WO2023169005A1 - 道路交通车辆的调度方法及*** - Google Patents

道路交通车辆的调度方法及*** Download PDF

Info

Publication number
WO2023169005A1
WO2023169005A1 PCT/CN2022/135754 CN2022135754W WO2023169005A1 WO 2023169005 A1 WO2023169005 A1 WO 2023169005A1 CN 2022135754 W CN2022135754 W CN 2022135754W WO 2023169005 A1 WO2023169005 A1 WO 2023169005A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
intersection
time
signal light
Prior art date
Application number
PCT/CN2022/135754
Other languages
English (en)
French (fr)
Inventor
王雨琪
皮凯俊
杜求茂
屈海洋
李春明
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Publication of WO2023169005A1 publication Critical patent/WO2023169005A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/08Controlling traffic signals according to detected number or speed of vehicles

Definitions

  • the present invention relates to the field of rail transportation or road transportation, and in particular, a dispatching method and system for road transportation vehicles.
  • the existing bus dispatching system's control method to ensure that vehicles arrive at the station on time is to install vehicle sensing devices at fixed locations on the road between stations.
  • vehicle sensing devices When a vehicle is sensed passing by, the status data of the vehicle is sent to the remote dispatching room.
  • the dispatch office tells the driver whether he should speed up or slow down.
  • This method requires the cooperation of the remote dispatch room and is not very real-time.
  • the speed can only be adjusted when the vehicle passes the sensing device. When the vehicle stops abnormally in a place without a sensing device, it cannot be adjusted in time. Due to the speed of the vehicle, there is no guarantee that the vehicle will arrive on time.
  • the vehicle speed is limited to the maximum speed control, and the purpose is only to ensure that the vehicle does not speed on each road section.
  • the virtual rail train is not the vehicle with the highest priority, so the smooth operation and on-time arrival of the virtual rail train cannot be achieved.
  • the technical problem to be solved by the present invention is to provide a dispatching method and system for road traffic vehicles in view of the deficiencies in the existing technology to ensure that road traffic vehicles pass the intersection with the highest priority and ensure that the vehicles arrive at the station on time.
  • a road traffic vehicle which includes the following steps:
  • the invention is aimed at vehicles that stop at a stop for too long due to too many passengers at the previous stop, or inter-regional traffic problems (traffic accidents or other vehicles accidentally breaking into special road sections) that cause inter-regional running time to be too long, or intersections that encounter red lights.
  • the optimal speed of the vehicle is calculated based on the speed limit information of the road section, and a control method that combines train speed (calculates the optimal speed of the vehicle) control and signal light phase control is adopted , through global optimization, the overall traffic efficiency will not be affected while ensuring that the train arrives at the station on time.
  • the invention can ensure that the virtual rail train passes the intersection with the highest priority at all times, and can more accurately realize the vehicle arriving at the station on time.
  • step S1 Before step S1, it also includes:
  • step S2 Determine whether the vehicle is in the station. If so, determine whether the parking time has exceeded based on the stop time record and planned stop time; otherwise, proceed to step S2.
  • the vehicle before judging whether the vehicle is in the station, it also includes: judging whether the real-time speed of the vehicle is 0. If so, judging whether the vehicle is in the station according to the real-time position information of the vehicle and the station position information; otherwise, the vehicle operates normally.
  • the present invention first determines whether the vehicle speed is 0. If so, it determines whether the vehicle is in the station. If not, the vehicle operates normally.
  • the invention first determines whether the vehicle has parking behavior, and only performs subsequent operations if there is parking behavior, which simplifies the dispatching process and improves dispatching efficiency.
  • the vehicle speed optimization strategy when a parking behavior occurs, it is necessary to determine whether the vehicle is in the station. If so, it indicates that the vehicle has parked and entered the station at this time. It is further necessary to determine whether the parking timeout has timed out. According to whether the parking timeout has expired, it is determined whether to adopt the vehicle speed optimization strategy. If not, it indicates that If the vehicle stops outside the station due to a traffic accident or other reasons, the vehicle speed optimization strategy is directly used. The function of this process is to determine why the vehicle stopped, thereby achieving accurate dispatch.
  • step S2 the optimized speed of the vehicle satisfies the following conditions:
  • V up , t up and S up respectively represent the final speed, acceleration time and displacement of the vehicle's acceleration section
  • V down , t down and S down respectively represent the initial speed, deceleration time and displacement of the vehicle's deceleration section
  • V un and t un and S un respectively represent the speed, time and displacement of the vehicle in the uniform speed stage, where V un is the vehicle's optimized operating speed calculated by the vehicle speed control module in order to achieve the purpose of the vehicle arriving at the station on time
  • T jpin -T b represents the vehicle When starting from the current parking position, the remaining road segment travel time to reach the next stop on time
  • S j -S b represents the distance between the vehicle's current position and the next stop
  • V lim represents the maximum speed limit of the road segment.
  • the virtual rail train runs on a fixed line according to the typical operation chart curve.
  • the typical vehicle operation chart curve is mainly established based on the previous operation simulation calculation and operation test results of the vehicle. The establishment of this curve needs to consider many factors, including different road slopes, curve conditions, vehicle load conditions, etc.
  • the vehicle's typical operating diagram curve and the vehicle's current operating conditions the slope it is on, current speed, load conditions, etc.
