WO2021193863A1 - Surface-treated copper foil for printed wiring boards, and copper-cladded laminate board for printed wiring boards and printed wiring board each using same - Google Patents

Surface-treated copper foil for printed wiring boards, and copper-cladded laminate board for printed wiring boards and printed wiring board each using same Download PDF

Info

Publication number
WO2021193863A1
WO2021193863A1 PCT/JP2021/012702 JP2021012702W WO2021193863A1 WO 2021193863 A1 WO2021193863 A1 WO 2021193863A1 JP 2021012702 W JP2021012702 W JP 2021012702W WO 2021193863 A1 WO2021193863 A1 WO 2021193863A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
printed wiring
treated
less
mirror gloss
Prior art date
Application number
PCT/JP2021/012702
Other languages
French (fr)
Japanese (ja)
Inventor
貴広 齋藤
達也 中津川
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2021547162A priority Critical patent/JP7019876B1/en
Priority to KR1020227033136A priority patent/KR20220159380A/en
Priority to CN202180023821.5A priority patent/CN115279951A/en
Publication of WO2021193863A1 publication Critical patent/WO2021193863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Definitions

  • the present invention relates to a surface-treated copper foil for a printed wiring board used in a high frequency band, particularly in a high frequency band of 1 to 10 GHz.
  • the present invention also relates to a copper-clad laminate for a printed wiring board and a printed wiring board using the surface-treated copper foil for the printed wiring board.
  • the skin depth at which the current flows is about 0.7 to 2.0 ⁇ m, and the current flows only on the very surface layer of the conductor. Therefore, when the surface unevenness of the conductor is large, the transmission path of the conductor (that is, the transmission path of the skin portion) becomes long, and the transmission loss increases. Therefore, in a copper-clad laminate used for high-frequency compatible equipment, it is desired to reduce the surface unevenness of the copper foil in order to suppress an increase in transmission loss.
  • a copper foil called RTF foil in which a roughening treatment is formed on the S (shiny) surface side of an electrolytic copper foil having smaller irregularities is often used for the outer layer.
  • a copper foil called a double-sided glossy foil that is smooth on both the M and S surfaces, but it has excessive transmission characteristics as an outer layer material, is expensive, and is required as an outer layer material. It is rarely used because of its poor adhesion.
  • the copper foil normally used for printed wiring boards is required to have high adhesiveness to a resin base material in addition to transmission characteristics.
  • a roughening treatment layer is formed on the surface by electroplating, etching, etc., and a physical adhesive effect with the resin base material ( Anchor effect) can be obtained.
  • Anchor effect a physical adhesive effect with the resin base material
  • the particle size of the roughened particles formed on the copper foil surface is increased in order to effectively enhance the adhesiveness between the copper foil surface and the resin base material, the transmission loss increases as described above.
  • the suppression of transmission loss and the improvement of the adhesion (adhesiveness) between the copper foil and the resin base material are in a trade-off relationship with each other. Therefore, conventionally, in the copper foil used for the copper-clad laminate, both suppression of transmission loss and adhesion to the resin base material have been studied.
  • a printed wiring board for a mobile communication device such as an in-vehicle printed wiring board is required to have a high degree of reliability that can withstand a harsh environment such as a high temperature environment.
  • a harsh environment such as a high temperature environment.
  • adhesion that can withstand a harsh test such as repeating a reflow test at a maximum temperature of 260 ° C. 20 times. Therefore, the conventional method as described above cannot satisfy the adhesion (heat-resistant adhesion) in a harsh high-temperature environment that has been required in recent years.
  • the copper foil used for the printed wiring board in order to enhance the adhesive force with the resin base material, in addition to the formation of the roughening treatment layer, the copper foil surface is treated with a silane coupling agent to form a resin.
  • a technique is used to obtain chemical adhesion to the substrate.
  • the resin base material in order to enhance the chemical adhesiveness between the silane coupling agent and the resin base material, the resin base material needs to have a substituent having a large polarity to some extent.
  • a low-dielectric base material in which the amount of highly polar substituents is reduced is used as the resin base material in order to suppress dielectric loss, even if the copper foil surface is treated with a silane coupling agent, it is chemically treated. It is difficult to obtain adhesiveness, and it is difficult to ensure sufficient adhesiveness between the copper foil and the resin base material.
  • Patent Document 1 Japanese Patent No. 6294862 (Patent Document 1)). reference).
  • Patent Document 1 Japanese Patent No. 6294862
  • fine irregularities are formed on the surface to increase the specific surface area of the surface, thereby suppressing transmission loss and between the copper foil and the resin base material. It has both normal adhesion and heat resistance.
  • the roughened particles are excessively fine, and particularly when used for the outer layer of a high-frequency compatible substrate, between the copper foil and the resin base material.
  • the normal adhesion and heat-resistant adhesion of the above were not yet sufficient.
  • the coarsened particles are simply coarsened. If it was converted, there was a risk of powder falling off.
  • the present invention has excellent transmission characteristics in a high frequency band (hereinafter, may be simply referred to as "high frequency characteristics"), excellent normal adhesion and heat adhesion to a resin substrate, and powder removal resistance. It is an object of the present invention to provide a surface-treated copper foil for a printed wiring board, and a copper-clad laminate for a printed wiring board and a printed wiring board using the same.
  • the present inventors have found that there are complicated roughened shapes that cannot be defined not only by a laser microscope and a non-contact interference microscope but also by an SEM.
  • the shape can be evaluated by the glossiness measured from a predetermined angle and the glossiness ratio between the glossiness measured from two predetermined angles, and the glossiness and the glossiness ratio are predetermined numerical values.
  • the surface-treated copper foil for printed wiring boards has excellent transmission characteristics in the high frequency band, excellent normal adhesion and heat-resistant adhesion to the resin base material, and excellent powder removal resistance.
  • the present invention was completed by finding that the present invention can be obtained.
  • the gist structure of the present invention is as follows.
  • the 20-degree mirror gloss Gs (20 °) of TD measured in accordance with JIS Z 8741: 1997 in the above is less than 0.8%, and is measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film.
  • the 60 degree mirror gloss Gs (60 °) of the TD was 0.4% or more, and the 75 degree mirror gloss Gs (75 °) of the TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film.
  • Surface-treated copper for printed wiring boards, where the mirror gloss ratio (Gs (45 °) / Gs (75 °)) of 45 ° mirror gloss Gs (45 °) to (°) is 0.1 or more and 1.5 or less.
  • Foil. [2] The above-mentioned [1], wherein the 85 degree mirror gloss Gs (85 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film is 4% or more and less than 50%.
  • a surface-treated copper foil for a printed wiring board which has excellent transmission characteristics in a high frequency band, excellent normal adhesion and heat-resistant adhesion to a resin substrate, and excellent powder removal resistance.
  • a copper-clad laminate for a printed wiring board and a printed wiring board using the same are excellent.
  • FIG. 1 is a diagram for explaining the state of roughened particles of the surface-treated copper foil of the present invention.
  • FIG. 2 is a diagram for explaining the state of the roughened particles of the conventional surface-treated copper foil.
  • FIG. 3 is a schematic view of an electrolytic copper foil manufacturing apparatus.
  • FIG. 4 is an example of an SEM image obtained by observing the state of the surface of the surface-treated film of the surface-treated copper foil of the present invention from a processed cross section.
  • the surface-treated copper foil for a printed wiring board of the present invention (hereinafter, may be simply referred to as "surface-treated copper foil") is roughened by forming roughened particles on at least one surface of a copper foil substrate.
  • the TD Transverse Direction
  • MD Machine Direction
  • RD Roll Direction
  • the surface-treated copper foil of the present invention has a surface-treated film containing a roughening-treated layer on at least one surface of the copper foil substrate.
  • the roughened treatment layer is formed by forming roughened particles.
  • the surface of the surface-treated film is at least one surface of the outermost surface (front and back surfaces) of the surface-treated copper foil, and the formation state and particle shape of the roughened particles formed on at least one surface of the copper foil substrate. It is a roughened surface having a complicated uneven surface shape that reflects the above.
  • the surface of such a surface-treated film (hereinafter referred to as "roughened surface”) may be, for example, the surface of a roughened-treated layer formed on a copper foil substrate, or the roughened-treated layer.
  • FIG. 1 shows an example of a schematic cross-sectional view of the roughened surface of the surface-treated copper foil of the present invention.
  • FIG. 2 shows an example of a schematic cross-sectional view of the roughened surface of the conventional surface-treated copper foil.
  • FIG. 1 on the roughened surface of the surface-treated copper foil of the present invention, roughened particles which are dendritic precipitates and have a surface having complicated irregularities are formed.
  • the surface of the roughened particles of the conventional surface-treated copper foil does not have complicated irregularities like the surface of the roughened particles of the surface-treated copper foil of the present invention.
  • the shape evaluation of the roughened particles on a special roughened surface such as the surface-treated copper foil of the present invention is performed from the direction perpendicular to the roughened surface by a conventional method for observing the roughened surface, for example, a laser microscope or a white interference microscope. It is an observation, and it is not possible to accurately represent the characteristics of the roughened particles having a surface having complicated irregularities. Further, even in direct two-dimensional shape observation such as cross-section observation by SEM, it is difficult to accurately define the three-dimensional characteristics of the roughened particles having a surface having complicated irregularities. Therefore, in the conventional method, there is a limit in the strict evaluation of the roughened surface in terms of technology. Therefore, in the present invention, as one method of evaluating the roughened surface, the characteristics of the roughened surface are defined and evaluated by the mirror glossiness measured in accordance with JIS Z 8471: 1997. bottom. Specifically, the following method is used.
  • the mirror glossiness is measured and evaluated with a single light receiving angle.
  • the roughened surface of the surface-treated copper foil of the present invention has a complicated shape due to the formation of roughened particles, it is difficult to sufficiently evaluate the characteristics of the surface shape with a single light receiving angle. there were. Therefore, on the roughened surface of the surface-treated copper foil of the present invention, it is possible to evaluate the surface shape of the roughened surface by measuring the mirror glossiness using each of the following light receiving angles.
  • the measurement of the mirror glossiness on the roughened surface is not the measurement on the smooth surface, so the measured values at each of the following light receiving angles are not in a simple proportional relationship.
  • the 20-degree mirror glossiness Gs (20 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface-treated film is less than 0.8%.
  • Gs (20 °) is 0.8% or more, it is considered that the roughened particles become too fine, and the heat-resistant adhesion between the surface-treated copper foil and the resin base material tends to decrease.
  • Gs (20 °) is preferably less than 0.7%, more preferably 0.6% or less.
  • Gs (20 °) is preferably 0.1% or more.
  • Gs (20 °) is more preferably 0.2% or more, still more preferably 0.3% or more.
  • the 60-degree mirror glossiness Gs (60 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface-treated film is 0.4% or more. If Gs (60 °) is less than 0.4%, it is considered that the coarsened particles are too large for the application of the present invention, and the high frequency characteristics are deteriorated. From such a viewpoint, Gs (60 °) is preferably 0.5% or more. Further, Gs (60 °) is preferably 10.0% or less. When Gs (60 °) is 10.0% or less, the heat-resistant adhesion is particularly improved. From such a viewpoint, Gs (60 °) is more preferably 6.0% or less, further preferably 1.8% or less, and even more preferably 0.9% or less.
  • Mirror gloss ratio of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD measured according to JIS Z 8741: 1997 on the surface of the surface treatment film (Gs (45 °) ) / Gs (75 °)) is 0.1 or more and 1.5 or less.
  • the magnitude of the mirror gloss ratio (Gs (45 °) / Gs (75 °)) represents the tendency of dendritic precipitation to extend diagonally toward a direction having a larger angle with respect to the direction perpendicular to the copper foil substrate. It is thought that it is.
  • the dendritic precipitation extending in the direction perpendicular to the surface of the surface-treated film gives a physical adhesion effect (anchor effect) when the resin base material and the surface-treated copper foil are adhered to each other. Be done.
  • the fact that the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is larger than 1.5 means that dendritic precipitation from the roots of the coarsened particles is excessively formed.
  • the surface-treated copper foil tends to have powder falling due to insufficient strength of the root portion of the roughened particles, and the powder falling resistance tends to decrease.
  • the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is preferably 1.3 or less, more preferably 1.2 or less, still more preferably 1.0 or less. be.
  • the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is less than 0.1.
  • the tree branches grow in a large angular direction with respect to the direction perpendicular to the copper foil substrate, which has a strong influence on the anchor effect.
  • the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is preferably 0.5 or more, more preferably 0.7 or more, still more preferably 0.8 or more. be. More specifically, the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is preferable from the viewpoint of improving the powder removal resistance and the heat-resistant adhesion of the surface-treated copper foil to the resin base material.
  • Gs (45 °) and Gs (75 °) may satisfy the above range as the mirror gloss ratio (Gs (45 °) / Gs (75 °)), but the individual values include, for example, the following. Can be a range.
  • Gs (45 °) is preferably 5.0 or less, more preferably 0.5 or more and 3.0 or less.
  • Gs (75 °) is preferably 20.0 or less, more preferably 0.5 or more and 10.0 or less.
  • the 85 degree mirror gloss Gs (85 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film is preferably 4% or more and less than 50%. It is considered that Gs (85 °) extends diagonally toward a direction having a large angle with respect to the direction perpendicular to the copper foil substrate, and reflects a state of dendritic precipitation that affects the anchor effect. When Gs (85 °) is less than 50%, it is considered that dendritic precipitation, which strongly affects the anchor effect, is sufficiently large, and the heat-resistant adhesion of the surface-treated copper foil to the resin base material is improved.
  • Gs (85 °) When Gs (85 °) is 4% or more, it is considered that dendritic precipitation from the roots of the roughened particles does not become excessive, powder falling is less likely to occur in the surface-treated copper foil, and powder removal resistance. Is improved. From this point of view, Gs (85 °) is more preferably 6% or more and less than 40%, further preferably 6% or more and less than 20%, still more preferably 8% or more and 18% or less, and further. It is preferably 9.5% or more and 17% or less.
  • the surface of the surface-treated copper foil of the present invention having the surface-treated film of the copper foil substrate is preferably a glossy surface.
  • the glossy surface is a surface of the electrolytic copper foil on the drum-shaped cathode side, and is an S surface of the electrolytic copper foil.
  • the copper foil substrate is preferably an electrolytic copper foil, and it is preferable that a surface treatment film is formed on the glossy surface of the electrolytic copper foil.
  • FIG. 3 is a schematic view of an electrolytic copper foil manufacturing apparatus.
  • the electrode is composed of a cathode 1 made of drum-shaped titanium or stainless steel, and an insoluble anode 2 such as an electrode coated with a noble metal oxide concentrically opposed to each other or a lead electrode.
  • an insoluble anode 2 such as an electrode coated with a noble metal oxide concentrically opposed to each other or a lead electrode.
  • the drum-shaped cathode 1 is rotating at a predetermined speed, and the precipitated copper plating is continuously peeled off from the surface of the drum-shaped cathode as an electrolytic copper foil 6 and wound up.
  • the drum-shaped cathode surface side of the electrolytic copper foil is called a glossy surface, and is also called an S (shiny) surface 5. This is because the drum-shaped cathode surface has a smooth and glossy surface, and the surface of the electrolytic copper foil deposited and peeled off on the surface is also a smooth and glossy surface.
  • the opposite side of the S side is called the M (mat) side 4.
  • the thickness of the electrolytic copper foil used for the surface-treated copper foil of the present invention is preferably 6 to 210 ⁇ m.
  • the Y value of TD in the XYZ color system (CIE1931 standard color system) of the surface of the surface-treated film in the surface-treated copper foil of the present invention measured in accordance with JIS Z8781 is preferably 10% or more and 45% or less. be.
  • the Y value is 10% or more, it is considered that the coarsened particles are sufficiently small, powder falling is less likely to occur, and the transmission loss in the high frequency band is further improved.
  • the Y value is 45% or less, it is considered that the Y value extends diagonally toward a direction having a large angle with respect to the direction perpendicular to the copper foil substrate, and the dendritic precipitation affecting the anchor effect is considered to be sufficiently large.
  • the Y value is more preferably 12% or more and 40% or less, still more preferably 18% or more and 28% or less, and even more preferably 19% or more and 26% or less.
  • the color mixing ratio (x value) of the X value in the XYZ color system (CIE1931 standard color system) of TD measured in accordance with JIS Z8781 on the surface of the surface-treated film in the surface-treated copper foil of the present invention is preferably. It is 0.38 to 0.50.
  • the color mixture ratio (x value) of the X value is 0.38 or more, the dendritic precipitation that affects the anchor effect is formed by extending diagonally toward a direction having a large angle with respect to the direction perpendicular to the copper foil substrate. It is considered that the amount will be sufficiently large, and the heat-resistant adhesion of the surface-treated copper foil to the resin base material will be further improved.
  • the color mixing ratio (x value) of the X value is 0.50 or less, it is considered that dendritic precipitation from the roots of the coarsened particles is appropriate, powder falling is less likely to occur, and in the high frequency band. The transmission loss is further improved. From such a viewpoint, the color mixing ratio (x value) of the X value is more preferably 0.40 to 0.48, and further preferably 0.41 to 0.47.
  • the color mixing ratio (y value) of the Y value in the XYZ color system (CIE1931 standard color system) of TD measured in accordance with JIS Z8781 on the surface of the surface-treated film in the surface-treated copper foil of the present invention is preferably. It is 0.32 to 0.36.
  • the color mixing ratio (y value) of the Y value is 0.32 or more, it is considered that the dendritic precipitation from the roots of the coarsened particles is appropriate, and powder falling is less likely to occur, and in the high frequency band. The transmission loss is further improved.
  • the color mixture ratio (y value) of the Y value is 0.36 or less, the dendritic precipitation that affects the anchor effect is formed by extending diagonally toward a direction having a large angle with respect to the direction perpendicular to the copper foil substrate. It is considered that the amount will be sufficiently large, and the heat-resistant adhesion of the surface-treated copper foil to the resin base material will be further improved. From this point of view, the color mixing ratio (y value) of the Y value is more preferably 0.33 to 0.35, and even more preferably 0.34 to 0.35.
  • the ten-point average roughness Rzjis value measured in accordance with JIS B 0601 on the surface of the surface-treated film of the surface-treated copper foil of the present invention is preferably 0.8 ⁇ m or more and 4.5 ⁇ m or less.
  • the productivity of the surface-treated copper foil is improved.
  • the ten-point average roughness Rzjis value is 4.5 ⁇ m or less, excessive unevenness on the surface macroscopically compared to the roughened particles is suppressed, so that the powder removal resistance is improved and the high frequency characteristics are also improved.
  • the ten-point average roughness Rzjis value is more preferably 1.0 ⁇ m or more and 4.3 ⁇ m or less, still more preferably 1.5 ⁇ m or more and 4.0 ⁇ m or less, still more preferably 1.8 ⁇ m or more and 3.8 ⁇ m. It is less than or equal to, and more preferably 2.0 ⁇ m or more and 3.5 ⁇ m or less.
  • the surface-treated copper foil of the present invention powder falling is suppressed and user handleability is excellent. Further, by using the surface-treated copper foil for the conductor circuit of the printed wiring board, particularly the outer layer, it is possible to achieve both high adhesion and low transmission loss when a high-frequency signal of 1 to 10 GHz is transmitted. An excellent printed wiring board can be obtained in which the adhesion between the copper foil and the resin base material (resin layer) is maintained even at a high temperature (260 ° C. ⁇ 20 minutes).
  • the copper foil substrate As the copper foil substrate, it is preferable to use an electrolytic copper foil or a rolled copper foil having a smooth and glossy surface without coarse irregularities. Above all, from the viewpoint of productivity and cost, it is preferable to use the S (shiny) surface of the electrolytic copper foil, and it is preferable to perform the roughening treatment described later on the S surface. In order to obtain an S-plane shape suitable for forming roughened particles, it is preferable to polish the drum-shaped cathode surface used for producing electrolytic copper foil with a buff of No. 1500 to No. 2500.
  • a roughening treatment layer is formed by the roughening treatment.
  • the roughening plating treatment (1) and the fixed plating treatment (2) as shown below are performed.
  • the roughening plating treatment (1) is a treatment for forming roughened particles on at least one surface of the copper foil substrate. Specifically, the plating treatment is performed in a copper sulfate bath. In the copper sulfate bath (basic bath for roughened plating solution), molybdenum (Mo), arsenic (As), antimony (Sb), and bismuth (Bi) are used for the purpose of preventing roughened particles from falling off, that is, "powder falling off”. , Serene (Se), Tellurium (Te), Tungsten (W) and other conventionally known additives can be added, and molybdenum (Mo) is particularly preferable.
  • the present inventor has found that the following factors affect the surface properties of the surface-treated copper foil, and by setting these conditions precisely, the high-frequency characteristics which are the effects of the present invention. , It was found that the required characteristics of adhesion (normal adhesion and heat-resistant adhesion) and powder removal resistance can be satisfied at a high level.
  • the copper concentration of the copper sulfate bath in the rough plating treatment (1) is preferably 10 to 30 g / L.
  • the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is set to less than 0.8%, and 60 of TD.
  • the additive added to the copper sulfate bath will be described by taking, for example, molybdenum (Mo) as an example.
  • the molybdenum (Mo) concentration is preferably 50 to 300 mg / L.
  • the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is less than 0.8%, and the TD is 60 degrees.
  • Mirror gloss Gs (60 °) is set to 0.4% or more, and the mirror gloss ratio of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD (Gs (45 °)).
  • / Gs (75 °)) can be 0.1 or more and 1.5 or less.
  • the plating treatment method is preferably a roll-to-roll method, for example, from the viewpoint of mass production and production cost.
  • the processing speed in the roll-to-roll method is related to the surface shape of the roughening treatment layer to be formed, and is preferably 10 to 20 m / min.
  • the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is set to less than 0.8%
  • the 60-degree mirror gloss of TD is set.
  • Gs (60 °) is set to 0.4% or more
  • the mirror gloss ratio of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD (Gs (45 °) / Gs ( 75 °)) can be 0.1 or more and 1.5 or less.
  • the 85 degree mirror gloss Gs (85 °) of TD for example, by setting the processing speed to 10 to 18 m / min, the 85 degree mirror gloss Gs (85 °) of TD is 4% or more. It can be less than 50%, and Gs (85 °) can be 6% or more and less than 40% by further setting the processing speed to 12 to 17 m / min.
  • the conditions of the plating treatment may be appropriately adjusted according to the treatment method, but it is preferable to set the conditions so that the plating solution is less likely to be agitated, especially from the viewpoint of suppressing the diffusion of copper ions. Therefore, in the roll-to-roll method, it is preferable that the processing direction (direction of processing speed) and the direction of flow of the plating solution between the poles (direction of interpole flow velocity) are matched. Further, in a method other than the roll-to-roll method, it is desirable to perform the treatment in a static bath state, and it is preferable not to perform stirring during the plating treatment.
  • the reaction tank for the plating process is provided so that the floating direction of the gas and the transport direction of the copper foil substrate (the processing direction of the plating process) coincide with each other. It is preferable to select.
  • treatment direction interpole flow velocity the processing speed and the interpolar flow velocity of the plating solution flowing along the processing direction.
  • the absolute value of the difference from and is preferably less than 1 m / min.
  • the 20 degree mirror gloss Gs (20 °) of TD on the surface of the surface treatment film of the surface treatment copper foil is 0.8.
  • 60 degree mirror gloss Gs (60 °) of TD is 0.4% or more, and mirror gloss of 45 degree mirror gloss Gs (45 °) with respect to 75 degree mirror gloss Gs (75 °) of TD. It becomes easy to set the degree ratio (Gs (45 °) / Gs (75 °)) to 0.1 or more and 1.5 or less.
  • the plating treatment (1) it is preferable to perform the plating treatment while gradually reducing the current density from a high current density to a low current density.
  • the high current density is preferably 50 to 80 A / dm 2
  • the medium current density is preferably 45 to 65 A / dm 2
  • the low current density is preferably 20 to 50 A / dm 2. .
  • the 60 degree mirror gloss Gs (60 °) of TD is 0.4% or more, and the mirror surface of 45 degree mirror gloss Gs (45 °) with respect to the 75 degree mirror gloss Gs (75 °) of TD.
  • the gloss ratio (Gs (45 °) / Gs (75 °)) can be 0.1 or more and 1.5 or less.
  • the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is less than 0.8%
  • the 60-degree mirror gloss Gs of TD is set. (60 °) is set to 0.4% or more, and the mirror gloss ratio (Gs (45 °) / Gs (75 °)) of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD. °)))
  • the mirror gloss ratio (Gs (45 °) / Gs (75 °)) of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD. °))) can be 0.1 or more and 1.5 or less.
  • the fixed plating treatment (2) is a treatment of covering and plating the copper foil substrate surface-treated in the roughening plating treatment (1). As a result, the shape of the roughened particles formed in the roughened plating process (1) can be maintained.
  • a copper sulfate bath having the same composition as the roughened plating treatment is used, and the plating treatment is performed at the same bath temperature. The composition and bath temperature of the copper sulfate bath will be described in detail later.
  • plating solutions having different compositions are used for the rough plating treatment and the fixed plating treatment.
  • a plating solution having a higher copper concentration and a higher bath temperature than the roughened plating process is used in order to perform smooth plating, instead of discoloration plating as in the roughened plating process.
  • the same copper sulfate bath as the roughened plating treatment is used in the fixed plating treatment, and the plating treatment is performed at the same bath temperature.
  • the 20-degree mirror gloss Gs of TD on the surface of the surface-treated film of the surface-treated copper foil ( 20 °) is less than 0.8%
  • TD's 60 degree mirror gloss Gs (60 °) is 0.4% or more
  • TD's 75 degree mirror gloss Gs (75 °) is 45 degree mirror gloss Gs.
  • the mirror gloss ratio (Gs (45 °) / Gs (75 °)) of (45 °) can be 0.1 or more and 1.5 or less.
  • the electrolytic conditions and the like of the fixed plating process (2) will be described.
  • the plating method for example, from the viewpoint of mass production and production cost, a roll-to-roll method is preferable.
  • the absolute value of the difference between the processing speed and the interpole flow velocity is preferably 6 to 15 m / min.
  • the absolute value of the difference between the treatment speed and the interpolar flow velocity is 6 to 15 m / min
  • the 20 degree mirror gloss Gs (20 °) of TD on the surface of the surface treatment film of the surface treatment copper foil is 0.8%.
  • 60 degree mirror gloss Gs (60 °) of TD is 0.4% or more, and mirror gloss of 45 degree mirror gloss Gs (45 °) with respect to 75 degree mirror gloss Gs (75 °) of TD.
  • the ratio (Gs (45 °) / Gs (75 °)) can be 0.1 or more and 1.5 or less.
  • the flow direction of the processing speed (treatment direction) and the flow direction of the interpolar flow velocity do not have to coincide with each other, and when they are opposite to each other, one flow velocity is the other flow velocity. It is calculated as a negative flow velocity.
  • the current density is preferably 3 to 25 A / dm 2.
  • the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is set to less than 0.8%, and the 60-degree mirror gloss Gs of TD is set. (60 °) is set to 0.4% or more, and the mirror gloss ratio (Gs (45 °) / Gs (75 °)) of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD. °)))) can be 0.1 or more and 1.5 or less.
  • the ratio of the product K of the current density and processing time of fixed plating to the product S T of the current density and processing time of roughening plating (1) (2) [( K / S T) ⁇ 100] (%) Is preferably 20 to 150%.
  • the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is 0.8%.
  • 60 degree mirror gloss Gs (60 °) of TD is 0.4% or more
  • the ratio (Gs (45 °) / Gs (75 °)) can be 0.1 or more and 1.5 or less.
  • composition and electrolytic conditions of the rough plating treatment plating solution and the fixed plating treatment plating solution are shown below.
  • the following conditions are a preferable example, and the type and amount of the additive and the electrolytic conditions can be appropriately changed and adjusted as necessary within a range that does not interfere with the effects of the present invention.
  • the surface-treated copper foil of the present invention further has a base layer containing nickel (Ni), a heat-resistant treatment layer containing zinc (Zn), and chromium (Cr) directly or directly on the roughened layer.
  • a silane coupling agent layer may be further formed via an intermediate layer such as a rust preventive treatment layer contained therein. Since the thickness of the intermediate layer and the silane coupling agent layer is very thin, it does not affect the particle shape of the roughened particles on the roughened surface of the surface-treated copper foil.
  • the particle shape of the roughened particles on the roughened surface of the surface-treated copper foil is substantially determined by the particle shape of the roughened particles on the surface of the roughened surface corresponding to the roughened surface.
  • a silane coupling agent solution is applied directly or via an intermediate layer on the uneven surface of the roughened surface of the surface-treated copper foil, and then air-dried ( A method of forming by natural drying) or heat drying can be mentioned.
  • a method of forming by natural drying) or heat drying can be mentioned.
  • the applied coupling agent solution when the water in the solution evaporates, a silane coupling agent layer is formed, so that the effect of the present invention is fully exhibited.
  • Heat drying at 50 to 180 ° C. is preferable in that the reaction between the silane coupling agent and the copper foil is promoted.
  • the silane coupling agent layer is any one of epoxy-based silane, amino-based silane, vinyl-based silane, methacrylic-based silane, acrylic-based silane, styryl-based silane, ureido-based silane, mercapto-based silane, sulfide-based silane, and isocyanate-based silane. It preferably contains more than a seed.
  • a Ni-containing base layer, a Zn-containing heat-resistant treatment layer, and a Cr-containing rust preventive treatment layer are selected between the roughening treatment layer and the silane coupling agent layer. It is preferable to have at least one intermediate layer.
  • the Ni-containing base layer is preferably formed of at least one selected from nickel (Ni), nickel (Ni) -phosphorus (P), and nickel (Ni) -zinc (Zn).
  • the heat-resistant treatment layer containing Zn is preferably formed when it is necessary to further improve the heat resistance.
  • the heat-resistant treatment layer containing Zn is, for example, zinc or an alloy containing zinc, that is, zinc (Zn) -tin (Sn), zinc (Zn) -nickel (Ni), zinc (Zn) -cobalt (Co).
  • Zinc (Zn) -Copper (Cu), Zinc (Zn) -Chrome (Cr) and Zinc (Zn) -Vanadium (V) can be formed with an alloy containing at least one zinc. preferable.
  • the rust preventive treatment layer containing Cr is preferably formed when it is necessary to further improve the corrosion resistance.
  • Examples of the rust preventive treatment layer include a chrome layer formed by chrome plating and a chromate layer formed by chromate treatment.
  • the above-mentioned base layer, heat-resistant treatment layer and rust-prevention treatment layer are preferably formed on the roughening treatment layer in this order, and the application and purpose. Either one layer or only two layers may be formed depending on the characteristics to be applied.
  • (S4) Forming Step of Anti-corrosion Treatment Layer A rust-prevention treatment layer containing Cr is formed on the roughening treatment layer or, if necessary, on the base layer and / or the heat resistance treatment layer formed on the roughening treatment layer if necessary. do. (S5) Step of Forming Silane Coupling Agent Layer An intermediate layer in which a silane coupling agent layer is directly formed on the roughened treatment layer, or at least one layer of a base layer, a heat resistant treatment layer and a rust prevention treatment layer is formed. A silane coupling agent layer is formed through.
  • the surface-treated copper foil of the present invention is suitably used for manufacturing a copper-clad laminate for a printed wiring board.
  • a copper-clad laminate is suitably used for manufacturing a printed wiring board having excellent adhesion and transmission characteristics in a high frequency band, and exhibits excellent effects.
  • the surface-treated copper foil of the present invention is suitable when used as a printed wiring board for a high frequency band used in a high frequency band (particularly, a high frequency band of 1 to 10 GHz).
  • the copper-clad laminate for a printed wiring board can be formed by a known method using the surface-treated copper foil of the present invention.
  • the surface-treated copper foil and the resin base material (insulating substrate) are opposed to each other so that the roughened surface (attached surface) of the surface-treated copper foil and the resin base material face each other.
  • Such a copper-clad laminate for a printed wiring board is formed by adhering a surface (roughened surface) on which a surface-treated film of the surface-treated copper foil is formed and a resin base material.
  • the insulating substrate include a flexible resin substrate and a rigid resin substrate.
  • the surface-treated copper foil of the present invention is a rigid resin substrate in which the outer layer is required to have transmission characteristics in a high frequency band and high adhesion. It is particularly suitable in combination with.
  • a copper-clad laminate for a printed wiring board when manufacturing a copper-clad laminate for a printed wiring board, it may be manufactured by laminating a surface-treated copper foil having a silane coupling agent layer and an insulating substrate by a heating press. It is produced by applying a silane coupling agent on an insulating substrate, and bonding the insulating substrate coated with the silane coupling agent and a surface-treated copper foil having a rust-preventive treatment layer on the outermost surface by a heat press.
  • the copper-clad laminate for printed wiring boards also has the same effect as that of the present invention.
  • the printed wiring board can be formed by a known method using the copper-clad laminate for the printed wiring board.
  • Such a printed wiring board includes the copper-clad laminate for the printed wiring board.
  • a roll-shaped electrolysis having a thickness of 18 ⁇ m is used under the following electrolytic conditions using the following cathode and anode as the copper foil substrate to be the base material for roughening treatment and the copper sulfate electrolytic solution having the following composition.
  • a copper foil was produced.
  • Example 1 In Example 1, the following steps [1] to [3] were performed to obtain a surface-treated copper foil.
  • a roughening plating treatment surface was formed on the S surface of the copper foil by electroplating treatment.
  • This roughened plating surface was formed by using the following roughening plating solution and fixed plating solution common basic bath composition, and the interpolar flow velocity, current density, and treatment time were as shown in Tables 1 and 2 below.
  • the molybdenum concentration was adjusted by adding an aqueous solution of sodium molybdate dihydrate in pure water to the basic bath.
  • silane coupling agent layer Formation of silane coupling agent layer Finally, 3-glycidoxy having a concentration of 0.2% by mass is placed on the metal-treated layer (particularly, the outermost Cr plating layer) formed in [2] above. An aqueous solution of propyltrimethoxysilane was applied and dried at 100 ° C. to form a silane coupling agent layer.
  • Example 2 to 12 and Comparative Examples 1 to 5 In Examples 2 to 12 and Comparative Examples 1 to 5, the surfaces were subjected to the same method as in Example 1 except as described in Tables 1 and 2 above in the roughening treatment layer forming step [1]. A treated copper foil was obtained.
  • the transmission loss in the high frequency band was measured as an evaluation of the high frequency characteristics. Details will be described below.
  • the roughened surface of the surface-treated copper foil was formed by stacking two MEGTRON6 (thickness 80 ⁇ m), which is a polyphenylene ether-based low-dielectric-constant resin base material manufactured by Panasonic Corporation, on both sides under the conditions of a surface pressure of 3.5 MPa and 200 ° C.
  • MEGTRON6 thickness 80 ⁇ m
  • a double-sided copper-clad laminate was prepared by laminating by pressing for 2 hours.
  • the obtained copper-clad laminate was circuit-processed to produce a circuit board on which a microstrip line having a transmission line width of 300 ⁇ m and a length of 70 mm was formed.
  • a high-frequency signal was transmitted to the transmission line of this circuit board using a network analyzer (“N5247A” manufactured by Keysight Technologies), and the transmission loss was measured.
  • the characteristic impedance was set to 50 ⁇ .
  • the measured value of the transmission loss means that the smaller the absolute value, the smaller the transmission loss and the better the high frequency characteristics.
  • the high frequency characteristics were evaluated based on the following evaluation criteria. a: Absolute value of transmission loss at 10 GHz is less than 1.8 dB b: Absolute value of transmission loss at 10 GHz is 1.8 to 2.0 dB c: Absolute value of transmission loss at 10 GHz is 2.0 dB or more
  • Peeling strength when the 10 mm wide circuit wiring part (copper foil part) of this circuit wiring board is peeled from the resin substrate at a speed of 50 mm / min in the 90 degree direction using a Tencilon tester manufactured by Toyo Seiki Seisakusho Co., Ltd. was measured. Adhesion was evaluated based on the following evaluation criteria using the obtained measured values as an index. ⁇ Evaluation criteria for normal adhesion> a: Peeling strength is 0.61 kN / m or more b: Peeling strength is 0.52 kN / m or more and less than 0.61 kN / m c: Peeling strength is less than 0.52 kN / m
  • the surface-treated copper foils of Examples 1 to 12 have a TD of 20-degree mirror gloss Gs (20 °) measured in accordance with JIS Z 8741: 1997 on the surface of the surface-treated film. It is less than 0.8%, and the 60-degree mirror gloss Gs (60 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface-treated film is 0.4% or more, and the surface-treated film has Mirror gloss ratio of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) in TD measured according to JIS Z 8741: 1997 on the surface (Gs (45 °) / Gs ( Since 75 °)) is controlled to be 0.1 to 1.5, it has excellent high-frequency characteristics, and exhibits high adhesion (normal adhesion and heat-resistant adhesion) and high powder removal resistance. confirmed.
  • the surface-treated copper foils of Comparative Example 1 and Comparative Example 4 had a high Gs (20 °) of 0.8 or more, resulting in poor heat-resistant adhesion.
  • Comparative Example 2 since Gs (60 °) was as low as 0.3%, the result was that the high frequency characteristics were poor.
  • Comparative Example 3 since Gs (45 °) / Gs (75 °) was as large as 1.8, the result was that the powder removal resistance was poor.
  • Gs (60 °) is as low as 0.3%, and Gs (45 °) / Gs (75 °) is also as large as 1.8, resulting in poor high-frequency characteristics and powder drop resistance. It became.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

A surface-treated copper foil for printed wiring boards according to the present invention has a surface-treated coating film which has a roughened layer comprising roughening particles formed on at least one surface of a copper foil base, in which the 20-degree specular glossiness Gs (20°) in the TD direction on the surface of the surface-treated coating film as measured in accordance with JIS Z 8741:1997 is less than 0.8%, the 60-degree specular glossiness Gs (60°) in the TD direction on the surface of the surface-treated coating film as measured in accordance with JIS Z 8741:1997 is 0.4% or more, and the specular glossiness ratio of the 45-degree specular glossiness Gs (45°) to the 75-degree specular glossiness Gs (75°) in the TD direction (Gs(45°)/Gs(75°)) on the surface of the surface-treated coating film as measured in accordance with JIS Z 8741:1997 is 0.1 to 1.5, inclusive.

