WO2023176409A1 - マスターバッチ組成物、およびこれを配合してなる芳香族ビニル-共役ジエン系共重合体組成物 - Google Patents

マスターバッチ組成物、およびこれを配合してなる芳香族ビニル-共役ジエン系共重合体組成物 Download PDF

Info

Publication number
WO2023176409A1
WO2023176409A1 PCT/JP2023/007146 JP2023007146W WO2023176409A1 WO 2023176409 A1 WO2023176409 A1 WO 2023176409A1 JP 2023007146 W JP2023007146 W JP 2023007146W WO 2023176409 A1 WO2023176409 A1 WO 2023176409A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic vinyl
conjugated diene
polymer block
carbon atoms
block copolymer
Prior art date
Application number
PCT/JP2023/007146
Other languages
English (en)
French (fr)
Inventor
雄太 石井
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2023176409A1 publication Critical patent/WO2023176409A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes

Definitions

  • the present invention relates to a masterbatch composition and an aromatic vinyl-conjugated diene copolymer composition formed by blending the masterbatch composition.
  • Aromatic vinyl-conjugated diene copolymers such as aromatic vinyl-conjugated diene-aromatic vinyl block copolymers are particularly elastic and flexible among thermoplastic elastomers, so they are used in disposable diapers, sanitary products, etc.
  • One of its typical uses is as a material for stretchable films used in sanitary products.
  • Stretchable films are used in various parts of sanitary products such as disposable diapers and sanitary products because they are required to follow the wearer's movements and fit well.
  • a linear hydrocarbon n-isomer
  • a specific aromatic vinyl-conjugated diene copolymer as a composition for providing an elastic body for use in sanitary products such as disposable diapers.
  • a branched hydrocarbon iso-form in a weight ratio (n-form/iso-form) of 30/70 to 99/1 and a wax having a melting point of less than 80°C.
  • aromatic vinyl-conjugated diene copolymers used in elastic parts for sanitary products such as pants-type diapers, which are a type of disposable diaper are required to have ozone crack resistance over a wide range of operating temperatures.
  • Patent Document 1 examines ozone crack resistance near room temperature (30°C), it does not focus on ozone crack resistance in a wide temperature range; The present invention does not disclose any specific method for improving the ozone crack resistance of.
  • the present invention was made in view of the above-mentioned circumstances, and has excellent compatibility with aromatic vinyl-conjugated diene copolymers. In addition, it can achieve excellent film formability (for example, when molded into a film, it can effectively prevent film breakage and appearance defects), and has excellent ozone crack resistance over a wide temperature range. It is an object of the present invention to provide a masterbatch composition that can be made excellent.
  • the present inventors conducted studies to achieve the above object, and found that a hydrocarbon compound group 2 containing 30 to 98% by weight of an aromatic vinyl polymer and a specific amount of multiple hydrocarbon compounds having different numbers of carbon atoms. It has been discovered that the above object can be achieved by a masterbatch composition containing 70% by weight, and the present invention has been completed.
  • an aromatic vinyl polymer containing at least one aromatic vinyl polymer block 30 to 98% by weight of an aromatic vinyl polymer containing at least one aromatic vinyl polymer block;
  • the hydrocarbon compound group is a total peak of components in which the detection area ratio of hydrocarbon compound components with each carbon number is within the range of 12 to 60 carbon atoms, as measured by gas chromatography mass (GC-MS) analysis.
  • GC-MS gas chromatography mass
  • the total peak area of components having 24 to 27 carbon atoms is 5% or more
  • the total peak area of components having 27 to 30 carbon atoms is 5% or more
  • the total peak area of components having 30 to 33 carbon atoms is 5% or more
  • the total peak area of components having 33 to 36 carbon atoms is 5% or more
  • the total peak area of components having 12 to 27 carbon atoms is 45% or less
  • a masterbatch composition is provided.
  • the hydrocarbon compound group has a detection area ratio of hydrocarbon compound components having each carbon number of 12 to 60 as measured by gas chromatography mass (GC-MS) analysis.
  • GC-MS gas chromatography mass
  • the aromatic vinyl polymer has at least one aromatic vinyl polymer block and at least one conjugated diene polymer block. Preferably, it is a combination.
  • the aromatic vinyl-conjugated diene copolymer is General formula (A): Block copolymer A represented by Ar1 a -D a -Ar2 a (wherein Ar1 a is an aromatic vinyl polymer block having a weight average molecular weight of 5000 to 20000, D a is The conjugated diene polymer block, Ar2a , represents an aromatic vinyl polymer block having a weight average molecular weight of more than 20,000 to 400,000.)
  • the aromatic vinyl-conjugated diene copolymer is Block copolymer C represented by the general formula (C): (Ar c - D c ) n -X (where Ar c is an aromatic vinyl polymer block, D c is a conjugated diene polymer block, n is an integer of 2 or more, X represents a residue of a coupling agent), A block copolymer D represented by the general formula (D): Ar d -D d (wherein Ar d represents an aromatic vinyl polymer block, and D d represents a conjugated diene polymer block), An aromatic vinyl-conjugated diene copolymer composition containing the following is preferable.
  • C Block copolymer C represented by the general formula (C): (Ar c - D c ) n -X (where Ar c is an aromatic vinyl polymer block, D c is a conjugated diene polymer block, n is an integer of 2 or more, X represents
  • an aromatic vinyl-conjugated diene copolymer having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block, and the above masterbatch composition.
  • An aromatic vinyl-conjugated diene copolymer composition is provided.
  • an elastomer made of the above aromatic vinyl-conjugated diene copolymer composition is provided.
  • a film made of the above aromatic vinyl-conjugated diene copolymer composition is provided.
  • an elastic member obtained using the above elastic body or the above film.
  • the present invention has excellent compatibility with aromatic vinyl-conjugated diene copolymers, and as a result, when blended with aromatic vinyl-conjugated diene copolymers, excellent film formability can be achieved (for example, a masterbatch composition that can effectively prevent film breakage and poor appearance when formed into a film) and has excellent ozone crack resistance over a wide temperature range. can provide things.
  • the masterbatch composition of the present invention comprises 30 to 98% by weight of an aromatic vinyl polymer containing at least one aromatic vinyl polymer block; It contains 2 to 70% by weight of a hydrocarbon compound group containing a plurality of hydrocarbon compounds having different carbon numbers within the range of 12 to 60 carbon atoms.
  • a hydrocarbon compound group containing a plurality of hydrocarbon compounds having different carbon numbers within the range of 12 to 60 carbon atoms.
  • the detection area ratio of hydrocarbon compound components with each carbon number measured by gas chromatography mass (GC-MS) analysis is in the range of 12 to 60 carbon atoms.
  • the total peak area of the components within is taken as 100%, The total peak area of components having 24 to 27 carbon atoms is 5% or more, The total peak area of components having 27 to 30 carbon atoms is 5% or more, The total peak area of components having 30 to 33 carbon atoms is 5% or more, The total peak area of components having 33 to 36 carbon atoms is 5% or more, The total peak area of components having 12 to 27 carbon atoms is 45% or less.
  • the masterbatch composition of the present invention is a masterbatch composition used for blending into an aromatic vinyl-conjugated diene copolymer.
  • it has excellent compatibility with aromatic vinyl-conjugated diene copolymers. It has good film formability (for example, when formed into a film, it can effectively prevent film breakage and appearance defects) and has excellent ozone crack resistance in a wide temperature range. can do.
  • the aromatic vinyl polymer constituting the masterbatch composition of the present invention contains at least one aromatic vinyl polymer block.
  • the aromatic vinyl polymer may be one containing at least one aromatic vinyl polymer block, and is not particularly limited, but may be a homopolymer of aromatic vinyl monomers (one or more aromatic Polymers formed by polymerizing only vinyl monomers), aromatic vinyl-conjugated diene copolymers having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block, etc. Can be mentioned.
  • the homopolymer of aromatic vinyl monomers is not particularly limited as long as it is a polymer formed by polymerizing only one or more aromatic vinyl monomers.
  • styrene ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2,4-diisopropylstyrene, 2,4 -dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 4-bromostyrene, 2-methyl-4,6- Examples include dichlorostyrene, 2,4-dibromostyrene, and vinylnaphthalene. Among these, it is preferable to use styrene.
  • the aromatic vinyl-conjugated diene copolymer is not particularly limited as long as it is a block copolymer having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block.
  • the following aromatic vinyl-conjugated diene copolymer compositions are preferably mentioned. That is, A block copolymer A represented by the general formula (A): Ar1 a -D a -Ar2 a , A block copolymer B represented by the general formula (B): Ar1 b -D b -Ar2 b , Preferred examples include aromatic vinyl-conjugated diene copolymer compositions containing the following.
  • the block copolymer A represented by the general formula (A): Ar1 a -D a -Ar2 a is preferably the following block copolymer. That is, in the formula, Ar1 a is an aromatic vinyl polymer block having a weight average molecular weight of 5,000 to 20,000, D a is a conjugated diene polymer block, and Ar2 a is an aromatic vinyl having a weight average molecular weight of more than 20,000 to 400,000. Represents a polymer block. Further, the content of aromatic vinyl monomer units in the block copolymer A is 25 to 80% by weight based on the total monomer units constituting the block copolymer A.
  • the block copolymer B represented by the general formula (B): Ar1 b -D b -Ar2 b is preferably the following block copolymer. That is, in the formula, Ar1 b and Ar2 b each represent an aromatic vinyl polymer block having a weight average molecular weight of 5,000 to 20,000, and D b represents a conjugated diene polymer block. Further, the content of aromatic vinyl monomer units in the block copolymer B is 10 to 90% by weight based on the total monomer units constituting the block copolymer B.
  • Block copolymer A is a copolymer represented by the following general formula (A).
  • Ar1 a is an aromatic vinyl polymer block with a weight average molecular weight of 5,000 to 20,000
  • D a is a conjugated diene polymer block
  • Ar2 a is an aromatic vinyl polymer block with a weight average molecular weight of more than 20,000 to 400,000. (Represents a combined block.)
  • the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ) are composed of aromatic vinyl monomer units obtained by polymerizing aromatic vinyl monomers as a main repeating unit. It is a polymer block.
  • the aromatic vinyl monomer used to constitute the aromatic vinyl monomer unit of the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ) may be any aromatic vinyl compound.
  • aromatic vinyl compound examples include, but are not limited to, styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2,4-diisopropyl Styrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 4-bromostyrene, 2-methyl Examples include -4,6-dichlorostyrene, 2,4-dibromostyrene, and vinyl
  • aromatic vinyl monomers can be used alone or in combination of two or more.
  • the two aromatic vinyl polymer blocks may be composed of the same aromatic vinyl monomer unit or may be composed of different aromatic vinyl monomer units.
  • the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ) do not contain other monomer units as long as the aromatic vinyl monomer unit is the main repeating unit. It's okay to stay.
  • monomers constituting monomer units other than the aromatic vinyl monomer units that may be contained in the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ) include 1 , 3-butadiene, conjugated diene monomers such as isoprene (2-methyl-1,3-butadiene), ⁇ , ⁇ -unsaturated nitrile monomers, unsaturated carboxylic acid or acid anhydride monomers, unsaturated Examples include carboxylic acid ester monomers and non-conjugated diene monomers.
  • the content of monomer units other than aromatic vinyl monomer units in the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ) is preferably 20% by weight or less, It is more preferably 10% by weight or less, and particularly preferably substantially 0% by weight. That is, the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ) are substantially composed only of one or more types of aromatic vinyl monomer units. is preferable, and it is particularly preferable that it consists only of styrene units.
  • the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ) have different weight average molecular weights.
  • the weight average molecular weight of the aromatic vinyl polymer block (Ar1 a ) is 5,000 to 20,000, more preferably 6,000 to 18,000, still more preferably 7,000 to 16,000.
  • the weight average molecular weight of the aromatic vinyl polymer block (Ar2 a ) is more than 20,000 and not more than 400,000, more preferably 25,000 to 300,000, still more preferably 30,000 to 200,000, and even more preferably 40,000 to 100,000. .
  • the conjugated diene polymer block (D a ) is a polymer block constituted as a main repeating unit of a conjugated diene monomer unit obtained by polymerizing a conjugated diene monomer.
  • the conjugated diene monomer used to constitute the conjugated diene monomer unit of the conjugated diene polymer block (D a ) is not particularly limited as long as it is a conjugated diene compound, but for example, 1,3-butadiene, isoprene, etc. , 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, myrcene, farnesene and the like. Among these, it is preferable to use 1,3-butadiene and/or isoprene, and it is particularly preferable to use isoprene.
  • These conjugated diene monomers can be used alone or in combination of two or more. Furthermore, a hydrogenation reaction may be performed on some of the unsaturated bonds of the conjugated diene polymer block (D a ).
  • the conjugated diene polymer block (D a ) may contain other monomer units as long as the conjugated diene monomer unit is the main repeating unit.
  • Monomers constituting monomer units other than conjugated diene monomer units that may be contained in the conjugated diene polymer block (D a ) include aromatic vinyl monomers such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitrile monomer, unsaturated carboxylic acid or acid anhydride monomer, unsaturated carboxylic acid ester monomer, and non-conjugated diene monomer.
  • the content of monomer units other than conjugated diene monomer units in the conjugated diene polymer block (D a ) is preferably 20% by weight or less, more preferably 10% by weight or less, and substantially It is particularly preferred that the content is 0% by weight. That is, the conjugated diene polymer block (D a ) preferably consists essentially only of one or more types of conjugated diene monomer units, and preferably consists only of isoprene units. Particularly preferred.
  • Vinyl bond content of the conjugated diene polymer block (D a ) (1,2-vinyl bond units and 3,4-vinyl bond units in all conjugated diene monomer units in the conjugated diene polymer block (D a )
  • it is preferably 1 to 20 mol%, more preferably 2 to 15 mol%, and particularly preferably 3 to 10 mol%. If the vinyl bond content is too high, the flexibility of the resulting elastic body tends to be impaired.
  • the weight average molecular weight of the conjugated diene polymer block (D a ) is preferably 40,000 to 400,000, more preferably 45,000 to 350,000, still more preferably 50,000 to 300,000, and even more preferably 70,000 to 130,000. .
  • the weight average molecular weight of block copolymer A (that is, the weight average molecular weight of block copolymer A as a whole) is preferably 65,000 to 800,000, more preferably 70,000 to 700,000, and even more preferably 75,000 to 650,000. , even more preferably from 120,000 to 240,000.
  • the weight average molecular weight of each polymer block and the weight average molecular weight of the entire block polymer are determined as polystyrene equivalent values by measurement using high performance liquid chromatography.
  • the weight average molecular weight of each polymer block and the weight average molecular weight of the entire block polymer are the amount of each monomer used to form each polymer block used when obtaining a block copolymer by a polymerization reaction. It can be adjusted by adjusting the amount of the polymerization initiator and the amount of the polymerization terminator.
  • the content of aromatic vinyl monomer units in block copolymer A is 25 to 80% by weight based on the total monomer units constituting block copolymer A.
  • Block copolymer A is obtained by a manufacturing method in which an aromatic vinyl monomer, a conjugated diene monomer, and then an aromatic vinyl monomer are sequentially polymerized to form a polymer block. It is preferable. Therefore, block copolymer A preferably does not contain any coupling agent residues. Details of such a manufacturing method will be described later. However, the method is not particularly limited as long as it can obtain a product having the structure represented by Ar1 a -D a -Ar2 a , and methods that are manufactured using a coupling agent and contain residues of the coupling agent It may be.
  • Block copolymer B is a copolymer represented by the following general formula (B).
  • the aromatic vinyl polymer block (Ar1 b ) and the aromatic vinyl polymer block (Ar2 b ) are composed of aromatic vinyl monomer units obtained by polymerizing aromatic vinyl monomers as a main repeating unit. It is a polymer block.
  • the aromatic vinyl monomer used to constitute the aromatic vinyl monomer unit of the aromatic vinyl polymer block (Ar1 b ) and the aromatic vinyl polymer block (Ar2 b ) may be any aromatic vinyl compound. Although not particularly limited, examples thereof include those similar to the above-mentioned aromatic vinyl polymer block (Ar1 a ) and aromatic vinyl polymer block (Ar2 a ).
  • the aromatic vinyl polymer block (Ar1 b ) and the aromatic vinyl polymer block (Ar2 b ) contain other monomer units as long as the aromatic vinyl monomer unit is the main repeating unit.
  • monomers constituting monomer units other than aromatic vinyl monomer units include the same as aromatic vinyl polymer block (Ar1 a ) and aromatic vinyl polymer block (Ar2 a ). The content thereof may be the same.
  • the aromatic vinyl polymer block (Ar1 b ) and the aromatic vinyl polymer block (Ar2 b ) must also substantially consist only of one or more types of aromatic vinyl monomer units. is preferable, and it is particularly preferable that it consists only of styrene units.
  • the weight average molecular weight of the aromatic vinyl polymer block (Ar1 b ) and the aromatic vinyl polymer block (Ar2 b ) is 5000 to 20000, more preferably 6000 to 18000, and still more preferably 7000 to 16000. .
  • the weight average molecular weights of the aromatic vinyl polymer block (Ar1 b ) and the aromatic vinyl polymer block (Ar2 b ) may be the same or different from each other as long as they are within the above ranges. however, it is preferred that they be substantially equal.
  • the weight average molecular weights of the aromatic vinyl polymer block (Ar1 b ) and the aromatic vinyl polymer block (Ar2 b ) are the same as those of the aromatic vinyl polymer block (Ar2 b ) having a relatively small weight average molecular weight of block copolymer A. It is preferable that the weight average molecular weight is substantially equal to that of Ar1 a ).
  • the conjugated diene polymer block (D b ) is a polymer block constituted as a main repeating unit of a conjugated diene monomer unit obtained by polymerizing a conjugated diene monomer.
  • the conjugated diene monomer used to constitute the conjugated diene monomer unit of the conjugated diene polymer block (D b ) is not particularly limited as long as it is a conjugated diene compound, but for example, the conjugated diene polymer block described above Those similar to (D a ) can be mentioned.
  • the conjugated diene polymer block (D b ) may contain other monomer units as long as the conjugated diene monomer unit is the main repeating unit, and the conjugated diene polymer block (D b ) may contain other monomer units than the conjugated diene monomer unit.
  • the monomer constituting the monomer unit include those similar to the conjugated diene polymer block (D a ), and the content and vinyl bond content thereof may also be the same.
  • the conjugated diene polymer block (D b ) is also preferably composed essentially only of one or more types of conjugated diene monomer units, and is preferably composed only of isoprene units. Particularly preferred.
  • the vinyl bond content of the conjugated diene polymer block (D b ) is preferably substantially equal to the vinyl bond content of the conjugated diene polymer block (D a ) of block copolymer A.
  • the weight average molecular weight of the conjugated diene polymer block (D b ) is preferably 40,000 to 400,000, more preferably 45,000 to 350,000, still more preferably 50,000 to 300,000, and even more preferably 70,000 to 130,000. .
  • the weight average molecular weight of the conjugated diene polymer block (D b ) is preferably substantially equal to the weight average molecular weight of the conjugated diene polymer block (D a ) of block copolymer A.
  • the weight average molecular weight of block copolymer B (that is, the weight average molecular weight of block copolymer B as a whole) is preferably 65,000 to 800,000, more preferably 70,000 to 700,000, and still more preferably 75,000 to 600,000. , even more preferably from 80,000 to 160,000.
  • the content of aromatic vinyl monomer units in block copolymer B is 10 to 90% by weight, preferably 14 to 50% by weight, based on the total monomer units constituting block copolymer B. Preferably it is 16-40%, most preferably 20-30% by weight.
  • Block copolymer B is obtained by a manufacturing method in which an aromatic vinyl monomer, a conjugated diene monomer, and then an aromatic vinyl monomer are sequentially polymerized to form a polymer block. It is preferable. Therefore, block copolymer B preferably does not contain any coupling agent residues. Details of such a manufacturing method will be described later. However, this is not particularly limited as long as it is possible to obtain a product having the structure represented by Ar1 b -D b -Ar2 b , and methods that are manufactured using a coupling agent and contain residues of the coupling agent It may be.
  • the content ratio of block copolymer A and block copolymer B in the aromatic vinyl-conjugated diene copolymer composition used in the present invention is preferably such that the content ratio of block copolymer A is 10 to 70%. wt%, the proportion of block copolymer B is 30 to 90 wt%, more preferably the proportion of block copolymer A is 30 to 55 wt%, the proportion of block copolymer B is 45 to 70 wt%, and further Preferably, the proportion of block copolymer A is 35 to 50% by weight, the proportion of block copolymer B is 50 to 65% by weight, and even more preferably the proportion of block copolymer A is 36 to 44% by weight. %, and the proportion of block copolymer B is 56 to 64% by weight.
  • Block copolymer A and block copolymer B can be produced according to conventional methods, and the most common production method is anionic living polymerization, in which aromatic vinyl monomers and conjugated diene monomers are Examples include a method in which a polymer block is formed by sequentially polymerizing each polymer and a polymer block, and if necessary, coupling is performed by reacting with a coupling agent. Alternatively, a method may be used in which an aromatic vinyl monomer, a conjugated diene monomer, and then an aromatic vinyl monomer are sequentially polymerized in this order to form a polymer block.
  • each polymer separately according to conventional polymerization methods, blending other polymer components as necessary, and then mixing them according to conventional methods such as kneading or solution mixing. , can be manufactured. Furthermore, as will be described later, it is also possible to simultaneously produce block copolymers A and B.
  • block copolymers such as "Quintac (registered trademark)” (manufactured by Nippon Zeon Co., Ltd.), “JSR-SIS (registered trademark)” (manufactured by JSR Corporation).
  • Block copolymer A and block copolymer B are produced by sequentially polymerizing an aromatic vinyl monomer, a conjugated diene monomer, and then an aromatic vinyl monomer to form a polymer block. Preferably, it is manufactured.
  • block copolymer A and block copolymer B are preferably produced by the following production method. That is, A first polymerization step of obtaining a solution containing an aromatic vinyl polymer block chain by polymerizing a monomer containing an aromatic vinyl monomer in a solvent in the presence of a polymerization initiator; A second polymerization step in which a monomer containing a conjugated diene monomer is added to a solution containing an aromatic vinyl polymer block chain and polymerized to obtain a solution containing a diblock chain; A third polymerization step in which a monomer containing an aromatic vinyl monomer is added to a solution containing a diblock chain and polymerized to obtain a solution containing a triblock chain; A polymerization terminator is added to the solution containing the triblock chain in an amount that is less than 1 molar equivalent with respect to the active terminal possessed by the triblock chain to deactivate a part of the active terminal, thereby producing block copolymer B.
  • a solution containing block copolymer A and block copolymer B is obtained by adding a monomer containing an aromatic vinyl monomer to a solution containing a triblock chain and block copolymer B and polymerizing it.
  • a fourth polymerization step to obtain A manufacturing method comprising:
  • a monomer containing an aromatic vinyl monomer as a main component is polymerized using a polymerization initiator in a solvent (first polymerization step).
  • a polymerization initiator used organic alkali metal compounds, organic alkaline earth metal compounds, which are generally known to have anionic polymerization activity toward aromatic vinyl monomers and conjugated diene monomers, Organic lanthanide series rare earth metal compounds and the like can be used.
