且つ、改質用バーナBの周囲に沿って間隔を隔てて並置される形態で設けられている。
 尚、本実施形態においては、複数の改質反応管Aとして、4つの改質反応管Aを設ける場合を例示するが、3つや5つ以上の改質反応管Aを設ける形態で実施してもよい。
 また、図7に示すように、円筒状の外方壁2Gが、改質器Hの側壁2Sの外方側箇所に、天井壁2Uと底壁2Dとの間に配置される状態で設けられている。
 そして、側壁2Sと外方壁2Gとの間の外部空間Fに、改質反応管Aの上部に供給する原料ガスGに混合する水蒸気を生成する水蒸気生成用熱交換器Jが配置され、また、外方壁2Gの下方側箇所に、排出部2Eから外部空間Fを通して流動する燃焼ガスEを排出する外部排出口2Zが設けられている。
 さらに、図7に示すように、外部空間Fにおける水蒸気生成用熱交換器Jと外方壁2Gとの間に、改質用バーナBに供給する燃焼用空気ARを予熱する空気予熱用熱交換器Nが設けられている。
 (反応管部の詳細)
 改質反応管Aは、図9に示すように、底部が閉塞された外管3と、当該外管3の内部に配置される内管4とを備え、内管4が、底部を開口する状態に形成され、外管3と内管4との間に、粒状の改質処理用触媒Sが充填された充填部が上下方向に向かう姿勢で形成されている。
 外管3の上端側部分が、改質器Hの天井壁2Uを貫通する状態で当該天井壁2Uに支持され、内管4の上端側部分が、外管3の管上壁3uを貫通する状態で、当該管上壁3uに支持されている。
 外管3と内管4との間には、改質処理用触媒Sを受止め支持する多孔状の触媒支持部Tが設けられている。
 触媒支持部Tは、外管3の底部側に向けて外管3と内管4との間を通して流動する改質ガスKを通流させる通流孔を備える状態に形成され、そして、内管4の下端部に支持されている。
 ちなみに、図9においては、触媒支持部Tとして、通流孔が全体に亘って形成されている多孔板状の形態を例示するが、例えば、通流孔が周方向に沿って一列状に並ぶ状態に形成された板状の形態に構成する等、触媒支持部Tとしては、改質処理用触媒Sを受止め且つ改質ガスKを通流させる通流孔を備える形態であれば、各種の形態に構成できる。
 図7及び図9に示すように、外管3における改質器Hの天井壁2Uから突出する部分には、水蒸気が混合された原料ガスGを導入する原料ガス導入管5aが接続されている。この原料ガス導入管5aが、図7に示すように、環状の原料ガス分配管5bに接続され、この原料ガス分配管5bに、水蒸気が混合された原料ガスGを供給する原料ガス管5が接続されている。
 つまり、原料ガス管5から環状の原料ガス分配管5bに、水蒸気が混合された原料ガスGが供給され、環状の原料ガス分配管5bから複数の改質反応管Aに、水蒸気が混合された原料ガスGが供給されるように構成されている。
 ちなみに、図7に示す如く、原料ガス管5には、後述の如く、水蒸気生成用熱交換器Jにて生成された水蒸気が供給されることになり、原料ガス管5を通して、原料ガスGと水蒸気とが混合された状態で外管3に供給されることになる。
 図7及び図9に示すように、内管4における外管3から突出する部分には、改質ガスKを排出する排出管6aが接続されている。この排出管6aが、図7に示すように、環状の合流管6bに接続され、この合流管6bに改質ガスKを案内する案内管6が接続されている。
 つまり、改質反応管Aから排出管6aを通して改質ガスKが排出され、その改質ガスKが、環状の合流管6bを経由して案内管6を通してCO変成器Qに向けて流動することになる。
 (水蒸気生成用熱交換器の詳細)
 水蒸気生成用熱交換器Jは、図7に示すように、改質器Hの側壁2Sの外周に沿って伝熱用管7を螺旋状に配置する形態に構成されている。
 つまり、伝熱用管7の下端部に、純水が供給される純水導入管部7aが形成され、伝熱用管7の上端部に、水蒸気を原料ガス管5に供給する水蒸気排出管部7bが形成されている。
 したがって、水蒸気生成用熱交換器Jは、純水導入管部7aに供給された純水を、外部空間Fを流動する燃焼ガスにて加熱される伝熱用管7の内部を通して流動させることにより、水蒸気を生成するように構成され、そして、生成した水蒸気を水蒸気排出管部7bより原料ガス管5に供給するように構成されている。
 また、水蒸気排出管部7bには、後述する起動運転の前期において、生成した水蒸気を昇温用蒸気UとしてCO変成器Qに供給する分岐管7cが接続されている。
 (空気予熱用熱交換器の詳細)
 空気予熱用熱交換器Nは、図7及び図8に示すように、円筒状の内壁8nと円筒状の外壁8gとの間で空気を流動させる円筒状に構成されている。
