WO2023178487A1 - 飞行器及其功耗的控制方法、控制装置和计算机存储介质 - Google Patents

飞行器及其功耗的控制方法、控制装置和计算机存储介质 Download PDF

Info

Publication number
WO2023178487A1
WO2023178487A1 PCT/CN2022/082087 CN2022082087W WO2023178487A1 WO 2023178487 A1 WO2023178487 A1 WO 2023178487A1 CN 2022082087 W CN2022082087 W CN 2022082087W WO 2023178487 A1 WO2023178487 A1 WO 2023178487A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
subsystem
flight
control device
power consumption
Prior art date
Application number
PCT/CN2022/082087
Other languages
English (en)
French (fr)
Inventor
吴鑫
景瑞光
余永超
刘欢
郑伟
张益�
陈文辉
陈卓伟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2022/082087 priority Critical patent/WO2023178487A1/zh
Publication of WO2023178487A1 publication Critical patent/WO2023178487A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present invention generally relates to the technical field of aircraft, and more specifically to an aircraft and a method, control device and computer storage medium for controlling its power consumption.
  • UAV platforms usually use fans and enlarged heat dissipation teeth to improve heat dissipation.
  • Fans have poor heat dissipation reliability and are prone to damage and failure in sandy and dusty scenarios; and in weight-sensitive drone systems, the weight brought by the fans will increase the design difficulty and manufacturing cost of the drone.
  • methods to increase the size of the radiator such as enlarging the heat dissipation teeth, can only be applied to UAV systems that are not weight-sensitive.
  • this application has been made in order to solve at least one of the above problems. Specifically, in one aspect, this application provides an aircraft, which includes:
  • a power mechanism disposed on the fuselage, for providing flight power for the aircraft, wherein the power mechanism includes a rotatable propeller;
  • the operating mode of the aircraft is determined, and the aircraft is controlled to execute the determined operating mode, wherein when the flight state includes that the propeller of the aircraft is not rotating, the aircraft is in the first operating mode , when the flight state includes that the propeller of the aircraft has rotated, the aircraft is in the second operating mode, and the system power consumption of the aircraft in the first operating mode is lower than that in the second operating mode. System power consumption of the aircraft.
  • a second aspect of this application provides a control device, which includes:
  • Memory used to store executable program instructions
  • One or more processors configured to execute the program instructions stored in the memory, causing the processor to perform the following steps:
  • the operating mode of the aircraft is determined, and the aircraft is controlled to execute the determined operating mode, wherein when the flight state includes that the propeller of the aircraft is not rotating, the aircraft is in the first operating mode , when the flight state includes the propeller of the aircraft being rotated, the aircraft is in the second operating mode, and the system power consumption of the aircraft in the first operating mode is lower than that in the second operating mode. System power consumption of the aircraft.
  • a third aspect of this application provides a method for controlling the power consumption of an aircraft.
  • the control method includes:
  • the operating mode of the aircraft is determined, and the aircraft is controlled to execute the determined operating mode, wherein when the flight state includes that the propeller of the aircraft is not rotating, the aircraft is in the first operating mode , when the flight state includes that the propeller of the aircraft has rotated, the aircraft is in the second operating mode, and the system power consumption of the aircraft in the first operating mode is lower than that in the second operating mode. System power consumption of the aircraft.
  • a fourth aspect of the present application also provides a computer storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the aforementioned method for controlling the power consumption of an aircraft is implemented.
  • the aircraft and control device in the embodiment of the present application can determine the operating mode of the aircraft according to the current flight status of the aircraft.
  • the aircraft When the propeller of the aircraft is not rotating, the aircraft is in the first operating mode with lower system power consumption to reduce system power consumption of the aircraft, thereby reducing the heat generated by the corresponding computing chip of the aircraft, thereby alleviating the heat dissipation problem of the aircraft.
  • the propeller of the aircraft rotates, the aircraft is in a second operating mode in which the system power consumption is higher than that of the first operating mode. Since The operation of the aircraft's propeller will significantly improve the heat dissipation of the aircraft.
  • the heat dissipation of the high-computing power chip will be alleviated due to the operation of the propeller, providing users with a better user experience.
  • the structure of the aircraft of the present application is simpler and easier to achieve weight reduction.
  • Figure 1 shows a schematic diagram of an aircraft in an embodiment of the present application
  • Figure 2 shows a schematic diagram of various scene switching jumps in an embodiment of the present application
  • Figure 3 shows a schematic block diagram of a control device in an embodiment of the present application
  • Figure 4 shows a flow chart of a method for controlling power consumption of an aircraft in an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of an aircraft 100 in one embodiment of the present application.
  • the aircraft 100 includes a carrier body (ie, a fuselage) 102 and a payload 104.
  • a carrier body ie, a fuselage
  • the payload 104 may be located directly on the aircraft 100 without the need for a carrier body 120 .
  • the aircraft 100 may include a processor 101, a memory 102, a power mechanism 106, a sensing system 108, and a communication system 110. These components are interconnected by a bus system and/or other forms of connection mechanisms (not shown).
  • the load 104 may include a camera or the like.
  • the power mechanism 106 may include one or more rotating bodies, propellers, blades, engines, motors, wheels, bearings, magnets, and nozzles.
  • the rotating body of the power mechanism may be a self-tightening rotating body, a rotating body assembly, or other rotating body power unit.
  • An aircraft may have one or more powertrains. All powertrains can be of the same type.
  • one or more power mechanisms can be of different types.
  • the powertrain 106 may be mounted on the aircraft by suitable means, such as by support elements (eg, drive shafts).
  • the power mechanism 106 can be installed at any suitable position on the aircraft 100, such as the top, lower end, front end, rear end, side, or any combination thereof.
  • the aircraft does not contain a cooling fan, and the rotation of the aircraft's propellers can dissipate heat from the aircraft.
  • the powertrain 106 enables the aircraft to take off vertically from a surface, or land vertically on a surface, without requiring any horizontal movement of the aircraft 100 (eg, without taxiing on a runway).
  • the power mechanism 106 may allow the aircraft 100 to preset a position and/or steer in the air.
  • One or more power mechanisms 106 may be controlled independently of other power mechanisms.
  • one or more power mechanisms 106 can be controlled simultaneously.
  • the aircraft 100 may have multiple horizontal rotating bodies to track the lifting and/or pushing of the target. The horizontal rotary body can be actuated to provide the aircraft 100 with the ability to take off vertically, land vertically, and hover.
  • one or more of the horizontally oriented rotating bodies may rotate in a clockwise direction, and the other one or more of the horizontally oriented rotating bodies may rotate in a counterclockwise direction.
  • the rotation rate of each horizontal rotating body can be changed independently to realize the lifting and/or pushing operation caused by each rotating body, thereby adjusting the spatial orientation, speed and/or acceleration of the aircraft 100 (such as relative to up to three degrees of freedom of rotation and translation).
  • Sensing system 108 may include one or more sensors to sense spatial orientation, velocity, and/or acceleration (eg, rotation and translation with respect to up to three degrees of freedom) of aircraft 100 .
  • the one or more sensors include any of the sensors described above, including GPS sensors, motion sensors, inertial sensors, proximity sensors, or image sensors.
  • the sensing data provided by the sensing system 108 may be used to track the spatial orientation, velocity and/or acceleration of the target (as follows, using an appropriate processing unit and/or control unit).
  • the sensing system 108 may be used to collect data on the environment of the aircraft, such as climate conditions, potential obstacles to be approached, the location of geographical features, the location of man-made structures, image information, etc.
  • the communication system 110 can communicate with the control device 112 having the communication system 114 through the wireless signal 116 .
  • Communication systems 110, 114 may include any number of transmitters, receivers, and/or transceivers for wireless communications.
  • Communication can be one-way, so data can be sent in one direction.
  • one-way communication may include only the aircraft 100 transmitting data to the control device 112, or vice versa.
  • One or more transmitters of communication system 110 may send data to one or more receivers of communication system 114 and vice versa.
  • the communication can be two-way communication, so that data can be transmitted in both directions between the aircraft 100 and the control device 112 .
  • Bidirectional communication includes that one or more transmitters of communication system 110 can send data to one or more receivers of communication system 114, and vice versa.
  • the communication system 110 may include a near field communication interface and a video transmission subsystem.
  • the near field communication interface includes at least one of the following interfaces: WiFi, Bluetooth communication interface or near field communication (NFC).
  • the video transmission subsystem is It is an image transmission transmitting device that performs wireless communication with a control device based on a radio frequency communication method.
  • the image transmission transmitting device can be used to transmit image information (such as images or videos, etc.) acquired by an aircraft. It includes a radio frequency board and a radio frequency board connected to the radio frequency board. Antenna unit etc.
  • control device 112 may provide control data to and receive control data from one or more of the aircraft 100 , the carrier 120 and the payload 104 Information (such as position and/or motion information of the aircraft, carrier or load, load sensing data, such as image data captured by a shooting device such as a camera).
  • control data of the control device may include instructions regarding position, movement, actuation, or control of the aircraft, carrier, and/or payload.
  • the control data may cause a change in the position and/or direction of the aircraft (such as by controlling the power mechanism 106), or cause the movement of the carrier relative to the aircraft (such as by controlling the carrier 120).
  • the control data of the control device can lead to load control, such as controlling the operation of a camera or other image capture device (capturing still or moving images, zooming, turning on or off, switching shooting modes, changing image resolution, changing focal length, changing depth of field, changing Exposure time, changing viewing angle or field of view).
  • communications from the aircraft, carrier, and/or payload may include information from one or more sensors (eg, sensing system 108 or payload 104).
  • Communications may include sensing information transmitted from one or more different types of sensors, such as GPS sensors, motion sensors, inertial sensors, proximity sensors, or image sensors.
  • Sensed information is about the position (such as direction, position), motion, or acceleration of the aircraft, carrier, and/or load.
  • Sensing information transmitted from the load includes data captured by the load or the status of the load.
  • the control data provided by the control device 112 may be used to track the status of one or more of the aircraft 100 , the carrier 120 or the payload 104 .
  • the carrier 120 and the payload 104 may each include a communication module for communicating with the control device 112 so that the control device can communicate or track the aircraft 100, the carrier 120 and the payload 104 individually.
  • the aircraft 100 may communicate with other remote devices in addition to the control device 112 , and the control device 112 may also communicate with other remote devices other than the aircraft 100 .
  • the aircraft and/or control device 112 may communicate with another aircraft or a carrier or payload of another aircraft.
  • the additional remote device may be a second control device or other computing device (such as a computer, desktop computer, tablet, smart phone, or other mobile device).
  • the remote device may transmit data to the aircraft 100 , receive data from the aircraft 100 , transmit data to the control device 112 , and/or receive data from the control device 112 .
  • the remote device can be connected to the Internet or other telecommunications networks to upload data received from the aircraft 100 and/or the control device 112 to a website or server.
  • the movement of the aircraft, the movement of the carrier body, and the movement of the load relative to a fixed reference object (such as the external environment), and/or to each other, can be controlled by the control device.
  • the control device may be a remote control terminal located far away from the aircraft, carrier and/or load.
  • the control device may be located on or attached to the support platform.
  • the control device can be handheld or wearable.
  • the control device may include a mobile phone, a tablet, a computer, glasses, gloves, a helmet, a remote control, a microphone, or any combination thereof.
  • the control device may include a user interface such as a keyboard, mouse, joystick, touch screen, or display. Any suitable user input may interact with the control device, such as manual input instructions, voice control, gesture control, or positional control (eg, by controlling the motion, position, or tilt of the device).
  • control device 112 may also include a video transmission receiving end (not shown).
  • the video transmission receiving end may be used in conjunction with the video transmission subsystem of the aircraft.
  • the video transmission receiving end may receive the video transmission of the drone.
  • the image information emitted by the subsystem can be displayed through the display of the control device 112.
  • the display of the control device 112 can be any device with a display function such as a mobile phone, a tablet, a computer, glasses, gloves, a helmet, or a remote control.
  • the display and the image transmission receiving end can be connected through a data line, and the image information received by the image transmission receiving end is transmitted to the display through the data line for display.
  • the display and the image transmission receiving end can be two devices that can be used separately.
  • the display and the image transmission receiving end can also be integrated into one device, which is not limited here.
  • the aircraft 100 may include one or more memories 102, and the memory 102 stores computer programs run by a processor, for example, used to store program instructions for implementing various functions of the aircraft.
  • One or more computer program products may be included, and the computer program products may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • Volatile memory may include, for example, random access memory (RAM) and/or cache memory (cache), etc.
  • Non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, etc.
  • the aircraft 100 may include one or more processors 101, which may be a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or a data processing unit.
  • processors 101 may be a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or a data processing unit.
  • processors 101 may be a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or a data processing unit.
  • processors 101 may be a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or a data processing unit.
  • a processor can
  • the processor of the aircraft of this application is also used to obtain the current flight status of the aircraft; determine the operating mode of the aircraft according to the flight status, and control the aircraft to execute the determined operating mode, wherein when the flight status includes: When the propeller of the aircraft is not rotating, the aircraft is in the first operating mode. When the flight state includes that the propeller of the aircraft is rotating, the aircraft is in the second operating mode. The system power consumption of the aircraft in the first operating mode is lower than that of the aircraft in the second operating mode. system power consumption.
  • the aircraft When the propeller of the aircraft is not rotating, the aircraft is in the first operating mode with lower system power consumption to reduce the system power consumption of the aircraft, thereby reducing the heat generation of the aircraft's corresponding computing chip, thereby alleviating the heat dissipation problem of the aircraft.
  • the propeller When the propeller is rotating, the aircraft is in the second operating mode with higher system power consumption than the first operating mode. Since the operation of the aircraft's propeller will significantly improve the heat dissipation of the aircraft, the high-power second operating mode is running at this time, and the high computing power chip The heat dissipation will be alleviated due to the operation of the propeller, providing users with a better experience.
  • the aircraft of the present application does not need to be equipped with a cooling fan, but uses the rotation of the propeller to dissipate heat. Therefore, the structure of the aircraft can be simpler and it is easier to achieve weight reduction.
  • the use of aircraft such as drones can be divided into three major scenarios such as ground, flight, and bombing, and each major scenario is further divided into multiple small scenarios.
  • the heat dissipation conditions are better, but smaller avionics system chip power consumption can be exchanged for longer endurance flight time, so it can be roughly divided into two small scenarios, such as the maximum computing power scenario and the economic endurance scenario. .
  • Bombing can refer to situations such as a crash of the drone.
  • the drone In the bombing scenario, although the drone is also on the ground, when it crashes, the drone will most likely be disconnected from the control device in the user's hand, such as a remote control.
  • the UAV system needs to survive as long as possible so that the user can find the aircraft that fell out of sight.
  • the bombing scene in the embodiment of the present application is different from the aforementioned ground scene.
  • the parts of the aircraft of the present application that require power consumption and chip computing power control can be divided into flight subsystems (including but not limited to inertial sensor (IMU)-based flight control, vision-based spatial perception and Obstacle avoidance), camera subsystem, image transmission subsystem and computing power subsystem (controlling the clock frequency of each chip in the system, including but not limited to central processing unit (cpu), memory (ddr), etc.), etc.
  • the four subsystems perform strategic control to achieve switching between the first operating mode and the second operating mode by adjusting the power consumption of at least one subsystem, and to control the power consumption of each subsystem during a crash scenario to Prolonging the survival time of the UAV system as long as possible allows users to find aircraft that have fallen out of sight.
  • the power consumption levels of the flight subsystem, camera subsystem, and image transmission subsystem can be divided, for example, into three modes: S0, S1, and S2 (see Table 1).
  • the computing power subsystem can be configured according to the mode combination of the above three subsystems to select the minimum computing power that just meets the system operation, ensuring that the energy efficiency ratio of the system is at a better level.
  • Table 1 Subsystem power consumption level table
  • the power consumption of each subsystem in power consumption level S0 is higher than the power consumption in power consumption level S1.
  • the power consumption of power consumption level S1 is higher than the power consumption of power consumption level S2.
  • the normal operation of the business means the normal operation of the functions of each subsystem.
  • the above table 1 can also be preset in the memory of the aircraft, so that the processor of the aircraft can call it when needed, or the above table 1 can also be preset in the memory of the control device.
  • the low power consumption mode of the image transmission subsystem, camera subsystem, and flight subsystem can be corresponding to S1 power consumption.
  • the corresponding image transmission subsystem when the image transmission subsystem consumes S0 power, the corresponding image transmission subsystem is in active mode. , for example, it will actively transmit image data to the control device, resulting in high power consumption.
  • the image transmission subsystem consumes power in S1
  • the corresponding image transmission subsystem is in standby mode. For example, the transmission power can be reduced to reduce power consumption.
  • the aircraft may be in at least one of a variety of preset functions. It can It includes sub-scenes for various preset functions that the aircraft can perform.
  • the preset functions include at least one of the following functions: firmware upgrade, playback or download, USB disk mode, photo and video recording, and log export. Each scene can be switched. These switches can be made through the selection instructions of the preset function options of the control device.
  • the take-off instruction can be used to switch from the state of stopping the propellers and waiting for flight to the maximum computing power scenario of the flight scene, or the landing instruction can be used to switch from the flight state to the maximum computing power scene of the flight scene.
  • the maximum computing power scene of the scene is switched to the state of stopping the propellers and ready to fly.
  • an aircraft in the flight scene can switch from the maximum computing power scene to the economical endurance scene by turning off intelligent flight-related functions and currently taking photos and videos. When turning on intelligent flight-related functions, or performing operations such as taking photos or recording videos, the system switches from the economic endurance scenario to the maximum computing power scenario.
  • the maximum computing power of the flight scene is the scene
  • the aircraft when the aircraft lands and is currently taking pictures or recording, it enters the ground scene to run the corresponding power consumption level, or when the aircraft takes off and is currently taking pictures or recording, you can start from The power consumption mode of the ground scene is switched to the mode corresponding to the maximum computing power scene of the flight scene.
  • the subsystem power consumption level table in different scenarios.
  • the processor of the aircraft can allocate corresponding power consumption to each subsystem according to the actual scene or the preset function corresponding to the scene. For example, the implementation of each subsystem can be obtained through the power consumption. The mode that should be executed for this power consumption can be found, for example, through the corresponding relationship with the aforementioned Table 1.
  • the aircraft further includes a camera subsystem, a flight subsystem, and an image transmission subsystem.
  • the function of at least one of the camera subsystem, the flight subsystem, the image transmission subsystem, and the computing power subsystem is The power consumption is less than the power consumption of the corresponding system in the second operating mode.
  • the intelligent functions of the flight subsystem can be dynamically enabled.
  • the first operating mode includes at least one of the following modes: at least one intelligent function of the aircraft is turned off, at least one data processing function of the aircraft is turned off, and at least one space perception sensor of the aircraft is turned off.
  • the off state because when the aircraft is parked on the ground and ready to fly, some intelligent functions do not need to be turned on. By turning off at least one of these functions, the demand for system computing power can be reduced, thereby reducing the computing power of the chip.
  • the heat generated by computing can alleviate the heat dissipation problem of the aircraft.
  • the intelligent function includes at least one of the following functions: intelligent obstacle avoidance, path planning or point of interest identification; the data processing function may be some chip-dependent functions, for example, the data processing function includes at least one of the following functions: Neural network model (CNN), image signal processing (DSP or digital signal processing (ISP)); spatial perception sensors include at least one of the following sensors: Time of flight (TOF), visual sensor module or ultrasonic Mods.
  • CNN Neural network model
  • DSP image signal processing
  • ISP digital signal processing
  • spatial perception sensors include at least one of the following sensors: Time of flight (TOF), visual sensor module or ultrasonic Mods.
  • the processor 101 is also configured to: obtain a takeoff instruction for controlling the takeoff of the aircraft.
  • the takeoff instruction may be input by the user through a user APP installed on the control device or by receiving a remote control. Obtained by the operation command of breaking the stick, and based on the take-off command, the aircraft is controlled to switch from the first operating mode to the second operating mode, wherein the second operating mode includes at least one of the following: turning on the space sensing sensor, turning on the data processing of the aircraft Function, turn on the intelligent functions of the aircraft, thereby restoring various intelligent functions of the flight subsystem to ensure normal flight.
  • the processor 101 can further refine the power consumption control in flight scenarios according to whether the user has turned on the smart function. For example, the processor 101 is also used to: when it is obtained that the smart function is not turned on, the chip can be The CNN and DSP are shut down, and then the system applies for a moderate level of computing power resources to reduce the demand for computing power and thereby reduce heat generation.
  • the aircraft includes a camera subsystem, which may include a camera, etc.
  • the camera subsystem When the camera subsystem is not taking pictures or recording, the camera subsystem is used to collect live view images.
  • the ISP that supports live view does not need to be full. Specification operation, the camera realizes the division of multiple power consumption specifications by adjusting the ISP clock frequency.
  • the target clock frequency of image signal processing includes multiple preset clock frequencies.
