WO2023179340A1 - 多联机空调及其控制方法和存储介质、电子设备 - Google Patents

多联机空调及其控制方法和存储介质、电子设备 Download PDF

Info

Publication number
WO2023179340A1
WO2023179340A1 PCT/CN2023/079615 CN2023079615W WO2023179340A1 WO 2023179340 A1 WO2023179340 A1 WO 2023179340A1 CN 2023079615 W CN2023079615 W CN 2023079615W WO 2023179340 A1 WO2023179340 A1 WO 2023179340A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
pressure
theoretical
outdoor
temperature
Prior art date
Application number
PCT/CN2023/079615
Other languages
English (en)
French (fr)
Inventor
蒋运鹏
吴晓鸿
颜华周
李鹏飞
黄志林
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Priority to EP23773591.5A priority Critical patent/EP4365504A1/en
Publication of WO2023179340A1 publication Critical patent/WO2023179340A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of air conditioning, and in particular to a multi-line air conditioner and its control method, storage medium, and electronic equipment.
  • the lower limit of the multi-line low-temperature heating operating range has reached minus 30°C.
  • the starting and operating conditions of ultra-low-temperature heating are more severe, especially long-term ultra-low temperature standby.
  • a large amount of low-temperature liquid refrigerant migrates to the side of the outdoor unit of the multi-online system due to gravity and temperature difference.
  • the present disclosure aims to solve one of the technical problems in the related art, at least to a certain extent.
  • the purpose of this disclosure is to propose a storage medium and electronic device for a multi-split air conditioner and its control method, so as to change the situation of the multi-split air conditioner starting first and then protecting at low temperatures, improving the reliability of the multi-split air conditioner, and reducing the risk of the multi-split air conditioner. Maintenance costs.
  • the present disclosure proposes a control method for a multi-connected air conditioner.
  • the multi-connected air conditioner includes an outdoor unit and an indoor unit.
  • the method includes: based on the geometric parameters of the outdoor unit and the air supply outlet of the internal unit. Parameters, outdoor ambient temperature and indoor ambient temperature, the theoretical exhaust pressure is obtained; according to the high pressure of the outdoor unit and the theoretical exhaust pressure, the pressure deviation is obtained; according to the pressure deviation, the multi-line system is evaluated Start control.
  • the present disclosure proposes a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the method of the above embodiments is implemented.
  • the present disclosure proposes an electronic device, including a memory, a processor, and a computer program stored on the memory.
  • the computer program is executed by the processor, the method of the above embodiment is implemented.
  • the present disclosure proposes a multi-connected air conditioner, including the electronic device of the above embodiment.
  • the multi-split air conditioner and its control method, storage medium, and electronic equipment first evaluate the system parameters before the low-temperature heating startup of the multi-split system, and then use the evaluation results as the selection of the system startup strategy. Based on this, the situation in which multi-split low-temperature heating is started first and then protected is changed. Through startup diagnosis, the system and compressor are further protected, thereby improving the reliability of multi-split air conditioners and reducing the maintenance cost of multi-split air conditioners.
  • Figure 1 is a schematic flowchart of a control method for a multi-connected air conditioner according to at least one embodiment of the present disclosure
  • Figure 2 is a schematic structural diagram of a multi-split air conditioner according to at least one embodiment of the present disclosure.
  • multi-split air conditioners as a part of the air conditioning market, are also facing higher challenges.
  • One of these requirements is that multi-split air conditioners are required to operate reliably under a wider cooling and heating operating range. Therefore, long-standby low-temperature heating startup of multi-split air conditioners is an issue that needs to be taken seriously when designing multi-split air conditioners.
  • many multi-split air conditioner manufacturers have carried out a large number of control optimizations on the low-temperature heating start-up process in response to the above-mentioned issues to avoid problems such as compressor liquid shock and vibration.
  • none of the above technologies involves identification of system parameters before starting.
  • the present disclosure proposes a multi-connected air conditioner and its control method, storage medium, and electronic equipment.
  • Figure 1 is a schematic flowchart of a control method for a multi-connected air conditioner according to at least one embodiment of the present disclosure.
  • a multi-connected air conditioner includes an outdoor unit and an indoor unit.
  • the outdoor unit is placed outdoors and the indoor unit is placed indoors.
  • the number of indoor units may be one or more.
  • the outdoor unit is connected to the indoor unit through piping.
  • Each indoor unit is connected, and the outdoor unit includes a compressor.
  • the outdoor machine also includes an oil separator, a four-way valve and a gas-liquid separator.
  • the air outlet of the gas-liquid separator is connected to the air return port of the compressor through the air return pipe, and the exhaust port of the compressor is connected to the air inlet of the oil separator.
  • the exhaust port of the oil separator is connected to the first end of the four-way valve, and the second end of the four-way valve is connected to one end of the indoor heat exchanger of the indoor unit through the air pipe.
  • the other end of the internal heat exchanger is connected to one end of the outdoor heat exchanger through a liquid pipe.
  • the other end of the outdoor heat exchanger is connected to the third end of the four-way valve.
  • Each indoor unit includes an indoor heat exchanger, and the outdoor unit also includes an outdoor heat exchanger and a throttling device connected between the outdoor heat exchanger and the indoor heat exchanger.
  • the throttling device may be an electronic expansion valve.
  • control methods of multi-split air conditioners include:
  • the geometric parameters of the outdoor unit and the air supply outlet parameters of the indoor unit are inherent parameters of the refrigerant circulation system and can be stored in advance for direct acquisition; the outdoor ambient temperature can be measured in real time by the temperature sensor set on the outdoor unit, and the indoor ambient temperature can be measured by setting the The temperature sensor on the indoor unit measures it in real time. Then, the theoretical exhaust pressure can be obtained based on the geometric parameters of the outdoor unit, the air supply outlet parameters of the indoor unit, the outdoor ambient temperature, and the indoor ambient temperature.
  • the high-pressure pressure of the outdoor unit can be obtained through the high-pressure pressure sensor provided at the exhaust port of the multi-line air-conditioning compressor, which is recorded as the high-pressure pressure sensor value PC sensor . Further, by comparing the obtained theoretical exhaust pressure value PC cal with the high-pressure pressure sensor value PC srnsor , the pressure deviation DP can be calculated.
  • the calculation process includes: calculating the difference between the theoretical exhaust pressure and the high pressure; calculating the ratio between the difference and the high pressure to obtain the pressure deviation DP, that is, the calculation formula of the pressure deviation DP is:
  • the severity of the starting conditions of the multi-split air conditioner can be judged based on the pressure deviation. For example, when the pressure deviation is small, it can be considered The starting conditions are generally bad. At this time, only the outdoor compressor can be preheated. When the preheating meets certain conditions (such as the preheating time reaches a certain time), the normal starting logic of the multi-split air conditioner (that is, the conventional one suitable for direct Logic of starting); when the pressure deviation is large, the starting conditions can be considered to be relatively poor.
  • the internal unit can be electrically auxiliary heated, and the compressor can also be started at a specific frequency to adjust