 そして、空気予熱用熱交換器Nの下方側箇所に、送風機(図示せず)から供給される燃焼用空気ARを導入する空気導入部8dが設けられている。
 空気予熱用熱交換器Nの上方側箇所と改質用バーナBとを接続する複数の空気供給管9が、改質用バーナBの周囲に沿って放射状に配置される状態で、改質器Hの天井壁2Uの内部に設けられている。
 したがって、空気予熱用熱交換器Nは、空気導入部8dに供給された燃焼用空気を、外部空間Fを流動する燃焼ガスにて加熱される内壁8nと外壁8gとの間を通して流動させることにより、高温状態に加熱するように構成され、そして、空気供給管9を通して高温に加熱された燃焼用空気を改質用バーナBに供給するように構成されている。
 ちなみに、改質用バーナBの詳細な構成は省略するが、改質用バーナBには、空気供給管9が接続されることに加えて、燃料ガス供給部10に接続された燃料供給管10a(図1参照)が接続され、燃料ガス供給部10から供給される燃料ガスを、空気供給管9を通して供給される燃焼用空気にて燃焼させるように構成されている。
 尚、燃料ガス供給部10は、オフガスタンク21(図1参照)からのオフガスを燃料ガスとして供給するものであり、オフガスが不足するときには、原料ガスGを燃料ガスとして供給することになる。したがって、燃料ガス供給部10は、詳細な説明は省略するが、オフガスの供給量や原料ガスGの供給量を調整する供給量調整弁を備える形態に構成されている。
 また、燃焼用空気ARを空気導入部8dに送風する送風機(図示せず)は、出力調整により、空気供給量を調整できるように構成されている。
 (CO変成器の詳細)
 CO変成器Qは、図6に示すように、改質ガスKに含まれる一酸化炭素を二酸化炭素に変成処理する一酸化炭素変成触媒Zを有し且つ当該一酸化炭素変成触媒Zを冷却する冷却水を流動させる冷却管11を備えている。
 すなわち、CO変成器Qが、改質ガス入口12aを一端側に備えかつ変成処理後の変成ガス出口12bを他端側に備える筒状の変成炉本体12を備える形態に構成されている。
 変成炉本体12の内部の径方向の中央箇所に、柱状の充填体13が一端側から他端側に向かう状態で配置され、変成炉本体12の内部における充填体13の外方側空間に、冷却管11が一端側から他端側に向けて螺旋状に配置され且つ一酸化炭素変成触媒Zが充填されている。
 充填体13は、例えば、円筒状の鉄製パイプにて構成されている。
 説明を加えると、変成炉本体12が、有底筒状の本体部分12Aと当該本体部分12Aの上部にフランジ接続される改質ガス受入部12Bとを備えている。
 改質ガス受入部12Bは、第3流路L3を通して改質ガスKが導入され、導入された改質ガスKを本体部分12Aに向けて排出する筒状部として構成されている。
 本体部分12Aの内部の上方側箇所には、例えば、ポーラス状に形成されて通気性がある多孔状枠14が、充填体13の上端を閉塞する状態で配置されている。また、周方向に複数の改質ガス入口12aを形成する円筒状のガス受入体15が、充填体13の上方に相当する箇所に、改質ガス受入部12Bに連通しかつ下端側部分を多孔状枠14に挿入させる状態で設けられている。
 従って、改質ガス受入部12Bからガス受入体15に流動した改質ガスKが、改質ガス入口12aから排出され、その改質ガスKが多孔状枠14を通して充填体13の外方側空間に流動するように構成されている。
 本体部分12Aの内部の下方側箇所には、一酸化炭素変成触媒Zを受止める受止板16が、充填体13に対向する部分は無孔状態とし、且つ、充填体13の外方に位置する部分は多孔状態とする形態で、充填体13の下端に相当する箇所に設けられている。
 受止板16の下方側の空間には、金属製の球状体16aが充填され、当該下方側の空間の変成ガスが、変成ガス出口12bから第4流路L4に排出される。
 (純水流動状態切換部について)
 図5に示すように、純水タンク24(水供給源の一例)からの水(純水)を冷却水として冷却管11に供給し、当該冷却管11を流動した後の水(純水)を水蒸気生成用水として水蒸気生成用熱交換器Jに供給する起動運転モード(後期)と、図4に示すように、純水タンク24(水供給源の一例)からの水(純水)を水蒸気生成用熱交換器Jに供給して昇温用蒸気Uを生成し、当該昇温用蒸気Uを冷却管11に供給する起動運転モード(前期)とに切換えることができるように構成されている。尚、図5に示す起動運転モード(後期)は、定常運転モードと同じである。