  • the vehicle's operating process curve in a specified period of time in the future can be determined (including the vehicle's operating process curve in the future). (Acceleration, speed, displacement at any time within a period of time).
  • the vehicle's operating curve needs to be re-planned.
  • the total distance of this curve is the distance between the vehicle's current position and the next stop
  • the total time of this curve is the remaining driving time for the vehicle to arrive at the station on time.
  • This curve includes the vehicle's acceleration section curve and constant speed section. Curve and deceleration section curve, the length distribution strategy of the three-segment curve is determined with the goal of achieving the constraints required by the above formula.
  • This invention calculates the optimized speed of the vehicle. Under normal operating conditions, the vehicle's operating process curve between each station is planned. The vehicle can ensure that it arrives on time at each station by running according to this curve. When other unexpected situations occur (vehicle parking timeout or stopping midway between stations), the operation process curve will be re-planned, and the vehicle will operate according to the re-planned operation process curve, and the planning goal of the vehicle operation process curve is is the above formula. Compared with the existing technology, the present invention can ensure that the virtual rail train accurately arrives at the station on time.
  • the implementation process of controlling the phase change of the signal light according to the vehicle status information includes: when the vehicle module detects that the vehicle is K meters away from the stop line of the first intersection, and the vehicle speed still maintains driving at the optimized speed V un , then the first intersection
  • the signal light receiver receives the vehicle status information and the vehicle's optimized speed V un sent from the vehicle module, and sends it to the signal light control machine.
  • the signal light control machine combines the current phase information of the signal light to control the signal light time to be extended or shortened or unchanged, so that the signal light time is extended or shortened or unchanged.
  • the vehicle maintains the optimized speed V un when passing through the first intersection; K is the set distance threshold;
  • the vehicle-mounted module When the vehicle-mounted module detects that the vehicle has passed the first intersection and is K meters away from the stop line of the second intersection, the vehicle maintains the optimal speed V un and the signal light receiver at the second intersection receives the signal sent from the vehicle-mounted module.
  • the vehicle status information and the optimized speed of the vehicle are sent to the signal light control machine.
  • the signal light control machine controls the change of the signal light time of the second intersection so that the vehicle maintains the optimized speed V un when passing through the second intersection;
  • the control principle of the present invention for each intersection signal light is to ensure that the vehicle can pass the intersection smoothly at the current speed without changing the speed.
  • This control method decouples the speed control of the vehicle and the phase control of the signal light.
  • the speed control of the vehicle only needs to consider the location and arrival time of each station, and does not need to consider the influence of the intersection, while the phase control of the signal light only needs to consider Considering the optimized current speed and position of the vehicle, there is no need to consider how the vehicle controls the speed.
  • the control process is simpler and easier to implement in engineering.
  • the signal light control machine combines the current phase information of the signal light to control the signal light time to extend, shorten or remain unchanged.
  • the steps include:
  • the signal light controlling the i-th intersection changes color after time T i , where: S cross represents the length of the intersection, V un represents the optimized speed of the vehicle, T ir represents the remaining time of the red light, T bArrive represents the time required for the vehicle to reach the intersection, T ig represents the remaining time of the green light, T bCross represents the time required for the vehicle to pass the intersection, or L b represents the vehicle length.
  • the judgment principle of the present invention is: when the vehicle is K meters away from the nearest intersection (the determination principle of the distance K is mainly to ensure that the vehicle-mounted equipment and the communication equipment at the intersection can communicate normally, the specific value can be determined according to the communication distance of the equipment)
  • the signal light is currently a green light
  • the signal light is currently a red light, it is To ensure that the vehicle passes the intersection smoothly, the signal light phase needs to be switched to green when the vehicle reaches the intersection, so only the time required for the vehicle to run from the current position to the intersection needs to be considered.
  • the present invention also provides a dispatching system for road traffic vehicles, which includes a computer device; the computer device is configured or programmed to execute the steps of the above dispatching method of the present invention.
  • the road traffic vehicles in the present invention include virtual rail trains, trams, BRT and other similar rapid road traffic vehicles (vehicles aiming to arrive at the station quickly and on time).
  • the present invention can send accurate optimized speed instructions to the driver in real time, and by controlling the phase changes of the signal lights, it can always ensure that the virtual rail train passes the intersection with the highest priority.
  • This method realizes dual control of vehicle speed and signal lights. , can realize the vehicle arriving at the station on time more accurately, and solve the problem of road traffic vehicles stopping for too long, causing the train to fail to arrive at the next station on time;
  • the present invention can reduce road traffic problems and solve the problem of other vehicles encroaching on the dedicated lane and delaying the journey;
  • the present invention optimizes the traffic light phase, improves the efficiency of train operation, and achieves the purpose of arriving at the station quickly and on time.
  • Figure 1 is an overall flow chart of a road traffic vehicle dispatching method according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of the virtual rail train operation mode and train speed optimization according to the embodiment of the present invention.
  • Figure 3 is a schematic diagram of the speed optimization and intersection signal control process of the virtual rail train according to the embodiment of the present invention:
  • 1 represents the vehicle module
  • 2 represents the electronic map module
  • 3 represents the speed control module
  • 4 represents the signal light receiver
  • 5 represents the signal light phase control machine.
  • embodiments of the present invention propose a scheduling method and system that combines speed control and signal light phase control by optimizing the virtual rail train to solve the problem of excessive vehicle stop time. long or encounter road traffic problems that delay the trip.