  • the normal startup logic of the multi-split air conditioner will be executed. Therefore, the startup logic is determined based on the severity of the starting conditions of the multi-split air conditioner, which can change the situation that the low-temperature heating of the multi-split air conditioner starts first and then protects, improves the reliability of the multi-split air conditioner, and reduces the maintenance cost of the multi-split air conditioner.
  • M and N may both be integers greater than 1.
  • step S101 may include: obtaining the radiation heat exchange area of the outdoor unit based on M geometric parameters, obtaining the radiation heat exchange area of the indoor unit based on N air supply outlet parameters, and obtaining the average ambient temperature of the outdoor unit based on M outdoor ambient temperatures.
  • the average ambient temperature of the indoor unit is obtained based on N indoor ambient temperatures; based on the radiation heat exchange area of the outdoor unit, the radiation heat exchange area of the indoor unit, the average ambient temperature of the outdoor unit, and the average ambient temperature of the indoor unit, the theoretical exhaust saturation temperature, theoretical suction Gas saturation temperature; according to the theoretical exhaust saturation temperature and theoretical suction saturation temperature, the theoretical exhaust pressure is obtained.
  • the values of M and N are both 1.
  • the average ambient temperature of the outdoor unit and the average ambient temperature of the indoor unit it is not necessary to calculate the average ambient temperature of the outdoor unit and the average ambient temperature of the indoor unit.
  • the theoretical exhaust gas can be obtained directly based on the radiation heat exchange area of the outdoor unit, the radiation heat exchange area of the indoor unit, the outdoor ambient temperature, and the indoor ambient temperature. Saturation temperature, theoretical suction saturation temperature.
  • the radiation heat transfer area of the outdoor unit can be obtained by the following formula:
  • a odu is the radiation heat exchange area of the outdoor unit
  • OduL i , OduW i , and OduHi are the length, width, and height of the i-th outdoor unit respectively.
  • the radiation heat transfer area of the internal machine can be obtained by the following formula:
  • a idu is the radiation heat exchange area of the indoor unit
  • IduL i and IduW i are the length and width of the air supply port of the i-th indoor unit respectively.
  • the average ambient temperature of the outdoor unit can be obtained by the following formula:
  • T4 avg is the average ambient temperature of the outdoor unit
  • T4 i is the outdoor ambient temperature collected by the temperature sensor installed on the i-th outdoor unit.
  • the average ambient temperature of the indoor unit can be obtained by the following formula:
  • T1 avg is the average ambient temperature of the indoor unit
  • T1 i is the indoor ambient temperature collected by the temperature sensor installed on the i-th indoor unit.
  • the ideal state of the exhaust pipe can be obtained , that is, the theoretical exhaust saturation temperature Tc and theoretical suction saturation temperature Te of the system when it is not filled with liquid refrigerant, and then the corresponding theoretical exhaust pressure Pc can be obtained by querying the physical property parameters.
  • the correspondence between the theoretical exhaust saturation temperature Tc, theoretical suction saturation temperature Te and theoretical exhaust pressure Pc can be saved in advance. After obtaining the theoretical exhaust saturation temperature Tc and theoretical suction saturation temperature Te, the corresponding relationship can be directly searched. , the corresponding theoretical exhaust pressure Pc is obtained.
  • the theoretical exhaust saturation temperature Tc and the theoretical suction saturation temperature Te can be obtained by the following formula:
  • Q power is the theoretical heat transfer intensity
  • a odu is the radiation heat transfer area of the outdoor unit
  • a idu is the radiation heat transfer area of the indoor unit
  • ⁇ 1 is the first coefficient
  • ⁇ 2 is the second coefficient
  • Tc is the theoretical exhaust saturation Temperature
  • Te is the theoretical suction saturation temperature
  • T4 avg is the average ambient temperature of the outdoor unit
  • T1 avg is the average ambient temperature of the indoor unit.
  • step S103 includes: when it is recognized that the pressure deviation is greater than or equal to the first deviation, controlling the multi-split air conditioner to perform a normal startup process; when it is recognized that the pressure deviation is less than the first deviation, And when it is greater than or equal to the second deviation degree, the multi-split air conditioner is preheated for the second preset time, and then the compressor is controlled to run at the lowest allowable operating frequency for the third preset time, and then the multi-split air conditioner is controlled to perform the normal startup process; when When it is recognized that the pressure deviation is less than the second deviation, the multi-split air conditioner is preheated until the difference between the compressor exhaust temperature and the condensation temperature of the multi-split air conditioner is greater than the second difference threshold, and then the multi-split air conditioner is controlled The air conditioner executes the normal startup process; among which, the preheating heating power is greater than or equal to the theoretical heat exchange intensity.
  • the theoretical heat exchange intensity is based on the radiation heat exchange area of the
  • the pressure deviation DP ⁇ DP set1 i.e., the first deviation
  • the multi-split air conditioner can be directly controlled to perform the normal startup process. If the pressure deviation DP ⁇ DP set1 (i.e., the first deviation) is detected, and the pressure deviation DP ⁇ DP set2 (i.e., the second deviation), it can be considered that the starting conditions of the multi-split air conditioner are poor, and start-up measures can be taken at this time.
  • Strategy one executes the start-up process, in which the start-up strategy one can specifically be: after the multi-split air conditioner is powered on, perform start-up preparatory actions, that is, start pre-heating measures (including compressor crankshaft heating, compressor electric heating belt, low-pressure tank electric heating belt, One or more of the chassis heating), and after maintaining T preheat1 time period (i.e., the second preset time period), control the compressor to run at the lowest allowable operating frequency for T minhz1 time period (i.e., the third preset time period), control multiple The online air conditioner performs the normal startup process.
  • start pre-heating measures including compressor crankshaft heating, compressor electric heating belt, low-pressure tank electric heating belt, One or more of the chassis heating
  • T preheat1 time period i.e., the second preset time period
  • control the compressor to run at the lowest allowable operating frequency for T minhz1 time period (i.e., the third preset time period)
  • control multiple The online air conditioner performs the normal
  • the second startup strategy may be: after the multi-split air conditioner is powered on, perform startup preparatory actions, that is, start preheating measures (including one of compressor crankshaft heating, compressor electric heating belt, low-pressure tank electric heating belt, and chassis heating) or more), during this period, the compressor exhaust temperature TP and the condensation temperature TC of the multi-line air conditioner can be collected in real time.
  • start preheating measures including one of compressor crankshaft heating, compressor electric heating belt, low-pressure tank electric heating belt, and chassis heating
  • the difference between the compressor exhaust temperature and the condensation temperature of the multi-line air conditioner is TP
  • the value of -TC is greater than the second difference threshold (such as the minimum starting exhaust superheat degree TDSH min )
  • the multi-split air conditioner is controlled to execute the normal starting process.
  • the heating power of the above-mentioned preheating is greater than or equal to the theoretical heat exchange intensity Q power calculated above.
  • the first deviation degree DP set1 and the second deviation degree DP set2 are not fixed values, but are determined according to the current system external conditions.
  • the heat exchanger area and internal volume of the machine and the internal unit are obtained, that is, the values of the first preset deviation DP set1 and the second preset deviation DP set2 are different under different system configurations.