 説明を加えると、図5に示すように、定常運転モード及び起動運転モード(後期)において、純水供給ポンプ25にて供給される純水を冷却管11の入口部に流動させる第1純水供給路L13、及び、冷却管11の出口部から排出される純水を伝熱用管7の純水導入管部7aに流動させる第2純水供給路L14が設けられている。
 また、図4に示すように、起動運転モード(前期)において、第1純水供給路L13を流動する純水を、冷却管11を迂回して、伝熱用管7の純水導入管部7aに流動させる第3純水供給路L15が、第1純水供給路L13から分岐しかつ第2純水供給路L14に合流される状態で設けられている。
 また、起動運転モード(前期)において、伝熱用管7における水蒸気排出管部7bから分岐する分岐管7cから排出される水蒸気を、昇温用蒸気Uとして冷却管11の入口部に流動させる蒸気流路L16が、第1純水供給路L13に合流する状態で設けられている。
 さらに、冷却管11の出口部から排出される蒸気を純水タンク24に流動させる蒸気排出路L17が、第2純水供給路L14から分岐する状態で設けられている。当該蒸気排出路L17には、蒸気を冷却水にて冷却して凝縮させる蒸気冷却用熱交換器27が設けられている。
 ちなみに、詳細な説明は省略するが、純水タンク24には、蒸気排出路L17を通して戻る凝縮水を純水化するイオン交換式などの純水装置が装備されている。
 また、第1純水供給路L13における第3純水供給路L15の分岐箇所よりも下流側に第1開閉弁28が設けられ、蒸気流路L16における冷却管11の入口部の近くには第2開閉弁29が設けられている。
 また、第2純水供給路L14における蒸気排出路L17の分岐箇所よりも下流側には、第3開閉弁30が設けられ、蒸気排出路L17には、第4開閉弁31が設けられている。
 従って、第1開閉弁28及び第3開閉弁30を開き、且つ、第2開閉弁29及び第4開閉弁31を閉じることにより、定常運転モード及び起動運転モード(後期)に切換え、また、第1開閉弁28及び第3開閉弁30を閉じ、且つ、第2開閉弁29及び第4開閉弁31を開くことによって、起動運転モード(前期)に切換えることができるように構成されている。
 ちなみに、本実施形態では、純水タンク24からの純水の流動状態を定常運転モードと、起動運転モード(後期)及び起動運転モード(前期)とに切換える純水流動状態切換部Yが、第1開閉弁28、第2開閉弁29、第3開閉弁30及び第4開閉弁31を主要部として構成されることになる。
 また、第1開閉弁28、第2開閉弁29、第3開閉弁30及び第4開閉弁31は、運転制御部Mにて開閉制御される。
 (停止運転の詳細)
 水素精製運転を停止して、水素ガスの製造を長期にわたって(例えば、数日間よりも長く)停止する場合には、水素パージ処理、水蒸気排出処理、及び、水素充填処理が順次実行される。
 すなわち、水素精製運転を停止する際には、先ず、圧縮機Dを継続して作動させながら、水蒸気の混合(供給)及び改質用バーナBによる改質器Hの加熱を継続した状態で、原料ガス弁V1、変成ガス弁V5及び返送弁V10を閉成するとともに、水素ガス弁V11及び排気弁V12を開成して、閉循環路Cに製品ガス(水素ガス)を供給する水素パージ処理を行う。
 この水素パージ処理により、閉循環路Cに製品ガス(水素ガス)を流動させて、閉循環路C内に残留するガスを排気路L12より排出しつつ、閉循環路Cの内部を製品ガス(水素ガス)で置換する。
 次に、圧縮機Dを継続して作動させた状態で、水蒸気の混合(供給)を停止し、改質用バーナBによる改質器Hの加熱を停止し、水素ガス弁V11、排気弁V12を開成するとともに、返送弁V10を閉成することにより、閉循環路Cに充填された製品ガス(水素ガス)を、閉循環路Cを通して流動させることにより、閉循環路Cの内部の水蒸気を排出する水蒸気排出処理を行うことになる。
 その後、圧縮機Dを停止し、水蒸気の混合(供給)を継続して停止し、改質用バーナBによる改質器Hの加熱を継続して停止し、水素ガス弁V11、排気弁V12を閉成して、閉循環路Cの内部に製品ガス(水素ガス)を充填させる水素充填処理が行われることになる。
 また、図示は省略するが、閉循環路Cの内部圧を検出する圧力センサを設けて、閉循環路Cの内部圧が低下した場合には、水素ガス弁V11を開成して、製品ガス(水素ガス)を補充することになる。
 尚、詳細な説明は省略するが、停止運転が実行される際には、PSA装置22の吸着塔20a、20b、20cに対して、製品ガス(水素ガス)を供給して充填する水素充填処理が行われる。
 (起動運転について)