  • the multiple preset clock frequencies can be reasonably set according to actual needs.
  • the preset clock frequency includes multiple frequencies obtained by dividing 1440MHz by an integer greater than or equal to 2. Alternatively, it may include four frequencies of 720MHz, 480MHz, 360MHz, and 180MHz.
  • the processor 101 is also used to: obtain the real-time view picture, and adjust the target clock frequency of the image signal processing according to the resolution and frame rate of the real-time view picture, for example, calculate the target clock frequency according to the resolution and frame rate of the real-time view picture.
  • the minimum clock frequency required for image signal processing among multiple preset clock frequencies, the preset clock frequency that is greater than the minimum clock frequency and has the smallest difference from the minimum clock frequency is used as the target clock frequency.
  • the higher the frequency the higher the power consumption.
  • This application takes the lowest frequency that meets the requirements as the clock frequency during actual operation, so that the ISP clock can be dynamically adjusted, thereby realizing the power consumption of the ISP part of the chip. control.
  • the low-limit high-power consumption feature can also be turned on in some predetermined scenarios, such as when the propeller is not turned on.
  • the processor 101 is also used to limit at least one preset function that limits the power consumption of the aircraft to be greater than the predetermined power consumption. is turned on, and when the propeller takes off and lands, the processor 101 is also used to cancel restrictions on at least one preset function in which the power consumption of the aircraft is greater than the predetermined power consumption, where the preset function includes the camera's photo taking function or video recording function, for For drones without built-in fans for heat dissipation, whether the aircraft propels the aircraft will have a great impact on the heat dissipation performance of the entire drone.
  • the camera subsystem can also support low-power liveview when the camera subsystem is not taking pictures or recording.
  • the processor 101 is also used to: when the camera subsystem is in a state other than taking pictures or recording, And when the aircraft is parked and ready to fly, the real-time view image is compressed in the first compression method; and when the camera subsystem is in the state of taking pictures or recording, the real-time view image is compressed in the second compression method, wherein the second compression method is used.
  • the compression rate of the compression method is greater than the compression rate of the second compression method.
  • the first compression method for compression When the aircraft is parked on the ground and ready to fly, using the first compression method for compression will slightly reduce the liveview image quality, but it can reduce the amount of data in the live view image, allowing the use of a lower ISP clock frequency, and making the ISP The power consumption is low, thereby reducing the power consumption of the system.
  • the second compression method if used for compression, LiveView will switch to normal image quality. In this way, you can Liveview maintains a high consistency with the original film and ensures further reduction of power consumption in non-photography/video situations.
  • the temperature of the chip in the fuselage will rise rapidly. In order to ensure flight safety, the aircraft chip will not overheat and crash, causing loss of contact or falling.
  • the aircraft is also equipped with a temperature sensor.
  • the temperature sensor is used to collect the temperature information of the fuselage.
  • the temperature information of the fuselage can reflect the current temperature information of the aircraft, or it can also reflect the temperature information of the chip inside the aircraft.
  • the device 101 is also used to: obtain the temperature information output by the temperature sensor; determine the shooting mode that the camera subsystem can perform according to the threshold temperature range of the temperature information, and control the camera subsystem to run the determined shooting mode, wherein, when the temperature When the information is in different ranges, the shooting modes that the camera subsystem can perform are not exactly the same. For example, the higher the temperature range, the greater the power consumption of the corresponding shooting mode.
  • the threshold temperature range includes a first threshold temperature range, a second threshold temperature range and a third threshold temperature range.
  • this temperature range indicates that the body temperature is normal and the camera subsystem can
  • the camera subsystem can perform live view or disable all shooting modes (such as video recording or photo taking).
  • the temperature information is in the third threshold temperature range, it indicates that the body temperature is already very high, and the camera subsystem is prohibited from executing all shooting modes, thereby reducing the power consumption of the chip, reducing chip heating, and allowing the chip temperature to return to a safe level. within the range.
  • the first threshold temperature range is smaller than the second threshold temperature range
  • the second threshold temperature range is smaller than the third threshold temperature range.
  • the specific temperature range of the threshold temperature range can be reasonably set according to actual needs and is not specifically limited here.
  • the processor 101 is also configured to: when the temperature information is within the second threshold temperature range or the third threshold temperature range, output prompt information so that the control device 300 of the aircraft acquires and displays the prompt information.
  • the information can be used to remind the user that video recording or photography cannot be performed because the temperature is too high, so as to remind the user that they can shoot again later.
  • the aircraft includes a camera subsystem and an image transmission subsystem.
  • the image transmission subsystem is used to transmit the image information collected by the camera subsystem to the aircraft control device.
  • the aircraft is stationary at a close distance.
  • the scene of stopping the propellers and waiting to fly has the following characteristics: due to the small change in the static state image transmission picture, the real-time liveview code stream bandwidth transmission requirement is not high; due to the short distance, the signal transmission loss is small, and the requirement for radio frequency signal transmission power is not high;
  • the processor 101 is also used to: when the aircraft is at a standstill and ready to fly, the video transmission subsystem controls the first downlink duty cycle and/or the third downlink duty cycle.
  • One uplink duty cycle is used to transmit data information; when the propeller of the aircraft has rotated, the control image transmission subsystem uses the second downlink duty cycle and the second uplink duty cycle to transmit data information, where the first downlink The duty cycle is smaller than the second downlink duty cycle, and the first uplink duty cycle is smaller than the second uplink duty cycle.
  • the duty cycle of the uplink and downlink signals is reduced, and the downlink duty cycle is changed from 80% (that is, The second downlink duty cycle) is reduced to 10% (that is, the first downlink duty cycle), and the uplink duty cycle is reduced from 20% (that is, the second uplink duty cycle) to 10% (that is, the first uplink duty cycle).
  • Duty cycle by reducing the duty cycle of uplink and downlink signals when the propellers are parked and ready to fly at close range, the power consumption of the SDR image transmission subsystem is reduced.
  • the image transmission subsystem can also be optimized for low power consumption in the following manner.
  • the processor 101 is also used to: obtain the current distance between the aircraft and the control terminal of the aircraft and the current signal of the image transmission subsystem. Strength; control the transmission power of the image transmission subsystem according to the current distance and/or the current signal strength, for example, control the transmission power of the image transmission subsystem according to the threshold distance range of the current distance; and/or control the transmission power of the image transmission subsystem according to the current signal strength.
  • the threshold signal strength range at which the current signal strength is located controls the transmit power of the image transmission subsystem; among them, the greater the value of the threshold distance range where the current distance is, the greater the transmit power, and the greater the value of the threshold signal strength range where the current signal strength is. is larger, the smaller the transmit power.
  • the transmit power is controlled adaptively based on the current distance and signal strength. For example, the standard power can be reduced by 6dB, etc., thereby achieving adaptive adjustment of the power consumption of the image transmission subsystem.
  • the communication system of the aircraft may include a first data transmission module and a second data transmission module, wherein the power consumption of the first data transmission module is lower than the power consumption of the second data transmission module, and the power consumption of the first data transmission module is lower than that of the second data transmission module.
  • the maximum transmission distance of the first data transmission module is lower than the maximum transmission distance of the second data transmission module.
  • the processor 101 is also used to: obtain the current distance between the aircraft and the control terminal of the aircraft; transmit according to the threshold value of the current distance.
  • the first data transmission module includes a near field communication interface, and the near field communication interface includes the following interfaces. At least one of: WiFi, Bluetooth communication interface or short-range wireless communication; the second data transmission module includes a picture transmission subsystem, and the picture transmission subsystem performs wireless communication with the control device based on radio frequency communication.
  • the first data transmission module may include a WiFi module, which is characterized by lower power consumption than the image transmission subsystem, but worse anti-interference ability and long-distance transmission performance, so it is selected at different distances.
  • Different data transmission methods such as using wifi at short distances and using image transmission subsystems at long distances, can reduce the power consumption of the system.
  • the aircraft of this application also includes a computing power subsystem.
  • the computing power subsystem will dynamically adjust the CPU and DDR according to the computing power applications of three subsystems including the camera subsystem, flight subsystem, and camera subsystem. frequency to meet current needs.
  • the processor 101 also uses When the feedback information of the aircraft's control terminal downloading firmware is obtained, the transmission power of the image transmission subsystem is reduced or the image transmission subsystem is turned off, thereby reducing power consumption. For example, if a drone has a near-field communication interface, such as Bluetooth, WiFi, NFC, etc., the image transmission subsystem can be turned off and the near-field communication interface can be retained for subsequent wake-up of the aircraft. When the firmware is downloaded, wake up the drone and restore the connection to the image transmission subsystem.
  • a near-field communication interface such as Bluetooth, WiFi, NFC, etc.
  • the processor 101 when the aircraft firmware is updated, the processor 101 is also used to shut down subsystem submodules not related to the upgrade (such as at least one of the camera subsystem, flight subsystem, gimbal, etc.), while the system
  • the computing power of the current system will also be adjusted to a lower level for firmware updates to the aircraft's storage medium (i.e., memory).
  • the aircraft of the present application also has an over-temperature protection function.
  • the aircraft includes a temperature sensor, which is used to collect the temperature information of the aircraft.
  • the temperature information can be the temperature information of the chip or other suitable temperature information.
  • the processor 101 is also used to: obtain temperature information; when the temperature information exceeds the threshold temperature, control to reduce the power consumption of at least one of the camera subsystem, the flight subsystem and the image transmission subsystem; and obtain the camera after reducing the power consumption.
  • Subsystem, flight subsystem and image transmission subsystem computing power application to provide corresponding computing power.
  • the computing power subsystem When the computing power subsystem detects that the chip temperature is too high, it actively notifies each subsystem to enter the low power consumption mode, and then reduces the system computing power according to the computing power application of each subsystem in the low power consumption mode, reducing CPU and DDR functions. Consumption, together with other subsystems, reduces the heat of the whole machine and extends the survival time of the system.
  • the low power consumption mode of each subsystem can be realized in any suitable way.
  • the low power consumption mode can be the power consumption solving subsystem shutdown.
  • the aircraft can connect to the computer to copy materials for user material export.
  • the processor 101 is also used to: when the preset function is U disk mode, the control is turned off At least one of the camera subsystem, flight subsystem and image transmission subsystem, for example, all three are turned off, but the USB transmission and storage functions of the drone are retained, and the chip's computing power can be adjusted to an extremely low level, greatly reducing chip heat to avoid material export failure due to heat, and the user can complete the material export without adding additional heat dissipation means.
  • the aircraft crashes the aircraft is disconnected from the control device, and the communication signal strength is lower than the preset threshold.
  • the aircraft and the control device such as a remote control are disconnected.
  • the UAV system needs to survive as long as possible to facilitate the user to find the aircraft that fell out of sight. Therefore, at least one of the camera subsystem, flight subsystem, image transmission subsystem and computing power subsystem is in low power.
  • the aircraft's avionics system is used to enable the power supply (that is, the aircraft's power supply device such as a battery) to power at least one near field communication interface, so that the near field communication interface sends broadcast signals, such as turning off the Bluetooth module except All power supplies retain the ability of Bluetooth to broadcast Bluetooth beacons, thereby facilitating communication connections when the control device monitors Bluetooth beacon broadcasts, and because the power consumption of near-field communication interfaces such as Bluetooth modules is lower than other
  • the communication module is such as the video transmission subsystem, so this method can save system power consumption, allowing the aircraft to survive longer and leaving more time for the operator to search.
  • the control device monitors through a near-field communication interface that matches the aircraft, such as Bluetooth.
  • a near-field communication interface that matches the aircraft, such as Bluetooth.
  • the control device and the drone communicate through the near-field communication interface.
  • a field communication interface such as Bluetooth, establishes a connection.
  • the processor 101 is also used to: when obtaining a wake-up signal sent by the control device of the aircraft through a near-field communication interface, such as Bluetooth, control to wake up the aircraft; and control the awakened aircraft and the control device to communicate through the image.
  • the transmitter system communicates so that the control device can obtain the real-time images of its surroundings sent by the aircraft, so that the user can find the aircraft faster and solve the problem of the last 50m range (that is, within the 50m range around the crash site). Difficulty in searching.
  • the aircraft also includes an alarm device
  • the processor 101 is further configured to: when a signal sent by the control device of the aircraft is obtained through the near field communication interface, control to wake up the aircraft; and obtain the trigger signal sent by the control device, to The alarm device is triggered to sound and/or light alarm to remind the user of the location of the aircraft, facilitate the user to find the aircraft, and solve the search difficulty in the last 50m range (that is, within the 50m range surrounding the crash site).
  • the drone bombing scene has the following characteristics: the bombing location is generally far away from the operator; the operator only has vague GPS coordinates of the bombing location, and the location where the drone fell There are likely to be obstructions that make visual search difficult. Therefore, the aircraft must do the following: In order to leave more search time for the operator, the aircraft avionics power consumption needs to be reduced as much as possible; in order to solve the problem of the last 50m range (also That is, it is difficult to search within 50m of the crash site. It is necessary to establish a connection between the ground equipment and the aircraft after the operator approaches, and prompt the aircraft's position by triggering the aircraft's sound and light.
  • the aircraft's processor 101 can identify a bombing scenario based on any suitable method.
  • the aircraft's processor 101 can also be used to identify whether the aircraft is bombing based on the flight attitude and/or speed information of the aircraft.
  • the values of position sensors (such as GPS) and propeller motors will fluctuate abnormally. It can also be judged based on the abnormal fluctuations whether the aircraft has crashed.
  • the aircraft's operating mode is configured as crash mode, where, When the aircraft is in crash mode, at least one of the camera subsystem, flight subsystem, image transmission subsystem and computing power subsystem is in a low power consumption mode or shut down.
  • the camera subsystem Closed the image transmission subsystem is closed, the flight subsystem is in low power consumption mode, and the computing power subsystem is in low power consumption mode.
  • the embodiment of the present application also provides an aircraft control device.
  • the control device may be an external device independent of the aircraft, such as an aircraft control device.
  • the control device may include, for example, a mobile phone, a remote control, a tablet computer, notebook, etc., the control device can also be part or all of the control system of the aircraft, or part or all of the computer equipment that can control the aircraft through software, hardware, or a combination of software and hardware.
  • the aforementioned partial power consumption control functions performed by the aircraft can also be performed by the control device.
  • the aircraft control device 300 (which may correspond to the control device 112 in Figure 1) includes one or more memories 301, one or more processors 302, and a communication interface 303 (which may correspond to the communication system in Figure 1 114 (corresponding to 114), display 304, etc., these components are interconnected through a bus system and/or other forms of connection mechanisms (not shown). It should be noted that the components and structures of the device 300 shown in FIG. 3 are only exemplary and not restrictive. The control device 300 may also have other components and structures as needed.
  • the processor 302 is used to execute the program instructions stored in the memory 301, so that the processor performs the function of controlling the power consumption of the aircraft. In order to avoid repetition, the detailed description of some steps can be referred to the above and will not be repeated here.
  • the memory 301 is used to store various data and executable program instructions generated during the movement of the relevant aircraft, for example, used to store various application programs or algorithms that implement various specific functions.
  • One or more computer program products may be included, and the computer program products may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • Volatile memory may include, for example, random access memory (RAM) and/or cache memory (cache), etc.
  • Non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, etc.
  • the processor 302 may be a central processing unit (CPU), a graphics processing unit (GPU), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or other form of processing with data processing capabilities and/or instruction execution capabilities. unit, and can control other components in the device 300 to perform desired functions.
  • a processor can include one or more embedded processors, processor cores, microprocessors, logic circuits, hardware finite state machines (FSMs), digital signal processors (DSPs), graphics processing units (GPUs), or the like. The combination.
  • the display 304 is used to display various visual information.
  • the visual information includes but is not limited to image data returned by the aircraft, various operation pages, images captured by the shooting device, real-time view images, and various preset function options, such as firmware upgrades. , log export, photo taking, video recording, U disk mode, playback or download, etc.
  • control device 300 further includes a communication interface 303 for communicating between various components in the control device 300 and between each component of the control device 300 and other devices outside the system, for example, when the device is external When the device is installed, it can communicate with the aircraft through the communication interface, allowing information exchange between the two.
  • a communication interface 303 for communicating between various components in the control device 300 and between each component of the control device 300 and other devices outside the system, for example, when the device is external When the device is installed, it can communicate with the aircraft through the communication interface, allowing information exchange between the two.
  • the communication interface 303 can be an interface of any currently known communication protocol, such as a wired interface or a wireless interface.
  • the communication interface can include one or more serial ports, USB interfaces, Ethernet ports, WiFi, wired networks, and DVI interfaces.
  • the device integrates interconnect modules or other suitable various ports, interfaces, or connections.
  • Device 300 can also access wireless networks based on communication standards, such as WiFi, 2G, 3G, 4G, 6G, or combinations thereof.
  • the communication interface receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication interface also includes a near field communication (NFC) module to facilitate short-range communications.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies. It may also include the aforementioned image transmission receiving device.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • BT Bluetooth
  • the device 300 also includes an input device (not shown) that may be a device used by a user to input instructions, and may include one or more of a keyboard, a trackball, a mouse, a microphone, a touch screen, etc., or other controls.
  • An input device composed of buttons.
  • the control device 300 of the aircraft may include one or more memories 301 for storing executable program instructions, and the processor 302 is used to execute the program instructions stored in the memory 301, so that the processor 302 performs the following steps : Obtain the current flight status of the aircraft; determine the operating mode of the aircraft according to the flight status, and control the aircraft to execute the determined operating mode.
  • the flight status includes that the propeller of the aircraft is not rotating, the aircraft is in the first operating mode.
  • flying The state includes when the propeller of the aircraft is rotating and the aircraft is in the second operating mode.
  • the system power consumption of the aircraft in the first operating mode is lower than the system power consumption of the aircraft in the second operating mode.
  • the first operating mode includes at least one of the following: at least one intelligent function of the aircraft is turned off, at least one data processing function of the aircraft is turned off, and at least one of the aircraft's The spatial awareness sensor is off.
  • the processor 302 is further configured to: output a takeoff instruction for controlling the takeoff of the aircraft, so that the aircraft obtains the takeoff instruction and controls the aircraft to switch from the first operating mode to the second operating mode based on the takeoff instruction, wherein:
  • the second operating mode includes at least one of the following: turning on the space perception sensor, turning on the data processing function of the aircraft, and turning on the intelligent functions of the aircraft.
  • the intelligent function includes at least one of the following functions: intelligent obstacle avoidance, path planning or interest point identification;
  • the data processing function includes at least one of the following functions: neural network model, image signal processing or digital signal processing;
  • the spatial sensing sensor includes at least one of the following sensors: a time-of-flight sensor, a visual sensor module, or an ultrasonic module.
  • the aircraft includes a camera subsystem.
  • the camera subsystem When the camera subsystem is in a non-photography or video recording state, the camera subsystem is used to collect real-time view images.
  • the processor 302 is also used to: obtain the real-time view images, and obtain real-time view images based on the real-time view.
  • the resolution and frame rate of the viewfinder screen determine and output the target clock frequency of the aircraft's image signal processing, so that the aircraft performs image signal processing based on the target frequency. For example, based on the resolution and frame rate of the real-time viewfinder screen, calculate the required The minimum clock frequency for image signal processing; among multiple preset clock frequencies, the preset clock frequency that is greater than the minimum clock frequency and has the smallest difference from the minimum clock frequency is used as the target clock frequency.
  • the preset clock frequency includes multiple frequencies obtained by dividing 1440 MHz by an integer greater than or equal to 2.
  • the aircraft includes a camera subsystem, and the aircraft is also provided with a temperature sensor.
  • the temperature sensor is used to collect temperature information of the aircraft body.
  • the processor 302 is also used to: obtain the temperature information output by the temperature sensor; according to the temperature information
  • the threshold temperature range determines the shooting mode that the camera subsystem can perform, and controls the camera subsystem to run the determined shooting mode.
