WO2023176434A1 - フルオロアルケンの保管方法 - Google Patents

フルオロアルケンの保管方法 Download PDF

Info

Publication number
WO2023176434A1
WO2023176434A1 PCT/JP2023/007363 JP2023007363W WO2023176434A1 WO 2023176434 A1 WO2023176434 A1 WO 2023176434A1 JP 2023007363 W JP2023007363 W JP 2023007363W WO 2023176434 A1 WO2023176434 A1 WO 2023176434A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluoroalkene
manganese
silicon
less
cobalt
Prior art date
Application number
PCT/JP2023/007363
Other languages
English (en)
French (fr)
Inventor
一晃 大月
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023176434A1 publication Critical patent/WO2023176434A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/38Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to a method for storing fluoroalkenes.
  • Fluoroalkenes having a bromine atom or an iodine atom in the molecule are sometimes used as a digestive agent or an etching gas for dry etching (for example, Patent Document 1) , 2).
  • fluoroalkene when it is simply written as "fluoroalkene", it means "fluoroalkene having a bromine atom or an iodine atom in the molecule”.
  • fluoroalkenes are compounds with insufficient stability, decomposition reactions and elimination reactions of bromine atoms and iodine atoms may proceed, resulting in a decrease in the purity of fluoroalkenes.
  • a stabilizer such as an antioxidant or water
  • An object of the present invention is to provide a method for storing fluoroalkenes in which reactions of fluoroalkenes are less likely to occur during storage and purity is less likely to decrease, even without adding a stabilizer that suppresses the reaction of fluoroalkenes. .
  • a method for storing a fluoroalkene having a bromine atom or an iodine atom in the molecule The fluoroalkene is represented by a first general formula C 2 H p F q is an integer of 1 or more and 3 or less, r is an integer of 1 or more and 3 or less, p+q+r is 4, and is represented by the second general formula C 3 H s F t X u , and the second general formula X represents a bromine atom or an iodine atom, s is an integer of 0 to 4, t is an integer of 1 to 5, u is an integer of 1 to 5, and s + t + u is at least one type of fluoropropene.
  • the fluoroalkene may or may not contain at least one of manganese, cobalt, nickel, and silicon as a metal impurity, and if the fluoroalkene contains at least one of manganese, cobalt, nickel, and silicon, the sum of the concentrations of manganese, cobalt, nickel, and silicon is 1000 mass ppb or less
  • the fluoroalkene further contains at least one of sodium, potassium, magnesium, and calcium as the metal impurity, or does not contain manganese, cobalt, nickel, and silicon, and sodium
  • the fluoroalkene is 1-bromo-1,2,2-trifluoroethylene, 1-bromo-1-fluoroethylene, 1-iodo-1,2,2-trifluoroethylene, 1-iodo-1-
  • [4] The method for storing a fluoroalkene according to any one of [1] to [3], wherein the fluoroalkene is stored at a temperature of -20°C or higher and 50°C or lower.
  • the reaction of the fluoroalkene is less likely to occur during storage, and the purity of the fluoroalkene is less likely to decrease.
  • the method for storing a fluoroalkene is a method for storing a fluoroalkene having a bromine atom or an iodine atom in the molecule, wherein the fluoroalkene contains manganese (Mn), cobalt (Co), nickel (Ni), and
  • the fluoroalkene is stored in a container containing or not containing at least one kind of silicon (Si) as a metal impurity, and when containing, the sum of the concentrations of manganese, cobalt, nickel, and silicon is 1000 mass ppb or less This is the way to do it.
  • Fluoroethylene is a compound represented by the first general formula C 2 H p F q X r , where X in the first general formula represents a bromine atom or an iodine atom, and p is an integer of 0 to 2.
  • q is an integer of 1 to 3
  • r is an integer of 1 to 3
  • p+q+r is 4.
  • Fluoropropene is a compound represented by the second general formula C 3 H s F t X u , where X in the second general formula represents a bromine atom or an iodine atom, and s is an integer of 0 to 4.
  • t is an integer of 1 to 5
  • u is an integer of 1 to 5
  • s+t+u is 6.
  • a fluoroalkene contains at least one of manganese, cobalt, nickel, and silicon as a metal impurity
  • the catalytic action of the metal impurity may cause, for example, a decomposition reaction of the fluoroalkene or a bromine atom or iodine from the fluoroalkene. Atom elimination reactions are promoted. Therefore, when a fluoroalkene containing metal impurities is stored for a long period of time, for example, decomposition products of the fluoroalkene, bromine molecules, and iodine molecules are generated, and the purity tends to decrease.
  • the fluoroalkene stored by the fluoroalkene storage method according to the present embodiment does not contain metal impurities, or even if it does, the content is small, so even when stored for a long period of time, the fluoroalkene Decomposition reactions and elimination reactions of bromine and iodine atoms from fluoroalkenes are difficult to proceed, and fluoroalkene decomposition products, bromine molecules, and iodine molecules are difficult to generate. Therefore, the purity of the fluoroalkene is less likely to decrease, and high purity can be maintained for a long period of time.
  • the fluoroalkene can be stored stably for a long period of time without adding a stabilizer such as an antioxidant or water to the fluoroalkene. Further, the purity of the fluoroalkene does not decrease due to the addition of a stabilizer, and the quality of the fluoroalkene (for example, its quality as a digestive agent or etching gas) does not decrease due to the addition of a stabilizer.
  • a stabilizer may be added to the fluoroalkene, but in a preferred embodiment of the fluoroalkene storage method according to this embodiment, the stabilizer is added to the fluoroalkene. This is an embodiment in which it is not added to.
  • the method for storing fluoroalkenes according to this embodiment will be described in more detail below.
  • the fluoroalkenes in the fluoroalkene storage method according to the present embodiment include fluoroethylene represented by the first general formula C 2 H p F q X r and fluoroethylene represented by the second general formula C 3 H s F t X u It is at least one type of fluoropropene.
  • the type of fluoroalkene is not particularly limited as long as it satisfies the above requirements, but fluoroalkenes in which r is 1 in the above first general formula and u in the above second general formula are 1. Fluoroalkenes are preferred.
  • fluoroalkenes may be used alone, or two or more types may be used in combination. Furthermore, some of the above-mentioned fluoroalkenes have cis-trans isomers, and both cis-type and trans-type fluoroalkenes can be used in the fluoroalkene storage method according to the present embodiment. be able to.