Description

プリント配線板用表面処理銅箔、並びにこれを用いたプリント配線板用銅張積層板及びプリント配線板Surface-treated copper foil for printed wiring boards, and copper-clad laminates and printed wiring boards for printed wiring boards using this
 本発明は、高周波帯域で、特に1~10GHzの高周波帯域で使用されるプリント配線板用表面処理銅箔に関する。また本発明は、当該プリント配線板用表面処理銅箔を用いたプリント配線板用銅張積層板及びプリント配線板に関する。 The present invention relates to a surface-treated copper foil for a printed wiring board used in a high frequency band, particularly in a high frequency band of 1 to 10 GHz. The present invention also relates to a copper-clad laminate for a printed wiring board and a printed wiring board using the surface-treated copper foil for the printed wiring board.
 近年、高周波対応基板の多層化が進み、内層と外層で必要とされる特性に応じて種類の異なる銅箔が使用されるようになってきている。特に外層は高い密着性を求められることから、一般箔や汎用箔と呼称される凹凸の大きい電解銅箔のM(マット)面側に、粗化処理層(粗化粒子を形成させた層)を形成した銅箔が用いられる場合が多い。
 しかしながら、近年は、外層であっても1~10GHzの周波数の高周波信号が流されるようになってきている。上記周波数となると、電流が流れる表皮深さは0.7~2.0μm程度となり、電流は導体のごく表層しか流れない。そのため、導体の表面凹凸が大きい場合には、導体の伝送経路(すなわち表皮部分の伝送経路)が長くなり、伝送損失が増加する。従って、高周波対応機器に用いる銅張積層板では、伝送損失の増加を抑制するため、銅箔の表面凹凸を小さくすることが望まれている。
In recent years, the number of layers of high-frequency-compatible substrates has increased, and different types of copper foils have been used according to the characteristics required for the inner layer and the outer layer. In particular, since the outer layer is required to have high adhesion, a roughening treatment layer (a layer on which roughened particles are formed) is placed on the M (mat) surface side of an electrolytic copper foil having large irregularities, which is called a general foil or a general-purpose foil. In many cases, a copper foil formed from the above is used.
However, in recent years, high-frequency signals having a frequency of 1 to 10 GHz have been passed even in the outer layer. At the above frequency, the skin depth at which the current flows is about 0.7 to 2.0 μm, and the current flows only on the very surface layer of the conductor. Therefore, when the surface unevenness of the conductor is large, the transmission path of the conductor (that is, the transmission path of the skin portion) becomes long, and the transmission loss increases. Therefore, in a copper-clad laminate used for high-frequency compatible equipment, it is desired to reduce the surface unevenness of the copper foil in order to suppress an increase in transmission loss.
 そこで、凹凸がより小さい電解銅箔のS(シャイニー)面側に粗化処理を形成したRTF箔と呼称される銅箔を外層に使用することも多くなってきている。なお、M面とS面いずれも平滑な両面光沢箔と呼称される銅箔も存在するが、外層材としては過剰な伝送特性を持っており、かつコストが高く、さらに外層材として必要とされる密着性に劣るため、使われることは稀である。 Therefore, a copper foil called RTF foil in which a roughening treatment is formed on the S (shiny) surface side of an electrolytic copper foil having smaller irregularities is often used for the outer layer. There is also a copper foil called a double-sided glossy foil that is smooth on both the M and S surfaces, but it has excessive transmission characteristics as an outer layer material, is expensive, and is required as an outer layer material. It is rarely used because of its poor adhesion.
 また、通常、プリント配線板に使用される銅箔では、伝送特性に加えて、樹脂基材との高い接着性も求められる。一般に、樹脂基材と銅箔表面との間で接着力を高める手法としては、電気めっきやエッチング等により、その表面に粗化処理層を形成し、樹脂基材との物理的な接着効果(アンカー効果)を得る手法が挙げられる。しかし、銅箔表面と樹脂基材との接着性を効果的に高めるべく、銅箔表面に形成する粗化粒子の粒子サイズを大きくすると、上述の通り伝送損失が増加してしまう。 In addition, the copper foil normally used for printed wiring boards is required to have high adhesiveness to a resin base material in addition to transmission characteristics. Generally, as a method of increasing the adhesive force between the resin base material and the copper foil surface, a roughening treatment layer is formed on the surface by electroplating, etching, etc., and a physical adhesive effect with the resin base material ( Anchor effect) can be obtained. However, if the particle size of the roughened particles formed on the copper foil surface is increased in order to effectively enhance the adhesiveness between the copper foil surface and the resin base material, the transmission loss increases as described above.
 このように、銅張積層板において、伝送損失の抑制と、銅箔と樹脂基材との密着性(接着性)の向上(すなわち耐久性の向上)とは、互いにトレードオフの関係にある。そのため、従来から、銅張積層板に用いられる銅箔では、伝送損失の抑制と樹脂基材との密着性の両立が検討されている。 As described above, in the copper-clad laminate, the suppression of transmission loss and the improvement of the adhesion (adhesiveness) between the copper foil and the resin base material (that is, the improvement of durability) are in a trade-off relationship with each other. Therefore, conventionally, in the copper foil used for the copper-clad laminate, both suppression of transmission loss and adhesion to the resin base material have been studied.
 ところで、高周波対応のプリント配線板は、最近、さらに高い信頼性が要求される分野へも展開されてきている。例えば、車載用プリント配線基板等の移動体通信機器用プリント配線基板では、高温環境等の過酷な環境下にも耐え得る高度な信頼性が要求される。このような高度な信頼性の要求に応えるためには、銅箔と樹脂基材との密着性をさらに高める必要がある。例えば、最高温度260℃のリフロー試験を20回繰り返すといった過酷試験にも耐え得る密着性が必要である。そのため、上記のような従来の手法では、近年求められている過酷な高温環境下での密着性(耐熱密着性)を満足できなくなっている。 By the way, high-frequency printed wiring boards have recently been expanded to fields where even higher reliability is required. For example, a printed wiring board for a mobile communication device such as an in-vehicle printed wiring board is required to have a high degree of reliability that can withstand a harsh environment such as a high temperature environment. In order to meet the demand for such high reliability, it is necessary to further improve the adhesion between the copper foil and the resin base material. For example, it is necessary to have adhesion that can withstand a harsh test such as repeating a reflow test at a maximum temperature of 260 ° C. 20 times. Therefore, the conventional method as described above cannot satisfy the adhesion (heat-resistant adhesion) in a harsh high-temperature environment that has been required in recent years.
 また、プリント配線板に使用される銅箔では、樹脂基材との接着力を高めるために、上記粗化処理層の形成に加え、銅箔表面をシランカップリング剤で処理することで、樹脂基材に対して化学的な接着性を得る手法が用いられる。しかし、シランカップリング剤と樹脂基材との間で、化学的接着性を高めるためには、樹脂基材が、ある程度極性の大きな置換基を有していることが必要である。しかし、誘電損失を抑えるべく、樹脂基材として、極性の大きな置換基の量を減少させた低誘電性基材を用いる場合には、シランカップリング剤で銅箔表面を処理しても化学的接着性を得難く、銅箔と樹脂基材との十分な接着性が担保し難くなる。 Further, in the copper foil used for the printed wiring board, in order to enhance the adhesive force with the resin base material, in addition to the formation of the roughening treatment layer, the copper foil surface is treated with a silane coupling agent to form a resin. A technique is used to obtain chemical adhesion to the substrate. However, in order to enhance the chemical adhesiveness between the silane coupling agent and the resin base material, the resin base material needs to have a substituent having a large polarity to some extent. However, when a low-dielectric base material in which the amount of highly polar substituents is reduced is used as the resin base material in order to suppress dielectric loss, even if the copper foil surface is treated with a silane coupling agent, it is chemically treated. It is difficult to obtain adhesiveness, and it is difficult to ensure sufficient adhesiveness between the copper foil and the resin base material.
 そこで、銅箔及び樹脂基材の間の高い密着性と伝導損失の抑制とを両立したプリント配線板用表面処理銅箔が検討されてきている(例えば、特許第6294862号公報(特許文献1)参照)。特許文献1に記載のプリント配線板用表面処理銅箔では、微細な凹凸を表面に形成して表面の比表面積を増加させることで、伝送損失の抑制と、銅箔及び樹脂基材の間の常態密着性及び耐熱密着性とを両立させている。 Therefore, a surface-treated copper foil for a printed wiring board that has both high adhesion between a copper foil and a resin base material and suppression of conduction loss has been studied (for example, Japanese Patent No. 6294862 (Patent Document 1)). reference). In the surface-treated copper foil for printed wiring boards described in Patent Document 1, fine irregularities are formed on the surface to increase the specific surface area of the surface, thereby suppressing transmission loss and between the copper foil and the resin base material. It has both normal adhesion and heat resistance.
 しかしながら、特許文献1に記載のプリント配線板用表面処理銅箔では、粗化粒子が過度に微細であり、特に高周波対応基板の外層に使用する場合には、銅箔と樹脂基材との間の常態密着性及び耐熱密着性が未だ十分ではなかった。また、特許文献1に記載のプリント配線板用表面処理銅箔の技術を用いて銅箔と樹脂基材との間の常態密着性及び耐熱密着性を改善するために、単に粗化粒子を粗大化させた場合は、粉落ちを招く恐れがあった。 However, in the surface-treated copper foil for printed wiring boards described in Patent Document 1, the roughened particles are excessively fine, and particularly when used for the outer layer of a high-frequency compatible substrate, between the copper foil and the resin base material. The normal adhesion and heat-resistant adhesion of the above were not yet sufficient. Further, in order to improve the normal adhesion and the heat-resistant adhesion between the copper foil and the resin base material by using the technique of the surface-treated copper foil for a printed wiring board described in Patent Document 1, the coarsened particles are simply coarsened. If it was converted, there was a risk of powder falling off.
 本発明は、高周波帯域での優れた伝送特性(以下、単に「高周波特性」と言うことがある。)と、樹脂基材との優れた常態密着性及び耐熱密着性と、耐粉落ち性とを兼ね備えたプリント配線板用表面処理銅箔、並びにこれを用いたプリント配線板用銅張積層板及びプリント配線板を提供することを目的とする。 The present invention has excellent transmission characteristics in a high frequency band (hereinafter, may be simply referred to as "high frequency characteristics"), excellent normal adhesion and heat adhesion to a resin substrate, and powder removal resistance. It is an object of the present invention to provide a surface-treated copper foil for a printed wiring board, and a copper-clad laminate for a printed wiring board and a printed wiring board using the same.
 本発明者らは上記従来の課題を解決すべく鋭意検討した結果、レーザー顕微鏡や非接触型干渉顕微鏡はもちろん、SEMでも定義不能な複雑な粗化形状が存在することを見出した。そして、その形状は、所定の角度から測定した光沢度、及び所定の2つの角度から測定した光沢度の間の光沢度比で評価可能であり、上記光沢度及び上記光沢度比が所定の数値範囲内であると、高周波帯域での優れた伝送特性と、樹脂基材との優れた常態密着性及び耐熱密着性と、優れた耐粉落ち性とを兼ね備えたプリント配線板用表面処理銅箔を得られることを見出し、本発明を完成させた。 As a result of diligent studies to solve the above-mentioned conventional problems, the present inventors have found that there are complicated roughened shapes that cannot be defined not only by a laser microscope and a non-contact interference microscope but also by an SEM. The shape can be evaluated by the glossiness measured from a predetermined angle and the glossiness ratio between the glossiness measured from two predetermined angles, and the glossiness and the glossiness ratio are predetermined numerical values. Within the range, the surface-treated copper foil for printed wiring boards has excellent transmission characteristics in the high frequency band, excellent normal adhesion and heat-resistant adhesion to the resin base material, and excellent powder removal resistance. The present invention was completed by finding that the present invention can be obtained.
 すなわち、本発明の要旨構成は、以下のとおりである。
[1] 銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を含む表面処理皮膜を有するプリント配線板用表面処理銅箔であって、前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの20度鏡面光沢度Gs(20°)が0.8%未満であり、前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの60度鏡面光沢度Gs(60°)が0.4%以上であり、前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))が0.1以上1.5以下である、プリント配線板用表面処理銅箔。
[2] 前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの85度鏡面光沢度Gs(85°)が4%以上、50%未満である、上記[1]に記載のプリント配線板用表面処理銅箔。
[3] 前記銅箔基体の表面処理皮膜を有する面が光沢面である、上記[1]又は[2]に記載のプリント配線板用表面処理銅箔。
[4] 前記表面処理皮膜の表面のJIS Z 8781に準拠して測定したTDのXYZ表色系におけるY値が10%以上45%以下である、上記[1]~[3]のいずれか1つに記載のプリント配線板用表面処理銅箔。
[5] 前記表面処理皮膜の表面におけるJIS B 0601に準拠して測定した十点平均粗さRzjis値が0.8μm以上4.5μm以下である、上記[1]~[4]のいずれか1つに記載のプリント配線板用表面処理銅箔。
[6] 上記[1]~[5]のいずれか1つに記載のプリント配線板用表面処理銅箔の前記表面処理皮膜が形成された面と樹脂基材とが接着されてなる、プリント配線板用銅張積層板。
[7] 上記[6]に記載のプリント配線板用銅張積層板を備える、プリント配線板。
That is, the gist structure of the present invention is as follows.
[1] A surface-treated copper foil for a printed wiring board having a surface-treated film containing a roughened-treated layer in which roughened particles are formed on at least one surface of the copper foil substrate, and the surface of the surface-treated film. The 20-degree mirror gloss Gs (20 °) of TD measured in accordance with JIS Z 8741: 1997 in the above is less than 0.8%, and is measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film. The 60 degree mirror gloss Gs (60 °) of the TD was 0.4% or more, and the 75 degree mirror gloss Gs (75 °) of the TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film. Surface-treated copper for printed wiring boards, where the mirror gloss ratio (Gs (45 °) / Gs (75 °)) of 45 ° mirror gloss Gs (45 °) to (°) is 0.1 or more and 1.5 or less. Foil.
[2] The above-mentioned [1], wherein the 85 degree mirror gloss Gs (85 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film is 4% or more and less than 50%. Surface-treated copper foil for printed wiring boards.
[3] The surface-treated copper foil for a printed wiring board according to the above [1] or [2], wherein the surface of the copper foil substrate having the surface-treated film is a glossy surface.
[4] Any one of the above [1] to [3], wherein the Y value in the XYZ color system of TD measured in accordance with JIS Z 8781 on the surface of the surface treatment film is 10% or more and 45% or less. Surface-treated copper foil for printed wiring boards described in 1.
[5] Any one of the above [1] to [4], wherein the ten-point average roughness Rzjis value measured in accordance with JIS B 0601 on the surface of the surface treatment film is 0.8 μm or more and 4.5 μm or less. Surface-treated copper foil for printed wiring boards described in 1.
[6] Printed wiring in which the surface of the surface-treated copper foil for a printed wiring board according to any one of the above [1] to [5] on which the surface-treated coating is formed is adhered to a resin base material. Copper-clad laminate for board.
[7] A printed wiring board comprising the copper-clad laminate for the printed wiring board according to the above [6].
 本発明によれば、高周波帯域での優れた伝送特性と、樹脂基材との優れた常態密着性及び耐熱密着性と、優れた耐粉落ち性とを兼ね備えたプリント配線板用表面処理銅箔、並びにこれを用いたプリント配線板用銅張積層板及びプリント配線板を提供することができる。 According to the present invention, a surface-treated copper foil for a printed wiring board, which has excellent transmission characteristics in a high frequency band, excellent normal adhesion and heat-resistant adhesion to a resin substrate, and excellent powder removal resistance. , And a copper-clad laminate for a printed wiring board and a printed wiring board using the same.
図1は、本発明の表面処理銅箔の粗化粒子の様子を説明するための図である。FIG. 1 is a diagram for explaining the state of roughened particles of the surface-treated copper foil of the present invention. 図2は、従来の表面処理銅箔の粗化粒子の様子を説明するための図である。FIG. 2 is a diagram for explaining the state of the roughened particles of the conventional surface-treated copper foil. 図3は、電解銅箔の製造装置の模式図である。FIG. 3 is a schematic view of an electrolytic copper foil manufacturing apparatus. 図4は、本発明の表面処理銅箔の表面処理皮膜の表面の様子を加工断面から観察したSEM画像の一例である。FIG. 4 is an example of an SEM image obtained by observing the state of the surface of the surface-treated film of the surface-treated copper foil of the present invention from a processed cross section.
 以下、本発明のプリント配線板用表面処理銅箔の好ましい実施形態について、詳細に説明する。なお、本明細書中の「AA~BB」との数値範囲の表記は、「AA以上BB以下」であることを意味する。
 本発明のプリント配線板用表面処理銅箔(以下、単に「表面処理銅箔」と言うことがある。)は、銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を含む表面処理皮膜を有するプリント配線板用表面処理銅箔であって、前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの20度鏡面光沢度Gs(20°)が0.8%未満であり、前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの60度鏡面光沢度Gs(60°)が0.4%以上であり、前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))が0.1以上1.5以下である。なお、TD(Transverse Direction)は、銅箔基体を製造するときに銅箔基体が流れる方向(MD(Machine Direction)、RD(Roll Direction)ともいわれることもある。) に対して直交の方向である。つまり、本発明における「鏡面光沢度」とは、TD方向(MD方向に直交する方向)から光を入射させた場合の光沢度を意味する。
Hereinafter, preferred embodiments of the surface-treated copper foil for printed wiring boards of the present invention will be described in detail. The notation of the numerical range of "AA to BB" in this specification means "AA or more and BB or less".
The surface-treated copper foil for a printed wiring board of the present invention (hereinafter, may be simply referred to as "surface-treated copper foil") is roughened by forming roughened particles on at least one surface of a copper foil substrate. A surface-treated copper foil for a printed wiring board having a surface-treated film containing a treated layer, which is a TD 20-degree mirror gloss Gs (20 °) measured in accordance with JIS Z 8741: 1997 on the surface of the surface-treated film. ) Is less than 0.8%, and the 60 degree mirror surface gloss Gs (60 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film is 0.4% or more. The mirror gloss ratio (Gs (45 °)) of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD measured according to JIS Z 8741: 1997 on the surface of the surface treatment film. ) / Gs (75 °)) is 0.1 or more and 1.5 or less. The TD (Transverse Direction) is a direction orthogonal to the direction in which the copper foil substrate flows when the copper foil substrate is manufactured (sometimes referred to as MD (Machine Direction) or RD (Roll Direction)). .. That is, the "mirror glossiness" in the present invention means the glossiness when light is incident from the TD direction (direction orthogonal to the MD direction).
 本発明の表面処理銅箔は、銅箔基体の少なくとも一方の面に、粗化処理層を含む表面処理皮膜を有する。粗化処理層は、粗化粒子を形成してなる。表面処理皮膜の表面は、表面処理銅箔の最表面(表裏面)のうち少なくとも一方の面であり、また、銅箔基体の少なくとも一方の面に形成された粗化粒子の形成状態及び粒子形状等が反映された複雑な凹凸表面形状を持つ粗化面である。
 このような表面処理皮膜の表面(以下、「粗化面」と言う。)は、例えば、銅箔基体上に形成された粗化処理層の表面であってもよいし、この粗化処理層上に直接形成されたシランカップリング剤層の表面、又は、この粗化処理層上に、Niを含有する下地層、Znを含有する耐熱処理層及びCrを含有する防錆処理層等の中間層を介して形成されたシランカップリング剤層の表面であってもよい。また、本発明の表面処理銅箔がプリント配線板の導体回路に用いられる場合には、上記粗化面が、樹脂基材を貼着積層するための表面(貼着面)となる。
The surface-treated copper foil of the present invention has a surface-treated film containing a roughening-treated layer on at least one surface of the copper foil substrate. The roughened treatment layer is formed by forming roughened particles. The surface of the surface-treated film is at least one surface of the outermost surface (front and back surfaces) of the surface-treated copper foil, and the formation state and particle shape of the roughened particles formed on at least one surface of the copper foil substrate. It is a roughened surface having a complicated uneven surface shape that reflects the above.