  • an organic lithium compound having one or more lithium atoms in the molecule is particularly preferably used, and specific examples thereof include ethyllithium, n-propyllithium, isopropyllithium, n-butyllithium, Organic monolithium compounds such as sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, stilbene lithium, dialkylaminolithium, diphenylaminolithium, ditrimethylsilylaminolithium, methylene dilithium, tetramethylene dilithium, hexamethylene Examples include organic dilithium compounds such as dilithium, isoprenyldilithium, and 1,4-dilithio-ethylcyclohexane, and organic trilithium compounds such as 1,3,5-trilithiobenzene. Among these, organic monolithium compounds are particularly preferably used.
  • organic alkaline earth metal compound used as a polymerization initiator examples include n-butylmagnesium bromide, n-hexylmagnesium bromide, ethoxycalcium, calcium stearate, t-butoxystrontium, ethoxybarium, isopropoxybarium, ethylmercaptobarium, Examples include t-butoxybarium, phenoxybarium, diethylaminobarium, barium stearate, and ethylbarium.
  • polymerization initiators include composite catalysts consisting of lanthanoid rare earth metal compounds containing neodymium, samarinium, gadolinium, etc./alkyl aluminum/alkyl aluminum halide/alkyl aluminum hydride, titanium, vanadium, samarinium, gadolinium, etc. Examples include those that form a homogeneous system in an organic solvent and have living polymerizability, such as metallocene-type catalysts containing the following. In addition, these polymerization initiators may be used individually, and may be used as a mixture of 2 or more types.
  • the amount of the polymerization initiator to be used may be determined depending on the desired molecular weight, and is not particularly limited, but is preferably 0.01 to 20 mmol, more preferably 0.05 to 20 mmol, per 100 g of total monomers used. The amount is 15 mmol, more preferably 0.1 to 10 mmol.
  • the solvent used for polymerization is not particularly limited as long as it is inert to the polymerization initiator, and for example, a chain hydrocarbon solvent, a cyclic hydrocarbon solvent, or a mixed solvent thereof is used.
  • Chain hydrocarbon solvents include n-butane, isobutane, 1-butene, isobutylene, trans-2-butene, cis-2-butene, 1-pentene, trans-2-pentene, cis-2-pentene, n-pentane.
  • Examples include linear alkanes and alkenes having 4 to 6 carbon atoms, such as , isopentane, neo-pentane, and n-hexane.
  • cyclic hydrocarbon solvent examples include aromatic compounds such as benzene, toluene, and xylene; and alicyclic hydrocarbon compounds such as cyclopentane and cyclohexane. These solvents may be used alone or in combination of two or more.
  • the amount of solvent used in the polymerization is not particularly limited, but the concentration of the block copolymer in the finally obtained block copolymer solution is preferably in the range of 5 to 60% by weight, more preferably 10 to 55% by weight. %, particularly preferably 20 to 50% by weight.
  • a Lewis base compound may be added to the reactor used for polymerization.
  • Lewis base compounds include ethers such as tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, and diethylene glycol dibutyl ether; amines; alkali metal alkoxides such as potassium t-amyl oxide and potassium t-butyl oxide; phosphines such as triphenylphosphine; and the like.
  • These Lewis base compounds may be used alone or in combination of two or more, and are appropriately selected within a range that does not impair the object of the present invention.
  • the timing of adding the Lewis base compound during the polymerization reaction is not particularly limited, and may be appropriately determined depending on the structure of each target block copolymer. For example, it may be added in advance before starting polymerization, it may be added after some polymer blocks have been polymerized, or it may be added in advance before starting polymerization and then some of the polymer blocks may be added before starting polymerization. Further additions may be made after the polymer block has been polymerized.
  • the polymerization reaction temperature is preferably 10 to 150°C, more preferably 30 to 130°C, and even more preferably 40 to 90°C.
  • the time required for polymerization varies depending on the conditions, but is usually within 48 hours, preferably 0.5 to 10 hours.
  • the polymerization pressure is not particularly limited as long as it is within a pressure range sufficient to maintain the monomer and solvent in a liquid phase within the above polymerization temperature range.
  • a solution containing an aromatic vinyl polymer block chain is obtained by polymerizing a monomer containing an aromatic vinyl monomer as a main component using a polymerization initiator in a solvent under the above conditions. be able to.
  • the aromatic vinyl polymer block chain obtained by polymerization usually has an active end.
  • this first polymerization step The amount of the monomer used may be determined depending on the weight average molecular weights of the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar1 b ).
  • a monomer containing a conjugated diene monomer as a main component is added to the solution containing the aromatic vinyl polymer block chain obtained in the first polymerization step, and polymerization is performed (second polymerization step).
  • second polymerization step a solution containing diblock chains can be obtained.
  • the diblock chain obtained by polymerization usually has an active end.
  • the diblock chain obtained in the second polymerization step will form the aromatic vinyl polymer block (Ar1 a ) or the aromatic vinyl polymer block (Ar1 b ) obtained in the first polymerization step.
  • the polymer chain used in this second polymerization step is The amount of the monomer may be determined depending on the weight average molecular weight of the conjugated diene polymer block (D a ) and the conjugated diene polymer block (D b ). Further, the polymerization reaction temperature, polymerization time, and polymerization pressure may be controlled within the same ranges as in the first polymerization step.
  • the triblock chain obtained by polymerization usually has an active end.
  • the triblock chain obtained in the third polymerization step is the aromatic vinyl polymer block (Ar1 a ) or the aromatic vinyl polymer block (Ar1 b ) and the conjugated diene polymer block obtained in the second polymerization step.
  • a part of the aromatic vinyl polymer block (Ar2 a ) or an aromatic vinyl polymer block (Ar2 b ) is added to the polymer chain that will form the ( D a ) or conjugated diene polymer block (D b ) . ), the amount of monomer used in this third polymerization step depends on the weight average molecular weight of the aromatic vinyl polymer block (Ar2 b ). You just have to decide. Further, the polymerization reaction temperature, polymerization time, and polymerization pressure may be controlled within the same ranges as in the first polymerization step.
  • a polymerization terminator is added to the solution containing the triblock chain obtained in the third polymerization step in an amount that is less than 1 molar equivalent relative to the active end of the triblock chain (termination step).
  • a part of the active end of the triblock chain is deactivated, and a block copolymer with the active end deactivated is obtained.
  • This block copolymer becomes block copolymer B represented by the general formula (B): Ar1 b -D b -Ar2 b .
  • the polymerization terminator is not particularly limited as long as it can react with the active end to deactivate the active end and does not react with another active end after reacting with one active end, but the resulting composition From the viewpoint of suppressing moisture absorption, it is preferable to use a polymerization terminator that is a compound that does not contain a halogen atom, and in particular, a polymerization terminator that produces a metal alkoxide, metal aryl oxide, or metal hydroxide when reacting with the active end.
  • Particularly preferred are polymerization terminators that allow Compounds particularly preferably used as polymerization terminators include water, monohydric alcohols such as methanol and ethanol, and monohydric phenols such as phenol and cresol.
  • the amount of polymerization terminator to be used is determined according to the weight ratio of block copolymer A and block copolymer B, and is particularly suitable if the amount is less than 1 molar equivalent with respect to the active terminal of the triblock chain.
  • the polymerization terminator is usually in a range of 0.18 to 0.91 molar equivalent with respect to the active terminal, preferably in a range of 0.35 to 0.80 molar equivalent.
  • the polymerization terminator when a polymerization terminator is added to a solution containing triblock chains having active ends in an amount that is less than 1 molar equivalent with respect to the active ends, the polymerization terminator is added to the solution containing triblock chains having active ends. A part of the active terminals is deactivated, and the polymer in which the active terminals are deactivated becomes block copolymer B. The remaining part of the triblock chain having an active end that did not react with the polymerization terminator remains unreacted in the solution.
  • a monomer containing an aromatic vinyl monomer as a main component is added to the solution containing the triblock chain and block copolymer B obtained in the termination step, and polymerization is performed (fourth polymerization step).
  • a solution containing block copolymer A and block copolymer B represented by the general formula (A): Ar1 a -D a -Ar2 a can be obtained.
  • the block copolymer A obtained in the fourth polymerization step forms a part of the aromatic vinyl polymer block (Ar2 a ) at the active end of the triblock chain obtained in the third polymerization step.
  • the amount of monomer used in this fourth polymerization step may be determined depending on the weight average molecular weight of the aromatic vinyl polymer block (Ar2 a ). Further, the polymerization reaction temperature, polymerization time, and polymerization pressure may be controlled within the same ranges as in the first polymerization step.
  • the polymer component may be recovered from the solution containing block copolymer A and block copolymer B (recovery step).
  • the method of recovery may be any conventional method and is not particularly limited.
  • a polymerization terminator such as water, methanol, ethanol, propanol, hydrochloric acid, or citric acid, and if necessary, add additives such as an antioxidant.
  • a polymerization terminator such as water, methanol, ethanol, propanol, hydrochloric acid, or citric acid
  • additives such as an antioxidant.
  • the polymer component When the polymer component is recovered as a slurry by applying steam stripping or the like, it is dehydrated using any dehydrator such as an extruder type squeezer to form a crumb having a moisture content below a predetermined value, and then The crumb may be dried using any dryer such as a band dryer or an expansion extrusion dryer.
  • the block copolymer obtained as described above may be used after being processed into a pellet shape or the like according to a conventional method.
  • Block copolymer A and block copolymer B can be produced in the manner described above.
  • a method may be used in which all of the active terminals are deactivated in the above-mentioned termination step and polymerization in the fourth polymerization step is not performed.
  • aromatic vinyl-conjugated diene copolymer the following aromatic vinyl-conjugated diene copolymer composition can also be suitably used. That is, A block copolymer C represented by the general formula (C): (Ar c -D c ) n -X, General formula (D): A block copolymer D represented by Ar d -D d , Preferred examples include aromatic vinyl-conjugated diene copolymer compositions containing the following.
  • the block copolymer C represented by the general formula (C): (Ar c -D c ) n -X is preferably the following block copolymer. That is, in the formula, Ar c represents an aromatic vinyl polymer block, D c represents a conjugated diene polymer block, n represents an integer of 2 or more, and X represents a residue of a coupling agent. Further, the content of aromatic vinyl monomer units in the block copolymer C is not particularly limited, but it may be less than 50% by weight based on the total monomer units constituting the block copolymer C. preferable.
  • the block copolymer D represented by the general formula (D): Ar d -D d is preferably the following block copolymer. That is, in the formula, Ar d represents an aromatic vinyl polymer block, and D d represents a conjugated diene polymer block.
  • Block copolymer C is a copolymer represented by the following general formula (C).
  • Block copolymer C has a structure in which n diblock bodies (Ar c -D c ) are bonded to each other via a coupling agent residue (X).
  • n in the general formula (C) represents the number of branches in the block copolymer C.
  • the block copolymer C may be a mixture of two or more types of block copolymers in which different numbers of diblock bodies are bonded.
  • n is an integer of 2 or more, preferably an integer of 2 to 8, more preferably an integer of 2 to 4.
  • the coupling agent residue (X) is not particularly limited as long as it is a residue of an n-valent coupling agent, but is preferably a residue of a silicon atom-containing coupling agent, and is preferably a residue of a halogenated silane or an alkoxysilane. More preferably, it is a residue.
  • Examples of the coupling agent constituting the residue of the coupling agent include those described below.
  • the block copolymer C is particularly preferably a mixture of a block copolymer C1 in which n is 2, a block copolymer C2 in which n is 3, and a block copolymer C3 in which n is 4. .
  • the weight ratio (C1/C2/C3) of the block copolymers C1 to C3 is preferably 40 to 80/30 to 10/30 to 10.
  • the aromatic vinyl polymer block (Ar c ) is a polymer block composed of aromatic vinyl monomer units obtained by polymerizing aromatic vinyl monomers as a main repeating unit.
  • the aromatic vinyl monomer used to constitute the aromatic vinyl monomer unit of the aromatic vinyl polymer block ( Arc ) is not particularly limited as long as it is an aromatic vinyl compound, but for example, the above-mentioned aromatic Examples include those similar to the group vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ).
  • the aromatic vinyl polymer block (Ar c ) may contain other monomer units as long as the aromatic vinyl monomer unit is the main repeating unit, and may contain other monomer units other than the aromatic vinyl monomer unit.
  • Examples of the monomer constituting the monomer unit include those similar to the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ), and the content thereof is also as follows: The same may be used.
  • each aromatic vinyl polymer block in block copolymer C may be composed of the same aromatic vinyl monomer unit or may be composed of different aromatic vinyl monomer units. .
  • the aromatic vinyl polymer block (Ar c ) is also preferably composed essentially only of one or more aromatic vinyl monomer units, and is composed only of styrene units. It is particularly preferable.
  • the weight average molecular weight of the aromatic vinyl polymer block (Ar c ) is preferably 4,000 to 18,000, more preferably 5,000 to 16,000, and still more preferably 6,000 to 14,000.
  • the weight average molecular weights of the plurality of aromatic vinyl polymer blocks (Ar c ) of the block copolymer C may be the same or different as long as they are within the above range, Preferably, they are substantially equal.
  • the conjugated diene polymer block (D c ) is a polymer block constituted as a main repeating unit of a conjugated diene monomer unit obtained by polymerizing a conjugated diene monomer.
  • the conjugated diene monomer used to constitute the conjugated diene monomer unit of the conjugated diene polymer block (D c ) is not particularly limited as long as it is a conjugated diene compound, but for example, the conjugated diene polymer block described above Those similar to (D a ) can be mentioned. Further, each conjugated diene polymer block in block copolymer C may be composed of the same conjugated diene monomer unit, or may be composed of different conjugated diene monomer units.
  • the conjugated diene polymer block (D c ) may contain other monomer units as long as the conjugated diene monomer unit is the main repeating unit, and the conjugated diene polymer block (D c ) may contain other monomer units than the conjugated diene monomer unit.
  • the monomer constituting the monomer unit include those similar to the conjugated diene polymer block (D a ), and the content and vinyl bond content thereof may also be the same.
  • the conjugated diene polymer block (D c ) is also preferably composed essentially only of one or more types of conjugated diene monomer units, and is preferably composed only of isoprene units. Particularly preferred.
  • the weight average molecular weight of the conjugated diene polymer block (D c ) is preferably 20,000 to 200,000, more preferably 25,000 to 180,000, still more preferably 30,000 to 150,000, and even more preferably 70,000 to 130,000. .
  • the weight average molecular weights of the plurality of conjugated diene polymer blocks (D c ) of the block copolymer C may be the same or different as long as they are within the above range, but substantially It is preferable that they are the same.
  • the weight average molecular weight of the block copolymer C (that is, the weight average molecular weight of the entire block copolymer C) is preferably 60,000 to 800,000, more preferably 80,000 to 600,000, and even more preferably 180,000 to 320,000. be.
  • the content of aromatic vinyl monomer units in the block copolymer C is not particularly limited, but is preferably less than 50% by weight, based on the total monomer units constituting the block copolymer C. is less than 40% by weight, more preferably less than 30% by weight, more preferably less than 20% by weight, most preferably less than 16% by weight, and the lower limit is not particularly limited, but is 5% by weight or more. good.
  • Block copolymer C is produced by a production method in which an aromatic vinyl monomer and a conjugated diene monomer are polymerized to form a diblock chain, and the diblock chain is reacted with a coupling agent to perform coupling. It is preferable that it is obtained. Therefore, block copolymer C contains residues of a coupling agent. Details of such a manufacturing method will be described later.
  • Block copolymer D is a copolymer represented by the following general formula (D).
  • the aromatic vinyl polymer block (Ar d ) is a polymer block constituted as a main repeating unit of an aromatic vinyl monomer unit obtained by polymerizing an aromatic vinyl monomer.
  • the aromatic vinyl monomer used to constitute the aromatic vinyl monomer unit of the aromatic vinyl polymer block (Ar d ) is not particularly limited as long as it is an aromatic vinyl compound; Examples include those similar to the group vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ).
  • the aromatic vinyl polymer block (Ar d ) may contain other monomer units as long as the aromatic vinyl monomer unit is the main repeating unit, and may contain other monomer units other than aromatic vinyl monomer units.
  • Examples of the monomer constituting the monomer unit include those similar to the aromatic vinyl polymer block (Ar1 a ) and the aromatic vinyl polymer block (Ar2 a ), and the content thereof is also as follows: The same may be used.
  • the aromatic vinyl polymer block (Ar d ) is also preferably composed essentially only of one or more aromatic vinyl monomer units, and is composed only of styrene units. It is particularly preferable.
  • the weight average molecular weight of the aromatic vinyl polymer block (Ar d ) is preferably 4,000 to 18,000, more preferably 5,000 to 16,000, and still more preferably 6,000 to 14,000.
  • the weight average molecular weight of the aromatic vinyl polymer block (Ar d ) is preferably substantially equal to the weight average molecular weight of the aromatic vinyl polymer block (Ar c ) of block copolymer C.
  • the conjugated diene polymer block (D d ) is a polymer block constituted as a main repeating unit of a conjugated diene monomer unit obtained by polymerizing a conjugated diene monomer.
  • the conjugated diene monomer used to constitute the conjugated diene monomer unit of the conjugated diene polymer block (D d ) is not particularly limited as long as it is a conjugated diene compound, but for example, the conjugated diene polymer block described above Those similar to (D a ) can be mentioned.
  • the conjugated diene polymer block (D d ) may contain other monomer units as long as the conjugated diene monomer unit is the main repeating unit, and the conjugated diene polymer block (D d ) may contain other monomer units than the conjugated diene monomer unit.
  • the monomer constituting the monomer unit include those similar to the conjugated diene polymer block (D a ), and the content and vinyl bond content thereof may also be the same.
  • the conjugated diene polymer block (D d ) is also preferably composed essentially only of one or more conjugated diene monomer units, and is preferably composed only of isoprene units. Particularly preferred.
  • the vinyl bond content of the conjugated diene polymer block (D d ) is preferably substantially equal to the vinyl bond content of the conjugated diene polymer block (D c ) of block copolymer C.
  • the weight average molecular weight of the conjugated diene polymer block (D d ) is preferably 20,000 to 200,000, more preferably 25,000 to 180,000, still more preferably 30,000 to 150,000, and even more preferably 70,000 to 130,000. .
  • the weight average molecular weight of the conjugated diene polymer block (D d ) is preferably substantially equal to the weight average molecular weight of the conjugated diene polymer block (D c ) of block copolymer C.
  • the weight average molecular weight of the block copolymer D (that is, the weight average molecular weight of the entire block copolymer D) is preferably 30,000 to 200,000, more preferably 40,000 to 180,000, and even more preferably 70,000 to 150,000. be.
  • the content of aromatic vinyl monomer units in block copolymer D is not particularly limited, but is preferably less than 50% by weight, based on the total monomer units constituting block copolymer D. is less than 40% by weight, more preferably less than 30% by weight, more preferably less than 20% by weight, most preferably less than 16% by weight, and the lower limit is not particularly limited, but is 5% by weight or more. good.
  • the content ratio of block copolymer C and block copolymer D in the aromatic vinyl-conjugated diene copolymer composition used in the present invention is preferably such that the content ratio of block copolymer C is 25 to 98%. wt%, the proportion of block copolymer D is 2 to 75 wt%, more preferably the proportion of block copolymer C is 75 to 95 wt%, the proportion of block copolymer D is 5 to 25 wt%, and further Preferably, the proportion of block copolymer C is 80 to 92% by weight, the proportion of block copolymer D is 8 to 20% by weight, and even more preferably the proportion of block copolymer C is 84 to 92% by weight. %, and the proportion of block copolymer D is 8 to 16% by weight.
  • Block copolymers C and block copolymers D can be produced according to conventional methods, and the most common production method is anionic living polymerization, in which aromatic vinyl monomers and conjugated diene monomers are Examples include a method in which a polymer block is formed by sequentially polymerizing each polymer and a polymer block, and if necessary, coupling is performed by reacting with a coupling agent. Alternatively, a method may be used in which an aromatic vinyl monomer, a conjugated diene monomer, and then an aromatic vinyl monomer are sequentially polymerized in this order to form a polymer block.
  • each polymer separately according to conventional polymerization methods, blending other polymer components as necessary, and then mixing them according to conventional methods such as kneading or solution mixing. , can be manufactured. Furthermore, as will be described later, it is also possible to simultaneously produce block copolymers C and D.
  • block copolymers such as "Quintac (registered trademark)” (manufactured by Nippon Zeon Co., Ltd.), “JSR-SIS (registered trademark)” (manufactured by JSR Corporation).
  • Block copolymer C is produced by a method in which an aromatic vinyl monomer and a conjugated diene monomer are polymerized to form a diblock chain, and the diblock chain is reacted with a coupling agent to perform coupling. It is preferable to do so.
  • block copolymer C and block copolymer D are preferably produced by the following production method. That is, A first polymerization step of obtaining a solution containing an aromatic vinyl polymer block chain by polymerizing a monomer containing an aromatic vinyl monomer in a solvent in the presence of a polymerization initiator; A second polymerization step in which a monomer containing a conjugated diene monomer is added to a solution containing an aromatic vinyl polymer block chain and polymerized to obtain a solution containing a diblock chain; Block copolymer C, and A reaction step for obtaining block copolymer D; A manufacturing method comprising:
  • a monomer containing an aromatic vinyl monomer as a main component is polymerized using a polymerization initiator in a solvent (first polymerization step).
  • the solvent and the amount used in the first polymerization step, the polymerization initiator and the amount used in the first polymerization step are the same as those in the first polymerization step in the preferred method for producing block copolymer A and block copolymer B described above. good.
  • a Lewis base compound may be added as in the first polymerization step in the preferred method for producing block copolymer A and block copolymer B described above.
  • the same polymerization reaction temperature, polymerization time, and polymerization pressure as in the first polymerization step in the preferred method for producing block copolymer A and block copolymer B described above can be employed.
  • a solution containing an aromatic vinyl polymer block chain is obtained by polymerizing a monomer containing an aromatic vinyl monomer as a main component using a polymerization initiator in a solvent under the above conditions. be able to.
  • the aromatic vinyl polymer block chain obtained by polymerization usually has an active end.
  • the amount of monomer used in this first polymerization step is It may be determined according to the weight average molecular weight of the vinyl polymer block ( Arc ).