 原料ガスGの供給を停止しかつ改質用バーナBの燃焼を停止させた運転停止状態から運転を開始する際には、運転制御部Mが、起動運転(図2及び図3参照)を行った後に、圧縮機Dへの原料ガスGの供給を開始して変成ガスを生成する定常運転(図1)を実行することになる。
 起動運転においては、圧縮機Dへの原料ガスGの供給を停止しかつ改質用バーナBを燃焼させた状態で、昇温用ガス(閉循環路Cに充填されている水素ガス)を、水蒸気分離部19から排出されると返送路L10を通して圧縮機Dの上流側箇所に戻す形態で、圧縮機D、原料ガス加熱用熱交換器W、脱硫器P、改質反応管A、原料ガス加熱用熱交換器W、CO変成器Q、水蒸気分離部19を通して循環させて、脱硫器P、改質反応管A、CO変成器Qを設定目標状態に昇温するように構成されている。
 つまり、原料ガス弁V1、変成ガス弁V5、水素ガス弁V11及び排気弁V12を閉成した状態で、圧縮機Dの作動を開始し、改質用バーナBによる改質器Hの加熱を開始して、閉循環路Cを通して充填した昇温用ガスとしての製品ガス(水素ガス)を流動させながら、脱硫器P、改質反応管A、CO変成器Qを昇温させるようにする。その際、水素ガス弁V11を開成して、製品ガス(水素ガス)を補充することにより、閉循環路Cの内部圧を上昇させることになる。
 本実施形態においては、起動運転は、CO変成器Qの温度が水蒸気の結露を回避できる設定中間温度(例えば、140℃)以上に昇温するまでの起動運転(前期)と、CO変成器の温度が水蒸気の結露を回避できる設定中間温度(例えば、140℃)以上に昇温してからの起動運転(後期)とからなる。
 起動運転を行う際には、圧縮機Dの出口圧力が目標圧力(例えば、0.8MPa)に調整されて、閉循環路Cの内部圧が高圧状態に維持されることになる。
 ちなみに、設定目標状態は、例えば、改質処理用触媒Sの温度が720℃以上、改質反応管Aの入口温度が200℃以上、脱硫器Pの下部温度が210℃以上、CO変成器Qの下部温度が170℃以上となる状態である。
 起動運転(前期)は、図2に示す如く、昇温用ガス(閉循環路Cに充填されている水素ガス)を、水蒸気分離部19から排出されると返送路L10を通して圧縮機Dの上流側箇所に戻す形態で循環させながら、純水流動状態切換部Yを起動運転モード(前期)(図4参照)に切換えることになる。
 つまり、純水タンク24からの純水を水蒸気生成用熱交換器Jに供給し、当該水蒸気生成用熱交換器Jにて生成された昇温用蒸気UをCO変成器Qの冷却管11に供給するように構成されている。
 起動運転(後期)は、図3に示す如く、昇温用ガス(閉循環路Cに充填されている水素ガス)を、水蒸気分離部19から排出されると返送路L10を通して圧縮機Dの上流側箇所に戻す形態で循環させながら、純水流動状態切換部Yを起動運転モード(後期)(図5参照)に切換えることになる。
 したがって、脱硫器Pを通過した後の昇温用ガスに水蒸気生成用熱交換器Jにて生成された水蒸気を混合し、かつ、水蒸気分離部19にて昇温用ガスから水蒸気を分離する水蒸気混合処理が実行されるように構成されている。
 その後、脱硫器P、改質器H、CO変成器Qが設定目標状態に昇温すると、運転制御部Mが、純水流動状態切換部Yを定常運転モードに切換えた状態で、原料ガスGの供給を開始して変成ガスを生成する定常運転を行うようにする。
 つまり、原料ガス弁V1及び変成ガス弁V5を開成するとともに、返送弁V10を閉成して、変成ガスを生成し、その変成ガスをPSA装置22に供給するようにする。
 詳細な説明は省略するが、PSA装置22は、運転を再開した後、精製した製品ガスの水素濃度が設定値以上になるまで、精製した製品ガスを排気し、精製した製品ガスの水素濃度が設定値以上になると、精製した製品ガスを製品タンク23に貯留することになる。
 (待機運転の詳細)
 ちなみに、水素精製運転を一時的に停止して、水素ガスの製造を一時的に(例えば、数時間)停止する際には、待機運転が行われる。
 つまり、運転制御部Mが、改質用バーナBによる改質器Hの加熱を継続した状態で、閉循環路Cに充填された製品ガス(水素ガス)を、閉循環路Cを通して、圧縮機D、脱硫器P、改質器H、CO変成器Qを経由する状態で循環させる待機運転を実行する。
 説明を加えると、水素精製運転から待機運転に移行する際には、先ず、圧縮機Dを継続して作動させながら、水蒸気の混合(供給)及び改質用バーナBによる改質器Hの加熱を継続した状態で、原料ガス弁V1、変成ガス弁V5及び返送弁V10を閉成するとともに、水素ガス弁V11及び排気弁V12を開成して、閉循環路Cに製品ガス(水素ガス)を供給する水素パージ処理を行うことになる。