  • the system includes an electronic map module, a vehicle-mounted module (such as an information collection module on an intelligent driving vehicle), a speed control module, a wireless signal receiver and a signal light phase control machine.
  • the electronic map module is used to save and number the location information of each station and intersection on the operating route, as well as the speed limit information of each road section;
  • the vehicle-mounted module has the ability to record time in real time, sense vehicle position and speed in real time, and send vehicle status information to intersections.
  • the speed control module is mainly used to calculate the optimal speed command of the vehicle and send it to the vehicle driver and on-board module.
  • the intersection signal light receiver is mainly used to receive the vehicle status information and the vehicle's optimized speed information and send it to the signal light phase control machine; the signal light phase control machine is mainly used to control the signal light phase changes to ensure that the vehicle reaches the intersection and passes directly through the intersection without waiting. .
  • the speed control module receives the vehicle position information sensed by the on-board module and the road section speed limit information and intersection information provided by the electronic map module. If there is no intersection on the current road section, Then the optimized speed of the vehicle is directly calculated based on the vehicle's operation schedule and sent (prompt) to the vehicle driver. If there is an intersection in the road segment, when the vehicle speed is optimized through the speed control module, the intersection signal machine receives the optimized vehicle speed. The vehicle status information is sent to the signal phase control machine, and the signal phase control machine controls the phase change of the signal light to ensure that the vehicle passes the intersection smoothly.
  • Step 1 Real-time detection of vehicle speed
  • the speed of the vehicle is detected in real time through the on-board module on the vehicle. When the vehicle speed is not 0, the normal operation plan is maintained. When the vehicle speed is detected to be 0, the next step is judged.
  • Step 2 Determine whether the vehicle is in the station
  • the vehicle location information is sensed by the on-board module on the vehicle and compared with the station location in the electronic map. If it is the same as the position of a station in the electronic map, it means that the vehicle is inside the station, then jump to step 3 for judgment; if it is different from the position of the station on the electronic map, it means that the vehicle is outside the station, then jump to step 4 for judgment. .
  • Step 3 Determine whether the vehicle has timed out when stopping at the station
  • the vehicle position sensed by the vehicle-mounted module When the vehicle position sensed by the vehicle-mounted module is the same as the station position in the electronic map, it indicates that the vehicle is located in the station, and the time point T jin in the vehicle-mounted module is recorded for the first time; when the vehicle speed sensed by the vehicle-mounted module changes from 0 When, it indicates that the vehicle begins to leave the station, and the time point T jout in the vehicle module is recorded for the second time. Then the vehicle stopping time is:
  • T jm T jout -T jin
  • T jm represents the planned stop time in the vehicle operation plan.
  • Step 4 Calculate vehicle optimization speed
  • the virtual rail train has a fixed operation mode, which is divided into the maximum acceleration stage, the maximum speed uniform stage and the maximum deceleration stage.
  • the maximum speed ensures that the vehicle arrives at the station on time.
  • the vehicle's speed control module obtains the location information and planned arrival time of the next stop from the electronic map, and obtains the vehicle's current location information and current time from the on-board module. It is always based on the premise that the vehicle can pass the intersection smoothly without stopping. .
  • the optimal speed of the vehicle can be calculated. The calculation process is:
  • the initial speed is 0, and the maximum speed, acceleration time, and acceleration section displacement of the acceleration section are calculated (determined based on the acceleration section curve in the typical vehicle operation diagram);
  • the final speed is 0, and the initial speed, deceleration time, and deceleration section displacement of the vehicle in the deceleration section when the vehicle starts to decelerate are back-calculated (determined based on the deceleration section curve in the typical vehicle operation chart);
  • V up , T up , S up respectively represent the final speed, acceleration time and displacement of the vehicle acceleration section
  • V down , T down , S down respectively represent the initial speed, deceleration time and displacement of the vehicle deceleration section
  • V un , T un , and S un respectively represent the speed, time and displacement of the vehicle in the constant speed stage
  • T jpin -T b indicates the remaining road segment travel time when the vehicle starts running and arrives at the station on time
  • S j -S b represents the distance (distance) between the vehicle's current position and the next stop
  • V lim represents the maximum speed limit of the road segment.
  • Step 5 Determine whether there is an intersection between the current location of the vehicle and the next stop
  • the vehicle-mounted module Through the vehicle position information provided by the vehicle-mounted module, it can be known which two stations the vehicle is in the electronic map, and then it can be known through the electronic map whether there is an intersection between the two stations.
  • Step 6 Intersection signal light phase change strategy
  • the signal light control machine needs to combine the current phase information of the signal light to determine whether the signal time is Extend or shorten or remain unchanged so that the vehicle maintains the optimal speed V un when passing through the first intersection;
  • the vehicle-mounted module When the vehicle-mounted module detects that the vehicle has passed the first intersection and is 100m away from the stop line of the second intersection, the vehicle still maintains the optimized speed V un without an accident causing the vehicle to slow down or stop.
