WO2023181627A1 - Structural body, structural body manufacturing method, and bonded body - Google Patents

Structural body, structural body manufacturing method, and bonded body Download PDF

Info

Publication number
WO2023181627A1
WO2023181627A1 PCT/JP2023/002526 JP2023002526W WO2023181627A1 WO 2023181627 A1 WO2023181627 A1 WO 2023181627A1 JP 2023002526 W JP2023002526 W JP 2023002526W WO 2023181627 A1 WO2023181627 A1 WO 2023181627A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
porous structure
pores
base material
resin
Prior art date
Application number
PCT/JP2023/002526
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 住田
雄太 小寺
絢也 島▲崎▼
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023181627A1 publication Critical patent/WO2023181627A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to a structure, a method for manufacturing the structure, and a joined body.
  • the surface of the metal component is etched to form a micrometer-order uneven structure (base rough surface), and the surface of the base rough surface is further etched to form a dendritic layer (fine rough surface).
  • a method for forming a surface (see, for example, Patent Document 1) has been proposed.
  • the metal member whose surface has been roughened by the method described in Patent Document 1 has a base rough surface on the order of micrometers and a fine rough surface formed on the surface, so that it can be bonded to, for example, an excellent bond to a resin member. Demonstrate strength.
  • the method described in Patent Document 1 may not be able to form a good uneven structure.
  • aluminum alloys used for manufacturing die castings contain a large amount of silicon to improve fluidity during molding. If such an aluminum alloy is roughened by the method described in Patent Document 1, silicon, which has poor solubility in the etching solution, will precipitate on the roughened surface, resulting in sufficient bonding strength. may not be possible.
  • Means for solving the above problems include the following embodiments. ⁇ 1> Comprising a base material and a plating layer disposed on the base material, The plated layer has a porous structure on the surface opposite to the base material, and the structure satisfies at least one of the following (1) to (3).
  • the porous structure has first pores and second pores formed on the surface of the first pores.
  • the protruding valley depth (Rvk) of the surface having a porous structure of the plating layer is 0.3 ⁇ m or more.
  • the roughness index obtained by dividing the true surface area (m 2 ) measured by the krypton adsorption method by the geometric surface area (m 2 ) of the surface having a porous structure of the plating layer is 12 or more.
  • ⁇ 2> The structure according to ⁇ 1>, which satisfies (1) above.
  • ⁇ 3> The structure according to ⁇ 1>, which satisfies (2) above.
  • ⁇ 4> The structure according to ⁇ 1>, which satisfies (3) above.
  • ⁇ 5> The structure according to any one of ⁇ 1> to ⁇ 4>, wherein the plating layer includes two or more plating layers.
  • ⁇ 6> The structure according to any one of ⁇ 1> to ⁇ 4>, for use as an antibacterial member.
  • ⁇ 7> A joined body comprising the structure according to any one of ⁇ 1> to ⁇ 4> and a resin member joined to the surface of the structure on which the plating layer is formed.
  • ⁇ 8> Forming a plating layer having a porous structure on the base material, A method for manufacturing a structure, the method comprising: bringing the surface of the plating layer into contact with an etching solution.
  • the etching solution contains an oxidizing agent and an inorganic acid.
  • a structure having a fine uneven structure on its surface regardless of the material of the base material, a method for manufacturing the same, and a bonded body including this structure are provided.
  • Example 1 is an electron microscope image of a cross section of a joined body obtained in Example 1.
  • 2 is a partially enlarged image of the electron microscope image shown in FIG. 1.
  • 2 is an electron microscope image of a cross section of a joined body obtained in Comparative Example 1.
  • 4 is a partially enlarged image of the electron microscope image shown in FIG. 3.
  • a numerical range indicated using " ⁇ " indicates a range that includes the numerical values written before and after " ⁇ " as the minimum value and maximum value, respectively.
  • the upper or lower limit stated in one numerical range may be replaced by the upper or lower limit of another numerical range described step by step, and , may be replaced with the values shown in the examples.
  • the amount of each component in the material means the total amount of the multiple substances present in the material, unless otherwise specified.
  • the structure of the present disclosure includes a base material and a plating layer disposed on the base material,
  • the plating layer has a porous structure on the surface opposite to the base material, and is a structure that satisfies at least one of the following (1) to (3).
  • the porous structure has first pores and second pores formed on the surface of the first pores.
  • the protruding valley depth (Rvk) of the surface having a porous structure of the plating layer is 0.3 ⁇ m or more.
  • the roughness index obtained by dividing the true surface area (m 2 ) measured by the krypton adsorption method by the geometric surface area (m 2 ) of the surface having a porous structure of the plating layer is 12 or more.
  • the plating layer disposed on the base material has a porous structure on the surface opposite to the base material, and satisfies at least one of (1) to (3). That is, a fine uneven structure is formed on the surface of the structure. Therefore, for example, when the structure is joined to another member, a sufficient microscopic area of the contact portion between the structure and the other member is ensured, and excellent joint strength is achieved. Furthermore, in the structure of the present disclosure, the plating layer disposed on the base material instead of the base material has a porous structure. Therefore, the material of the base material is not limited to those capable of forming a porous structure.
  • the material of the base material in the structure is not particularly limited, and can be selected from metals, resins, ceramics, glass, wood, and the like.
  • the base material may or may not have conductivity.
  • a layer that imparts conductivity to the surface of the base material may be disposed between the base material and the plating layer.
  • the base material contains a metal, specifically, a metal selected from iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, and manganese. and an alloy containing at least one selected from the above metals.
  • a metal specifically, a metal selected from iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, and manganese. and an alloy containing at least one selected from the above metals.
  • the resin may be selected from resins that may be included in the resin member described below.
  • the plating layer disposed on the base material has a porous structure on the surface opposite to the base material.
  • a "porous structure” refers to the presence of pores when observing a cross section obtained by cutting a plated layer along the thickness direction, and the number of pores observed per 10 ⁇ m of the cross section. means a structure in which the average value of is 5 or more. The above average value is the arithmetic mean value of the number of pores per 10 ⁇ m measured at five or more locations.
  • "pore” means an open pore (pore connected to the outside air) with a pore diameter of 5 ⁇ m or less. The pore diameter of a pore is the value measured at the entrance of the pore.
  • the plating layer may consist of one plating layer or may include two or more plating layers.
  • Examples of the plating layer including two or more plating layers include a plating layer including one or more base plating layers and a plating layer having a porous structure on the surface disposed on the base plating layer.
  • the material of the plating layer is not particularly limited and can be selected in consideration of the purpose of the structure, the material of the base material, etc. Specific examples of the material of the plating layer include nickel, copper, tin, zinc, and chromium. When the plating layer consists of two or more plating layers, the materials of the two or more plating layers may be the same or different.
  • the porous structure of the plating layer preferably has first pores and second pores formed on the surface of the first pores.
  • the pore diameter of the first pores is not particularly limited.
  • the average pore size of the first pores may range from 0.1 ⁇ m to 5 ⁇ m.
  • the depth of the first pores is not particularly limited.
  • the average depth of the first pores may range from 0.1 ⁇ m to 5 ⁇ m.
  • the pore diameter of the second pores is not particularly limited.
  • the average pore size of the second pores may range from 5 nm to 500 nm.
  • the depth of the second pores is not particularly limited.
  • the average depth of the second pores may range from 5 nm to 300 nm.
  • the pore size and depth of pores are measured by image analysis. For example, it is measured by cutting the plated layer along the thickness direction and observing the obtained cross section using an electron microscope or the like.
  • the average pore diameter and average depth of pores are the arithmetic mean values of values measured for 80 pores.
  • a plating layer having a porous structure having first pores and second pores formed on the surface of the first pores forms a plating layer having first pores. , and then by forming second pores on the surface of the first pores.
  • the plating layer having the first pores may be formed by, for example, forming a plating layer using a plating solution containing a substance that inhibits the growth of the plating layer, and then removing the substance that inhibits the growth of the plating layer. I can do it.
  • a method includes the method described in Japanese Patent No. 5366076.
  • substances that inhibit the growth of the plating layer include substances that dissolve in the plating solution, exhibit cationic properties, and produce water-insoluble decomposition products upon reductive decomposition.
  • Substances that exhibit cationic properties when dissolved in the plating solution and produce water-insoluble decomposition products through reductive decomposition are attracted to the object to be plated, which serves as a cathode during electroplating, and are reductively decomposed on the surface of the object to be plated. and produce water-insoluble decomposition products. This water-insoluble decomposition product remains on the object to be plated and hinders the growth of the plating layer.
  • Substances that exhibit cationic properties in the plating solution and produce water-insoluble decomposition products through reductive decomposition include water-soluble quaternary ammonium compounds with hydrophobic groups such as alkyl groups, aryl groups, and aralkyl groups. can be mentioned.
  • water-soluble quaternary ammonium compounds having a hydrophobic group include dodecyltrimethylammonium, tetradecyltrimethylammonium, hexadecyltrimethylammonium, octadecyltrimethylammonium, phenyltrimethylammonium, benzyltrimethylammonium, benzyltriethylammonium, and benzyl.
  • Examples include chlorides, bromides, hydroxides, sulfates and nitrates of tributylammonium, didecyldimethylammonium, dodecyldimethylbenzylammonium, tetradecyldimethylbenzylammonium, octadecyldimethylbenzylammonium, trioctylmethylammonium, dodecylpyridinium or benzylpyridinium. It will be done.
  • the number of water-soluble quaternary ammonium compounds having a hydrophobic group contained in the plating solution may be one or two or more.
  • the content of the water-soluble quaternary ammonium compound having a hydrophobic group contained in the plating solution is preferably 0.001 mol/L or more. From the viewpoint of forming a uniform plating layer, the content of the water-soluble quaternary ammonium compound having a hydrophobic group contained in the plating solution is preferably 0.1 mol/L or less.
  • the type of plating solution used to form the plating layer is not particularly limited, and can be selected from known plating solutions.
  • Specific plating solutions include electrolytic nickel plating baths such as Watt bath, Wood bath, nickel sulfamate bath, organic acid nickel bath, copper sulfate bath, copper pyrophosphate bath, tin sulfate bath, tin methanesulfonate bath, and chloride bath.
  • Examples include zinc baths, zinc sulfate baths, and various alloy plating baths.
  • the formation of the second pores on the surface of the first pores can be performed, for example, by bringing the surface of the plating layer having the first pores into contact with an etching solution.
  • the type of etching solution is not particularly limited.
  • it may contain an oxidizing agent and an inorganic acid.
  • the etching solution may be an aqueous solution of an oxidizing agent and an inorganic acid.
  • the oxidizing agent examples include nitric acid, permanganic acid, and hydrogen peroxide.
  • the concentration of the oxidizing agent in the etching solution is not particularly limited.
  • the concentration of the oxidizing agent in the etching solution can be selected from 0.1% by mass to 20% by mass, preferably 0.5% by mass to 5% by mass.
  • inorganic acids include phosphoric acid, sulfuric acid, and hydrochloric acid.
  • the concentration of the inorganic acid in the etching solution is not particularly limited.
  • the concentration of the inorganic acid in the etching solution can be selected from 0.1% by mass to 20% by mass, preferably 5% by mass to 10% by mass.
  • the temperature of the etching solution when it comes into contact with the surface of the plating layer is not particularly limited.
  • the temperature of the etching solution can be selected from the range of 20°C to 60°C, preferably 30°C to 50°C.
  • time period for which the etching solution is brought into contact with the surface of the plating layer can be selected from the range of 30 seconds to 10 minutes, preferably 1 minute to 5 minutes.
  • the protruding valley depth (Rvk) of the surface having a porous structure of the plating layer is preferably 0.3 ⁇ m or more, more preferably 0.4 ⁇ m or more, and still more preferably 0.5 ⁇ m or more. preferable. From the viewpoint of how easily the resin can enter the pores when the porous surface of the plating layer is bonded to a resin member, the protruding valley depth (Rvk) of the porous surface of the plating layer is It is preferable that it is 1.5 ⁇ m or less.
  • the protruding valley depth (Rvk) of the surface having a porous structure of the plating layer is a value measured in accordance with JIS B 0671-2:2002 (ISO 13565-2:1996).
  • the maximum height (Rz) of the surface of the plating layer having a porous structure is preferably 1.5 ⁇ m or more, more preferably 2 ⁇ m or more. From the viewpoint of how easily the resin can enter the pores when the surface of the plated layer has a porous structure and is bonded to a resin member, the maximum height (Rz) of the surface of the plated layer that has a porous structure is For example, the thickness is preferably 10 ⁇ m or less, or more preferably 5 ⁇ m or less.