  • the shooting modes that the camera subsystem can perform are different. It is exactly the same, that is, after obtaining the temperature information, the aircraft can send the temperature to the control device through the communication interface, and the control device determines the shooting mode, and then controls the shooting mode of the aircraft.
  • the threshold temperature range includes a first threshold temperature range, a second threshold temperature range and a third threshold temperature range.
  • the camera subsystem can perform photography, video recording and live view shooting. mode, when the temperature information is in the second threshold temperature range, the camera subsystem can perform live view, or prohibit all shooting modes, when the temperature information is in the third threshold temperature range, the camera subsystem is prohibited from performing all shooting modes, where , the first threshold temperature range is smaller than the second threshold temperature range, and the second threshold temperature range is smaller than the third threshold temperature range. In this way, flight safety can be ensured and the aircraft chip can be prevented from overheating and crashing, causing loss of contact, crash, etc.
  • control device 300 further includes a display 304, and the processor 302 is further configured to: output prompt information when the temperature information is in the second threshold temperature range or the third threshold temperature range; the display is used to display prompt information to prompt The user's current photo or video function is unavailable.
  • the aircraft includes a camera subsystem and an image transmission subsystem.
  • the image transmission subsystem is used to transmit the image information collected by the camera subsystem to the control device 300.
  • the processor 302 is also used to: obtain the aircraft and control
  • the current distance between the devices 300 and the current signal strength of the image transmission subsystem; according to the current distance and/or the current signal strength, the transmission power of the image transmission subsystem is controlled.
  • the transmission power of the image transmission subsystem is controlled.
  • the transmission power of the image transmission subsystem; and/or the transmission power of the image transmission subsystem is controlled according to the threshold signal strength range of the current signal strength; among them, the greater the value of the threshold distance range of the current distance, the greater the transmission power. Large, the larger the value of the threshold signal strength range where the current signal strength is, the smaller the transmit power will be.
  • the aircraft includes a first data transmission module and a second data transmission module, wherein the power consumption of the first data transmission module is lower than the power consumption of the second data transmission module, and the first data transmission module The maximum transmission distance of the group is lower than the maximum transmission distance of the second data transmission module.
  • the processor 302 is also used to: obtain the current distance between the aircraft and the control device 300; and control the use of the aircraft according to the threshold transmission distance of the current distance.
  • One of the first data transmission module and the second data transmission module wherein when the current distance is at the first threshold transmission distance, the aircraft is controlled to use the first data transmission module, and when the current distance is at the second threshold transmission distance
  • the first threshold transmission distance is less than the second threshold transmission distance.
  • the first data transmission module includes a near field communication interface, and the near field communication interface includes at least one of the following interfaces: WiFi, Bluetooth communication interface or short-range wireless communication; the second data transmission module includes a picture transmission subassembly.
  • the image transmission subsystem communicates wirelessly with the control device based on radio frequency communication.
  • the aircraft also includes a video transmission subsystem.
  • the control device 300 includes a display 304.
  • the display 304 is used to display options for preset functions that the aircraft can perform.
  • the preset functions include firmware upgrades.
  • the processor 302 is also used to: When the selection instruction for firmware upgrade is obtained, the feedback information is output and the firmware is downloaded, so that the aircraft obtains the feedback information and controls to reduce the transmission power of the image transmission subsystem or turn off the image transmission subsystem based on the feedback information.
  • the aircraft also includes a camera subsystem, a flight subsystem, and a gimbal
  • the processor is also used to: send the downloaded firmware to the aircraft so that the aircraft updates the firmware, and control the shutdown of the camera subsystem, flight subsystem, and gimbal. At least one of system and gimbal.
  • the aircraft also includes a camera subsystem, a flight subsystem, and a video transmission subsystem.
  • the aircraft can perform preset functions, and the preset functions include U disk mode.
  • the control device 300 includes a display 304, and the display 304 is used to display the aircraft. Options for preset functions that can be executed.
  • the preset functions include U disk mode.
  • the processor 302 is also used to: when obtaining the selection instruction of the U disk mode, send the selection instruction to the aircraft so that the aircraft enters the U disk mode according to the selection instruction. disk mode, and control to shut down at least one of the camera subsystem, flight subsystem and image transmission subsystem.
  • the processor 302 is also configured to: when the aircraft crashes, is disconnected from the aircraft, and/or the communication signal strength is lower than a preset threshold, control at least one of the near field communication interfaces to open, To receive the broadcast signal sent by the corresponding near field communication interface of the aircraft, the near field communication interface includes at least one of the following interfaces: WiFi, Bluetooth communication interface or short-range wireless communication.
  • the aircraft also includes a video transmission subsystem
  • the processor 302 is also configured to: when receiving a broadcast signal sent by the near field communication interface of the aircraft, send a wake-up signal so that the aircraft obtains the wake-up signal and performs the wake-up signal according to the The wake-up signal wakes up the aircraft; and controls the awakened aircraft and the control device 300 to communicate through the image transmission subsystem.
  • the aircraft further includes an alarm device (not shown), and the processor 302 is further configured to: send a trigger signal so that the aircraft obtains the trigger signal, and triggers the alarm device to issue a sound and/or light alarm according to the trigger signal. , to reduce the difficulty for users to find aircraft.
  • the operating mode of the aircraft can be determined according to the current flight status of the aircraft.
  • the aircraft is in the first operating mode with lower system power consumption to reduce system power consumption of the aircraft, thereby reducing the heat generated by the corresponding computing chip of the aircraft, thereby alleviating the heat dissipation problem of the aircraft.
  • the propeller of the aircraft rotates, the aircraft is in a second operating mode in which the system power consumption is higher than that of the first operating mode. Since The operation of the aircraft's propeller will significantly improve the heat dissipation of the aircraft.
  • the heat dissipation of the high-computing power chip will be alleviated due to the operation of the propeller, providing users with a better user experience.
  • the structure of the aircraft of the present application is simpler and easier to achieve weight reduction.
  • this application also provides a method for controlling the power consumption of an aircraft.
  • the control method of this application can be executed based on the aforementioned aircraft, or based on the aforementioned control device, or it can also be based on the combination of the aforementioned aircraft and the control device. to execute.
  • the present application provides a method 400 for controlling the power consumption of an aircraft.
  • the control method 400 includes: step S410, obtaining the current flight status of the aircraft; step S420, determining the power consumption of the aircraft according to the flight status. an operating mode, and controls the aircraft to execute a determined operating mode, wherein when the flight state includes that the propeller of the aircraft is not rotating, the aircraft is in the first operating mode, and when the flight state includes that the propeller of the aircraft is rotating, the aircraft is in the second operating mode, The system power consumption of the aircraft in the first operating mode is lower than the system power consumption of the aircraft in the second operating mode.
  • the aircraft when the propeller of the aircraft is not rotating, the aircraft is in the first operating mode with lower system power consumption, so as to reduce the system power consumption of the aircraft, thereby reducing the heat generation of the corresponding computing chip of the aircraft, thereby alleviating the heat dissipation difficulty of the aircraft.
  • the aircraft's propeller while the aircraft's propeller is rotating, the aircraft is in the second operating mode with higher system power consumption than the first operating mode. Since the operation of the aircraft's propeller will significantly improve the heat dissipation of the aircraft, the high-power second operation is run at this time. mode, the heat dissipation of high computing power chips will be alleviated due to the operation of the propeller, providing users with a better experience.
  • the flight state of the aircraft may be determined based on whether the propeller of the aircraft is rotating or not. For example, when the propeller is rotating, it is usually in a flight scenario, and when the propeller is not rotating, it is in most cases. The propellers are stopped and ready to fly.
  • control method of the present application can be implemented based on the foregoing aircraft and/or control device, some details of the embodiments of the present application can also be referred to the foregoing description and will not be repeated here.
  • the first operating mode when the flight state is that the aircraft is parked and ready to fly, includes at least one of the following modes: at least one intelligent function of the aircraft is turned off, at least one data of the aircraft The processing function is turned off and at least one space sensing sensor of the aircraft is turned off, and the power consumption is reduced by dynamically turning off the intelligent function.
  • the aircraft in step S420, also includes a camera subsystem, a flight subsystem, and an image transmission subsystem.
  • the camera subsystem, the flight subsystem, the image transmission subsystem, and the computing power subsystem In the first operating mode, the camera subsystem, the flight subsystem, the image transmission subsystem, and the computing power subsystem The power consumption of at least one of them is less than the power consumption of the corresponding system in the second operating mode.
  • the method further includes: obtaining a takeoff instruction for controlling the takeoff of the aircraft, and controlling the aircraft to switch from the first operating mode to the second operating mode based on the takeoff instruction, wherein the second operating mode includes at least one of the following: Turn on the space sensing sensor, turn on the data processing function of the aircraft, and turn on the intelligent functions of the aircraft.
  • the aircraft takes off, it has more needs for various intelligent functions. Therefore, various functions can be turned on at this time to ensure normal flight. conduct.
  • the intelligent function includes at least one of the following functions: intelligent obstacle avoidance, path planning or interest point identification;
  • the data processing function includes at least one of the following functions: neural network model, image signal processing or digital signal processing;
  • the spatial sensing sensor includes at least one of the following sensors: a time-of-flight sensor, a visual sensor module, or an ultrasonic module.
  • the aircraft includes a camera subsystem.
  • the camera subsystem When the camera subsystem is in a non-photography or video recording state, the camera subsystem is used to collect a real-time view image.
  • the method further includes: obtaining the real-time view image, and Resolution and frame rate, adjust the target clock frequency of image signal processing, for example, based on the resolution and frame rate of the live view screen, calculate the minimum clock frequency required for image signal processing; set multiple preset clock frequencies greater than the minimum clock frequency, and the preset clock frequency that is the smallest difference from the minimum clock frequency is used as the target clock frequency.
  • the target clock frequency for image signal processing includes multiple preset clock frequencies.
  • the preset clock frequency includes 1440MHz divided by Multiple frequencies obtained by an integer greater than or equal to 2, the number of the multiple frequencies can be reasonably set according to actual needs.
  • the method when the propeller of the aircraft does not take off, the method further includes: turning on at least one preset function that limits the power consumption of the aircraft to be greater than the predetermined power consumption, and canceling the power consumption of the aircraft when the propeller takes off and lands.
  • the aircraft includes a camera subsystem, and the camera subsystem is used to collect real-time view images.
  • the method also includes: when the camera subsystem is in a state other than taking pictures or recording video, and the aircraft is in a state of stopping and waiting to fly, the real-time view image is collected.
  • the viewfinder image is compressed using a first compression method; and when the camera subsystem is in the state of taking pictures or recording, the real-time viewfinder image is compressed using a second compression method, wherein the compression rate of the second compression method is greater than that of the second compression method.
  • the compression rate is controlled by the compression rate when the aircraft is at rest and ready to fly, reducing the amount of data in the real-time view image and reducing the power consumption of image signal processing (ISP).
  • ISP image signal processing
  • the aircraft includes a camera subsystem, and the aircraft is also provided with a temperature sensor.
  • the temperature sensor is used to collect temperature information of the fuselage.
  • the method further includes: obtaining the temperature information output by the temperature sensor; and based on the threshold temperature at which the temperature information is located. range, determines the shooting modes that the camera subsystem can perform, and controls the camera subsystem to run the determined shooting mode. Among them, when the temperature information is in different ranges, the shooting modes that the camera subsystem can perform are not exactly the same, such as temperature The higher the range, the smaller the power consumption of the corresponding shooting mode.
  • the threshold temperature range includes a first threshold temperature range, a second threshold temperature range and a third threshold temperature range.
  • the camera subsystem can perform live view, or disable all shooting modes, when the temperature information is in the third threshold.
  • the camera subsystem is prohibited from executing all shooting modes, wherein the first threshold temperature range is smaller than the second threshold temperature range, and the second threshold temperature range is smaller than the third threshold temperature range.
  • prompt information is output, so that the control device with the aircraft obtains and displays the prompt information, so that the user knows the reason why it is currently impossible to take photos or videos. .
  • the aircraft includes a camera subsystem and an image transmission subsystem.
  • the image transmission subsystem is used to transmit image information collected by the camera subsystem to a control device of the aircraft.
  • the method further includes: when the aircraft is in standby mode. When flying, the image transmission subsystem is controlled to transmit data information with the first downlink duty cycle and/or the first uplink duty cycle; when the propeller of the aircraft has rotated, the image transmission subsystem is controlled with the second downlink duty cycle.
  • the row duty cycle can reduce the transmit power of the image transmission subsystem, thereby reducing power consumption and extending the flight time of the aircraft.
  • the aircraft includes a camera subsystem and an image transmission subsystem.
  • the image transmission subsystem is used to transmit image information collected by the camera subsystem to a control device of the aircraft.
  • the method further includes: obtaining the aircraft and the control of the aircraft.
  • the transmit power is adaptively controlled according to the current distance and signal strength. For example, the standard power can be reduced by 6dB, etc., thereby achieving image transmission. Adaptive adjustment of system power consumption.
  • the aircraft includes a first data transmission module and a second data transmission module, wherein the power consumption of the first data transmission module is lower than the power consumption of the second data transmission module, and the first data transmission module The maximum transmission distance of the group is lower than the maximum transmission distance of the second data transmission module.
  • the method also includes: obtaining the current distance between the aircraft and the control device of the aircraft; controlling the use of the first data according to the threshold transmission distance of the current distance.
  • One of the transmission module and the second data transmission module wherein when the current distance is at the first threshold transmission distance, the use of the first data transmission module is controlled, and when the current distance is at the second threshold transmission distance, the use of In the second data transmission module, the first threshold transmission distance is smaller than the second threshold transmission distance.
  • choose different data transmission methods at different distances such as using wifi at short distances and using image transmission subsystems at long distances, such as Software Defined Radio (SDR).
  • SDR Software Defined Radio
  • the first data transmission module includes a near field communication interface, and the near field communication interface includes at least one of the following interfaces: WiFi, Bluetooth communication interface or short-range wireless communication; the second data transmission module includes a picture transmission subassembly.
  • the image transmission subsystem communicates wirelessly with the control device based on radio frequency communication.
  • the computing power subsystem will dynamically adjust the frequency of the CPU and DDR based on the computing power applications of the three subsystems including the camera subsystem, flight subsystem, and camera subsystem to meet current needs.
  • the aircraft further includes a video transmission subsystem, and the aircraft can perform preset functions.
  • the preset functions include firmware upgrades.
  • the method further includes: when obtaining feedback information that the control device of the aircraft downloads firmware, controlling the reduction of the video transmission subsystem. Subsystem’s transmit power or turn off the image transmission subsystem.
  • the aircraft also includes a camera subsystem, a flight subsystem, and a gimbal.
  • the method also includes: when the aircraft updates firmware, control to shut down at least one of the camera subsystem, the flight subsystem, and the gimbal to reduce system power consumption. , reduce fever.
  • the aircraft also includes a camera subsystem, a flight subsystem, an image transmission subsystem and a temperature sensor for collecting temperature information of the aircraft.
  • the method further includes: obtaining the temperature information; when the temperature information exceeds the threshold temperature, control Reduce the power consumption of at least one of the camera subsystem, flight subsystem and image transmission subsystem; and obtain the computing power application of the camera subsystem, flight subsystem and image transmission subsystem after the power consumption is reduced to provide the corresponding computing power.
  • the aircraft also includes a camera subsystem, a flight subsystem, and an image transmission subsystem.
  • the aircraft can perform preset functions.
  • the preset functions include U disk mode.
  • the method also includes: when the preset function is U disk mode. , control to shut down at least one of the camera subsystem, flight subsystem and image transmission subsystem, retaining only the USB transmission and storage functions of the drone, and the chip's computing power can be adjusted to an extremely low level, greatly reducing the chip's Heat, there will be no material export failure due to heat, and the material export can be completed without the user adding additional heat dissipation means.
  • the near field communication interface included in the aircraft includes at least one of the following interfaces: WiFi, Bluetooth communication interface or short-range wireless communication.
  • the aircraft also includes a camera subsystem, a flight subsystem, an image transmission subsystem, and a computing subsystem. Force subsystem, when the aircraft crashes, is disconnected from the aircraft's control device, and/or the communication signal strength is lower than the preset threshold, at least one of the camera subsystem, flight subsystem, image transmission subsystem, and computing power subsystem A system is in a low power consumption mode or shut down.
  • the method also includes: enabling the power supply to supply power to at least one near field communication interface so that the near field communication interface sends broadcast signals to reduce aircraft avionics power consumption and leave more time for operators. More time to find
  • the method further includes: identifying whether the aircraft is bombing based on the aircraft's flight attitude and/or speed information, and when the aircraft is identified as bombing, configuring the operating mode of the aircraft to the bombing mode, wherein when the aircraft is operating the bombing mode,
  • aircraft mode at least one of the camera subsystem, flight subsystem, image transmission subsystem and computing power subsystem is in low power consumption mode or shut down.
  • the camera subsystem is turned off
  • the image transmission subsystem is turned off
  • the flight subsystem is in low power consumption mode
  • the computing power subsystem is in low power consumption mode.
  • the aircraft further includes a video transmission subsystem
  • the method further includes: when acquiring a wake-up signal sent by a control device of the aircraft through a near-field communication interface, controlling to wake up the aircraft; and controlling the awakened aircraft and the control device to pass The image transmission subsystem communicates.
  • the aircraft further includes an alarm device
  • the method further includes: when acquiring a signal sent by a control device of the aircraft through a near field communication interface, controlling to wake up the aircraft; and acquiring a trigger signal sent by the control device to trigger the alarm device Make sound and/or light alarms, and trigger the sound and light of the aircraft to prompt the aircraft location and reduce the difficulty of search.
  • the aircraft when the propeller of the aircraft is not rotating, the aircraft is in the first operating mode with lower system power consumption, so as to reduce the system power consumption of the aircraft, thereby reducing the heat generation of the corresponding computing chip of the aircraft, thereby alleviating the problem of the aircraft.
  • the problem of heat dissipation is difficult.
  • the aircraft's propeller When the aircraft's propeller is rotating, the aircraft is in the second operating mode with higher system power consumption than the first operating mode. Since the operation of the aircraft's propeller will significantly improve the heat dissipation of the aircraft, at this time, the high power consumption of the aircraft is running in the second operating mode. In the second operating mode, the heat dissipation of high computing power chips will be alleviated due to the operation of the propeller, providing users with a better user experience. Moreover, the structure of the aircraft of the present application is simpler and easier to achieve weight reduction.
  • embodiments of the present application also provide a computer storage medium, such as a computer-readable storage medium, on which a computer program is stored.
  • a computer storage medium such as a computer-readable storage medium
  • One or more computer program instructions may be stored on the computer storage medium, and the processor may execute the program instructions stored in the memory to implement the functions (implemented by the processor) in the embodiments of the application described herein and/ or other desired functions, for example, to perform the corresponding steps of the method 400 for controlling the power consumption of an aircraft according to the embodiment of the present application.
  • Various application programs and various data can also be stored in the computer-readable storage medium, such as the Various data used and/or generated by the application described above.
  • the computer-readable storage medium may include, for example, a memory card of a smartphone, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disc CD-ROM, USB memory, or any combination of the above storage media.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media.
  • various parts of the present application can be implemented in hardware, software, firmware, or a combination thereof.
  • various steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented in hardware, as in another embodiment, it can be implemented by any one of the following technologies known in the art or their combination: discrete logic gate circuits with logic functions for implementing data signals; Logic circuits, special integrated circuits with appropriate combinational logic gate circuits, programmable gate arrays (Programmable Gate Array; hereinafter referred to as: PGA), field programmable gate arrays (Field Programmable Gate Array; referred to as: FPGA), etc.
  • PGA Programmable Gate Array
  • FPGA Field Programmable Gate Array
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another device, or some features can be ignored, or not implemented.
  • Various component embodiments of the present application may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to embodiments of the present application.
  • DSP digital signal processor
  • the present application may also be implemented as a device program (eg, computer program and computer program product) for performing part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from an Internet website, or provided on a carrier signal, or in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)