The surface of such a surface-treated film (hereinafter referred to as "roughened surface") may be, for example, the surface of a roughened-treated layer formed on a copper foil substrate, or the roughened-treated layer. On the surface of the silane coupling agent layer directly formed on the surface, or on the roughening treatment layer, an intermediate between a Ni-containing base layer, a Zn-containing heat-resistant treatment layer, a Cr-containing rust preventive treatment layer, and the like. It may be the surface of a silane coupling agent layer formed through the layers. Further, when the surface-treated copper foil of the present invention is used for a conductor circuit of a printed wiring board, the roughened surface becomes a surface (adhesion surface) for adhering and laminating a resin base material.
 ここで、本発明の表面処理銅箔の粗化面の断面模式図の一例を図1に示す。従来の表面処理銅箔の粗化面の断面模式図の一例を図2に示す。図1に示すように、本発明の表面処理銅箔の粗化面には、複雑な凹凸を有する表面を有する、樹枝状の析出である粗化粒子が形成されている。一方、図2に示すように、従来の表面処理銅箔の粗化粒子の表面には、本発明の表面処理銅箔の粗化粒子の表面のような複雑な凹凸がない。 Here, FIG. 1 shows an example of a schematic cross-sectional view of the roughened surface of the surface-treated copper foil of the present invention. FIG. 2 shows an example of a schematic cross-sectional view of the roughened surface of the conventional surface-treated copper foil. As shown in FIG. 1, on the roughened surface of the surface-treated copper foil of the present invention, roughened particles which are dendritic precipitates and have a surface having complicated irregularities are formed. On the other hand, as shown in FIG. 2, the surface of the roughened particles of the conventional surface-treated copper foil does not have complicated irregularities like the surface of the roughened particles of the surface-treated copper foil of the present invention.
 本発明の表面処理銅箔のような特殊な粗化面における粗化粒子の形状評価は、従来の粗化面の観察手法、例えばレーザー顕微鏡や白色干渉顕微鏡等では粗化面の垂直方向からの観察となり、複雑な凹凸を有する表面を有する粗化粒子の特性を正確に表すことができない。また、SEMによる断面観察といった直接的な2次元の形状観察においても、複雑な凹凸を有する表面を有する粗化粒子の3次元的特性を正確に定義することは困難である。そのため、従来の手法では、技術的な面で、粗化面の厳密な評価に限界があった。そこで、本発明では、粗化面の評価方法の一手法として、粗化面において、JIS Z 8741:1997に準拠して測定する鏡面光沢度により粗化面の特徴を規定し、評価することとした。具体的には、以下の手法により行う。 The shape evaluation of the roughened particles on a special roughened surface such as the surface-treated copper foil of the present invention is performed from the direction perpendicular to the roughened surface by a conventional method for observing the roughened surface, for example, a laser microscope or a white interference microscope. It is an observation, and it is not possible to accurately represent the characteristics of the roughened particles having a surface having complicated irregularities. Further, even in direct two-dimensional shape observation such as cross-section observation by SEM, it is difficult to accurately define the three-dimensional characteristics of the roughened particles having a surface having complicated irregularities. Therefore, in the conventional method, there is a limit in the strict evaluation of the roughened surface in terms of technology. Therefore, in the present invention, as one method of evaluating the roughened surface, the characteristics of the roughened surface are defined and evaluated by the mirror glossiness measured in accordance with JIS Z 8471: 1997. bottom. Specifically, the following method is used.
 通常、鏡面光沢度の測定は、単一の受光角で測定評価することが一般的である。しかしながら、本発明の表面処理銅箔の粗化面は、粗化粒子の形成により複雑な形状となっているため、単一の受光角ではその表面形状の特性を十分に評価することは困難であった。そのため、本発明の表面処理銅箔の粗化面においては、下記の各受光角を使って鏡面光沢度を測定することにより、粗化面の表面形状を評価することを可能にしている。
 なお、当然ではあるが、上述の通り粗化面における鏡面光沢度の測定は、平滑な表面における測定ではないため、下記の各受光角における測定値は単純な比例関係にあるものではない。
Generally, the mirror glossiness is measured and evaluated with a single light receiving angle. However, since the roughened surface of the surface-treated copper foil of the present invention has a complicated shape due to the formation of roughened particles, it is difficult to sufficiently evaluate the characteristics of the surface shape with a single light receiving angle. there were. Therefore, on the roughened surface of the surface-treated copper foil of the present invention, it is possible to evaluate the surface shape of the roughened surface by measuring the mirror glossiness using each of the following light receiving angles.
As a matter of course, as described above, the measurement of the mirror glossiness on the roughened surface is not the measurement on the smooth surface, so the measured values at each of the following light receiving angles are not in a simple proportional relationship.
 表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの20度鏡面光沢度Gs(20°)は、0.8%未満である。Gs(20°)が、0.8%以上であると、粗化粒子が微細となりすぎると考えられ、表面処理銅箔と樹脂基材との耐熱密着性が低下する傾向がある。更に表面処理銅箔と樹脂基材との常態密着性をも向上する観点から、Gs(20°)は、好ましくは0.7%未満であり、より好ましくは0.6%以下である。また、Gs(20°)は、好ましくは0.1%以上である。Gs(20°)が0.1%以上であると、特に高周波特性が向上する。このような観点から、Gs(20°)は、より好ましくは0.2%以上であり、更に好ましくは0.3%以上である。 The 20-degree mirror glossiness Gs (20 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface-treated film is less than 0.8%. When Gs (20 °) is 0.8% or more, it is considered that the roughened particles become too fine, and the heat-resistant adhesion between the surface-treated copper foil and the resin base material tends to decrease. Further, from the viewpoint of improving the normal adhesion between the surface-treated copper foil and the resin base material, Gs (20 °) is preferably less than 0.7%, more preferably 0.6% or less. Further, Gs (20 °) is preferably 0.1% or more. When Gs (20 °) is 0.1% or more, the high frequency characteristics are particularly improved. From such a viewpoint, Gs (20 °) is more preferably 0.2% or more, still more preferably 0.3% or more.
 表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの60度鏡面光沢度Gs(60°)は、0.4%以上である。Gs(60°)が0.4%未満であると、本発明の用途としては粗化粒子が大き過ぎると考えられ、高周波特性が低下する。このような観点から、Gs(60°)は、好ましくは0.5%以上である。また、Gs(60°)は、好ましくは10.0%以下である。Gs(60°)が10.0%以下であると、特に耐熱密着性が向上する。このような観点から、Gs(60°)は、より好ましくは6.0%以下であり、更に好ましくは1.8%以下であり、より更に好ましくは0.9%以下である。 The 60-degree mirror glossiness Gs (60 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface-treated film is 0.4% or more. If Gs (60 °) is less than 0.4%, it is considered that the coarsened particles are too large for the application of the present invention, and the high frequency characteristics are deteriorated. From such a viewpoint, Gs (60 °) is preferably 0.5% or more. Further, Gs (60 °) is preferably 10.0% or less. When Gs (60 °) is 10.0% or less, the heat-resistant adhesion is particularly improved. From such a viewpoint, Gs (60 °) is more preferably 6.0% or less, further preferably 1.8% or less, and even more preferably 0.9% or less.
 表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))は、0.1以上1.5以下である。鏡面光沢度比(Gs(45°)/Gs(75°))の大きさは、銅箔基体に垂直な方向に対して角度が大きい方向に向かって斜めに伸びる樹枝状の析出の傾向を表していると考えられる。表面処理皮膜の表面に垂直な方向に対して角度が大きい方向に伸びる樹枝状の析出は、樹脂基材と表面処理銅箔とを接着する際に物理的密着効果(アンカー効果)を付与すると考えられる。鏡面光沢度比(Gs(45°)/Gs(75°))が1.5よりも大きいということは、粗化粒子の根元からの樹枝状の析出が過剰に形成されているということを意味していると考えられ、粗化粒子の根元部分の強度が十分で無くなることで表面処理銅箔において粉落ちが発生しやすくなり、耐粉落ち性が低下する傾向がある。このような観点から、鏡面光沢度比(Gs(45°)/Gs(75°))は、好ましくは1.3以下であり、より好ましくは1.2以下、更に好ましくは1.0以下である。一方、鏡面光沢度比(Gs(45°)/Gs(75°))は、0.1未満とすることは製造上困難である。また、鏡面光沢度比(Gs(45°)/Gs(75°))は、値が大きくなるほど、特にアンカー効果に強く影響を与える銅箔基体に垂直な方向に対して大きな角度方向に伸びる樹枝状の析出の比率が多くなることを意味していると考えられ、表面処理銅箔の樹脂基材との耐熱密着性が向上する傾向がある。このような観点から、鏡面光沢度比(Gs(45°)/Gs(75°))は、好ましくは0.5以上であり、より好ましくは0.7以上、更に好ましくは0.8以上である。より具体的には、鏡面光沢度比(Gs(45°)/Gs(75°))は、耐粉落ち性及び表面処理銅箔の樹脂基材との耐熱密着性を向上させる観点から、好ましくは0.5以上1.5以下、より好ましくは0.7以上1.3以下、更に好ましくは0.7以上1.2以下であり、より更に好ましくは0.7以上1.0以下であり、より更に好ましくは0.8以上1.0以下である。
 なお、Gs(45°)及びGs(75°)は、鏡面光沢度比(Gs(45°)/Gs(75°))として上記範囲を満たせばよいが、個別の値としては、例えば次の範囲とすることができる。Gs(45°)は、好ましくは5.0以下であり、より好ましくは0.5以上3.0以下である。また、Gs(75°)は、好ましくは20.0以下であり、より好ましくは0.5以上10.0以下である。
Mirror gloss ratio of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD measured according to JIS Z 8741: 1997 on the surface of the surface treatment film (Gs (45 °) ) / Gs (75 °)) is 0.1 or more and 1.5 or less. The magnitude of the mirror gloss ratio (Gs (45 °) / Gs (75 °)) represents the tendency of dendritic precipitation to extend diagonally toward a direction having a larger angle with respect to the direction perpendicular to the copper foil substrate. It is thought that it is. It is considered that the dendritic precipitation extending in the direction perpendicular to the surface of the surface-treated film gives a physical adhesion effect (anchor effect) when the resin base material and the surface-treated copper foil are adhered to each other. Be done. The fact that the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is larger than 1.5 means that dendritic precipitation from the roots of the coarsened particles is excessively formed. It is considered that the surface-treated copper foil tends to have powder falling due to insufficient strength of the root portion of the roughened particles, and the powder falling resistance tends to decrease. From this point of view, the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is preferably 1.3 or less, more preferably 1.2 or less, still more preferably 1.0 or less. be. On the other hand, it is difficult in manufacturing that the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is less than 0.1. In addition, as the value of the mirror gloss ratio (Gs (45 °) / Gs (75 °)) increases, the tree branches grow in a large angular direction with respect to the direction perpendicular to the copper foil substrate, which has a strong influence on the anchor effect. It is considered that this means that the ratio of shape precipitation increases, and the heat-resistant adhesion of the surface-treated copper foil to the resin base material tends to improve. From this point of view, the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is preferably 0.5 or more, more preferably 0.7 or more, still more preferably 0.8 or more. be. More specifically, the mirror gloss ratio (Gs (45 °) / Gs (75 °)) is preferable from the viewpoint of improving the powder removal resistance and the heat-resistant adhesion of the surface-treated copper foil to the resin base material. Is 0.5 or more and 1.5 or less, more preferably 0.7 or more and 1.3 or less, still more preferably 0.7 or more and 1.2 or less, and even more preferably 0.7 or more and 1.0 or less. , More preferably 0.8 or more and 1.0 or less.
The Gs (45 °) and Gs (75 °) may satisfy the above range as the mirror gloss ratio (Gs (45 °) / Gs (75 °)), but the individual values include, for example, the following. Can be a range. Gs (45 °) is preferably 5.0 or less, more preferably 0.5 or more and 3.0 or less. Further, Gs (75 °) is preferably 20.0 or less, more preferably 0.5 or more and 10.0 or less.
 Gs(20°)及びGs(60°)を上記範囲内とし、鏡面光沢度比(Gs(45°)/Gs(75°))を上記範囲内とすることにより、粗化粒子を大きくしなくても物理的密着効果(アンカー効果)により、優れた常態密着性だけでなく、シランカップリング剤による化学的密着性では期待できない優れた耐熱密着性を得ることができるとともに、表面処理銅箔における高周波帯域での伝送特性(高周波特性)を良好にすることができる。また、粉落ちも効果的に抑制することができる。 By setting Gs (20 °) and Gs (60 °) within the above range and the mirror gloss ratio (Gs (45 °) / Gs (75 °)) within the above range, the roughened particles are not enlarged. However, due to the physical adhesion effect (anchor effect), not only excellent normal adhesion but also excellent heat-resistant adhesion that cannot be expected by chemical adhesion with a silane coupling agent can be obtained, and in surface-treated copper foil. The transmission characteristics (high frequency characteristics) in the high frequency band can be improved. In addition, powder falling can be effectively suppressed.
 さらに、表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの85度鏡面光沢度Gs(85°)は、好ましくは4%以上、50%未満である。Gs(85°)は、銅箔基体に垂直な方向に対して角度が大きい方向に向かって斜めに伸び、アンカー効果に影響を与える樹枝状の析出の状態を反映していると考えられる。Gs(85°)が50%未満であると、特にアンカー効果に強く影響を与える樹枝状の析出が十分に多くなると考えられ表面処理銅箔の樹脂基材との耐熱密着性が向上する。Gs(85°)が4%以上であると、粗化粒子の根元からの樹枝状の析出が過剰とはならないと考えられ、表面処理銅箔において粉落ちが発生しにくくなり、耐粉落ち性が向上する。このような観点から、Gs(85°)は、より好ましくは6%以上、40%未満、更に好ましくは6%以上、20%未満、より更に好ましくは8%以上18%以下であり、より更に好ましくは9.5%以上17%以下である。 Further, the 85 degree mirror gloss Gs (85 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film is preferably 4% or more and less than 50%. It is considered that Gs (85 °) extends diagonally toward a direction having a large angle with respect to the direction perpendicular to the copper foil substrate, and reflects a state of dendritic precipitation that affects the anchor effect. When Gs (85 °) is less than 50%, it is considered that dendritic precipitation, which strongly affects the anchor effect, is sufficiently large, and the heat-resistant adhesion of the surface-treated copper foil to the resin base material is improved. When Gs (85 °) is 4% or more, it is considered that dendritic precipitation from the roots of the roughened particles does not become excessive, powder falling is less likely to occur in the surface-treated copper foil, and powder removal resistance. Is improved. From this point of view, Gs (85 °) is more preferably 6% or more and less than 40%, further preferably 6% or more and less than 20%, still more preferably 8% or more and 18% or less, and further. It is preferably 9.5% or more and 17% or less.
 本発明の表面処理銅箔における銅箔基体の表面処理皮膜を有する面は、光沢面であることが好ましい。光沢面のような平滑な面に粗化処理を施すことにより、所望の形状の粗化粒子を低コストで形成することが容易になる。なお、光沢面とは、電解銅箔のドラム状カソード側の面であり、電解銅箔のS面である。銅箔基体は電解銅箔であることが好ましく、電解銅箔の光沢面において表面処理皮膜が形成されることが好ましい。 The surface of the surface-treated copper foil of the present invention having the surface-treated film of the copper foil substrate is preferably a glossy surface. By applying the roughening treatment to a smooth surface such as a glossy surface, it becomes easy to form roughened particles having a desired shape at low cost. The glossy surface is a surface of the electrolytic copper foil on the drum-shaped cathode side, and is an S surface of the electrolytic copper foil. The copper foil substrate is preferably an electrolytic copper foil, and it is preferable that a surface treatment film is formed on the glossy surface of the electrolytic copper foil.
 図3を参照して、電解銅箔の製造方法を説明する。図3は、電解銅箔の製造装置の模式図である。電極は、ドラム状のチタンやステンレス鋼からなるカソード1と、同心円状に対向する貴金属酸化物を被覆した電極や鉛電極などの不溶性アノード2とで構成される。この両電極間に硫酸銅電解液3を装置下部から流し込み、電流を印加することで、ドラム状カソード表面に銅めっきが析出する。ドラム状カソード1は所定の速度で回転しており、析出した銅めっきは電解銅箔6として連続的にドラム状カソード表面から剥離して巻き取られる。電解銅箔のドラム状カソード面側は光沢面と称呼される他に、S(シャイニー)面5と称呼される。これはドラム状カソード面が平滑かつ光沢を持った表面となっており、該表面に析出させ剥離した電解銅箔表面は同様に平滑かつ光沢を持った表面となっているためである。S面の反対面はM(マット)面4と称呼される。なお、本発明の表面処理銅箔に用いる電解銅箔の厚さは、好ましくは6~210μmである。 The manufacturing method of the electrolytic copper foil will be described with reference to FIG. FIG. 3 is a schematic view of an electrolytic copper foil manufacturing apparatus. The electrode is composed of a cathode 1 made of drum-shaped titanium or stainless steel, and an insoluble anode 2 such as an electrode coated with a noble metal oxide concentrically opposed to each other or a lead electrode. By pouring the copper sulfate electrolytic solution 3 between the two electrodes from the lower part of the apparatus and applying an electric current, copper plating is deposited on the surface of the drum-shaped cathode. The drum-shaped cathode 1 is rotating at a predetermined speed, and the precipitated copper plating is continuously peeled off from the surface of the drum-shaped cathode as an electrolytic copper foil 6 and wound up. The drum-shaped cathode surface side of the electrolytic copper foil is called a glossy surface, and is also called an S (shiny) surface 5. This is because the drum-shaped cathode surface has a smooth and glossy surface, and the surface of the electrolytic copper foil deposited and peeled off on the surface is also a smooth and glossy surface. The opposite side of the S side is called the M (mat) side 4. The thickness of the electrolytic copper foil used for the surface-treated copper foil of the present invention is preferably 6 to 210 μm.
 本発明の表面処理銅箔における表面処理皮膜の表面のJIS Z 8781に準拠して測定したTDのXYZ表色系(CIE1931標準表色系)におけるY値は、好ましくは10%以上45%以下である。Y値が10%以上であると、粗化粒子が十分に小さくなると考えられ、粉落ちがさらに発生しにくくなるとともに、高周波帯域における伝送損失もさらに改善する。Y値が45%以下であると、銅箔基体に垂直な方向に対して角度が大きい方向に向かって斜めに伸び、アンカー効果に影響を与える樹枝状の析出が十分に多くなると考えられ、表面処理銅箔の樹脂基材との常態密着性及び耐熱密着性がさらに向上する。このような観点から、Y値は、より好ましくは12%以上40%以下、更に好ましくは18%以上28%以下、より更に好ましくは19%以上26%以下である。 The Y value of TD in the XYZ color system (CIE1931 standard color system) of the surface of the surface-treated film in the surface-treated copper foil of the present invention measured in accordance with JIS Z8781 is preferably 10% or more and 45% or less. be. When the Y value is 10% or more, it is considered that the coarsened particles are sufficiently small, powder falling is less likely to occur, and the transmission loss in the high frequency band is further improved. When the Y value is 45% or less, it is considered that the Y value extends diagonally toward a direction having a large angle with respect to the direction perpendicular to the copper foil substrate, and the dendritic precipitation affecting the anchor effect is considered to be sufficiently large. The normal adhesion and heat-resistant adhesion of the treated copper foil to the resin base material are further improved. From this point of view, the Y value is more preferably 12% or more and 40% or less, still more preferably 18% or more and 28% or less, and even more preferably 19% or more and 26% or less.