  • the arithmetic mean roughness (Ra) of the surface of the plating layer having a porous structure is preferably 0.2 ⁇ m or more, more preferably 0.3 ⁇ m or more. From the viewpoint of ease of resin penetration into the pores when joining the porous surface of the plating layer with a resin member, the arithmetic mean roughness (Ra) of the porous surface of the plating layer is 5 ⁇ m. It is preferably at most 3 ⁇ m, more preferably at most 1 ⁇ m, or more preferably at most 0.7 ⁇ m.
  • the roughness index obtained by dividing the true surface area (m 2 ) measured by the krypton adsorption method of the surface having a porous structure of the plating layer by the geometric surface area (m 2 ) is preferably 12 or more. , more preferably 13 or more, and even more preferably 14 or more.
  • the true surface area of the porous surface of the plating layer is determined by the BET method using krypton gas as an adsorbent. That is, the value obtained by multiplying the BET specific surface area (m 2 /g) of the measurement object by the mass (g) of the measurement object is the true surface area (m 2 ) of the measurement object.
  • the true surface area of the surface of the plated layer having a porous structure is determined, for example, by the method described in Examples.
  • antibacterial member means a member that exhibits antibacterial performance.
  • antibacterial performance includes the performance of killing bacteria or suppressing their proliferation (antibacterial performance) and the performance of inactivating viruses (antiviral performance). That is, the targets of antibacterial performance include bacteria and viruses.
  • the mechanism by which the structure of the present disclosure exhibits antibacterial performance is presumed to be, for example, as follows.
  • the scope of the present disclosure is not limited in any way by such speculation.
  • the plating layer disposed on the base material has a porous structure. Therefore, when bacteria adhere to the plating layer, the porous structure of the plating layer damages the cell walls of the bacteria, and in a preferred embodiment, it is thought that the bacteria will die.
  • the activity of the virus captured by the porous structure of the plating layer is weakened, and in a preferred embodiment, the virus is considered to be inactivated.
  • the plating layer has a porous structure, the microscopic surface area of the plating layer is large. Therefore, a large amount of bacteria or viruses can be attached to a limited area and an antibacterial effect can be effectively exerted.
  • Antibacterial materials can be used, for example, in medical and pharmaceutical supplies (medical pads, surgical instruments, drug bottle caps, dental materials, etc.); housing-related supplies (doorknobs, handrails, etc.); food and cooking-related supplies (tableware, cooking utensils, etc.); (sinks, faucets, serving trays, etc.); infrastructure-related supplies (pipes used for water treatment or factory facilities, etc.); automobile-related supplies (doorknobs, etc.); miscellaneous goods (pencil cases, rulers, mechanical pencils, calculators, etc.); electronic equipment (personal computers, smartphones, etc.); and entertainment-related goods (medals used in gaming machines, etc.).
  • the method for manufacturing the structure of the present disclosure includes: forming a plating layer having a porous structure on the base material; A method for manufacturing a structure, including a step of bringing the surface of the plating layer into contact with an etching solution.
  • a structure having a fine uneven structure on the surface can be manufactured regardless of the material of the base material.
  • the step of forming a plating layer having a porous structure on the base material can be carried out using, for example, a plating solution containing a substance that inhibits the growth of the plating layer as described above.
  • the step of bringing the surface of the plating layer having a porous structure into contact with an etching solution can be carried out using, for example, an etching solution containing an oxidizing agent and an inorganic acid.
  • the details and preferred embodiments of the base material, plating layer, and etching solution in the above method are the same as the details and preferred embodiments of the plating layer and etching solution described for the structure of the present disclosure. That is, the method of the present disclosure may be the method of manufacturing the structure of the present disclosure described above.
  • the joined body of the present disclosure is a joined body that includes the above-described structure of the present disclosure and a resin member joined to the surface of the structure on which the plating layer is formed.
  • a state in which the structure and the resin member are "joined” means a state in which the structure is fixed to the resin member without using an adhesive, screws, or the like.
  • the state in which the structure is joined to the resin member can be formed, for example, by applying the material of the resin member, which has fluidity due to melting or softening, to the roughened surface of the structure.
  • the material of the resin member has fluidity
  • the material of the resin member enters the porous structure on the surface of the structure, an anchor effect is produced, and the resin member is firmly bonded to the surface of the structure.
  • the type of resin contained in the resin member is not particularly limited, and may be a thermoplastic resin, a thermosetting resin, a thermoplastic elastomer, a thermosetting elastomer, or the like.
  • Thermoplastic resins include polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylonitrile/styrene resin (AS), acrylonitrile/butadiene/styrene resin (ABS), methacrylic resin (PMMA), and polyvinyl chloride (PVC).
  • PA polyamide
  • POM polyacetal
  • UHPE ultra-high molecular weight polyethylene
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • TPX polymethylpentene
  • PC polycarbonate
  • PPE polyphenylene ether
  • PES polyetheretherketone
  • LCP liquid crystalline resin
  • PTFE polytetrafluoroethylene
  • PEI polyetherimide
  • PAR polyarylate
  • PSF polysulfone
  • PES polyamideimide
  • PAI polyamideimide
  • thermosetting resin examples include phenol resin, urea resin, melamine resin, unsaturated polyester, alkyd resin, epoxy resin, diallyl phthalate, and the like.
  • thermoplastic elastomer examples include styrene thermoplastic elastomer, polyester thermoplastic elastomer, urethane thermoplastic elastomer, and amide thermoplastic elastomer.
  • thermosetting elastomers examples include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), chloroprene rubber (CR), and acrylonitrile-butadiene copolymer rubber ( Examples include diene rubbers such as NBR), non-diene rubbers such as butyl rubber (IIR), ethylene propylene rubber (EPM), urethane rubber, silicone rubber, and acrylic rubber.
  • the resin contained in the resin member may be in the form of an ionomer or a polymer alloy.
  • the resin member may contain only one type of resin or two or more types of resin.
  • the resin member may contain various compounding agents in addition to the resin.
  • Compounding agents include glass fibers, carbon fibers, fillers such as inorganic powders, heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, dispersants, lubricants, mold release agents, antistatic agents, etc. can be mentioned.
  • the proportion of the resin in the entire resin member is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more. preferable.
  • the step of joining the resin member to the surface of the structure having a porous structure can be carried out by a known method such as injection molding, for example.
  • Example 1 Preparation of a bonded body A base nickel plating layer with a thickness of about 3 to 4 ⁇ m was formed on the surface of an aluminum plate as a base material.
  • the base nickel plating layer was formed using an aqueous solution containing nickel sulfate (280 g/L), nickel chloride (45 g/L), and boric acid (40 g/L) as a plating solution, at a temperature of 50°C and a pH of 4.3. The test was carried out at a cathode current density of 3 A/dm 2 .
  • a nickel plating layer having a porous structure with a thickness of about 1 to 5 ⁇ m was formed on the base nickel plating layer.
  • the nickel plating layer with a porous structure was prepared by adding dodecyltrimethylammonium as a substance that inhibits the growth of the plating layer to an aqueous solution containing nickel sulfate (280 g/L), nickel chloride (45 g/L), and boric acid (40 g/L).
  • the plating was carried out using a plating solution containing chloride (10 ml/L) under the conditions of a solution temperature of 50° C., pH of 4.3, and cathode current density of 3 A/dm 2 .
  • An etching treatment was performed on an aluminum plate on which a nickel plating layer having a porous structure was formed by immersing it in an aqueous solution (40° C.) containing 0.6% by mass of nitric acid and 7.5% by mass of phosphoric acid for 3 minutes.
  • the aluminum plate after etching the nickel plating layer was placed in a small dumbbell metal insert mold attached to an injection molding machine (J55-AD) manufactured by Japan Steel Works.
  • polyphenylene sulfide PPS, Tosoh Corporation, Susteel SGX120
  • PPS polyphenylene sulfide
  • FIG. 1 An electron microscope image of a cross section obtained by cutting the joined body A in the thickness direction is shown in FIG. 1, and a partially enlarged image of FIG. 1 is shown in FIG. The relatively bright parts in the figure correspond to the nickel plating layer.
  • the nickel plating layer has a porous structure on the surface opposite to the aluminum plate, and the porous structure is formed on the first pore and the surface of the first pore. It was observed that the pores had a second pore.
  • the average number of first pores per 10 ⁇ m measured from the images shown in FIGS. 1 and 2 is 6, the average pore diameter of the first pores is 0.97 ⁇ m, and the average number of first pores per 10 ⁇ m is 6.
  • the depth was 1.5 ⁇ m.
  • the shear bonding strength between the nickel plating layer and the PPS layer of the bonded body A was measured by a method based on ISO19095. Specifically, a special jig was attached to a tensile testing machine (Model 1323, manufactured by ICo Engineering), and the fracture was measured at room temperature (23°C), with a distance between chucks of 60 mm, and a tensile speed of 10 mm/min. The load (N) was measured. The shear bonding strength (MPa) was obtained by dividing the measured breaking load (N) by the area (50 mm 2 ) of the bonded portion between the nickel plating layer and the PPS layer. The results are shown in Table 1.
  • Example 2 Evaluation was performed in the same manner as in Example 1, except that the aqueous solution used for etching the nickel plating layer was changed to an aqueous solution containing 0.1% by mass of nitric acid and 0.1% by mass of phosphoric acid. The results are shown in Table 1. When observing the cross section of the bonded body A obtained in Example 2, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, and the porous structure had first pores and first pores. and second pores formed on the surface of the pores.
  • Example 3 Evaluation was performed in the same manner as in Example 1, except that the aqueous solution used for etching the nickel plating layer was changed to an aqueous solution containing 1% by mass of nitric acid and 20% by mass of phosphoric acid. The results are shown in Table 1. When observing the cross section of the bonded body A obtained in Example 3, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, and the porous structure had first pores and first pores. and second pores formed on the surface of the pores.
  • Example 4 Evaluation was performed in the same manner as in Example 1, except that the resin used for producing the joined body was changed from PPS to polypropylene (PP, Prime Polypro V7100, Prime Polymer Co., Ltd.). The results are shown in Table 1. When the cross section of the bonded body A obtained in Example 4 was observed, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, and the porous structure had first pores and first pores. and second pores formed on the surface of the pores.
  • Example 5 Evaluation was carried out in the same manner as in Example 1, except that the resin used for producing the joined body was changed from PPS to polyphthalamide (PPA, Mitsui Chemicals, Inc., Arlen A350). The results are shown in Table 1. When the cross section of the bonded body A obtained in Example 5 was observed, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, and the porous structure had first pores and first pores. and second pores formed on the surface of the pores.
  • FIG. 3 shows an electron microscope image of a cross section obtained by cutting the joined body A produced in Comparative Example 1 in the thickness direction
  • FIG. 4 shows a partially enlarged image of FIG. 3.
  • the relatively bright parts in the figure correspond to the nickel plating layer.
  • the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, but the second pores were not formed on the surface of the first pores. Ta.
  • the percentage of viable bacteria after 30 minutes indicates the ratio of the number of viable bacteria 30 minutes after inoculating the test piece with the bacteria to the number of viable bacteria at the time when the test piece was inoculated with the bacteria.
  • the percentage of viable bacteria after 24 hours indicates the ratio of the number of viable bacteria 24 hours after inoculating the test piece with the bacteria to the number of viable bacteria at the time when the test piece was inoculated with the bacteria.
  • test piece A and test piece B used in the antibacterial performance test were used in accordance with ISO 21702:2019. Specifically, the virus inactivation rate and infectious titer were measured 30 minutes and 24 hours after inoculating the test piece with the virus. As viruses, Influenza A H3N2 (size: 80 nm to 120 nm, with envelope) and Feline Calicivirus (size: 27 nm to 32 nm, without envelope) were used.
  • the virus inactivation rate after 30 minutes indicates the ratio of the infectious titer 30 minutes after inoculating the test piece with the virus to the infectious titer at the time when the test piece was inoculated with the virus.
  • the virus inactivation rate after 24 hours indicates the ratio of the infectious titer 24 hours after inoculating the test piece with the virus to the infectious titer at the time when the test piece was inoculated with the virus.
  • the infectious titer is an index representing the degree of virus inactivation, and is a value measured by TCID50 (50% tissue culture infectious dose).
  • test piece A was obtained by forming a nickel plating layer with a porous structure on the surface of an aluminum plate and etching the nickel plating layer. It showed superior antibacterial and antiviral performance compared to test piece B, which did not have a nickel plating layer with a textured structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Abstract