 この水素パージ処理により、閉循環路Cに製品ガス(水素ガス)を流動させて、閉循環路C内に残留するガスを排気路L12より排出しつつ、閉循環路Cの内部を製品ガス(水素ガス)で置換する。
 その後、圧縮機Dを継続して作動させ、かつ、改質用バーナBによる改質器Hの加熱を継続した状態で、水蒸気の混合(供給)を停止し、且つ、水素ガス弁V11、排気弁V12を閉成するとともに、返送弁V10を開成することにより、閉循環路Cに充填された製品ガス(水素ガス)を、閉循環路Cを通して循環させる待機運転を行うことになる。
 尚、詳細な説明は省略するが、待機運転が実行される際には、PSA装置22の吸着塔20a、20b、20cに対して、製品ガス(水素ガス)を供給して充填する水素置換処理が行われる。
 待機運転から水素精製運転に移行させる際には、先ず、圧縮機Dを継続して作動させ、かつ、改質用バーナBによる改質器Hの加熱を継続した状態で、水蒸気の混合(供給)を開始し、且つ、原料ガス弁V1及び変成ガス弁V5を開成するとともに、返送弁V10を閉成して、変成ガスをPSA装置22に供給するようにする。
 詳細な説明は省略するが、PSA装置22は、運転を再開した後、精製した製品ガスの水素濃度が設定値以上になるまで、精製した製品ガスを排気し、精製した製品ガスの水素濃度が設定値以上になると、精製した製品ガスを製品タンク23に貯留することになる。
 〔別実施形態〕
 次に、別実施形態を説明するが、この別実施形態は、上記実施形態の起動運転の別形態を示すものであって、重複した説明を省略するために、上記実施形態とは異なる構成を説明して、上記実施形態と同じ構成についての説明を省略する。
 図10に示すように、圧縮機Dが、前段圧縮部33Aと後段圧縮部33Bとの間にインタークーラー34を備える形態に構成されている。
 インタークーラー34には、冷却水が流動されることになるが、その冷却水の流動を停止する冷却水停止弁35が設けられている。従って、インタークーラー34が、冷却水停止弁35の開閉により、冷却作動する状態と冷却を停止させた状態とに切換え自在に構成されている。
 返送路L10の途中に、メインラインLmと、当該メインラインLmよりも通過抵抗が大きなバイパスラインLbとが並設されている。そして、メインラインLmを通して昇温用ガスを流動させるメインライン流動状態とバイパスラインLbを通して昇温用ガスを流動させるバイパスライン流動状態とを切換えるライン切換部36とが設けられている。
 すなわち、メインラインLmには、当該メインラインLmを開閉するメインライン開閉弁36aが設けられ、バイパスラインLbには、当該バイパスラインLbを開閉しかつ開状態において通過抵抗を付与するバイパスライン開閉弁36bが設けられている。
 従って、メインライン開閉弁36aを開き且つバイパスライン開閉弁36bを閉じることにより、メインライン流動状態が現出され、メインライン開閉弁36aを閉じ且つバイパスライン開閉弁36bを開くことにより、バイパスライン流動状態が現出されるように構成されている。
 そして、運転制御部Mが、起動運転において、起動運転を開始してからCO変成器Qの温度が設定中間温度(例えば、140℃)以上に昇温するまでの起動運転(前期)においては、図11に示す如く、メインライン流動状態に、且つ、CO変成器Qの温度が設定中間温度(例えば、140℃)以上に昇温してからの起動運転(後期)においては、図12に示す如く、インタークーラー34の冷却を停止させた状態でバイパスライン流動状態に、ライン切換部36を切換えるように構成されている。
 起動運転を行う際には、運転制御部Mが、圧縮機Dの出口圧力が目標圧力(例えば、0.8MPa)となるように圧縮機Dの作動を制御して、閉循環路Cの内部圧が高圧状態に維持されることになる。つまり、圧縮機Dは、例えば、受け入れるガスを前段圧縮部33Aにて目標圧力の中間圧力に昇圧し、後段圧縮部33Bにて目標圧力に昇圧することになる。
 そして、バイパスライン流動状態においては、圧縮機Dに受け入れる昇温用ガスの圧力がメインライン流動状態よりも低くなるため、前段圧縮部33A及び後段圧縮部33Bの昇温用ガスの圧縮量が、バイパスライン流動状態においてはメインライン流動状態よりも多くなり、昇温用ガスの温度が、バイパスライン流動状態においてはメインライン流動状態よりも高くなる。
 しかも、バイパスライン流動状態においてはインタークーラー34が冷却を停止させた状態に切換えられるため、昇温用ガスの温度が一層高温になる。