 本発明の表面処理銅箔における表面処理皮膜の表面のJIS Z 8781に準拠して測定したTDのXYZ表色系(CIE1931標準表色系)におけるX値の混色比(x値)は、好ましくは0.38~0.50である。X値の混色比(x値)が0.38以上であると、銅箔基体に垂直な方向に対して角度が大きい方向に向かって斜めに伸び、アンカー効果に影響を与える樹枝状の析出が十分に多くなると考えられ、表面処理銅箔の樹脂基材との耐熱密着性がさらに向上する。X値の混色比(x値)が0.50以下であると、粗化粒子の根元からの樹枝状の析出が適度であると考えられ、粉落ちがさらに発生しにくくなるとともに、高周波帯域における伝送損失もさらに改善する。このような観点から、X値の混色比(x値)は、より好ましくは0.40~0.48であり、さらに好ましくは0.41~0.47である。 The color mixing ratio (x value) of the X value in the XYZ color system (CIE1931 standard color system) of TD measured in accordance with JIS Z8781 on the surface of the surface-treated film in the surface-treated copper foil of the present invention is preferably. It is 0.38 to 0.50. When the color mixture ratio (x value) of the X value is 0.38 or more, the dendritic precipitation that affects the anchor effect is formed by extending diagonally toward a direction having a large angle with respect to the direction perpendicular to the copper foil substrate. It is considered that the amount will be sufficiently large, and the heat-resistant adhesion of the surface-treated copper foil to the resin base material will be further improved. When the color mixing ratio (x value) of the X value is 0.50 or less, it is considered that dendritic precipitation from the roots of the coarsened particles is appropriate, powder falling is less likely to occur, and in the high frequency band. The transmission loss is further improved. From such a viewpoint, the color mixing ratio (x value) of the X value is more preferably 0.40 to 0.48, and further preferably 0.41 to 0.47.
 本発明の表面処理銅箔における表面処理皮膜の表面のJIS Z 8781に準拠して測定したTDのXYZ表色系(CIE1931標準表色系)におけるY値の混色比(y値)は、好ましくは0.32~0.36である。Y値の混色比(y値)が0.32以上であると、粗化粒子の根元からの樹枝状の析出が適度であると考えられ、粉落ちがさらに発生しにくくなるとともに、高周波帯域における伝送損失もさらに改善する。Y値の混色比(y値)が0.36以下であると、銅箔基体に垂直な方向に対して角度が大きい方向に向かって斜めに伸び、アンカー効果に影響を与える樹枝状の析出が十分に多くなると考えられ、表面処理銅箔の樹脂基材との耐熱密着性がさらに向上する。このような観点から、Y値の混色比(y値)は、より好ましくは0.33~0.35であり、更に好ましくは0.34~0.35である。 The color mixing ratio (y value) of the Y value in the XYZ color system (CIE1931 standard color system) of TD measured in accordance with JIS Z8781 on the surface of the surface-treated film in the surface-treated copper foil of the present invention is preferably. It is 0.32 to 0.36. When the color mixing ratio (y value) of the Y value is 0.32 or more, it is considered that the dendritic precipitation from the roots of the coarsened particles is appropriate, and powder falling is less likely to occur, and in the high frequency band. The transmission loss is further improved. When the color mixture ratio (y value) of the Y value is 0.36 or less, the dendritic precipitation that affects the anchor effect is formed by extending diagonally toward a direction having a large angle with respect to the direction perpendicular to the copper foil substrate. It is considered that the amount will be sufficiently large, and the heat-resistant adhesion of the surface-treated copper foil to the resin base material will be further improved. From this point of view, the color mixing ratio (y value) of the Y value is more preferably 0.33 to 0.35, and even more preferably 0.34 to 0.35.
 本発明の表面処理銅箔における表面処理皮膜の表面におけるJIS B 0601に準拠して測定した十点平均粗さRzjis値は、好ましくは0.8μm以上4.5μm以下である。十点平均粗さRzjis値が0.8μm以上であると、表面処理銅箔の生産性が向上する。十点平均粗さRzjis値が4.5μm以下であると、粗化粒子よりもマクロな表面の過度な凹凸が抑制されるので、耐粉落ち性が向上するとともに、高周波特性も向上する。このような観点から、十点平均粗さRzjis値は、より好ましくは1.0μm以上4.3μm以下、更に好ましくは1.5μm以上4.0μm以下、より更に好ましくは1.8μm以上3.8μm以下であり、より更に好ましくは2.0μm以上3.5μm以下である。 The ten-point average roughness Rzjis value measured in accordance with JIS B 0601 on the surface of the surface-treated film of the surface-treated copper foil of the present invention is preferably 0.8 μm or more and 4.5 μm or less. When the ten-point average roughness Rzjis value is 0.8 μm or more, the productivity of the surface-treated copper foil is improved. When the ten-point average roughness Rzjis value is 4.5 μm or less, excessive unevenness on the surface macroscopically compared to the roughened particles is suppressed, so that the powder removal resistance is improved and the high frequency characteristics are also improved. From this point of view, the ten-point average roughness Rzjis value is more preferably 1.0 μm or more and 4.3 μm or less, still more preferably 1.5 μm or more and 4.0 μm or less, still more preferably 1.8 μm or more and 3.8 μm. It is less than or equal to, and more preferably 2.0 μm or more and 3.5 μm or less.
 本発明の表面処理銅箔によれば、粉落ちが抑制されておりユーザーハンドリング性に優れている。また、該表面処理銅箔をプリント配線板の特に外層の導体回路に用いることにより、高い密着性と、1~10GHzの高周波信号を伝送した際の低伝送損失とを両立可能であり、かつ、高温下(260℃×20分)においても銅箔と樹脂基材(樹脂層)との密着性が保たれた、優れたプリント配線板を得ることができる。 According to the surface-treated copper foil of the present invention, powder falling is suppressed and user handleability is excellent. Further, by using the surface-treated copper foil for the conductor circuit of the printed wiring board, particularly the outer layer, it is possible to achieve both high adhesion and low transmission loss when a high-frequency signal of 1 to 10 GHz is transmitted. An excellent printed wiring board can be obtained in which the adhesion between the copper foil and the resin base material (resin layer) is maintained even at a high temperature (260 ° C. × 20 minutes).
<表面処理銅箔の製造方法>
 次に、本発明の表面処理銅箔の好ましい製造方法について、その一例を説明する。本発明では、銅箔基体の表面に、粗化粒子を形成する粗化処理を行うことが好ましい。
<Manufacturing method of surface-treated copper foil>
Next, an example of a preferred method for producing the surface-treated copper foil of the present invention will be described. In the present invention, it is preferable to perform a roughening treatment for forming roughened particles on the surface of the copper foil substrate.
(銅箔基体)
 銅箔基体としては、粗大な凹凸が存在しない平滑で光沢のある表面を持つ、電解銅箔や圧延銅箔を用いることが好ましい。中でも、生産性やコストの観点で電解銅箔のS(シャイニー)面を用いることが好ましく、そのS面に後述する粗化処理を施すことが好ましい。粗化粒子を形成するのに適したS面形状を得るためには、電解銅箔製造に使用するドラム状カソード表面を1500番~2500番のバフで研磨することが好ましい。
(Copper foil substrate)
As the copper foil substrate, it is preferable to use an electrolytic copper foil or a rolled copper foil having a smooth and glossy surface without coarse irregularities. Above all, from the viewpoint of productivity and cost, it is preferable to use the S (shiny) surface of the electrolytic copper foil, and it is preferable to perform the roughening treatment described later on the S surface. In order to obtain an S-plane shape suitable for forming roughened particles, it is preferable to polish the drum-shaped cathode surface used for producing electrolytic copper foil with a buff of No. 1500 to No. 2500.
(粗化処理)
 粗化処理により、粗化処理層を形成する。粗化処理は、下記に示すような粗化めっき処理(1)と固定めっき処理(2)を行う。
(Roughening process)
A roughening treatment layer is formed by the roughening treatment. As the roughening treatment, the roughening plating treatment (1) and the fixed plating treatment (2) as shown below are performed.
・粗化めっき処理(1)
 粗化めっき処理(1)は、銅箔基体の少なくとも一方の面上に粗化粒子を形成する処理である。具体的には硫酸銅浴でめっき処理を行う。硫酸銅浴(粗化めっき液基本浴)には、粗化粒子の脱落、即ち「粉落ち」の防止を目的としたモリブデン(Mo)、砒素(As)、アンチモン(Sb)、ビスマス(Bi)、セレン(Se)、テルル(Te)、タングステン(W)等の従来から知られている添加剤の添加が可能であり、特にモリブデン(Mo)を添加することが好ましい。本発明者は、鋭意研究を行った結果、下記の要因が表面処理銅箔の表面性状に影響を及ぼすことを見出し、精妙にそれらの条件を設定することで、本発明の効果である高周波特性、密着性(常態密着性及び耐熱密着性)及び耐粉落ち性の要求特性を高い水準で満足させることができることを発見した。
・ Rough plating treatment (1)
The roughening plating treatment (1) is a treatment for forming roughened particles on at least one surface of the copper foil substrate. Specifically, the plating treatment is performed in a copper sulfate bath. In the copper sulfate bath (basic bath for roughened plating solution), molybdenum (Mo), arsenic (As), antimony (Sb), and bismuth (Bi) are used for the purpose of preventing roughened particles from falling off, that is, "powder falling off". , Serene (Se), Tellurium (Te), Tungsten (W) and other conventionally known additives can be added, and molybdenum (Mo) is particularly preferable. As a result of diligent research, the present inventor has found that the following factors affect the surface properties of the surface-treated copper foil, and by setting these conditions precisely, the high-frequency characteristics which are the effects of the present invention. , It was found that the required characteristics of adhesion (normal adhesion and heat-resistant adhesion) and powder removal resistance can be satisfied at a high level.
 粗化めっき処理(1)の硫酸銅浴の銅濃度は10~30g/Lとすることが好ましい。硫酸銅浴の銅濃度は10~30g/Lであると、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることができる。 The copper concentration of the copper sulfate bath in the rough plating treatment (1) is preferably 10 to 30 g / L. When the copper concentration of the copper sulfate bath is 10 to 30 g / L, the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is set to less than 0.8%, and 60 of TD. The degree mirror gloss Gs (60 °) is set to 0.4% or more, and the mirror gloss ratio of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD (Gs (45 °). ) / Gs (75 °)) can be 0.1 or more and 1.5 or less.
 硫酸銅浴に添加される添加剤について、例えばモリブデン(Mo)を例に挙げて説明する。モリブデン(Mo)濃度は、50~300mg/Lとすることが好ましい。モリブデン(Mo)濃度が50~300mg/Lであると、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることができる。 The additive added to the copper sulfate bath will be described by taking, for example, molybdenum (Mo) as an example. The molybdenum (Mo) concentration is preferably 50 to 300 mg / L. When the molybdenum (Mo) concentration is 50 to 300 mg / L, the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is less than 0.8%, and the TD is 60 degrees. Mirror gloss Gs (60 °) is set to 0.4% or more, and the mirror gloss ratio of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD (Gs (45 °)). / Gs (75 °)) can be 0.1 or more and 1.5 or less.
 次に、粗化めっき処理(1)の電解条件等を説明する。
 本発明において、めっき処理の方式は、例えば大量生産及び生産コストの観点で、ロール・ツー・ロール方式でのめっき処理が好ましい。
Next, the electrolytic conditions and the like of the rough plating treatment (1) will be described.
In the present invention, the plating treatment method is preferably a roll-to-roll method, for example, from the viewpoint of mass production and production cost.
 ロール・ツー・ロール方式における処理速度は、形成される粗化処理層の表面形状に関係しており、10~20m/分とすることが好ましい。処理速度が10~20m/分であると、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることができる。また、TDの85度鏡面光沢度Gs(85°)との関係においては、例えば、処理速度を10~18m/分とすることでTDの85度鏡面光沢度Gs(85°)を4%以上50%未満とすることができ、更に処理速度を12~17m/分とすることでGs(85°)を6%以上40%未満とすることができる。 The processing speed in the roll-to-roll method is related to the surface shape of the roughening treatment layer to be formed, and is preferably 10 to 20 m / min. When the treatment speed is 10 to 20 m / min, the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is set to less than 0.8%, and the 60-degree mirror gloss of TD is set. Gs (60 °) is set to 0.4% or more, and the mirror gloss ratio of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD (Gs (45 °) / Gs ( 75 °)) can be 0.1 or more and 1.5 or less. Regarding the relationship with the 85 degree mirror gloss Gs (85 °) of TD, for example, by setting the processing speed to 10 to 18 m / min, the 85 degree mirror gloss Gs (85 °) of TD is 4% or more. It can be less than 50%, and Gs (85 °) can be 6% or more and less than 40% by further setting the processing speed to 12 to 17 m / min.
 めっき処理の条件は、処理方式に応じて適宜調節すればよいが、特に銅イオンの拡散を抑制する観点で、めっき液の攪拌が起こり難い条件とすることが好ましい。そのため、ロール・ツー・ロール方式では、処理方向(処理速度の方向)と、極間のめっき液の流れの向き(極間流速の方向)とを一致させることが好ましい。また、ロール・ツー・ロール方式以外の方式では、静止浴の状態で処理することが望ましく、めっき処理中の攪拌は行わないことが好ましい。 The conditions of the plating treatment may be appropriately adjusted according to the treatment method, but it is preferable to set the conditions so that the plating solution is less likely to be agitated, especially from the viewpoint of suppressing the diffusion of copper ions. Therefore, in the roll-to-roll method, it is preferable that the processing direction (direction of processing speed) and the direction of flow of the plating solution between the poles (direction of interpole flow velocity) are matched. Further, in a method other than the roll-to-roll method, it is desirable to perform the treatment in a static bath state, and it is preferable not to perform stirring during the plating treatment.
 ところで、ロール・ツー・ロール方式及びその他の方式のいずれの場合も、めっき処理中に、ガスが発生する傾向があり、発生したガスの浮上に伴い攪拌が生じる可能性がある。
 例えば、バッチ式のようなロール・ツー・ロール方式以外のめっき処理の場合、本発明の処理は長くとも数秒程度という非常に短時間で終了するため、このようなガス発生による攪拌は特に考慮する必要は無い。
By the way, in both the roll-to-roll method and other methods, gas tends to be generated during the plating process, and stirring may occur as the generated gas floats.
For example, in the case of a plating process other than the roll-to-roll method such as a batch method, the process of the present invention is completed in a very short time of about several seconds at the longest, so stirring due to such gas generation is particularly considered. There is no need.
 しかし、ロール・ツー・ロール方式の場合には、連続処理となるため、処理槽中でガスは発生し続け、連続的に発生するガスは次々浮上するため、浮上方向にめっき液の流れが生じる。また、ロール・ツー・ロール方式の場合、銅箔基体がめっき液中に連続的に供給されるため、銅箔基体の搬送方向にめっき液の流れが生じる。この二つの流れが一致している場合には、上述のガスの発生はほぼ考慮する必要はない。しかし、この二つの流れが互いに逆向きである場合、処理表面に不要な攪拌力が生じ、銅イオンの拡散が促進されるおそれがある。そのため、ロール・ツー・ロール方式によりめっき処理を行う場合には、ガスの浮上方向と、銅箔基体の搬送方向(めっき処理の処理方向)とが一致するように、めっき処理を行う反応槽を選択することが好ましい。 However, in the case of the roll-to-roll method, since the processing is continuous, gas continues to be generated in the processing tank, and the continuously generated gas floats one after another, so that the plating solution flows in the floating direction. .. Further, in the case of the roll-to-roll method, since the copper foil substrate is continuously supplied into the plating solution, the plating solution flows in the transport direction of the copper foil substrate. When these two flows are in agreement, it is almost unnecessary to consider the above-mentioned gas generation. However, when these two flows are opposite to each other, an unnecessary stirring force is generated on the treated surface, and the diffusion of copper ions may be promoted. Therefore, when the plating process is performed by the roll-to-roll method, the reaction tank for the plating process is provided so that the floating direction of the gas and the transport direction of the copper foil substrate (the processing direction of the plating process) coincide with each other. It is preferable to select.
 粗化めっき処理(1)において、ロール・ツー・ロール方式のめっき処理を行う場合、処理速度と、処理方向に沿って流れるめっき液の極間流速(以下「処理方向極間流速」とする)との差分の絶対値は、1m/分未満とすることが好ましい。処理速度と処理方向極間流速との差分の絶対値が1m/分未満であると、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることが容易になる。 In the rough plating process (1), when a roll-to-roll plating process is performed, the processing speed and the interpolar flow velocity of the plating solution flowing along the processing direction (hereinafter referred to as "treatment direction interpole flow velocity"). The absolute value of the difference from and is preferably less than 1 m / min. When the absolute value of the difference between the treatment speed and the flow velocity between the poles in the treatment direction is less than 1 m / min, the 20 degree mirror gloss Gs (20 °) of TD on the surface of the surface treatment film of the surface treatment copper foil is 0.8. %, 60 degree mirror gloss Gs (60 °) of TD is 0.4% or more, and mirror gloss of 45 degree mirror gloss Gs (45 °) with respect to 75 degree mirror gloss Gs (75 °) of TD. It becomes easy to set the degree ratio (Gs (45 °) / Gs (75 °)) to 0.1 or more and 1.5 or less.
 粗化めっき処理(1)では、高電流密度から低電流密度へ段階的に低下させながらめっき処理を行うことが好ましい。特に、高電流密度から中電流密度、低電流密度へ電流密度を3段階に低下させながら、めっき処理を行うことが好ましい。上記高電流密度は50~80A/dmであることが好ましく、上記中電流密度は45~65A/dmであることが好ましく、上記低電流密度は20~50A/dmであることが好ましい。また、上記めっき処理の前に、4~10A/dmの電流密度で3秒未満の予備めっきを行うことが好ましい。予備めっきで予め表面を覆うことで、所望の粗化粒子形状を得ることが容易になる。これらの電流密度でめっき処理を行うことにより、粗化粒子の根元で過剰に樹枝状の析出が成長してしまって粉落ち等を起こす様なことや、樹枝状の析出が乏しくなって特に耐熱密着性が劣ってしまう様なことも無く、粗化粒子根元から頂点までバランス良く樹枝状の析出が成長する。すなわち、上記のように電流密度を段階的に低減させながら粗化めっき処理を行うことにより、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることができる。 In the rough plating treatment (1), it is preferable to perform the plating treatment while gradually reducing the current density from a high current density to a low current density. In particular, it is preferable to perform the plating treatment while reducing the current density in three stages from high current density to medium current density and low current density. The high current density is preferably 50 to 80 A / dm 2 , the medium current density is preferably 45 to 65 A / dm 2 , and the low current density is preferably 20 to 50 A / dm 2. .. Further, before the plating treatment, it is preferable to perform preliminary plating at a current density of 4 to 10 A / dm 2 for less than 3 seconds. By covering the surface in advance with pre-plating, it becomes easy to obtain a desired roughened particle shape. By performing the plating treatment at these current densities, excessive dendritic precipitation grows at the roots of the coarsened particles, causing powder falling, etc., and dendritic precipitation becomes poor, which is particularly heat resistant. The dendritic precipitate grows in a well-balanced manner from the root to the apex of the coarsened particles without inferior adhesion. That is, by performing the roughening plating treatment while gradually reducing the current density as described above, the 20-degree mirror glossiness Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is set to 0. It is less than 8%, the 60 degree mirror gloss Gs (60 °) of TD is 0.4% or more, and the mirror surface of 45 degree mirror gloss Gs (45 °) with respect to the 75 degree mirror gloss Gs (75 °) of TD. The gloss ratio (Gs (45 °) / Gs (75 °)) can be 0.1 or more and 1.5 or less.
 電流密度(A/dm)と処理時間(秒)の積は、高電流密度処理(=S)で20~200{(A/dm)・秒}、中電流密度処理(=S)で20~200{(A/dm)・秒}、低電流密度処理(=S)で20~200{(A/dm)・秒}、さらに3段階全ての処理合計(=S)で170~270{(A/dm)・秒}とすることが好ましい。上記積を所定の範囲内とすれば、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることができる。 The product of the current density (A / dm 2 ) and the processing time (seconds) is 20 to 200 {(A / dm 2 ) · seconds} in the high current density processing (= S 1 ), and the medium current density processing (= S 2). ) Is 20 to 200 {(A / dm 2 ) · sec}, low current density processing (= S 3 ) is 20 to 200 {(A / dm 2 ) · sec}, and the total processing of all three stages (= S) It is preferable that T ) is 170 to 270 {(A / dm 2 ) · sec}. When the above product is within a predetermined range, the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is less than 0.8%, and the 60-degree mirror gloss Gs of TD is set. (60 °) is set to 0.4% or more, and the mirror gloss ratio (Gs (45 °) / Gs (75 °)) of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD. °))) can be 0.1 or more and 1.5 or less.