  • a gas consisting only of the fluoroalkene may be stored in the container, or a mixed gas containing the fluoroalkene and an inert diluent gas may be stored in the container.
  • part or all of the fluoroalkene may be liquefied and stored in a container.
  • the diluent gas at least one selected from nitrogen gas (N 2 ), helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) can be used.
  • the content of the diluent gas is preferably 90% by volume or less, more preferably 50% by volume or less, based on the total amount of gas stored in the container.
  • the shape, size, material, etc. of the container for storing the fluoroalkene are not particularly limited as long as the container can contain and seal the fluoroalkene.
  • Metal, ceramic, resin, etc. can be used as the material of the container. Examples of metals include manganese steel, stainless steel, Hastelloy (registered trademark), Inconel (registered trademark), and the like.
  • the fluoroalkene in the fluoroalkene storage method according to the present embodiment contains or does not contain at least one of manganese, cobalt, nickel, and silicon as a metal impurity. Since the sum of the concentrations of silicon and silicon is kept in the container at 1000 mass ppb or less, the above-mentioned effects are achieved. That is, the decomposition reaction of fluoroalkene and the elimination reaction of bromine atoms and iodine atoms from fluoroalkene are difficult to proceed, and decomposition products of fluoroalkene, bromine molecules, and iodine molecules are difficult to be produced.
  • the term "not contained” means that it cannot be quantified using an inductively coupled plasma mass spectrometer (ICP-MS).
  • metals such as manganese, cobalt, nickel, and silicon in the present invention include metal atoms and metal ions.
  • the sum needs to be 1000 mass ppb or less, preferably 500 mass ppb or less, and more preferably 100 mass ppb or less.
  • the concentration of manganese, cobalt, nickel, and silicon contained in the fluoroalkene is preferably 300 mass ppb or less, and 100 mass ppb or less. More preferably, it is ppb or less. Note that the sum of the concentrations of manganese, cobalt, nickel, and silicon may be 1 mass ppb or more.
  • the concentration of metal impurities such as manganese, cobalt, nickel, and silicon in fluoroalkenes can be determined with inductively coupled plasma mass spectrometry (ICP-MS).
  • ICP-MS inductively coupled plasma mass spectrometry
  • concentrations of manganese, cobalt, nickel, and silicon in the fluoroalkene sodium (Na), potassium (K), magnesium (Mg), It is also preferable that the concentration of calcium (Ca) is also low.
  • the fluoroalkene contains or does not contain at least one of manganese, cobalt, nickel, and silicon as a metal impurity
  • the sum of the concentrations of manganese, cobalt, nickel, and silicon is 1000 mass.
  • at least one of sodium, potassium, magnesium, and calcium may or may not be further contained as the metal impurity, and if the metal impurity is contained, manganese, cobalt, nickel, and silicon, and It is preferable to store the fluoroalkene with the total concentration of sodium, potassium, magnesium, and calcium at 2000 mass ppb or less.
  • the total concentration of manganese, cobalt, nickel, and silicon, as well as sodium, potassium, magnesium, and calcium in the case of containing the above, is more preferably 1000 mass ppb or less, and more preferably 500 mass ppb or less. preferable. Note that the total concentration of manganese, cobalt, nickel, and silicon, as well as sodium, potassium, magnesium, and calcium may be 2 mass ppb or more.
  • the fluoroalkene contains at least one of manganese, cobalt, nickel, and silicon and at least one of sodium, potassium, magnesium, and calcium as metal impurities, and at least one of copper, zinc, and aluminum.
  • the fluoroalkene it is preferable to store the fluoroalkene so that the sum of the concentrations of all the metal impurities contained is 3000 mass ppb or less.
  • the sum of the concentrations of all these metal impurities contained is more preferably 1500 mass ppb or less, and even more preferably 1000 mass ppb or less.
  • the above metal impurities may be contained in the fluoroalkene as a simple metal, a metal compound, a metal halide, or a metal complex.
  • Examples of the form of metal impurities in the fluoroalkene include fine particles, droplets, and gas. Note that manganese, cobalt, nickel, and silicon are thought to be mixed into the fluoroalkene due to the raw materials, reactors, purification equipment, etc. used when synthesizing the fluoroalkene.
  • the method for producing a fluoroalkene with a low concentration of metal impurities is not particularly limited, but includes, for example, a method of removing metal impurities from a fluoroalkene with a high concentration of metal impurities.
  • the method for removing metal impurities from fluoroalkene is not particularly limited, and any known method can be employed. Examples include methods using filters, methods using adsorbents, and distillation.
  • the material of the filter that selectively allows the fluoroalkene gas to pass through is preferably resin, particularly preferably polytetrafluoroethylene, in order to avoid mixing of metal components into the fluoroalkene.
  • the average pore diameter of the filter is preferably 0.01 ⁇ m or more and 30 ⁇ m or less, more preferably 0.1 ⁇ m or more and 10 ⁇ m or less. If the average pore diameter is within the above range, it is possible to sufficiently remove metal impurities and to ensure a sufficient flow rate of fluoroalkene gas to achieve high productivity.
  • the flow rate of the fluoroalkene gas passing through the filter is preferably 3 mL/min or more and 300 mL/min or less, and more preferably 10 mL/min or more and 50 mL/min or less per 1 cm 2 of filter area. If the flow rate of the fluoroalkene gas is within the above range, high pressure of the fluoroalkene gas is suppressed, the risk of leakage of the fluoroalkene gas is reduced, and high productivity can be achieved.
  • the pressure conditions during storage in the fluoroalkene storage method according to the present embodiment are not particularly limited as long as the fluoroalkene can be stored in a sealed container, but may be 0.01 MPa or more and 5 MPa or less. It is preferably 0.05 MPa or more and 3 MPa or less. If the pressure conditions are within the above range, the fluoroalkene can be circulated without humidification when the container is connected to a dry etching device.