  • the signal light receiver at the second intersection then receives the vehicle status information and the vehicle's optimized speed information sent from the vehicle-mounted module, and sends them to the signal light control machine, thereby controlling the change of the signal light time at the second intersection, so that the vehicle passes through Maintain the optimized speed V un at the second intersection;
  • the rear intersection lights are also controlled using this method until the vehicle passes all intersections;
  • Green light time extension If the current corresponding signal light (i.e., traffic light) is in the green light phase, and the vehicle cannot pass the intersection within the corresponding remaining green light time, the green light extension mechanism will be used;
  • Red light time truncation If the current corresponding signal light is in red light phase, and the remaining time of the red light is long, and the red light phase has not ended when the vehicle reaches the intersection stop line, the red light truncation mechanism will be adopted;
  • the time T bArrive required for the vehicle to arrive at the i-th intersection is calculated.
  • the calculation formula is:
  • L b represents the vehicle length.
  • K is preferably 100 meters.
  • the signal light controlling the i-th intersection changes color after time T i (the red light is cut off or the green light is extended or no processing is performed), where:
  • S cross represents the length of the intersection
  • V un represents the optimized speed of the vehicle
  • T i represents the time from the current moment to the change of the signal light color
  • T ir represents the remaining time of the red light
  • T bArrive represents the time required for the vehicle to reach the intersection.
  • time, T ig represents the remaining time of the green light
  • T bCross represents the time required for the vehicle to pass the intersection.
  • 1 represents the vehicle module
  • 2 represents the electronic map module
  • 3 represents the speed control module
  • 4 represents the signal light receiver
  • 5 represents the signal light phase control machine.
  • Figure 3 shows: when the vehicle is 100 meters away from the intersection stop line, the vehicle sends the optimized speed information and vehicle status information to the signal light receiver, and the signal light receiver then passes it to the signal light phase control machine.