  • the method may also include: calculating the current fluctuation amplitude according to the startup current; when it is recognized that the current fluctuation amplitude is greater than the preset amplitude threshold, stopping the normal startup process and returning to the preset amplitude threshold. Heating step.
  • the starting current can be monitored by monitoring the instantaneous current fluctuation value when the compressor is driven.
  • the current values A i and A i+1 at any two adjacent acquisition moments are recorded in real time.
  • the current values A i and A i+1 are used to calculate the current fluctuation amplitude d A .
  • the calculation method is the same as the pressure deviation mentioned above.
  • the calculation method is similar, the calculation formula is: If it is recognized that d A exceeds the maximum current fluctuation limit DA max (i.e., the preset amplitude threshold), it can be considered that the compressor has started abnormally. At this time, the normal startup process needs to be stopped immediately and return to the preheating step.
  • the compressor will absorb a large amount of liquid, causing the compressor to start abnormally, causing abnormal vibration of the system pipeline and serious damage to the compressor. Therefore, before executing the above step S101, the starting conditions of the multi-split air conditioner can be determined first.
  • the air outlet parameters, outdoor ambient temperature and indoor ambient temperature are used to obtain the theoretical exhaust pressure.
  • the low-temperature start condition parameters include the standby time of the multi-split air conditioner, the compressor exhaust temperature and the outdoor ambient temperature.
  • the preset low-temperature start condition is any of the following: the standby time is greater than or equal to the first preset time, and the outdoor environment The temperature is less than or equal to the first preset temperature; or the difference between the compressor exhaust temperature and the outdoor ambient temperature is less than or equal to the first difference threshold, and the outdoor ambient temperature is less than or equal to the first preset temperature.
  • the standby time T0 is greater than or equal to the minimum standby time TimeOff_Max (i.e., the first preset time length), that is, T0 ⁇ TimeOff_Max
  • the outdoor ambient temperature T4 is less than or equal to the maximum temperature T4 max for entering the low temperature start mode (i.e., the first preset temperature), that is, T4 ⁇ T4 max ; or, the difference between the compressor exhaust temperature TP and the outdoor ambient temperature T4 is less than or equal to the first difference threshold dT4 max , that is,
  • the outdoor ambient temperature T4 can be the outdoor ambient temperature corresponding to any outdoor unit, or it can be the average of multiple outdoor ambient temperatures.
  • the first difference threshold can be a very small value, such as a value between 0.01 and 0.5.
  • the compressor exhaust temperature is basically equal to the outdoor ambient temperature.
  • control method of the multi-split air conditioner is based on the system parameters before the low-temperature heating of the multi-split system starts.
  • the pressure deviation is obtained through the system parameters, and the severity of startup is evaluated based on the pressure deviation.
  • the evaluation results are used as the basis for selecting the system startup strategy to change the situation where multi-line low-temperature heating starts first and then protects.
  • startup diagnosis Further protect the system and compressor, thereby improving the reliability of multi-split air conditioners and reducing the maintenance costs of multi-split air conditioners.
  • the present disclosure proposes a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the control method of the multi-split air conditioner in the above embodiment is implemented.
  • the computer-readable storage medium of the embodiment of the present disclosure when the computer program corresponding to the above-mentioned control method stored thereon is executed, can change many aspects by diagnosing the severity of the startup conditions and performing startup control based on the diagnosis results.
  • the online low-temperature heating starts first and then protects, further protecting the system and compressor, thus improving the reliability of the multi-split air conditioner and reducing the maintenance cost of the multi-split air conditioner.
  • the present disclosure also provides an electronic device.
  • the electronic device includes a memory, a processor, and a computer program stored in the memory.
  • the computer program is executed by the processor, the control method of the multi-split air conditioner in the above embodiment is implemented.
  • the electronic device of the embodiment of the present disclosure can change the multi-line low-temperature control system by using the processor to execute the computer program corresponding to the above-mentioned control method stored in the memory, diagnosing the severity of the startup conditions, and performing startup control based on the diagnosis results.
  • the condition of thermal start-up and then protection further protects the system and compressor, thus improving the reliability of multi-split air conditioners and reducing the maintenance costs of multi-split air conditioners.
  • the present disclosure also proposes a multi-connected air conditioner.
  • Figure 2 is a structural block diagram of a multi-split air conditioner according to at least one embodiment of the present disclosure.
  • a multi-split air conditioner 100 includes the electronic device 10 of the above-described embodiment.
  • a multi-connected air conditioner includes an outdoor unit and an indoor unit.
  • the outdoor unit is placed outdoors and the indoor unit is placed indoors.
  • the number of indoor units may be one or more.
  • the outdoor unit is connected to the indoor unit through piping.
  • Each indoor unit is connected, and the outdoor unit includes a compressor.
  • the outdoor machine also includes an oil separator, a four-way valve and a gas-liquid separator.
  • the air outlet of the gas-liquid separator is connected to the air return port of the compressor through the air return pipe, and the exhaust port of the compressor is connected to the air inlet of the oil separator.
  • the exhaust port of the oil separator is connected to the first end of the four-way valve, the second end of the four-way valve is connected to one end of the indoor heat exchanger of the indoor unit through the air pipe, and the other end of the indoor heat exchanger is connected through the liquid pipe It is connected to one end of the outdoor heat exchanger, the other end of the outdoor heat exchanger is connected to the third end of the four-way valve, and the fourth end of the four-way valve is connected to the inlet of the gas-liquid separator.
  • Each indoor unit includes an indoor heat exchanger, and the outdoor unit also includes an outdoor heat exchanger and a throttling device connected between the outdoor heat exchanger and the indoor heat exchanger.
  • the throttling device may be an electronic expansion valve.
  • the multi-split air conditioner in the embodiment of the present disclosure can further protect the system and compressor through the above-mentioned electronic equipment, thereby improving the reliability of the multi-split air conditioner and reducing the maintenance cost of the multi-split air conditioner.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Non-exhaustive list of computer readable media include the following: electrical connections with one or more wires (electronic device), portable computer disk cartridges (magnetic device), random access memory (RAM), Read-only memory (ROM), erasable and programmable read-only memory (EPROM or flash memory), fiber optic devices, and portable compact disc read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program may be printed, as the paper or other medium may be optically scanned, for example, and subsequently edited, interpreted, or otherwise suitable as necessary. process to obtain the program electronically and then store it in computer memory.
  • various parts of the present disclosure may be implemented in hardware, software, firmware, or combinations thereof.
  • various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit with a logic gate circuit for implementing a logic function on a data signal.
  • Discrete logic circuits application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, For example, two, three, etc., unless otherwise clearly and specifically limited.
  • connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features may be in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种多联机空调及其控制方法和存储介质、电子设备,涉及空调技术领域。所述方法包括:根据外机的几何参数、内机的送风口参数、室外环境温度和室内环境温度,得到理论排气压力;根据外机的高压压力、理论排气压力,得到压力偏离度;根据压力偏离度对多联机***进行启动控制。