・固定めっき処理(2)
 固定めっき処理(2)は、上記粗化めっき処理(1)で表面処理をした銅箔基体にかぶせめっきを行う処理である。これにより、粗化めっき処理(1)で形成した粗化粒子の形状を維持させることができる。
 本発明における固定めっき処理は、粗化めっき処理と同じ組成の硫酸銅浴を使用して、同等の浴温でめっき処理する。硫酸銅浴の組成及び浴温は、後段で詳細に説明する。
 通常、粗化めっき処理と固定めっき処理とで異なる組成のめっき液を用いる。固定めっき処理では、粗化めっき処理の様なヤケめっきではなく、平滑なめっきを行うために粗化めっき処理よりも銅濃度が高く浴温も高いめっき液を用いる。
 一方、本発明では、固定めっき処理においても粗化めっき処理と同じ硫酸銅浴を使用して、同等の浴温でめっき処理を行う。こうすることにより、粉落ちを防ぐための十分な粗化粒子の固定をしつつも粗化粒子の表面形状が過度に平滑化されないので複雑な凹凸表面形状を持つ粗化面となる。すなわち、粗化めっき処理と同じ組成の硫酸銅浴を使用し、同等の浴温で固定めっき処理を行うことにより、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることができる。
・ Fixed plating (2)
The fixed plating treatment (2) is a treatment of covering and plating the copper foil substrate surface-treated in the roughening plating treatment (1). As a result, the shape of the roughened particles formed in the roughened plating process (1) can be maintained.
In the fixed plating treatment in the present invention, a copper sulfate bath having the same composition as the roughened plating treatment is used, and the plating treatment is performed at the same bath temperature. The composition and bath temperature of the copper sulfate bath will be described in detail later.
Usually, plating solutions having different compositions are used for the rough plating treatment and the fixed plating treatment. In the fixed plating process, a plating solution having a higher copper concentration and a higher bath temperature than the roughened plating process is used in order to perform smooth plating, instead of discoloration plating as in the roughened plating process.
On the other hand, in the present invention, the same copper sulfate bath as the roughened plating treatment is used in the fixed plating treatment, and the plating treatment is performed at the same bath temperature. By doing so, the surface shape of the roughened particles is not excessively smoothed while sufficiently fixing the roughened particles to prevent powder falling, so that the roughened surface has a complicated uneven surface shape. That is, by using a copper sulfate bath having the same composition as the roughened plating treatment and performing the fixed plating treatment at the same bath temperature, the 20-degree mirror gloss Gs of TD on the surface of the surface-treated film of the surface-treated copper foil ( 20 °) is less than 0.8%, TD's 60 degree mirror gloss Gs (60 °) is 0.4% or more, and TD's 75 degree mirror gloss Gs (75 °) is 45 degree mirror gloss Gs. The mirror gloss ratio (Gs (45 °) / Gs (75 °)) of (45 °) can be 0.1 or more and 1.5 or less.
 固定めっき処理(2)の電解条件等を説明する。
 めっき処理の方式は、例えば大量生産及び生産コストの観点で、ロール・ツー・ロール方式でのめっき処理が好ましい。固定めっき処理をロール・ツー・ロール方式で行う場合に、処理速度と、極間流速との差分の絶対値は、6~15m/分とすることが好ましい。処理速度と極間流速との差分の絶対値が6~15m/分であると、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることができる。なお、固定めっき処理では、処理速度の流の方向(処理方向)と極間流速の流の方向とは一致していなくてもよく、互いに逆向きになる場合は、一方の流速は他方の流速に対してマイナスの流速として計算する。
The electrolytic conditions and the like of the fixed plating process (2) will be described.
As the plating method, for example, from the viewpoint of mass production and production cost, a roll-to-roll method is preferable. When the fixed plating process is performed by the roll-to-roll method, the absolute value of the difference between the processing speed and the interpole flow velocity is preferably 6 to 15 m / min. When the absolute value of the difference between the treatment speed and the interpolar flow velocity is 6 to 15 m / min, the 20 degree mirror gloss Gs (20 °) of TD on the surface of the surface treatment film of the surface treatment copper foil is 0.8%. Less than, 60 degree mirror gloss Gs (60 °) of TD is 0.4% or more, and mirror gloss of 45 degree mirror gloss Gs (45 °) with respect to 75 degree mirror gloss Gs (75 °) of TD. The ratio (Gs (45 °) / Gs (75 °)) can be 0.1 or more and 1.5 or less. In the fixed plating process, the flow direction of the processing speed (treatment direction) and the flow direction of the interpolar flow velocity do not have to coincide with each other, and when they are opposite to each other, one flow velocity is the other flow velocity. It is calculated as a negative flow velocity.
 固定めっき処理(2)では、電流密度は3~25A/dmであることが好ましい。上記電流密度でめっき処理を行うことにより、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることができる。 In the fixed plating process (2), the current density is preferably 3 to 25 A / dm 2. By performing the plating treatment at the above current density, the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is set to less than 0.8%, and the 60-degree mirror gloss Gs of TD is set. (60 °) is set to 0.4% or more, and the mirror gloss ratio (Gs (45 °) / Gs (75 °)) of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD. °))) can be 0.1 or more and 1.5 or less.
 また、粗化めっき処理(1)の電流密度と処理時間の積Sに対する固定めっき処理(2)の電流密度と処理時間の積Kの比率[(K/S)×100](%)は、20~150%とすることが好ましい。上記比率[(K/S)×100]が、20~150%であると、表面処理銅箔の表面処理皮膜の表面におけるTDの20度鏡面光沢度Gs(20°)を0.8%未満とし、TDの60度鏡面光沢度Gs(60°)を0.4%以上とし、TDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))を0.1以上1.5以下とすることができる。 The ratio of the product K of the current density and processing time of fixed plating to the product S T of the current density and processing time of roughening plating (1) (2) [( K / S T) × 100] (%) Is preferably 20 to 150%. When the above ratio [(K / ST ) × 100] is 20 to 150%, the 20-degree mirror gloss Gs (20 °) of TD on the surface of the surface-treated film of the surface-treated copper foil is 0.8%. Less than, 60 degree mirror gloss Gs (60 °) of TD is 0.4% or more, and mirror gloss of 45 degree mirror gloss Gs (45 °) with respect to 75 degree mirror gloss Gs (75 °) of TD. The ratio (Gs (45 °) / Gs (75 °)) can be 0.1 or more and 1.5 or less.
 以下、粗化めっき処理用めっき液及び固定めっき処理用めっき液の組成及び電解条件の一例を示す。なお、下記条件は好ましい一例であり、本発明の効果を妨げない範囲で、必要に応じて添加剤の種類や量、電解条件を適宜変更、調整することができる。 The composition and electrolytic conditions of the rough plating treatment plating solution and the fixed plating treatment plating solution are shown below. The following conditions are a preferable example, and the type and amount of the additive and the electrolytic conditions can be appropriately changed and adjusted as necessary within a range that does not interfere with the effects of the present invention.
<粗化めっき処理(1)の条件>
 めっき液の組成
  硫酸銅五水和物・・・銅(原子)換算で、10~30g/L
  硫酸・・・100~250g/L
  モリブデン酸ナトリウム・・・モリブデン(原子)換算で、50~300mg/L
 処理速度・・・10~20m/分
 処理方向極間流速・・・5~20.5m/分
 予備めっき電流密度・・・4~10A/dm
 高電流密度・・・50~80A/dm
 中電流密度・・・45~65A/dm
 低電流密度・・・20~50A/dm
 予備めっき処理時間・・・1.0~3.0秒
 高電流密度処理時間・・・1.2~3.0秒
 中電流密度処理時間・・・0.8~4.0秒
 低電流密度処理時間・・・0.5~2.0秒
 浴温・・・20~30℃
<Conditions for rough plating (1)>
Composition of plating solution Copper sulfate pentahydrate: 10 to 30 g / L in terms of copper (atom)
Sulfuric acid: 100-250 g / L
Sodium molybdate: 50 to 300 mg / L in terms of molybdenum (atom)
Processing speed: 10 to 20 m / min Processing direction Polar flow velocity: 5 to 20.5 m / min Pre-plating current density: 4 to 10 A / dm 2
High current density: 50 to 80 A / dm 2
Medium current density: 45 to 65 A / dm 2
Low current density: 20 to 50 A / dm 2
Pre-plating processing time: 1.0 to 3.0 seconds High current density processing time: 1.2 to 3.0 seconds Medium current density processing time: 0.8 to 4.0 seconds Low current density Treatment time: 0.5 to 2.0 seconds Bath temperature: 20 to 30 ° C
<固定めっき処理(2)の条件>
 めっき液の組成・・・粗化めっき処理用めっき液と同じ
  硫酸銅五水和物・・・銅(原子)換算で、10~30g/L
  硫酸・・・100~250g/L
  モリブデン酸ナトリウム・・・モリブデン(原子)換算で、50~300mg/L
 処理速度・・・5~20m/分
 処理方向極間流速・・・1~30m/分
 電流密度・・・3~25A/dm
 処理時間・・・1~15秒
 浴温・・・粗化めっき処理用めっき液の浴温と同じ、20~30℃
<Conditions for fixed plating (2)>
Composition of plating solution: Same as plating solution for roughening plating Copper sulfate pentahydrate: 10 to 30 g / L in terms of copper (atom)
Sulfuric acid: 100-250 g / L
Sodium molybdate: 50 to 300 mg / L in terms of molybdenum (atom)
Processing speed: 5 to 20 m / min Processing direction Polar flow velocity: 1 to 30 m / min Current density: 3 to 25 A / dm 2
Treatment time: 1 to 15 seconds Bath temperature: 20 to 30 ° C, which is the same as the bath temperature of the plating solution for rough plating.
 さらに、本発明の表面処理銅箔は、さらに、該粗化処理層上に、直接又は、ニッケル(Ni)を含有する下地層、亜鉛(Zn)を含有する耐熱処理層及びクロム(Cr)を含有する防錆処理層等の中間層を介して、シランカップリング剤層がさらに形成されていてもよい。なお、上記中間層及びシランカップリング剤層はその厚みが非常に薄いため、表面処理銅箔の粗化面における粗化粒子の粒子形状に影響を与えるものではない。表面処理銅箔の粗化面における粗化粒子の粒子形状は、該粗化面に対応する粗化処理層の表面における粗化粒子の粒子形状で実質的に決定される。 Further, the surface-treated copper foil of the present invention further has a base layer containing nickel (Ni), a heat-resistant treatment layer containing zinc (Zn), and chromium (Cr) directly or directly on the roughened layer. A silane coupling agent layer may be further formed via an intermediate layer such as a rust preventive treatment layer contained therein. Since the thickness of the intermediate layer and the silane coupling agent layer is very thin, it does not affect the particle shape of the roughened particles on the roughened surface of the surface-treated copper foil. The particle shape of the roughened particles on the roughened surface of the surface-treated copper foil is substantially determined by the particle shape of the roughened particles on the surface of the roughened surface corresponding to the roughened surface.
 また、シランカップリング剤層の形成方法としては、例えば、表面処理銅箔の前記粗化処理層の凹凸表面上に、直接又は中間層を介してシランカップリング剤溶液を塗布した後、風乾(自然乾燥)又は加熱乾燥して形成する方法が挙げられる。塗布されたカップリング剤溶液は、溶液中の水が蒸発すれば、シランカップリング剤層が形成されることで本発明の効果が十分に発揮される。50~180℃で加熱乾燥すると、シランカップリング剤と銅箔の反応が促進される点で好適である。 As a method for forming the silane coupling agent layer, for example, a silane coupling agent solution is applied directly or via an intermediate layer on the uneven surface of the roughened surface of the surface-treated copper foil, and then air-dried ( A method of forming by natural drying) or heat drying can be mentioned. In the applied coupling agent solution, when the water in the solution evaporates, a silane coupling agent layer is formed, so that the effect of the present invention is fully exhibited. Heat drying at 50 to 180 ° C. is preferable in that the reaction between the silane coupling agent and the copper foil is promoted.
 シランカップリング剤層は、エポキシ系シラン、アミノ系シラン、ビニル系シラン、メタクリル系シラン、アクリル系シラン、スチリル系シラン、ウレイド系シラン、メルカプト系シラン、スルフィド系シラン、イソシアネート系シランのいずれか1種以上を含有することが好ましい。 The silane coupling agent layer is any one of epoxy-based silane, amino-based silane, vinyl-based silane, methacrylic-based silane, acrylic-based silane, styryl-based silane, ureido-based silane, mercapto-based silane, sulfide-based silane, and isocyanate-based silane. It preferably contains more than a seed.
 その他の実施形態として、粗化処理層とシランカップリング剤層との間に、Niを含有する下地層、Znを含有する耐熱処理層及びCrを含有する防錆処理層の中から選択される少なくとも1層の中間層を有することが好ましい。 As another embodiment, between the roughening treatment layer and the silane coupling agent layer, a Ni-containing base layer, a Zn-containing heat-resistant treatment layer, and a Cr-containing rust preventive treatment layer are selected. It is preferable to have at least one intermediate layer.
 Niを含有する下地層は、例えば銅箔基体や粗化処理層中の銅(Cu)が樹脂基材側に拡散し、銅害が発生して密着性が低下することがある場合には、粗化処理層とシランカップリング剤層との間に形成することが好ましい。Niを含有する下地層は、ニッケル(Ni)、ニッケル(Ni)-リン(P)、ニッケル(Ni)-亜鉛(Zn)の中から選択される少なくとも1種で形成することが好ましい。 In the base layer containing Ni, for example, when copper (Cu) in the copper foil substrate or the roughening treatment layer diffuses to the resin substrate side, copper damage may occur and the adhesion may decrease. It is preferably formed between the roughening treatment layer and the silane coupling agent layer. The Ni-containing base layer is preferably formed of at least one selected from nickel (Ni), nickel (Ni) -phosphorus (P), and nickel (Ni) -zinc (Zn).
 Znを含有する耐熱処理層は、耐熱性をさらに向上させる必要がある場合に形成することが好ましい。Znを含有する耐熱処理層は、例えば亜鉛、又は亜鉛を含有する合金、即ち、亜鉛(Zn)-錫(Sn)、亜鉛(Zn)-ニッケル(Ni)、亜鉛(Zn)-コバルト(Co)、亜鉛(Zn)-銅(Cu)、亜鉛(Zn)-クロム(Cr)及び亜鉛(Zn)-バナジウム(V)の中から選択される少なくとも1種の亜鉛を含有する合金で形成することが好ましい。 The heat-resistant treatment layer containing Zn is preferably formed when it is necessary to further improve the heat resistance. The heat-resistant treatment layer containing Zn is, for example, zinc or an alloy containing zinc, that is, zinc (Zn) -tin (Sn), zinc (Zn) -nickel (Ni), zinc (Zn) -cobalt (Co). , Zinc (Zn) -Copper (Cu), Zinc (Zn) -Chrome (Cr) and Zinc (Zn) -Vanadium (V) can be formed with an alloy containing at least one zinc. preferable.
 Crを含有する防錆処理層は、耐食性をさらに向上させる必要がある場合に形成することが好ましい。防錆処理層としては、例えばクロムめっきにより形成されるクロム層、クロメート処理により形成されるクロメート層が挙げられる。 The rust preventive treatment layer containing Cr is preferably formed when it is necessary to further improve the corrosion resistance. Examples of the rust preventive treatment layer include a chrome layer formed by chrome plating and a chromate layer formed by chromate treatment.
 上記の下地層、耐熱処理層及び防錆処理層は、これらの三層の全てを形成する場合には、粗化処理層上に、この順序で形成するのが好ましく、また、用途や目的とする特性に応じて、いずれか一層又は二層のみを形成してもよい。 When all of these three layers are formed, the above-mentioned base layer, heat-resistant treatment layer and rust-prevention treatment layer are preferably formed on the roughening treatment layer in this order, and the application and purpose. Either one layer or only two layers may be formed depending on the characteristics to be applied.
〔表面処理銅箔の作製〕
 以下に、本発明の表面処理銅箔の作製方法をまとめる。
 本発明では、以下の形成工程(S1)~(S5)に従い、表面処理銅箔を作製することが好ましい。
(S1)粗化処理層の形成工程
 銅箔基体上に、電析により微細な凹凸表面を持つ粗化粒子から成る粗化処理層を形成する。
(S2)下地層の形成工程
 粗化処理層上に、必要によりNiを含有する下地層を形成する。
(S3)耐熱処理層の形成工程
 粗化処理層上又は下地層上に、必要によりZnを含有する耐熱処理層を形成する。
(S4)防錆処理層の形成工程
 粗化処理層上、又は必要により粗化処理層上に形成した下地層及び/又は耐熱処理層上に、必要によりCrを含有する防錆処理層を形成する。
(S5)シランカップリング剤層の形成工程
 粗化処理層上に、直接シランカップリング剤層を形成するか、又は下地層、耐熱処理層及び防錆処理層の少なくとも1層を形成した中間層を介してシランカップリング剤層を形成する。
[Preparation of surface-treated copper foil]
The method for producing the surface-treated copper foil of the present invention is summarized below.
In the present invention, it is preferable to prepare the surface-treated copper foil according to the following forming steps (S1) to (S5).
(S1) Step of Forming Roughening Treatment Layer A roughening treatment layer composed of roughened particles having a fine uneven surface is formed on a copper foil substrate by electrodeposition.
(S2) Substrate Formation Step A Ni-containing underlayer is formed on the roughened layer, if necessary.
(S3) Step of Forming Heat Resistant Treatment Layer A heat resistant treatment layer containing Zn is formed on the roughening treatment layer or the base layer, if necessary.
(S4) Forming Step of Anti-corrosion Treatment Layer A rust-prevention treatment layer containing Cr is formed on the roughening treatment layer or, if necessary, on the base layer and / or the heat resistance treatment layer formed on the roughening treatment layer if necessary. do.
(S5) Step of Forming Silane Coupling Agent Layer An intermediate layer in which a silane coupling agent layer is directly formed on the roughened treatment layer, or at least one layer of a base layer, a heat resistant treatment layer and a rust prevention treatment layer is formed. A silane coupling agent layer is formed through.
 また、本発明の表面処理銅箔は、プリント配線板用銅張積層板の製造に好適に用いられる。このような銅張積層板は、高密着性及び高周波帯域での伝送特性に優れるプリント配線板の製造に好適に用いられ、優れた効果を発揮する。本発明の表面処理銅箔は、高周波帯域(特に1~10GHzの高周波帯域)で使用される高周波帯域用プリント配線板として使用される場合に好適である。 Further, the surface-treated copper foil of the present invention is suitably used for manufacturing a copper-clad laminate for a printed wiring board. Such a copper-clad laminate is suitably used for manufacturing a printed wiring board having excellent adhesion and transmission characteristics in a high frequency band, and exhibits excellent effects. The surface-treated copper foil of the present invention is suitable when used as a printed wiring board for a high frequency band used in a high frequency band (particularly, a high frequency band of 1 to 10 GHz).
 また、プリント配線板用銅張積層板は、本発明の表面処理銅箔を用いて、公知の方法により形成することができる。例えば、プリント配線板用銅張積層板は、表面処理銅箔と樹脂基材(絶縁基板)とを、表面処理銅箔の粗化面(貼着面)と樹脂基材とが向かい合うように、積層貼着することにより製造される。このようなプリント配線板用銅張積層板は、上記表面処理銅箔の表面処理皮膜が形成された面(粗化面)と樹脂基材とが接着されてなる。なお、絶縁基板としては、例えば、フレキシブル樹脂基板又はリジット樹脂基板等が挙げられるが、本発明の表面処理銅箔は、外層に高周波帯域での伝送特性および高い密着性が要求されるリジット樹脂基板との組み合わせにおいて特に好適である。 Further, the copper-clad laminate for a printed wiring board can be formed by a known method using the surface-treated copper foil of the present invention. For example, in a copper-clad laminate for a printed wiring board, the surface-treated copper foil and the resin base material (insulating substrate) are opposed to each other so that the roughened surface (attached surface) of the surface-treated copper foil and the resin base material face each other. Manufactured by laminating and pasting. Such a copper-clad laminate for a printed wiring board is formed by adhering a surface (roughened surface) on which a surface-treated film of the surface-treated copper foil is formed and a resin base material. Examples of the insulating substrate include a flexible resin substrate and a rigid resin substrate. The surface-treated copper foil of the present invention is a rigid resin substrate in which the outer layer is required to have transmission characteristics in a high frequency band and high adhesion. It is particularly suitable in combination with.
 また、プリント配線板用銅張積層板を製造する場合には、シランカップリング剤層を有する表面処理銅箔と、絶縁基板とを加熱プレスによって貼り合わせることにより製造すればよい。なお、絶縁基板上にシランカップリング剤を塗布し、シランカップリング剤が塗布された絶縁基板と、最表面に防錆処理層を有する表面処理銅箔とを加熱プレスによって貼り合わせることにより作製されたプリント配線板用銅張積層板も、本発明と同等の効果を有する。 Further, when manufacturing a copper-clad laminate for a printed wiring board, it may be manufactured by laminating a surface-treated copper foil having a silane coupling agent layer and an insulating substrate by a heating press. It is produced by applying a silane coupling agent on an insulating substrate, and bonding the insulating substrate coated with the silane coupling agent and a surface-treated copper foil having a rust-preventive treatment layer on the outermost surface by a heat press. The copper-clad laminate for printed wiring boards also has the same effect as that of the present invention.