Abstract

提供了一种飞行器(100)和控制装置,飞行器(100)包括:机身(102);动力机构(106),设置于机身(102),用于提供飞行器(100)的飞行动力,其中动力机构(106)包括可旋转地螺旋桨;处理器(101),用于获取飞行器(100)的当前的飞行状态,根据飞行状态确定飞行器(100)的运行模式,并控制飞行器(100)执行确定的运行模式,其中,当飞行状态包括飞行器(100)的螺旋桨未转动时,飞行器(100)处于第一运行模式,当飞行状态包括飞行器(100)的螺旋桨已转动时,飞行器(100)处于第二运行模式,第一运行模式下飞行器(100)的***功耗低于第二运行模式下飞行器(100)的***功耗。

Description

飞行器及其功耗的控制方法、控制装置和计算机存储介质
说明书
技术领域
本发明总地涉及飞行器技术领域,更具体地涉及一种飞行器及其功耗的控制方法、控制装置和计算机存储介质。
背景技术
随着计算机信息技术等快速发展,越来越多的智能功能加入到无人机***里,其对处理器的算力需求也越来越大。处理器的高算力意味着更大的芯片规模,会带来更大的处理器芯片发热。散热已经成为无人机向小型化和智能化发展的痛点。
无人机平台通常采用风扇散热和加大散热齿来改善散热。风扇散热的可靠性较差,沙尘的场景下,容易损坏失效;且在对重量敏感的无人机***里,风扇带来的重量会加大无人机的设计难度以及制造成本。而加大散热齿等加大散热器尺寸的方式,只能适用于对重量不敏感的无人机***。
发明内容
为了解决上述问题中的至少一个而提出了本申请。具体地,本申请一方面提供一种飞行器,所述飞行器包括:
机身;
动力机构,设置于所述机身,用于提供所述飞行器的飞行动力,其中所述动力机构包括可旋转地螺旋桨;
处理器,用于:
获取所述飞行器的当前的飞行状态;
根据所述飞行状态,确定所述飞行器的运行模式,并控制所述飞行器执行所述确定的运行模式,其中,当所述飞行状态包括飞行器的螺旋桨未转动时,所述飞行器处于第一运行模式,当所述飞行状态包括所述飞行器的螺旋桨已转动时,所述飞行器处于第二运行模式,所述第一运行模式下所述飞行器的***功耗低于所述第二运行模式下所述飞行器的***功耗。
本申请第二方面提供一种控制装置,所述控制装置包括:
通信接口,用于和飞行器通信连接;
存储器,用于存储可执行的程序指令;
一个或多个处理器,用于执行所述存储器中存储的所述程序指令,使得所述处理器执行以下步骤:
获取所述飞行器的当前的飞行状态;
根据所述飞行状态,确定所述飞行器的运行模式,并控制所述飞行器执行所述确定的运行模式,其中,当所述飞行状态包括飞行器的螺旋桨未转动时,所述飞行器处于第一运行模式,当所述飞行状态包括所述飞行器的螺旋桨已转动时, 所述飞行器处于第二运行模式,所述第一运行模式下所述飞行器的***功耗低于所述第二运行模式下所述飞行器的***功耗。
本申请第三方面提供一种飞行器的功耗的控制方法,所述控制方法包括:
获取所述飞行器的当前的飞行状态;
根据所述飞行状态,确定所述飞行器的运行模式,并控制所述飞行器执行所述确定的运行模式,其中,当所述飞行状态包括飞行器的螺旋桨未转动时,所述飞行器处于第一运行模式,当所述飞行状态包括所述飞行器的螺旋桨已转动时,所述飞行器处于第二运行模式,所述第一运行模式下所述飞行器的***功耗低于所述第二运行模式下所述飞行器的***功耗。
本申请第四方面还提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现前述的飞行器的功耗的控制方法。
本申请实施例中的飞行器及控制装置,可以根据飞行器的当前的飞行状态,确定飞行器的运行模式,其中,在飞行器的螺旋桨未转动时飞行器处于***功耗更低的第一运行模式,以减少飞行器的***功耗,从而减少飞行器的相应运算芯片的发热,从而缓解飞行器的散热难问题,而在飞行器的螺旋桨转动时飞行器处于***功耗比第一运行模式更高的第二运行模式,由于飞行器的螺旋桨的运转会显著改善飞行器的散热,此时运行高功耗的第二运行模式,高算力芯片的散热会由于螺旋桨的运转而得到缓解,以为用户提供更好的使用体验。并且,本申请的飞行器的结构更加简单,更易实现轻量化。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个实施例中的飞行器的示意图;
图2示出了本申请一个实施例中的各个场景切换跳转的示意图;
图3示出了本申请一个实施例中的控制装置的示意性框图;
图4示出了本申请一个实施例中的飞行器的功耗的控制方法的流程图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些 细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构,以便阐释本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
下面结合附图,对本申请的飞行器、控制装置进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
在一个示例中,图1示出了本申请一个实施例中的飞行器100的示意图。该飞行器100包括承载体(也即机身)102及负载104。本领域技术人员应该了解,本文所描述的关于飞行器的任何实施例适用于任何飞行器(如无人飞行器,也称无人机)。在某些实施例中,负载104可以直接位于飞行器100上,而不需要承载体120。飞行器100可以包括处理器101、存储器102、动力机构106,传感***108、以及通讯***110。这些组件通过总线***和/或其它形式的连接机构(未示出)互连。负载104可以包括拍摄装置等。
动力机构106可以包括一个或者多个旋转体、螺旋桨、桨叶、引擎、电机、轮子、轴承、磁铁、喷嘴。例如,动力机构的旋转体可以是自紧固(self-tightening)旋转体、旋转体组件、或者其它的旋转体动力单元。飞行器可以有一个或多个动力机构。所有的动力机构可以是相同的类型。可选的,一个或者多个动力机构可以是不同的类型。动力机构106可以通过合适的手段安装在飞行器上,如通过支撑元件(如驱动轴)。动力机构106可以安装在飞行器100任何合适的位置,如顶端、下端、前端、后端、侧面或者其中的任意结合。在一些示例中,飞行器不包含散热风扇,飞行器的螺旋桨转动能够为飞行器散热
在某些实施例中,动力机构106能够使飞行器垂直地从表面起飞,或者垂直地降落在表面上,而不需要飞行器100任何水平运动(如不需要在跑道上滑行)。可选的,动力机构106可以允许飞行器100在空中预设位置和/或方向盘旋。一个或者多个动力机构106在受到控制时可以独立于其它的动力机构。可选的,一个或者多个动力机构106可以同时受到控制。例如,飞行器100可以有多个水平方向的旋转体,以追踪目标的提升及/或推动。水平方向的旋转体可以被致动以提供飞行器100垂直起飞、垂直降落、盘旋的能力。在某些实施例中,水平方向 的旋转体中的一个或者多个可以顺时针方向旋转,而水平方向的旋转体中的其它一个或者多个可以逆时针方向旋转。例如,顺时针旋转的旋转体与逆时针旋转的旋转体的数量一样。每一个水平方向的旋转体的旋转速率可以独立变化,以实现每个旋转体导致的提升及/或推动操作,从而调整飞行器100的空间方位、速度及/或加速度(如相对于多达三个自由度的旋转及平移)。
传感***108可以包括一个或者多个传感器,以感测飞行器100的空间方位、速度及/或加速度(如相对于多达三个自由度的旋转及平移)。一个或者多个传感器包括前述描述的任何传感器,包括GPS传感器、运动传感器、惯性传感器、近程传感器或者影像传感器。传感***108提供的感测数据可以用于追踪目标的空间方位、速度及/或加速度(如下,利用适合的处理单元及/或控制单元)。可选的,传感***108可以用于采集飞行器的环境的数据,如气候条件、要接近的潜在的障碍、地理特征的位置、人造结构的位置、图像信息等。
通讯***110能够实现与具有通讯***114的控制装置112通过无线信号116进行通讯。通讯***110、114可以包括任何数量的用于无线通讯的发送器、接收器、及/或收发器。通讯可以是单向通讯,这样数据可以从一个方向发送。例如,单向通讯可以包括,只有飞行器100传送数据给控制装置112,或者反之亦然。通讯***110的一个或者多个发送器可以发送数据给通讯***114的一个或者多个接收器,反之亦然。可选的,通讯可以是双向通讯,这样,数据可以在飞行器100与控制装置112之间在两个方向传输。双向通讯包括通讯***110的一个或者多个发送器可以发送数据给通讯***114的一个或者多个接收器,及反之亦然。例如,通讯***110可以包括近场通讯接口和图传子***,近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯(NFC),图传子***则是基于射频通信方式与控制装置进行无线通信的,其图传发射装置,该图传发射装置可以用于发射飞行器获取的影像信息(例如图像或视频等),其包括射频板以及与射频板连接的天线单元等。
在某些实施例中,控制装置112可以向飞行器100、承载体120及负载104中的一个或者多个提供控制数据,并且从飞行器100、承载体120及负载104中的一个或者多个中接收信息(如飞行器、承载体或者负载的位置及/或运动信息,负载感测的数据,如拍摄装置例如相机捕获的影像数据)。在某些实施例中,控制装置的控制数据可以包括关于位置、运动、致动的指令,或者对飞行器、承载体及/或负载的控制。例如,控制数据可以导致飞行器位置及/或方向的改变(如通过控制动力机构106),或者导致承载体相对于飞行器的运动(如通过对承载体120的控制)。控制装置的控制数据可以导致负载控制,如控制相机或者其它影像捕获设备的操作(捕获静止或者运动的影像、变焦、开启或关闭、切换拍摄模式、改变影像分辨率、改变焦距、改变景深、改变曝光时间、改变可视角度或者视场)。在某些实施例中,飞行器、承载体及/或负载的通讯可以包括一个或者多个传感器(如传感***108或者负载104)发出的信息。通讯可以包括从一个或者多个不同类型的传感器(如GPS传感器、运动传感器、惯性传感器、近程传感器或者影 像传感器)传送的感应信息。感应信息是关于飞行器、承载体及/或负载的位置(如方向、位置)、运动、或者加速度。从负载传送的感应信息包括负载捕获的数据或者负载的状态。控制装置112传送提供的控制数据可以用于追踪飞行器100、承载体120或者负载104中一个或者多个的状态。可选的或者同时地,承载体120及负载104每一个都可以包括通讯模块,用于与控制装置112通讯,以便控制装置可以单独地通讯或者追踪飞行器100、承载体120及负载104。
在某些实施例中,飞行器100可以与除了控制装置112之外的其它远程设备通讯,控制装置112也可以与除飞行器100之外的其它远程设备进行通讯。例如,飞行器及/或控制装置112可以与另一个飞行器或者另一个飞行器的承载体或负载通讯。当有需要的时候,另外的远程设备可以是第二控制装置或者其它计算设备(如计算机、桌上型电脑、平板电脑、智能手机、或者其它移动设备)。该远程设备可以向飞行器100传送数据,从飞行器100接收数据,传送数据给控制装置112,及/或从控制装置112接收数据。可选的,该远程设备可以连接到因特网或者其它电信网络,以使从飞行器100及/或控制装置112接收的数据上传到网站或者服务器上。
在某些实施例中,飞行器的运动、承载体的运动及负载相对固定参照物(如外部环境)的运动,及/或者彼此间的运动,都可以由控制装置所控制。控制装置可以是远程控制终端,位于远离飞行器、承载体及/或负载的地方。控制装置可以位于或者粘贴于支撑平台上。可选的,控制装置可以是手持的或者穿戴式的。例如,控制装置可以包括手机、平板电脑、电脑、眼镜、手套、头盔、遥控器、麦克风或者其中任意的结合。控制装置可以包括用户界面,如键盘、鼠标、操纵杆、触摸屏或者显示器。任何适合的用户输入可以与控制装置交互,如手动输入指令、声音控制、手势控制或者位置控制(如通过控制装置的运动、位置或者倾斜)。
在一些实施例中,控制装置112还可以包括图传接收端(未示出),该图传接收端可以和飞行器的图传子***配合使用,图传接收端可以接收无人机的图传子***发射的影像信息,并可以通过控制装置112的显示器显示出来,控制装置112的显示器可以是手机、平板电脑、电脑、眼镜、手套、头盔、遥控器等任意具有显示功能的器件。显示器与图传接收端可以通过数据线连接,图传接收端接收的图像信息通过数据线传输至显示器以用于显示。显示器与图传接收端可以是能够分别使用的两个器件,显示器与图传接收端也可以是集成为一个器件,在此不作限制。
飞行器100可以包括一个或者多个存储器102,存储器102上存储有由处理器运行的计算机程序,例如用于存储用于实现飞行器的各个功能相关的程序指令等。可以包括一个或多个计算机程序产品,计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。
飞行器100可以包括一个或者多个处理器101,处理器101可以是中央处理单元(CPU)、图像处理单元(GPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,并且可以控制飞行器100中的其它组件以执行期望的功能。例如,处理器能够包括一个或多个嵌入式处理器、处理器核心、微型处理器、逻辑电路、硬件有限状态机(FSM)、数字信号处理器(DSP)或它们的组合。在本实施例中,处理器包括现场可编程门阵列(FPGA),或者一个或者多个ARM处理器。
随着计算机信息技术等快速发展,越来越多的智能功能加入到无人机***里,其对处理器的算力需求也越来越大。处理器的高算力意味着更大的芯片规模,会带来更大的处理器芯片发热。散热已经成为无人机向小型化和智能化发展的痛点,尤其是重量在250克以下的无人机***,由于其重量限制,无法像中大型无人机那样拥有风扇以及大尺寸散热器,其各种工况下的散热面临着严峻的挑战。
为了缓解飞行器的散热问题,本申请的飞行器的处理器还用于获取飞行器的当前的飞行状态;根据飞行状态,确定飞行器的运行模式,并控制飞行器执行确定的运行模式,其中,当飞行状态包括飞行器的螺旋桨未转动时,飞行器处于第一运行模式,当飞行状态包括飞行器的螺旋桨已转动时,飞行器处于第二运行模式,第一运行模式下飞行器的***功耗低于第二运行模式下飞行器的***功耗。
在飞行器的螺旋桨未转动时飞行器处于***功耗更低的第一运行模式,以减少飞行器的***功耗,从而减少飞行器的相应运算芯片的发热,从而缓解飞行器的散热难问题,而在飞行器的螺旋桨转动时飞行器处于***功耗比第一运行模式更高的第二运行模式,由于飞行器的螺旋桨的运转会显著改善飞行器的散热,此时运行高功耗的第二运行模式,高算力芯片的散热会由于螺旋桨的运转而得到缓解,以为用户提供更好的使用体验。并且,本申请的飞行器可以不安装散热风扇,而是采用螺旋桨的转动来实现散热,因此可以实现飞行器的结构更加简单,更易实现轻量化。
在本申请的一些实施例中,如图2所示,可以将飞行器例如无人机的使用分为地面、飞行、炸机等三个大场景,各个大场景下再划分为多个小场景。
其中,地面场景下,此时飞行器的螺旋桨通常未转动,没有动力螺旋桨带来的气流散热,其散热情况较差,故其对算力的控制更为细腻,可以划分更多的小场景,其小场景可以对应飞行器的预设功能、飞行状态等。
飞行场景下,散热条件较好,但是更小的航电***芯片功耗可以换来更长的续航飞行时间,故将其可以大体分为两个小场景,例如最大算力场景、经济续航场景。
炸机可以指无人机出现摔机等情况,炸机场景下,虽然无人机也在地面,但出现摔机时,无人机大概率会和用户手中的控制装置例如遥控器断开连接,无人机***需要尽可能长的存活时间便于用户寻找摔落在视线外的飞行器,本申请的实施例中炸机场景是区别于前述的地面场景的。
在一些具体实施例中,本申请的飞行器的需要进行功耗和芯片算力控制的部 分可以划分为飞行子***(包括但不限于基于惯性传感器(IMU)的飞行控制、基于视觉的空间感知和障碍避让)、相机子***、图传子***以及算力子***(调控***内各芯片的时钟频率,包括但不限于中央处理器(central processing unit,简称cpu)、内存(ddr)等)等四个子***进行策略控制,以通过调整至少一个子***的功耗来实现第一运行模式和第二运行模式之间的切换,以及在炸机场景时对各个子***的功耗进行控制以以使无人机***尽可能长延长存活时间便于用户寻找摔落在视线外的飞行器。
在一些实施例中,本申请实施例中,可以对飞行子***、相机子***、图传子***的功耗等级进行划分,例如分别划分为S0、S1、S2三个模式(见表1),而算力子***则可以根据上述三个子***的模式组合选取刚好能满足***运转的最小算力进行配置,保证***的能效比处于较优水平。
表1:子***功耗等级表
Figure PCTCN2022082087-appb-000001
Figure PCTCN2022082087-appb-000002
值得一提的是,上述等级的划分只作为示例,还可以根据实际需要划分更多或者更少的等级,其中各个子***的功耗等级S0的功耗高于功耗等级S1的功耗,功耗等级S1的功耗高于功耗等级S2的功耗。其中,业务正常工作也即各个子***的功能正常运行。上述表1还可以预设于飞行器的存储器内,以使得飞行器的处理器在需要时调取,或者,上述表1还可以预设于控制装置的存储器内。其中,对于图传子***、相机子***、飞行子***各自的低功耗模式可以是对应S1功耗,例如,图传子***其在S0功耗时,对应的图传子***处于主动模式,例如其会主动的传输图像数据给控制装置,从而功耗较高,而图传子***其在S1功耗时,对应的图传子***处于备用模式,例如可以降低发射功率等,以降低功耗。
针对图2所示的场景,还可以为各个场景配置适合的子***功耗等级,对于地面场景当飞行器的螺旋桨未转动时,其飞行器可能处于多种预设功能中的至少一种,其可以包括飞行器能够执行的多种预设功能时的子场景,预设功能包括以下功能中的至少一种:固件升级、回放或下载、U盘模式、拍照录像、日志导出,各个场景可以进行切换,该些切换可以是通过控制装置的预设功能的选项的选择指令进行切换,例如可以通过起飞指令,从停桨待飞状态切换到飞行场景的最大算力场景,也可以通过降落指令,从飞行场景的最大算力场景切换到停桨待飞状态,例如,处于飞行场景的飞行器其可以通过关闭智能飞行相关功能,且当前为进行拍照录像等操作来从最大算力场景切换到经济续航场景,而当打开智能飞行相关功能,或者进行拍照或者录像等操作时则从经济续航场景切换到最大算力场景。再例如,当飞行场景的最大算力场景,当飞行器降落、且当前正在拍照或录像时进入地面场景,从而运行对应的功耗等级,或者,当飞行器起飞且当前正在拍照或录像,则可以从地面场景的功耗模式切换到飞行场景的最大算力场景对应的模式。
例如如表2所示,不同场景下的子***功耗等级表。
表2 不同场景下的子***功耗等级表
Figure PCTCN2022082087-appb-000003
Figure PCTCN2022082087-appb-000004