  • the signal light phase control machine Control the signal light phase to ensure that vehicles pass through the intersection smoothly.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种道路交通车辆的调度方法及***,当车辆在车站停车超时或因交通异常而停车时,获取车辆位置信息、路段限速信息和交叉路口信息;判断当前路段是否有交叉路口,若是,则根据路段限速信息计算车辆的优化速度,获取优化速度后的车辆状态信息,根据所述车辆状态信息控制信号灯相位变化;若否,则结合车辆的运营时刻表直接计算车辆的优化速度,并控制车辆以该优化速度运行。本发明能够实时向驾驶员发送精确的优化速度指令,且通过对信号灯相位变化的控制,能够时刻保证虚拟轨道列车以最优先级通过交叉路口,该方法实现了车辆速度和信号灯的双重控制,能更加精准的实现车辆准点到站。

Description

道路交通车辆的调度方法及*** 技术领域
本发明涉及轨道交通或道路交通领域,特别是一种道路交通车辆的调度方法及***。
背景技术
中小型城市在地铁等轨道交通方式的建设上受到限制,大量乘用车的出现导致城市道路容易发生拥挤,而虚拟轨道列车具有载客量大的特点,保证虚拟轨道列车的畅通运行以及准点到站,能够解决大多数人的出行问题,相比之下,虚拟轨道列车可以减小乘用车的使用量,因此可以很大程度上解决交通拥挤问题。
现有的公交调度***对于保证车辆准点到站的控制方法就是在站与站之间的道路固定位置安装车辆感应装置,当感应到车辆经过时,发送车辆的状态数据到远程调度室,由远程调度室告知驾驶员应该加速或减速。这种方法需要远程调度室的配合,且实时性不高,只有在车辆通过感应装置时,才可进行速度的调整,当车辆在没有感应装置的地方出现异常停车的情况时,便无法及时调整车辆速度,因此无法保证车辆准点到达。
除此之外,现有的针对虚拟轨道列车的速度结合信号灯相位变化控制的车辆调度方法中,对车辆速度仅限于最高速度的控制,目的只是为了保证车辆在各路段不会发生超速的行为,且在信号灯相位控制策略中,并不是以虚拟轨道列车为最优先级通过的车辆,无法实现虚拟轨道列车的畅通运行及准点到站。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种道路交通车辆的调度方法及***,保证道路交通车辆以最优先级通过交叉路口,确保车辆准点到站。
为解决上述技术问题,本发明所采用的技术方案是:一种道路交通车辆,包括以下步骤:
S1、当车辆在车站停车超时或因交通异常而停车时,获取车辆位置信息、路段限速信息和交叉路口信息;
S2、判断当前路段是否有交叉路口,若是,则根据路段限速信息计算车辆的优化速度,获取优化速度后的车辆状态信息,根据所述车辆状态信息控制信号灯相位变化;若否,则结合车辆的运营时刻表直接计算车辆的优化速度,并控制车辆以该优化速度运行。
本发明针对车辆因为上一站乘客太多,导致停站时间过长,或区间交通路况问题 (交通事故或者其它车辆误闯入专用路段)导致区间运行时间过长,或交叉路口遇到红灯而导致车辆被迫停车等待等原因而导致无法准点到站的问题,根据路段的限速信息计算车辆的优化速度,采用列车速度(计算车辆的优化速度)控制和信号灯相位控制相结合的控制方法,通过全局优化,在确保列车在准时到站的前提下,不影响全局交通效率。本发明能够时刻保证虚拟轨道列车以最优先级通过交叉路口,能更加精准的实现车辆准点到站。
步骤S1之前,还包括:
判断车辆是否在站内,若是,则根据停站时间记录和计划停站时间判断停车是否超时;否则,进入步骤S2。
本发明中,判断车辆是否在站内之前,还包括:判断车辆实时速度是否为0,若是,则根据车辆实时位置信息和车站位置信息,判断车辆是否在站内;否则,车辆正常运行。
本发明首先判断车辆速度是否为0,若是,则判断车辆是否在站内,若不是,则车辆正常运行。本发明首先判断车辆有无发生停车行为,有停车行为才进行后续操作,简化了调度过程,提高了调度效率。
本发明中,当发生停车行为后,需要判断车辆是否在站内,若是,表明车辆此时停车进站,需要进一步判断停车是否超时,根据停车是否超时确定是否采用车辆速度优化策略,若不是,表明车辆在站外因为交通事故或其他原因停车,则直接采用车辆速度优化策略,该过程的作用是判断车辆是因为什么原因而停车,从而实现精准调度。
上述步骤S2中,所述车辆的优化速度满足以下条件:
Figure PCTCN2022135754-appb-000001
其中,V up、t up、S up分别表示车辆加速段的末速度、加速时间和位移;V down、t down、S down分别表示车辆减速段的初速度、减速时间和位移;V un、t un、S un分别表示车辆匀速阶段的速度、时间和位移,其中,V un即为车辆速度控制模块为实现车辆准点到站的目的,计算得到的车辆优化运行速度;T jpin-T b表示车辆从当前停车位置开始运行时,准时到达下一站剩余的路段行驶时间;S j-S b表示车辆当前位置与下一站之间的距离;V lim表示道路路段的最高限速。
传统的公交车辆,只保证其在首末站能够准点到站,不会精确的考虑车辆在每一站的到站时间,车辆的运行过程曲线没有规律,针对车辆停站超时或其它交通事故导致车辆停车的问题,驾驶员只有根据经验对车辆进行提速,以保证车辆尽可能准确地到达下一站,但仍无法精准地保证车辆到站时间。
虚拟轨道列车是在固定线路上根据典型运行图曲线运行的,车辆典型运行图曲线主要是结合前期对车辆的运行仿真计算和运行试验结果来建立的,该曲线的建立需要考虑很多因素,包括不同的道路坡道、弯道条件、车辆的载重条件等。根据车辆的典型运行图曲线,以及车辆当前的运行工况(所处的坡道、当前的速度、载重条件等),可以确定车辆在未来规定的一段时间内的运行过程曲线(包括车辆在未来一段时间内任意时刻的加速度、速度、位移),基于此,当车辆实际在站内停车超时或者在站与站之间的道路由于其他交通事故中途停车时,则需要对车辆的运行曲线重新作规划,该曲线的总距离即为车辆当前位置与下一站之间的距离,该曲线的总时间即为车辆保证准点到站还剩余的行车时间,该曲线中包括车辆的加速段曲线、匀速段曲线和减速段曲线,三段曲线的长度分配策略就以达到上述公式所要求的约束条件为目标确定。