Description

多联机空调及其控制方法和存储介质、电子设备
相关申请的交叉引用
本公开要求于2022年03月24日提交的申请号为202210302226.1、名称为“多联机空调及其控制方法和存储介质、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及空调技术领域,尤其涉及一种多联机空调及其控制方法和存储介质、电子设备。
背景技术
目前,多联机低温制热运行范围下限已到零下30℃,相对于常规制热工况,超低温制热的启动和运行条件更为恶劣,特别是长时间超低温待机。对于多冷媒状态、内机在上外机在下的带落差***,在长时间超低温待机后进行超低温制热启动时,由于重力和温差作用,大量低温液态冷媒迁移至多联机***的外机一侧,导致外机换热器、低压罐和压缩机内存有大量液态冷媒,而低压罐液态冷媒充满则意味着压缩机启动时低压罐直接回液态冷媒到压缩机回气口,势必造成压缩机吸气大量带液,这将导致压缩机异常启动,引起***管路异常振动和压缩机严重损坏。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的目的在于提出一种多联机空调及其控制方法可存储介质、电子设备,以改变多联机低温先启动再保护的状况,提升多联机空调的可靠性,降低多联机空调的维护成本。
第一方面,本公开提出了一种多联机空调的控制方法,所述多联机空调包括外机和内机,所述方法包括:根据所述外机的几何参数、所述内机的送风口参数、室外环境温度和室内环境温度,得到理论排气压力;根据所述外机的高压压力、所述理论排气压力,得到压力偏离度;根据所述压力偏离度对所述多联机***进行启动控制。
第二方面,本公开提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现上述实施例的方法。
第三方面,本公开提出了一种电子设备,包括存储器、处理器和存储在所述存储器上的计算机程序,所述计算机程序被所述处理器执行时,实现上述实施例的方法。
第四方面,本公开提出了一种多联机空调,包括上述实施例的电子设备。
本公开实施例的多联机空调及其控制方法和存储介质、电子设备,针对多联机***低温制热启动前的***参数,首先对启动恶劣程度进行评价,然后将评价结果作为***启动策略的选择依据,以改变多联机低温制热先启动再保护的状况,通过启动诊断,更进一步的保护***和压缩机,从而提升多联机空调的可靠性,降低多联机空调的维护成本。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1是本公开至少一个实施例的多联机空调的控制方法的流程示意图;
图2是本公开至少一个实施例的多联机空调的结构示意图。
具体实施方式
随着暖通空调市场需求的不断升级,以及为满足客户各个方面的需求,多联机空调作为空调市场中的一部分,也面临着更高的挑战。这些需求中,其一便是要求多联机空调能够在更宽的制冷制热运行范围下可靠运行。因此,多联机空调长待机低温制热启动是在设计多联机空调时需要认真对待的一项课题。目前,许多多联机空调厂家针对上述课题,对低温制热启动过程进行了大量的控制优化,以避免出现压缩机液击、振动等问题。但上述技术均没有涉及到启动前的***参数识别,并且,实际上,如果***处于冷媒过度、外机侧冷媒迁移严重的状态时,是不宜直接启动的,因为压缩机必然回液,造成内部磨损,需要通过额外的措施弱化冷媒迁移效果后再尝试启动。为解决上述问题,本公开中提出了一种多联机空调及其控制方法和存储介质、电子设备。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图1-2描述本公开实施例的多联机空调及其控制方法和存储介质、电子设备。
图1是本公开至少一个实施例的多联机空调的控制方法的流程示意图。
在本公开的至少一个实施例中,多联机空调包括外机和内机,其中,外机置于室外,内机置于室内,内机的数量可为一个或多个,外机通过配管与每个内机相连,外机包括压缩机。
进一步地,外机还包括油分离器、四通阀和气液分离器,气液分离器的出气口通过回气管与压缩机的回气口相连,压缩机的排气口与油分离器的进气口相连,油分离器的排气口与四通阀的第一端相连,四通阀的第二端通过气管与室内机的室内换热器一端相连,室 内换热器的另一端通过液管与室外换热器的一端相连,室外换热器的另一端与四通阀的第三端相连,四通阀的第四端与气液分离器的入口相连。每个内机包括室内换热器,外机还包括室外换热器以及连接在室外换热器与室内换热器之间的节流装置。其中,节流装置可为电子膨胀阀。
如图1所示,多联机空调的控制方法包括:
S101、根据外机的几何参数、内机的送风口参数、室外环境温度和室内环境温度,得到理论排气压力。
具体地,首先获取单独的冷媒循环***中所有外机的几何参数(可包括:长OduLi,宽OduWi,高OduHi)、所有内机的送风口参数(可包括:送风口的长IduLi,宽IduWi)、各外机室外环境温度传感器数值T4i、各内机室内环境传感器温度T1i。其中,多联机空调的外机的数量为M,内机的数量为N。而外机的几何参数和内机的送风口参数为冷媒循环***的固有参数,可预先存储以直接获取;室外环境温度可通过设置在外机上的温度传感器实时测量得到,室内环境温度可通过设置在内机上的温度传感器实时测量得到。然后,可根据外机的几何参数、内机的送风口参数、室外环境温度和室内环境温度,得到理论排气压力。