其中,前述的第一运行模式时,飞行器的处理器可以根据实际的场景或者场景所对应的预设功能来给各个子***分配对应的功耗,例如可以通过功耗来获取到各个子***实现该功耗所应执行的模式,例如通过和前述的表格1的对应关系进行查找。
可选地,飞行器还包括相机子***、飞行子***、图传子***,第一运行模式时,相机子***、飞行子***、图传子***和算力子***中的至少一者的功耗小于第二运行模式时对应***的功耗。
下文将对几个场景下具体的实现各个子***的功耗调整的策略进行描述。其中,在一些实施例中,可以针对飞行子***,对其智能功能动态开启,例如,当飞行状态为飞行器停桨待飞时,其图传子***、相机子***、飞行子***处于低功耗模式,具体地,例如第一运行模式包括以下模式的至少一种:飞行器的至少一种智能功能处于关闭状态、飞行器的至少一种数据处理功能处于关闭状态以及飞行器的至少一种空间感知传感器处于关闭状态,由于飞行器处于地面停桨待飞的状态时,一些智能功能可以不需要开启,通过关闭该些功能中的至少一种,可以降低对***算力的需求,从而降低算力芯片由于运算而产生的热量,缓解飞行器的散热问题。
可选地,智能功能包括以下功能中的至少一种:智能避障、路径规划或兴趣点识别;数据处理功能可以是一些依赖芯片的功能,例如数据处理功能包括以下功能中的至少一种:神经网络模型(CNN)、图像信号处理(DSP或数字信号处理 (ISP);空间感知传感器包括以下传感器中的至少一种:飞行时间传感器(Time of flight,简称TOF)、视觉传感器模组或超声波模组。
在一些实施例中,处理器101还用于:获取用于控制飞行器起飞的起飞指令,可选地,该起飞指令可以是用户通过安装于控制装置的用户APP输入的或者是通过接收到遥控器掰杆的操作指令而获取的,而并基于起飞指令控制飞行器由第一运行模式切换至第二运行模式,其中,第二运行模式包括以下至少一种:开启空间感知传感器,开启飞行器的数据处理功能,开启飞行器的智能功能,从而恢复飞行子***的各个智能功能,以保证飞行的正常进行。
在一些实施例中,处理器101还可以根据用户是否开启智能功能来进一步细化飞行场景下功耗控制,例如,处理器101还用于:当获取到未开启智能功能时,则可将芯片的CNN以及DSP等部分关闭,然后向***申请一个中等程度的算力资源,以降低对算力的需求,从而减少发热。
飞行器包括相机子***,该相机子***可以包括相机等,当相机子***处于非拍照或录像的状态时,相机子***用于采集实时取景(liveview)画面,支持liveview的码流ISP不需要满规格运行,相机通过调整ISP时钟频率来实现多种功耗规格的划分,例如,图像信号处理的目标时钟频率包括多个预设时钟频率,该多个预设时钟频率可以根据实际需要合理设定,例如预设时钟频率包括1440MHz除以大于或等于2的整数所获得的多个频率,可选地,可以包括四个频率720MHz、480MHz、360MHz、180MHz。例如,处理器101还用于:获取实时取景画面,以及根据实时取景画面的分辨率及帧率,调整图像信号处理的目标时钟频率,例如,根据实时取景画面的分辨率及帧率,计算所需的图像信号处理的最小时钟频率;将多个预设时钟频率中大于最小时钟频率,且和最小时钟频率相差最小的预设时钟频率作为目标时钟频率。其中,其中频率越高,则功耗也越高,而本申请取满足要求的最低频率作为实际运行过程中的时钟频率,这样可以实现ISP时钟的动态调整,从而实现芯片的ISP部分的功耗控制。
针对相机子***,还可以在一些预定场景下限值高功耗特性的开启,例如螺旋桨未起桨时,处理器101还用于限制飞行器的功耗大于预定功耗的至少一种预设功能开启,以及当螺旋桨起降时,处理器101还用于取消对飞行器的功耗大于预定功耗的至少一种预设功能的限制,其中,预设功能包括相机的拍照功能或录像功能,对于无内置风扇散热的无人机,飞行器是否起桨,对整个无人机的散热性能有极大的影响。未起桨的情况下,拍照/录像等高功耗特性会受到一定的限制,从而降低发热以及降低功耗,以最大限度延长正常飞行过程的工作时长;起桨后,拍照录像功能的限制则会取消,从而保证飞行器飞行过程中的拍照功能的执行。
在一些实施例中,针对相机子***,还可以在非拍照/录像情况下,支持低功耗的liveview,例如,处理器101还用于:当相机子***处于非拍照或录像的状态时,且飞行器处于停桨待飞时,对实时取景画面以第一压缩方式进行压缩;以及当相机子***处于拍照或录像的状态时,对实时取景画面以第二压缩方式进 行压缩,其中,第二压缩方式的压缩率大于第二压缩方式的压缩率。飞行器处于地面停桨待飞的场景下,使用第一压缩方式进行压缩,其liveview画质会略为降低,但可以降低实时取景画面的数据量,从而可以使用较低的ISP时钟频率,以及使得ISP功耗较低,从而降低***的功耗,但拍照和录像的过程中,使用第二压缩方式进行压缩,则liveview会切换为正常画质,通过这样的方式既可以在使用拍照录像的时候,liveview与原片保持较高的一致性,又保证了非拍照/录像情况下,功耗的进一步降低。
在一些实施例中,针对相机子***,对于飞行器功耗高,且散热差的情况下,机身内芯片温度会快速升高,为了保证飞行安全,不出现飞行器芯片过热死机引发失联、摔机等情况出现,飞行器还设置有温度传感器,温度传感器用于采集机身的温度信息,该机身的温度信息可以反映飞行器当前的温度信息,或者还可以反映飞行器内的芯片的温度信息,处理器101还用于:获取温度传感器输出的温度信息;根据温度信息所处的阈值温度范围,确定相机子***所能执行的拍摄模式,并控制相机子***运行确定的拍摄模式,其中,当温度信息处于不同的范围时,相机子***所能执行的拍摄模式不完全相同,例如,温度范围越高其对应的拍摄模式的功耗越大。
可选地,阈值温度范围包括第一阈值温度范围、第二阈值温度范围和第三阈值温度范围,当温度信息处于第一阈值温度范围时,此温度范围表明机身温度正常,相机子***能够执行拍照、录像和实时取景的拍摄模式,当温度信息处于第二阈值温度范围时,表明机身温度偏高,相机子***能够执行实时取景,或者禁止所有的拍摄模式(例如录像或拍照),当温度信息处于第三阈值温度范围时,表明机身温度已经非常高,禁止相机子***执行所有的拍摄模式,从而降低芯片的功耗,减少芯片发热,使芯片的温度能够回到一个安全的范围内。可选地,第一阈值温度范围小于第二阈值温度范围,第二阈值温度范围小于第三阈值温度范围。该阈值温度范围的具体温度范围可以根据实际需要合理设定,在此不做具体限定。
在一些实施例中,处理器101还用于:当温度信息处于第二阈值温度范围或第三阈值温度范围时,输出提示信息,以使得与飞行器的控制装置300获取并显示提示信息,该提示信息可以用于提示用户由于温度过高无法进行录像或拍摄等,以提醒用户可以稍后再进行拍摄。
飞行器包括相机子***和图传子***,图传子***用于将相机子***采集的影像信息传输给飞行器的控制装置,其中,针对图传子***的功耗控制,在飞行器近距离静置停桨待飞场景有以下特征:由于静置状态图传画面变化较小,实时liveview码流带宽传输需求不高;由于距离较近,信号传输损耗小,对于射频信号发射功率要求不高;
因此,图传子***针对上述特征进行了以下低功耗优化,处理器101还用于:当飞行器处于停桨待飞时,控制图传子***以第一下行占空比和/或第一上行占空比进行数据信息的传输;当飞行器的螺旋桨已转动时,控制图传子***以第二 下行占空比和第二上行占空比进行数据信息的传输,其中,第一下行占空比小于第二下行占空比,第一上行占空比小于第二上行占空比,例如,该场景下降低上下行信号占空比,分别将下行占空比由80%(也即第二下行占空比)降低到10%(也即第一下行占空比),上行占空比由20%(也即第二上行占空比)降低到10%(也即第一上行占空比),通过近距离静置停桨待飞场景时降低上下行信号占空比,来降低SDR图传子***的功耗。
在一些示例中,还可以通过以下方式对图传子***进行低功耗优化,例如,处理器101还用于:获取飞行器和飞行器的控制终端之间的当前距离和图传子***的当前信号强度;根据当前距离和/或当前信号强度,控制图传子***的发射功率,例如,根据当前距离所处的阈值距离范围,控制图传子***的发射功率;和/或根据当前信号强度所处的阈值信号强度范围,控制图传子***的发射功率;其中,当前距离所处的阈值距离范围的数值越大,则发射功率越大,当前信号强度所处的阈值信号强度范围的数值越大,则发射功率越小,根据当前距离、信号强度自适应进行发射功率控制例如,可以从标准功率降低6dB等,从而实现对图传子***的功耗自适应调整。
在一些实施例中,飞行器的通讯***可以包括第一数据传输模组和第二数据传输模组,其中,第一数据传输模组的功耗低于第二数据传输模组的功耗,第一数据传输模组的最大传输距离低于第二数据传输模组的最大传输距离,处理器101还用于:获取飞行器和飞行器的控制终端之间的当前距离;根据当前距离所处的阈值传输距离,控制使用第一数据传输模组和第二数据传输模组中的一者,其中,当当前距离处于第一阈值传输距离时,控制使用第一数据传输模组,当当前距离处于第二阈值传输距离时,控制使用第二数据传输模组,第一阈值传输距离小于第二阈值传输距离,可选地,第一数据传输模组包括近场通讯接口,近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯;第二数据传输模组包括图传子***,图传子***基于射频通信方式与控制装置进行无线通信。在一些具体示例中,例如第一数据传输模组可以包括WiFi模组,其特点是功耗相比图传子***更低,但是抗干扰能力和远距离传输性能更差,因此在不同距离选取不同的数据传输方式,例如近距离使用wifi,远距离使用图传子***,从而降低***的功耗。
进一步,本申请的飞行器还包括算力子***,在常规场景下,算力子***会根据相机子***、飞行子***、相机子***等三个子***的算力申请,动态调整cpu和ddr的频率,以满足当前的需要。
在一些实施例中,在固件升级场景下,控制装置例如安装于控制装置的应用程序(Application)从固件服务器下载固件至控制装置例如手机或遥控器内置的存储器的过程中,处理器101还用于当获取到飞行器的控制终端下载固件的反馈信息时,控制降低图传子***的发射功率或者关闭图传子***,从而降低功耗。例如无人机具备近场通讯接口,例如:蓝牙、WiFi、NFC等,则可采取关闭图传子***,保留近场通讯接口用以后续唤醒飞行器。当固件完成下载后,唤醒无 人机恢复图传子***的连接。在一些实施例中,当飞行器更新固件时,处理器101还用于关闭与升级不相关的子***子模块(例如相机子***、飞行子***、云台等中的至少一种),同时***还会把当前***的算力调整到一个较低的水平用于固件更新到飞行器的存储介质(也即存储器)中。
在一些实施例中,本申请的飞行器还具有超温保护功能,例如飞行器包括温度传感器,该温度传感器用于采集飞行器的温度信息,该温度信息可以是芯片的温度信息或者其他适合的温度信息,处理器101还用于:获取温度信息;当温度信息超过阈值温度时,控制降低相机子***、飞行子***和图传子***中的至少一个***的功耗;以及获取降低功耗后的相机子***、飞行子***和图传子***的算力申请,以提供对应的算力。当算力子***获取到芯片温度过高时,主动通知各个子***进入低功耗模式,然后按照各子***在低功耗模式下的算力申请降低***算力,减少CPU以及DDR等功耗,和其他子***一起减少整机的发热,延长***的存活时间,其中各子***的低功耗模式可以通过任意适合的方式来实现,该低功耗模式可以是功耗解决子***关闭时的功耗和螺旋桨转动时飞行器正常运行时的功耗模式之间的一种功耗模式。
对于其他的预设功能,例如U盘模式,在U盘模式下,飞行器可以连接电脑拷贝素材,用于用户素材导出,处理器101还用于:当预设功能为U盘模式时,控制关闭相机子***、飞行子***和图传子***中的至少一者,例如三者均处于关闭状态,但保留无人机的USB传输和存储等功能,芯片的算力可以调节至一个极低的水平,大幅降低芯片发热,以避免出现因发热导致素材导出失败,且无需要用户增加额外的散热手段即可完成素材的导出。
对于飞行器的一些异常场景,例如处于以下场景中的至少一种:飞行器炸机、与飞行器的控制装置断开连接、通信信号强度低于预设阈值,此时飞行器和控制装置例如遥控断开连接,无人机***需要尽可能长的存活时间便于用户寻找摔落在视线外的飞行器,因此,相机子***、飞行子***、图传子***和算力子***中的至少一个***处于低功耗模式或者关闭,飞行器的航电***用于使电源(也即飞行器的供电装置例如电池)给至少一种近场通信接口供电,以使近场通信接口发送广播信号,例如关闭除蓝牙模块外的所有电源,保留蓝牙对外发蓝牙信标(beacon)广播的能力,从而便于控制装置在监听到蓝牙信标广播时进行通信连接,并且,由于近场通信接口例如蓝牙模块的功耗低于其他通信模块例如图传子***,因此此种方式可以节省***功耗,以使得飞行器获得更长的存活时间,给操作人员留出更多的找寻时间。
在飞行器异常时,控制装置通过和飞行器匹配的近场通信接口例如蓝牙进行监听,当操作人员持控制装置靠近飞行器后,也即在蓝牙的通信距离范围内时,控制装置和无人机通过近场通信接口例如蓝牙建立连接,处理器101还用于:当通过近场通讯接口例如蓝牙获取到飞行器的控制装置发送的唤醒信号时,控制唤醒飞行器;并控制唤醒后的飞行器和控制装置通过图传子***进行通信,以使得控制装置可以获得飞行器发送的其周围的实时画面,以便用户能够更快的寻找到 飞行器,解决最后50m范围(也即围绕坠机地点处的周围50m范围内)的搜寻困难。
在一些实施例中,飞行器还包括报警装置,处理器101还用于:当通过近场通讯接口获取到飞行器的控制装置发送的信号时,控制唤醒飞行器;以及获取控制装置发送的触发信号,以触发报警装置进行声和/或光报警,以提示用户飞行器的位置,便于用户寻找飞行器,解决最后50m范围(也即围绕坠机地点处的周围50m范围内)的搜寻困难。
以飞行器炸机为例,无人机炸机场景有以下特征:炸机地点一般在离操作人员较远的位置;操作人员只有炸机地点教为模糊的GPS坐标,且无人机掉落位置很可能存在遮挡物,目视寻找困难,因此,飞行器要做到以下几点:为给操作人员留出更多的找寻时间,需要尽可能降低飞行器航电功耗;为解决最后50m范围(也即围绕坠机地点处的周围50m范围内)的搜寻困难,需要在操作人员靠近后建立地面端设备和飞行器的连接,并通过触发飞行器声、光等方式提示飞行器位置。
飞行器的处理器101可以基于任意适合的方法识别炸机场景,例如飞行器的处理器101还可以用于根据飞行器的飞行姿态和/或速度信息,识别飞行器是否炸机,例如当炸机发生时,位置传感器(例如GPS)、螺旋桨的电机等的数值会出现异常波动,还可以根据该异常波动判断飞行器是否发生炸机,当识别到炸机时,配置飞行器的运行模式为炸机模式,其中,当飞行器运行炸机模式时,相机子***、飞行子***、图传子***和算力子***中的至少一个***处于低功耗模式或者关闭,例如当飞行器处于炸机模式时,相机子***关闭,图传子***关闭,飞行子***处于低功耗模式,算力子***处于低功耗模式。
如图3所示,本申请实施例还提供一种飞行器的控制装置,该控制装置可以是独立于飞行器的外部设备,例如飞行器的控制装置,控制装置可以包括例如手机、遥控器、平板电脑、笔记本等,该控制装置还可以是飞行器的控制***的一部分或者全部,还可以是可以通过软件、硬件或者软硬件结合的方式实现飞行器的控制的计算机设备的部分或者全部。前述由飞行器执行的部分功耗控制的功能还可以由控制装置来执行。
如图3所示,飞行器的控制装置300(可以对应图1的控制装置112),包括一个或多个存储器301、一个或多个处理器302、通信接口303(可以和图1中的通讯***114对应)、显示器304等,这些组件通过总线***和/或其它形式的连接机构(未示出)互连。应当注意,图3所示的装置300的组件和结构只是示例性的,而非限制性的,根据需要,控制装置300也可以具有其他组件和结构。处理器302用于执行存储器301中存储的程序指令,使得处理器执行飞行器的功耗控制的功能,其中,为了避免重复,对于一些步骤的细节描述可以参考前文,在此不再赘述。
存储器301用于存储相关飞行器移动过程中产生的各种数据和可执行程序 指令,例如用于存储各种应用程序或实现各种具体功能的算法。可以包括一个或多个计算机程序产品,计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。
处理器302可以是中央处理单元(CPU)、图像处理单元(GPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者具有数据处理能力和/或指令执行能力的其它形式的处理单元,并且可以控制装置300中的其它组件以执行期望的功能。例如,处理器能够包括一个或多个嵌入式处理器、处理器核心、微型处理器、逻辑电路、硬件有限状态机(FSM)、数字信号处理器(DSP)、图像处理单元(GPU)或它们的组合。
显示器304用于显示各种可视化信息,例如可视化信息包括但不限于飞行器传回的图像数据、各种操作页面、拍摄装置拍摄的影像、实时取景画面、各种预设功能的选项,例如固件升级、日志导出、拍照、录像、U盘模式、回放或下载等。
在一个示例中,控制装置300还包括通信接口303,用于控制装置300中各个组件之间以及控制装置300的各个组件和该***之外的其他装置之间进行通信,例如,当装置为外部设备时,可以通过通信接口和飞行器进行通信,从而使两者之间能进行信息交互。
通信接口303是可以是目前已知的任意通信协议的接口,例如有线接口或无线接口,其中,通信接口可以包括一个或者多个串口、USB接口、以太网端口、WiFi、有线网络、DVI接口,设备集成互联模块或其他适合的各种端口、接口,或者连接。装置300还可以接入基于通信标准的无线网络,如WiFi、2G、3G、4G、6G或它们的组合。在一个示例性实施例中,通信接口经由广播信道接收来自外部广播管理***的广播信号或广播相关信息。在一个示例性实施例中,通信接口还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。还可以包括前文的图传接收装置。
在一个示例中,装置300还包括输入装置(未示出)可以是用户用来输入指令的装置,并且可以包括键盘、轨迹球、鼠标、麦克风和触摸屏等中的一个或多个,或其它控制按钮构成的输入装置。
如图3所示,飞行器的控制装置300可以包括一个或多个存储器301,用于存储可执行的程序指令,处理器302用于执行存储器301中存储的程序指令,使得处理器302执行以下步骤:获取飞行器的当前的飞行状态;根据飞行状态,确定飞行器的运行模式,并控制飞行器执行确定的运行模式,其中,当飞行状态包括飞行器的螺旋桨未转动时,飞行器处于第一运行模式,当飞行状态包括飞行器的螺旋桨已转动时,飞行器处于第二运行模式,第一运行模式下飞行器的***功耗低于第二运行模式下飞行器的***功耗。例如,当飞行状态为飞行器停桨待飞 时,第一运行模式包括以下至少一种:飞行器的至少一种智能功能处于关闭状态、飞行器的至少一种数据处理功能处于关闭状态以及飞行器的至少一种空间感知传感器处于关闭状态。