本发明计算车辆的优化速度,在正常运营情况下,对车辆在每个站与站之间的运行过程曲线都作出规划,车辆按照该曲线运行就能保住在每个站都能准点到达,当发生其它意外情况时(车辆停站超时或站与站之间中途停车),则对运行过程曲线重新作规划,车辆按照重新规划好的运行过程曲线运行,而对车辆运行过程曲线的规划目标即为上述公式。相比于现有技术,本发明可以确保虚拟轨道列车精确的实现车辆准点到站。
根据车辆状态信息控制信号灯相位变化的实现过程包括:当车载模块检测到车辆距离第一个交叉路口的停止线为K米时,车辆速度仍然保持在优化速度V un行驶,则第一个交叉路口的信号灯接收机接收来自车载模块发送的车辆状态信息以及车辆的优化速度V un,并发送给信号灯控制机,信号灯控制机结合信号灯当前的相位信息,控制信号灯时间延长或缩短或不变,以使车辆在通过第一个交叉路口时保持优化速度V un;K为设定的距离阈值;
当车载模块检测到车辆已通过第一个交叉路口,且距离第二个交叉路口的停止线K米时,车辆保持优化速度V un行驶,第二个交叉路口的信号灯接收机接收来自车载模块发送的车辆状态信息和车辆的优化速度,并发送给信号灯控制机,信号灯控制机控制第 二个交叉路口的信号灯时间改变,以使车辆在通过第二个交叉路口时保持优化速度V un
依此类推,直至车辆通过所有交叉路口。
本发明对每一个交叉路口信号灯的控制原则为:保证车辆不需要改变速度,以当前速度便能顺利通过交叉路口。这样的控制方式,将车辆的速度控制和信号灯的相位控制进行解耦,车辆的速度控制只需要考虑各站的位置和到站时间,不需要考虑交叉路口的影响,而信号灯的相位控制只需要考虑车辆优化后的当前速度和位置,不需要考虑车辆如何进行速度控制,控制过程更简单,也更便于工程上的实现。
信号灯控制机结合信号灯当前的相位信息,控制信号灯时间延长或缩短或不变的步骤包括:
控制第i个交叉路口的信号灯在时间T i后改变颜色,其中:
Figure PCTCN2022135754-appb-000002
S cross表示交叉路口的长度,V un表示车辆的优化速度,T ir表示红灯的剩余时间,T bArrive表示车辆到达交叉路口需要的时间,
Figure PCTCN2022135754-appb-000003
T ig表示绿灯的剩余时间,T bCross表示车辆通过交叉路口需要的时间,
Figure PCTCN2022135754-appb-000004
Figure PCTCN2022135754-appb-000005
L b表示车辆长度。
本发明的判断原则为:当车辆距离最近的一个交叉路口K米(该距离K的确定原则主要是保证车载设备与交叉路口的通讯设备能够正常通讯,具体取值可根据设备的通讯距离确定)时,若信号灯当前为绿灯,则需要考虑绿灯当前所剩时间是否足够车辆通过交叉路口,所以需要考虑车辆以当前速度从进入交叉路口到完全通过交叉路口的时间;若信号灯当前为红灯,为保证车辆顺利通过交叉路口,需要在车辆到达交叉路口时,使得信号灯相位切换为绿灯,所以只需要考虑车辆从当前位置运行到交叉路口所需要的时间即可。
上述技术方案中,K=100。
本发明还提供了一种道路交通车辆的调度***,其包括计算机设备;所述计算机设备被配置或编程为用于执行本发明上述调度方法的步骤。
本发明中的道路交通车辆,包括虚拟轨道列车、有轨电车、BRT以及其它类似的快速道路交通车辆(以快速、准点到站为目标的车辆)。
与现有技术相比,本发明所具有的有益效果为:
1、本发明能够实时向驾驶员发送精确的优化速度指令,且通过对信号灯相位变化的控制,能够时刻保证虚拟轨道列车以最优先级通过交叉路口,该方法实现了车辆速度和信号灯的双重控制,能更加精准的实现车辆准点到站,解决了道路交通车辆出现停站时间过长导致列车无法准点到达下一站的问题;
2、本发明可以减少道路交通问题,解决其他车辆侵占专用道耽误行程的问题;
3、本发明优化了红绿灯相位,提高了列车运行的效率,达到了快速、准点到站的目的。
附图说明
图1为本发明实施例道路交通车辆的调度方法的整体流程图;
图2为本发明实施例虚拟轨道列车运营模式及列车速度优化示意图;
图3为本发明实施例虚拟轨道列车进行速度优化以及交叉路口信号灯控制过程示意图:
图3中:1表示车载模块,2表示电子地图模块,3表示速度控制模块,4表示信号灯接收机,5表示信号灯相位控制机。
具体实施方式
针对运行在固定路线且具有固定运营方式的虚拟轨道列车,本发明实施例提出了一种通过优化虚拟轨道列车的速度控制和信号灯相位控制相结合的调度方法及***来解决车辆因为停站时间过长或者遇到道路交通问题而耽误行程的问题。该***包括电子地图模块、车载模块(例如智能驾驶车辆上的信息采集模块)、速度控制模块以及无线信号接收机和信号灯相位控制机。
电子地图模块用于保存运营路线中各个车站和交叉路口的位置信息以及各路段的限速信息并将其进行编号;车载模块具备实时记录时间、实时感知车辆位置和速度以及发送车辆状态信息给交叉路口信号机的功能;速度控制模块主要用于计算车辆的优化速度命令并发送给车辆驾驶员和车载模块。
交叉路口信号灯接收机主要用于接收车辆状态信息和车辆的优化速度信息并发送给信号灯相位控制机;信号灯相位控制机主要用于控制信号灯相位变化,保证车辆到达交叉路口后不用等待直接通过交叉路口。
当车辆出现车站停车超时或者因交通异常而停车的情况时,速度控制模块接收来自车载模块感知的车辆位置信息和电子地图模块提供的路段限速信息和交叉路口信息,如 果当前路段没有交叉路口,则结合车辆的运营时刻表直接计算车辆的优化速度并发送(提示)给车辆驾驶员,如果路段中存在交叉路口,当车辆速度通过速度控制模块优化后,交叉路口信号机接收车辆速度优化后的车辆状态信息并发送给信号相位控制机,信号相位控制机控制信号灯相位变化,保证车辆顺利通过交叉路口。
以下结合图1的流程图,详细说明本发明实施例的具体实现过程,如下:
步骤1:车辆速度实时检测;
通过车辆上的车载模块实时检测车辆的速度,当车辆速度不为0时,则保持正常运营计划运行,当检测到车辆速度为0时,则进行下一步判断。
步骤2:判断车辆是否在站内;