  • a monomer containing a conjugated diene monomer as a main component is added to the solution containing the aromatic vinyl polymer block chain obtained in the first polymerization step, and polymerization is performed (second polymerization step).
  • second polymerization step a solution containing diblock chains can be obtained.
  • the diblock chain obtained by polymerization usually has an active end.
  • the diblock chain obtained in the second polymerization step is added to the polymer chain that will form the aromatic vinyl polymer block ( Arc ) obtained in the first polymerization step, and the conjugated diene polymer block ( Since the polymer chains that will form D c ) are further bonded, the amount of monomer used in this second polymerization step depends on the weight average molecular weight of the conjugated diene polymer block (D c ). You can decide accordingly. Further, the polymerization reaction temperature, polymerization time, and polymerization pressure may be controlled within the same ranges as in the first polymerization step.
  • a coupling agent is added to the solution containing diblock chains (reaction step).
  • the active ends of the diblock chains react with the coupling agent, and two or more diblock chains are bonded via the residues of the coupling agent, forming a block copolymer C.
  • the coupling agent is not particularly limited as long as it has two or more functional groups in one molecule that can react with the active end of the diblock chain.
  • a coupling agent having 2 to 8 functional groups per molecule is preferred, and a coupling agent having 2 to 4 functional groups per molecule that can react with the active end of the diblock chain is more preferred.
  • the coupling agent preferably contains a silicon atom, and halogenated silanes and alkoxysilanes are more preferable.
  • Examples of coupling agents (bifunctional coupling agents) having two functional groups in one molecule that can react with the active end of the diblock chain include dichlorosilane, monomethyldichlorosilane, and dimethyldichlorosilane.
  • Functional halogenated silanes include difunctional alkoxysilanes such as diphenyldimethoxysilane and diphenyldiethoxysilane; difunctional halogenated alkanes such as dichloroethane, dibromoethane, methylene chloride, and dibromomethane; dichlorotin, monomethyldichlorotin, dimethyldichlorotin Difunctional tin halides such as , monoethyldichlorotin, diethyldichlorotin, monobutyldichlorotin, and dibutyldichlorotin; dibromobenzene, benzoic acid, CO, 2-chloropropene, and the
  • Examples of the coupling agent (trifunctional coupling agent) having three functional groups in one molecule that can react with the active end of the diblock chain include trifunctional halogenated alkanes such as trichloroethane and trichloropropane; Trifunctional halogenated silanes such as methyltrichlorosilane and ethyltrichlorosilane; trifunctional alkoxysilanes such as methyltrimethoxysilane, phenyltrimethoxysilane and phenyltriethoxysilane; and the like. These trifunctional coupling agents may be used alone or in combination of two or more.
  • Examples of coupling agents having four functional groups in one molecule include carbon tetrachloride, carbon tetrabromide, and tetrachloroethane.
  • Tetrafunctional halogenated alkanes Tetrafunctional halogenated silanes such as tetrachlorosilane and tetrabromosilane; Tetrafunctional alkoxysilanes such as tetramethoxysilane and tetraethoxysilane; Tetrafunctional halogens such as tetrachlorotin and tetrabromostin Examples include tin oxide; etc.
  • These tetrafunctional coupling agents may be used alone or in combination of two or more.
  • the number of n in block copolymer C can be adjusted by adjusting the type of coupling agent, amount used, timing of addition, amount of Lewis base compound used, etc. I can do it.
  • the number of branches of the block copolymer C can also be adjusted by adjusting the coupling rate using a reaction terminator such as methanol.
  • the number of branches of the block copolymer C can also be adjusted by using a combination of two or more coupling agents having different numbers of functional groups that can react with the active end of the diblock chain. Furthermore, by these means, the diblock chain obtained in the second polymerization step can be left unreacted and finally recovered as block copolymer D.
  • the amount of the coupling agent used is adjusted to an appropriate amount depending on the number of branches of the target block copolymer C.
  • the amount of the coupling agent used is preferably 0.25 to 1.00 molar equivalent, more preferably 0.40 to 1.0 molar equivalent, relative to the active terminal of the diblock chain.
  • the reaction temperature is preferably 10 to 150°C, more preferably 30 to 130°C, and even more preferably 40 to 90°C.
  • the time required for the reaction varies depending on the conditions, but is usually within 48 hours, preferably 0.5 to 10 hours.
  • the polymer component may be recovered from the solution containing block copolymer C and block copolymer D (recovery step).
  • the method of recovery may be any conventional method and is not particularly limited.
  • a polymerization terminator such as water, methanol, ethanol, propanol, hydrochloric acid, or citric acid, and if necessary, add additives such as an antioxidant.
  • a polymerization terminator such as water, methanol, ethanol, propanol, hydrochloric acid, or citric acid
  • additives such as an antioxidant.
  • the polymer component When the polymer component is recovered as a slurry by applying steam stripping or the like, it is dehydrated using any dehydrator such as an extruder type squeezer to form a crumb having a moisture content below a predetermined value, and then The crumb may be dried using any dryer such as a band dryer or an expansion extrusion dryer.
  • the block copolymer obtained as described above may be used after being processed into a pellet shape or the like according to a conventional method.
  • Block copolymer C and block copolymer D can be produced in the manner described above.
  • the masterbatch composition of the present invention blends a hydrocarbon compound group containing a specific amount of a plurality of hydrocarbon compounds having different carbon numbers within the range of 12 to 60 carbon atoms to the aromatic vinyl polymer. That's what happens.
  • the hydrocarbon compound group used in the present invention contains a plurality of hydrocarbon compounds having different numbers of carbon atoms within the range of 12 to 60 carbon atoms, that is, a mixture of a plurality of hydrocarbon compounds having different numbers of carbon atoms.
  • the detection area ratio of hydrocarbon compound components with each carbon number measured by gas chromatography mass (GC-MS) analysis is 100% of the total peak area of components with carbon numbers of 12 to 60.
  • the total peak area of the components having each carbon number is within the following range. Note that the total peak area indicates the content ratio of each component on a mass basis.
  • the total peak area of components having 24 to 27 carbon atoms is 5% or more
  • the total peak area of components having 27 to 30 carbon atoms is 5% or more
  • the total peak area of components having 30 to 33 carbon atoms is 5% or more
  • the total peak area of components having 33 to 36 carbon atoms is 5% or more
  • the total peak area of components having 12 to 27 carbon atoms is 45% or less.
  • the masterbatch composition of the present invention has excellent compatibility with the aromatic vinyl block copolymer, and thereby, the masterbatch composition of the present invention has excellent compatibility with the aromatic vinyl block copolymer.
  • it can achieve excellent film formability (for example, when molded into a film, it can effectively prevent film breakage and poor appearance), and can be used over a wide temperature range. It can be made to have excellent ozone crack resistance.
  • the total peak area of the components having each carbon number is preferably within the following range. That is, the total peak area of components having 24 to 27 carbon atoms is preferably 8 to 40%, more preferably 10 to 36%, even more preferably 12 to 32%, even more preferably 12 to 31%. be. Further, the total peak area of components having 27 to 30 carbon atoms is preferably 8 to 50%, more preferably 10 to 45%, even more preferably 12 to 40%, and even more preferably 15 to 39%. be. Further, the total peak area of components having 30 to 33 carbon atoms is preferably 10 to 45%, more preferably 12 to 40%, even more preferably 15 to 35%, even more preferably 17 to 31%. be.
  • the total peak area of components having 33 to 36 carbon atoms is preferably 7 to 30%, more preferably 9 to 28%, even more preferably 10 to 25%, even more preferably 11 to 24%. be.
  • the total peak area of components having 12 to 27 carbon atoms is preferably 10 to 40%, more preferably 11 to 38%, even more preferably 12 to 32%, and even more preferably 14 to 24%. be.
  • the ozone cracking resistance when blended with the aromatic vinyl block copolymer will decrease. In particular, the ozone crack resistance becomes poor in the low temperature region.
  • the ozone resistance when blended with the aromatic vinyl block copolymer may be reduced. This results in poor cracking properties, particularly ozone cracking resistance in high temperature regions.
  • the hydrocarbon compound group used in the present invention refers to an aggregate of compounds consisting essentially only of carbon and hydrogen. Therefore, compounds containing polar groups or metal elements in the hydrocarbon skeleton (for example, fatty acid amides, fatty acid metal salts, etc. used as lubricants) are not included.
  • compounds containing polar groups or metal elements in the hydrocarbon skeleton for example, fatty acid amides, fatty acid metal salts, etc. used as lubricants
  • the hydrocarbon compound group used in the present invention when the total peak area of the components having carbon numbers of 12 to 60 and consisting essentially only of carbon and hydrogen is taken as 100%, the total peak area of the components having each carbon number is 100%. It is sufficient if the total peak area is within the above range.
  • it may contain a hydrocarbon compound having 11 or less carbon atoms or a hydrocarbon compound having 61 or more carbon atoms, it consists essentially only of hydrocarbon compounds having 12 or more carbon atoms and 60 or less carbon atoms. (For example, it is preferable that it contains a hydrocarbon compound having a carbon number of 12 or more and 60 or less at a ratio of 99% by weight or more).
  • the hydrocarbon compound group used in the present invention may be a commercially available wax or the like in which the total peak area of the components with each carbon number is within the above range, or the total peak area of the components with each carbon number is within the above range.
  • a mixture of a plurality of commercially available waxes may be used so as to achieve the same results.
  • the content ratio of the aromatic vinyl polymer and the hydrocarbon compound group is such that the aromatic vinyl polymer has a proportion of 30 to 98% by weight, and the proportion of the hydrocarbon compound group has a content of 2% by weight. ⁇ 70% by weight, preferably the proportion of the aromatic vinyl polymer is 50 to 95% by weight, the proportion of the hydrocarbon compound group is 5 to 50% by weight, more preferably the proportion of the aromatic vinyl polymer The proportion of the hydrocarbon compound group is 60 to 90% by weight, and the proportion of the hydrocarbon compound group is 10 to 40% by weight.
  • the masterbatch composition of the present invention is blended with an aromatic vinyl-conjugated diene copolymer to form an aromatic vinyl block copolymer composition, and finally formed into a film.
  • the content of the hydrocarbon compound group in such a film-like molded body is the same as the content of the hydrocarbon compound group contained in the masterbatch composition and the film-form molded body. It can be adjusted as necessary by adjusting the amount of the masterbatch composition added during production.
  • the amount of the masterbatch composition to be blended into the film-like molded product is such that the content of the hydrocarbon compound group in the film-like molded product is 0.1 to 10% by weight, preferably 0.2 to 5% by weight, and more preferably is preferably adjusted to 0.3 to 3% by weight, even more preferably 0.8 to 2.5% by weight. If the ratio of the aromatic vinyl polymer in the masterbatch composition is too small, as will be described later, when blended with an aromatic vinyl-conjugated diene copolymer, etc., the masterbatch composition and the aromatic vinyl- The compatibility with the conjugated diene copolymer decreases, causing poor kneading and poor film appearance and film breakage.
  • the masterbatch composition of the present invention further contains fatty acid amide, antioxidant, tackifying resin, softener, antibacterial agent, It may also contain light stabilizers, ultraviolet absorbers, dyes (pigments), lubricants, and the like.
  • the method for preparing the masterbatch composition of the present invention is not particularly limited, and includes mixing the above-mentioned aromatic vinyl polymer, the above-mentioned hydrocarbon compound group, and each component added as necessary.
  • each component may be prepared by dissolving each component in a solvent, mixing uniformly, and then removing the solvent by heating, etc., or by dissolving each component in a single screw extruder, twin screw extruder, kneader, Banbury mixer, etc.
  • Examples include a method of melt-mixing. Among these methods, melt mixing is preferred from the viewpoint of more efficient mixing, and it is particularly preferred to use a twin-screw extruder or a Banbury mixer. Note that the temperature during melt mixing is not particularly limited, but is usually in the range of 100 to 230°C.
  • pelletization is preferable, and a strand cut pelletizer, a hot cut pelletizer, and an underwater cut pelletizer can be used, and a hot cut pelletizer and an underwater cut pelletizer can be particularly preferably used. It is not necessary to apply an external additive to the pellets to prevent them from sticking to each other, but it may be applied.
  • a dusting agent silica, talc, polyethylene wax, polypropylene wax, magnesium stearate, calcium stearate, fatty acid amide, etc. can be used.
  • the range of external addition is usually 0.05 to 1.00 phr.
  • the aromatic vinyl-conjugated diene copolymer composition of the present invention is an aromatic vinyl-conjugated diene copolymer having at least one aromatic vinyl polymer block and at least one conjugated diene polymer block. It contains the above-described masterbatch composition of the present invention.
  • aromatic in the form of a masterbatch in which a group of hydrocarbon compounds having a total peak area of the components having each carbon number within the above range is blended with an aromatic vinyl polymer, aromatic
  • a vinyl-conjugated diene copolymer By blending it into a vinyl-conjugated diene copolymer, excellent compatibility can be achieved, and the resulting aromatic vinyl-conjugated diene copolymer composition has excellent film formability (for example, When molded into a shape, it is possible to effectively prevent the occurrence of breakage and poor appearance of the film), and moreover, it can be made to have excellent ozone crack resistance in a wide temperature range.
  • the aromatic vinyl-conjugated diene copolymer is not particularly limited as long as it has at least one aromatic vinyl polymer block and at least one conjugated diene polymer block, but in the present invention , the following aromatic vinyl-conjugated diene copolymer composition can be suitably used.
  • General formula (D): A block copolymer D represented by Ar d -D d
  • the aromatic vinyl-conjugated diene copolymer composition includes a mixture of block copolymer A and block copolymer B, and a block copolymer, as in the case of the masterbatch composition described above. It can be adjusted by obtaining a mixture of C and block copolymer D and mixing them.
  • the weight ratio (A/B/C/D) of block copolymers A to D is preferably 10 to 30/20 to 40/12.5 to 49/1 to 37.5, more preferably 15 ⁇ 27.5/22.5 ⁇ 35/37.5 ⁇ 47.5/2.5 ⁇ 12.5, more preferably 17.5 ⁇ 25/25 ⁇ 32.5/40 ⁇ 46/4 ⁇ 10, and even more preferably 18-22/28-32/42-46/4-18.
  • the content ratio of the aromatic vinyl-conjugated diene copolymer and the masterbatch composition in the aromatic vinyl-conjugated diene copolymer composition of the present invention is not particularly limited, but preferably The proportion of the vinyl-conjugated diene copolymer is 60 to 99% by weight, the proportion of the masterbatch composition is 1 to 40% by weight, and more preferably the proportion of the aromatic vinyl-conjugated diene copolymer is 80% by weight. ⁇ 98% by weight, the proportion of the masterbatch composition is 2 to 20% by weight, more preferably the proportion of the aromatic vinyl-conjugated diene copolymer is 88 to 97% by weight, and the proportion of the masterbatch composition is 88 to 97% by weight.
  • the proportion of the aromatic vinyl-conjugated diene copolymer is preferably 92 to 96% by weight, and the proportion of the masterbatch composition is 4 to 8% by weight.
  • the aromatic vinyl-conjugated diene copolymer composition of the present invention may further contain a lubricant, an antioxidant, a tackifying resin, a softener, an antibacterial agent, a light stabilizer, an ultraviolet absorber, a dye ( Pigments) etc. may also be included.
  • the lubricant examples include synthetic PE-WAX, oxidized PE-WAX, PP-WAX, magnesium stearate, calcium stearate, fatty acid amide (amide), and the like.
  • the fatty acid amide may be an aliphatic monoamide or an aliphatic bisamide.
  • Aliphatic monoamides are not particularly limited as long as they are compounds formed by bonding a hydrocarbon group and one amide group (-NHCO), but monoamides of higher saturated fatty acids having 12 or more carbon atoms (i.e., monoamides of higher saturated fatty acids having 12 or more carbon atoms)
  • a compound formed by bonding a chain alkyl group with one amide group (--NHCO) is preferably used.
  • fatty acid monoamides include saturated fatty acid monoamides such as lauric acid amide, myristic acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and hydroxystearic acid amide; unsaturated fatty acids such as oleic acid amide and erucic acid amide. Examples include monoamide; and the like.
  • the antioxidant is not particularly limited, and examples thereof include pentaerythritol tetrakis [3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-t- Butyl-4-hydroxyphenyl)propionate, 2,6-di-t-butyl-p-cresol, di-t-butyl-4-methylphenol, 4-[[4,6-bis(octylthio)-1,3 ,5-triazin-2-yl]amino]-2,6-di-tert-butylphenol, 2,4-bis[(dodecylthio)methyl]-6-methylphenol, 4,6-bis(octylmethyl)-o - Hindered phenolic compounds such as cresol; Thiodicarboxylate esters such as dilaurylthiopropionate; Tris(nonylphenyl)phosphite,
  • the ultraviolet absorber is not particularly limited, and compounds such as triazine, benzoate, benzophenone, and benzotriazole can be used, and it is also possible to use a combination of these.
  • triazine-based and benzotriazole-based compounds are preferred, specifically 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2,2'-methylenebis[4-(1,1,3,3-tetramethylbutyl)-6-(2H-benzotriazol-2-yl)phenol], 2-[4,6-bis(1,1'-biphenyl-4-yl)-1,3,5-triazin-2-yl]-5-[(2-ethylhexyl)oxy]phenol etc. can be used. can.
  • the aromatic vinyl-conjugated diene copolymer composition of the present invention can be obtained by mixing the aromatic vinyl-conjugated diene copolymer, a masterbatch composition, and other components used as necessary. Just prepare it. Examples include a method in which each component is dissolved in a solvent, mixed uniformly, and then the solvent is removed by heating, etc., and a method in which each component is melt-mixed using a kneader or the like. Among these methods, melt mixing is preferred from the viewpoint of more efficient mixing. Particularly preferred is melt mixing using a twin-screw extruder, single-screw extruder, kneader, or Banbury mixer. Note that the temperature during melt mixing is not particularly limited, but is usually in the range of 100 to 230°C.
  • the aromatic vinyl-conjugated diene copolymer composition of the present invention can be used, for example, in films, threads (elastic strands), gloves, elastic bands, condoms, OA equipment, various rolls for office use, and packaging films and sheets. , anti-vibration sheets for electrical and electronic equipment, anti-vibration rubber, shock-absorbing sheets, shock-absorbing films and sheets, damping sheets for housing, molding materials used in vibration damper materials, etc., adhesive tapes, adhesive sheets, adhesive labels, It can be used for applications such as adhesives used in dust removal rollers, etc., adhesives used in sanitary products and bookbinding, and elastic fibers used in clothing, sporting goods, etc.
  • the aromatic vinyl-conjugated diene copolymer composition of the present invention can be suitably used for films, and has particularly excellent ozone crack resistance in a wide temperature range. It can be suitably used for stretchable films for sanitary products such as diapers, napkin pants, and masks (film-like stretchable members for sanitary materials). It may also be used in elastic yarns for sanitary products.
  • the weight average molecular weight of each block copolymer was determined as a polystyrene equivalent molecular weight by high performance liquid chromatography using tetrahydrofuran as a carrier at a flow rate of 0.35 ml/min.
  • the device is HLC8320 manufactured by Tosoh Corporation, the column is a combination of three Shodex KF-404HQ manufactured by Showa Denko Co., Ltd. (column temperature 40°C), the detector is a differential refractometer and an ultraviolet detector, and the molecular weight calibration is performed by Tosoh Corporation. The test was carried out on 12 points of standard polystyrene (5 million to 3 million) made by the manufacturer.
  • the reaction vessel was placed in a cooling tank and cooled to ⁇ 25° C., and then ozone generated by an ozone generator was introduced while oxygen was flowing into the reaction vessel at a flow rate of 170 ml/min. After 30 minutes from the start of the reaction, completion of the reaction was confirmed by introducing the gas flowing out from the reaction vessel into the aqueous potassium iodide solution. Next, 50 ml of diethyl ether and 470 mg of lithium aluminum hydride were placed in another reaction vessel purged with nitrogen, and while cooling the reaction vessel with ice water, the solution reacted with ozone was slowly dropped into the reaction vessel. Then, the reaction container was placed in a water bath, and the temperature was gradually raised to reflux at 40° C. for 30 minutes.
  • Weight average molecular weight of isoprene polymer block of each block copolymer The weight average molecular weight of the corresponding styrene polymer block was subtracted from the weight average molecular weight of the block copolymer determined as above, and the weight average molecular weight of the isoprene polymer block was determined based on the calculated value. .
  • Total peak area of each component of hydrocarbon wax For hydrocarbon wax, a capillary gas chromatography mass spectrometer, an aluminum-coated capillary column was used, the carrier gas was helium, the flow rate was 4 ml/min, the column temperature was 180 to 390°C, and the heating rate was 15°C/min.
  • GC-MS gas chromatography mass
  • the weight ratio of block copolymer A1 and block copolymer B1 in the above mixture was 40/60.
  • Block copolymer C1 and block copolymer D1 were obtained by dropping the solvent into hot water heated to °C and volatilizing the solvent to obtain a precipitate. The precipitate was crushed and dried with hot air at 85°C to obtain block copolymer C1 and block copolymer D1. The containing mixture was collected. Further, this mixture was fed into a single-screw extruder, heated and melted at 170° C., and formed into pellets using an underwater cut pelletizer. To prevent the pellets from sticking together, 0.2 parts of talc was added externally to 100 parts of the pellets.
  • the weight ratio of block copolymer C1 and block copolymer D1 in the above mixture was 90/10.
  • Example 1 (Preparation of masterbatch composition) 55 parts by weight of the mixture of block copolymer A1 and block copolymer B1 obtained in Production Example 1, and 40 parts by weight of hydrocarbon wax 1 (trade name: Sunnock P, manufactured by Ouchi Shinko Chemical Industry Co., Ltd.) parts by weight, and ultraviolet absorber (2-[4,6-bis(1,1'-biphenyl-4-yl)-1,3,5-triazin-2-yl)-5-[(2-ethylhexyl)
  • a masterbatch composition was prepared by mixing 5 parts by weight of oxy]phenol) using a Banbury mixer at 40 to 160°C for 20 minutes. It was fed into a single screw extruder equipped with a cut pelletizer and formed into pellets.
  • GC-MS gas chromatography mass
  • Examples 2 to 5, Comparative Examples 1 to 5 Preparation of masterbatch composition
  • a masterbatch composition was prepared in the same manner as in Example 1, except that the formulation shown in Table 8 was changed.
  • each component is as follows. Further, when gas chromatography mass (GC-MS) analysis was performed on the following hydrocarbon waxes 2 to 6, the total peak area of each component was as shown in Table 7.
  • GC-MS gas chromatography mass
  • Hydrocarbon wax 2 Hydrocarbon wax (product name "Ozo Ace 0355", manufactured by Nippon Seirosha) Hydrocarbon wax 3: 50% by weight of hydrocarbon wax (product name "PW-135", manufactured by Nippon Seiro Co., Ltd.) and hydrocarbon wax (product name "Sunnock P", manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.) Mixture with 50% by weight Hydrocarbon wax 4: Hydrocarbon wax (trade name “Ozo Ace 3201", manufactured by Nippon Seiro Co., Ltd.) Hydrocarbon wax 5: Hydrocarbon wax (product name “PW-135", manufactured by Nippon Seirosha) Hydrocarbon wax 6: Hydrocarbon wax (product name “PW-115", manufactured by Nippon Seirosha) Hydrocarbon wax 7: Hydrocarbon wax (product name "Sunwax 171P", manufactured by Sanyo Chemical Co., Ltd.) Polystyrene: Polystyrene (product name "GPPS 679", manufactured by PS Japan) Low density polyethylene 1:
  • the aromatic vinyl polymer is 30 to 98% by weight and the hydrocarbon wax (hydrocarbon compound group) 2 to 70% has a total peak area of each component within the predetermined range of the present invention.
  • a masterbatch composition containing % by weight when it is blended into an aromatic vinyl-conjugated diene copolymer and formed into a film, breakage of the film can be effectively prevented, The amount of adhesion to the cooling roll over time is also suppressed, thereby suppressing the appearance defects caused by such adhesion and achieving excellent film formability. It provided films with excellent ozone cracking properties (Examples 1 to 5).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