S102、根据外机的高压压力、理论排气压力,得到压力偏离度。
具体地,可通过设置在多联机空调压缩机排气口的高压压力传感器,得到外机的高压压力,记为高压压力传感器数值PCsensor。进一步地,将得到的理论排气压力数值PCcal与高压压力传感器数值PCsrnsor对比,可计算得到压力偏离度DP。计算过程包括:计算理论排气压力和高压压力之间的差值;计算差值与高压压力之间的比值,得到压力偏离度DP,即压力偏离度DP的计算公式为:
S103、根据压力偏离度对多联机***进行启动控制。
具体地,在室外环境温度较低,正常启动多联机空调可能会造成损坏的情况下,可根据压力偏离度对多联机空调启动条件的恶劣程度进行判断,例如,压力偏离度较小时,可认为启动条件一般恶劣,此时,可仅对外机压缩机进行预热,待预热满足一定条件(如预热时间达到一定时间)时,执行多联机空调的正常启动逻辑(即常规的适于直接启动的逻辑);压力偏离度较大时,可认为启动条件较为恶劣,此时,可在对外机压缩机进行预热的同时,对内机进行电辅热,也特定频率启动压缩机,调节内外机电子膨胀阀等,待满足一定条件时,执行多联机空调的正常启动逻辑。由此,根据多联机空调启动条件的恶劣程度确定启动逻辑,可以改变多联机空调低温制热先启动再保护的状况,提升多联机空调的可靠性,降低多联机空调的维护成本。
在本公开的一些实施例中,M、N可均为大于1的整数。
在该实施例中,步骤S101可包括:根据M个几何参数得到外机辐射换热面积,根据N个送风口参数得到内机辐射换热面积,根据M个室外环境温度得到外机平均环境温度,根据N个室内环境温度得到内机平均环境温度;根据外机辐射换热面积、内机辐射换热面积、外机平均环境温度、内机平均环境温度,得到理论排气饱和温度、理论吸气饱和温度;根据理论排气饱和温度、理论吸气饱和温度,得到理论排气压力。
在本公开的另一些实施例中,M、N的取值均为1。
在该实施例中,可不进行外机平均环境温度、内机平均环境温度的计算,直接根据外机辐射换热面积、内机辐射换热面积、室外环境温度、室内环境温度,得到理论排气饱和温度、理论吸气饱和温度。
具体而言,可通过下式得到外机辐射换热面积:
其中,Aodu为外机辐射换热面积,OduLi、OduWi、OduHi分别为第i个外机的长度、宽度、高度。
可通过下式得到内机辐射换热面积:
其中,Aidu为内机辐射换热面积,IduLi、IduWi分别为第i个内机的送风口长度、宽度。
可通过下式得到外机平均环境温度:
其中,T4avg为外机平均环境温度,T4i为第i个外机上设置的温度传感器采集得到的室外环境温度。
可通过下式得到内机平均环境温度:
其中,T1avg为内机平均环境温度,T1i为第i个内机上设置的温度传感器采集得到的室内环境温度。
进一步地,根据上述外机辐射换热面积Aodu、内机辐射换热面积Aidu、外机平均环境温度T4avg、内机平均环境温度T1avg,且通过计算可得排气管较理想状态,即未充满液态冷媒情况下的***理论排气饱和温度Tc、理论吸气饱和温度Te,进而可通过物性参数查询可得到对应的理论排气压力Pc。如可预先保存理论排气饱和温度Tc、理论吸气饱和温度Te与理论排气压力Pc的对应关系,在得到理论排气饱和温度Tc、理论吸气饱和温度Te后,可直接查找该对应关系,得到对应的理论排气压力Pc。
在该实施例中,理论排气饱和温度Tc、理论吸气饱和温度Te可通过下式得到:
Qpower=ε1Aodu(Tc-T4avg)=ε2Aidu(T1avg-Te),且Tc=Te,
其中,Qpower为理论换热强度,Aodu为外机辐射换热面积,Aidu为内机辐射换热面积,ε1为第一系数,ε2为第二系数,Tc为理论排气饱和温度,Te为理论吸气饱和温度,T4avg为外机平均环境温度,T1avg为内机平均环境温度。
在本公开的至少一个实施例中,步骤S103包括:当识别到压力偏离度大于或等于第一偏离度时,控制多联机空调执行正常启动流程;当识别到压力偏离度小于第一偏离度,且大于或等于第二偏离度时,对多联机空调进行预加热第二预设时长,之后控制压缩机以最低允许运行频率运行第三预设时长,之后控制多联机空调执行正常启动流程;当识别到压力偏离度小于第二偏离度时,对多联机空调进行预加热,直至压缩机排气口温度与多联机空调的冷凝温度之间的差值大于第二差值阈值,之后控制多联机空调执行正常启动流程;其中,预加热的加热功率大于或等于理论换热强度,理论换热强度根据外机辐射换热面积、内机辐射换热面积、外机平均环境温度、内机平均环境温度得到。
具体而言,如果检测到压力偏离度DP≥DPset1(即第一偏离度),则可认为多联机空调启动条件合适,此时可以直接控制多联机空调执行正常启动流程。如果检测到压力偏离度DP<DPset1(即第一偏离度),且压力偏离度DP≥DPset2(即第二偏离度),则可认为多联机空调启动条件较差,此时可采取启动策略一执行启动流程,其中,启动策略一具体可为:多联机空调上电后,执行启动预备动作,即启动预加热措施(包括压缩机曲轴加热、压缩机电加热带、低压罐电加热带、底盘加热中的一者或多者),并维持Tpreheat1时长(即第二预设时长)后,控制压缩机以最低允许运行频率运行Tminhz1时长(即第三预设时长)后,控制多联机空调执行正常启动流程。