This structural body comprises a base material and a plating layer disposed on the base material, the plating layer having a porous structure on a surface thereof on the opposite side to the base material, the structural body satisfying at least one of (1) to (3) below. (1) The porous structure has a first pore and a second pore which is formed on the surface of the first pore. (2) The surface of the plating layer having the porous structure has a protruding valley depth (Rvk) of more than or equal to 0.3 μm. (3) A coarseness index obtained by dividing a true surface area (m2) of the surface of the plating layer having the porous structure, as measured by a krypton adsorption method, by a geometric surface area (m2) thereof is more than or equal to 12.

Description

構造体、構造体の製造方法及び接合体Structure, manufacturing method of structure, and joined body
 本発明は、構造体、構造体の製造方法及び接合体に関する。 The present invention relates to a structure, a method for manufacturing the structure, and a joined body.
 金属部材の表面を粗化する方法として、金属部材の表面をエッチングしてマイクロメートルオーダーの凹凸構造(ベース粗面)を形成し、ベース粗面の表面をさらにエッチングして樹枝状層(ファイン粗面)を形成する方法が提案されている(例えば、特許文献1参照)。 As a method for roughening the surface of a metal component, the surface of the metal component is etched to form a micrometer-order uneven structure (base rough surface), and the surface of the base rough surface is further etched to form a dendritic layer (fine rough surface). A method for forming a surface (see, for example, Patent Document 1) has been proposed.
国際公開第2020/158820号International Publication No. 2020/158820
 特許文献1に記載された方法で表面を粗化された金属部材は、マイクロメートルオーダーのベース粗面とその表面に形成されたファイン粗面とを有することで、例えば、樹脂部材に対する優れた接合強度を発揮する。その一方で、金属部材の材質によっては特許文献1に記載された方法では良好な凹凸構造が形成できない場合がある。 The metal member whose surface has been roughened by the method described in Patent Document 1 has a base rough surface on the order of micrometers and a fine rough surface formed on the surface, so that it can be bonded to, for example, an excellent bond to a resin member. Demonstrate strength. On the other hand, depending on the material of the metal member, the method described in Patent Document 1 may not be able to form a good uneven structure.
 例えば、ダイカスト(鋳造品)の製造に用いられるアルミニウム合金は、成形時の流動性を高めるためにケイ素を大量に含んでいる。このようなアルミニウム合金に対して特許文献1に記載された方法で粗化処理を実施すると、エッチング液への溶解性に乏しいケイ素が粗化処理された面に析出して充分な接合強度が得られない場合がある。 For example, aluminum alloys used for manufacturing die castings (castings) contain a large amount of silicon to improve fluidity during molding. If such an aluminum alloy is roughened by the method described in Patent Document 1, silicon, which has poor solubility in the etching solution, will precipitate on the roughened surface, resulting in sufficient bonding strength. may not be possible.
 上記事情に鑑み、本開示の一実施形態は、基材の材質を問わずに微細な凹凸構造を表面に有する構造体及びその製造方法、並びにこの構造体を含む接合体を提供することを課題とする。 In view of the above circumstances, it is an object of an embodiment of the present disclosure to provide a structure having a fine uneven structure on its surface regardless of the material of the base material, a method for manufacturing the same, and a joined body including this structure. shall be.
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>基材と、前記基材の上に配置されるメッキ層と、を有し、
 前記メッキ層は前記基材と逆側の表面に多孔質構造を有し、下記(1)~(3)のうち少なくとも1つを満たす、構造体。
(1)多孔質構造が第1の細孔と、第1の細孔の表面に形成された第2の細孔と、を有する。
(2)メッキ層の多孔質構造を有する表面の突出谷部深さ(Rvk)が0.3μm以上である。
(3)メッキ層の多孔質構造を有する表面のクリプトン吸着法により測定される真表面積(m)を幾何学的表面積(m)で除して得られる粗さ指数が12以上である。
<2>上記(1)を満たす、<1>に記載の構造体。
<3>上記(2)を満たす、<1>に記載の構造体。
<4>上記(3)を満たす、<1>に記載の構造体。
<5>前記メッキ層は2層以上のメッキ層を含む、<1>~<4>のいずれか1項に記載の構造体。
<6>抗菌部材として用いるための、<1>~<4>のいずれか1項に記載の構造体。
<7><1>~<4>のいずれか1項に記載の構造体と、前記構造体の前記メッキ層が形成された面に接合している樹脂部材と、を有する、接合体。
<8>基材の上に多孔質構造を有するメッキ層を形成する工程と、
 前記メッキ層の表面をエッチング液と接触させる工程と、を含む、構造体の製造方法。
<9>前記エッチング液は酸化剤と無機酸とを含む、<8>に記載の構造体の製造方法。
Means for solving the above problems include the following embodiments.
<1> Comprising a base material and a plating layer disposed on the base material,
The plated layer has a porous structure on the surface opposite to the base material, and the structure satisfies at least one of the following (1) to (3).
(1) The porous structure has first pores and second pores formed on the surface of the first pores.
(2) The protruding valley depth (Rvk) of the surface having a porous structure of the plating layer is 0.3 μm or more.
(3) The roughness index obtained by dividing the true surface area (m 2 ) measured by the krypton adsorption method by the geometric surface area (m 2 ) of the surface having a porous structure of the plating layer is 12 or more.
<2> The structure according to <1>, which satisfies (1) above.
<3> The structure according to <1>, which satisfies (2) above.
<4> The structure according to <1>, which satisfies (3) above.
<5> The structure according to any one of <1> to <4>, wherein the plating layer includes two or more plating layers.
<6> The structure according to any one of <1> to <4>, for use as an antibacterial member.
<7> A joined body comprising the structure according to any one of <1> to <4> and a resin member joined to the surface of the structure on which the plating layer is formed.
<8> Forming a plating layer having a porous structure on the base material,
A method for manufacturing a structure, the method comprising: bringing the surface of the plating layer into contact with an etching solution.
<9> The method for manufacturing a structure according to <8>, wherein the etching solution contains an oxidizing agent and an inorganic acid.
 本開示の一実施形態によれば、基材の材質を問わずに微細な凹凸構造を表面に有する構造体及びその製造方法、並びにこの構造体を含む接合体が提供される。 According to an embodiment of the present disclosure, a structure having a fine uneven structure on its surface regardless of the material of the base material, a method for manufacturing the same, and a bonded body including this structure are provided.
実施例1で得られた接合体の断面の電子顕微鏡画像である。1 is an electron microscope image of a cross section of a joined body obtained in Example 1. 図1に示す電子顕微鏡画像の部分拡大画像である。2 is a partially enlarged image of the electron microscope image shown in FIG. 1. 比較例1で得られた接合体の断面の電子顕微鏡画像である。2 is an electron microscope image of a cross section of a joined body obtained in Comparative Example 1. 図3に示す電子顕微鏡画像の部分拡大画像である。4 is a partially enlarged image of the electron microscope image shown in FIG. 3.
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値または下限値は、他の段階的な記載の数値範囲の上限値または下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
 本開示において、材料中の各成分の量は、材料中の各成分に該当する物質が複数存在する場合は、特に断らない限り、材料中に存在する複数の物質の合計量を意味する。
In the present disclosure, a numerical range indicated using "~" indicates a range that includes the numerical values written before and after "~" as the minimum value and maximum value, respectively.
In the numerical ranges described step by step in this disclosure, the upper or lower limit stated in one numerical range may be replaced by the upper or lower limit of another numerical range described step by step, and , may be replaced with the values shown in the examples.
In the present disclosure, if there are multiple substances corresponding to each component in the material, the amount of each component in the material means the total amount of the multiple substances present in the material, unless otherwise specified.
<構造体>
 本開示の構造体は、基材と、前記基材の上に配置されるメッキ層と、を有し、
 前記メッキ層は前記基材と逆側の表面に多孔質構造を有し、下記(1)~(3)のうち少なくとも1つを満たす、構造体である。
(1)多孔質構造が第1の細孔と、第1の細孔の表面に形成された第2の細孔と、を有する。
(2)メッキ層の多孔質構造を有する表面の突出谷部深さ(Rvk)が0.3μm以上である。
(3)メッキ層の多孔質構造を有する表面のクリプトン吸着法により測定される真表面積(m)を幾何学的表面積(m)で除して得られる粗さ指数が12以上である。
<Structure>
The structure of the present disclosure includes a base material and a plating layer disposed on the base material,
The plating layer has a porous structure on the surface opposite to the base material, and is a structure that satisfies at least one of the following (1) to (3).
(1) The porous structure has first pores and second pores formed on the surface of the first pores.
(2) The protruding valley depth (Rvk) of the surface having a porous structure of the plating layer is 0.3 μm or more.
(3) The roughness index obtained by dividing the true surface area (m 2 ) measured by the krypton adsorption method by the geometric surface area (m 2 ) of the surface having a porous structure of the plating layer is 12 or more.
 本実施形態の構造体は、基材の上に配置されるメッキ層が基材と逆側の表面に多孔質構造を有し、かつ(1)~(3)のうち少なくとも1つを満たす。すなわち、構造体の表面に微細な凹凸構造が形成されている。このため、例えば、構造体を他の部材と接合させた場合に構造体と他の部材とが接触する部分の微視的な面積が充分に確保され、優れた接合強度が達成される。
 さらに、本開示の構造体では、基材の代わりに基材の上に配置されるメッキ層が多孔質構造を有している。このため、基材の材質が多孔質構造を形成可能なものに制限されない。
In the structure of this embodiment, the plating layer disposed on the base material has a porous structure on the surface opposite to the base material, and satisfies at least one of (1) to (3). That is, a fine uneven structure is formed on the surface of the structure. Therefore, for example, when the structure is joined to another member, a sufficient microscopic area of the contact portion between the structure and the other member is ensured, and excellent joint strength is achieved.
Furthermore, in the structure of the present disclosure, the plating layer disposed on the base material instead of the base material has a porous structure. Therefore, the material of the base material is not limited to those capable of forming a porous structure.
(基材)
 構造体における基材の材質は特に制限されず、金属、樹脂、セラミックス、ガラス、木材等から選択できる。
 基材は導電性を有していても、導電性を有していなくてもよい。基材が導電性を有していない場合は、基材の表面に導電性を付与する層が基材とメッキ層との間に配置されていてもよい。
(Base material)
The material of the base material in the structure is not particularly limited, and can be selected from metals, resins, ceramics, glass, wood, and the like.