 また、プリント配線板は、上記プリント配線板用銅張積層板を用いて、公知の方法により形成することができる。このようなプリント配線板は、上記プリント配線板用銅張積層板を備える。 Further, the printed wiring board can be formed by a known method using the copper-clad laminate for the printed wiring board. Such a printed wiring board includes the copper-clad laminate for the printed wiring board.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の一例に過ぎない。本発明は、本発明の概念及び特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。 Although the embodiment of the present invention has been described above, the above embodiment is only an example of the present invention. The present invention includes all aspects included in the concept of the present invention and the scope of claims, and can be variously modified within the scope of the present invention.
 以下に、本発明を実施例に基づきさらに詳細に説明するが、以下は本発明の一例である。 The present invention will be described in more detail below based on examples, but the following is an example of the present invention.
(製造例:銅箔基体の準備)
 粗化処理を施すための基材となる銅箔基体として、下記カソード及びアノードを用い、下記組成の硫酸銅電解液を使用して、下記電解条件により、厚さ18μmである、ロール状の電解銅箔を作製した。
(Manufacturing example: Preparation of copper foil substrate)
A roll-shaped electrolysis having a thickness of 18 μm is used under the following electrolytic conditions using the following cathode and anode as the copper foil substrate to be the base material for roughening treatment and the copper sulfate electrolytic solution having the following composition. A copper foil was produced.
<カソード及びアノード>
 カソード:#2000のバフ研磨により調整されたチタン製の回転ドラム
 アノード:寸法安定性陽極DSA(登録商標)
<硫酸銅電解液組成>
 硫酸銅五水和物:Cu換算で、80g/L
 HSO   :70g/L
 塩素濃度   :30mg/L
(添加剤)
 ヒドロキシエチルセルロース  :5mg/L
<電解条件>
 浴温   :58℃
 電流密度 :50A/dm
<Cathode and anode>
Cathode: Titanium rotary drum adjusted by buffing # 2000 Anode: Dimensional stability anode DSA®
<Copper sulfate electrolyte composition>
Copper sulfate pentahydrate: 80 g / L in terms of Cu
H 2 SO 4 : 70g / L
Chlorine concentration: 30 mg / L
(Additive)
Hydroxyethyl cellulose: 5 mg / L
<Electrolysis conditions>
Bath temperature: 58 ° C
Current density: 50A / dm 2
(実施例1)
 実施例1では、以下の工程[1]~[3]を行い、表面処理銅箔を得た。
(Example 1)
In Example 1, the following steps [1] to [3] were performed to obtain a surface-treated copper foil.
[1]粗化処理層の形成
 電気めっき処理により、上記銅箔のS面に粗化めっき処理面を形成した。この粗化めっき処理面は、下記の粗化めっき液、固定めっき液共通基本浴組成を用いて、極間流速、電流密度、処理時間を下記表1及び表2記載の通りとして形成した。モリブデン濃度は、モリブデン酸ナトリウム二水和物を純水に溶解した水溶液を基本浴に加えることで調整した。
[1] Formation of roughening treatment layer A roughening plating treatment surface was formed on the S surface of the copper foil by electroplating treatment. This roughened plating surface was formed by using the following roughening plating solution and fixed plating solution common basic bath composition, and the interpolar flow velocity, current density, and treatment time were as shown in Tables 1 and 2 below. The molybdenum concentration was adjusted by adding an aqueous solution of sodium molybdate dihydrate in pure water to the basic bath.
<粗化めっき液、固定めっき液共通基本浴組成、浴温>
 硫酸銅五水和物          :Cu換算で、25g/L
 HSO             :160g/L
 モリブデン酸ナトリウム二水和物  :Mo換算で、150mg/L
 浴温               :26℃
<Basic bath composition common to roughened plating solution and fixed plating solution, bath temperature>
Copper sulfate pentahydrate: 25 g / L in terms of Cu
H 2 SO 4 : 160g / L
Sodium molybdate dihydrate: 150 mg / L in terms of Mo
Bath temperature: 26 ° C
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[2]金属処理層の形成
 続いて、上記[1]で形成した粗化処理層の表面に、下記の条件で、Ni、Zn、Crの順に金属めっきを施して金属処理層(中間層)を形成した。
[2] Formation of Metal Treatment Layer Subsequently, the surface of the roughening treatment layer formed in [1] above is metal-plated in the order of Ni, Zn, Cr under the following conditions to form a metal treatment layer (intermediate layer). Was formed.
<Niめっき条件>
 Ni    :40g/L
 HBO  :5g/L
 浴温    :20℃
 pH    :3.6
 電流密度  :0.2A/dm
 処理時間  :10秒
<Ni plating conditions>
Ni: 40g / L
H 3 BO 3 : 5 g / L
Bath temperature: 20 ° C
pH: 3.6
Current density: 0.2A / dm 2
Processing time: 10 seconds
<Znめっき条件>
 Zn    :2.5g/L
 NaOH  :40g/L
 浴温    :20℃
 電流密度  :0.3A/dm
 処理時間  :5秒
<Zn plating conditions>
Zn: 2.5 g / L
NaOH: 40 g / L
Bath temperature: 20 ° C
Current density: 0.3A / dm 2
Processing time: 5 seconds
<Crめっき条件>
 Cr    :5g/L
 浴温    :30℃
 pH    :2.2
 電流密度  :5A/dm
 処理時間  :5秒
<Cr plating conditions>
Cr: 5g / L
Bath temperature: 30 ° C
pH: 2.2
Current density: 5A / dm 2
Processing time: 5 seconds
[3]シランカップリング剤層の形成
 最後に、上記[2]にて形成した金属処理層(特に、最表面のCrめっき層)の上に、濃度0.2質量%の3-グリシドキシプロピルトリメトキシシラン水溶液を塗布し、100℃で乾燥させ、シランカップリング剤層を形成した。
[3] Formation of silane coupling agent layer Finally, 3-glycidoxy having a concentration of 0.2% by mass is placed on the metal-treated layer (particularly, the outermost Cr plating layer) formed in [2] above. An aqueous solution of propyltrimethoxysilane was applied and dried at 100 ° C. to form a silane coupling agent layer.
(実施例2~12及び比較例1~5)
 実施例2~12及び比較例1~5は、粗化処理層の形成工程[1]において、上記表1及び表2記載の通りとした以外は、実施例1と同様の方法にて、表面処理銅箔を得た。
(Examples 2 to 12 and Comparative Examples 1 to 5)
In Examples 2 to 12 and Comparative Examples 1 to 5, the surfaces were subjected to the same method as in Example 1 except as described in Tables 1 and 2 above in the roughening treatment layer forming step [1]. A treated copper foil was obtained.
[評価]
 上記実施例及び比較例に係る表面処理銅箔について、下記に示す特性評価を行った。
各特性の評価条件は下記の通りであり、特に断らない限り、各測定は常温(20℃±5℃)にて行ったものである。結果を表3に示す。
[evaluation]
The characteristics of the surface-treated copper foils according to the above Examples and Comparative Examples were evaluated as shown below.
The evaluation conditions for each characteristic are as follows, and unless otherwise specified, each measurement was performed at room temperature (20 ° C ± 5 ° C). The results are shown in Table 3.
[鏡面光沢度]
 表面処理銅箔の粗化面について、光沢度計(日本電色工業株式会社製、VG7000)を使用し、JIS Z 8741:1997に基づき、TDの20度鏡面光沢度Gs(20°)、TDの45度鏡面光沢度Gs(45°)、TDの60度鏡面光沢度Gs(60°)、TDの75度鏡面光沢度Gs(75°)及びTDの85度鏡面光沢度Gs(85°)をそれぞれ測定した。なお、測定は、受光角毎に、表面処理銅箔の長手方向(搬送方向、MD方向)に対して直交方向(TD方向)で3回実施し、測定値の全て(N=3)を平均して、各受光角に対応する鏡面光沢度とした。
[Mirror gloss]
For the roughened surface of the surface-treated copper foil, a glossiness meter (manufactured by Nippon Denshoku Industries Co., Ltd., VG7000) was used, and based on JIS Z 8741: 1997, TD's 20-degree mirror glossiness Gs (20 °), TD. 45 degree mirror gloss Gs (45 °), TD 60 degree mirror gloss Gs (60 °), TD 75 degree mirror gloss Gs (75 °) and TD 85 degree mirror gloss Gs (85 °) Were measured respectively. The measurement was performed three times in the orthogonal direction (TD direction) with respect to the longitudinal direction (conveyance direction, MD direction) of the surface-treated copper foil for each light receiving angle, and all the measured values (N = 3) were averaged. Then, the mirror glossiness corresponding to each light receiving angle was obtained.
[XYZ表色系のY値、x値及びy値]
 表面処理銅箔の粗化面について、明度計(スガ試験機株式会社製、機種名:SMカラーコンピューター、型番:SM-T45)を使用して、JIS Z 8781に基づき、CIEで規定するXYZ表色系のX値、Y値及びZ値を測定した。そして、これらの値を用いて、反射率Y値及び混色比x値とy値を算出した。
[Y value, x value and y value of XYZ color system]
Surface-treated copper foil roughened surface, using a brightness meter (manufactured by Suga Test Instruments Co., Ltd., model name: SM color computer, model number: SM-T45), based on JIS Z 8781, XYZ table specified by CIE The X value, Y value and Z value of the color system were measured. Then, using these values, the reflectance Y value, the color mixing ratio x value, and the y value were calculated.
[十点平均粗さ]
 表面処理銅箔の粗化面において、接触式表面粗さ測定機(株式会社小坂研究所製、「サーフコーダーSE1700」)用いて、JIS B 0601:2001で定義される十点平均粗さRzjis(μm)を表面処理銅箔の長手方向(搬送方向、MD方向)に対して直交方向(TD方向)で、すなわち、TDの十点平均粗さRzjis(μm)を測定した。
[10-point average roughness]
On the roughened surface of the surface-treated copper foil, a contact-type surface roughness measuring machine (manufactured by Kosaka Laboratory Co., Ltd., "Surf Coder SE1700") was used to determine the ten-point average roughness Rzjis (defined in JIS B 0601: 2001). μm) was measured in a direction (TD direction) orthogonal to the longitudinal direction (conveyance direction, MD direction) of the surface-treated copper foil, that is, the ten-point average roughness Rzjis (μm) of TD was measured.
[高周波特性の評価]
 高周波特性の評価として高周波帯域での伝送損失を測定した。詳細を以下に説明する。
 表面処理銅箔の粗化面を、パナソニック株式会社製のポリフェニレンエーテル系低誘電率樹脂基材であるMEGTRON6(厚さ80μm)を2枚重ねた両面に、面圧3.5MPa、200℃の条件で2時間プレスすることにより貼り合わせて、両面銅張積層板を作製した。得られた銅張積層板に回路加工を行い、伝送路幅300μm、長さ70mmのマイクロストリップラインを形成した回路基板を作製した。この回路基板の伝送路に、ネットワークアナライザ(Keysight Technologies社製、「N5247A」)を用いて高周波信号を伝送し、伝送損失を測定した。特性インピーダンスは50Ωとした。
 伝送損失の測定値は、絶対値が小さいほど伝送損失が少なく、高周波特性が良好であることを意味する。得られた測定値を指標にして、下記評価基準に基づき高周波特性を評価した。
 a:10GHzにおける伝送損失の絶対値が1.8dB未満
 b:10GHzにおける伝送損失の絶対値が1.8~2.0dB
 c:10GHzにおける伝送損失の絶対値が2.0dB以上
[Evaluation of high frequency characteristics]
The transmission loss in the high frequency band was measured as an evaluation of the high frequency characteristics. Details will be described below.
The roughened surface of the surface-treated copper foil was formed by stacking two MEGTRON6 (thickness 80 μm), which is a polyphenylene ether-based low-dielectric-constant resin base material manufactured by Panasonic Corporation, on both sides under the conditions of a surface pressure of 3.5 MPa and 200 ° C. A double-sided copper-clad laminate was prepared by laminating by pressing for 2 hours. The obtained copper-clad laminate was circuit-processed to produce a circuit board on which a microstrip line having a transmission line width of 300 μm and a length of 70 mm was formed. A high-frequency signal was transmitted to the transmission line of this circuit board using a network analyzer (“N5247A” manufactured by Keysight Technologies), and the transmission loss was measured. The characteristic impedance was set to 50Ω.
The measured value of the transmission loss means that the smaller the absolute value, the smaller the transmission loss and the better the high frequency characteristics. Using the obtained measured values as an index, the high frequency characteristics were evaluated based on the following evaluation criteria.
a: Absolute value of transmission loss at 10 GHz is less than 1.8 dB b: Absolute value of transmission loss at 10 GHz is 1.8 to 2.0 dB
c: Absolute value of transmission loss at 10 GHz is 2.0 dB or more
[常態密着性の評価]
 常態密着性の評価として、JIS C 6481:1996に基づき、剥離試験を行った。詳細を以下に説明する。
 上記[高周波特性の評価]に記載の方法と同様の方法で銅張積層板を作製し、得られた銅張積層板の銅箔部分(表面処理銅箔)を10mm巾テープでマスキングした。この銅張積層板に対して塩化銅エッチングを行った後テープを除去し、10mm巾の回路配線板を作製した。株式会社東洋精機製作所製のテンシロンテスターを用いて、この回路配線板の10mm巾の回路配線部分(銅箔部分)を90度方向に50mm/分の速度で樹脂基材から剥離した際の剥離強度を測定した。得られた測定値を指標にして、下記評価基準に基づき密着性を評価した。
<常態密着性の評価基準>
 a:剥離強度が0.61kN/m以上
 b:剥離強度が0.52kN/m以上0.61kN/m未満
 c:剥離強度が0.52kN/m未満
[Evaluation of normal adhesion]
As an evaluation of normal adhesion, a peeling test was performed based on JIS C 6484: 1996. Details will be described below.
A copper-clad laminate was produced by the same method as described in the above [Evaluation of high-frequency characteristics], and the copper foil portion (surface-treated copper foil) of the obtained copper-clad laminate was masked with a 10 mm width tape. After performing copper chloride etching on this copper-clad laminate, the tape was removed to prepare a circuit wiring board having a width of 10 mm. Peeling strength when the 10 mm wide circuit wiring part (copper foil part) of this circuit wiring board is peeled from the resin substrate at a speed of 50 mm / min in the 90 degree direction using a Tencilon tester manufactured by Toyo Seiki Seisakusho Co., Ltd. Was measured. Adhesion was evaluated based on the following evaluation criteria using the obtained measured values as an index.
<Evaluation criteria for normal adhesion>
a: Peeling strength is 0.61 kN / m or more b: Peeling strength is 0.52 kN / m or more and less than 0.61 kN / m c: Peeling strength is less than 0.52 kN / m
[耐熱密着性の評価]
 耐熱密着性の評価として、JIS C 6481:1996に基づき、加熱処理後の剥離試験を行った。詳細を以下に説明する。
 上記[高周波特性の評価]に記載の方法と同様の方法で銅張積層板を作製し、得られた銅張積層板の銅箔部分を10mm巾テープでマスキングした。この銅張積層板に対して塩化銅エッチングを行った後テープを除去し、10mm巾の回路配線板を作製した。この回路配線板を、260℃の加熱オーブンにて20分間加熱した後、常温まで自然空冷した。その後、株式会社東洋精機製作所製のテンシロンテスターを用いて、この回路配線板の10mm巾の回路配線部分(銅箔部分)を90度方向に50mm/分の速度で樹脂基材から剥離した際の剥離強度を測定した。得られた測定値を指標にして、下記評価基準に基づき耐熱密着性を評価した。
<耐熱密着性の評価基準>
 a:剥離強度が0.52kN/m以上
 b:剥離強度が0.43kN/m以上0.52kN/m未満
 c:剥離強度が0.43kN/m未満
[Evaluation of heat resistance and adhesion]
As an evaluation of heat-resistant adhesion, a peeling test after heat treatment was performed based on JIS C 6681: 1996. Details will be described below.
A copper-clad laminate was produced by the same method as described in the above [Evaluation of high-frequency characteristics], and the copper foil portion of the obtained copper-clad laminate was masked with a 10 mm wide tape. After performing copper chloride etching on this copper-clad laminate, the tape was removed to prepare a circuit wiring board having a width of 10 mm. This circuit wiring board was heated in a heating oven at 260 ° C. for 20 minutes and then naturally air-cooled to room temperature. After that, when the 10 mm wide circuit wiring part (copper foil part) of this circuit wiring board was peeled off from the resin substrate at a speed of 50 mm / min in the 90 degree direction using a Tencilon tester manufactured by Toyo Seiki Seisakusho Co., Ltd. The peel strength was measured. Using the obtained measured values as an index, the heat-resistant adhesion was evaluated based on the following evaluation criteria.
<Evaluation criteria for heat resistance>
a: Peeling strength is 0.52 kN / m or more b: Peeling strength is 0.43 kN / m or more and less than 0.52 kN / m c: Peeling strength is less than 0.43 kN / m
[耐粉落ち性の評価]
 表面処理銅箔の粗化面において、アドバンテック東洋株式会社製定性濾紙No.2(φ55mm)(JIS P 3801の2種に相当)の裏面側を粗化面側にして置き、さらにその中心上に接地面がφ20mmである250gの重りを置いた。その状態のまま、濾紙端部をピンセットでつまんで表面処理銅箔の短手方向(TD方向)に30mm/秒程度の速度で150mm引きずった後、濾紙に付着した銅粉を目視観察し、下記評価基準に基づき耐粉落ち性を評価した。
<耐粉落ち性の評価基準>
 a:濾紙に銅粉の付着が確認されなかった。
 b:濾紙に銅粉の付着が確認されたが、銅粉の付着面積は重りの接地面(φ20mm)の1割未満であった。
 c:濾紙に銅粉の付着が確認されたが、銅粉の付着面積は重りの接地面(φ20mm)の1割以上であった。
[Evaluation of powder removal resistance]
In terms of the roughened surface of the surface-treated copper foil, Advantech Toyo Co., Ltd. qualitative filter paper No. The back surface side of 2 (φ55 mm) (corresponding to 2 types of JIS P 3801) was placed on the roughened surface side, and a 250 g weight having a ground contact surface of φ20 mm was placed on the center thereof. In that state, pinch the end of the filter paper with tweezers and drag it 150 mm in the lateral direction (TD direction) of the surface-treated copper foil at a speed of about 30 mm / sec, and then visually observe the copper powder adhering to the filter paper and observe the following. The powder removal resistance was evaluated based on the evaluation criteria.
<Evaluation criteria for powder removal resistance>
a: No adhesion of copper powder was confirmed on the filter paper.
b: Adhesion of copper powder was confirmed on the filter paper, but the adhesion area of the copper powder was less than 10% of the ground contact surface (φ20 mm) of the weight.
c: Adhesion of copper powder was confirmed on the filter paper, but the adhesion area of the copper powder was 10% or more of the ground contact surface (φ20 mm) of the weight.
[総合評価]
 上記の高周波特性、常態密着性、耐熱密着性及び耐粉落ち性のすべてを総合し、下記評価基準に基づき総合評価を行った。なお、本実施例では、総合評価でA及びBを合格レベルとした。
<総合評価の評価基準>
 A(優):全ての評価がa評価である。
 B(合格):全ての評価でc評価がない。
 C(不合格):少なくとも1つの評価がc評価である。
[comprehensive evaluation]
All of the above high frequency characteristics, normal adhesion, heat adhesion and powder drop resistance were integrated, and a comprehensive evaluation was performed based on the following evaluation criteria. In this example, A and B were set as pass levels in the comprehensive evaluation.
<Evaluation criteria for comprehensive evaluation>
A (excellent): All evaluations are a evaluations.
B (pass): There is no c evaluation in all evaluations.
C (Fail): At least one rating is the c rating.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、実施例1~12の表面処理銅箔は、表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの20度鏡面光沢度Gs(20°)が0.8%未満であり、表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの60度鏡面光沢度Gs(60°)が0.4%以上であり、表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDにおける75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))が0.1~1.5となるように制御されているため、高周波特性に優れ、高い密着性(常態密着性及び耐熱密着性)及び高い耐粉落ち性を発揮することが確認された。 As shown in Table 3, the surface-treated copper foils of Examples 1 to 12 have a TD of 20-degree mirror gloss Gs (20 °) measured in accordance with JIS Z 8741: 1997 on the surface of the surface-treated film. It is less than 0.8%, and the 60-degree mirror gloss Gs (60 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface-treated film is 0.4% or more, and the surface-treated film has Mirror gloss ratio of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) in TD measured according to JIS Z 8741: 1997 on the surface (Gs (45 °) / Gs ( Since 75 °)) is controlled to be 0.1 to 1.5, it has excellent high-frequency characteristics, and exhibits high adhesion (normal adhesion and heat-resistant adhesion) and high powder removal resistance. confirmed.
 これに対し、比較例1及び比較例4の表面処理銅箔は、Gs(20°)が0.8以上と高く、耐熱密着性が悪いとの結果となった。比較例2は、Gs(60°)が0.3%と低いため、高周波特性が悪いとの結果となった。比較例3は、Gs(45°)/Gs(75°)が1.8と大きいため、耐粉落ち性が悪いとの結果となった。比較例5は、Gs(60°)が0.3%と低いく、Gs(45°)/Gs(75°)も1.8と大きいため、高周波特性及び耐粉落ち性が悪いとの結果となった。 On the other hand, the surface-treated copper foils of Comparative Example 1 and Comparative Example 4 had a high Gs (20 °) of 0.8 or more, resulting in poor heat-resistant adhesion. In Comparative Example 2, since Gs (60 °) was as low as 0.3%, the result was that the high frequency characteristics were poor. In Comparative Example 3, since Gs (45 °) / Gs (75 °) was as large as 1.8, the result was that the powder removal resistance was poor. In Comparative Example 5, Gs (60 °) is as low as 0.3%, and Gs (45 °) / Gs (75 °) is also as large as 1.8, resulting in poor high-frequency characteristics and powder drop resistance. It became.
1 カソード
2 不溶性アノード
3 硫酸銅電解液
4 M面
5 S面
6 電解銅箔
1 Cathode 2 Insoluble anode 3 Copper sulfate electrolytic solution 4 M surface 5 S surface 6 Electrolyzed copper foil