  • the temperature conditions during storage in the fluoroalkene storage method according to the present embodiment are not particularly limited, but are preferably -20°C or higher and 50°C or lower, more preferably 0°C or higher and 40°C or lower. preferable. If the temperature during storage is ⁇ 20° C. or higher, the container is less likely to deform, so there is a low possibility that the container will lose its airtightness and that oxygen, water, etc. will enter the container. If oxygen, water, etc. are mixed, there is a risk that the polymerization reaction and decomposition reaction of the fluoroalkene will be accelerated. On the other hand, if the storage temperature is 50° C. or lower, the polymerization reaction and decomposition reaction of the fluoroalkene are suppressed.
  • the fluoroalkene stored by the fluoroalkene storage method according to the present embodiment can be used as an etching gas.
  • the fluoroalkene-containing etching gas stored in the fluoroalkene storage method according to the present embodiment can be used for both plasma etching using plasma and plasmaless etching that does not use plasma.
  • plasma etching examples include reactive ion etching (RIE), inductively coupled plasma (ICP) etching, and capacitively coupled plasma (CCP) etching.
  • RIE reactive ion etching
  • ICP inductively coupled plasma
  • CCP capacitively coupled plasma
  • ECR electron cyclotron resonance
  • plasma etching plasma may be generated in a chamber in which the member to be etched is installed, or the plasma generation chamber and the chamber in which the member to be etched is installed may be separated (i.e., using remote plasma). ).
  • Fluoroalkenes containing various concentrations of metal impurities were prepared.
  • An example of preparing a fluoroalkene will be explained below.
  • (Preparation example 1) One cylinder made of manganese steel with a capacity of 10 L and four sealable cylinders made of manganese steel with a capacity of 1 L were prepared. These cylinders are called cylinder A, cylinder B, cylinder C, and cylinder D in order.
  • the cylinder was filled with 5000 g of 1-bromo-1,2,2-trifluoroethylene and liquefied by cooling to 0° C. to form a liquid phase and a gas phase at approximately 100 kPa. Cylinders A, B, C, and D were cooled to -78°C after the internal pressure was reduced to 1 kPa or less using a vacuum pump.
  • 500g of 1-bromo-1,2,2-trifluoroethylene gas is extracted from the upper outlet where the gas phase of the cylinder exists, and after passing through a filter, it is liquefied at -78°C in cylinder A under reduced pressure. I let him collect it.
  • the filter is a PTFE filter manufactured by Flon Kogyo Co., Ltd., and has an outer diameter of 50 mm, a thickness of 80 ⁇ m, and an average pore diameter of 0.3 ⁇ m.
  • the flow rate of gas when passing through the filter was controlled to 500 mL/min by a mass flow controller.
  • the amount of 1-bromo-1,2,2-trifluoroethylene collected in cylinder A was 492 g.
  • the 1-bromo-1,2,2-trifluoroethylene collected in cylinder A is referred to as sample 1-1.
  • the 1-bromo-1,2,2-trifluoroethylene collected in cylinder A consists of a gas phase and a liquid phase.
  • the gas phase was extracted from the upper outlet, and the concentration of various metal impurities was measured using an inductively coupled plasma mass spectrometer. The results are shown in Table 1.
  • the details of the method for measuring the concentration of various metal impurities using an inductively coupled plasma mass spectrometer are as follows. While vaporizing 1-bromo-1,2,2-trifluoroethylene in the liquid phase of cylinder A at 20°C, extracting 1-bromo-1,2,2-trifluoroethylene gas from the gas phase, 100 g of a nitric acid aqueous solution having a concentration of 1 mol/L was passed through at a flow rate of 100 mL/min to cause bubbling. Through this bubbling, 1-bromo-1,2,2-trifluoroethylene was brought into contact with the nitric acid aqueous solution, and the metal impurities were absorbed into the nitric acid aqueous solution. The mass of the nitric acid aqueous solution after bubbling was 80 g (M1). Moreover, the difference in mass between cylinder A before and after bubbling was 50 g (M2).
  • cylinder A is cooled to about 0°C to form a liquid phase part and a gas phase part, and 1-bromo-1,2,2-trifluoride is introduced from the upper outlet of cylinder A where the gas phase part exists.
  • 100 g of fluoroethylene gas was extracted and transferred to cylinder B under reduced pressure.
  • 10 g of 1-bromo-1,2,2-trifluoroethylene gas was extracted from the cylinder and transferred to cylinder B under reduced pressure.
  • cylinder B was heated to room temperature and left standing for 24 hours.
  • the 1-bromo-1,2,2-trifluoroethylene after standing is designated as sample 1-2.
  • Preparation example 2 The same operation as in Preparation Example 1 was carried out, except that 1-bromo-1-fluoroethylene was used as the fluoroalkene and the temperature of cylinder A was 10 ° C. when transferring the gas in cylinder A to cylinder B. Samples 2-1 to 2-4 were prepared. Then, in the same manner as in Preparation Example 1, the concentration of various metal impurities in each sample was measured using an inductively coupled plasma mass spectrometer. The results are shown in Table 2.
  • Preparation example 4 Preparation Example 1 except that 1-iodo-1,2,2-trifluoroethylene was used as the fluoroalkene and the temperature of cylinder A was 30°C when transferring the gas in cylinder A to cylinder B. Samples 4-1 to 4-4 were prepared by performing the same operation. Then, in the same manner as in Preparation Example 1, the concentration of various metal impurities in each sample was measured using an inductively coupled plasma mass spectrometer. The results are shown in Table 4.
  • Example 1 After the sealed cylinder A was left standing at 20°C for 30 days, 1-bromo-1,2,2-trifluoroethylene gas was extracted from the gas phase of cylinder A and analyzed by gas chromatography and Raman spectroscopy. The concentrations of 1-bromo-1,2,2-trifluoroethylene decomposition products, bromine molecules, and iodine molecules present in sample 1-1 were determined. As a result, no decomposition products, bromine molecules, or iodine molecules were detected.
  • Examples 2 to 12 and Comparative Examples 1 to 4 The analysis targets and analysis results in Examples 2 to 12 and Comparative Examples 1 to 4 are shown in Table 5 in comparison with Example 1. That is, except for the items shown in Table 5, the analysis was performed in the same manner as in Example 1. In addition, in gas chromatography, all peaks on the lower molecular weight side than the original fluoroalkene relative to the peak area of the original fluoroalkene (for example, 1-bromo-1,2,2-trifluoroethylene in Example 1) Table 5 shows the ratio (%) of the total area of .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