如果检测到压力偏离度DP<DPset2(即第二偏离度),则可认为多联机空调启动条件恶劣,此时可采取启动策略二执行启动流程。其中,启动策略二具体可为:多联机空调上电后,执行启动预备动作,即启动预加热措施(包括压缩机曲轴加热、压缩机电加热带、低压罐电加热带、底盘加热中的一者或多者),在此期间,可实时采集压缩机排气口温度TP和多联机空调的冷凝温度TC,当压缩机排气口温度与多联机空调的冷凝温度之间的差值,即TP-TC的值大于第二差值阈值(如最小启动排气过热度TDSHmin)时,判定预加热结束,之后控制多联机空调执行正常启动流程。
其中,上述预加热的加热功率大于或等于上述计算得到的理论换热强度Qpower
作为一个示例,第一偏离度DPset1和第二偏离度DPset2并非定值,而是根据当前***外 机和内机的换热器面积、内容积得到,即不同***配置下第一预设偏离度DPset1和第二预设偏离度DPset2的值各不相同。
作为一个示例,在预加热之后,执行正常启动流程过程中,方法还可包括:根据启动电流计算电流波动幅度;当识别到电流波动幅度大于预设幅度阈值时,停止正常启动流程,并返回预加热的步骤。
具体地,预备启动动作完成后,在执行正常冻机启动策略的过程中,需要对启动电流做额外监测,可通过监测压缩机驱动时的瞬时电流波动值,监测启动电流。在剔除启动前期时间后,实时记录任意两个相邻采集时刻的电流值Ai和Ai+1,电流值Ai和Ai+1计算电流波动幅度dA,计算方式与上述压力偏离度的计算方式类似,计算公式为:如果识别到dA超过电流波动限定最大值DAmax(即预设幅度阈值),则可认为压缩机存在异常启动,此时需立即停止本次正常启动流程,并返回预加热的步骤。
应当理解,当正常启动流程正常执行后,退出整个启动控制流程。
需要说明的是,由于一般在多联机空调长时间低温待机后,才会存在压缩机吸气大量带液,导致压缩机异常启动,引起***管路异常振动和压缩机严重损坏的问题。因此,在执行上述步骤S101之前,可先对多联机空调的启动条件进行判断。
作为本公开的一个实施方式,在得到理论排气压力之前,需要获取多联机空调的低温启动条件参数,判断低温启动条件参数是否满足预设低温启动条件,如果满足,则执行根据几何参数、送风口参数、室外环境温度和室内环境温度,得到理论排气压力的步骤。
其中,低温启动条件参数包括多联机空调的待机时长、压缩机排气口温度和室外环境温度,预设低温启动条件为如下任一种:待机时长大于或等于第一预设时长,且室外环境温度小于或等于第一预设温度;或者,压缩机排气口温度与室外环境温度之间的差值小于或等于第一差值阈值,且室外环境温度小于或等于第一预设温度。
具体而言,当待机时长T0大于或等于最小待机时长TimeOff_Max(即第一预设时长),即T0≥TimeOff_Max,且室外环境温度T4小于或等于进入低温启动模式的最高温度T4max(即第一预设温度),即T4≤T4max;或者,压缩机排气口温度TP与室外环境温度T4之间的差值小于或等于第一差值阈值dT4max,即|TP-T4|≤dT4max,且室外环境温度T4小于或等于第一预设温度T4max时,执行根据几何参数、送风口参数、室外环境温度和室内环境温度,得到理论排气压力的步骤。
其中,室外环境温度T4可以是任意外机对应的室外环境温度,也可以是多个室外环境温度的平均值。第一差值阈值可为极小的值,如0.01-0.5之间的取值,此时压缩机排气口温度与室外环境温度基本相等。
综上所述,该多联机空调的控制方法,针对多联机***低温制热启动前***参数,首 先通过***参数得到压力偏离度,根据压力偏离度对启动恶劣程度进行评价,然后将评价结果作为***启动策略的选择依据,以改变多联机低温制热先启动再保护的状况,通过启动诊断,更进一步的保护***和压缩机,从而提升多联机空调的可靠性,降低多联机空调的维护成本。
基于上述实施例的多联机空调的控制方法,本公开提出了一种计算机可读存储介质。
在本公开的实施例中,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时,实现上述实施例的多联机空调的控制方法。
本公开实施例的计算机可读存储介质,在其上存储的与上述的控制方法对应的计算机程序被执行时,通过对启动条件的恶劣程度进行诊断,并根据诊断结果进行启动控制,可改变多联机低温制热先启动再保护的状况,更进一步的保护***和压缩机,从而提升多联机空调的可靠性,降低多联机空调的维护成本。
基于上述实施例的多联机空调的控制方法,本公开还提出了一种电子设备。
在本公开的实施例中,电子设备包括存储器、处理器和存储在存储器上的计算机程序,计算机程序被处理器执行时,实现上述实施例的多联机空调的控制方法。
本公开实施例的电子设备,通过处理器执行存储器上存储的与上述的控制方法对应的计算机程序,通过对启动条件的恶劣程度进行诊断,并根据诊断结果进行启动控制,可改变多联机低温制热先启动再保护的状况,更进一步的保护***和压缩机,从而提升多联机空调的可靠性,降低多联机空调的维护成本。
进一步地,本公开还提出了一种多联机空调。
图2是本公开至少一个实施例的多联机空调的结构框图。
如图2所示,多联机空调100包括上述实施例的电子设备10。
在本公开的至少一个实施例中,多联机空调包括外机和内机,其中,外机置于室外,内机置于室内,内机的数量可为一个或多个,外机通过配管与每个内机相连,外机包括压缩机。