在一些实施例中,处理器302还用于:输出用于控制飞行器起飞的起飞指令,以使飞行器获取起飞指令并基于起飞指令控制飞行器由第一运行模式切换至第二运行模式,其中,第二运行模式包括以下至少一种:开启空间感知传感器,开启飞行器的数据处理功能,开启飞行器的智能功能。可选地,智能功能包括以下功能中的至少一种:智能避障、路径规划或兴趣点识别;数据处理功能包括以下功能中的至少一种:神经网络模型、图像信号处理或数字信号处理;空间感知传感器包括以下传感器中的至少一种:飞行时间传感器、视觉传感器模组或超声波模组。
在一些实施例中,飞行器包括相机子***,当相机子***处于非拍照或录像的状态时,相机子***用于采集实时取景画面,处理器302还用于:获取实时取景画面,以及根据实时取景画面的分辨率及帧率,确定并输出飞行器的图像信号处理的目标时钟频率,以使飞行器基于目标始终频率进行图像信号处理,例如,根据实时取景画面的分辨率及帧率,计算所需的图像信号处理的最小时钟频率;将多个预设时钟频率中大于最小时钟频率,且和最小时钟频率相差最小的预设时钟频率作为目标时钟频率。可选地,预设时钟频率包括1440MHz除以大于或等于2的整数所获得的多个频率。
在一些实施例中,飞行器包括相机子***,飞行器还设置有温度传感器,温度传感器用于采集飞行器的机身的温度信息,处理器302还用于:获取温度传感器输出的温度信息;根据温度信息所处的阈值温度范围,确定相机子***所能执行的拍摄模式,并控制相机子***运行确定的拍摄模式,其中,当温度信息处于不同的范围时,相机子***所能执行的拍摄模式不完全相同,也即飞行器在获得温度信息之后可以通过通信接口将温度发送给控制装置,由控制装置确定拍摄模式,进而对飞行器的拍摄模式进行控制。可选地,阈值温度范围包括第一阈值温度范围、第二阈值温度范围和第三阈值温度范围,当温度信息处于第一阈值温度范围时,相机子***能够执行拍照、录像和实时取景的拍摄模式,当温度信息处于第二阈值温度范围时,相机子***能够执行实时取景,或者禁止所有的拍摄模式,当温度信息处于第三阈值温度范围时,禁止相机子***执行所有的拍摄模式,其中,第一阈值温度范围小于第二阈值温度范围,第二阈值温度范围小于第三阈值温度范围,通过该方式可以保证飞行安全,避免飞行器芯片过热死机引发失联、摔机等情况出现。
在一些示例中,控制装置300还包括显示器304,处理器302还用于:当温度信息处于第二阈值温度范围或第三阈值温度范围时,输出提示信息;显示器用于显示提示信息,以提示用户当前的拍照或录像功能不可用。
在一些实施例中,飞行器包括相机子***和图传子***,图传子***用于将相机子***采集的影像信息传输给控制装置300,其中,处理器302还用于:获 取飞行器和控制装置300之间的当前距离和图传子***的当前信号强度;根据当前距离和/或当前信号强度,控制图传子***的发射功率,例如,根据当前距离所处的阈值距离范围,控制图传子***的发射功率;和/或根据当前信号强度所处的阈值信号强度范围,控制图传子***的发射功率;其中,当前距离所处的阈值距离范围的数值越大,则发射功率越大,当前信号强度所处的阈值信号强度范围的数值越大,则发射功率越小。
在一些实施例中,飞行器包括第一数据传输模组和第二数据传输模组,其中,第一数据传输模组的功耗低于第二数据传输模组的功耗,第一数据传输模组的最大传输距离低于第二数据传输模组的最大传输距离,处理器302还用于:获取飞行器和控制装置300之间的当前距离;根据当前距离所处的阈值传输距离,控制飞行器使用第一数据传输模组和第二数据传输模组中的一者,其中,当当前距离处于第一阈值传输距离时,控制飞行器使用第一数据传输模组,当当前距离处于第二阈值传输距离时,控制飞行器使用第二数据传输模组,第一阈值传输距离小于第二阈值传输距离。
可选地,第一数据传输模组包括近场通讯接口,近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯;第二数据传输模组包括图传子***,图传子***基于射频通信方式与控制装置进行无线通信。
在一些实施例中,飞行器还包括图传子***,控制装置300包括显示器304,显示器304用于显示飞行器能够执行的预设功能的选项,预设功能包括固件升级,处理器302还用于:当获取到固件升级的选择指令时,输出反馈信息并下载固件,以使飞行器获取反馈信息并根据反馈信息控制降低图传子***的发射功率或者关闭图传子***。
在一些实施例中,飞行器还包括相机子***、飞行子***、云台,处理器还用于:将已下载的固件发送至飞行器,以使飞行器更新固件,并控制关闭相机子***、飞行子***和云台中的至少一种。
在一些实施例中,飞行器还包括相机子***、飞行子***、图传子***,飞行器能够执行预设功能,预设功能包括U盘模式,控制装置300包括显示器304,显示器304用于显示飞行器能够执行的预设功能的选项,预设功能包括U盘模式,处理器302还用于:当获取到U盘模式的选择指令时,将选择指令发送至飞行器,以使飞行器根据选择指令进入U盘模式,并控制关闭相机子***、飞行子***和图传子***中的至少一者。
在一些实施例中,处理器302还用于:当飞行器炸机、与飞行器断开连接和/或通信信号强度低于预设阈值时,控制通信接口中的至少一种近场通讯接口开启,以用于接收飞行器的对应的近场通信接口发送的广播信号,近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯。
在一些实施例中,飞行器还包括图传子***,处理器302还用于:当接收到飞行器的近场通讯接口发送的广播信号时,发送的唤醒信号,以使飞行器获取唤醒信号,并根据唤醒信号唤醒飞行器;并控制唤醒后的飞行器和控制装置300 通过图传子***进行通信。
在一些实施例中,飞行器还包括报警装置(未示出),处理器302还用于:发送触发信号,以使飞行器获取到触发信号,并根据触发信号触发报警装置进行声和/或光报警,以降低用户寻找飞行器的难度。
综上,根据本申请飞行器和控制装置,可以根据飞行器的当前的飞行状态,确定飞行器的运行模式,其中,在飞行器的螺旋桨未转动时飞行器处于***功耗更低的第一运行模式,以减少飞行器的***功耗,从而减少飞行器的相应运算芯片的发热,从而缓解飞行器的散热难问题,而在飞行器的螺旋桨转动时飞行器处于***功耗比第一运行模式更高的第二运行模式,由于飞行器的螺旋桨的运转会显著改善飞行器的散热,此时运行高功耗的第二运行模式,高算力芯片的散热会由于螺旋桨的运转而得到缓解,以为用户提供更好的使用体验。并且,本申请的飞行器的结构更加简单,更易实现轻量化。
进一步,本申请还提供一种飞行器的功耗的控制方法,本申请的控制方法可以基于前述的飞行器来执行,或者基于前述的控制装置来执行,或者,还可以基于前述的飞行器和控制装置共同来执行。
作为示例,如图4所示,本申请的一种飞行器的功耗的控制方法400,该控制方法400包括:步骤S410,获取飞行器的当前的飞行状态;步骤S420,根据飞行状态,确定飞行器的运行模式,并控制飞行器执行确定的运行模式,其中,当飞行状态包括飞行器的螺旋桨未转动时,飞行器处于第一运行模式,当飞行状态包括飞行器的螺旋桨已转动时,飞行器处于第二运行模式,第一运行模式下飞行器的***功耗低于第二运行模式下飞行器的***功耗。
本申请的控制方法400在飞行器的螺旋桨未转动时飞行器处于***功耗更低的第一运行模式,以减少飞行器的***功耗,从而减少飞行器的相应运算芯片的发热,从而缓解飞行器的散热难问题,而在飞行器的螺旋桨转动时飞行器处于***功耗比第一运行模式更高的第二运行模式,由于飞行器的螺旋桨的运转会显著改善飞行器的散热,此时运行高功耗的第二运行模式,高算力芯片的散热会由于螺旋桨的运转而得到缓解,以为用户提供更好的使用体验。
本申请实施例中,飞行器的飞行状态可以是基于飞行器的螺旋桨的转动或未转动而确定的,例如,当螺旋桨转动时,其通常处于飞行场景中,而螺旋桨未转动时,则其大多数情况下处于停桨待飞状态。
由于本申请的控制方法可以基于前述的飞行器和/或控制装置来实现,因此,其本申请实施例中的一些细节还可以参考前文的描述,在此不再重复。
在一些实施例中,在步骤S420中,当飞行状态为飞行器停桨待飞时,第一运行模式包括以下模式至少一种:飞行器的至少一种智能功能处于关闭状态、飞行器的至少一种数据处理功能处于关闭状态以及飞行器的至少一种空间感知传感器处于关闭状态,通过智能功能的动态的关闭,来实现降低功耗的作用。
在一些实施例中,在步骤S420中,飞行器还包括相机子***、飞行子***、图传子***,第一运行模式时,相机子***、飞行子***、图传子***和算力子 ***中的至少一者的功耗小于第二运行模式时对应***的功耗。
在一些实施例中,方法还包括:获取用于控制飞行器起飞的起飞指令,并基于起飞指令控制飞行器由第一运行模式切换至第二运行模式,其中,第二运行模式包括以下至少一种:开启空间感知传感器,开启飞行器的数据处理功能,开启飞行器的智能功能,由于当飞行器起飞时,其对于各种智能功能的需求更多,因此,此时可以开启各种功能,以保证飞行的正常进行。
可选地,智能功能包括以下功能中的至少一种:智能避障、路径规划或兴趣点识别;数据处理功能包括以下功能中的至少一种:神经网络模型、图像信号处理或数字信号处理;空间感知传感器包括以下传感器中的至少一种:飞行时间传感器、视觉传感器模组或超声波模组。上述智能功能、数据处理功能和空间感知传感器仅作为示例,对于其他适用的功能或传感器也可以适用于本申请。
在一些实施例中,飞行器包括相机子***,当相机子***处于非拍照或录像的状态时,相机子***用于采集实时取景画面,方法还包括:获取实时取景画面,以及根据实时取景画面的分辨率及帧率,调整图像信号处理的目标时钟频率,例如,根据实时取景画面的分辨率及帧率,计算所需的图像信号处理的最小时钟频率;将多个预设时钟频率中大于最小时钟频率,且和最小时钟频率相差最小的预设时钟频率作为目标时钟频率,可选地,图像信号处理的目标时钟频率包括多个预设时钟频率,例如,该预设时钟频率包括1440MHz除以大于或等于2的整数所获得的多个频率,该多个频率的数量可以根据实际需要合理设定。
在一些实施例中,当飞行器的螺旋桨未起桨时,方法还包括:限制飞行器的功耗大于预定功耗的至少一种预设功能开启,以及当螺旋桨起降时,取消对飞行器的功耗大于预定功耗的至少一种预设功能的限制,其中,预设功能包括相机的拍照功能或录像功能,以便通过控制功耗来减少为起降时芯片的发热,缓解散热困难的问题。
在一些实施例中,飞行器包括相机子***,相机子***用于采集实时取景画面,方法还包括:当相机子***处于非拍照或录像的状态时,且飞行器处于停桨待飞时,对实时取景画面以第一压缩方式进行压缩;以及当相机子***处于拍照或录像的状态时,对实时取景画面以第二压缩方式进行压缩,其中,第二压缩方式的压缩率大于第二压缩方式的压缩率,通过飞行器处于停桨待飞时的压缩率的控制,减小实时取景画面的数据量,降低图像信号处理(ISP)的功耗。
在一些实施例中,飞行器包括相机子***,飞行器还设置有温度传感器,温度传感器用于采集机身的温度信息,方法还包括:获取温度传感器输出的温度信息;根据温度信息所处的阈值温度范围,确定相机子***所能执行的拍摄模式,并控制相机子***运行确定的拍摄模式,其中,当温度信息处于不同的范围时,相机子***所能执行的拍摄模式不完全相同,例如温度范围越高,所对应的拍摄模式的功耗越小,可选地,阈值温度范围包括第一阈值温度范围、第二阈值温度范围和第三阈值温度范围,当温度信息处于第一阈值温度范围时,相机子***能够执行拍照、录像和实时取景的拍摄模式,当温度信息处于第二阈值温度范围 时,相机子***能够执行实时取景,或者禁止所有的拍摄模式,当温度信息处于第三阈值温度范围时,禁止相机子***执行所有的拍摄模式,其中,第一阈值温度范围小于第二阈值温度范围,第二阈值温度范围小于第三阈值温度范围。
在一些实施例中,当温度信息处于第二阈值温度范围或第三阈值温度范围时,输出提示信息,以使得与飞行器的控制装置获取并显示提示信息,以便用户获知当前无法拍照或录像的原因。
在一些实施例中,飞行器包括相机子***和图传子***,图传子***用于将相机子***采集的影像信息传输给飞行器的控制装置,其中,方法还包括:当飞行器处于停桨待飞时,控制图传子***以第一下行占空比和/或第一上行占空比进行数据信息的传输;当飞行器的螺旋桨已转动时,控制图传子***以第二下行占空比和第二上行占空比进行数据信息的传输,其中,第一下行占空比小于第二下行占空比,第一上行占空比小于第二上行占空比,通过动态的调整上下行占空比,可以降低图传子***的发射功率,从而降低功耗,延长飞行器的飞行时间。
在一些实施例中,飞行器包括相机子***和图传子***,图传子***用于将相机子***采集的影像信息传输给飞行器的控制装置,其中,方法还包括:获取飞行器和飞行器的控制装置之间的当前距离和图传子***的当前信号强度;根据当前距离和/或当前信号强度,控制图传子***的发射功率,例如,根据当前距离所处的阈值距离范围,控制图传子***的发射功率;和/或根据当前信号强度所处的阈值信号强度范围,控制图传子***的发射功率;其中,当前距离所处的阈值距离范围的数值越大,则发射功率越大,当前信号强度所处的阈值信号强度范围的数值越大,则发射功率越小,根据当前距离、信号强度自适应进行发射功率控制例如,可以从标准功率降低6dB等,从而实现对图传子***的功耗自适应调整。
在一些实施例中,飞行器包括第一数据传输模组和第二数据传输模组,其中,第一数据传输模组的功耗低于第二数据传输模组的功耗,第一数据传输模组的最大传输距离低于第二数据传输模组的最大传输距离,方法还包括:获取飞行器和飞行器的控制装置之间的当前距离;根据当前距离所处的阈值传输距离,控制使用第一数据传输模组和第二数据传输模组中的一者,其中,当当前距离处于第一阈值传输距离时,控制使用第一数据传输模组,当当前距离处于第二阈值传输距离时,控制使用第二数据传输模组,第一阈值传输距离小于第二阈值传输距离。在不同距离选取不同的数据传输方式例如,近距离使用wifi,远距离使用也即图传子***,例如软件定义无线电(Software Defined Radio,SDR)。
可选地,第一数据传输模组包括近场通讯接口,近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯;第二数据传输模组包括图传子***,图传子***基于射频通信方式与控制装置进行无线通信。
在常规场景下,算力子***会根据相机子***、飞行子***、相机子***等三个子***的算力申请,动态调整cpu和ddr的频率,以满足当前的需要。
在一些实施例中,飞行器还包括图传子***,飞行器能够执行预设功能,预 设功能包括固件升级,方法还包括:当获取到飞行器的控制装置下载固件的反馈信息时,控制降低图传子***的发射功率或者关闭图传子***。可选地,飞行器还包括相机子***、飞行子***、云台,方法还包括:当飞行器更新固件时,控制关闭相机子***、飞行子***和云台中的至少一种,以降低***功耗,减少发热。
在一些实施例中,飞行器还包括相机子***、飞行子***、图传子***以及温度传感器,用于采集飞行器的温度信息,方法还包括:获取温度信息;当温度信息超过阈值温度时,控制降低相机子***、飞行子***和图传子***中的至少一个***的功耗;以及获取降低功耗后的相机子***、飞行子***和图传子***的算力申请,以提供对应的算力。
在一些实施例中,飞行器还包括相机子***、飞行子***、图传子***,飞行器能够执行预设功能,预设功能包括U盘模式,方法还包括:当预设功能为U盘模式时,控制关闭相机子***、飞行子***和图传子***中的至少一者,仅保留无人机的USB传输和存储等功能,芯片的算力可以调节至一个极低的水平,大幅降低芯片发热,不出现因发热导致素材导出失败,不需要用户增加额外的散热手段即可完成素材的导出。
在一些实施例中,飞行器包括的近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯,飞行器还包括相机子***、飞行子***、图传子***、算力子***,当飞行器炸机、与飞行器的控制装置断开连接和/或通信信号强度低于预设阈值时,相机子***、飞行子***、图传子***和算力子***中的至少一个***处于低功耗模式或者关闭,方法还包括:使电源给至少一种近场通信接口供电,以使近场通信接口发送广播信号,以降低飞机航电功耗,给操作人员留出更多的找寻时间
在一些实施例中,方法还包括:根据飞行器的飞行姿态和/或速度信息,识别飞行器是否炸机,当识别到炸机时,配置飞行器的运行模式为炸机模式,其中,当飞行器运行炸机模式时,相机子***、飞行子***、图传子***和算力子***中的至少一个***处于低功耗模式或者关闭。例如,当飞行器处于炸机模式时,相机子***关闭,图传子***关闭,飞行子***处于低功耗模式,算力子***处于低功耗模式。
在一些实施例中,飞行器还包括图传子***,方法还包括:当通过近场通讯接口获取到飞行器的控制装置发送的唤醒信号时,控制唤醒飞行器;并控制唤醒后的飞行器和控制装置通过图传子***进行通信。
在一些实施例中,飞行器还包括报警装置,方法还包括:当通过近场通讯接口获取到飞行器的控制装置发送的信号时,控制唤醒飞行器;以及获取控制装置发送的触发信号,以触发报警装置进行声和/或光报警,通过触发飞机声、光等方式提示飞机位置,降低搜索难度。
本申请的飞行器的控制方法,在飞行器的螺旋桨未转动时飞行器处于***功耗更低的第一运行模式,以减少飞行器的***功耗,从而减少飞行器的相应运算 芯片的发热,从而缓解飞行器的散热难问题,而在飞行器的螺旋桨转动时飞行器处于***功耗比第一运行模式更高的第二运行模式,由于飞行器的螺旋桨的运转会显著改善飞行器的散热,此时运行高功耗的第二运行模式,高算力芯片的散热会由于螺旋桨的运转而得到缓解,以为用户提供更好的使用体验。并且,本申请的飞行器的结构更加简单,更易实现轻量化。
另外,本申请实施例还提供了一种计算机存储介质,例如计算机可读存储介质,其上存储有计算机程序。在所述计算机存储介质上可以存储一个或多个计算机程序指令,处理器可以运行存储器存储的所述程序指令,以实现本文所述的本申请实施例中(由处理器实现)的功能以及/或者其它期望的功能,例如以执行根据本申请实施例的飞行器的功耗的控制方法400的相应步骤,在所述计算机可读存储介质中还可以存储各种应用程序和各种数据,例如所述应用程序使用和/或产生的各种数据等。
例如,所述计算机可读存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。所述计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(Programmable Gate Array;以下简称:PGA),现场可编程门阵列(Field Programmable Gate Array;简称:FPGA)等。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略, 或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。