フルオロアルケンの反応を抑制する安定化剤を添加しなくても、保管中にフルオロアルケンの反応が生じにくく、純度が低下しにくいフルオロアルケンの保管方法を提供する。臭素原子又はヨウ素原子を分子内に有するフルオロアルケンは、第1の一般式C2HpFqXrで表されるフルオロエチレン、及び、第2の一般式C3HsFtXuで表されるフルオロプロペンの少なくとも一種であり(Xは臭素原子又はヨウ素原子を示す)、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有しない。このフルオロアルケンを、前記含有する場合はマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下として、容器内に保管する。

Description

フルオロアルケンの保管方法
 本発明はフルオロアルケンの保管方法に関する。
 臭素原子又はヨウ素原子を分子内に有するフルオロアルケン(例えば2-ブロモ-3,3,3-トリフルオロプロペン)は、消化剤やドライエッチングのエッチングガスとして使用される場合がある(例えば特許文献1、2を参照)。なお、本明細書において単に「フルオロアルケン」と記してある場合は、「臭素原子又はヨウ素原子を分子内に有するフルオロアルケン」を意味する。
日本国特許公表公報 2014年第534840号 日本国特許公開公報 2017年第190311号
 しかしながら、フルオロアルケンは、安定性が不十分な化合物であるため、分解反応や、臭素原子やヨウ素原子の脱離反応が進行して、フルオロアルケンの純度が低下するおそれがあった。抗酸化剤、水等の安定化剤をフルオロアルケンに添加して、フルオロアルケンの反応を抑制することもできるが、安定化剤の添加によってフルオロアルケンの純度が低下するという問題があった。
 本発明は、フルオロアルケンの反応を抑制する安定化剤を添加しなくても、保管中にフルオロアルケンの反応が生じにくく、純度が低下しにくいフルオロアルケンの保管方法を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[5]の通りである。
[1] 臭素原子又はヨウ素原子を分子内に有するフルオロアルケンの保管方法であって、
 前記フルオロアルケンは、第1の一般式C2pqrで表され且つ前記第1の一般式中のXは臭素原子又はヨウ素原子を示し、pは0以上2以下の整数、qは1以上3以下の整数、rは1以上3以下の整数、p+q+rは4であるフルオロエチレン、及び、第2の一般式C3stuで表され且つ前記第2の一般式中のXは臭素原子又はヨウ素原子を示し、sは0以上4以下の整数、tは1以上5以下の整数、uは1以上5以下の整数、s+t+uは6であるフルオロプロペンの少なくとも一種であり、
 前記フルオロアルケンがマンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下として前記フルオロアルケンを容器内に保管するフルオロアルケンの保管方法。
[2] 前記フルオロアルケンがナトリウム、カリウム、マグネシウム、及びカルシウムのうち少なくとも一種を前記金属不純物としてさらに含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和を2000質量ppb以下として前記フルオロアルケンを容器内に保管する[1]に記載のフルオロアルケンの保管方法。
[3] 前記フルオロアルケンが1-ブロモ-1,2,2-トリフルオロエチレン、1-ブロモ-1-フルオロエチレン、1-ヨード-1,2,2-トリフルオロエチレン、1-ヨード-1-フルオロエチレン、2-ブロモ-3,3,3-トリフルオロプロペン、及び2-ヨード-3,3,3-トリフルオロプロペンから選ばれる少なくとも1つである[1]又は[2]に記載のフルオロアルケンの保管方法。
[4] -20℃以上50℃以下の温度で保管する[1]~[3]のいずれか一項に記載のフルオロアルケンの保管方法。
[5] 前記容器の材質がマンガン鋼である[1]~[4]のいずれか一項に記載のフルオロアルケンの保管方法。
 本発明によれば、フルオロアルケンの反応を抑制する安定化剤を添加しなくても、保管中にフルオロアルケンの反応が生じにくく、フルオロアルケンの純度が低下しにくい。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本実施形態に係るフルオロアルケンの保管方法は、臭素原子又はヨウ素原子を分子内に有するフルオロアルケンの保管方法であって、フルオロアルケンがマンガン(Mn)、コバルト(Co)、ニッケル(Ni)、及びケイ素(Si)のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下としてフルオロアルケンを容器内に保管する方法である。
 このフルオロアルケンは、フルオロエチレン及びフルオロプロペンの少なくとも一種である。フルオロエチレンは、第1の一般式C2pqrで表される化合物であり、第1の一般式中のXは臭素原子又はヨウ素原子を示し、pは0以上2以下の整数、qは1以上3以下の整数、rは1以上3以下の整数、p+q+rは4である。フルオロプロペンは、第2の一般式C3stuで表される化合物であり、第2の一般式中のXは臭素原子又はヨウ素原子を示し、sは0以上4以下の整数、tは1以上5以下の整数、uは1以上5以下の整数、s+t+uは6である。
 フルオロアルケンが、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有していると、金属不純物の触媒作用によって、例えば、フルオロアルケンの分解反応や、フルオロアルケンからの臭素原子やヨウ素原子の脱離反応が促進される。そのため、金属不純物を含有するフルオロアルケンは、例えば長期間にわたる保管中に、フルオロアルケンの分解生成物や臭素分子、ヨウ素分子が生成し、純度の低下が生じやすい。
 本実施形態に係るフルオロアルケンの保管方法によって保管されたフルオロアルケンは、金属不純物を含有していないか又は含有していてもその含有量が少ないため、例えば長期間にわたる保管においても、フルオロアルケンの分解反応や、フルオロアルケンからの臭素原子やヨウ素原子の脱離反応が進行しにくく、フルオロアルケンの分解生成物や臭素分子、ヨウ素分子が生成しにくい。そのため、フルオロアルケンの純度の低下が起こりにくく、長期間にわたって高純度を維持することができる。
 よって、抗酸化剤、水等の安定化剤をフルオロアルケンに添加しなくても、フルオロアルケンを長期間にわたって安定して保管することができる。また、安定化剤の添加によるフルオロアルケンの純度の低下も生じないし、安定化剤の添加によるフルオロアルケンの品質(例えば、消化剤やエッチングガスとしての品質)の低下も生じない。なお、本実施形態に係るフルオロアルケンの保管方法においては、フルオロアルケンに安定化剤を添加してもよいが、本実施形態に係るフルオロアルケンの保管方法の好ましい態様は、安定化剤をフルオロアルケンに添加しない態様である。