进一步地,外机还包括油分离器、四通阀和气液分离器,气液分离器的出气口通过回气管与压缩机的回气口相连,压缩机的排气口与油分离器的进气口相连,油分离器的排气口与四通阀的第一端相连,四通阀的第二端通过气管与室内机的室内换热器一端相连,室内换热器的另一端通过液管与室外换热器的一端相连,室外换热器的另一端与四通阀的第三端相连,四通阀的第四端与气液分离器的入口相连。每个内机包括室内换热器,外机还包括室外换热器以及连接在室外换热器与室内换热器之间的节流装置。其中,节流装置可为电子膨胀阀。
本公开实施例的多联机空调,通过上述的电子设备,可更进一步的保护***和压缩机,从而提升多联机空调的可靠性,降低多联机空调的维护成本。
需要说明的是,在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,“计算机可读介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个, 例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种多联机空调的控制方法,其中,所述多联机空调包括外机和内机,所述方法包括:
    根据所述外机的几何参数、所述内机的送风口参数、室外环境温度和室内环境温度,得到理论排气压力;
    根据所述外机的高压压力、所述理论排气压力,得到压力偏离度;
    根据所述压力偏离度对所述多联机***进行启动控制。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    当识别到所述多联机空调的待机时长大于或等于第一预设时长,且所述室外环境温度小于或等于第一预设温度时,执行得到理论排气压力的步骤。
  3. 根据权利要求1所述的方法,其中,所述外机的数量为M,所述内机的数量为N,所述得到理论排气压力,包括:
    根据M个几何参数得到外机辐射换热面积,根据N个送风口参数得到内机辐射换热面积,根据M个室外环境温度得到外机平均环境温度,根据N个室内环境温度得到内机平均环境温度;
    根据所述外机辐射换热面积、所述内机辐射换热面积、所述外机平均环境温度、所述内机平均环境温度,得到理论排气饱和温度、理论吸气饱和温度;
    根据所述理论排气饱和温度和所述理论吸气饱和温度,得到所述理论排气压力。
  4. 根据权利要求1所述的方法,其中,所述根据所述压力偏离度对所述多联机***进行启动控制,包括:
    当识别到所述压力偏离度大于或等于第一偏离度时,控制所述多联机空调执行正常启动流程;
    当识别到所述压力偏离度小于所述第一偏离度,且大于或等于第二偏离度时,对所述多联机空调进行预加热第二预设时长,之后控制所述压缩机以最低允许运行频率运行第三预设时长,之后控制所述多联机空调执行正常启动流程;
    当识别到所述压力偏离度小于所述第二偏离度时,对所述多联机空调进行预加热,直至所述压缩机排气口温度与所述多联机空调的冷凝温度之间的差值大于第二差值阈值,之后控制所述多联机空调执行正常启动流程;
    其中,预加热的加热功率大于或等于理论换热强度,所述理论换热强度根据所述外机辐射换热面积、所述内机辐射换热面积、所述外机平均环境温度、所述内机平均环境温度得到。
  5. 根据权利要求4所述的方法,其中,在预加热之后,执行正常启动流程过程中, 所述方法还包括:
    根据启动电流计算电流波动幅度;
    当识别到所述电流波动幅度大于预设幅度阈值时,停止正常启动流程,并返回预加热的步骤。
  6. 根据权利要求4所述的方法,其中,通过下式得到理论排气饱和温度Tc、理论吸气饱和温度Te和理论换热强度Qpower
    Qpower=ε1Aodu(Tc-T4avg)=ε2Aidu(T1avg-Te),且Tc=Te,
    其中,Aodu为所述外机辐射换热面积,Aidu为所述内机辐射换热面积,ε1为第一系数,ε2为第二系数,T4avg为所述外机平均环境温度,T1avg为所述内机平均环境温度。
  7. 根据权利要求4所述的方法,其中,所述根据所述高压压力、所述理论排气压力,得到压力偏离度,包括:
    计算所述理论排气压力和所述高压压力的差值;
    计算所述差值与所述高压压力的比值,得到所述压力偏离度。
  8. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1-7中任一项所述的方法。
  9. 一种电子设备,包括存储器、处理器和存储在所述存储器上的计算机程序,所述计算机程序被所述处理器执行时,实现如权利要求1-7中任一项所述的方法。
  10. 一种多联机空调,其中,包括如权利要求9所述的电子设备。
PCT/CN2023/079615 2022-03-24 2023-03-03 多联机空调及其控制方法和存储介质、电子设备 WO2023179340A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23773591.5A EP4365504A1 (en) 2022-03-24 2023-03-03 Multi-split air conditioner and control method therefor, storage medium, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210302226.1 2022-03-24
CN202210302226.1A CN116839174A (zh) 2022-03-24 2022-03-24 多联机空调及其控制方法和存储介质、电子设备