通过车辆上的车载模块感知得到车辆位置信息,并与电子地图中的车站位置进行对比。若与电子地图中某个车站的位置相同,表明车辆在车站内,则跳到步骤3进行判断;若与电子地图中的车站位置均不同,表明车辆在车站外,则跳到步骤4进行判断。
步骤3:判断车辆在站内停站是否超时;
当车载模块感知得到的车辆位置与电子地图中车站位置相同时,表明车辆位于车站内,第一次记录车载模块中此时的时刻点T jin;当车载模块感知得到的车辆速度从0开始变化时,表明车辆开始出站,第二次记录车载模块中此时的时刻点T jout。则车辆停站时间为:
T jm=T jout-T jin
当T jm<T jp时,车辆停站未超时,出站后正常运营;当T jm>T jp时,车辆停站超时,进入步骤4判断。T jp表示车辆运营计划中的计划停站时间。
步骤4:计算车辆优化速度
如图2所示,虚拟轨道列车具有固定的运营方式,分为最大加速度加速阶段、最高速度匀速阶段和最大减速度减速阶段,当车辆停站超时或在路上因交通状况停车时,通过优化车辆的最高速度,可保证车辆准时到站。车辆的速度控制模块从电子地图中获取下一站的位置信息和计划到站时刻,从车载模块中获取车辆当前的位置信息和当前时刻,并且总是以车辆能够不停车顺利通过交叉路口为前提。根据获取的信息,再根据车辆的最大加速度和最大减速度,可计算出车辆的优化速度。计算过程为:
(1)初速度为0,正算(根据车辆典型运行图中的加速度段曲线确定)加速区间的最高速度,加速时间,加速段位移;
(2)末速度为0,反算(根据车辆典型运行图中的减速度段曲线确定)减速区间车辆开始减速时的初速度,减速时间,减速段位移;
(3)车辆的最优速度,需同时满足以下几个条件:
Figure PCTCN2022135754-appb-000006
上式中:V up,T up,S up分别表示车辆加速段的末速度、加速时间和位移;
V down,T down,S down分别表示车辆减速段的初速度、减速时间和位移;
V un,T un,S un分别表示车辆匀速阶段的速度、时间和位移;
T jpin-T b表示车辆开始运行时,准时到达车站剩余的路段行驶时间;
S j-S b表示车辆当前位置与下一站之间的距离(路程);
V lim表示道路路段的最高限速。
步骤5:判断车辆当前位置到下一站之间是否存在交叉路口;
通过车载模块提供的车辆位置信息,可以知道车辆正处于电子地图中哪两站之间,则通过电子地图可知道该两站之间是否存在交叉路口。
步骤6:交叉路口信号灯相位改变策略;
(1)当两站之间没有交叉路口时,无需改变信号灯相位;
(2)当两站之间有多个交叉路口时,仅对车辆即将到达的交叉路口的信号灯进行控制。由于针对车辆的速度控制策略中总是以车辆能够顺利通过交叉路口为前提进行计算的,所以当车载模块检测到车辆距离第一个交叉路口的停止线100m(该距离的确定原则主要是保证车载设备与交叉路口的通讯设备能够正常通讯,具体取值可根据设备的通讯距离确定)时,车辆速度仍然保持在优化后的速度V un,则第一个交叉路口的信号灯接收机接收来自车载模块发送的车辆状态信息以及车辆的优化速度信息V un,并发送给信号灯控制机,信号灯控制机为了保证车辆仍然能够以V un顺利通过交叉路口,则需要结合信号灯当前的相位信息,决定信号灯时间是否延长或缩短或不变,以使车辆在通过第一个交叉路口时保持优化速度V un
当车载模块检测到车辆已通过第一个交叉路口,且距离第二个交叉路口的停止线100m时,在不发生意外事故导致车辆减速或停车的情况下,车辆仍然保持着优化速度V un,第二个交叉路口的信号灯接收机再接收来自车载模块发送的车辆状态信息和车辆的优 化速度信息,并发送给信号灯控制机,从而控制第二个交叉路口的信号灯时间改变,以使车辆在通过第二个交叉路口时保持优化速度V un
后面的交叉路口信号灯,同样采用此方法进行控制,直至车辆通过所有交叉路口;
(4)信号灯控制机采用的三种控制策略如下:
绿灯时间延长:如果当前对应的信号灯(即红绿灯)为绿灯相位,且在对应的剩余绿灯时间内车辆不能通过路口,则采用绿灯延长机制;
红灯时间截断:如果当前对应的信号灯为红灯相位,且红灯剩余时间较长,车辆行驶至路口停止线时红灯相位还未结束,则采用红灯截断机制;
不做处理:如果当前信号灯为红灯相位,但车辆行驶至交叉路口停止线之前信号灯能够正常切换为绿灯;或绿灯信号持续时间够长,即能够保证车辆完全通过路口后,绿灯时间还未结束,则采用不做处理机制。
根据车辆的优化速度信息和位置信息,如果信号灯当前为红灯相位,则计算出车辆到达第i个交叉路口需要的时间T bArrive,其计算公式为:
Figure PCTCN2022135754-appb-000007
如果信号灯当前为绿灯相位,则计算出车辆通过第i个交叉路口需要的时间T bCross,其计算公式为:
Figure PCTCN2022135754-appb-000008
Figure PCTCN2022135754-appb-000009
L b表示车辆长度。K优选为100米。
则控制第i个交叉路口的信号灯在时间T i后改变颜色(红灯截断或绿灯延长或不做处理),其中:
Figure PCTCN2022135754-appb-000010
上式中:S cross表示交叉路口的长度,V un表示车辆的优化速度,T i表示从当前时刻到信号灯颜色改变的时间,T ir表示红灯的剩余时间,T bArrive表示车辆到达交叉路口需要的时间,T ig表示绿灯的剩余时间,T bCross表示车辆通过交叉路口需要的时间。
图3中:1表示车载模块,2表示电子地图模块,3表示速度控制模块,4表示信号 灯接收机,5表示信号灯相位控制机。
图3表示:当车辆距离交叉路口停止线100米时,车辆将优化的速度信息和车辆状态信息发送给信号灯接收机,信号灯接收机再传递给信号灯相位控制机,信号灯相位控制机根据上述原则,对信号灯相位进行控制,保证车辆顺利通过交叉路口。

Claims (8)

  1. 一种道路交通车辆的调度方法,其特征在于,包括以下步骤:
    S1、当车辆在车站停车超时或因交通异常而停车时,获取车辆位置信息、路段限速信息和交叉路口信息;