The base material may or may not have conductivity. When the base material does not have conductivity, a layer that imparts conductivity to the surface of the base material may be disposed between the base material and the plating layer.
 基材が金属を含む場合、金属として具体的には、鉄、銅、ニッケル、金、銀、プラチナ、コバルト、亜鉛、鉛、スズ、チタン、クロム、アルミニウム、マグネシウム及びマンガンから選択される金属、並びに前記金属から選択される少なくとも1種を含む合金が挙げられる。 When the base material contains a metal, specifically, a metal selected from iron, copper, nickel, gold, silver, platinum, cobalt, zinc, lead, tin, titanium, chromium, aluminum, magnesium, and manganese. and an alloy containing at least one selected from the above metals.
 基材が樹脂を含む場合、樹脂は後述する樹脂部材に含まれてもよい樹脂から選択してもよい。 When the base material contains a resin, the resin may be selected from resins that may be included in the resin member described below.
(メッキ層)
 基材の上に配置されるメッキ層は、基材と逆側の表面に多孔質構造を有する。
(plating layer)
The plating layer disposed on the base material has a porous structure on the surface opposite to the base material.
 本開示において「多孔質構造」とは、メッキ層を厚み方向に沿って切断して得られる断面を観察したときに細孔が存在し、かつ、断面の10μm当たりに観察される細孔の数の平均値が5個以上である構造を意味する。
 上記平均値は、5箇所以上で測定した10μm当たりの細孔の数の算術平均値である。
 本開示において「細孔」とは、孔径が5μm以下である開気孔(外気と接続している細孔)を意味する。細孔の孔径は、細孔の入口において測定される値である。
In the present disclosure, a "porous structure" refers to the presence of pores when observing a cross section obtained by cutting a plated layer along the thickness direction, and the number of pores observed per 10 μm of the cross section. means a structure in which the average value of is 5 or more.
The above average value is the arithmetic mean value of the number of pores per 10 μm measured at five or more locations.
In the present disclosure, "pore" means an open pore (pore connected to the outside air) with a pore diameter of 5 μm or less. The pore diameter of a pore is the value measured at the entrance of the pore.
 メッキ層は、1層のメッキ層からなっても2層以上のメッキ層を含んでもよい。
 2層以上のメッキ層を含むメッキ層としては、1層以上の下地メッキ層と、下地メッキ層の上に配置される表面に多孔質構造を持つメッキ層と、を含むメッキ層が挙げられる。
The plating layer may consist of one plating layer or may include two or more plating layers.
Examples of the plating layer including two or more plating layers include a plating layer including one or more base plating layers and a plating layer having a porous structure on the surface disposed on the base plating layer.
 メッキ層の材質は特に制限されず、構造体の用途、基材の材質等を考慮して選択できる。メッキ層の材質として具体的にはニッケル、銅、スズ、亜鉛、クロム等が挙げられる。
 メッキ層が2層以上のメッキ層からなる場合、2層以上のメッキ層の材質は同じであっても異なっていてもよい。
The material of the plating layer is not particularly limited and can be selected in consideration of the purpose of the structure, the material of the base material, etc. Specific examples of the material of the plating layer include nickel, copper, tin, zinc, and chromium.
When the plating layer consists of two or more plating layers, the materials of the two or more plating layers may be the same or different.
 メッキ層が有する多孔質構造は、第1の細孔と、第1の細孔の表面に形成された第2の細孔と、を有することが好ましい。 The porous structure of the plating layer preferably has first pores and second pores formed on the surface of the first pores.
 第1の細孔の孔径は、特に制限されない。例えば、第1の細孔の平均孔径は0.1μm~5μmの範囲であってもよい。
 第1の細孔の深さは特に制限されない。例えば、第1の細孔の平均深さは0.1μm~5μmの範囲であってもよい。
The pore diameter of the first pores is not particularly limited. For example, the average pore size of the first pores may range from 0.1 μm to 5 μm.
The depth of the first pores is not particularly limited. For example, the average depth of the first pores may range from 0.1 μm to 5 μm.
 第2の細孔の孔径は特に制限されない。例えば、第2の細孔の平均孔径は5nm~500nmの範囲であってもよい。
 第2の細孔の深さは特に制限されない。例えば、第2の細孔の平均深さは5nm~300nmの範囲であってもよい。
The pore diameter of the second pores is not particularly limited. For example, the average pore size of the second pores may range from 5 nm to 500 nm.
The depth of the second pores is not particularly limited. For example, the average depth of the second pores may range from 5 nm to 300 nm.
 本開示において細孔の孔径及び深さは、画像解析法により測定される。例えば、メッキ層を厚み方向に沿って切断し、得られた断面を電子顕微鏡等で観察して測定される。
 本開示において細孔の平均孔径及び平均深さは、80個の細孔について測定した値の算術平均値である。
In the present disclosure, the pore size and depth of pores are measured by image analysis. For example, it is measured by cutting the plated layer along the thickness direction and observing the obtained cross section using an electron microscope or the like.
In the present disclosure, the average pore diameter and average depth of pores are the arithmetic mean values of values measured for 80 pores.
 第1の細孔と、第1の細孔の表面に形成された第2の細孔と、を有する多孔質構造を有するメッキ層は、例えば、第1の細孔を有するメッキ層を形成し、次いで第1の細孔の表面に第2の細孔を形成することで得られる。 For example, a plating layer having a porous structure having first pores and second pores formed on the surface of the first pores forms a plating layer having first pores. , and then by forming second pores on the surface of the first pores.
 第1の細孔を有するメッキ層は、例えば、メッキ層の成長を妨げる物質を添加したメッキ液を用いてメッキ層を形成し、次いでメッキ層の成長を妨げる物質を除去することで形成することができる。このような方法としては、特許第5366076号に記載された方法が挙げられる。 The plating layer having the first pores may be formed by, for example, forming a plating layer using a plating solution containing a substance that inhibits the growth of the plating layer, and then removing the substance that inhibits the growth of the plating layer. I can do it. Such a method includes the method described in Japanese Patent No. 5366076.
 メッキ層の成長を妨げる物質としては、メッキ液に溶解してカチオン性を示し、かつ還元分解により非水溶性の分解物を生成する物質が挙げられる。メッキ液に溶解してカチオン性を示し、かつ還元分解により非水溶性の分解物を生成する物質は、電気めっきを行うと陰極となる被メッキ物に引き付けられ、被メッキ物の表面で還元分解されて非水溶性の分解物を生成する。この非水溶性の分解物が被メッキ物に残留してメッキ層の成長を妨げる。 Examples of substances that inhibit the growth of the plating layer include substances that dissolve in the plating solution, exhibit cationic properties, and produce water-insoluble decomposition products upon reductive decomposition. Substances that exhibit cationic properties when dissolved in the plating solution and produce water-insoluble decomposition products through reductive decomposition are attracted to the object to be plated, which serves as a cathode during electroplating, and are reductively decomposed on the surface of the object to be plated. and produce water-insoluble decomposition products. This water-insoluble decomposition product remains on the object to be plated and hinders the growth of the plating layer.
 メッキ液中でカチオン性を示し、かつ還元分解により非水溶性の分解物を生成する物質としては、アルキル基、アリール基、アラルキル基のような疎水性基を持つ水溶性の第4級アンモニウム化合物が挙げられる。 Substances that exhibit cationic properties in the plating solution and produce water-insoluble decomposition products through reductive decomposition include water-soluble quaternary ammonium compounds with hydrophobic groups such as alkyl groups, aryl groups, and aralkyl groups. can be mentioned.
 疎水性基を持つ水溶性の第4級アンモニウム化合物として具体的には、ドデシルトリメチルアンモニウム、テトラデシルトリメチルアンモニウム、ヘキサデシルトリメチルアンモニウム、オクタデシルトリメチルアンモニウム、フェニルトリメチルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ジデシルジメチルアンモニウム、ドデシルジメチルベンジルアンモニウム、テトラデシルジメチルベンジルアンモニウム、オクタデシルジメチルベンジルアンモニウム、トリオクチルメチルアンモニウム、ドデシルピリジニウム又はベンジルピリジニウムの塩化物、臭化物、水酸化物、硫酸塩及び硝酸塩が挙げられる。
 メッキ液に含まれる疎水性基を持つ水溶性の第4級アンモニウム化合物は1種のみでも2種以上であってもよい。
Specific examples of water-soluble quaternary ammonium compounds having a hydrophobic group include dodecyltrimethylammonium, tetradecyltrimethylammonium, hexadecyltrimethylammonium, octadecyltrimethylammonium, phenyltrimethylammonium, benzyltrimethylammonium, benzyltriethylammonium, and benzyl. Examples include chlorides, bromides, hydroxides, sulfates and nitrates of tributylammonium, didecyldimethylammonium, dodecyldimethylbenzylammonium, tetradecyldimethylbenzylammonium, octadecyldimethylbenzylammonium, trioctylmethylammonium, dodecylpyridinium or benzylpyridinium. It will be done.
The number of water-soluble quaternary ammonium compounds having a hydrophobic group contained in the plating solution may be one or two or more.
 メッキ層の成長を妨げる効果を充分に得る観点からは、メッキ液に含まれる疎水性基を持つ水溶性の第4級アンモニウム化合物の含有量は0.001mol/L以上であることが好ましい。均一なメッキ層を形成する観点からは、メッキ液に含まれる疎水性基を持つ水溶性の第4級アンモニウム化合物の含有量は0.1mol/L以下であることが好ましい。 From the viewpoint of obtaining a sufficient effect of inhibiting the growth of the plating layer, the content of the water-soluble quaternary ammonium compound having a hydrophobic group contained in the plating solution is preferably 0.001 mol/L or more. From the viewpoint of forming a uniform plating layer, the content of the water-soluble quaternary ammonium compound having a hydrophobic group contained in the plating solution is preferably 0.1 mol/L or less.
 メッキ層の形成に使用するメッキ液の種類は特に制限されず、公知のメッキ液から選択できる。メッキ液として具体的には、ワット浴、ウッド浴、スルファミン酸ニッケル浴、有機酸ニッケル浴等の電気ニッケルめっき浴、硫酸銅浴、ピロリン酸銅浴、硫酸スズ浴、メタンスルホン酸スズ浴、塩化亜鉛浴、硫酸亜鉛浴、各種合金めっき浴などが挙げられる。 The type of plating solution used to form the plating layer is not particularly limited, and can be selected from known plating solutions. Specific plating solutions include electrolytic nickel plating baths such as Watt bath, Wood bath, nickel sulfamate bath, organic acid nickel bath, copper sulfate bath, copper pyrophosphate bath, tin sulfate bath, tin methanesulfonate bath, and chloride bath. Examples include zinc baths, zinc sulfate baths, and various alloy plating baths.
 第1の細孔の表面における第2の細孔の形成は、例えば、第1の細孔を有するメッキ層の表面をエッチング液と接触させて行うことができる。エッチング液の種類は、特に制限されない。例えば、酸化剤と無機酸とを含むものであってもよい。エッチング液は酸化剤と無機酸の水溶液であってもよい。 The formation of the second pores on the surface of the first pores can be performed, for example, by bringing the surface of the plating layer having the first pores into contact with an etching solution. The type of etching solution is not particularly limited. For example, it may contain an oxidizing agent and an inorganic acid. The etching solution may be an aqueous solution of an oxidizing agent and an inorganic acid.
 酸化剤としては、硝酸、過マンガン酸、過酸化水素等が挙げられる。エッチング液中の酸化剤の濃度は特に制限されない。例えば、エッチング液中の酸化剤の濃度は0.1質量%~20質量%から選択でき、0.5質量%~5質量%であることが好ましい。