 (純水流動状態切換部について)
 図10及び図12に示すように、定常運転及び起動運転(後期)においては、純水タンク24(水供給源の一例)からの水(純水)を冷却水として冷却管11に供給し、当該冷却管11を流動した後の水(純水)を水蒸気生成用水として水蒸気生成用熱交換器Jに供給し、生成された水蒸気を、第2流路L2を流動するガス(原料ガス、昇温用ガス)に混合するように構成されている。
 また、図11に示すように、起動運転(前期)においては、純水タンク24(水供給源の一例)からの水(純水)を水蒸気生成用熱交換器Jに供給した後に、蒸気冷却用熱交換器27を経由して純水タンク24に戻すように構成されている。つまり、水蒸気生成用熱交換器Jの水蒸気排出管部7bから排出される水蒸気を蒸気冷却用熱交換器27にて液化して純水タンク24に戻すように構成されている。
 ちなみに、この別実施形態における起動運転(前期)において、上記実施形態における起動運転(前期)と同様に、蒸気冷却用熱交換器27にて生成された昇温用蒸気UをCO変成器Qの冷却管11の入口部に流動させる形態で実施してもよい。
〔その他の別実施形態〕
(1)上記実施形態及び上記別実施形態では、水素精製運転を停止して、水素ガスの製造を長期にわたって停止する場合に、水素パージ処理、水蒸気排出処理、及び、水素充填処理を順次実行する形態を例示したが、水蒸気排出処理において、製品ガス(水素ガス)に代えて、不活性ガス貯留ボンベ(例えば、窒素ボンベ等)に貯留した不活性ガス(窒素ガス等)を閉循環路Cに供給し、水素充填処理において、不活性ガス(窒素ガス等)を閉循環路Cに充填させるようにしてもよい。
 つまり、水素充填処理に代えて、不活性ガス(窒素ガスを等)を充填する不活性ガス充填処理を行う形態で実施してもよい。
 このように、不活性ガス(窒素ガス等)を閉循環路Cに充填させる場合において、起動運転を行う際には、先ず、閉循環路Cに製品ガス(水素ガス)を供給しながら、閉循環路Cに充填されている不活性ガス(窒素ガス等)を閉循環路Cから排出する不活性ガス排出処理を行い、その後、起動運転を実行することになる。
(2)上記実施形態及び上記別実施形態においては、複数の改質反応管Aを備える改質器Hを例示したが、単一の改質反応管Aを備える改質器Hに対しても本発明は適用できる。
(3)上記実施形態及び上記別実施形態では、改質器Hが、水蒸気生成用熱交換器Jや空気予熱用熱交換器Nを備える場合を例示したが、水蒸気生成用熱交換器Jや空気予熱用熱交換器Nを、改質器Hとは異なる箇所に形成する形態で実施してもよい。
(4)上記実施形態及び上記別実施形態では、改質部Rからの変成ガスに対して、水素ガスを分離処理する水素分離部20を設ける場合を例示したが、変成ガスを製品ガスとしてガスエンジンに供給する等、変成ガスをそのまま使用する形態で実施してもよい。
 なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
2   改質炉
2U  天井壁
2D  底壁
2S  側壁
2E  排出部
2G  外方壁
11  冷却管
12  変成炉本体
12a 改質ガス入口
12b 変成ガス出口
13  充填体
24  水供給源
33A 前段圧縮部
33B 後段圧縮部
34  インタークーラー
A   改質反応管
B   改質用バーナ
D   圧縮機
G   原料ガス
H   改質器
J   水蒸気生成用熱交換器
K   改質ガス
Lm  メインライン
Lb  バイパスライン
Q   CO変成器
W   原料ガス加熱用熱交換器
Z   一酸化炭素変成触媒

Claims (5)

  1.  圧縮機にて供給される原料ガスを脱硫処理する脱硫器と、当該脱硫器からの前記原料ガスを水蒸気改質処理して改質ガスを生成する改質反応管及び当該改質反応管を加熱する改質用バーナを備える改質器と、当該改質器からの前記改質ガスにて前記原料ガスを加熱する原料ガス加熱用熱交換器と、当該原料ガス加熱用熱交換器からの前記改質ガスに含まれる一酸化炭素を二酸化炭素に変成処理して変成ガスを生成する一酸化炭素変成触媒を有し且つ当該一酸化炭素変成触媒を冷却する冷却水を流動させる冷却管を備えるCO変成器と、水蒸気生成用水を前記改質用バーナの燃焼ガスにて加熱して前記脱硫処理後の前記原料ガスに混合する水蒸気を生成する水蒸気生成用熱交換器と、前記変成ガスから水蒸気を分離する水蒸気分離部と、が備えられた改質処理装置であって、