 以下、本実施形態に係るフルオロアルケンの保管方法について、さらに詳細に説明する。
〔臭素原子又はヨウ素原子を分子内に有するフルオロアルケン〕
 本実施形態に係るフルオロアルケンの保管方法におけるフルオロアルケンは、上記第1の一般式C2pqrで表されるフルオロエチレン及び上記第2の一般式C3stuで表されフルオロプロペンの少なくとも一種である。フルオロアルケンの種類は、上記要件を満たしていれば特に限定されるものではないが、上記第1の一般式においてrが1であるフルオロアルケンと、上記第2の一般式においてuが1であるフルオロアルケンが好ましい。
 臭素原子を分子内に有するフルオロアルケンの具体例としては、CFBr=CH2(1-ブロモ-1-フルオロエチレン)、CFBr=CHF、CFBr=CF2(1-ブロモ-1,2,2-トリフルオロエチレン)、CFBr=CFBr、CFBr=CHBr、CF2=CHBr、CHF=CHBr、CFBr=CBr2、CF2=CBr2、CHF=CBr2、CHBr=CBr2、CH2=CBrCF3(2-ブロモ-3,3,3-トリフルオロプロペン)、CHF=CBrCF3、CHBr=CBrCF3、CF2=CBrCF3、CBr2=CBrCF3、CFBr=CBrCF3、CH2=CBrCF2Br、CHF=CBrCF2Br、CHBr=CBrCF2Br、CF2=CBrCF2Br、CBr2=CBrCF2Br、CFBr=CBrCF2Br、CH2=CBrCFBr2、CHF=CBrCFBr2、CHBr=CBrCFBr2、CF2=CBrCFBr2が挙げられる。
 ヨウ素原子を分子内に有するフルオロアルケンの具体例としては、CFI=CH2(1-ヨード-1-フルオロエチレン)、CFI=CHF、CFI=CF2(1-ヨード-1,2,2-トリフルオロエチレン)、CFI=CFI、CFI=CHI、CF2=CHI、CHF=CHI、CFI=CI2、CF2=CI2、CHF=CI2、CHI=CI2、CH2=CICF3(2-ヨード-3,3,3-トリフルオロプロペン)、CHF=CICF3、CHI=CICF3、CF2=CICF3、CI2=CICF3、CFI=CICF3、CH2=CICF2I、CHF=CICF2I、CHI=CICF2I、CF2=CICF2I、CI2=CICF2I、CFI=CICF2I、CH2=CICFI2、CHF=CICFI2、CHI=CICFI2、CF2=CICFI2が挙げられる。
 これらのフルオロアルケンは1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、上記のフルオロアルケンの一部には、シス-トランス異性体が存在するものがあるが、シス型、トランス型のいずれのフルオロアルケンも、本実施形態に係るフルオロアルケンの保管方法に使用することができる。
 フルオロアルケンを容器に保管する際には、フルオロアルケンのみからなるガスを容器に保管してもよいし、フルオロアルケンと不活性な希釈ガスを含有する混合ガスを容器に保管してもよい。また、フルオロアルケンの一部又は全部を液化させて容器に保管してもよい。希釈ガスとしては、窒素ガス(N2)、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、及びキセノン(Xe)から選ばれる少なくとも一種を用いることができる。希釈ガスの含有量は、容器に保管するガスの総量に対して90体積%以下であることが好ましく、50体積%以下であることがより好ましい。
〔容器〕
 フルオロアルケンを保管する容器については、フルオロアルケンを収容し密封することができるならば、形状、大きさ、材質等は特に限定されるものではない。容器の材質には、金属、セラミック、樹脂等を採用することができる。金属の例としては、マンガン鋼、ステンレス鋼、ハステロイ(登録商標)、インコネル(登録商標)等が挙げられる。
〔金属不純物〕
 本実施形態に係るフルオロアルケンの保管方法におけるフルオロアルケンは、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有しないが、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下として容器内に保管されるため、前述した作用効果が奏される。すなわち、フルオロアルケンの分解反応や、フルオロアルケンからの臭素原子やヨウ素原子の脱離反応が進行しにくく、フルオロアルケンの分解生成物や臭素分子、ヨウ素分子が生成しにくい。
 ここで、前記含有しないとは、誘導結合プラズマ質量分析計(ICP-MS)で定量することができない場合を意味する。また、本発明におけるマンガン、コバルト、ニッケル、及びケイ素等の金属には、金属原子と金属イオンが包含される。
 フルオロアルケンの分解反応や、フルオロアルケンからの臭素原子やヨウ素原子の脱離反応が保管中に進行することを抑制するためには、フルオロアルケンが含有するマンガン、コバルト、ニッケル、及びケイ素の濃度の和は、1000質量ppb以下である必要があるが、500質量ppb以下であることが好ましく、100質量ppb以下であることがより好ましい。
 保管中の上記分解反応や上記脱離反応をより抑制するためには、フルオロアルケンが含有するマンガン、コバルト、ニッケル、及びケイ素の濃度は、それぞれ、300質量ppb以下であることが好ましく、100質量ppb以下であることがより好ましい。
 なお、マンガン、コバルト、ニッケル、及びケイ素の濃度の和は、1質量ppb以上であってもよい。
 フルオロアルケン中のマンガン、コバルト、ニッケル、及びケイ素等の金属不純物の濃度は、誘導結合プラズマ質量分析計(ICP-MS)で定量することができる。
 保管中の上記分解反応や上記脱離反応をより抑制するためには、フルオロアルケン中のマンガン、コバルト、ニッケル、及びケイ素の濃度とともに、ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)、及びカルシウム(Ca)の濃度も低濃度とすることが好ましい。
 すなわち、フルオロアルケンが、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下とすることに加えて、ナトリウム、カリウム、マグネシウム、及びカルシウムのうち少なくとも一種を前記金属不純物としてさらに含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和を2000質量ppb以下としてフルオロアルケンを保管することが好ましい。