 無機酸としては、リン酸、硫酸、塩酸等が挙げられる。エッチング液中の無機酸の濃度は特に制限されない。例えば、エッチング液中の無機酸の濃度は0.1質量%~20質量%から選択でき、5質量%~10質量%であることが好ましい。
Examples of the oxidizing agent include nitric acid, permanganic acid, and hydrogen peroxide. The concentration of the oxidizing agent in the etching solution is not particularly limited. For example, the concentration of the oxidizing agent in the etching solution can be selected from 0.1% by mass to 20% by mass, preferably 0.5% by mass to 5% by mass.
Examples of inorganic acids include phosphoric acid, sulfuric acid, and hydrochloric acid. The concentration of the inorganic acid in the etching solution is not particularly limited. For example, the concentration of the inorganic acid in the etching solution can be selected from 0.1% by mass to 20% by mass, preferably 5% by mass to 10% by mass.
 メッキ層の表面に接触させるときのエッチング液の温度は特に制限されない。例えば、エッチング液の温度は20℃~60℃の範囲から選択でき、30℃~50℃であることが好ましい。 The temperature of the etching solution when it comes into contact with the surface of the plating layer is not particularly limited. For example, the temperature of the etching solution can be selected from the range of 20°C to 60°C, preferably 30°C to 50°C.
 メッキ層の表面にエッチング液を接触させる時間は特に制限されない。例えば、30秒分~10分の範囲から選択でき、1分~5分であることが好ましい。 There is no particular restriction on the time period for which the etching solution is brought into contact with the surface of the plating layer. For example, it can be selected from the range of 30 seconds to 10 minutes, preferably 1 minute to 5 minutes.
 メッキ層の多孔質構造を有する表面の突出谷部深さ(Rvk)は、0.3μm以上であることが好ましく、0.4μm以上であることがより好ましく、0.5μm以上であることがさらに好ましい。
 メッキ層の多孔質構造を有する表面を樹脂部材と接合させる場合の細孔への樹脂の入り込みやすさの観点からは、メッキ層の多孔質構造を有する表面の突出谷部深さ(Rvk)は1.5μm以下であることが好ましい。
The protruding valley depth (Rvk) of the surface having a porous structure of the plating layer is preferably 0.3 μm or more, more preferably 0.4 μm or more, and still more preferably 0.5 μm or more. preferable.
From the viewpoint of how easily the resin can enter the pores when the porous surface of the plating layer is bonded to a resin member, the protruding valley depth (Rvk) of the porous surface of the plating layer is It is preferable that it is 1.5 μm or less.
 本開示において、メッキ層の多孔質構造を有する面の突出谷部深さ(Rvk)はJIS B 0671-2:2002(ISO 13565-2:1996)に準拠して測定される値である。 In the present disclosure, the protruding valley depth (Rvk) of the surface having a porous structure of the plating layer is a value measured in accordance with JIS B 0671-2:2002 (ISO 13565-2:1996).
 メッキ層の多孔質構造を有する表面の最大高さ(Rz)は、1.5μm以上であることが好ましく、2μm以上であることがより好ましい。
 メッキ層の多孔質構造を有する表面を樹脂部材と接合させる場合の細孔への樹脂の入り込みやすさの観点からは、メッキ層の多孔質構造を有する表面の最大高さ(Rz)はメッキ層の厚み以下であることが好ましく、例えば、10μm以下、又は5μm以下であることがより好ましい。
The maximum height (Rz) of the surface of the plating layer having a porous structure is preferably 1.5 μm or more, more preferably 2 μm or more.
From the viewpoint of how easily the resin can enter the pores when the surface of the plated layer has a porous structure and is bonded to a resin member, the maximum height (Rz) of the surface of the plated layer that has a porous structure is For example, the thickness is preferably 10 μm or less, or more preferably 5 μm or less.
 メッキ層の多孔質構造を有する表面の算術平均粗さ(Ra)は、0.2μm以上であることが好ましく、0.3μm以上であることがより好ましい。
 メッキ層の多孔質構造を有する表面を樹脂部材と接合させる場合の細孔への樹脂の入り込みやすさの観点からは、メッキ層の多孔質構造を有する表面の算術平均粗さ(Ra)は5μm以下であることが好ましく、3μm以下、1μm以下、又は0.7μm以下であることがより好ましい。
The arithmetic mean roughness (Ra) of the surface of the plating layer having a porous structure is preferably 0.2 μm or more, more preferably 0.3 μm or more.
From the viewpoint of ease of resin penetration into the pores when joining the porous surface of the plating layer with a resin member, the arithmetic mean roughness (Ra) of the porous surface of the plating layer is 5 μm. It is preferably at most 3 μm, more preferably at most 1 μm, or more preferably at most 0.7 μm.
 メッキ層の多孔質構造を有する表面のクリプトン吸着法により測定される真表面積(m)を幾何学的表面積(m)で除して得られる粗さ指数は、12以上であることが好ましく、13以上であることがより好ましく、14以上であることがさらに好ましい。 The roughness index obtained by dividing the true surface area (m 2 ) measured by the krypton adsorption method of the surface having a porous structure of the plating layer by the geometric surface area (m 2 ) is preferably 12 or more. , more preferably 13 or more, and even more preferably 14 or more.
 本開示においてメッキ層の多孔質構造を有する表面の真表面積は、クリプトンガスを吸着質としてBET法により求める。すなわち、測定対象のBET比表面積(m/g)に測定対象の質量(g)を乗じた値が測定対象の真表面積(m)である。メッキ層の多孔質構造を有する表面の真表面積は、例えば、実施例に記載する方法により求める。 In the present disclosure, the true surface area of the porous surface of the plating layer is determined by the BET method using krypton gas as an adsorbent. That is, the value obtained by multiplying the BET specific surface area (m 2 /g) of the measurement object by the mass (g) of the measurement object is the true surface area (m 2 ) of the measurement object. The true surface area of the surface of the plated layer having a porous structure is determined, for example, by the method described in Examples.
 本開示においてメッキ層の多孔質構造を有する表面の幾何学的表面積は、測定対象の寸法から求められる値である。例えば、多孔質構造を有するメッキ層で全面を被覆された測定対象が長さX、幅Y、高さZの直方体である場合の幾何学的表面積Sは、S=2XY+2YZ+2ZXとして求められる。 In the present disclosure, the geometric surface area of the surface of the plated layer having a porous structure is a value determined from the dimensions of the object to be measured. For example, when the object to be measured is a rectangular parallelepiped with length X, width Y, and height Z, the entire surface of which is covered with a plating layer having a porous structure, the geometric surface area S is determined as S=2XY+2YZ+2ZX.
 本開示の構造体の用途は、特に制限されない。例えば、後述する接合体のほか、抗菌部材、バスバー等が挙げられる。すなわち、本開示の実施形態は本開示の構造体を含む接合体、抗菌部材、バスバー等の物品を含む。
 本開示において「抗菌部材」とは、抗菌性能を示す部材を意味する。本開示において「抗菌性能」には、細菌を死滅させるか増殖を抑制する性能(抗細菌性能)及びウイルスを不活化させる性能(抗ウイルス性能)が含まれる。すなわち、抗菌性能の対象には細菌及びウイルスが含まれる。
The use of the structure of the present disclosure is not particularly limited. For example, in addition to the bonded body described below, antibacterial members, bus bars, etc. may be mentioned. That is, embodiments of the present disclosure include articles such as conjugates, antibacterial members, bus bars, etc., including the structure of the present disclosure.
In the present disclosure, "antibacterial member" means a member that exhibits antibacterial performance. In the present disclosure, "antibacterial performance" includes the performance of killing bacteria or suppressing their proliferation (antibacterial performance) and the performance of inactivating viruses (antiviral performance). That is, the targets of antibacterial performance include bacteria and viruses.
 本開示の構造体が抗菌性能を示すメカニズムは、たとえば以下のように推察される。 ただし、本開示の範囲はかかる推察により何ら限定されない。
 本開示の構造体は、基材の上に配置されるメッキ層が多孔質構造を有する。このため、細菌がメッキ層に付着した場合には、メッキ層の多孔質構造により細菌の細胞壁が損傷し、好ましい態様では細菌が死滅すると考えられる。
 ウイルスがメッキ層に付着した場合は、メッキ層の多孔質構造で捕捉されたウイルスの活性が弱まり、好ましい態様ではウイルスが不活性化すると考えられる。
 さらに、本開示の構造体ではメッキ層が多孔質構造を有するために、メッキ層の微視的な表面積が大きい。このため、限られた面積に大量の細菌又はウイルスを付着させ、抗菌作用を効果的に発揮することができる。
The mechanism by which the structure of the present disclosure exhibits antibacterial performance is presumed to be, for example, as follows. However, the scope of the present disclosure is not limited in any way by such speculation.
In the structure of the present disclosure, the plating layer disposed on the base material has a porous structure. Therefore, when bacteria adhere to the plating layer, the porous structure of the plating layer damages the cell walls of the bacteria, and in a preferred embodiment, it is thought that the bacteria will die.
When a virus adheres to the plating layer, the activity of the virus captured by the porous structure of the plating layer is weakened, and in a preferred embodiment, the virus is considered to be inactivated.
Furthermore, in the structure of the present disclosure, since the plating layer has a porous structure, the microscopic surface area of the plating layer is large. Therefore, a large amount of bacteria or viruses can be attached to a limited area and an antibacterial effect can be effectively exerted.
 抗菌部材は、例えば、医療・医薬用品(医療用パッド、手術器具、薬品用瓶の蓋、歯科材等);住宅関連用品(ドアノブ、手すり等);食品・調理関連用品(食器、調理器具、シンク、蛇口、配膳用トレー等);インフラ関連用品(水処理又は工場施設に用いる配管等);自動車関連用品(ドアノブ等);雑貨類(筆入れ、定規、シャープペンシル、電卓等);電子機器類(パーソナルコンピュータ、スマートフォン等);及び娯楽関連用品(遊技機で用いるメダル等)のような様々な物品として用いることができる。 Antibacterial materials can be used, for example, in medical and pharmaceutical supplies (medical pads, surgical instruments, drug bottle caps, dental materials, etc.); housing-related supplies (doorknobs, handrails, etc.); food and cooking-related supplies (tableware, cooking utensils, etc.); (sinks, faucets, serving trays, etc.); infrastructure-related supplies (pipes used for water treatment or factory facilities, etc.); automobile-related supplies (doorknobs, etc.); miscellaneous goods (pencil cases, rulers, mechanical pencils, calculators, etc.); electronic equipment (personal computers, smartphones, etc.); and entertainment-related goods (medals used in gaming machines, etc.).
<構造体の製造方法>
 本開示の構造体の製造方法は、
 基材の上に多孔質構造を有するメッキ層を形成する工程と、
 前記メッキ層の表面をエッチング液と接触させる工程と、を含む、構造体の製造方法である。
<Method for manufacturing structure>
The method for manufacturing the structure of the present disclosure includes:
forming a plating layer having a porous structure on the base material;
A method for manufacturing a structure, including a step of bringing the surface of the plating layer into contact with an etching solution.
 上記方法によれば、基材の材質を問わずに微細な凹凸構造を表面に有する構造体を製造することができる。
 上記方法において基材の上に多孔質構造を有するメッキ層を形成する工程は、例えば、上述したようなメッキ層の成長を妨げる物質を添加したメッキ液を用いて実施することができる。多孔質構造を有するメッキ層の表面をエッチング液と接触させる工程は、例えば、酸化剤と無機酸とを含むエッチング液を用いて実施することができる。