     運転制御部が、前記原料ガスの供給を停止しかつ前記改質用バーナの燃焼を停止させた運転停止状態から運転を開始する際に、前記圧縮機への前記原料ガスの供給を停止しかつ前記改質用バーナを燃焼させた状態で、昇温用ガスを、前記水蒸気分離部から排出されると返送路を通して前記圧縮機の上流側箇所に戻す形態で、前記圧縮機、前記原料ガス加熱用熱交換器、前記脱硫器、前記改質反応管、前記原料ガス加熱用熱交換器、前記CO変成器、前記水蒸気分離部を通して循環させて、前記脱硫器、前記改質反応管、前記CO変成器を設定目標状態に昇温する起動運転を行った後に、前記圧縮機への前記原料ガスの供給を開始して前記変成ガスを生成する定常運転を実行し、且つ、前記起動運転において、前記CO変成器の温度が水蒸気の結露を回避できる設定中間温度以上に昇温すると、前記脱硫器を通過した後の前記昇温用ガスに前記水蒸気生成用熱交換器にて生成された水蒸気を混合し、かつ、前記水蒸気分離部にて前記昇温用ガスから水蒸気を分離する水蒸気混合処理を実行する改質処理装置。
  2.  前記運転制御部が、前記起動運転を開始してから前記CO変成器の温度が前記設定中間温度以上に昇温するまでは、水供給源からの水を前記水蒸気生成用熱交換器に供給し、当該水蒸気生成用熱交換器にて生成された昇温用蒸気を前記冷却管に供給する請求項1に記載の改質処理装置。
  3.  前記圧縮機が、前段圧縮部と後段圧縮部との間にインタークーラーを備え、
     前記返送路の途中に、メインラインと、当該メインラインよりも通過抵抗が大きなバイパスラインとが並設され、
     前記メインラインを通して前記昇温用ガスを流動させるメインライン流動状態と前記バイパスラインを通して前記昇温用ガスを流動させるバイパスライン流動状態とを切換えるライン切換部が設けられ、
     前記運転制御部が、前記起動運転において、前記起動運転を開始してから前記CO変成器の温度が前記設定中間温度以上に昇温するまでは、前記メインライン流動状態に、且つ、前記CO変成器の温度が前記設定中間温度以上に昇温してからは、前記インタークーラーの冷却を停止させた状態で前記バイパスライン流動状態に、前記ライン切換部を切換える請求項1又は2に記載の改質処理装置。
  4.  前記改質器が、天井壁と底壁との間に円筒状の側壁が配置された改質炉を備える形態に構成され、
     前記天井壁の中央箇所に、前記改質用バーナが下向きに燃焼する状態で設けられ、当該改質用バーナの周囲に、前記改質反応管が前記天井壁から垂下する姿勢で設けられ、
     前記側壁の上方側箇所に、前記改質用バーナの燃焼ガスを排出する排出部が開口され、
     前記側壁の外方側箇所に、前記天井壁と前記底壁との間に配置される形態で円筒状の外方壁が設けられ、
     前記水蒸気生成用熱交換器が、前記側壁と前記外方壁との間の外部空間に配置され、
     前記外方壁の下方側箇所に、前記排出部から前記外部空間を通して流動する前記改質用バーナの燃焼ガスを排出する外部排出口が設けられている請求項1又は2に記載の改質処理装置。
  5.  前記CO変成器が、改質ガス入口を一端側に備えかつ変成処理後の変成ガス出口を他端側に備える筒状の変成炉本体を備える形態に構成され、
     前記変成炉本体の内部の径方向の中央箇所に、柱状の充填体が前記一端側から前記他端側に向かう状態で配置され、前記変成炉本体の内部における前記充填体の外方側空間に、前記冷却管が螺旋状に配置され且つ前記一酸化炭素変成触媒が充填されている請求項1又は2に記載の改質処理装置。
PCT/JP2023/008136 2022-03-22 2023-03-03 改質処理装置 WO2023181860A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045975A JP2023140105A (ja) 2022-03-22 2022-03-22 改質処理装置
JP2022-045975 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023181860A1 true WO2023181860A1 (ja) 2023-09-28

Family

ID=88100678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008136 WO2023181860A1 (ja) 2022-03-22 2023-03-03 改質処理装置

Country Status (2)

Country Link
JP (1) JP2023140105A (ja)