Claims (7)

  1.  銅箔基体の少なくとも一方の面に、粗化粒子が形成されてなる粗化処理層を含む表面処理皮膜を有するプリント配線板用表面処理銅箔であって、
     前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの20度鏡面光沢度Gs(20°)が0.8%未満であり、
     前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの60度鏡面光沢度Gs(60°)が0.4%以上であり、
     前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの75度鏡面光沢度Gs(75°)に対する45度鏡面光沢度Gs(45°)の鏡面光沢度比(Gs(45°)/Gs(75°))が0.1以上1.5以下である、プリント配線板用表面処理銅箔。
    A surface-treated copper foil for a printed wiring board having a surface-treated film containing a roughened-treated layer in which roughened particles are formed on at least one surface of a copper foil substrate.
    The 20 degree mirror gloss Gs (20 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film is less than 0.8%.
    The 60 degree mirror gloss Gs (60 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film is 0.4% or more.
    The mirror gloss ratio (Gs (45 °)) of 45 degree mirror gloss Gs (45 °) to 75 degree mirror gloss Gs (75 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film. °) / Gs (75 °)) is 0.1 or more and 1.5 or less, and a surface-treated copper foil for a printed wiring board.
  2.  前記表面処理皮膜の表面におけるJIS Z 8741:1997に準拠して測定したTDの85度鏡面光沢度Gs(85°)が4%以上、50%未満である、請求項1に記載のプリント配線板用表面処理銅箔。 The printed wiring board according to claim 1, wherein the 85 degree mirror gloss Gs (85 °) of TD measured in accordance with JIS Z 8741: 1997 on the surface of the surface treatment film is 4% or more and less than 50%. For surface treatment copper foil.
  3.  前記銅箔基体の表面処理皮膜を有する面が光沢面である、請求項1又は2に記載のプリント配線板用表面処理銅箔。 The surface-treated copper foil for a printed wiring board according to claim 1 or 2, wherein the surface of the copper foil substrate having the surface-treated film is a glossy surface.
  4.  前記表面処理皮膜の表面のJIS Z 8781に準拠して測定したTDのXYZ表色系におけるY値が10%以上45%以下である、請求項1~3のいずれか1項に記載のプリント配線板用表面処理銅箔。 The printed wiring according to any one of claims 1 to 3, wherein the Y value in the XYZ color system of TD measured in accordance with JIS Z 8781 on the surface of the surface treatment film is 10% or more and 45% or less. Surface-treated copper foil for boards.
  5.  前記表面処理皮膜の表面におけるJIS B 0601に準拠して測定した十点平均粗さRzjis値が0.8μm以上4.5μm以下である、請求項1~4のいずれか1項に記載のプリント配線板用表面処理銅箔。 The printed wiring according to any one of claims 1 to 4, wherein the ten-point average roughness Rzjis value measured in accordance with JIS B 0601 on the surface of the surface treatment film is 0.8 μm or more and 4.5 μm or less. Surface-treated copper foil for boards.
  6.  請求項1~5のいずれか1項に記載のプリント配線板用表面処理銅箔の前記表面処理皮膜が形成された面と樹脂基材とが接着されてなる、プリント配線板用銅張積層板。 A copper-clad laminate for a printed wiring board, wherein the surface of the surface-treated copper foil for a printed wiring board according to any one of claims 1 to 5 on which the surface-treated film is formed is adhered to a resin base material. ..
  7.  請求項6に記載のプリント配線板用銅張積層板を備える、プリント配線板。 A printed wiring board provided with the copper-clad laminate for the printed wiring board according to claim 6.
PCT/JP2021/012702 2020-03-27 2021-03-25 Surface-treated copper foil for printed wiring boards, and copper-cladded laminate board for printed wiring boards and printed wiring board each using same WO2021193863A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021547162A JP7019876B1 (en) 2020-03-27 2021-03-25 Surface-treated copper foil for printed wiring boards, and copper-clad laminates and printed wiring boards for printed wiring boards using this
KR1020227033136A KR20220159380A (en) 2020-03-27 2021-03-25 Surface-treated copper foil for printed wiring board, copper clad laminate for printed wiring board using the same, and printed wiring board
CN202180023821.5A CN115279951A (en) 2020-03-27 2021-03-25 Surface-treated copper foil for printed wiring board, and copper-clad laminate for printed wiring board and printed wiring board using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-058313 2020-03-27
JP2020058313 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021193863A1 true WO2021193863A1 (en) 2021-09-30