 前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和は、1000質量ppb以下とすることがより好ましく、500質量ppb以下とすることがさらに好ましい。
 なお、マンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和は、2質量ppb以上であってもよい。
 さらに、保管中の上記脱離反応をより抑制するためには、フルオロアルケン中のマンガン、コバルト、ニッケル、及びケイ素の濃度並びにナトリウム、カリウム、マグネシウム、及びカルシウムの濃度とともに、銅(Cu)、亜鉛(Zn)、及びアルミニウム(Al)の濃度も低濃度とすることが好ましい。
 すなわち、フルオロアルケンが、マンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種と、ナトリウム、カリウム、マグネシウム、及びカルシウムのうち少なくとも一種とを金属不純物として含有するとともに、銅、亜鉛、及びアルミニウムのうち少なくとも一種を金属不純物としてさらに含有する場合には、含有するこれら全ての金属不純物の濃度の和を3000質量ppb以下としてフルオロアルケンを保管することが好ましい。含有するこれら全ての金属不純物の濃度の和は、1500質量ppb以下とすることがより好ましく、1000質量ppb以下とすることがさらに好ましい。
 上記した金属不純物は、金属単体、金属化合物、金属ハロゲン化物、金属錯体としてフルオロアルケン中に含有されている場合がある。フルオロアルケン中における金属不純物の形態としては、微粒子、液滴、気体等が挙げられる。なお、マンガン、コバルト、ニッケル、及びケイ素は、フルオロアルケンを合成する際に使用する原料、反応器、精製装置等に由来してフルオロアルケンに混入すると考えられる。
〔金属不純物の濃度が低いフルオロアルケンの製造方法〕
 金属不純物の濃度が低いフルオロアルケンを製造する方法は特に限定されるものではないが、例えば、金属不純物の濃度が高いフルオロアルケンから金属不純物を除去する方法が挙げられる。フルオロアルケンから金属不純物を除去する方法は特に限定されるものではなく、公知の方法を採用することができる。例えば、フィルターを用いる方法、吸着剤を用いる方法、蒸留が挙げられる。
 フルオロアルケンガスを選択的に通過させるフィルターの材質は、フルオロアルケンへの金属成分の混入を避けるためには、樹脂が好ましく、ポリテトラフルオロエチレンが特に好ましい。フィルターの平均孔径は0.01μm以上30μm以下が好ましく、0.1μm以上10μm以下がより好ましい。平均孔径が上記範囲内であれば、金属不純物を十分に除去すること可能であるとともに、フルオロアルケンガスの十分な流量を確保して高い生産性を実現できる。
 フィルターを通過させるフルオロアルケンガスの流量は、フィルター面積1cm2当たり3mL/min以上300mL/min以下とすることが好ましく、10mL/min以上50mL/min以下とすることがより好ましい。フルオロアルケンガスの流量が上記範囲内であれば、フルオロアルケンガスが高圧となることが抑制されて、フルオロアルケンガスの漏洩リスクが低くなるとともに、高い生産性を実現できる。
〔保管時の圧力条件〕
 本実施形態に係るフルオロアルケンの保管方法における保管時の圧力条件は、容器内にフルオロアルケンを密閉して保管できるならば特に限定されるものではないが、0.01MPa以上5MPa以下とすることが好ましく、0.05MPa以上3MPa以下とすることがより好ましい。圧力条件が上記の範囲内であれば、容器をドライエッチング装置に接続したときに、加湿せずにフルオロアルケンを流通させることができる。
〔保管時の温度条件〕
 本実施形態に係るフルオロアルケンの保管方法における保管時の温度条件は特に限定されるものではないが、-20℃以上50℃以下とすることが好ましく、0℃以上40℃以下とすることがより好ましい。保管時の温度が-20℃以上であれば、容器の変形が生じにくいので、容器の気密性が失われて酸素、水等が容器内に混入する可能性が低い。酸素、水等が混入すると、フルオロアルケンの重合反応、分解反応が促進されるおそれがある。一方、保管時の温度が50℃以下であれば、フルオロアルケンの重合反応、分解反応が抑制される。
〔エッチング〕
 本実施形態に係るフルオロアルケンの保管方法で保管されるフルオロアルケンは、エッチングガスとして用いることが可能である。そして、本実施形態に係るフルオロアルケンの保管方法で保管されるフルオロアルケンを含有するエッチングガスは、プラズマを用いるプラズマエッチング、プラズマを用いないプラズマレスエッチングのいずれにも使用することができる。
 プラズマエッチングとしては、例えば、反応性イオンエッチング(RIE:Reactive Ion Etching)、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング、容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング、電子サイクロトロン共鳴(ECR:Electron Cyclotron Resonance)プラズマエッチング、マイクロ波プラズマエッチングが挙げられる。
 また、プラズマエッチングにおいては、プラズマは被エッチング部材が設置されたチャンバー内で発生させてもよいし、プラズマ発生室と被エッチング部材を設置するチャンバーとを分けてもよい(すなわち、遠隔プラズマを用いてもよい)。
 以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。金属不純物を種々の濃度で含有するフルオロアルケンを調製した。フルオロアルケンの調製例を以下に説明する。
(調製例1)
 マンガン鋼製の容量10Lのボンベ1個と、マンガン鋼製の密閉可能な容量1Lのシリンダー4個を用意した。それらシリンダーを順に、シリンダーA、シリンダーB、シリンダーC、シリンダーDと呼ぶ。ボンベには1-ブロモ-1,2,2-トリフルオロエチレン5000gを充填し、0℃に冷却することにより液化させ、ほぼ100kPaの状態で液相部と気相部とを形成させた。シリンダーA、B、C、Dは、真空ポンプで内部を1kPa以下に減圧した後に-78℃に冷却した。
 ボンベの気相部が存在している上側出口から1-ブロモ-1,2,2-トリフルオロエチレンのガス500gを抜き出し、フィルターを通過させた後に、減圧状態のシリンダーAに-78℃で液化させて捕集した。前記フィルターは、フロン工業株式会社製のPTFEフィルターであり、その外径は50mm、厚さは80μm、平均孔径は0.3μmである。フィルターを通過させる際のガスの流量は、マスフローコントローラーにより500mL/minに制御した。シリンダーAに捕集された1-ブロモ-1,2,2-トリフルオロエチレンの量は492gであった。