少なくとも一つの芳香族ビニル重合体ブロックを含む芳香族ビニル系重合体30~98重量%と、炭素数12以上60以下の範囲内にある炭素数の異なる複数の炭化水素化合物を含有する炭化水素化合物群2~70重量%とを含有するマスターバッチ組成物であって、前記炭化水素化合物群は、ガスクロマトグラフィー質量(GC-MS)分析により測定される、各炭素数の炭化水素化合物成分の検出面積比率が、炭素数12以上60以下の範囲内の成分の合計ピーク面積を100%としたときに、炭素数24以上27以下の成分の合計ピーク面積が5%以上であり、炭素数27以上30以下の成分の合計ピーク面積が5%以上であり、炭素数30以上33以下の成分の合計ピーク面積が5%以上であり、炭素数33以上36以下の成分の合計ピーク面積が5%以上であり、炭素数27以下の成分の合計ピーク面積が45%以下である、マスターバッチ組成物を提供する。

Description

マスターバッチ組成物、およびこれを配合してなる芳香族ビニル-共役ジエン系共重合体組成物
 本発明は、マスターバッチ組成物、およびこれを配合してなる芳香族ビニル-共役ジエン系共重合体組成物に関するものである。
 芳香族ビニル-共役ジエン-芳香族ビニルブロック共重合体などの芳香族ビニル-共役ジエン系共重合体は、熱可塑性エラストマーの中でも、特に弾性に富み、柔軟であることから、紙おむつや生理用品等の衛生用品に用いられる伸縮性フィルムの材料としての利用が、その代表的な用途の1つとなっている。
 紙おむつや生理用品等の衛生用品には、装着者の動きに対する追従性やフィット性が求められることから、各部に伸縮性フィルムが用いられている。たとえば、特許文献1では、紙おむつなどの衛生用品として用いるための弾性体を与えるための組成物として、特定の芳香族ビニル-共役ジエン系共重合体に、直鎖状炭化水素(n-体)と分岐鎖状炭化水素(iso-体)とを、重量比(n-体/iso-体)30/70~99/1にて含有し、融点が80℃未満であるワックスを配合してなる組成物が開示されている。
国際公開第2020/045496号
 一方で、紙オムツの一種であるパンツ型オムツ等の衛生用品の伸縮部材用途に用いられる芳香族ビニル-共役ジエン系共重合体には、幅広い使用温度領域での耐オゾンクラック性が要求される。しかしながら、上記特許文献1の技術では、常温近傍(30℃)での耐オゾンクラック性について検討はされているものの、幅広い温度領域での耐オゾンクラック性に着目するものではなく、幅広い温度領域での耐オゾンクラック性を向上させるための具体的な手法について何ら開示をするものではない。
 また、特許文献1の技術のように、耐オゾンクラック性を改良するために、芳香族ビニル-共役ジエン系共重合体に、ワックスなどの添加剤を配合した場合には、フィルム状成形体などに成形する際に、経時で、冷却ロール等の冷却体にワックスなどの添加剤が付着蓄積し、これが成形体に転写され、外観不良が起こってしまうという問題や、冷却ロール等の冷却体での除熱効率が低下し、これにより製造安定性が低下するという問題があった。また、ワックスなどの添加剤をマスターバッチ組成物の形態で添加する方法も考えられるが、相溶性が十分でない場合には、フィルムの破断が起こってしまうという問題などもあった。
 本発明は、このような実状に鑑みてなされたものであり、芳香族ビニル-共役ジエン系共重合体に対する相溶性に優れ、これにより、芳香族ビニル-共役ジエン系共重合体に配合した際に、優れたフィルム成形性を実現でき(たとえば、フィルム状に成形した場合に、フィルムの破断や外観不良の発生を有効に防止することができ)、しかも、幅広い温度領域における耐オゾンクラック性に優れたものとすることができるマスターバッチ組成物を提供することを目的とする。
 本発明者等は、上記目的を達成すべく検討を行ったところ、芳香族ビニル系重合体30~98重量%と、炭素数の異なる複数の炭化水素化合物を特定量含有する炭化水素化合物群2~70重量%とを含有するマスターバッチ組成物によれば、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、少なくとも一つの芳香族ビニル重合体ブロックを含む芳香族ビニル系重合体30~98重量%と、
 炭素数12以上60以下の範囲内にある炭素数の異なる複数の炭化水素化合物を含有する炭化水素化合物群2~70重量%とを含有するマスターバッチ組成物であって、
 前記炭化水素化合物群は、ガスクロマトグラフィー質量(GC-MS)分析により測定される、各炭素数の炭化水素化合物成分の検出面積比率が、炭素数12以上60以下の範囲内の成分の合計ピーク面積を100%としたときに、
 炭素数24以上27以下の成分の合計ピーク面積が5%以上であり、
 炭素数27以上30以下の成分の合計ピーク面積が5%以上であり、
 炭素数30以上33以下の成分の合計ピーク面積が5%以上であり、
 炭素数33以上36以下の成分の合計ピーク面積が5%以上であり、
 炭素数12以上27以下の成分の合計ピーク面積が45%以下である、
 マスターバッチ組成物が提供される。
 本発明のマスターバッチ組成物において、前記炭化水素化合物群は、ガスクロマトグラフィー質量(GC-MS)分析により測定される、各炭素数の炭化水素化合物成分の検出面積比率が、炭素数12以上60以下の範囲内の成分の合計ピーク面積を100%としたときに、
 炭素数24以上27以下の成分の合計ピーク面積が8~40%であり、
 炭素数27以上30以下の成分の合計ピーク面積が8~50%であり、
 炭素数30以上33以下の成分の合計ピーク面積が10~45%であり、
 炭素数33以上36以下の成分の合計ピーク面積が7~30%であり、
 炭素数12以上27以下の成分の合計ピーク面積が10~40%である、ことが好ましい。
 本発明のマスターバッチ組成物において、前記芳香族ビニル系重合体が、少なくとも一つの芳香族ビニル重合体ブロックと、少なくとも一つの共役ジエン重合体ブロックとを有する、芳香族ビニル-共役ジエン系共重合体であることが好ましい。
 本発明のマスターバッチ組成物において、前記芳香族ビニル-共役ジエン系共重合体が、
 一般式(A):Ar1-D-Ar2で表されるブロック共重合体A(式中、Ar1は、重量平均分子量が5000~20000の芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロック、Ar2は、重量平均分子量が20000超~400000の芳香族ビニル重合体ブロックを表す。)と、
 一般式(B):Ar1-D-Ar2で表されるブロック共重合体B(式中、Ar1およびAr2は、それぞれ、重量平均分子量が5000~20000の芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロックを表す。)と、を含有する芳香族ビニル-共役ジエン系共重合体組成物であることが好ましい。
 本発明のマスターバッチ組成物において、前記芳香族ビニル-共役ジエン系共重合体が、
 一般式(C):(Ar-D-Xで表されるブロック共重合体C(式中、Arは、芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロック、nは、2以上の整数、Xは、カップリング剤の残基を表す。)と、
  一般式(D):Ar-Dで表されるブロック共重合体D(式中、Arは、芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロックを表す。)と、を含有する芳香族ビニル-共役ジエン系共重合体組成物であることが好ましい。
 また、本発明によれば、少なくとも一つの芳香族ビニル重合体ブロックと、少なくとも一つの共役ジエン重合体ブロックとを有する、芳香族ビニル-共役ジエン系共重合体と、上記のマスターバッチ組成物とを含む芳香族ビニル-共役ジエン系共重合体組成物が提供される。
 本発明によれば、上記の芳香族ビニル-共役ジエン系共重合体組成物からなる弾性体が提供される。
 本発明によれば、上記の芳香族ビニル-共役ジエン系共重合体組成物からなるフィルムが提供される。
 本発明によれば、上記の弾性体、または上記のフィルムを使用して得られる伸縮部材が提供される。
 本発明によれば、芳香族ビニル-共役ジエン系共重合体に対する相溶性に優れ、これにより、芳香族ビニル-共役ジエン系共重合体に配合した際に、優れたフィルム成形性を実現でき(たとえば、フィルム状に成形した場合に、フィルムの破断や外観不良の発生を有効に防止することができ)、しかも、幅広い温度領域における耐オゾンクラック性に優れたものとすることができるマスターバッチ組成物を提供することができる。
 本発明のマスターバッチ組成物は、少なくとも一つの芳香族ビニル重合体ブロックを含む芳香族ビニル系重合体30~98重量%と、
 炭素数12以上60以下の範囲内にある炭素数の異なる複数の炭化水素化合物を含有する炭化水素化合物群2~70重量%とを含有するものである。
 そして、本発明においては、炭化水素化合物群として、ガスクロマトグラフィー質量(GC-MS)分析により測定される、各炭素数の炭化水素化合物成分の検出面積比率が、炭素数12以上60以下の範囲内の成分の合計ピーク面積を100%としたときに、
 炭素数24以上27以下の成分の合計ピーク面積が5%以上であり、
 炭素数27以上30以下の成分の合計ピーク面積が5%以上であり、
 炭素数30以上33以下の成分の合計ピーク面積が5%以上であり、
 炭素数33以上36以下の成分の合計ピーク面積が5%以上であり、
 炭素数12以上27以下の成分の合計ピーク面積が45%以下であるものを使用する。
 本発明のマスターバッチ組成物は、芳香族ビニル-共役ジエン系共重合体に配合するために用いられるマスターバッチ組成物であり、より具体的には、上記の炭化水素化合物群を、芳香族ビニル-共役ジエン系共重合体に、好適に配合するためのマスターバッチ組成物である。そして、本発明のマスターバッチ組成物によれば、芳香族ビニル-共役ジエン系共重合体に対する相溶性に優れ、これにより、芳香族ビニル-共役ジエン系共重合体に配合した際に、優れたフィルム成形性を実現でき(たとえば、フィルム状に成形した場合に、フィルムの破断や外観不良の発生を有効に防止することができ)、しかも、幅広い温度領域における耐オゾンクラック性に優れたものとすることができる。
<芳香族ビニル系重合体>
 本発明のマスターバッチ組成物を構成する芳香族ビニル系重合体は、少なくとも一つの芳香族ビニル重合体ブロックを含むものである。芳香族ビニル系重合体としては、少なくとも一つの芳香族ビニル重合体ブロックを含有するものであればよく、特に限定されないが、芳香族ビニル単量体の単独重合体(1または2以上の芳香族ビニル単量体のみを重合してなる重合体)や、少なくとも一つの芳香族ビニル重合体ブロックと、少なくとも一つの共役ジエン重合体ブロックとを有する、芳香族ビニル-共役ジエン系共重合体などが挙げられる。
 芳香族ビニル単量体の単独重合体としては、1または2以上の芳香族ビニル単量体のみを重合してなる重合体であればよく、特に限定されず、芳香族ビニル単量体としては、たとえば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、4-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、2,4-ジブロモスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、スチレンを用いることが好ましい。これらの芳香族ビニル単量体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 また、芳香族ビニル-共役ジエン系共重合体としては、少なくとも一つの芳香族ビニル重合体ブロックと、少なくとも一つの共役ジエン重合体ブロックとを有するブロック共重合体であればよく、特に限定されないが、下記の芳香族ビニル-共役ジエン系共重合体組成物が好適に挙げられる。
 すなわち、
 一般式(A):Ar1-D-Ar2で表されるブロック共重合体Aと、
 一般式(B):Ar1-D-Ar2で表されるブロック共重合体Bと、
 を含有する芳香族ビニル-共役ジエン系共重合体組成物が、好適に挙げられる。
 一般式(A):Ar1-D-Ar2で表されるブロック共重合体Aは、好適には、次の通りのブロック共重合体である。
 すなわち、式中、Ar1は、重量平均分子量が5000~20000の芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロック、Ar2は、重量平均分子量が20000超~400000の芳香族ビニル重合体ブロックを表す。
 また、ブロック共重合体Aの芳香族ビニル単量体単位の含有量が、ブロック共重合体Aを構成する全単量体単位に対して、25~80重量%である。
 一般式(B):Ar1-D-Ar2で表されるブロック共重合体Bは、好適には、次の通りのブロック共重合体である。
 すなわち、式中、Ar1およびAr2は、それぞれ、重量平均分子量が5000~20000の芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロックを表す。
 また、ブロック共重合体Bの芳香族ビニル単量体単位の含有量が、前記ブロック共重合体Bを構成する全単量体単位に対して、10~90重量%である。
(ブロック共重合体A)
 ブロック共重合体Aは、下記の一般式(A)で表される共重合体である。
 一般式(A):Ar1-D-Ar2
(式中、Ar1は、重量平均分子量が5000~20000の芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロック、Ar2は、重量平均分子量が20000超~400000の芳香族ビニル重合体ブロックを表す。)
 芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)は、芳香族ビニル単量体を重合して得られる芳香族ビニル単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)の芳香族ビニル単量体単位を構成するために用いられる芳香族ビニル単量体は、芳香族ビニル化合物であれば特に限定されないが、たとえば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、2-クロロスチレン、3-クロロスチレン、4-クロロスチレン、4-ブロモスチレン、2-メチル-4,6-ジクロロスチレン、2,4-ジブロモスチレン、ビニルナフタレンなどが挙げられる。これらのなかでも、スチレンを用いることが好ましい。これらの芳香族ビニル単量体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。また、2つの芳香族ビニル重合体ブロックは、同じ芳香族ビニル単量体単位により構成されていてもよいし、異なる芳香族ビニル単量体単位により構成されていてもよい。
 また、芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)は、芳香族ビニル単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよい。芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)に含まれ得る芳香族ビニル単量体単位以外の単量体単位を構成する単量体としては、たとえば、1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)などの共役ジエン単量体、α,β-不飽和ニトリル単量体、不飽和カルボン酸または酸無水物単量体、不飽和カルボン酸エステル単量体、非共役ジエン単量体などが挙げられる。芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)における芳香族ビニル単量体単位以外の単量体単位の含有量は、20重量%以下であることが好ましく、10重量%以下であることがより好ましく、実質的に0重量%であることが特に好ましい。すなわち、芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)は、実質的に、1種または2種以上の芳香族ビニル単量体単位のみからなるものであることが好ましく、スチレン単位のみからなるものであることが特に好ましい。
 ブロック共重合体Aにおいて、芳香族ビニル重合体ブロック(Ar1)と芳香族ビニル重合体ブロック(Ar2)とは、重量平均分子量が異なる。
 芳香族ビニル重合体ブロック(Ar1)の重量平均分子量は、5000~20000であり、より好ましくは6000~18000であり、さらに好ましくは7000~16000である。
 芳香族ビニル重合体ブロック(Ar2)の重量平均分子量は、20000超400000以下であり、より好ましくは25000~300000であり、さらに好ましくは30000~200000であり、さらにより好ましくは40000~100000である。
 共役ジエン重合体ブロック(D)は、共役ジエン単量体を重合して得られる共役ジエン単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 共役ジエン重合体ブロック(D)の共役ジエン単量体単位を構成するために用いられる共役ジエン単量体は、共役ジエン化合物であれば特に限定されないが、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、ミルセン、ファルネセンなどが挙げられる。これらのなかでも、1,3-ブタジエンおよび/またはイソプレンを用いることが好ましく、イソプレンを用いることが特に好ましい。これらの共役ジエン単量体は、1種単独で、あるいは2種以上を組み合わせて用いることができる。さらに、共役ジエン重合体ブロック(D)の不飽和結合の一部に対し、水素添加反応が行われていてもよい。
 また、共役ジエン重合体ブロック(D)は、共役ジエン単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよい。共役ジエン重合体ブロック(D)に含まれ得る共役ジエン単量体単位以外の単量体単位を構成する単量体としては、スチレン、α-メチルスチレンなどの芳香族ビニル単量体、α,β-不飽和ニトリル単量体、不飽和カルボン酸または酸無水物単量体、不飽和カルボン酸エステル単量体、非共役ジエン単量体が例示される。共役ジエン重合体ブロック(D)における共役ジエン単量体単位以外の単量体単位の含有量は、20重量%以下であることが好ましく、10重量%以下であることがより好ましく、実質的に0重量%であることが特に好ましい。すなわち、共役ジエン重合体ブロック(D)は、実質的に、1種または2種以上の共役ジエン単量体単位のみからなるものであることが好ましく、イソプレン単位のみからなるものであることが特に好ましい。
 共役ジエン重合体ブロック(D)のビニル結合含有量(共役ジエン重合体ブロック(D)中の全共役ジエン単量体単位において、1,2-ビニル結合単位と3,4-ビニル結合単位が占める割合)は、特に限定されないが、1~20モル%であることが好ましく、2~15モル%であることがより好ましく、3~10モル%であることが特に好ましい。ビニル結合含有量が多すぎると、得られる弾性体の柔軟性が損なわれる傾向がある。
 共役ジエン重合体ブロック(D)の重量平均分子量は、好ましくは40000~400000であり、より好ましくは45000~350000であり、さらに好ましくは50000~300000であり、さらにより好ましくは70000~130000である。
 ブロック共重合体Aの重量平均分子量(すなわち、ブロック共重合体A全体の重量平均分子量)は、好ましくは65000~800000であり、より好ましくは70000~700000であり、さらに好ましくは75000~650000であり、さらにより好ましくは120000~240000である。
 なお、本発明において、各重合体ブロックの重量平均分子量およびブロック重合体全体の重量平均分子量は、高速液体クロマトグラフィの測定による、ポリスチレン換算の値として求めるものとする。
 また、各重合体ブロックの重量平均分子量およびブロック重合体全体の重量平均分子量は、重合反応によってブロック共重合体を得る際に用いる、各重合体ブロックを形成するための各単量体の使用量や、重合開始剤の量、重合停止剤の量を調節することにより、調整することができる。
 ブロック共重合体Aの芳香族ビニル単量体単位の含有量は、ブロック共重合体Aを構成する全単量体単位に対して、25~80重量%である。
 ブロック共重合体Aは、芳香族ビニル単量体、共役ジエン単量体、次いで芳香族ビニル単量体の順に逐次的に重合して重合体ブロックを形成する製造方法により得られたものであることが好ましい。したがって、ブロック共重合体Aは、カップリング剤の残基を含まないことが好ましい。このような製造方法の詳細は後述する。ただし、Ar1-D-Ar2で表される構造を有するものを得ることができる方法でれば特に限定されず、カップリング剤を用いて製造され、カップリング剤の残基を含むものであってもよい。
(ブロック共重合体B)
 ブロック共重合体Bは、下記の一般式(B)で表される共重合体である。
 一般式(B):Ar1-D-Ar2
(式中、Ar1およびAr2は、それぞれ、重量平均分子量が5000~20000の芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロックを表す。)
 芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)は、芳香族ビニル単量体を重合して得られる芳香族ビニル単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)の芳香族ビニル単量体単位を構成するために用いられる芳香族ビニル単量体は、芳香族ビニル化合物であれば特に限定されないが、たとえば、上述した芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)と同様のものが挙げられる。
 芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)は、芳香族ビニル単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよく、芳香族ビニル単量体単位以外の単量体単位を構成する単量体としては、たとえば、芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)と同様のものが挙げられ、その含有量も、同様とすればよい。また、芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)も、実質的に、1種または2種以上の芳香族ビニル単量体単位のみからなるものであることが好ましく、スチレン単位のみからなるものであることが特に好ましい。
 ブロック共重合体Bにおいて、芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)は、いずれも、5000~20000の範囲内の重量平均分子量を有する。
 芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)の重量平均分子量は、5000~20000であり、より好ましくは6000~18000であり、さらに好ましくは7000~16000である。
 芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)の重量平均分子量は、上記の範囲内であれば、それぞれ等しいものであっても、互いに異なるものであってもよいが、実質的に等しいものであることが好ましい。また、芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)の重量平均分子量は、ブロック共重合体Aの比較的小さい重量平均分子量を有する芳香族ビニル重合体ブロック(Ar1)の重量平均分子量と、実質的に等しいことが好ましい。
 共役ジエン重合体ブロック(D)は、共役ジエン単量体を重合して得られる共役ジエン単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 共役ジエン重合体ブロック(D)の共役ジエン単量体単位を構成するために用いられる共役ジエン単量体は、共役ジエン化合物であれば特に限定されないが、たとえば、上述した共役ジエン重合体ブロック(D)と同様のものが挙げられる。