Family

ID=77890702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012702 WO2021193863A1 (en) 2020-03-27 2021-03-25 Surface-treated copper foil for printed wiring boards, and copper-cladded laminate board for printed wiring boards and printed wiring board each using same

Country Status (5)

Country Link
JP (1) JP7019876B1 (en)
KR (1) KR20220159380A (en)
CN (1) CN115279951A (en)
TW (1) TWI773219B (en)
WO (1) WO2021193863A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181627A1 (en) * 2022-03-22 2023-09-28 三井化学株式会社 Structural body, structural body manufacturing method, and bonded body
JP7492090B1 (en) 2022-11-28 2024-05-28 福田金属箔粉工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using said surface-treated copper foil
WO2024116475A1 (en) * 2022-11-28 2024-06-06 福田金属箔粉工業株式会社 Surface-treated copper foil, and copper clad laminate and printed wiring board each using said surface-treated copper foil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096776A1 (en) * 2002-05-13 2003-11-20 Mitsui Mining & Smelting Co.,Ltd. Flexible printed wiring board for chip-on-film
WO2019111914A1 (en) * 2017-12-05 2019-06-13 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board each using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200738913A (en) * 2006-03-10 2007-10-16 Mitsui Mining & Smelting Co Surface treated elctrolytic copper foil and process for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096776A1 (en) * 2002-05-13 2003-11-20 Mitsui Mining & Smelting Co.,Ltd. Flexible printed wiring board for chip-on-film
WO2019111914A1 (en) * 2017-12-05 2019-06-13 古河電気工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board each using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181627A1 (en) * 2022-03-22 2023-09-28 三井化学株式会社 Structural body, structural body manufacturing method, and bonded body
JP7492090B1 (en) 2022-11-28 2024-05-28 福田金属箔粉工業株式会社 Surface-treated copper foil, and copper-clad laminate and printed wiring board using said surface-treated copper foil
WO2024116475A1 (en) * 2022-11-28 2024-06-06 福田金属箔粉工業株式会社 Surface-treated copper foil, and copper clad laminate and printed wiring board each using said surface-treated copper foil

Also Published As

Publication number Publication date
TW202137841A (en) 2021-10-01
KR20220159380A (en) 2022-12-02
TWI773219B (en) 2022-08-01
JPWO2021193863A1 (en) 2021-09-30
JP7019876B1 (en) 2022-02-15
CN115279951A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2021193863A1 (en) Surface-treated copper foil for printed wiring boards, and copper-cladded laminate board for printed wiring boards and printed wiring board each using same
KR101853519B1 (en) Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
JP4144711B2 (en) Surface treated copper foil for low dielectric substrate, copper-clad laminate and printed wiring board using the same
TWI619409B (en) Method for manufacturing surface-treated copper foil, laminated board, printed wiring board, electronic device, copper foil with carrier and printed wiring board
KR101614624B1 (en) Copper foil with carrier
TWI645759B (en) Surface-treated copper foil for printed wiring board, copper-clad laminated board for printed wiring board, and printed wiring board
TWI735651B (en) Copper foil and copper clad laminated board with the copper foil
WO2012046804A1 (en) Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
JP5871426B2 (en) Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
TWI742575B (en) Surface-treated copper foil, and copper clad laminate and printed wiring board using it
KR20180112769A (en) A surface-treated copper foil and a copper clad laminate produced using the same
WO2010147013A1 (en) Copper foil and a method for producing same
JP5441945B2 (en) An extremely thin copper foil using a very low profile copper foil as a carrier and a method for producing the same.
EP2821528B1 (en) Copper foil with attached carrier foil, method for manufacturing copper foil with attached carrier foil, and method for manufacturing copper clad laminate board for laser beam drilling obtained by using copper foil with attached carrier foil
WO2019021895A1 (en) Surface-treated copper foil, and copper-clad laminate sheet and printed wiring board using same
KR101623713B1 (en) Copper foil for printing circuit
WO2022176648A1 (en) Surface-treated copper foil
JP2020183565A (en) Electrolytic copper foil, surface-treated copper foil using electrolytic copper foil, copper-clad laminate using surface-treated copper foil, and printed circuit board
JP6623320B2 (en) Surface-treated copper foil, and copper-clad laminate and printed wiring board using the same
JP7427044B2 (en) Surface treated copper foil, copper foil roll, copper clad laminate and printed wiring board
TW202229651A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021547162

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776078

Country of ref document: EP

Kind code of ref document: A1