Claims (79)

  1. 一种飞行器,其特征在于,所述飞行器包括:
    机身;
    动力机构,设置于所述机身,用于提供所述飞行器的飞行动力,其中所述动力机构包括可旋转地螺旋桨;
    处理器,用于:
    获取所述飞行器的当前的飞行状态;
    根据所述飞行状态,确定所述飞行器的运行模式,并控制所述飞行器执行所述确定的运行模式,其中,当所述飞行状态包括飞行器的螺旋桨未转动时,所述飞行器处于第一运行模式,当所述飞行状态包括所述飞行器的螺旋桨已转动时,所述飞行器处于第二运行模式,所述第一运行模式下所述飞行器的***功耗低于所述第二运行模式下所述飞行器的***功耗。
  2. 如权利要求1所述的飞行器,其特征在于,当所述飞行状态为所述飞行器停桨待飞时,所述第一运行模式包括以下至少一种:所述飞行器的至少一种智能功能处于关闭状态、所述飞行器的至少一种数据处理功能处于关闭状态以及所述飞行器的至少一种空间感知传感器处于关闭状态。
  3. 如权利要求2所述的飞行器,其特征在于,所述处理器还用于:
    获取用于控制所述飞行器起飞的起飞指令,并基于所述起飞指令控制所述飞行器由所述第一运行模式切换至所述第二运行模式,其中,所述第二运行模式包括以下至少一种:开启空间感知传感器,开启所述飞行器的数据处理功能,开启所述飞行器的智能功能。
  4. 如权利要求2或3所述的飞行器,其特征在于,所述智能功能包括以下功能中的至少一种:智能避障、路径规划或兴趣点识别;
    所述数据处理功能包括以下功能中的至少一种:神经网络模型、图像信号处理或数字信号处理;
    所述空间感知传感器包括以下传感器中的至少一种:飞行时间传感器、视觉传感器模组或超声波模组。
  5. 如权利要求1至4中任一项所述的飞行器,其特征在于,所述飞行器包括相机子***,当所述相机子***处于非拍照或录像的状态时,所述相机子***用于采集实时取景画面,所述处理器还用于:获取所述实时取景画面,以及根据所述实时取景画面的分辨率及帧率,调整图像信号处理的目标时钟频率。
  6. 如权利要求5所述的飞行器,其特征在于,所述图像信号处理的目标时钟频率包括多个预设时钟频率,所述处理器用于根据所述实时取景画面的分辨率及帧率,调整图像信号处理的目标时钟频率,包括:
    根据所述实时取景画面的分辨率及帧率,计算所需的图像信号处理的最小时钟频率;
    将所述多个预设时钟频率中大于所述最小时钟频率,且和所述最小时钟频率 相差最小的预设时钟频率作为所述目标时钟频率。
  7. 如权利要求6所述的飞行器,其特征在于,所述预设时钟频率包括1440MHz除以大于或等于2的整数所获得的多个频率。
  8. 如权利要求1至7中任一项所述的飞行器,其特征在于,所述螺旋桨未起桨时,所述处理器还用于限制所述飞行器的功耗大于预定功耗的至少一种预设功能开启,以及当所述螺旋桨起降时,所述处理器还用于取消对所述飞行器的功耗大于预定功耗的至少一种预设功能的限制,其中,所述预设功能包括相机的拍照功能或录像功能。
  9. 如权利要求1至8中任一项所述的飞行器,其特征在于,所述飞行器包括相机子***,所述相机子***用于采集实时取景画面,所述处理器还用于:
    当所述相机子***处于非拍照或录像的状态时,且所述飞行器处于停桨待飞时,对所述实时取景画面以第一压缩方式进行压缩;以及
    当所述相机子***处于拍照或录像的状态时,对所述实时取景画面以第二压缩方式进行压缩,其中,所述第二压缩方式的压缩率大于所述第二压缩方式的压缩率。
  10. 如权利要求1至9中任一项所述的飞行器,其特征在于,所述飞行器包括相机子***,所述飞行器还设置有温度传感器,所述温度传感器用于采集所述机身的温度信息,所述处理器还用于:
    获取所述温度传感器输出的所述温度信息;
    根据所述温度信息所处的阈值温度范围,确定所述相机子***所能执行的拍摄模式,并控制所述相机子***运行所述确定的拍摄模式,其中,当所述温度信息处于不同的范围时,所述相机子***所能执行的拍摄模式不完全相同。
  11. 如权利要求10所述的飞行器,其特征在于,
    所述阈值温度范围包括第一阈值温度范围、第二阈值温度范围和第三阈值温度范围,当所述温度信息处于所述第一阈值温度范围时,所述相机子***能够执行拍照、录像和实时取景的拍摄模式,当所述温度信息处于所述第二阈值温度范围时,所述相机子***能够执行实时取景,或者禁止所有的拍摄模式,当所述温度信息处于所述第三阈值温度范围时,禁止所述相机子***执行所有的拍摄模式,其中,所述第一阈值温度范围小于所述第二阈值温度范围,所述第二阈值温度范围小于所述第三阈值温度范围。
  12. 如权利要求11所述的飞行器,其特征在于,所述处理器还用于:当所述温度信息处于所述第二阈值温度范围或所述第三阈值温度范围时,输出提示信息,以使得与所述飞行器的控制装置获取并显示所述提示信息。
  13. 如权利要求1至12中任一项所述的飞行器,其特征在于,所述飞行器包括相机子***和图传子***,所述图传子***用于将所述相机子***采集的影像信息传输给所述飞行器的控制装置,其中,所述处理器还用于:
    当所述飞行器处于停桨待飞时,控制所述图传子***以第一下行占空比和/或第一上行占空比进行数据信息的传输;
    当所述飞行器的螺旋桨已转动时,控制所述图传子***以第二下行占空比和第二上行占空比进行数据信息的传输,其中,所述第一下行占空比小于所述第二下行占空比,所述第一上行占空比小于所述第二上行占空比。
  14. 如权利要求1至13中任一项所述的飞行器,其特征在于,所述飞行器包括相机子***和图传子***,所述图传子***用于将所述相机子***采集的影像信息传输给所述飞行器的控制装置,其中,所述处理器还用于:
    获取所述飞行器和所述飞行器的控制装置之间的当前距离和所述图传子***的当前信号强度;
    根据所述当前距离和/或所述当前信号强度,控制所述图传子***的发射功率。
  15. 如权利要求14所述的飞行器,其特征在于,所述处理器用于根据所述当前距离和/或所述当前信号强度,控制所述图传子***的发射功率,包括:
    根据所述当前距离所处的阈值距离范围,控制所述图传子***的发射功率;和/或
    根据所述当前信号强度所处的阈值信号强度范围,控制所述图传子***的发射功率;其中,当前距离所处的阈值距离范围的数值越大,则发射功率越大,当前信号强度所处的阈值信号强度范围的数值越大,则发射功率越小。
  16. 如权利要求1至15中任一项所述的飞行器,其特征在于,所述飞行器包括第一数据传输模组和第二数据传输模组,其中,所述第一数据传输模组的功耗低于所述第二数据传输模组的功耗,所述第一数据传输模组的最大传输距离低于所述第二数据传输模组的最大传输距离,所述处理器还用于:
    获取所述飞行器和所述飞行器的控制装置之间的当前距离;
    根据所述当前距离所处的阈值传输距离,控制使用所述第一数据传输模组和所述第二数据传输模组中的一者,其中,当所述当前距离处于第一阈值传输距离时,控制使用所述第一数据传输模组,当所述当前距离处于第二阈值传输距离时,控制使用所述第二数据传输模组,所述第一阈值传输距离小于所述第二阈值传输距离。
  17. 如权利要求16所述的飞行器,其特征在于,所述第一数据传输模组包括近场通讯接口,所述近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯;所述第二数据传输模组包括图传子***,所述图传子***基于射频通信方式与控制装置进行无线通信。
  18. 如权利要求1至17中任一项所述的飞行器,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***、内存,所述处理器的频率和所述内存的频率是基于所述相机子***、所述飞行子***和所述图传子***的算力申请动态调整的。
  19. 如权利要求1至18中任一项所述的飞行器,其特征在于,所述飞行器还包括图传子***,所述飞行器能够执行预设功能,所述预设功能包括固件升级,
    所述处理器还用于:当获取到所述飞行器的控制装置下载固件的反馈信息时, 控制降低所述图传子***的发射功率或者关闭所述图传子***。
  20. 如权利要求19所述的飞行器,其特征在于,所述飞行器还包括相机子***、飞行子***、云台,所述处理器还用于:当所述飞行器更新固件时,控制关闭所述相机子***、所述飞行子***和所述云台中的至少一种。
  21. 如权利要求1至20中任一项所述的飞行器,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***以及温度传感器,用于采集所述飞行器的温度信息,所述处理器还用于:获取所述温度信息;
    当所述温度信息超过阈值温度时,控制降低所述相机子***、所述飞行子***和所述图传子***中的至少一个***的功耗;以及
    获取所述降低功耗后的所述相机子***、所述飞行子***和所述图传子***的算力申请,以提供对应的算力。
  22. 如权利要求1至21中任一项所述的飞行器,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***,所述飞行器能够执行预设功能,所述预设功能包括U盘模式,
    所述处理器还用于:当所述预设功能为所述U盘模式时,控制关闭所述相机子***、所述飞行子***和所述图传子***中的至少一者。
  23. 如权利要求1至22中任一项所述的飞行器,其特征在于,所述飞行器包括的近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯,所述飞行器还包括相机子***、飞行子***、图传子***、算力子***,当所述飞行器炸机、与所述飞行器的控制装置断开连接和/或通信信号强度低于预设阈值时,所述相机子***、所述飞行子***、所述图传子***和所述算力子***中的至少一个***处于低功耗模式或者关闭,所述飞行器的处理器用于使电源给至少一种所述近场通信接口供电,以使所述近场通信接口发送广播信号。
  24. 如权利要求23所述的飞行器,其特征在于,所述处理器还用于:
    根据所述飞行器的飞行姿态和/或速度信息,识别所述飞行器是否炸机,当识别到炸机时,配置所述飞行器的运行模式为炸机模式,其中,当所述飞行器运行所述炸机模式时,所述相机子***、所述飞行子***、所述图传子***和所述算力子***中的至少一个***处于低功耗模式或者关闭。
  25. 如权利要求24所述的飞行器,其特征在于,当所述飞行器处于所述炸机模式时,所述相机子***关闭,所述图传子***关闭,所述飞行子***处于低功耗模式,所述算力子***处于低功耗模式。
  26. 如权利要求23所述的飞行器,其特征在于,所述飞行器还包括图传子***,所述处理器还用于:当通过所述近场通讯接口获取到所述飞行器的控制装置发送的唤醒信号时,控制唤醒所述飞行器;
    并控制唤醒后的所述飞行器和所述控制装置通过所述图传子***进行通信。
  27. 如权利要求26所述的飞行器,其特征在于,所述飞行器还包括报警装置,所述处理器还用于:当通过所述近场通讯接口获取到所述飞行器的控制装置发送的信号时,控制唤醒所述飞行器;以及
    获取所述控制装置发送的触发信号,以触发所述报警装置进行声和/或光报警。
  28. 如权利要求1至27中任一项所述的飞行器,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***,所述第一运行模式时,所述相机子***、所述飞行子***、所述图传子***和所述算力子***中的至少一者的功耗小于所述第二运行模式时对应***的功耗。
  29. 如权利要求1至28中任一项所述的飞行器,其特征在于,所述飞行器不包含散热风扇,所述飞行器的螺旋桨转动能够为所述飞行器散热。
  30. 一种控制装置,其特征在于,所述控制装置包括:
    通信接口,用于和飞行器通信连接;
    存储器,用于存储可执行的程序指令;
    一个或多个处理器,用于执行所述存储器中存储的所述程序指令,使得所述处理器执行以下步骤:
    获取所述飞行器的当前的飞行状态;
    根据所述飞行状态,确定所述飞行器的运行模式,并控制所述飞行器执行所述确定的运行模式,其中,当所述飞行状态包括飞行器的螺旋桨未转动时,所述飞行器处于第一运行模式,当所述飞行状态包括所述飞行器的螺旋桨已转动时,所述飞行器处于第二运行模式,所述第一运行模式下所述飞行器的***功耗低于所述第二运行模式下所述飞行器的***功耗。
  31. 如权利要求30所述的控制装置,其特征在于,当所述飞行状态为所述飞行器停桨待飞时,所述第一运行模式包括以下至少一种:所述飞行器的至少一种智能功能处于关闭状态、所述飞行器的至少一种数据处理功能处于关闭状态以及所述飞行器的至少一种空间感知传感器处于关闭状态。
  32. 如权利要求31所述的控制装置,其特征在于,所述处理器还用于:
    输出用于控制所述飞行器起飞的起飞指令,以使所述飞行器获取所述起飞指令并基于所述起飞指令控制所述飞行器由所述第一运行模式切换至所述第二运行模式,其中,所述第二运行模式包括以下至少一种:开启空间感知传感器,开启所述飞行器的数据处理功能,开启所述飞行器的智能功能。
  33. 如权利要求31或32所述的控制装置,其特征在于,所述智能功能包括以下功能中的至少一种:智能避障、路径规划或兴趣点识别;
    所述数据处理功能包括以下功能中的至少一种:神经网络模型、图像信号处理或数字信号处理;
    所述空间感知传感器包括以下传感器中的至少一种:飞行时间传感器、视觉传感器模组或超声波模组。
  34. 如权利要求30至33中任一项所述的控制装置,其特征在于,所述飞行器包括相机子***,当所述相机子***处于非拍照或录像的状态时,所述相机子***用于采集实时取景画面,所述处理器还用于:获取所述实时取景画面,以及根据所述实时取景画面的分辨率及帧率,确定并输出所述飞行器的图像信号处理 的目标时钟频率,以使所述飞行器基于所述目标始终频率进行图像信号处理。
  35. 如权利要求34所述的控制装置,其特征在于,所述图像信号处理的目标时钟频率包括多个预设时钟频率,所述处理器用于根据所述实时取景画面的分辨率及帧率,控制调整图像信号处理的目标时钟频率,包括:
    根据所述实时取景画面的分辨率及帧率,计算所需的图像信号处理的最小时钟频率;
    将所述多个预设时钟频率中大于所述最小时钟频率,且和所述最小时钟频率相差最小的预设时钟频率作为所述目标时钟频率。
  36. 如权利要求35所述的控制装置,其特征在于,所述预设时钟频率包括1440MHz除以大于或等于2的整数所获得的多个频率。
  37. 如权利要求30至36中任一项所述的控制装置,其特征在于,所述飞行器包括相机子***,所述飞行器还设置有温度传感器,所述温度传感器用于采集所述飞行器的机身的温度信息,所述处理器还用于:
    获取所述温度传感器输出的所述温度信息;
    根据所述温度信息所处的阈值温度范围,确定所述相机子***所能执行的拍摄模式,并控制所述相机子***运行所述确定的拍摄模式,其中,当所述温度信息处于不同的范围时,所述相机子***所能执行的拍摄模式不完全相同。
  38. 如权利要求37所述的控制装置,其特征在于,
    所述阈值温度范围包括第一阈值温度范围、第二阈值温度范围和第三阈值温度范围,当所述温度信息处于所述第一阈值温度范围时,所述相机子***能够执行拍照、录像和实时取景的拍摄模式,当所述温度信息处于所述第二阈值温度范围时,所述相机子***能够执行实时取景,或者禁止所有的拍摄模式,当所述温度信息处于所述第三阈值温度范围时,禁止所述相机子***执行所有的拍摄模式,其中,所述第一阈值温度范围小于所述第二阈值温度范围,所述第二阈值温度范围小于所述第三阈值温度范围。
  39. 如权利要求38所述的控制装置,其特征在于,所述控制装置还包括显示器,所述处理器还用于:当所述温度信息处于所述第二阈值温度范围或所述第三阈值温度范围时,输出提示信息;
    所述显示器用于显示所述提示信息。
  40. 如权利要求30至39中任一项所述的控制装置,其特征在于,所述飞行器包括相机子***和图传子***,所述图传子***用于将所述相机子***采集的影像信息传输给所述控制装置,其中,所述处理器还用于:
    获取所述飞行器和所述控制装置之间的当前距离和所述图传子***的当前信号强度;
    根据所述当前距离和/或所述当前信号强度,控制所述图传子***的发射功率。
  41. 如权利要求40所述的控制装置,其特征在于,所述处理器用于根据所述当前距离和/或所述当前信号强度,控制所述图传子***的发射功率,包括:
    根据所述当前距离所处的阈值距离范围,控制所述图传子***的发射功率;和/或
    根据所述当前信号强度所处的阈值信号强度范围,控制所述图传子***的发射功率;其中,当前距离所处的阈值距离范围的数值越大,则发射功率越大,当前信号强度所处的阈值信号强度范围的数值越大,则发射功率越小。
  42. 如权利要求30至41中任一项所述的控制装置,其特征在于,所述飞行器包括第一数据传输模组和第二数据传输模组,其中,所述第一数据传输模组的功耗低于所述第二数据传输模组的功耗,所述第一数据传输模组的最大传输距离低于所述第二数据传输模组的最大传输距离,所述处理器还用于:
    获取所述飞行器和所述控制装置之间的当前距离;
    根据所述当前距离所处的阈值传输距离,控制所述飞行器使用所述第一数据传输模组和所述第二数据传输模组中的一者,其中,当所述当前距离处于第一阈值传输距离时,控制所述飞行器使用所述第一数据传输模组,当所述当前距离处于第二阈值传输距离时,控制所述飞行器使用所述第二数据传输模组,所述第一阈值传输距离小于所述第二阈值传输距离。
  43. 如权利要求42所述的控制装置,其特征在于,所述第一数据传输模组包括近场通讯接口,所述近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯;所述第二数据传输模组包括图传子***,所述图传子***基于射频通信方式与控制装置进行无线通信。
  44. 如权利要求30至43中任一项所述的控制装置,其特征在于,所述飞行器还包括图传子***,所述控制装置包括显示器,所述显示器用于显示所述飞行器能够执行的预设功能的选项,所述预设功能包括固件升级,
    所述处理器还用于:当获取到所述固件升级的选择指令时,输出反馈信息并下载固件,以使所述飞行器获取所述反馈信息并根据所述反馈信息控制降低所述图传子***的发射功率或者关闭所述图传子***。
  45. 如权利要求44所述的控制装置,其特征在于,所述飞行器还包括相机子***、飞行子***、云台,所述处理器还用于:将已下载的所述固件发送至所述飞行器,以使所述飞行器更新固件,并控制关闭所述相机子***、所述飞行子***和所述云台中的至少一种。
  46. 如权利要求30至45中任一项所述的控制装置,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***,所述飞行器能够执行预设功能,所述预设功能包括U盘模式,所述控制装置包括显示器,所述显示器用于显示所述飞行器能够执行的预设功能的选项,所述预设功能包括U盘模式,
    所述处理器还用于:当获取到所述U盘模式的选择指令时,将所述选择指令发送至所述飞行器,以使所述飞行器根据所述选择指令进入U盘模式,并控制关闭所述相机子***、所述飞行子***和所述图传子***中的至少一者。
  47. 如权利要求30至46中任一项所述的控制装置,其特征在于,所述处理器还用于:当所述飞行器炸机、与所述飞行器断开连接和/或通信信号强度低于 预设阈值时,控制所述通信接口中的至少一种近场通讯接口开启,以用于接收所述飞行器的对应的近场通信接口发送的广播信号,所述近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯。
  48. 如权利要求47所述的控制装置,其特征在于,所述飞行器还包括图传子***,所述处理器还用于:当接收到所述飞行器的近场通讯接口发送的所述广播信号时,发送的唤醒信号,以使所述飞行器获取所述唤醒信号,并根据所述唤醒信号唤醒所述飞行器;
    并控制唤醒后的所述飞行器和所述控制装置通过所述图传子***进行通信。
  49. 如权利要求48所述的控制装置,其特征在于,所述飞行器还包括报警装置,所述处理器还用于:
    发送触发信号,以使所述飞行器获取到所述触发信号,并根据所述触发信号触发所述报警装置进行声和/或光报警。
  50. 如权利要求30至49中任一项所述的控制装置,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***,所述第一运行模式时,所述相机子***、所述飞行子***、所述图传子***和所述算力子***中的至少一者的功耗小于所述第二运行模式时对应***的功耗。
  51. 一种飞行器的功耗的控制方法,其特征在于,所述控制方法包括:
    获取所述飞行器的当前的飞行状态;
    根据所述飞行状态,确定所述飞行器的运行模式,并控制所述飞行器执行所述确定的运行模式,其中,当所述飞行状态包括所述飞行器的螺旋桨未转动时,所述飞行器处于第一运行模式,当所述飞行状态包括所述飞行器的螺旋桨已转动时,所述飞行器处于第二运行模式,所述第一运行模式下所述飞行器的***功耗低于所述第二运行模式下所述飞行器的***功耗。
  52. 如权利要求51所述的方法,其特征在于,当所述飞行状态为所述飞行器停桨待飞时,所述第一运行模式包括以下至少一种:所述飞行器的至少一种智能功能处于关闭状态、所述飞行器的至少一种数据处理功能处于关闭状态以及所述飞行器的至少一种空间感知传感器处于关闭状态。
  53. 如权利要求52所述的方法,其特征在于,所述方法还包括:
    获取用于控制所述飞行器起飞的起飞指令,并基于所述起飞指令控制所述飞行器由所述第一运行模式切换至所述第二运行模式,其中,所述第二运行模式包括以下至少一种:开启空间感知传感器,开启所述飞行器的数据处理功能,开启所述飞行器的智能功能。
  54. 如权利要求52或53所述的方法,其特征在于,所述智能功能包括以下功能中的至少一种:智能避障、路径规划或兴趣点识别;
    所述数据处理功能包括以下功能中的至少一种:神经网络模型、图像信号处理或数字信号处理;
    所述空间感知传感器包括以下传感器中的至少一种:飞行时间传感器、视觉传感器模组或超声波模组。
  55. 如权利要求51至54中任一项所述的方法,其特征在于,所述飞行器包括相机子***,当所述相机子***处于非拍照或录像的状态时,所述相机子***用于采集实时取景画面,所述方法还包括:获取所述实时取景画面,以及根据所述实时取景画面的分辨率及帧率,调整图像信号处理的目标时钟频率。
  56. 如权利要求55所述的方法,其特征在于,所述图像信号处理的目标时钟频率包括多个预设时钟频率,所述根据所述实时取景画面的分辨率及帧率,调整图像信号处理的目标时钟频率,包括:
    根据所述实时取景画面的分辨率及帧率,计算所需的图像信号处理的最小时钟频率;
    将所述多个预设时钟频率中大于所述最小时钟频率,且和所述最小时钟频率相差最小的预设时钟频率作为所述目标时钟频率。
  57. 如权利要求56所述的方法,其特征在于,所述预设时钟频率包括1440MHz除以大于或等于2的整数所获得的多个频率。
  58. 如权利要求51至57中任一项所述的方法,其特征在于,所述螺旋桨未起桨时,所述方法还包括:
    限制所述飞行器的功耗大于预定功耗的至少一种预设功能开启,以及当所述螺旋桨起降时,取消对所述飞行器的功耗大于预定功耗的至少一种预设功能的限制,其中,所述预设功能包括相机的拍照功能或录像功能。
  59. 如权利要求51至58中任一项所述的方法,其特征在于,所述飞行器包括相机子***,所述相机子***用于采集实时取景画面,所述方法还包括:
    当所述相机子***处于非拍照或录像的状态时,且所述飞行器处于停桨待飞时,对所述实时取景画面以第一压缩方式进行压缩;以及
    当所述相机子***处于拍照或录像的状态时,对所述实时取景画面以第二压缩方式进行压缩,其中,所述第二压缩方式的压缩率大于所述第二压缩方式的压缩率。
  60. 如权利要求51至59中任一项所述的方法,其特征在于,所述飞行器包括相机子***,所述飞行器还设置有温度传感器,所述温度传感器用于采集所述机身的温度信息,所述方法还包括:
    获取所述温度传感器输出的所述温度信息;
    根据所述温度信息所处的阈值温度范围,确定所述相机子***所能执行的拍摄模式,并控制所述相机子***运行所述确定的拍摄模式,其中,当所述温度信息处于不同的范围时,所述相机子***所能执行的拍摄模式不完全相同。
  61. 如权利要求60所述的方法,其特征在于,
    所述阈值温度范围包括第一阈值温度范围、第二阈值温度范围和第三阈值温度范围,当所述温度信息处于所述第一阈值温度范围时,所述相机子***能够执行拍照、录像和实时取景的拍摄模式,当所述温度信息处于所述第二阈值温度范围时,所述相机子***能够执行实时取景,或者禁止所有的拍摄模式,当所述温度信息处于所述第三阈值温度范围时,禁止所述相机子***执行所有的拍摄模式, 其中,所述第一阈值温度范围小于所述第二阈值温度范围,所述第二阈值温度范围小于所述第三阈值温度范围。
  62. 如权利要求61所述的方法,其特征在于,所述方法还包括:当所述温度信息处于所述第二阈值温度范围或所述第三阈值温度范围时,输出提示信息,以使得与所述飞行器的控制装置获取并显示所述提示信息。
  63. 如权利要求51至62中任一项所述的方法,其特征在于,所述飞行器包括相机子***和图传子***,所述图传子***用于将所述相机子***采集的影像信息传输给所述飞行器的控制装置,其中,所述方法还包括:
    当所述飞行器处于停桨待飞时,控制所述图传子***以第一下行占空比和/或第一上行占空比进行数据信息的传输;
    当所述飞行器的螺旋桨已转动时,控制所述图传子***以第二下行占空比和第二上行占空比进行数据信息的传输,其中,所述第一下行占空比小于所述第二下行占空比,所述第一上行占空比小于所述第二上行占空比。
  64. 如权利要求51至63中任一项所述的方法,其特征在于,所述飞行器包括相机子***和图传子***,所述图传子***用于将所述相机子***采集的影像信息传输给所述飞行器的控制装置,其中,所述方法还包括:
    获取所述飞行器和所述飞行器的控制装置之间的当前距离和所述图传子***的当前信号强度;
    根据所述当前距离和/或所述当前信号强度,控制所述图传子***的发射功率。
  65. 如权利要求64所述的方法,其特征在于,所述根据所述当前距离和/或所述当前信号强度,控制所述图传子***的发射功率,包括:
    根据所述当前距离所处的阈值距离范围,控制所述图传子***的发射功率;和/或
    根据所述当前信号强度所处的阈值信号强度范围,控制所述图传子***的发射功率;其中,当前距离所处的阈值距离范围的数值越大,则发射功率越大,当前信号强度所处的阈值信号强度范围的数值越大,则发射功率越小。
  66. 如权利要求51至65中任一项所述的方法,其特征在于,所述飞行器包括第一数据传输模组和第二数据传输模组,其中,所述第一数据传输模组的功耗低于所述第二数据传输模组的功耗,所述第一数据传输模组的最大传输距离低于所述第二数据传输模组的最大传输距离,所述方法还包括:
    获取所述飞行器和所述飞行器的控制装置之间的当前距离;
    根据所述当前距离所处的阈值传输距离,控制使用所述第一数据传输模组和所述第二数据传输模组中的一者,其中,当所述当前距离处于第一阈值传输距离时,控制使用所述第一数据传输模组,当所述当前距离处于第二阈值传输距离时,控制使用所述第二数据传输模组,所述第一阈值传输距离小于所述第二阈值传输距离。
  67. 如权利要求66所述的方法,其特征在于,所述第一数据传输模组包括 近场通讯接口,所述近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯;所述第二数据传输模组包括图传子***,所述图传子***基于射频通信方式与控制装置进行无线通信。
  68. 如权利要求51至67中任一项所述的方法,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***、内存,所述处理器的频率和所述内存的频率是基于所述相机子***、所述飞行子***和所述图传子***的算力申请动态调整的。
  69. 如权利要求51至68中任一项所述的方法,其特征在于,所述飞行器还包括图传子***,所述飞行器能够执行预设功能,所述预设功能包括固件升级,所述方法还包括:当获取到所述飞行器的控制装置下载固件的反馈信息时,控制降低所述图传子***的发射功率或者关闭所述图传子***。
  70. 如权利要求69所述的方法,其特征在于,所述飞行器还包括相机子***、飞行子***、云台,所述方法还包括:当所述飞行器更新固件时,控制关闭所述相机子***、所述飞行子***和所述云台中的至少一种。
  71. 如权利要求51至70中任一项所述的方法,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***以及温度传感器,用于采集所述飞行器的温度信息,所述方法还包括:获取所述温度信息;
    当所述温度信息超过阈值温度时,控制降低所述相机子***、所述飞行子***和所述图传子***中的至少一个***的功耗;以及
    获取所述降低功耗后的所述相机子***、所述飞行子***和所述图传子***的算力申请,以提供对应的算力。
  72. 如权利要求51至71中任一项所述的方法,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***,所述飞行器能够执行预设功能,所述预设功能包括U盘模式,
    所述方法还包括:当所述预设功能为所述U盘模式时,控制关闭所述相机子***、所述飞行子***和所述图传子***中的至少一者。
  73. 如权利要求51至72中任一项所述的方法,其特征在于,所述飞行器包括的近场通讯接口包括以下接口中的至少一种:WiFi、蓝牙通信接口或近距离无线通讯,所述飞行器还包括相机子***、飞行子***、图传子***、算力子***,当所述飞行器炸机、与所述飞行器的控制装置断开连接和/或通信信号强度低于预设阈值时,所述相机子***、所述飞行子***、所述图传子***和所述算力子***中的至少一个***处于低功耗模式或者关闭,所述方法还包括:使电源给至少一种所述近场通信接口供电,以使所述近场通信接口发送广播信号。
  74. 如权利要求73所述的方法,其特征在于,所述方法还包括:
    根据所述飞行器的飞行姿态和/或速度信息,识别所述飞行器是否炸机,当识别到炸机时,配置所述飞行器的运行模式为炸机模式,其中,当所述飞行器运行所述炸机模式时,所述相机子***、所述飞行子***、所述图传子***和所述算力子***中的至少一个***处于低功耗模式或者关闭。
  75. 如权利要求74所述的方法,其特征在于,当所述飞行器处于所述炸机模式时,所述相机子***关闭,所述图传子***关闭,所述飞行子***处于低功耗模式,所述算力子***处于低功耗模式。
  76. 如权利要求73所述的方法,其特征在于,所述飞行器还包括图传子***,所述方法还包括:
    当通过所述近场通讯接口获取到所述飞行器的控制装置发送的唤醒信号时,控制唤醒所述飞行器;
    并控制唤醒后的所述飞行器和所述控制装置通过所述图传子***进行通信。
  77. 如权利要求76所述的方法,其特征在于,所述飞行器还包括报警装置,所述方法还包括:当通过所述近场通讯接口获取到所述飞行器的控制装置发送的信号时,控制唤醒所述飞行器;以及
    获取所述控制装置发送的触发信号,以触发所述报警装置进行声和/或光报警。
  78. 如权利要求51至77中任一项所述的方法,其特征在于,所述飞行器还包括相机子***、飞行子***、图传子***,所述第一运行模式时,所述相机子***、所述飞行子***、所述图传子***和所述算力子***中的至少一者的功耗小于所述第二运行模式时对应***的功耗。
  79. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现51至78任一项所述飞行器的功耗的控制方法。
PCT/CN2022/082087 2022-03-21 2022-03-21 飞行器及其功耗的控制方法、控制装置和计算机存储介质 WO2023178487A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082087 WO2023178487A1 (zh) 2022-03-21 2022-03-21 飞行器及其功耗的控制方法、控制装置和计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082087 WO2023178487A1 (zh) 2022-03-21 2022-03-21 飞行器及其功耗的控制方法、控制装置和计算机存储介质