 また、共役ジエン重合体ブロック(D)は、共役ジエン単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよく、共役ジエン単量体単位以外の単量体単位を構成する単量体としては、たとえば、共役ジエン重合体ブロック(D)と同様のものが挙げられ、その含有量およびビニル結合含有量も同様とすればよい。また、共役ジエン重合体ブロック(D)も、実質的に、1種または2種以上の共役ジエン単量体単位のみからなるものであることが好ましく、イソプレン単位のみからなるものであることが特に好ましい。
 共役ジエン重合体ブロック(D)のビニル結合含有量は、ブロック共重合体Aの共役ジエン重合体ブロック(D)のビニル結合含有量と実質的に等しいことが好ましい。
 共役ジエン重合体ブロック(D)の重量平均分子量は、好ましくは40000~400000であり、より好ましくは45000~350000であり、さらに好ましくは50000~300000であり、さらにより好ましくは70000~130000である。
 共役ジエン重合体ブロック(D)の重量平均分子量は、ブロック共重合体Aの共役ジエン重合体ブロック(D)の重量平均分子量と実質的に等しいことが好ましい。
 ブロック共重合体Bの重量平均分子量(すなわち、ブロック共重合体B全体の重量平均分子量)は、好ましくは65000~800000であり、より好ましくは70000~700000であり、さらに好ましくは75000~600000であり、さらにより好ましくは80000~160000である。
 ブロック共重合体Bの芳香族ビニル単量体単位の含有量は、ブロック共重合体Bを構成する全単量体単位に対して、10~90重量%、好ましくは14~50重量%、さらに好ましくは16~40%、最も好ましくは20~30重量%である。
 ブロック共重合体Bは、芳香族ビニル単量体、共役ジエン単量体、次いで芳香族ビニル単量体の順に逐次的に重合して重合体ブロックを形成する製造方法により得られたものであることが好ましい。したがって、ブロック共重合体Bは、カップリング剤の残基を含まないことが好ましい。このような製造方法の詳細は後述する。ただし、Ar1-D-Ar2で表される構造を有するものを得ることができる方法でれば特に限定されず、カップリング剤を用いて製造され、カップリング剤の残基を含むものであってもよい。
 本発明で用いる芳香族ビニル-共役ジエン系共重合体組成物中における、ブロック共重合体Aとブロック共重合体Bとの含有割合は、好ましくは、ブロック共重合体Aの割合が10~70重量%、ブロック共重合体Bの割合が30~90重量%、より好ましくは、ブロック共重合体Aの割合が30~55重量%、ブロック共重合体Bの割合が45~70重量%、さらに好ましくは、ブロック共重合体Aの割合が35~50重量%、ブロック共重合体Bの割合が50~65重量%であり、さらにより好ましくは、ブロック共重合体Aの割合が36~44重量%、ブロック共重合体Bの割合が56~64重量%である。
 ブロック共重合体A、ブロック共重合体Bは、常法にしたがって製造することが可能であり、最も一般的な製造法としては、アニオンリビング重合法により、芳香族ビニル単量体と共役ジエン単量体とをそれぞれ逐次的に重合して重合体ブロックを形成し、必要に応じて、カップリング剤を反応させてカップリングを行う方法を挙げることができる。また、芳香族ビニル単量体、共役ジエン単量体、次いで芳香族ビニル単量体の順に逐次的に重合して重合体ブロックを形成する方法を用いてもよい。また、従来の重合法に従って、それぞれの重合体を別個に製造し、必要に応じて、他の重合体成分などを配合した上で、それらを混練や溶液混合などの常法に従って混合することにより、製造することができる。また、後述するように、ブロック共重合体AおよびBを同時に製造したりすることも可能である。
 また、本発明では、市販のブロック共重合体を用いることも可能であり、たとえば、「クインタック(登録商標)」(日本ゼオン社製)、「JSR-SIS(登録商標)」(JSR社製)、「Vector(登録商標)」(DEXCO polymers社製)、「アサプレン(登録商標)」・「タフプレン(登録商標)」・「タフテック(登録商標)」(旭化成ケミカルズ社製)、「セプトン(登録商標)」(クラレ社製)、「クレイトン(登録商標)」(クレイトン社製)などを使用することができる。
 ブロック共重合体Aおよびブロック共重合体Bは、芳香族ビニル単量体、共役ジエン単量体、次いで芳香族ビニル単量体の順に逐次的に重合して重合体ブロックを形成する方法により、製造することが好ましい。
 より詳細には、ブロック共重合体Aおよびブロック共重合体Bは、以下の製造方法により、製造することが好ましい。すなわち、
 溶媒中で、重合開始剤の存在下で、芳香族ビニル単量体を含む単量体を重合することで、芳香族ビニル重合体ブロック鎖を含有する溶液を得る第1重合工程と、
 芳香族ビニル重合体ブロック鎖を含有する溶液に、共役ジエン単量体を含む単量体を添加し、重合することで、ジブロック鎖を含有する溶液を得る第2重合工程と、
 ジブロック鎖を含有する溶液に、芳香族ビニル単量体を含む単量体を添加し、重合することで、トリブロック鎖を含有する溶液を得る第3重合工程と、
 トリブロック鎖を含有する溶液に、トリブロック鎖が有する活性末端に対して1モル当量未満となる量で重合停止剤を添加し、活性末端の一部を失活させて、ブロック共重合体Bおよびトリブロック鎖を含有する溶液を得る停止工程と、
 トリブロック鎖およびブロック共重合体Bを含有する溶液に、芳香族ビニル単量体を含む単量体を添加し、重合することで、ブロック共重合体Aおよびブロック共重合体Bを含有する溶液を得る第4重合工程と、
を備える製造方法が好ましい。
 上記の製造方法では、まず、溶媒中で重合開始剤を用いて、芳香族ビニル単量体を主成分として含む単量体を重合する(第1重合工程)。用いられる重合開始剤としては、一般的に芳香族ビニル単量体と共役ジエン単量体とに対し、アニオン重合活性があることが知られている有機アルカリ金属化合物、有機アルカリ土類金属化合物、有機ランタノイド系列希土類金属化合物などを用いることができる。有機アルカリ金属化合物としては、分子中に1個以上のリチウム原子を有する有機リチウム化合物が特に好適に用いられ、その具体例としては、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウム、ジアルキルアミノリチウム、ジフェニルアミノリチウム、ジトリメチルシリルアミノリチウムなどの有機モノリチウム化合物や、メチレンジリチウム、テトラメチレンジリチウム、ヘキサメチレンジリチウム、イソプレニルジリチウム、1,4-ジリチオ-エチルシクロヘキサンなどの有機ジリチウム化合物、さらには、1,3,5-トリリチオベンゼンなどの有機トリリチウム化合物などが挙げられる。これらのなかでも、有機モノリチウム化合物が特に好適に用いられる。
 重合開始剤として用いる有機アルカリ土類金属化合物としては、たとえば、n-ブチルマグネシウムブロミド、n-ヘキシルマグネシウムブロミド、エトキシカルシウム、ステアリン酸カルシウム、t-ブトキシストロンチウム、エトキシバリウム、イソプロポキシバリウム、エチルメルカプトバリウム、t-ブトキシバリウム、フェノキシバリウム、ジエチルアミノバリウム、ステアリン酸バリウム、エチルバリウムなどが挙げられる。また、他の重合開始剤の具体例としては、ネオジム、サマリニウム、ガドリニウムなどを含むランタノイド系列希土類金属化合物/アルキルアルミニウム/アルキルアルミニウムハライド/アルキルアルミニウムハイドライドからなる複合触媒や、チタン、バナジウム、サマリニウム、ガドリニウムなどを含むメタロセン型触媒などの有機溶媒中で均一系となり、リビング重合性を有するものなどが挙げられる。なお、これらの重合開始剤は、1種類を単独で使用してもよいし、2種以上を混合して使用してもよい。
 重合開始剤の使用量は、目的とする分子量に応じて決定すればよく、特に限定されないが、使用する全単量体100gあたり、好ましくは0.01~20ミリモル、より好ましくは0.05~15ミリモル、さらに好ましくは0.1~10ミリモルである。
 重合に用いる溶媒は、重合開始剤に不活性なものであれば特に限定されるものではなく、たとえば、鎖状炭化水素溶媒、環式炭化水素溶媒またはこれらの混合溶媒が使用される。鎖状炭化水素溶媒としてはn-ブタン、イソブタン、1-ブテン、イソブチレン、トランス-2-ブテン、シス-2-ブテン、1-ペンテン、トランス-2-ペンテン、シス-2-ペンテン、n-ペンタン、イソペンタン、neo-ペンタン、n-ヘキサンなどの、炭素数4~6の鎖状アルカンおよびアルケンを例示することができる。また、環式炭化水素溶媒の具体例としては、ベンゼン、トルエン、キシレンなどの芳香族化合物;シクロペンタン、シクロヘキサンなどの脂環式炭化水素化合物;を挙げることができる。これらの溶媒は、1種類を単独で使用しても2種以上を混合して使用してもよい。
 重合に用いる溶媒の量は、特に限定されないが、最終的に得られるブロック共重合体の溶液におけるブロック共重合体の濃度が、好ましくは5~60重量%の範囲、より好ましくは10~55重量%の範囲、特に好ましくは20~50重量%の範囲になるように設定することが好ましい。
 また、各重合体ブロックの構造を制御するために、重合に用いる反応器にルイス塩基化合物を添加してもよい。ルイス塩基化合物としては、たとえば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテルなどのエーテル類;テトラメチルエチレンジアミン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジンなどの第三級アミン類;カリウム-t-アミルオキシド、カリウム-t-ブチルオキシドなどのアルカリ金属アルコキシド類;トリフェニルホスフィンなどのホスフィン類;などが挙げられる。これらのルイス塩基化合物は、それぞれ単独で、あるいは2種以上を組み合わせて用いられ、本発明の目的を損なわない範囲で適宜選択される。
 重合反応時にルイス塩基化合物を添加する時期は特に限定されず、目的とする各ブロック共重合体の構造に応じて適宜決定すればよい。たとえば、重合を開始する前に予め添加してもよいし、一部の重合体ブロックを重合してから添加してもよく、さらには、重合を開始する前に予め添加した上で一部の重合体ブロックを重合した後さらに添加してもよい。
 重合反応温度は、好ましくは10~150℃、より好ましくは30~130℃、さらに好ましくは40~90℃である。重合に要する時間は条件によって異なるが、通常、48時間以内、好ましくは0.5~10時間である。重合圧力は、上記重合温度範囲で単量体および溶媒を液相に維持するに充分な圧力の範囲で行えばよく、特に限定されない。
 以上のような条件で、溶媒中で重合開始剤を用いて、芳香族ビニル単量体を主成分として含む単量体を重合することにより、芳香族ビニル重合体ブロック鎖を含有する溶液を得ることができる。なお、重合により得られる芳香族ビニル重合体ブロック鎖は、通常、活性末端を有するものとなる。また、得られる芳香族ビニル重合体ブロック鎖は、芳香族ビニル重合体ブロック(Ar1)または芳香族ビニル重合体ブロック(Ar1)を形成することとなるものであるため、この第1重合工程において用いる単量体の量は、芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar1)の重量平均分子量に応じて決定すればよい。
 次いで、第1重合工程において得られた芳香族ビニル重合体ブロック鎖を含有する溶液に、共役ジエン単量体を主成分として含む単量体を添加し、重合を行う(第2重合工程)。これにより、ジブロック鎖を含有する溶液を得ることができる。なお、重合により得られるジブロック鎖は、通常、活性末端を有するものとなる。また、第2重合工程において得られるジブロック鎖は、上記第1重合工程において得られた芳香族ビニル重合体ブロック(Ar1)または芳香族ビニル重合体ブロック(Ar1)を形成することとなる重合体鎖に、共役ジエン重合体ブロック(D)または共役ジエン重合体ブロック(D)を形成することとなる重合体鎖がさらに結合されたものとなるため、この第2重合工程において用いる単量体の量は、共役ジエン重合体ブロック(D)および共役ジエン重合体ブロック(D)の重量平均分子量に応じて決定すればよい。また、重合反応温度は、重合時間、重合圧力は、上記第1重合工程と同様の範囲内で制御すればよい。
 次いで、第2重合工程において得られたジブロック鎖を含有する溶液に、芳香族ビニル単量体を主成分として含む単量体を添加し、重合を行う(第3重合工程)。これにより、トリブロック鎖を含有する溶液を得ることができる。なお、重合により得られるトリブロック鎖は、通常、活性末端を有するものとなる。また、第3重合工程において得られるトリブロック鎖は、上記第2重合工程において得られた芳香族ビニル重合体ブロック(Ar1)または芳香族ビニル重合体ブロック(Ar1)および共役ジエン重合体ブロック(D)または共役ジエン重合体ブロック(D)を形成することとなる重合体鎖に、芳香族ビニル重合体ブロック(Ar2)の一部、または、芳香族ビニル重合体ブロック(Ar2)を形成することとなる重合体鎖がさらに結合されたものとなるため、この第3重合工程において用いる単量体の量は、芳香族ビニル重合体ブロック(Ar2)の重量平均分子量に応じて決定すればよい。また、重合反応温度は、重合時間、重合圧力は、上記第1重合工程と同様の範囲内で制御すればよい。
 次いで、第3重合工程において得られたトリブロック鎖を含有する溶液に、トリブロック鎖が有する活性末端に対して1モル当量未満となる量で重合停止剤を添加する(停止工程)。これにより、トリブロック鎖が有する活性末端の一部が失活して、活性末端が失活したブロック共重合体が得られる。このブロック共重合体が一般式(B):Ar1-D-Ar2で表されるブロック共重合体Bとなる。
 重合停止剤は、活性末端と反応して活性末端を失活させることができ、1つの活性末端と反応した後は別の活性末端と反応しないものであれば特に限定されないが、得られる組成物の吸湿を抑制する観点からは、ハロゲン原子を含有しない化合物である重合停止剤であることが好ましく、なかでも、活性末端と反応した際に金属アルコキシド、金属アリールオキシド、または金属水酸化物を生じさせる重合停止剤が特に好ましい。重合停止剤として特に好ましく用いられる化合物としては、水、メタノールやエタノールなどの1価アルコール、フェノールやクレゾールなどの1価フェノール類が挙げられる。
 重合停止剤の使用量は、ブロック共重合体Aとブロック共重合体Bとの重量比に応じて決定され、トリブロック鎖が有する活性末端に対して1モル当量未満となる量であれば特に限定されないが、通常、活性末端に対して重合停止剤が0.18~0.91モル当量となる範囲であり、0.35~0.80モル当量となる範囲であることが好ましい。
 以上のようにして、活性末端を有するトリブロック鎖を含有する溶液に、その活性末端に対して1モル当量未満となる量で重合停止剤を添加すると、活性末端を有するトリブロック鎖のうちの一部の活性末端が失活し、その活性末端が失活した重合体は、ブロック共重合体Bとなる。そして、重合停止剤と反応しなかった活性末端を有するトリブロック鎖の残りの一部は、未反応のまま溶液中に残ることとなる。
 次いで、停止工程において得られたトリブロック鎖およびブロック共重合体Bを含有する溶液に、芳香族ビニル単量体を主成分として含む単量体を添加し、重合を行う(第4重合工程)。これにより、一般式(A):Ar1-D-Ar2で表されるブロック共重合体A、および、ブロック共重合体Bを含有する溶液を得ることができる。第4重合工程において得られるブロック共重合体Aは、上記第3重合工程において得られたトリブロック鎖の活性末端に、芳香族ビニル重合体ブロック(Ar2)の一部を形成することとなる重合体鎖がさらに結合されたものとなるため、この第4重合工程において用いる単量体の量は、芳香族ビニル重合体ブロック(Ar2)の重量平均分子量に応じて決定すればよい。また、重合反応温度は、重合時間、重合圧力は、上記第1重合工程と同様の範囲内で制御すればよい。
 第4重合工程の後、ブロック共重合体Aおよびブロック共重合体Bを含有する溶液から、重合体成分を回収してもよい(回収工程)。回収の方法は、常法に従えばよく、特に限定されない。たとえば、反応終了後に、必要に応じて、水、メタノール、エタノール、プロパノール、塩酸、クエン酸などの重合停止剤を添加し、さらに必要に応じて、酸化防止剤などの添加剤を添加してから、溶液に直接乾燥法やスチームストリッピングなどの公知の方法を適用することにより、回収することができる。スチームストリッピングなどを適用して、重合体成分がスラリーとして回収される場合は、押出機型スクイザーなどの任意の脱水機を用いて脱水して、所定値以下の含水率を有するクラムとし、さらにそのクラムをバンドドライヤーあるいはエクスパンション押出乾燥機などの任意の乾燥機を用いて乾燥すればよい。以上のようにして得られるブロック共重合体は、常法に従い、ペレット形状などに加工してから使用に供してもよい。
 以上のようにして、ブロック共重合体Aおよびブロック共重合体Bを製造することができる。
 なお、ブロック共重合体Bのみを得る場合には、上記停止工程において、活性末端の全部を失活させて、第4重合工程による重合を行わない方法などが挙げられる。
 また、芳香族ビニル-共役ジエン系共重合体としては、下記の芳香族ビニル-共役ジエン系共重合体組成物も好適に用いることができる。
 すなわち、
 一般式(C):(Ar-D-Xで表されるブロック共重合体Cと、
 一般式(D):Ar-Dで表されるブロック共重合体Dと、
 を含有する芳香族ビニル-共役ジエン系共重合体組成物が、好適に挙げられる。
 一般式(C):(Ar-D-Xで表されるブロック共重合体Cは、好適には、次の通りのブロック共重合体である。
 すなわち、式中、Arは、芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロック、nは、2以上の整数、Xは、カップリング剤の残基を表す。
 また、ブロック共重合体Cの芳香族ビニル単量体単位の含有量は特に制限されないが、前記ブロック共重合体Cを構成する全単量体単位に対して、50重量%未満であることが好ましい。
 一般式(D):Ar-Dで表されるブロック共重合体Dは、好適には、次の通りのブロック共重合体である。
 すなわち、式中、Arは、芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロックを表す。
(ブロック共重合体C)
 ブロック共重合体Cは、下記の一般式(C)で表される共重合体である。
 一般式(C):(Ar-D-X
(式中、Arは、芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロック、nは、2以上の整数、Xは、カップリング剤の残基を表す。)
 ブロック共重合体Cは、カップリング剤の残基(X)を介して、n個のジブロック体(Ar-D)がお互いに結合した構造を有する。一般式(C)におけるnは、ブロック共重合体C中の分岐数を表す。ブロック共重合体Cは、異なる数でジブロック体が結合した2種以上のブロック共重合体の混合物であってもよい。nは、2以上の整数であり、好ましくは2~8の整数であり、より好ましくは2~4の整数である。カップリング剤の残基(X)は、n価のカップリング剤の残基であれば特に限定されないが、ケイ素原子含有カップリング剤の残基であることが好ましく、ハロゲン化シランまたはアルコキシシランの残基であることがより好ましい。カップリング剤の残基を構成するカップリング剤の例としては、後述するものが挙げられる。
 ブロック共重合体Cとしては、なかでも、nが2のブロック共重合体C1、nが3のブロック共重合体C2、および、nが4のブロック共重合体C3の混合物であることが特に好ましい。この場合におけるブロック共重合体C1~C3の重量比(C1/C2/C3)としては、好ましくは40~80/30~10/30~10である。
 芳香族ビニル重合体ブロック(Ar)は、芳香族ビニル単量体を重合して得られる芳香族ビニル単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 芳香族ビニル重合体ブロック(Ar)の芳香族ビニル単量体単位を構成するために用いられる芳香族ビニル単量体は、芳香族ビニル化合物であれば特に限定されないが、たとえば、上述した芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)と同様のものが挙げられる。
 芳香族ビニル重合体ブロック(Ar)は、芳香族ビニル単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよく、芳香族ビニル単量体単位以外の単量体単位を構成する単量体としては、たとえば、芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)と同様のものが挙げられ、その含有量も、同様とすればよい。また、ブロック共重合体Cにおける各々の芳香族ビニル重合体ブロックは、同じ芳香族ビニル単量体単位により構成されていてもよいし、異なる芳香族ビニル単量体単位により構成されていてもよい。また、芳香族ビニル重合体ブロック(Ar)も、実質的に、1種または2種以上の芳香族ビニル単量体単位のみからなるものであることが好ましく、スチレン単位のみからなるものであることが特に好ましい。
 芳香族ビニル重合体ブロック(Ar)の重量平均分子量は、好ましくは4000~18000であり、より好ましくは5000~16000であり、さらに好ましくは6000~14000である。
 ブロック共重合体Cが複数有する芳香族ビニル重合体ブロック(Ar)の重量平均分子量は、上記の範囲内であれば、それぞれ等しいものであっても、互いに異なるものであってもよいが、実質的に等しいものであることが好ましい。
 共役ジエン重合体ブロック(D)は、共役ジエン単量体を重合して得られる共役ジエン単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 共役ジエン重合体ブロック(D)の共役ジエン単量体単位を構成するために用いられる共役ジエン単量体は、共役ジエン化合物であれば特に限定されないが、たとえば、上述した共役ジエン重合体ブロック(D)と同様のものが挙げられる。また、ブロック共重合体Cにおける各々の共役ジエン重合体ブロックは、同じ共役ジエン単量体単位により構成されていてもよいし、異なる共役ジエン単量体単位により構成されていてもよい。
 また、共役ジエン重合体ブロック(D)は、共役ジエン単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよく、共役ジエン単量体単位以外の単量体単位を構成する単量体としては、たとえば、共役ジエン重合体ブロック(D)と同様のものが挙げられ、その含有量およびビニル結合含有量も同様とすればよい。また、共役ジエン重合体ブロック(D)も、実質的に、1種または2種以上の共役ジエン単量体単位のみからなるものであることが好ましく、イソプレン単位のみからなるものであることが特に好ましい。
 共役ジエン重合体ブロック(D)の重量平均分子量は、好ましくは20000~200000であり、より好ましくは25000~180000であり、さらに好ましくは30000~150000であり、さらにより好ましくは70000~130000である。
 ブロック共重合体Cが複数有する共役ジエン重合体ブロック(D)の重量平均分子量は、上記の範囲内であれば、それぞれ等しいものであっても、互いに異なるものであってもよいが、実質的に等しいものであることが好ましい。
 ブロック共重合体Cの重量平均分子量(すなわち、ブロック共重合体C全体の重量平均分子量)は、好ましくは60000~800000であり、より好ましくは80000~600000であり、さらにより好ましくは180000~320000である。
 ブロック共重合体Cの芳香族ビニル単量体単位の含有量は、ブロック共重合体Cを構成する全単量体単位に対して、特に限定されないが、好ましくは50重量%未満であり、好ましくは40重量%未満であり、さらに好ましくは30重量%未満であり、より好ましく20重量%未満であり、最も好ましく16重量%未満であり、下限は特に限定されないが、5重量%以上であってよい。
 ブロック共重合体Cは、芳香族ビニル単量体と共役ジエン単量体とを重合してジブロック鎖を形成し、ジブロック鎖とカップリング剤とを反応させてカップリングを行う製造方法により得られたものであることが好ましい。したがって、ブロック共重合体Cは、カップリング剤の残基を含む。このような製造方法の詳細は後述する。
(ブロック共重合体D)
 ブロック共重合体Dは、下記の一般式(D)で表される共重合体である。
 一般式(D):Ar-D