According to the above method, a structure having a fine uneven structure on the surface can be manufactured regardless of the material of the base material.
In the above method, the step of forming a plating layer having a porous structure on the base material can be carried out using, for example, a plating solution containing a substance that inhibits the growth of the plating layer as described above. The step of bringing the surface of the plating layer having a porous structure into contact with an etching solution can be carried out using, for example, an etching solution containing an oxidizing agent and an inorganic acid.
 上記方法における基材、メッキ層及びエッチング液の詳細及び好ましい態様は、本開示の構造体について記載したメッキ層及びエッチング液の詳細及び好ましい態様と同様である。
 すなわち、本開示の方法は、上述した本開示の構造体の製造方法であってもよい。
The details and preferred embodiments of the base material, plating layer, and etching solution in the above method are the same as the details and preferred embodiments of the plating layer and etching solution described for the structure of the present disclosure.
That is, the method of the present disclosure may be the method of manufacturing the structure of the present disclosure described above.
<接合体>
 本開示の接合体は、上述した本開示の構造体と、前記構造体の前記メッキ層が形成された面に接合している樹脂部材と、を有する、接合体である。
<zygote>
The joined body of the present disclosure is a joined body that includes the above-described structure of the present disclosure and a resin member joined to the surface of the structure on which the plating layer is formed.
 本開示において構造体と樹脂部材とが「接合」した状態とは、構造体が接着剤、ねじ等を用いずに樹脂部材と固着している状態を意味する。 In the present disclosure, a state in which the structure and the resin member are "joined" means a state in which the structure is fixed to the resin member without using an adhesive, screws, or the like.
 構造体が樹脂部材と接合した状態は、たとえば、溶融又は軟化により流動性を有する状態の樹脂部材の材料を、構造体の粗化処理された表面に付与して形成することができる。樹脂部材の材料が流動性を有する状態であると、構造体の表面の多孔質構造に樹脂部材の材料が入り込んでアンカー効果が発現し、樹脂部材が構造体の表面に強固に接合する。 The state in which the structure is joined to the resin member can be formed, for example, by applying the material of the resin member, which has fluidity due to melting or softening, to the roughened surface of the structure. When the material of the resin member has fluidity, the material of the resin member enters the porous structure on the surface of the structure, an anchor effect is produced, and the resin member is firmly bonded to the surface of the structure.
 樹脂部材に含まれる樹脂の種類は特に制限されず、熱可塑性樹脂、熱硬化性樹脂、熱可塑性エラストマー、熱硬化性エラストマー等であってよい。
 熱可塑性樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、アクリロニトリル/スチレン樹脂(AS)、アクリロニトリル/ブタジエン/スチレン樹脂(ABS)、メタクリル樹脂(PMMA)、ポリ塩化ビニル(PVC)、ポリアミド(PA)、ポリアセタール(POM)、超高分子量ポリエチレン(UHPE)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリメチルペンテン(TPX)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(PPE)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、液晶性樹脂(LCP)、ポリテトラフロロエチレン(PTFE)、ポリエーテルイミド(PEI)、ポリアリレート(PAR)、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、ポリアミドイミド(PAI)等が挙げられる。
 熱硬化性樹脂としては、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル、アルキド樹脂、エポキシ樹脂、ジアリルフタレート等が挙げられる。
 熱可塑性エラストマーとしては、スチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、アミド系熱可塑性エラストマー等が挙げられる。
 熱硬化性エラストマーとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)等のジエン系ゴム、ブチルゴム(IIR)、エチレン・プロピレンゴム(EPM)、ウレタンゴム、シリコーンゴム、アクリルゴム等の非ジエン系ゴムなどが挙げられる。
 樹脂部材に含まれる樹脂はアイオノマー又はポリマーアロイの状態であってもよい。
 樹脂部材に含まれる樹脂は1種のみでも2種以上であってもよい。
The type of resin contained in the resin member is not particularly limited, and may be a thermoplastic resin, a thermosetting resin, a thermoplastic elastomer, a thermosetting elastomer, or the like.
Thermoplastic resins include polyethylene (PE), polypropylene (PP), polystyrene (PS), acrylonitrile/styrene resin (AS), acrylonitrile/butadiene/styrene resin (ABS), methacrylic resin (PMMA), and polyvinyl chloride (PVC). ), polyamide (PA), polyacetal (POM), ultra-high molecular weight polyethylene (UHPE), polybutylene terephthalate (PBT), polyethylene terephthalate (PET), polymethylpentene (TPX), polycarbonate (PC), modified polyphenylene ether (PPE) ), polyphenylene sulfide (PPS), polyetheretherketone (PEEK), liquid crystalline resin (LCP), polytetrafluoroethylene (PTFE), polyetherimide (PEI), polyarylate (PAR), polysulfone (PSF), poly Examples include ether sulfone (PES) and polyamideimide (PAI).
Examples of the thermosetting resin include phenol resin, urea resin, melamine resin, unsaturated polyester, alkyd resin, epoxy resin, diallyl phthalate, and the like.
Examples of the thermoplastic elastomer include styrene thermoplastic elastomer, polyester thermoplastic elastomer, urethane thermoplastic elastomer, and amide thermoplastic elastomer.
Examples of thermosetting elastomers include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), chloroprene rubber (CR), and acrylonitrile-butadiene copolymer rubber ( Examples include diene rubbers such as NBR), non-diene rubbers such as butyl rubber (IIR), ethylene propylene rubber (EPM), urethane rubber, silicone rubber, and acrylic rubber.
The resin contained in the resin member may be in the form of an ionomer or a polymer alloy.
The resin member may contain only one type of resin or two or more types of resin.
 樹脂部材は、樹脂に加えて種々の配合剤を含んでもよい。配合剤としては、ガラス繊維、カーボン繊維、無機粉末等の充填材、熱安定剤、酸化防止剤、顔料、耐候剤、難燃剤、可塑剤、分散剤、滑剤、離型剤、帯電防止剤等が挙げられる。 The resin member may contain various compounding agents in addition to the resin. Compounding agents include glass fibers, carbon fibers, fillers such as inorganic powders, heat stabilizers, antioxidants, pigments, weathering agents, flame retardants, plasticizers, dispersants, lubricants, mold release agents, antistatic agents, etc. can be mentioned.
 樹脂部材が樹脂以外の成分を含む場合、樹脂部材全体に占める樹脂の割合は10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることがさらに好ましい。 When the resin member contains components other than resin, the proportion of the resin in the entire resin member is preferably 10% by mass or more, more preferably 20% by mass or more, and even more preferably 30% by mass or more. preferable.
 構造体の多孔質構造を有する面に樹脂部材を接合する工程は、たとえば、射出成形等の公知の方法で実施することができる。 The step of joining the resin member to the surface of the structure having a porous structure can be carried out by a known method such as injection molding, for example.
 以下、本開示に係る実施形態を、実施例を参照して説明する。なお本開示は、これらの実施例の記載に何ら限定されるものではない。 Hereinafter, embodiments according to the present disclosure will be described with reference to Examples. Note that the present disclosure is in no way limited to the description of these examples.
<実施例1>
(1)接合体の作製
 基材としてのアルミニウム板の表面に、厚さ約3~4μmの下地ニッケルメッキ層を形成した。
 下地ニッケルメッキ層は、硫酸ニッケル(280g/L)、塩化ニッケル(45g/L)、及びホウ酸(40g/L)を含有する水溶液をメッキ液として用いて、液温50℃、pH4.3、陰極電流密度3A/dmの条件で実施した。
<Example 1>
(1) Preparation of a bonded body A base nickel plating layer with a thickness of about 3 to 4 μm was formed on the surface of an aluminum plate as a base material.
The base nickel plating layer was formed using an aqueous solution containing nickel sulfate (280 g/L), nickel chloride (45 g/L), and boric acid (40 g/L) as a plating solution, at a temperature of 50°C and a pH of 4.3. The test was carried out at a cathode current density of 3 A/dm 2 .
 次いで、厚さ約1~5μmの多孔質構造を有するニッケルメッキ層を下地ニッケルメッキ層の上に形成した。 Next, a nickel plating layer having a porous structure with a thickness of about 1 to 5 μm was formed on the base nickel plating layer.
 多孔質構造を有するニッケルメッキ層は、硫酸ニッケル(280g/L)、塩化ニッケル(45g/L)、及びホウ酸(40g/L)を含有する水溶液にメッキ層の成長を妨げる物質としてドデシルトリメチルアンモニウムクロライド(10ml/L)を添加してなるメッキ液を用いて、液温50℃、pH4.3、陰極電流密度3A/dmの条件で実施した。 The nickel plating layer with a porous structure was prepared by adding dodecyltrimethylammonium as a substance that inhibits the growth of the plating layer to an aqueous solution containing nickel sulfate (280 g/L), nickel chloride (45 g/L), and boric acid (40 g/L). The plating was carried out using a plating solution containing chloride (10 ml/L) under the conditions of a solution temperature of 50° C., pH of 4.3, and cathode current density of 3 A/dm 2 .
 多孔質構造を有するニッケルメッキ層を形成したアルミニウム板に対し、硝酸0.6質量%及びリン酸7.5質量%を含有する水溶液(40℃)に3分間浸漬するエッチング処理を行った。 An etching treatment was performed on an aluminum plate on which a nickel plating layer having a porous structure was formed by immersing it in an aqueous solution (40° C.) containing 0.6% by mass of nitric acid and 7.5% by mass of phosphoric acid for 3 minutes.
 ニッケルメッキ層のエッチング処理を行った後のアルミニウム板を、日本製鋼所製の射出成形機(J55-AD)に装着された小型ダンベル金属インサート金型内に設置した。次いで、金型内にポリフェニレンスルフィド(PPS、東ソー株式会社、サスティールSGX120)を射出成形して、ニッケルメッキ層の上にPPS層が形成された接合体Aを作製した。 The aluminum plate after etching the nickel plating layer was placed in a small dumbbell metal insert mold attached to an injection molding machine (J55-AD) manufactured by Japan Steel Works. Next, polyphenylene sulfide (PPS, Tosoh Corporation, Susteel SGX120) was injection molded into the mold to produce an assembly A in which a PPS layer was formed on the nickel plating layer.
(2)ニッケルメッキ層の観察
 接合体Aを厚み方向に切断して得られた断面の電子顕微鏡画像を図1に示し、図1の部分拡大画像を図2に示す。
 図中の相対的に明度が高い部分がニッケルメッキ層に該当する。
 図1及び図2に示すように、ニッケルメッキ層はアルミニウム板と逆側の表面に多孔質構造を有し、多孔質構造は第1の細孔と、第1の細孔の表面に形成された第2の細孔とを有している様子が観察された。
(2) Observation of nickel plating layer An electron microscope image of a cross section obtained by cutting the joined body A in the thickness direction is shown in FIG. 1, and a partially enlarged image of FIG. 1 is shown in FIG.
The relatively bright parts in the figure correspond to the nickel plating layer.
As shown in FIGS. 1 and 2, the nickel plating layer has a porous structure on the surface opposite to the aluminum plate, and the porous structure is formed on the first pore and the surface of the first pore. It was observed that the pores had a second pore.