 シリンダーAに捕集した1-ブロモ-1,2,2-トリフルオロエチレンを、サンプル1-1とする。シリンダーAに捕集された1-ブロモ-1,2,2-トリフルオロエチレンは気相と液相とからなる。その気相部を上側出口から抜き出し、誘導結合プラズマ質量分析計で各種金属不純物の濃度を測定した。結果を表1に示す。
 なお、誘導結合プラズマ質量分析計を用いた各種金属不純物の濃度の測定方法の詳細は、以下のとおりである。
 シリンダーAの液相の1-ブロモ-1,2,2-トリフルオロエチレンを20℃で気化させながら、その気相部から1-ブロモ-1,2,2-トリフルオロエチレンのガスを抜き出し、濃度1mol/Lの硝酸水溶液100gに100mL/minの流量で流通させ、バブリングさせた。このバブリングにより、1-ブロモ-1,2,2-トリフルオロエチレンと硝酸水溶液を接触させて、硝酸水溶液に金属不純物を吸収させた。バブリング後の硝酸水溶液の質量は80g(M1)であった。また、バブリング前後のシリンダーAの質量差は50g(M2)であった。
 バブリング後の硝酸水溶液10g(M3)を採取し、メスフラスコを用いて超純水で100mL(V)に希釈した。希釈した硝酸水溶液中の各種金属原子の濃度を誘導結合プラズマ質量分析計で測定し、その測定値(c1、単位:g/mL)と下記式によって1-ブロモ-1,2,2-トリフルオロエチレン中の各種金属原子の濃度(C、単位:g/g)を算出した。
       C={(c1×V)×(M1/M3)}/M2
Figure JPOXMLDOC01-appb-T000001
 次に、シリンダーAを約0℃に冷却して液相部と気相部とを形成させ、シリンダーAの気相部が存在している上側出口から1-ブロモ-1,2,2-トリフルオロエチレンのガス100gを抜き出し、減圧状態のシリンダーBへ移送した。さらに、ボンベから1-ブロモ-1,2,2-トリフルオロエチレンのガス10gを抜き出し、減圧状態のシリンダーBへ移送した。そして、シリンダーBを室温まで昇温して24時間静置した。静置後の1-ブロモ-1,2,2-トリフルオロエチレンを、サンプル1-2とする。静置後のシリンダーBの気相部が存在している上側出口から1-ブロモ-1,2,2-トリフルオロエチレンのガスを抜き出し、誘導結合プラズマ質量分析計を用いて、上記と同様にして各種金属不純物の濃度を測定した。結果を表1に示す。
 同様に、シリンダーAの気相部が存在している上側出口から1-ブロモ-1,2,2-トリフルオロエチレンのガス100gを抜き出し、減圧状態のシリンダーCへ移送した。さらに、ボンベから1-ブロモ-1,2,2-トリフルオロエチレンのガス100gを抜き出し、減圧状態のシリンダーCへ移送した。そして、シリンダーCを室温まで昇温して24時間静置した。静置後の1-ブロモ-1,2,2-トリフルオロエチレンを、サンプル1-3とする。静置後のシリンダーCの気相部が存在している上側出口から1-ブロモ-1,2,2-トリフルオロエチレンのガスを抜き出し、誘導結合プラズマ質量分析計を用いて、上記と同様にして各種金属不純物の濃度を測定した。結果を表1に示す。
 同様に、シリンダーAの気相部が存在している上側出口から1-ブロモ-1,2,2-トリフルオロエチレンのガス100gを抜き出し、減圧状態のシリンダーDへ移送した。さらに、ボンベから1-ブロモ-1,2,2-トリフルオロエチレンのガス200gを抜き出し、減圧状態のシリンダーDへ移送した。そして、シリンダーDを室温まで昇温して24時間静置した。静置後の1-ブロモ-1,2,2-トリフルオロエチレンを、サンプル1-4とする。静置後のシリンダーDの気相部が存在している上側出口から1-ブロモ-1,2,2-トリフルオロエチレンのガスを抜き出し、誘導結合プラズマ質量分析計を用いて、上記と同様にして各種金属不純物の濃度を測定した。結果を表1に示す。
(調製例2)
 フルオロアルケンとして1-ブロモ-1-フルオロエチレンを使用した点とシリンダーAのガスをシリンダーBへ移送する際のシリンダーAの温度を10℃とした点以外は、調製例1と同様の操作を行って、サンプル2-1~2-4を調製した。そして、調製例1と同様の方法で、それぞれのサンプルの各種金属不純物の濃度を誘導結合プラズマ質量分析計で測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(調製例3)
 フルオロアルケンとして2-ブロモ-3,3,3-トリフルオロプロペンを使用した点とシリンダーAのガスをシリンダーBへ移送する際のシリンダーAの温度を30℃とした点以外は、調製例1と同様の操作を行って、サンプル3-1~3-4を調製した。そして、調製例1と同様の方法で、それぞれのサンプルの各種金属不純物の濃度を誘導結合プラズマ質量分析計で測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(調製例4)
 フルオロアルケンとして1-ヨード-1,2,2-トリフルオロエチレンを使用した点とシリンダーAのガスをシリンダーBへ移送する際のシリンダーAの温度を30℃とした点以外は、調製例1と同様の操作を行って、サンプル4-1~4-4を調製した。そして、調製例1と同様の方法で、それぞれのサンプルの各種金属不純物の濃度を誘導結合プラズマ質量分析計で測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(実施例1)
 密閉したシリンダーAを20℃で30日間静置した後に、シリンダーAの気相部から1-ブロモ-1,2,2-トリフルオロエチレンのガスを抜き出し、ガスクロマトグラフィーとラマン分光法により分析して、サンプル1-1中に存在する1-ブロモ-1,2,2-トリフルオロエチレンの分解生成物、臭素分子、ヨウ素分子の濃度を定量した。その結果、分解生成物、臭素分子、ヨウ素分子はいずれも検出されなかった。
 なお、ガスクロマトグラフィーの測定条件は、以下のとおりである。
   ガスクロマトグラフ:株式会社島津製作所製GC-2014
   カラム:carbopackB_1% sp-1000
   インジェクションの温度:200℃
   カラムの温度:100℃
   検出器:FID
   検出器の温度:200℃
   キャリアーガス:ヘリウム
   検出限界:1質量ppm
(実施例2~12及び比較例1~4)
 実施例2~12及び比較例1~4における分析対象と分析結果を、実施例1との対比で、表5に示す。すなわち、表5に示した項目以外は、実施例1と同等の操作で分析を行った。なお、ガスクロマトグラフィーにおいて、元のフルオロアルケン(例えば実施例1では1-ブロモ-1,2,2-トリフルオロエチレン)のピークの面積に対する元のフルオロアルケンよりも低分子量側にある全てのピークの合計面積の比(%)を表5に示す。
Figure JPOXMLDOC01-appb-T000005