(式中、Arは、芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロックを表す。)
 芳香族ビニル重合体ブロック(Ar)は、芳香族ビニル単量体を重合して得られる芳香族ビニル単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 芳香族ビニル重合体ブロック(Ar)の芳香族ビニル単量体単位を構成するために用いられる芳香族ビニル単量体は、芳香族ビニル化合物であれば特に限定されないが、たとえば、上述した芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)と同様のものが挙げられる。
 芳香族ビニル重合体ブロック(Ar)は、芳香族ビニル単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよく、芳香族ビニル単量体単位以外の単量体単位を構成する単量体としては、たとえば、芳香族ビニル重合体ブロック(Ar1)および芳香族ビニル重合体ブロック(Ar2)と同様のものが挙げられ、その含有量も、同様とすればよい。また、芳香族ビニル重合体ブロック(Ar)も、実質的に、1種または2種以上の芳香族ビニル単量体単位のみからなるものであることが好ましく、スチレン単位のみからなるものであることが特に好ましい。
 芳香族ビニル重合体ブロック(Ar)の重量平均分子量は、好ましくは4000~18000であり、より好ましくは5000~16000であり、さらに好ましくは6000~14000である。
 芳香族ビニル重合体ブロック(Ar)の重量平均分子量は、ブロック共重合体Cの芳香族ビニル重合体ブロック(Ar)の重量平均分子量と、実質的に等しいことが好ましい。
 共役ジエン重合体ブロック(D)は、共役ジエン単量体を重合して得られる共役ジエン単量体単位を主たる繰り返し単位として構成される重合体ブロックである。
 共役ジエン重合体ブロック(D)の共役ジエン単量体単位を構成するために用いられる共役ジエン単量体は、共役ジエン化合物であれば特に限定されないが、たとえば、上述した共役ジエン重合体ブロック(D)と同様のものが挙げられる。
 また、共役ジエン重合体ブロック(D)は、共役ジエン単量体単位が主たる繰り返し単位となる限りにおいて、それ以外の単量体単位を含んでいてもよく、共役ジエン単量体単位以外の単量体単位を構成する単量体としては、たとえば、共役ジエン重合体ブロック(D)と同様のものが挙げられ、その含有量およびビニル結合含有量も同様とすればよい。また、共役ジエン重合体ブロック(D)も、実質的に、1種または2種以上の共役ジエン単量体単位のみからなるものであることが好ましく、イソプレン単位のみからなるものであることが特に好ましい。
 共役ジエン重合体ブロック(D)のビニル結合含有量は、ブロック共重合体Cの共役ジエン重合体ブロック(D)のビニル結合含有量と実質的に等しいことが好ましい。
 共役ジエン重合体ブロック(D)の重量平均分子量は、好ましくは20000~200000であり、より好ましくは25000~180000であり、さらに好ましくは30000~150000であり、さらにより好ましくは70000~130000である。
 共役ジエン重合体ブロック(D)の重量平均分子量は、ブロック共重合体Cの共役ジエン重合体ブロック(D)の重量平均分子量と実質的に等しいことが好ましい。
 ブロック共重合体Dの重量平均分子量(すなわち、ブロック共重合体D全体の重量平均分子量)は、好ましくは30000~200000であり、より好ましくは40000~180000であり、さらにより好ましくは70000~150000である。
 ブロック共重合体Dの芳香族ビニル単量体単位の含有量は、ブロック共重合体Dを構成する全単量体単位に対して、特に限定されないが、好ましくは50重量%未満であり、好ましくは40重量%未満であり、さらに好ましくは30重量%未満であり、より好ましく20重量%未満であり、最も好ましく16重量%未満であり、下限は特に限定されないが、5重量%以上であってよい。
 本発明で用いる芳香族ビニル-共役ジエン系共重合体組成物中における、ブロック共重合体Cとブロック共重合体Dとの含有割合は、好ましくは、ブロック共重合体Cの割合が25~98重量%、ブロック共重合体Dの割合が2~75重量%、より好ましくは、ブロック共重合体Cの割合が75~95重量%、ブロック共重合体Dの割合が5~25重量%、さらに好ましくは、ブロック共重合体Cの割合が80~92重量%、ブロック共重合体Dの割合が8~20重量%であり、さらにより好ましくは、ブロック共重合体Cの割合が84~92重量%、ブロック共重合体Dの割合が8~16重量%である。
 ブロック共重合体C、ブロック共重合体Dは、常法にしたがって製造することが可能であり、最も一般的な製造法としては、アニオンリビング重合法により、芳香族ビニル単量体と共役ジエン単量体とをそれぞれ逐次的に重合して重合体ブロックを形成し、必要に応じて、カップリング剤を反応させてカップリングを行う方法を挙げることができる。また、芳香族ビニル単量体、共役ジエン単量体、次いで芳香族ビニル単量体の順に逐次的に重合して重合体ブロックを形成する方法を用いてもよい。また、従来の重合法に従って、それぞれの重合体を別個に製造し、必要に応じて、他の重合体成分などを配合した上で、それらを混練や溶液混合などの常法に従って混合することにより、製造することができる。また、後述するように、ブロック共重合体CおよびDを同時に製造したりすることも可能である。
 また、本発明では、市販のブロック共重合体を用いることも可能であり、たとえば、「クインタック(登録商標)」(日本ゼオン社製)、「JSR-SIS(登録商標)」(JSR社製)、「Vector(登録商標)」(DEXCO polymers社製)、「アサプレン(登録商標)」・「タフプレン(登録商標)」・「タフテック(登録商標)」(旭化成ケミカルズ社製)、「セプトン(登録商標)」(クラレ社製)、「クレイトン(登録商標)」(クレイトン社製)などを使用することができる。
 ブロック共重合体Cは、芳香族ビニル単量体と共役ジエン単量体とを重合してジブロック鎖を形成し、ジブロック鎖とカップリング剤とを反応させてカップリングを行う方法により製造することが好ましい。
 より詳細には、ブロック共重合体C、ブロック共重合体Dは、以下の製造方法により、製造することが好ましい。すなわち、
 溶媒中で、重合開始剤の存在下で、芳香族ビニル単量体を含む単量体を重合することで、芳香族ビニル重合体ブロック鎖を含有する溶液を得る第1重合工程と、
 芳香族ビニル重合体ブロック鎖を含有する溶液に、共役ジエン単量体を含む単量体を添加し、重合することで、ジブロック鎖を含有する溶液を得る第2重合工程と、
 ジブロック鎖を含有する溶液に、カップリング剤を、ジブロック鎖が有する活性末端に対して、好ましくは0.05~1.0モル当量にて添加することで、ブロック共重合体C、およびブロック共重合体Dを得る反応工程と、
を備える製造方法が好ましい。
 上記の製造方法では、まず、溶媒中で重合開始剤を用いて、芳香族ビニル単量体を主成分として含む単量体を重合する(第1重合工程)。第1重合工程において用いる溶媒およびその使用量、重合開始剤およびその使用量は、上述したブロック共重合体Aおよびブロック共重合体Bの好適な製造方法における第1重合工程と、同様であってよい。また、上述したブロック共重合体Aおよびブロック共重合体Bの好適な製造方法における第1重合工程と同様に、ルイス塩基化合物を添加してもよい。また、上述したブロック共重合体Aおよびブロック共重合体Bの好適な製造方法における第1重合工程と同様の重合反応温度、重合時間および重合圧力を採用できる。
 以上のような条件で、溶媒中で重合開始剤を用いて、芳香族ビニル単量体を主成分として含む単量体を重合することにより、芳香族ビニル重合体ブロック鎖を含有する溶液を得ることができる。なお、重合により得られる芳香族ビニル重合体ブロック鎖は、通常、活性末端を有するものとなる。また、得られる芳香族ビニル重合体ブロック鎖は、芳香族ビニル重合体ブロック(Ar)を形成することとなるものであるため、この第1重合工程において用いる単量体の量は、芳香族ビニル重合体ブロック(Ar)の重量平均分子量に応じて決定すればよい。
 次いで、第1重合工程において得られた芳香族ビニル重合体ブロック鎖を含有する溶液に、共役ジエン単量体を主成分として含む単量体を添加し、重合を行う(第2重合工程)。これにより、ジブロック鎖を含有する溶液を得ることができる。なお、重合により得られるジブロック鎖は、通常、活性末端を有するものとなる。また、第2重合工程において得られるジブロック鎖は、上記第1重合工程において得られた芳香族ビニル重合体ブロック(Ar)を形成することとなる重合体鎖に、共役ジエン重合体ブロック(D)を形成することとなる重合体鎖がさらに結合されたものとなるため、この第2重合工程において用いる単量体の量は、共役ジエン重合体ブロック(D)の重量平均分子量に応じて決定すればよい。また、重合反応温度は、重合時間、重合圧力は、上記第1重合工程と同様の範囲内で制御すればよい。
 次いで、ジブロック鎖を含有する溶液に、カップリング剤を添加する(反応工程)。これにより、ジブロック鎖が有する活性末端と、カップリング剤とが反応して、2以上のジブロック鎖がカップリング剤の残基を介して結合し、ブロック共重合体Cが形成される。
 カップリング剤は、ジブロック鎖が有する活性末端と反応し得る官能基を1分子中に2個以上有するものであれば特に限定されないが、ジブロック鎖が有する活性末端と反応し得る官能基を1分子中に2~8個有するカップリング剤が好ましく、ジブロック鎖が有する活性末端と反応し得る官能基を1分子中に2~4個有するカップリング剤がより好ましい。また、カップリング剤は、ケイ素原子を含有することが好ましく、ハロゲン化シランおよびアルコキシシランがより好ましい。
 ジブロック鎖が有する活性末端と反応し得る官能基を1分子中に2個有するカップリング剤(2官能のカップリング剤)としては、例えば、ジクロロシラン、モノメチルジクロロシラン、ジメチルジクロロシランなどの2官能性ハロゲン化シラン;ジフェニルジメトキシシラン、ジフェニルジエトキシシランなどの2官能性アルコキシシラン;ジクロロエタン、ジブロモエタン、メチレンクロライド、ジブロモメタンなどの2官能性ハロゲン化アルカン;ジクロロスズ、モノメチルジクロロスズ、ジメチルジクロロスズ、モノエチルジクロロスズ、ジエチルジクロロスズ、モノブチルジクロロスズ、ジブチルジクロロスズなどの2官能性ハロゲン化スズ;ジブロモベンゼン、安息香酸、CO、2―クロロプロペンなどを用いることができる。これらのなかでも、2官能性ハロゲン化シランまたは2官能性アルコキシシランが特に好ましく用いられる。これらの2官能のカップリング剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いることもできる。
 ジブロック鎖が有する活性末端と反応し得る官能基を1分子中に3個有するカップリング剤(3官能のカップリング剤)としては、例えば、トリクロロエタン、トリクロロプロパンなどの3官能性ハロゲン化アルカン;メチルトリクロロシラン、エチルトリクロロシランなどの3官能性ハロゲン化シラン;メチルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどの3官能性アルコキシシラン;などが挙げられる。これらの3官能のカップリング剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いることもできる。
 ジブロック鎖が有する活性末端と反応し得る官能基を1分子中に4個有するカップリング剤(4官能のカップリング剤)としては、例えば、四塩化炭素、四臭化炭素、テトラクロロエタンなどの4官能性ハロゲン化アルカン;テトラクロロシラン、テトラブロモシランなどの4官能性ハロゲン化シラン;テトラメトキシシラン、テトラエトキシシランなどの4官能性アルコキシシラン;テトラクロロスズ、テトラブロモスズなどの4官能性ハロゲン化スズ;などが挙げられる。これらの4官能のカップリング剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いることもできる。
 ブロック共重合体Cのnの数、すなわちブロック共重合体Cの分岐数は、カップリング剤の種類、使用量、添加のタイミング、ルイス塩基化合物の使用量などを調整することにより、調整することができる。また、メタノールなどの反応停止剤を用いて、カップリング率を調整して、ブロック共重合体Cの分岐数を調整することもできる。また、ジブロック鎖が有する活性末端と反応し得る官能基の数が異なる2種以上のカップリング剤を組み合わせて用いることにより、ブロック共重合体Cの分岐数を調整することもできる。さらに、これらの手段によって、第2重合工程で得られたジブロック鎖を未反応のまま残留させ、最終的にブロック共重合体Dとして回収することができる。
 カップリング剤の使用量は、目的とするブロック共重合体Cの分岐数に応じて、適切な量に調整される。カップリング剤の使用量としては、ジブロック鎖が有する活性末端に対して、好ましくは0.25~1.00モル当量であり、より好ましくは0.40~1.0モル当量である。
 反応温度は、好ましくは10~150℃、より好ましくは30~130℃、さらに好ましくは40~90℃である。反応に要する時間は条件によって異なるが、通常、48時間以内、好ましくは0.5~10時間である。
 反応工程の後、ブロック共重合体Cおよびブロック共重合体Dを含有する溶液から、重合体成分を回収してもよい(回収工程)。回収の方法は、常法に従えばよく、特に限定されない。たとえば、反応終了後に、必要に応じて、水、メタノール、エタノール、プロパノール、塩酸、クエン酸などの重合停止剤を添加し、さらに必要に応じて、酸化防止剤などの添加剤を添加してから、溶液に直接乾燥法やスチームストリッピングなどの公知の方法を適用することにより、回収することができる。スチームストリッピングなどを適用して、重合体成分がスラリーとして回収される場合は、押出機型スクイザーなどの任意の脱水機を用いて脱水して、所定値以下の含水率を有するクラムとし、さらにそのクラムをバンドドライヤーあるいはエクスパンション押出乾燥機などの任意の乾燥機を用いて乾燥すればよい。以上のようにして得られるブロック共重合体は、常法に従い、ペレット形状などに加工してから使用に供してもよい。
 以上のようにして、ブロック共重合体Cおよびブロック共重合体Dを製造することができる。
<炭化水素化合物群>
 本発明のマスターバッチ組成物は、上記芳香族ビニル系重合体に、炭素数12以上60以下の範囲内にある炭素数の異なる複数の炭化水素化合物を特定量含有する炭化水素化合物群を配合してなるものである。
 本発明で用いる炭化水素化合物群は、炭素数12以上60以下の範囲内にある炭素数の異なる複数の炭化水素化合物を含有するものであり、すなわち、炭素数の異なる複数の炭化水素化合物の混合物であり、ガスクロマトグラフィー質量(GC-MS)分析により測定される、各炭素数の炭化水素化合物成分の検出面積比率が、炭素数12以上60以下の範囲内の成分の合計ピーク面積を100%としたときに、各炭素数の成分の合計ピーク面積が、下記の範囲にあるものである。なお、合計ピーク面積は、各成分の質量基準での含有割合を示すものである。
 すなわち、炭素数24以上27以下の成分の合計ピーク面積が5%以上であり、
 炭素数27以上30以下の成分の合計ピーク面積が5%以上であり、
 炭素数30以上33以下の成分の合計ピーク面積が5%以上であり、
 炭素数33以上36以下の成分の合計ピーク面積が5%以上であり、
 炭素数12以上27以下の成分の合計ピーク面積が45%以下であるものである。
 本発明によれば、このような炭化水素化合物群を用いることで、本発明のマスターバッチ組成物を、芳香族ビニル系ブロック共重合体に対する相溶性に優れ、これにより、芳香族ビニル系ブロック共重合体に配合した際に、優れたフィルム成形性を実現でき(たとえば、フィルム状に成形した場合に、フィルムの破断や外観不良の発生を有効に防止することができ)、しかも、幅広い温度領域における耐オゾンクラック性に優れたものとすることができる。
 各炭素数の成分の合計ピーク面積は、下記の範囲であることが好ましい。
 すなわち、炭素数24以上27以下の成分の合計ピーク面積が、好ましくは8~40%、より好ましくは10~36%、さらに好ましくは12~32%であり、さらにより好ましくは12~31%である。
 また、炭素数27以上30以下の成分の合計ピーク面積が、好ましくは8~50%、より好ましくは10~45%、さらに好ましくは12~40%であり、さらにより好ましくは15~39%である。
 また、炭素数30以上33以下の成分の合計ピーク面積が、好ましくは10~45%、より好ましくは12~40%、さらに好ましくは15~35%であり、さらにより好ましくは17~31%である。
 また、炭素数33以上36以下の成分の合計ピーク面積が、好ましくは7~30%、より好ましくは9~28%、さらに好ましくは10~25%であり、さらにより好ましくは11~24%である。
 さらに、炭素数12以上27以下の成分の合計ピーク面積が、好ましくは10~40%、より好ましくは11~38%、さらに好ましくは12~32%であり、さらにより好ましくは14~24%である。
 炭素数24以上27以下の成分の合計ピーク面積、炭素数27以上30以下の成分の合計ピーク面積が、それぞれ小さすぎると、芳香族ビニル系ブロック共重合体に配合した場合における、耐オゾンクラック性、特に、低温領域における耐オゾンクラック性に劣るものとなってしまう。また、炭素数30以上33以下の成分の合計ピーク面積、炭素数33以上36以下の成分の合計ピーク面積が、それぞれ小さすぎると、芳香族ビニル系ブロック共重合体に配合した場合における、耐オゾンクラック性、特に、高温領域における耐オゾンクラック性に劣るものとなってしまう。また、炭素数12以上27以下の成分の合計ピーク面積が大きすぎると、芳香族ビニル系ブロック共重合体に配合し、フィルム状成形体などに成形する際に、経時で、冷却ロール等の冷却体に、炭化水素化合物群に由来の炭化水素化合物が付着し、蓄積してしまい、これが成形体に転写され、外観不良が起こったり、ロールなどの冷却体での除熱効率が低下し、これにより製造安定性が低下してしまうこととなる。
 なお、本発明で用いる炭化水素化合物群は、実質的に炭素と水素のみからなる化合物の集合体を指している。従って、炭化水素骨格にさらに極性基や金属元素を含有する化合物(例えば、滑剤として使用される脂肪酸アミド、脂肪酸金属塩など)は含まれない。なお、本発明で用いる炭化水素化合物群としては、実質的に炭素と水素のみからなる炭素数12以上60以下の炭素数の成分の合計ピーク面積を100%としたとき、各炭素数の成分の合計ピーク面積が上記範囲にあるものであればよい。炭素数11以下の炭化水素化合物や、炭素数61以上の炭化水素化合物を含有するものであってもよいが、実質的に、炭素数12以上60以下の範囲内にある炭化水素化合物のみからなるものであることが好ましい(たとえば、99重量%以上の割合で、炭素数12以上60以下の範囲内にある炭化水素化合物を含有するものであることが好ましい)。
 本発明で用いる炭化水素化合物群は、各炭素数の成分の合計ピーク面積が上記範囲内である、市販のワックスなどを用いてもよく、また、各炭素数の成分の合計ピーク面積が上記範囲内となるように、市販のワックスを複数混合して用いてもよい。
 本発明のマスターバッチ組成物において、芳香族ビニル系重合体と、炭化水素化合物群との含有割合は、芳香族ビニル系重合体の割合が30~98重量%、炭化水素化合物群の割合が2~70重量%であり、好ましくは、芳香族ビニル系重合体の割合が50~95重量%、炭化水素化合物群の割合が5~50重量%であり、より好ましくは、芳香族ビニル系重合体の割合が60~90重量%、炭化水素化合物群の割合が10~40重量%である。
 なお、本発明のマスターバッチ組成物は、後述するように、芳香族ビニル-共役ジエン系共重合体などに配合し、芳香族ビニル系ブロック共重合体組成物とし、最終的に、フィルム状成形体などとする際に用いられるが、このようなフィルム状成形体などにおける、炭化水素化合物群の含有量は、マスターバッチ組成物中に含有される炭化水素化合物群の含有量とフィルム状成形体製造時のマスターバッチ組成物の添加量により必要に応じて調節することができる。フィルム状成形体などへのマスターバッチ組成物の配合量は、フィルム状成形体中の炭化水素化合物群の含有量が0.1~10重量%、好ましくは0.2~5重量%、さらに好ましくは0.3~3重量%、さらにより好ましくは0.8~2.5重量%となるように調節することが好ましい。
 マスターバッチ組成物中の芳香族ビニル系重合体の割合が少なすぎると、後述するように、芳香族ビニル-共役ジエン系共重合体などに配合した場合に、マスターバッチ組成物と芳香族ビニル-共役ジエン系共重合体との相溶性が低下してしまい、混練不良によってフィルムの外観不良やフィルム破断の原因になる。また、マスターバッチ製造中の混練不良や搬送不良によって、マスターバッチ製品を得ることが困難である。また、得られた製品がペレット等の形状を保つことができず、ハンドリング困難である。
 マスターバッチ組成物中の芳香族ビニル系重合体の割合が多すぎると、後述するように、芳香族ビニル-共役ジエン系共重合体などに配合し、フィルム状成形体を製造した際に多量のマスターバッチ組成物を配合することが必要になり、生産性よくフィルム状成形体を得ることができない。また、マスターバッチ組成物に使用される芳香族ビニル系重合体は計2回の加工を経ることになるため、マスターバッチ組成物の配合量が増えるとフィルム状成形体全体にかかる熱履歴が増加し、品質低下の原因になる。
 また、本発明のマスターバッチ組成物は、芳香族ビニル系重合体および炭化水素化合物群に加えて、さらに、必要に応じて、脂肪酸アミド、酸化防止剤、粘着付与樹脂、軟化剤、抗菌剤、光安定剤、紫外線吸収剤、染料(顔料)、滑剤等を含有してもよい。
 本発明のマスターバッチ組成物の調製方法としては、特に限定されず、上述した芳香族ビニル系重合体と、上述した炭化水素化合物群と、必要に応じて添加される各成分とを混合することにより調製すればよいが、たとえば、各成分を溶剤に溶解させ、均一に混合した後、溶剤を加熱などにより除去する方法、各成分を単軸押出機、二軸押出機、ニーダー、バンバリーミキサーなどで溶融混合する方法などが挙げられる。これらの方法のなかでも、混合をより効率的に行う観点より、溶融混合が好適であり、特に二軸押出機、バンバリーミキサーを使用することが好ましい。なお、溶融混合を行う際の温度は、特に限定されないが、通常、100~230℃の範囲である。
 マスターバッチ組成物の回収方法としては、ペレット化が好ましく、ストランドカットペレタイザー、ホットカットペレタイザー、水中カットペレタイザーを用いることができるが、特にホットカットペレタイザーと水中カットペレタイザーを好適に用いることができる。
 ペレットには互着防止のための外添剤を打粉しなくてもよいが、してもかまわない。打粉剤を外添する場合には、シリカ、タルク、ポリエチレンワックス、ポリプロピレンワックス、ステアリン酸マグネシウム、ステアリン酸カルシウム、脂肪酸アミドなどを用いることができる。外添量の範囲は、通常0.05~1.00phrである。
<芳香族ビニル系ブロック共重合体組成物>
 本発明の芳香族ビニル-共役ジエン系共重合体組成物は、少なくとも一つの芳香族ビニル重合体ブロックと、少なくとも一つの共役ジエン重合体ブロックとを有する、芳香族ビニル-共役ジエン系共重合体に、上記した本発明のマスターバッチ組成物を含有するものである。
 本発明によれば、上述した各炭素数の成分の合計ピーク面積が上記範囲内にある炭化水素化合物群を、芳香族ビニル系重合体に配合したマスターバッチの形態で、ベース樹脂となる芳香族ビニル-共役ジエン系共重合体に配合することで、優れた相溶性を実現でき、これにより、得られる芳香族ビニル-共役ジエン系共重合体組成物を、フィルム成形性に優れ(たとえば、フィルム状に成形した場合に、フィルムの破断や外観不良の発生を有効に防止することができ)、しかも、幅広い温度領域における耐オゾンクラック性に優れたものとすることができるものである。
 芳香族ビニル-共役ジエン系共重合体としては、少なくとも一つの芳香族ビニル重合体ブロックと、少なくとも一つの共役ジエン重合体ブロックとを有するものであればよく、特に限定されないが、本発明においては、下記の芳香族ビニル-共役ジエン系共重合体組成物を好適に用いることができる。
 すなわち、
 一般式(A):Ar1-D-Ar2で表されるブロック共重合体Aと、
 一般式(B):Ar1-D-Ar2で表されるブロック共重合体Bと、