Publications (1)

Publication Number Publication Date
WO2023178487A1 true WO2023178487A1 (zh) 2023-09-28

Family

ID=88099587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082087 WO2023178487A1 (zh) 2022-03-21 2022-03-21 飞行器及其功耗的控制方法、控制装置和计算机存储介质

Country Status (1)

Country Link
WO (1) WO2023178487A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206797748U (zh) * 2017-05-19 2017-12-26 深圳市科比特航空科技有限公司 一种无人机智能动力***
CN108521812A (zh) * 2017-05-19 2018-09-11 深圳市大疆创新科技有限公司 无人机的控制方法、无人机以及机器可读存储介质
CN109923492A (zh) * 2016-11-14 2019-06-21 深圳市大疆创新科技有限公司 飞行路径确定
US20190243356A1 (en) * 2016-10-17 2019-08-08 SZ DJI Technology Co., Ltd. Method for controlling flight of an aircraft, device, and aircraft
CN110673638A (zh) * 2019-10-15 2020-01-10 中国特种飞行器研究所 一种无人飞艇避让***和无人飞艇飞行控制***
CN113885553A (zh) * 2021-09-07 2022-01-04 四川一电航空技术有限公司 无人机拍摄方法、装置、无人机及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190243356A1 (en) * 2016-10-17 2019-08-08 SZ DJI Technology Co., Ltd. Method for controlling flight of an aircraft, device, and aircraft
CN109923492A (zh) * 2016-11-14 2019-06-21 深圳市大疆创新科技有限公司 飞行路径确定
CN206797748U (zh) * 2017-05-19 2017-12-26 深圳市科比特航空科技有限公司 一种无人机智能动力***
CN108521812A (zh) * 2017-05-19 2018-09-11 深圳市大疆创新科技有限公司 无人机的控制方法、无人机以及机器可读存储介质
CN110673638A (zh) * 2019-10-15 2020-01-10 中国特种飞行器研究所 一种无人飞艇避让***和无人飞艇飞行控制***
CN113885553A (zh) * 2021-09-07 2022-01-04 四川一电航空技术有限公司 无人机拍摄方法、装置、无人机及存储介质

Similar Documents

Publication Publication Date Title
CN109074101B (zh) 使用多个无人机的成像
JP6811336B2 (ja) マルチジンバル組立体
US10979615B2 (en) System and method for providing autonomous photography and videography
US11423792B2 (en) System and method for obstacle avoidance in aerial systems
US20190291864A1 (en) Transformable apparatus
WO2019113727A1 (zh) 无人飞行器返航方法、装置、存储介质和无人飞行器
KR102514566B1 (ko) 전자 장치 및 그의 동작 방법
EP3345832B1 (en) Unmanned aerial vehicle and method for controlling the same
WO2018086130A1 (zh) 飞行轨迹的生成方法、控制装置及无人飞行器
WO2018107419A1 (zh) 控制方法、装置、设备及可移动平台
US10139822B2 (en) Unmanned aerial vehicles
CN111596649A (zh) 用于空中***的单手远程控制设备
US20230088975A1 (en) Returning method, controller, unmanned aerial vehicle and storage medium
CN107450573B (zh) 飞行拍摄控制***和方法、智能移动通信终端、飞行器
CN108924520B (zh) 传输控制方法、装置、控制器、拍摄设备及飞行器
US20210018938A1 (en) Computation load distribution
WO2017166080A1 (zh) 执行状态指示方法、装置及无人机
JP2023057120A (ja) 飛行体の制御に関する情報表示方法
CN112189174A (zh) 无人机的控制所述方法、装置以及无人机
WO2020056646A1 (zh) 无人机及其控制方法、控制装置和计算机可读存储介质
WO2023178487A1 (zh) 飞行器及其功耗的控制方法、控制装置和计算机存储介质
WO2021135822A1 (zh) 机场限制方法及装置、无人机
JP2023157917A (ja) 撮影方法
CN117980845A (zh) 无人机的功耗控制方法、装置、***及存储介质
CN110622086A (zh) 可移动物体应用框架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932556

Country of ref document: EP

Kind code of ref document: A1