Claims (5)

  1.  臭素原子又はヨウ素原子を分子内に有するフルオロアルケンの保管方法であって、
     前記フルオロアルケンは、第1の一般式C2pqrで表され且つ前記第1の一般式中のXは臭素原子又はヨウ素原子を示し、pは0以上2以下の整数、qは1以上3以下の整数、rは1以上3以下の整数、p+q+rは4であるフルオロエチレン、及び、第2の一般式C3stuで表され且つ前記第2の一般式中のXは臭素原子又はヨウ素原子を示し、sは0以上4以下の整数、tは1以上5以下の整数、uは1以上5以下の整数、s+t+uは6であるフルオロプロペンの少なくとも一種であり、
     前記フルオロアルケンがマンガン、コバルト、ニッケル、及びケイ素のうち少なくとも一種を金属不純物として含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素の濃度の和を1000質量ppb以下として前記フルオロアルケンを容器内に保管するフルオロアルケンの保管方法。
  2.  前記フルオロアルケンがナトリウム、カリウム、マグネシウム、及びカルシウムのうち少なくとも一種を前記金属不純物としてさらに含有するか又は含有せず、前記含有する場合のマンガン、コバルト、ニッケル、及びケイ素、並びに、ナトリウム、カリウム、マグネシウム、及びカルシウムの濃度の総和を2000質量ppb以下として前記フルオロアルケンを容器内に保管する請求項1に記載のフルオロアルケンの保管方法。
  3.  前記フルオロアルケンが1-ブロモ-1,2,2-トリフルオロエチレン、1-ブロモ-1-フルオロエチレン、1-ヨード-1,2,2-トリフルオロエチレン、1-ヨード-1-フルオロエチレン、2-ブロモ-3,3,3-トリフルオロプロペン、及び2-ヨード-3,3,3-トリフルオロプロペンから選ばれる少なくとも1つである請求項1又は請求項2に記載のフルオロアルケンの保管方法。
  4.  -20℃以上50℃以下の温度で保管する請求項1又は請求項2に記載のフルオロアルケンの保管方法。
  5.  前記容器の材質がマンガン鋼である請求項1又は請求項2に記載のフルオロアルケンの保管方法。
PCT/JP2023/007363 2022-03-16 2023-02-28 フルオロアルケンの保管方法 WO2023176434A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041526 2022-03-16
JP2022-041526 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176434A1 true WO2023176434A1 (ja) 2023-09-21

Family

ID=88023599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007363 WO2023176434A1 (ja) 2022-03-16 2023-02-28 フルオロアルケンの保管方法

Country Status (2)

Country Link
TW (1) TW202402721A (ja)
WO (1) WO2023176434A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787646A (en) * 1953-09-03 1957-04-02 Haszeldine Robert Neville Organic halogen compounds and methods of making same
JPH05331083A (ja) * 1992-05-29 1993-12-14 Daikin Ind Ltd ブロモフルオロアルケンの製造方法
JP2001322955A (ja) * 2000-05-16 2001-11-20 Kanto Denka Kogyo Co Ltd 2−ブロモ−3,3,3−トリフルオロプロペンの製造方法
JP2014534840A (ja) * 2011-10-07 2014-12-25 アメリカン パシフィック コーポレイション ブロモフルオロカーボン組成物
WO2015008695A1 (ja) * 2013-07-16 2015-01-22 旭硝子株式会社 トリフルオロエチレンの保存方法およびトリフルオロエチレンの保存容器
JP2017190311A (ja) * 2016-04-15 2017-10-19 東ソ−・エフテック株式会社 安定化された2−ブロモ−3,3,3−トリフルオロプロペン組成物及びその製造方法、並びにその安定化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2787646A (en) * 1953-09-03 1957-04-02 Haszeldine Robert Neville Organic halogen compounds and methods of making same
JPH05331083A (ja) * 1992-05-29 1993-12-14 Daikin Ind Ltd ブロモフルオロアルケンの製造方法
JP2001322955A (ja) * 2000-05-16 2001-11-20 Kanto Denka Kogyo Co Ltd 2−ブロモ−3,3,3−トリフルオロプロペンの製造方法
JP2014534840A (ja) * 2011-10-07 2014-12-25 アメリカン パシフィック コーポレイション ブロモフルオロカーボン組成物
WO2015008695A1 (ja) * 2013-07-16 2015-01-22 旭硝子株式会社 トリフルオロエチレンの保存方法およびトリフルオロエチレンの保存容器
JP2017190311A (ja) * 2016-04-15 2017-10-19 東ソ−・エフテック株式会社 安定化された2−ブロモ−3,3,3−トリフルオロプロペン組成物及びその製造方法、並びにその安定化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK J.D., SEFFL R.J., LACHER J.R.: "THE PREPARATION AND PROPERTIES OF TRIFLUOROIODOETHENE", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 78, 1 January 1956 (1956-01-01), pages 59 - 62, XP002507169, ISSN: 0002-7863, DOI: 10.1021/ja01582a016 *

Also Published As

Publication number Publication date
TW202402721A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2016163184A1 (ja) ドライエッチングガスおよびドライエッチング方法
TWI798871B (zh) 氟丁烯之保管方法
WO2023176434A1 (ja) フルオロアルケンの保管方法
WO2023176433A1 (ja) フルオロアルケンの保管方法
WO2022080269A1 (ja) フルオロブテンの保管方法
TWI798873B (zh) 氟-2-丁烯之保管方法
WO2023195422A1 (ja) フッ素含有窒素化合物の保管方法
WO2023195421A1 (ja) フッ素含有窒素化合物の保管方法
EP4230609A1 (en) Method for storing fluoro-2-butene
WO2022080276A1 (ja) フルオロ-2-ブテンの保管方法
EP4231334A1 (en) Etching gas, method for producing same, etching method, and method for producing semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507698

Country of ref document: JP

Kind code of ref document: A