 一般式(C):(Ar-D-Xで表されるブロック共重合体Cと、
 一般式(D):Ar-Dで表されるブロック共重合体Dと、
 を含有する芳香族ビニル-共役ジエン系共重合体組成物が好適に挙げられ、その好ましい態様等は、上記したマスターバッチ組成物において好適に用いられる、芳香族ビニル-共役ジエン系共重合体組成物と同様とすることができる。なお、上記芳香族ビニル-共役ジエン系共重合体組成物は、上記したマスターバッチ組成物の場合と同様に、ブロック共重合体Aとブロック共重合体Bとの混合物、および、ブロック共重合体Cとブロック共重合体Dとの混合物を得て、これらの混合することにより調整することができる。
 ブロック共重合体A~Dの重量比(A/B/C/D)としては、好ましくは10~30/20~40/12.5~49/1~37.5であり、より好ましくは15~27.5/22.5~35/37.5~47.5/2.5~12.5であり、さらに好ましくは17.5~25/25~32.5/40~46/4~10であり、さらにより好ましくは18~22/28~32/42~46/4~18である。
 本発明の芳香族ビニル-共役ジエン系共重合体組成物中における、芳香族ビニル-共役ジエン系共重合体と、マスターバッチ組成物との含有割合は、特に限定されないが、好ましくは、芳香族ビニル-共役ジエン系共重合体の割合が60~99重量%、マスターバッチ組成物の割合が1~40重量%であり、より好ましくは、芳香族ビニル-共役ジエン系共重合体の割合が80~98重量%、マスターバッチ組成物の割合が2~20重量%であり、さらに好ましくは、芳香族ビニル-共役ジエン系共重合体の割合が88~97重量%、マスターバッチ組成物の割合が3~12重量%であり、さらにより好ましくは、芳香族ビニル-共役ジエン系共重合体の割合が92~96重量%、マスターバッチ組成物の割合が4~8重量%である。含有割合を上記範囲とすることにより、本発明の作用効果をより適切に高めることができる。
 本発明の芳香族ビニル-共役ジエン系共重合体組成物は、さらに、必要に応じて、滑剤、酸化防止剤、粘着付与樹脂、軟化剤、抗菌剤、光安定剤、紫外線吸収剤、染料(顔料)等を含有してもよい。
 滑剤としては、合成系PE-WAX、酸化PE-WAX、PP系WAX、ステアリン酸マグネシウム、ステアリン酸カルシウム、脂肪酸アミド(アマイド)などが挙げられる。
 脂肪酸アミドは、脂肪族モノアミドであっても、脂肪族ビスアミドであってもよい。脂肪族モノアミドは、炭化水素基と1個のアミド基(-NHCO)とが結合してなる化合物であれば特に限定されないが、炭素数12以上の高級飽和脂肪酸のモノアミド(すなわち、炭素数12以上の鎖状アルキル基と1個のアミド基(-NHCO)とが結合してなる化合物)が好ましく用いられる。
 脂肪酸モノアミドの具体例としては、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミド等の飽和脂肪酸モノアミド;オレイン酸アミド、エルカ酸アミド等の不飽和脂肪酸モノアミド;等が挙げられる。
 酸化防止剤は、特に限定されず、例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-t-ブチル-p-クレゾール、ジ-t-ブチル-4-メチルフェノール、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール、2,4-ビス[(ドデシルチオ)メチル]-6-メチルフェノール、4,6-ビス(オクチルメチル)-o-クレゾール等のヒンダードフェノール系化合物;ジラウリルチオプロピオネート等のチオジカルボキシレートエステル類;トリス(ノニルフェニル)ホスファイト、ブチリデンビス (3-メチル-6-t-ブチルフェニル-ジ-トリデシルホスファイト等の亜燐酸塩類;を使用することができる。
 紫外線吸収剤は特に限定されず、トリアジン系、ベンゾエート系、ベンゾフェノン系、ベンゾトリアゾール系などの化合物を使用することができ、これらを組み合わせて使用することも可能である。中でもトリアジン系、ベンゾトリアゾール系化合物が好適であり、具体的には2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-[4,6-ビス(1,1’-ビフェニル-4-イル)-1,3,5-トリアジン-2-イル]-5-[(2-エチルヘキシル)オキシ]フェノールなどを用いることができる。
 光安定剤は特に限定されないが、例えばヒンダードアミン系光安定剤を使用することができ、例えば1,2,3,4-ブタンテトラカルボン酸テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)=ブタン-1,2,3,4-テトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノール及び3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、1,2,3,4-ブタンテトラカルボン酸と2,2,6,6-テトラメチル-4-ピペリジノール及び3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)=デカンジオアートなどが挙げられる。
 光安定剤は紫外線吸収剤と併用することができる。
 本発明の芳香族ビニル-共役ジエン系共重合体組成物は、芳香族ビニル-共役ジエン系共重合体と、マスターバッチ組成物と、必要に応じて用いられるその他の成分とを混合することにより調製すればよい。たとえば、各成分を溶剤に溶解させ、均一に混合した後、溶剤を加熱などにより除去する方法、各成分をニーダーなどで溶融混合する方法などが挙げられる。これらの方法のなかでも、混合をより効率的に行う観点より、溶融混合が好適である。特に、二軸押出機、単軸押出機、ニーダー、バンバリーミキサーによる溶融混合が好ましい。なお、溶融混合を行う際の温度は、特に限定されないが、通常、100~230℃の範囲である。
 本発明の芳香族ビニル-共役ジエン系共重合体組成物は、たとえば、フィルム、糸(弾性ストランド)、手袋、エラスティックバンド、コンドーム、OA機器、事務用等の各種ロール、梱包用フィルム・シート、電気電子機器用防振シート、防振ゴム、衝撃吸収シート、衝撃緩衝フィルム・シート、住宅用制振シート、制振ダンパー材等に用いられる成形材料用途、粘着テープ、粘着シート、粘着ラベル、ゴミ取りローラー等に用いられる粘着剤用途、衛生用品や製本に用いられる接着剤用途、衣料、スポーツ用品等に用いられる弾性繊維用途等の用途に用いることができる。
 本発明の芳香族ビニル-共役ジエン系共重合体組成物は、フィルムに好適に利用でき、特に、幅広い温度領域における耐オゾンクラック性に優れたものであるから、このような特性を活かし、紙オムツ、ナプキンパンツ、マスクなどの衛生用品用の伸縮性フィルム(衛生材料用のフィルム状の伸縮部材)に好適に利用できる。また、衛生用品用の伸縮性糸に利用してもよい。
 以下に、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。なお、「部」は、特に断りのない限り重量基準である。
 本実施例および比較例において行った試験方法は以下のとおりである。
〔各ブロック共重合体の重量平均分子量〕
 流速0.35ml/分のテトラヒドロフランをキャリアとする高速液体クロマトグラフィによりポリスチレン換算分子量として、重量平均分子量を求めた。装置は、東ソー社製HLC8320、カラムは昭和電工社製Shodex KF-404HQを3本連結したもの(カラム温度40℃)、検出器は示差屈折計および紫外検出器を用い、分子量の較正は東ソー社製の標準ポリスチレン(500から300万)の12点で実施した。
〔ブロック共重合体組成物における各ブロック共重合体の重量比〕
 上記の高速液体クロマトグラフィにより得られたチャートの各ブロック共重合体に対応するピークの面積比から求めた。
〔各ブロック共重合体のスチレン重合体ブロックの重量平均分子量〕
 Rubber Chem. Technol.,45,1295(1972)に記載された方法に従い、ブロック共重合体をオゾンと反応させ、水素化リチウムアルミニウムで還元することにより、ブロック共重合体のイソプレン重合体ブロックを分解した。具体的には、以下の手順で行なった。すなわち、モレキュラーシーブで処理したジクロロメタン100mlを入れた反応容器に、試料を300mg溶解した。この反応容器を冷却槽に入れ-25℃としてから、反応容器に170ml/minの流量で酸素を流しながら、オゾン発生器により発生させたオゾンを導入した。反応開始から30分経過後、反応容器から流出する気体をヨウ化カリウム水溶液に導入することにより、反応が完了したことを確認した。次いで、窒素置換した別の反応容器に、ジエチルエーテル50mlと水素化リチウムアルミニウム470mgを仕込み、氷水で反応容器を冷却しながら、この反応容器にオゾンと反応させた溶液をゆっくり滴下した。そして、反応容器を水浴に入れ、徐々に昇温して、40℃で30分間還流させた。その後、溶液を撹拌しながら、反応容器に希塩酸を少量ずつ滴下し、水素の発生がほとんど認められなくなるまで滴下を続けた。この反応の後、溶液に生じた固形の生成物をろ別し、固形の生成物は、100mlのジエチルエーテルで10分間抽出した。この抽出液と、ろ別した際のろ液とをあわせ、溶媒を留去することにより、固形の試料を得た。このようにして得られた試料につき、上記の重量平均分子量の測定法に従い、重量平均分子量を測定し、その値をスチレン重合体ブロックの重量平均分子量とした。
〔各ブロック共重合体のイソプレン重合体ブロックの重量平均分子量〕
 それぞれ上記のようにして求められた、ブロック共重合体の重量平均分子量から、対応するスチレン重合体ブロックの重量平均分子量を引き、その計算値に基づいてイソプレン重合体ブロックの重量平均分子量を求めた。
〔各ブロック共重合体のスチレン単位含有量〕
 上記の高速液体クロマトグラフィの測定における、示差屈折計と紫外検出器との検出強度比に基づいて求めた。なお、予め、異なるスチレン単位含有量を有する共重合体を用意し、それらを用いて、検量線を作成した。
〔炭化水素系ワックスの各成分の合計ピーク面積〕
 炭化水素系ワックスについて、キャピラリーガスクロマトグラフィー質量分析装置、カラムとしてアルミニウムコーティングされたキャピラリーカラムを用い、キャリアガスヘリウム、流量4ml/分、カラム温度180~390℃、昇温速度15℃/分の条件にて、ガスクロマトグラフィー質量(GC-MS)分析を行うことにより、炭素数12以上60以下の範囲内の成分の合計ピーク面積を100%とした場合における、下記成分の合計ピーク面積を求めた。
 ・炭素数22以上23以下の成分の合計ピーク面積
 ・炭素数24以上27以下の成分の合計ピーク面積
 ・炭素数27以上30以下の成分の合計ピーク面積
 ・炭素数30以上33以下の成分の合計ピーク面積
 ・炭素数33以上36以下の成分の合計ピーク面積
 ・炭素数12以上27以下の成分の合計ピーク面積
 ・炭素数37以上60以下の成分の合計ピーク面積
 なお、本実施例、比較例で用いた炭化水素系ワックス1~7は、いずれも、炭素数12以上60以下の範囲内にある炭化水素化合物であって、実質的に炭素原子および水素原子のみからなるものであった。
〔成形時のフィルム破断〕
 後述する実施例、比較例の方法にて、芳香族ビニル系ブロック共重合体組成物を用いて、15分間連続して、フィルム成形体を製造した際に、フィルム成形体の破断の有無を確認し、以下の基準で評価した。
  〇:フィルム成形体の破断は全く発生しなかった。
  ×:フィルム成形体の破断が確認された。
〔冷却ロールへの経時での付着量〕
 後述する実施例、比較例の方法にて、芳香族ビニル系ブロック共重合体組成物を用いて、60分間連続して、フィルム成形体を製造した際に、冷却ロールへの経時での付着物の付着量を確認し、以下の基準で評価した。
  〇:付着量≦0.5g/m
  ×:付着量>0.5g/m
〔フィルムの耐オゾンクラック性(10℃、23℃、40℃)〕
 芳香族ビニル系ブロック共重合体組成物のフィルムをチャック間距離4.0cmのテンションホルダーに固定した。次にチャック間距離を5.0cmまで伸ばし、フィルムを25%伸長状態で固定した。この状態で所定の温度環境で24時間以上静置した。次に、この固定したフィルムを、50%RH、オゾン濃度5pphmの恒温槽中に放置し、肉眼でクラックが確認できるまでの時間を測定し、以下の基準で評価した。なお、測定は、10℃、23℃、40℃の各温度にて行った。
   〇:2時間を超えてもクラックが発生しなかった。
   ×:2時間以内にクラックが発生した。
〔製造例1〕
 耐圧反応器に、シクロヘキサン23.3kg、N,N,N’,N’-テトラメチルエチレンジアミン(以下、「TMEDA」と称する)1.4ミリモル、スチレン1.04kgを添加し、40℃で攪拌しているところに、n-ブチルリチウム92.9ミリモルを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、反応器にイソプレン5.66kgを1時間にわたり連続的に添加した。イソプレンの添加を完了した後、さらに1時間重合した。イソプレンの重合転化率は100%であった。次いで、引き続き50~60℃を保つように温度制御しながら、スチレン1.04kgを1時間にわたり連続的に添加した。スチレンの添加を完了した後、さらに1時間重合し、活性末端を有するトリブロック鎖を形成させた。スチレンの重合転化率は100%であった。次いで、重合停止剤としてメタノール63.4ミリモルを添加して、混合することにより、活性末端を有するトリブロック鎖のうちの一部の活性末端を失活させて、スチレン-イソプレン-スチレントリブロック共重合体B1を形成させた。この後、さらに引き続き50~60℃を保つように温度制御しながら、スチレン0.98kgを1時間にわたり連続的に添加した。スチレンの添加を完了した後、さらに1時間重合し、活性末端を有するトリブロック鎖を形成させた。スチレンの重合転化率は100%であった。最後に、重合停止剤としてメタノール63.4ミリモルを添加して、混合することにより、トリブロック鎖の活性末端を全て失活させて、スチレン-イソプレン-スチレントリブロック共重合体A1を形成させた(表1に配合を示した。)。得られた反応液の一部を取り出し、上記測定方法に従ってブロック共重合体を評価した。結果を表2に示す。
 以上のようにして得られた反応液100部(重合体成分を30部含有)に、酸化防止剤として、2,6-ジ-tert-ブチル-p-クレゾール0.3部を加えて混合し、混合溶液を少量ずつ85~95℃に加熱された温水中に滴下して溶媒を揮発させて析出物を得て、この析出物を粉砕し、85℃で熱風乾燥することにより、ブロック共重合体A1およびブロック共重合体B1を含有する混合物を回収した。さらにこの混合物を単軸押出機にフィードして170℃で加熱溶融させ、水中カットペレタイザーを用いてペレット状に成形した。ペレットは互着防止のために、ペレット100部に対して0.2部のタルクを外添した。
 上記混合物におけるブロック共重合体A1とブロック共重合体B1との重量比(ブロック共重合体A1/ブロック共重合体B1)は40/60であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
〔製造例2〕
 耐圧反応器に、シクロヘキサン23.2kg、N,N,N’,N’-テトラメチルエチレンジアミン(以下、TMEDAと称する)1.5ミリモル、スチレン1.20kgを添加し、40℃で攪拌しているところに、n-ブチルリチウム101.7ミリモルを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、反応器にイソプレン6.53kgを1時間にわたり連続的に添加した。イソプレンの添加を完了した後、さらに1時間重合し、活性末端を有するジブロック鎖を形成させた。イソプレンの重合転化率は100%であった。次いで、カップリング剤として、ジメチルジクロロシラン25.4ミリモルおよびテトラメトキシシラン9.7ミリモルを添加して2時間カップリング反応を行い、スチレン-イソプレンカップリングブロック共重合体C1を形成させた。この後、重合停止剤としてメタノール203ミリモルを添加して、混合することにより、ジブロック鎖の活性末端を全て失活させて、スチレン-イソプレンジブロック共重合体D1を形成させた(表3に配合を示した。)。得られた反応液の一部を取り出し、上記測定方法に従ってブロック共重合体を評価した。結果を表4に示す。
 以上のようにして得られた反応液100部に、酸化防止剤として、2,6-ジ-tert-ブチル-p-クレゾール0.3部を加えて混合し、混合溶液を少量ずつ85~95℃に加熱された温水中に滴下して溶媒を揮発させて析出物を得て、この析出物を粉砕し、85℃で熱風乾燥することにより、ブロック共重合体C1およびブロック共重合体D1を含有する混合物を回収した。さらにこの混合物を単軸押出機にフィードして170℃で加熱溶融させ、水中カットペレタイザーを用いてペレット状に成形した。ペレットは互着防止のために、ペレット100部に対して0.2部のタルクを外添した。
 上記混合物におけるブロック共重合体C1とブロック共重合体D1との重量比(ブロック共重合体C1/ブロック共重合体D1)は90/10であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
〔製造例3〕
 耐圧反応器に、シクロヘキサン23.3kg、N,N,N’,N’-テトラメチルエチレンジアミン(以下、「TMEDA」と称する)3.6ミリモル、スチレン1.50kgを添加し、40℃で攪拌しているところに、n-ブチルリチウム120.5ミリモルを添加し、50℃に昇温しながら1時間重合した。スチレンの重合転化率は100%であった。引き続き、50~60℃を保つように温度制御しながら、反応器にイソプレン7.00kgを1時間にわたり連続的に添加した。イソプレンの添加を完了した後、さらに1時間重合した。イソプレンの重合転化率は100%であった。次いで、引き続き50~60℃を保つように温度制御しながら、スチレン1.50kgを1時間にわたり連続的に添加した。スチレンの添加を完了した後、さらに1時間重合し、活性末端を有するトリブロック鎖を形成させた。スチレンの重合転化率は100%であった。次いで、重合停止剤としてメタノール241ミリモルを添加して、混合することにより、活性末端を有するトリブロック鎖の活性末端を全て失活させて、スチレン-イソプレン-スチレントリブロック共重合体B2を形成させた(表5に配合を示した。)。得られた反応液の一部を取り出し、上記測定方法に従ってブロック共重合体を評価した。結果を表6に示す。
 以上のようにして得られた反応液100部(重合体成分を30部含有)に、酸化防止剤として、2,6-ジ-tert-ブチル-p-クレゾール0.3部を加えて混合し、混合溶液を少量ずつ85~95℃に加熱された温水中に滴下して溶媒を揮発させて析出物を得て、この析出物を粉砕し、85℃で熱風乾燥することにより、ブロック共重合体B2を含有する混合物を回収した。さらにこの混合物を単軸押出機にフィードして170℃で加熱溶融させ、水中カットペレタイザーを用いてペレット状に成形した。ペレットは互着防止のために、ペレット100部に対して0.2部のタルクを外添した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
〔実施例1〕
(マスターバッチ組成物の調製)
 製造例1で得られたブロック共重合体A1およびブロック共重合体B1との混合物55重量部と、炭化水素系ワックス1(商品名「(サンノックP、大内新興化学工業株式会社社製)40重量部と、紫外線吸収剤(2-[4,6-ビス(1,1’-ビフェニル-4-イル)-1,3,5-トリアジン-2-イル)-5-[(2-エチルヘキシル)オキシ]フェノール)5重量部とを、バンバリーミキサーを使用して、40~160℃で、20分間の条件で混合することで、マスターバッチ組成物を調製した。この組成物を溶融状態のままホットカットペレタイザーを備えた単軸押出機に供給し、ペレット状に成形した。なお、炭化水素系ワックス1について、ガスクロマトグラフィー質量(GC-MS)分析を行ったところ、各成分の合計ピーク面積は、表7に示す通りであった。
(芳香族ビニル-共役ジエン系共重合体組成物の調製)
 製造例1で得られたブロック共重合体A1およびブロック共重合体B1との混合物ペレット47.5重量部と、製造例2で得られたブロック共重合体C1およびブロック共重合体D1との混合物ペレット47.5重量部と、上記にて得られたマスターバッチ組成物ペレット5重量部とを、あらかじめ均一にドライブレンドした状態でT-ダイを装着した二軸押出機に投入した。そして、この二軸押出機内において、これらを200℃で加熱溶融、混練し、これを60分間連続して、冷却ロール上に押し出すことで冷却した後、巻取りロールで巻き取ることにより、平均厚さ0.05mmのフィルム状に成形した。この際に、上記方法にしたがって、成形時のフィルム破断および冷却ロールへの経時での付着量の測定を行った。また、得られたフィルム成形体について、耐オゾンクラック性の測定を行った。結果を表8に示す。なお、フィルムの成形条件の詳細は、以下のとおりである。
(フィルムの成形条件)
   配合物処理速度 : 5kg/時間
   フィルム引き取り速度 : 4m/分
   押出機温度 : 投入口40℃、T-ダイ200℃に調整
   スクリュー : フルフライト (ニーディングゾーン有り)
   押出機L/D : 30
   T-ダイ : 幅200mm、リップ0.5mm
   T-ダイ先端と冷却ロールとの距離 : 10mm
   冷却ロールの温度 : 25℃
〔実施例2~5、比較例1~5〕
(マスターバッチ組成物の調製)
 表8に示す配合組成に変更した以外は、実施例1と同様にして、マスターバッチ組成物を調製した。
 なお、各成分は以下の通りである。また、下記の炭化水素系ワックス2~6について、ガスクロマトグラフィー質量(GC-MS)分析を行ったところ、各成分の合計ピーク面積は、表7に示す通りであった。
 炭化水素系ワックス2:炭化水素系ワックス(商品名「オゾエース0355」、日本精蝋社製)
 炭化水素系ワックス3:炭化水素系ワックス(商品名「PW-135」、日本精蝋社製)50重量%と、炭化水素系ワックス(商品名「サンノックP」、大内新興化学工業社製)50重量%との混合物
 炭化水素系ワックス4:炭化水素系ワックス(商品名「オゾエース3201」、日本精蝋社製)
 炭化水素系ワックス5:炭化水素系ワックス(商品名「PW-135」、日本精蝋社製)
 炭化水素系ワックス6:炭化水素系ワックス(商品名「PW-115」、日本精蝋社製)
 炭化水素系ワックス7:炭化水素系ワックス(商品名「サンワックス171P」、三洋化成社製)
 ポリスチレン:ポリスチレン(商品名「GPPS 679」、PSジャパン社製)
 低密度ポリエチレン1:低密度ポリエチレン(商品名「ノバテックLL LJ802」、日本ポリエチレン社製)
 低密度ポリエチレン2:低密度ポリエチレン(商品名「Dowlex2047G」、ダウ社製)
(芳香族ビニル-共役ジエン系共重合体組成物の調製)
 そして、上記にて得られたマスターバッチ組成物を用いた以外は、実施例1と同様にして、芳香族ビニル-共役ジエン系共重合体組成物を調製し、フィルムの製造を行い、同様に測定・評価を行った。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表7、表8に示すように、芳香族ビニル系重合体30~98重量%と、各成分の合計ピーク面積が本発明所定の範囲にある炭化水素系ワックス(炭化水素化合物群)2~70重量%とを含むマスターバッチ組成物を使用した場合には、芳香族ビニル-共役ジエン系共重合体に配合し、フィルム状に成形した場合に、フィルムの破断を有効に防止することができ、冷却ロールへの経時での付着量も抑制され、これにより、このような付着に起因する外観不良の発生が抑制され、優れたフィルム成形性を実現できるものであり、しかも、幅広い温度領域における耐オゾンクラック性に優れたフィルムを与えるものであった(実施例1~5)。
 一方、炭化水素系ワックス(炭化水素化合物群)として、各成分の合計ピーク面積が本発明所定の範囲から外れるものを用いた場合には、フィルム状に成形した場合に、冷却ロールへの経時での付着量が多くなり、外観不良が発生する結果となったり、低温(10℃)、あるいは高温(40℃)における耐オゾンクラック性に劣る結果となった(比較例1~3)。
 また、マスターバッチ組成物を調製する際に、芳香族ビニル系重合体以外の重合体を用いた場合には、フィルム状に成形した場合に、フィルムの破断が起こる結果となった(比較例4,5)。