Publications (1)

Publication Number Publication Date
WO2023179340A1 true WO2023179340A1 (zh) 2023-09-28

Family

ID=88099908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079615 WO2023179340A1 (zh) 2022-03-24 2023-03-03 多联机空调及其控制方法和存储介质、电子设备

Country Status (3)

Country Link
EP (1) EP4365504A1 (zh)
CN (1) CN116839174A (zh)
WO (1) WO2023179340A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203516011U (zh) * 2013-10-16 2014-04-02 Tcl空调器(中山)有限公司 压缩机的电加热结构及空调
CN105953359A (zh) * 2016-04-29 2016-09-21 广东美的制冷设备有限公司 一种电加热结构、空调压缩机启动***及方法
CN109458711A (zh) * 2018-11-05 2019-03-12 珠海格力电器股份有限公司 一种压缩机电加热带控制方法、装置、存储介质及空调器
CN109579240A (zh) * 2018-10-30 2019-04-05 青岛海信日立空调***有限公司 一种空调器压缩机预热控制方法及空调器
WO2019202629A1 (ja) * 2018-04-16 2019-10-24 三菱電機株式会社 空気調和機
CN110529981A (zh) * 2019-09-16 2019-12-03 宁波奥克斯电气股份有限公司 一种防止压缩机积液的方法和空调器
CN112665108A (zh) * 2019-10-16 2021-04-16 广东美的制冷设备有限公司 空调器的控制方法、空调器及存储介质
CN112728725A (zh) * 2021-01-22 2021-04-30 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机的控制装置、方法和空调
CN113623793A (zh) * 2021-08-23 2021-11-09 宁波奥克斯电气股份有限公司 一种压缩机预热控制方法、空调、计算机可读存储介质
CN114110973A (zh) * 2021-11-03 2022-03-01 珠海格力电器股份有限公司 一种空调多联机及其制热启动控制方法、装置和存储介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203516011U (zh) * 2013-10-16 2014-04-02 Tcl空调器(中山)有限公司 压缩机的电加热结构及空调
CN105953359A (zh) * 2016-04-29 2016-09-21 广东美的制冷设备有限公司 一种电加热结构、空调压缩机启动***及方法
WO2019202629A1 (ja) * 2018-04-16 2019-10-24 三菱電機株式会社 空気調和機
CN109579240A (zh) * 2018-10-30 2019-04-05 青岛海信日立空调***有限公司 一种空调器压缩机预热控制方法及空调器
CN109458711A (zh) * 2018-11-05 2019-03-12 珠海格力电器股份有限公司 一种压缩机电加热带控制方法、装置、存储介质及空调器
CN110529981A (zh) * 2019-09-16 2019-12-03 宁波奥克斯电气股份有限公司 一种防止压缩机积液的方法和空调器
CN112665108A (zh) * 2019-10-16 2021-04-16 广东美的制冷设备有限公司 空调器的控制方法、空调器及存储介质
CN112728725A (zh) * 2021-01-22 2021-04-30 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机的控制装置、方法和空调
CN113623793A (zh) * 2021-08-23 2021-11-09 宁波奥克斯电气股份有限公司 一种压缩机预热控制方法、空调、计算机可读存储介质
CN114110973A (zh) * 2021-11-03 2022-03-01 珠海格力电器股份有限公司 一种空调多联机及其制热启动控制方法、装置和存储介质

Also Published As

Publication number Publication date
CN116839174A (zh) 2023-10-03
EP4365504A1 (en) 2024-05-08

Similar Documents

Publication Publication Date Title
CN110173832B (zh) 窗式空调器的控制方法
KR101917941B1 (ko) 공기조화기 및 그 제어 방법
US7954333B2 (en) Air conditioner
AU2009263640B2 (en) Air conditioning apparatus refrigerant quantity determination method and air conditioning apparatus
WO2022002286A1 (zh) 一种空调器及其控制方法
US5074120A (en) Multi-type air-conditioning system with fast hot starting for heating operation
US7997093B2 (en) Air conditioner
JP5094801B2 (ja) 冷凍サイクル装置及び空気調和装置
JP5951397B2 (ja) 空気調和機
CN110207420B (zh) 多联机***及其控制方法
JP7208519B2 (ja) 台数制御装置、台数制御方法、台数制御プログラム
CN113757945B (zh) 空调器控制方法、装置、空调器以及计算机可读存储介质
CN116123663A (zh) 空调器
JP2014149105A (ja) 空気調和機
JP2011257098A (ja) ヒートポンプサイクル装置
WO2023179340A1 (zh) 多联机空调及其控制方法和存储介质、电子设备
JP2010007996A (ja) 空気調和装置の試運転方法および空気調和装置
KR20190075104A (ko) 공기 조화 장치의 제어 장치, 공기 조화 장치, 공기 조화 장치의 제어 방법, 및 공기 조화 장치의 제어를 위한 컴퓨터 프로그램이 저장된 기록 매체
CN112178894B (zh) 控制方法、空调器和计算机可读存储介质
JP5245576B2 (ja) 空気調和装置の冷媒量判定方法および空気調和装置
JP4063041B2 (ja) 多室形空気調和機の制御方法
WO2023203745A1 (ja) 空気調和装置、および空気調和方法
WO2023142498A1 (zh) 空调器及其控制器、控制方法及计算机可读存储介质
JP7328533B2 (ja) 冷凍サイクル装置
JP7488478B2 (ja) 冷凍サイクル装置及び冷媒漏洩を判定する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023773591

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023773591

Country of ref document: EP

Effective date: 20240201