WO (1) WO2023181860A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077511A (ja) * 2001-08-30 2003-03-14 Sanyo Electric Co Ltd 燃料電池システムにおける改質装置の起動方法
JP2012180250A (ja) * 2011-03-02 2012-09-20 Toshiba Fuel Cell Power Systems Corp 燃料処理装置、燃料電池発電システム及びその運転方法
JP2018160428A (ja) * 2017-03-23 2018-10-11 大阪瓦斯株式会社 燃料電池システムの運転方法
JP2021155242A (ja) * 2020-03-26 2021-10-07 大阪瓦斯株式会社 改質器及び改質処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003077511A (ja) * 2001-08-30 2003-03-14 Sanyo Electric Co Ltd 燃料電池システムにおける改質装置の起動方法
JP2012180250A (ja) * 2011-03-02 2012-09-20 Toshiba Fuel Cell Power Systems Corp 燃料処理装置、燃料電池発電システム及びその運転方法
JP2018160428A (ja) * 2017-03-23 2018-10-11 大阪瓦斯株式会社 燃料電池システムの運転方法
JP2021155242A (ja) * 2020-03-26 2021-10-07 大阪瓦斯株式会社 改質器及び改質処理装置

Also Published As

Publication number Publication date
JP2023140105A (ja) 2023-10-04

Similar Documents

Publication Publication Date Title
US10597293B2 (en) Operation method for hydrogen production apparatus, and hydrogen production apparatus
US8298305B2 (en) Hydrogen production system and method of controlling flow rate of offgas in the system
US20090011298A1 (en) Hydrogen Production Apparatus, Fuel Cell System and Operation Method Thereof
JP6238842B2 (ja) 水素製造装置およびその運転方法
WO2023181860A1 (ja) 改質処理装置
JP6983086B2 (ja) 水素製造装置
CN115362126B (zh) 氢供给***
JP7527236B2 (ja) 改質処理装置
JP2021155242A (ja) 改質器及び改質処理装置
US20080044699A1 (en) Fuel processor having carbon monoxide removing unit and method of operating the same
JP5348938B2 (ja) 一酸化炭素ガス発生装置および方法
JP2022155214A (ja) 改質処理装置
JP2021081249A (ja) 検出装置、水素製造装置
WO2020100463A1 (ja) 水素製造装置
JP4041085B2 (ja) 燃料ガス製造システム及びその停止方法
JP2016184456A (ja) ガス製造装置
JP6602941B1 (ja) 水素製造装置及び水素製造方法
JP7082939B2 (ja) 水素製造装置
JP7129332B2 (ja) 水素製造装置
JP2019052224A (ja) 熱利用型ガス精製システム
JP7181080B2 (ja) 水素製造装置
JP2020079176A (ja) 水素製造システム
JP2009269793A (ja) 一酸化炭素ガス発生装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774459

Country of ref document: EP

Kind code of ref document: A1