 図1及び図2に示す画像から測定した第1の細孔の10μm当たりの平均個数は6個であり、第1の細孔の平均孔径は0.97μmであり、第1の細孔の平均深さは1.5μmであった。 The average number of first pores per 10 μm measured from the images shown in FIGS. 1 and 2 is 6, the average pore diameter of the first pores is 0.97 μm, and the average number of first pores per 10 μm is 6. The depth was 1.5 μm.
(3)表面粗さ
 接合体Aの作製においてPPS層を形成する前に、多孔質構造を有するニッケルメッキ層の突出谷部深さ(Rvk)を、デジタルマイクロスコープ(DSX510、オリンパス株式会社製)を用いて、JIS B 0671-2:2002(ISO 13565-2:1996)に準拠して測定した。結果を表1に示す。
 接合体Aの作製においてPPS層を形成する前に、多孔質構造を有するニッケルメッキ層の最大高さ(Rz)及び算術平均粗さ(Ra)を、測定装置デジタルマイクロスコープ(DSX510、オリンパス株式会社製)を用いて、JIS B 0601-2001(ISO 4287-1997)に準拠して測定した。結果を表1に示す。
(3) Surface roughness Before forming the PPS layer in the production of bonded body A, the protruding valley depth (Rvk) of the nickel plating layer having a porous structure was measured using a digital microscope (DSX510, manufactured by Olympus Corporation). It was measured using JIS B 0671-2:2002 (ISO 13565-2:1996). The results are shown in Table 1.
Before forming the PPS layer in the production of bonded body A, the maximum height (Rz) and arithmetic mean roughness (Ra) of the nickel plating layer having a porous structure were measured using a measuring device, a digital microscope (DSX510, Olympus Corporation). The measurement was performed using a commercially available product manufactured by JIS B 0601-2001 (ISO 4287-1997). The results are shown in Table 1.
(4)粗さ指数
 多孔質構造を有するニッケルメッキ層を形成した後のアルミニウム板(PPS層を形成する前)に対して真空加熱脱気(100℃)による前処理を実施し、比表面積測定装置(BELSORP-max、マイクロトラック・ベル株式会社製)を使用して、液体窒素温度下(77K)におけるクリプトンガス吸着法にて吸着等温線を測定した。得られた結果から、試験片のBET比表面積を求めた。得られたBET比表面積(m/g)に質量(g)を乗じた値を真表面積(m)とし、真表面積をアルミニウム板の幾何学的表面積(m)で除して粗さ指数を求めた。結果を表1に示す。
(4) Roughness index After forming a nickel plating layer with a porous structure, an aluminum plate (before forming a PPS layer) was pretreated by vacuum heating deaeration (100°C), and the specific surface area was measured. The adsorption isotherm was measured by krypton gas adsorption method under liquid nitrogen temperature (77K) using a device (BELSORP-max, manufactured by Microtrac Bell Co., Ltd.). From the obtained results, the BET specific surface area of the test piece was determined. The value obtained by multiplying the obtained BET specific surface area (m 2 /g) by the mass (g) is taken as the true surface area (m 2 ), and the roughness is calculated by dividing the true surface area by the geometric surface area (m 2 ) of the aluminum plate. The index was calculated. The results are shown in Table 1.
(5)接合強度
 接合体Aのニッケルメッキ層とPPS層とのせん断接合強度を、ISO19095に準拠した方法にて測定した。
 具体的には、引張試験機(モデル1323、アイコーエンジニヤリング社製)に専用の治具を取り付け、室温(23℃)にて、チャック間距離60mm、引張速度10mm/minの条件にて、破断荷重(N)の測定を行った。
 測定された破断荷重(N)をニッケルメッキ層とPPS層との接合部分の面積(50mm)で除することにより、せん断接合強度(MPa)を得た。結果を表1に示す。
(5) Bonding Strength The shear bonding strength between the nickel plating layer and the PPS layer of the bonded body A was measured by a method based on ISO19095.
Specifically, a special jig was attached to a tensile testing machine (Model 1323, manufactured by ICo Engineering), and the fracture was measured at room temperature (23°C), with a distance between chucks of 60 mm, and a tensile speed of 10 mm/min. The load (N) was measured.
The shear bonding strength (MPa) was obtained by dividing the measured breaking load (N) by the area (50 mm 2 ) of the bonded portion between the nickel plating layer and the PPS layer. The results are shown in Table 1.
(6)気密性
 ニッケルメッキ層のエッチング処理を行った後のアルミニウム板を、日本製鋼所製の射出成形機(J55-AD)に装着されたHeリーク金属インサート金型内に設置した。次いで、金型内にポリフェニレンスルフィド(PPS、東ソー株式会社、サスティールSGX120)を射出成形して、ニッケルメッキ層の上にPPS層が形成された接合体Bを作製した。
 次いで、試験片BのHeリーク性を、ISO19095に準拠した方法で評価した。具体的には、上記で得られた試験片を密閉できる専用治具にセットし、密閉した空間にHeガスを0.1MPaの圧力で印加し、試験片を通過したHeガス流量をHeガス検出器(キャノンアネルバ製、HELEN M-222LD)にてスニファー法により測定した。
 圧力の印加開始から5分後の検出されたHeガス流量が10-6[Pa・m/s]以下であれば「〇」、10-5[Pa・m/s]以上である場合には「×」として気密性を評価した。結果を表1に示す。
(6) Airtightness The aluminum plate after etching the nickel plating layer was placed in a He leak metal insert mold attached to an injection molding machine (J55-AD) manufactured by Japan Steel Works. Next, polyphenylene sulfide (PPS, Tosoh Corporation, Susteel SGX120) was injection molded into the mold to produce a joined body B in which a PPS layer was formed on the nickel plating layer.
Next, the He leakage property of test piece B was evaluated by a method based on ISO19095. Specifically, the test piece obtained above was set in a special jig that can be sealed, He gas was applied to the sealed space at a pressure of 0.1 MPa, and the He gas flow rate passing through the test piece was detected as He gas detection. Measurement was performed using a sniffer method (manufactured by Canon Anelva, HELEN M-222LD).
If the He gas flow rate detected 5 minutes after the start of pressure application is 10 -6 [Pa・m 3 /s] or less, mark "○", if it is 10 -5 [Pa·m 3 /s] or more The airtightness was evaluated as "x". The results are shown in Table 1.
<実施例2>
 ニッケルメッキ層のエッチング処理に用いる水溶液を、硝酸0.1質量%及びリン酸0.1質量%を含有する水溶液に変更したこと以外は実施例1と同様にして評価を実施した。結果を表1に示す。
 実施例2で得られた接合体Aの断面を観察したところ、ニッケルメッキ層がアルミニウム板と逆側の表面に多孔質構造を有し、多孔質構造は第1の細孔と、第1の細孔の表面に形成された第2の細孔とを有していた。
<Example 2>
Evaluation was performed in the same manner as in Example 1, except that the aqueous solution used for etching the nickel plating layer was changed to an aqueous solution containing 0.1% by mass of nitric acid and 0.1% by mass of phosphoric acid. The results are shown in Table 1.
When observing the cross section of the bonded body A obtained in Example 2, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, and the porous structure had first pores and first pores. and second pores formed on the surface of the pores.
<実施例3>
 ニッケルメッキ層のエッチング処理に用いる水溶液を、硝酸1質量%及びリン酸20質量%を含有する水溶液に変更したこと以外は実施例1と同様にして評価を実施した。結果を表1に示す。
 実施例3で得られた接合体Aの断面を観察したところ、ニッケルメッキ層がアルミニウム板と逆側の表面に多孔質構造を有し、多孔質構造は第1の細孔と、第1の細孔の表面に形成された第2の細孔とを有していた。
<Example 3>
Evaluation was performed in the same manner as in Example 1, except that the aqueous solution used for etching the nickel plating layer was changed to an aqueous solution containing 1% by mass of nitric acid and 20% by mass of phosphoric acid. The results are shown in Table 1.
When observing the cross section of the bonded body A obtained in Example 3, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, and the porous structure had first pores and first pores. and second pores formed on the surface of the pores.
<実施例4>
 接合体の作製に用いる樹脂をPPSからポリプロピレン(PP、株式会社プライムポリマー、プライムポリプロV7100)に変更したこと以外は実施例1と同様にして評価を実施した。結果を表1に示す。
 実施例4で得られた接合体Aの断面を観察したところ、ニッケルメッキ層がアルミニウム板と逆側の表面に多孔質構造を有し、多孔質構造は第1の細孔と、第1の細孔の表面に形成された第2の細孔とを有していた。
<Example 4>
Evaluation was performed in the same manner as in Example 1, except that the resin used for producing the joined body was changed from PPS to polypropylene (PP, Prime Polypro V7100, Prime Polymer Co., Ltd.). The results are shown in Table 1.
When the cross section of the bonded body A obtained in Example 4 was observed, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, and the porous structure had first pores and first pores. and second pores formed on the surface of the pores.
<実施例5>
 接合体の作製に用いる樹脂をPPSからポリフタルアミド(PPA、三井化学株式会社、アーレンA350)に変更したこと以外は実施例1と同様にして評価を実施した。結果を表1に示す。
 実施例5で得られた接合体Aの断面を観察したところ、ニッケルメッキ層がアルミニウム板と逆側の表面に多孔質構造を有し、多孔質構造は第1の細孔と、第1の細孔の表面に形成された第2の細孔とを有していた。
<Example 5>
Evaluation was carried out in the same manner as in Example 1, except that the resin used for producing the joined body was changed from PPS to polyphthalamide (PPA, Mitsui Chemicals, Inc., Arlen A350). The results are shown in Table 1.
When the cross section of the bonded body A obtained in Example 5 was observed, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, and the porous structure had first pores and first pores. and second pores formed on the surface of the pores.
<比較例1>
 ニッケルメッキ層のエッチング処理を行わなかったこと以外は実施例1と同様にして評価を実施した。結果を表1に示す。
 比較例1で作製した接合体Aを厚み方向に切断して得られた断面の電子顕微鏡画像を図3に示し、図3の部分拡大画像を図4に示す。
 図中の相対的に明度が高い部分がニッケルメッキ層に該当する。
 図3及び図4に示すように、ニッケルメッキ層はアルミニウム板と逆側の表面に多孔質構造を有していたが、第1の細孔の表面に第2の細孔が形成されていなかった。
<Comparative example 1>
Evaluation was performed in the same manner as in Example 1 except that the nickel plating layer was not etched. The results are shown in Table 1.
FIG. 3 shows an electron microscope image of a cross section obtained by cutting the joined body A produced in Comparative Example 1 in the thickness direction, and FIG. 4 shows a partially enlarged image of FIG. 3.
The relatively bright parts in the figure correspond to the nickel plating layer.
As shown in Figures 3 and 4, the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, but the second pores were not formed on the surface of the first pores. Ta.
<比較例2>
 接合体の作製に用いる樹脂をPPSからポリプロピレン(PP、株式会社プライムポリマー、プライムポリプロV7100)に変更したこと以外は比較例1と同様にして評価を実施した。結果を表1に示す。
 比較例2で得られた接合体Aの断面を観察したところ、ニッケルメッキ層はアルミニウム板と逆側の表面に多孔質構造を有していたが、第1の細孔の表面に第2の細孔が形成されていなかった。
<Comparative example 2>
Evaluation was carried out in the same manner as in Comparative Example 1, except that the resin used for producing the joined body was changed from PPS to polypropylene (PP, Prime Polypro V7100, Prime Polymer Co., Ltd.). The results are shown in Table 1.
When the cross section of the bonded body A obtained in Comparative Example 2 was observed, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, but the nickel plating layer had a porous structure on the surface of the first pores. No pores were formed.
<比較例3>
 接合体の作製に用いる樹脂をPPSからポリフタルアミド(PPA、三井化学株式会社、アーレンA350)に変更したこと以外は比較例1と同様にして評価を実施した。結果を表1に示す。
 比較例3で得られた接合体Aの断面を観察したところ、ニッケルメッキ層はアルミニウム板と逆側の表面に多孔質構造を有していたが、第1の細孔の表面に第2の細孔が形成されていなかった。
 