Claims (9)

  1.  少なくとも一つの芳香族ビニル重合体ブロックを含む芳香族ビニル系重合体30~98重量%と、
     炭素数12以上60以下の範囲内にある炭素数の異なる複数の炭化水素化合物を含有する炭化水素化合物群2~70重量%とを含有するマスターバッチ組成物であって、
     前記炭化水素化合物群は、ガスクロマトグラフィー質量(GC-MS)分析により測定される、各炭素数の炭化水素化合物成分の検出面積比率が、炭素数12以上60以下の範囲内の成分の合計ピーク面積を100%としたときに、
     炭素数24以上27以下の成分の合計ピーク面積が5%以上であり、
     炭素数27以上30以下の成分の合計ピーク面積が5%以上であり、
     炭素数30以上33以下の成分の合計ピーク面積が5%以上であり、
     炭素数33以上36以下の成分の合計ピーク面積が5%以上であり、
     炭素数12以上27以下の成分の合計ピーク面積が45%以下である、
     マスターバッチ組成物。
  2.  前記炭化水素化合物群は、ガスクロマトグラフィー質量(GC-MS)分析により測定される、各炭素数の炭化水素化合物成分の検出面積比率が、炭素数12以上60以下の範囲内の成分の合計ピーク面積を100%としたときに、
     炭素数24以上27以下の成分の合計ピーク面積が8~40%であり、
     炭素数27以上30以下の成分の合計ピーク面積が8~50%であり、
     炭素数30以上33以下の成分の合計ピーク面積が10~45%であり、
     炭素数33以上36以下の成分の合計ピーク面積が7~30%であり、
     炭素数12以上27以下の成分の合計ピーク面積が10~40%である、
     請求項1に記載のマスターバッチ組成物。
  3.  前記芳香族ビニル系重合体が、少なくとも一つの芳香族ビニル重合体ブロックと、少なくとも一つの共役ジエン重合体ブロックとを有する、芳香族ビニル-共役ジエン系共重合体である請求項1または2に記載のマスターバッチ組成物。
  4.  前記芳香族ビニル-共役ジエン系共重合体が、
     一般式(A):Ar1-D-Ar2で表されるブロック共重合体A(式中、Ar1は、重量平均分子量が5000~20000の芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロック、Ar2は、重量平均分子量が20000超~400000の芳香族ビニル重合体ブロックを表す。)と、
     一般式(B):Ar1-D-Ar2で表されるブロック共重合体B(式中、Ar1およびAr2は、それぞれ、重量平均分子量が5000~20000の芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロックを表す。)と、を含有する芳香族ビニル-共役ジエン系共重合体組成物である請求項3に記載のマスターバッチ組成物。
  5.  前記芳香族ビニル-共役ジエン系共重合体が、
     一般式(C):(Ar-D-Xで表されるブロック共重合体C(式中、Arは、芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロック、nは、2以上の整数、Xは、カップリング剤の残基を表す。)と、
      一般式(D):Ar-Dで表されるブロック共重合体D(式中、Arは、芳香族ビニル重合体ブロック、Dは、共役ジエン重合体ブロックを表す。)と、を含有する芳香族ビニル-共役ジエン系共重合体組成物である請求項3に記載のマスターバッチ組成物。
  6.  少なくとも一つの芳香族ビニル重合体ブロックと、少なくとも一つの共役ジエン重合体ブロックとを有する、芳香族ビニル-共役ジエン系共重合体と、請求項1~5のいずれかに記載のマスターバッチ組成物とを含む芳香族ビニル-共役ジエン系共重合体組成物。
  7.  請求項6に記載の芳香族ビニル-共役ジエン系共重合体組成物からなる弾性体。
  8.  請求項6に記載の芳香族ビニル-共役ジエン系共重合体組成物からなるフィルム。
  9.  請求項7に記載の弾性体、または請求項8に記載のフィルムを使用して得られる伸縮部材。
PCT/JP2023/007146 2022-03-15 2023-02-27 マスターバッチ組成物、およびこれを配合してなる芳香族ビニル-共役ジエン系共重合体組成物 WO2023176409A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022040626 2022-03-15
JP2022-040626 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023176409A1 true WO2023176409A1 (ja) 2023-09-21

Family

ID=88023479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007146 WO2023176409A1 (ja) 2022-03-15 2023-02-27 マスターバッチ組成物、およびこれを配合してなる芳香族ビニル-共役ジエン系共重合体組成物

Country Status (1)

Country Link
WO (1) WO2023176409A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161818A (ja) * 2005-12-12 2007-06-28 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物の製造方法
JP2016089031A (ja) * 2014-11-05 2016-05-23 住友ゴム工業株式会社 ゴム組成物の製造方法およびマスターバッチ
JP2019178241A (ja) * 2018-03-30 2019-10-17 日本ゼオン株式会社 組成物、ホットメルト粘接着剤組成物および組成物の製造方法
JP2019182983A (ja) * 2018-04-09 2019-10-24 住友ゴム工業株式会社 ゴム組成物
WO2020045496A1 (ja) * 2018-08-28 2020-03-05 日本ゼオン株式会社 組成物および弾性体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161818A (ja) * 2005-12-12 2007-06-28 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物の製造方法
JP2016089031A (ja) * 2014-11-05 2016-05-23 住友ゴム工業株式会社 ゴム組成物の製造方法およびマスターバッチ
JP2019178241A (ja) * 2018-03-30 2019-10-17 日本ゼオン株式会社 組成物、ホットメルト粘接着剤組成物および組成物の製造方法
JP2019182983A (ja) * 2018-04-09 2019-10-24 住友ゴム工業株式会社 ゴム組成物
WO2020045496A1 (ja) * 2018-08-28 2020-03-05 日本ゼオン株式会社 組成物および弾性体

Similar Documents

Publication Publication Date Title
US9340667B2 (en) Hydrogenated block copolymer pellet, polyolefin resin composition, and molded product thereof
JP5569310B2 (ja) 重合体組成物の製造方法
US8598271B2 (en) Block copolymer composition, film, and method for producing block copolymer composition
US8722800B2 (en) Composition for stretchable film
WO2010113882A1 (ja) 伸縮性フィルム用組成物
CA2899573C (en) Thermoplastic polymer composition, shoes and outer soles
JP6690234B2 (ja) 重合体の製造方法
JP7435451B2 (ja) 組成物および弾性体
EP3088463B1 (en) Block copolymer composition, production method therefor, and film
JP5354272B2 (ja) ブロック共重合体組成物の製造方法
JP2006282683A (ja) 伸縮性フィルム
JP7164933B2 (ja) ブロック共重合体組成物およびフィルム
JP2020508379A (ja) 本質的に非ブロッキング性の収縮スリーブ材料
JP5970812B2 (ja) ブロック共重合体組成物およびフィルム
JP5105107B2 (ja) 改良された熱可塑性エラストマー組成物
EA031388B1 (ru) Композиция смолы и формованное изделие в виде листа из нее
WO2023176409A1 (ja) マスターバッチ組成物、およびこれを配合してなる芳香族ビニル-共役ジエン系共重合体組成物
WO2023171535A1 (ja) 熱可塑性エラストマー
JP2020050761A (ja) 芳香族ビニル−共役ジエンブロック共重合体の成形体
CN115103879B (zh) 嵌段共聚物颗粒、黏合剂组合物及伸缩膜
WO2022085492A1 (ja) 樹脂組成物、伸縮性フィルム、シートおよびチューブ
JP2020105455A (ja) 成形材料
WO2020040175A1 (ja) ホットメルト弾性接着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770368

Country of ref document: EP

Kind code of ref document: A1