<Comparative example 3>
Evaluation was performed in the same manner as in Comparative Example 1, except that the resin used for producing the joined body was changed from PPS to polyphthalamide (PPA, Mitsui Chemicals, Inc., Arlen A350). The results are shown in Table 1.
When the cross section of the bonded body A obtained in Comparative Example 3 was observed, it was found that the nickel plating layer had a porous structure on the surface opposite to the aluminum plate, but the nickel plating layer had a porous structure on the surface of the first pore. No pores were formed.

 

 
(7)抗細菌性能
 実施例1において多孔質構造を有するニッケルメッキ層を形成し、かつニッケルメッキ層に対してエッチング処理を行ったアルミニウム板(試験片A)と、比較のためのニッケルメッキ層を形成していないアルミニウム板(試験片B、表面の粗さ指数は1.0)に対し、エタノール滅菌を施した。その後、ISO 21702:2019に準拠して、下記の試験を行った。
 具体的には、試験片に細菌を接種してから30分後及び24時間後の生菌数割合を測定した。細菌としては黄色ブドウ球菌を使用し、細菌の濃度は2.5×10個/mL~10個/mLとし、培養液は1/25NBとした。結果を表2に示す。
(7) Antibacterial performance An aluminum plate (test piece A) on which a nickel plating layer with a porous structure was formed in Example 1 and the nickel plating layer was etched, and a nickel plating layer for comparison. An aluminum plate (test piece B, surface roughness index: 1.0) that had no surface roughness was sterilized with ethanol. Thereafter, the following tests were conducted in accordance with ISO 21702:2019.
Specifically, the percentage of viable bacteria was measured 30 minutes and 24 hours after inoculating the test piece with bacteria. Staphylococcus aureus was used as the bacteria, the concentration of bacteria was 2.5×10 5 cells/mL to 10 6 cells/mL, and the culture solution was 1/25 NB. The results are shown in Table 2.
 30分後の生菌数割合(%)とは、試験片に細菌を接種した時点の生菌数に対する、試験片に細菌を接種した時点から30分経過後の生菌数の割合を示す。
 24時間後の生菌数割合(%)とは、試験片に細菌を接種した時点の生菌数に対する、試験片に細菌を接種した時点から24時間経過後の生菌数の割合を示す。
The percentage of viable bacteria after 30 minutes (%) indicates the ratio of the number of viable bacteria 30 minutes after inoculating the test piece with the bacteria to the number of viable bacteria at the time when the test piece was inoculated with the bacteria.
The percentage of viable bacteria after 24 hours (%) indicates the ratio of the number of viable bacteria 24 hours after inoculating the test piece with the bacteria to the number of viable bacteria at the time when the test piece was inoculated with the bacteria.
(8)抗ウイルス性能
 抗細菌性能の試験で使用した試験片A及び試験片Bを用いて、ISO 21702:2019に準拠して、下記の試験を行った。
 具体的には、試験片にウイルスを接種してから30分後及び24時間後のウイルス不活性化率及び感染価を測定した。ウイルスとしては、Influenza A H3N2(サイズ:80nm~120nm、エンベロープ有り)、及びネコカリシウイルス(サイズ:27nm~32nm、エンベロープ無し)を用いた。
(8) Antiviral performance Using test piece A and test piece B used in the antibacterial performance test, the following test was conducted in accordance with ISO 21702:2019.
Specifically, the virus inactivation rate and infectious titer were measured 30 minutes and 24 hours after inoculating the test piece with the virus. As viruses, Influenza A H3N2 (size: 80 nm to 120 nm, with envelope) and Feline Calicivirus (size: 27 nm to 32 nm, without envelope) were used.
 30分後のウイルス不活性化率は、試験片にウイルスを接種した時点の感染価に対する、試験片にウイルスを接種した時点から30分経過後の感染価の割合を示す。
 24時間後のウイルス不活性化率は、試験片にウイルスを接種した時点の感染価に対する、試験片にウイルスを接種した時点から24時間経過後の感染価の割合を示す。
 感染価は、ウイルス不活性化の程度を表す指標であり、TCID50(50% tissue culture infectious dose)によって測定した値である。
The virus inactivation rate after 30 minutes indicates the ratio of the infectious titer 30 minutes after inoculating the test piece with the virus to the infectious titer at the time when the test piece was inoculated with the virus.
The virus inactivation rate after 24 hours indicates the ratio of the infectious titer 24 hours after inoculating the test piece with the virus to the infectious titer at the time when the test piece was inoculated with the virus.
The infectious titer is an index representing the degree of virus inactivation, and is a value measured by TCID50 (50% tissue culture infectious dose).
 表2に示すように、アルミニウム板の表面に多孔質構造を有するニッケルメッキ層を形成し、かつニッケルメッキ層に対してエッチング処理を行って得られた試験片Aは、アルミニウム板の表面に多孔質構造を有するニッケルメッキ層を形成していない試験片Bに比べて優れた抗細菌性能及び抗ウイルス性能を示した。 As shown in Table 2, test piece A was obtained by forming a nickel plating layer with a porous structure on the surface of an aluminum plate and etching the nickel plating layer. It showed superior antibacterial and antiviral performance compared to test piece B, which did not have a nickel plating layer with a textured structure.
 日本国特許出願第2022-045974号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of Japanese Patent Application No. 2022-045974 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (9)

  1.  基材と、前記基材の上に配置されるメッキ層と、を有し、
     前記メッキ層は前記基材と逆側の表面に多孔質構造を有し、下記(1)~(3)のうち少なくとも1つを満たす、構造体。
    (1)多孔質構造が第1の細孔と、第1の細孔の表面に形成された第2の細孔と、を有する。
    (2)メッキ層の多孔質構造を有する表面の突出谷部深さ(Rvk)が0.3μm以上である。
    (3)メッキ層の多孔質構造を有する表面のクリプトン吸着法により測定される真表面積(m)を幾何学的表面積(m)で除して得られる粗さ指数が12以上である。
    comprising a base material and a plating layer disposed on the base material,
    The plated layer has a porous structure on the surface opposite to the base material, and the structure satisfies at least one of the following (1) to (3).
    (1) The porous structure has first pores and second pores formed on the surface of the first pores.
    (2) The protruding valley depth (Rvk) of the surface having a porous structure of the plating layer is 0.3 μm or more.
    (3) The roughness index obtained by dividing the true surface area (m 2 ) measured by the krypton adsorption method by the geometric surface area (m 2 ) of the surface having a porous structure of the plating layer is 12 or more.
  2.  上記(1)を満たす、請求項1に記載の構造体。 The structure according to claim 1, which satisfies the above (1).
  3.  上記(2)を満たす、請求項1に記載の構造体。 The structure according to claim 1, which satisfies the above (2).
  4.  上記(3)を満たす、請求項1に記載の構造体。 The structure according to claim 1, which satisfies the above (3).
  5.  前記メッキ層は2層以上のメッキ層を含む、請求項1~請求項4のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 4, wherein the plating layer includes two or more plating layers.
  6.  抗菌部材として用いるための、請求項1~請求項4のいずれか1項に記載の構造体。 The structure according to any one of claims 1 to 4, for use as an antibacterial member.
  7.  請求項1~請求項4のいずれか1項に記載の構造体と、前記構造体の前記メッキ層が形成された面に接合している樹脂部材と、を有する、接合体。 A joined body comprising the structure according to any one of claims 1 to 4 and a resin member joined to the surface of the structure on which the plating layer is formed.
  8.  基材の上に多孔質構造を有するメッキ層を形成する工程と、
     前記メッキ層の表面をエッチング液と接触させる工程と、を含む、構造体の製造方法。
    forming a plating layer having a porous structure on the base material;
    A method for manufacturing a structure, the method comprising: bringing the surface of the plating layer into contact with an etching solution.
  9.  前記エッチング液は酸化剤と無機酸とを含む、請求項8に記載の構造体の製造方法。 The method for manufacturing a structure according to claim 8, wherein the etching solution contains an oxidizing agent and an inorganic acid.
PCT/JP2023/002526 2022-03-22 2023-01-26 Structural body, structural body manufacturing method, and bonded body WO2023181627A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-045974 2022-03-22
JP2022045974 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023181627A1 true WO2023181627A1 (en) 2023-09-28

Family

ID=88101042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002526 WO2023181627A1 (en) 2022-03-22 2023-01-26 Structural body, structural body manufacturing method, and bonded body

Country Status (2)

Country Link
TW (1) TW202341827A (en)
WO (1) WO2023181627A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312893A (en) * 1988-06-09 1989-12-18 Fujitsu Ltd Manufacture of printed board
JP2012219333A (en) * 2011-04-08 2012-11-12 Mitsui Mining & Smelting Co Ltd Composite metal foil and production method therefor
JP2016065267A (en) * 2014-09-22 2016-04-28 株式会社Shカッパープロダクツ Surface-treated copper foil, method for producing the same, and copper-clad laminate using the same
WO2019208520A1 (en) * 2018-04-27 2019-10-31 Jx金属株式会社 Surface-treated copper foil, copper clad laminate, and printed wiring board
WO2021132191A1 (en) * 2019-12-26 2021-07-01 ナミックス株式会社 Composite copper member treated with silane coupling agent
WO2021193863A1 (en) * 2020-03-27 2021-09-30 古河電気工業株式会社 Surface-treated copper foil for printed wiring boards, and copper-cladded laminate board for printed wiring boards and printed wiring board each using same
JP2022085378A (en) * 2020-11-27 2022-06-08 古河電気工業株式会社 Roughened copper foil, copper-clad laminate and print circuit board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312893A (en) * 1988-06-09 1989-12-18 Fujitsu Ltd Manufacture of printed board
JP2012219333A (en) * 2011-04-08 2012-11-12 Mitsui Mining & Smelting Co Ltd Composite metal foil and production method therefor
JP2016065267A (en) * 2014-09-22 2016-04-28 株式会社Shカッパープロダクツ Surface-treated copper foil, method for producing the same, and copper-clad laminate using the same
WO2019208520A1 (en) * 2018-04-27 2019-10-31 Jx金属株式会社 Surface-treated copper foil, copper clad laminate, and printed wiring board
WO2021132191A1 (en) * 2019-12-26 2021-07-01 ナミックス株式会社 Composite copper member treated with silane coupling agent
WO2021193863A1 (en) * 2020-03-27 2021-09-30 古河電気工業株式会社 Surface-treated copper foil for printed wiring boards, and copper-cladded laminate board for printed wiring boards and printed wiring board each using same
JP2022085378A (en) * 2020-11-27 2022-06-08 古河電気工業株式会社 Roughened copper foil, copper-clad laminate and print circuit board

Also Published As

Publication number Publication date
TW202341827A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
Dickson et al. Nanopatterned polymer surfaces with bactericidal properties
EP2596150B1 (en) Material and process for electrochemical deposition of nanolaminated brass alloys
CN101687390B (en) Process for producing metal layer laminate with metal surface roughened layer
JP2013544952A5 (en)
JP2016149438A5 (en)
Pandiyaraj et al. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties
WO2013118870A1 (en) Surface treated aluminum material, method for producing same, and resin-coated surface treated aluminum material
Pandiyaraj et al. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)
JP4494155B2 (en) Gold-plated structure and fuel cell separator comprising this gold-plated structure
CN104342746B (en) Electrolytic copper foil, cleaning liquid composition and method for cleaning copper foil
US10535863B2 (en) Graphite film, laminate film, method for producing same, and electrode material
WO2016038945A1 (en) Insert molded article, device using said insert molded article, and method for producing insert molded article
JP2011174146A (en) Electrolytic copper foil and method for producing the same
WO2023181627A1 (en) Structural body, structural body manufacturing method, and bonded body
Zia et al. Effect of physical and chemical plasma etching on surface wettability of carbon fiber–reinforced polymer composites for bone plate applications
JP7045500B2 (en) Manufacturing method of laminate and metal leaf with resin layer
WO2015198495A1 (en) Sn-PLATED STAINLESS STEEL SHEET
TW200934657A (en) Adhesive-free flexible laminate
JP2010247450A (en) Antibacterial film
JP5209550B2 (en) Silver plating material manufacturing method
TWI819046B (en) electrostatic adsorbent
JP6588095B2 (en) Microbial resistant material and related apparatus, systems and methods
Song et al. Surface modification by atmospheric pressure DBDs plasma: Application to electroless Ni plating on ABS plates
TW200424326A (en) Stabilized aluminum laminate having aluminum and stabilizing layer laminated thereon
JP2014118627A (en) Thin film formed on intermediate layer comprising nonmagnetic material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024509798

Country of ref document: JP

Kind code of ref document: A