    S2、判断当前路段是否有交叉路口,若是,则根据路段限速信息计算车辆的优化速度,获取优化速度后的车辆状态信息,根据所述车辆状态信息控制信号灯相位变化;若否,则结合车辆的运营时刻表直接计算车辆的优化速度,并控制车辆以该优化速度运行。
  2. 根据权利要求1所述的道路交通车辆的调度方法,其特征在于,步骤S1之前,还包括:
    判断车辆是否在站内,若是,则根据停站时间记录和计划停站时间判断停车是否超时;否则,进入步骤S2。
  3. 根据权利要求2所述的道路交通车辆的调度方法,其特征在于,判断车辆是否在站内之前,还包括:判断车辆实时速度是否为0,若是,则根据车辆实时位置信息和车站位置信息,判断车辆是否在站内;否则,车辆正常运行。
  4. 根据权利要求1所述的道路交通车辆的调度方法,其特征在于,步骤S2中,所述车辆的优化速度满足以下条件:
    Figure PCTCN2022135754-appb-100001
    其中,V up、t up、S up分别表示车辆加速段的末速度、加速时间和位移;V down、t down、S down分别表示车辆减速段的初速度、减速时间和位移;V un、t un、S un分别表示车辆匀速阶段的速度、时间和位移,V un即为车辆的优化速度;T jpin-T b表示车辆从当前停车位置开始运行时,准时到达下一站剩余的路段行驶时间;S j-S b表示车辆当前位置与下一站之间的距离;V lim表示道路路段的最高限速。
  5. 根据权利要求1所述的道路交通车辆的调度方法,其特征在于,根据车辆状态信息控制信号灯相位变化的实现过程包括:当车载模块检测到车辆距离第一个交叉路口的停止线为K米时,车辆速度仍然保持在优化速度V un行驶,则第一个交叉路口的信号灯接收 机接收来自车载模块发送的车辆状态信息以及车辆的优化速度V un,并发送给信号灯控制机,信号灯控制机结合信号灯当前的相位信息,控制信号灯时间延长或缩短或不变,以使车辆在通过第一个交叉路口时保持优化速度V un;K为设定的距离阈值;
    当车载模块检测到车辆已通过第一个交叉路口,且距离第二个交叉路口的停止线K米时,车辆保持优化速度V un行驶,第二个交叉路口的信号灯接收机接收来自车载模块发送的车辆状态信息和车辆的优化速度,并发送给信号灯控制机,信号灯控制机控制第二个交叉路口的信号灯时间改变,以使车辆在通过第二个交叉路口时保持优化速度V un
    依此类推,直至车辆通过所有交叉路口。
  6. 根据权利要求5所述的道路交通车辆的调度方法,其特征在于,信号灯控制机结合信号灯当前的相位信息,控制信号灯时间延长或缩短或不变的步骤包括:
    控制第i个交叉路口的信号灯在时间T i后改变颜色,其中:
    Figure PCTCN2022135754-appb-100002
    S cross表示交叉路口的长度,V un表示车辆的优化速度,T ir表示红灯的剩余时间,T bArrive表示车辆到达交叉路口需要的时间,
    Figure PCTCN2022135754-appb-100003
    T ig表示绿灯的剩余时间,T bCross表示车辆通过交叉路口需要的时间,
    Figure PCTCN2022135754-appb-100004
    Figure PCTCN2022135754-appb-100005
    L b表示车辆长度。
  7. 根据权利要求5或6所述的道路交通车辆的调度方法,其特征在于,K=100。
  8. 根据权利要求1所述的道路交通车辆的调度***,其特征在于,包括计算机设备;所述计算机设备被配置或编程为用于执行权利要求1~7之一所述调度方法的步骤。
PCT/CN2022/135754 2022-03-10 2022-12-01 道路交通车辆的调度方法及*** WO2023169005A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210237579.8A CN114595973A (zh) 2022-03-10 2022-03-10 道路交通车辆的调度方法及***
CN202210237579.8 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023169005A1 true WO2023169005A1 (zh) 2023-09-14

Family

ID=81808962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135754 WO2023169005A1 (zh) 2022-03-10 2022-12-01 道路交通车辆的调度方法及***

Country Status (2)

Country Link
CN (1) CN114595973A (zh)
WO (1) WO2023169005A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114595973A (zh) * 2022-03-10 2022-06-07 中车株洲电力机车有限公司 道路交通车辆的调度方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171464A1 (zh) * 2017-03-21 2018-09-27 广东数相智能科技有限公司 一种根据导航路径规划车速的方法、装置及***
CN110379164A (zh) * 2019-07-26 2019-10-25 公安部交通管理科学研究所 一种动态调控的公交准点控制方法及***
CN112562326A (zh) * 2020-11-26 2021-03-26 上汽通用五菱汽车股份有限公司 车速引导方法、服务器及可读存储介质
CN113516866A (zh) * 2021-04-28 2021-10-19 大连理工大学 一种智能网联技术融合下的公交准点到站调度方法
CN113538935A (zh) * 2021-05-12 2021-10-22 南京理工大学 一种无专用路权环境下公交准点率优化感应式控制方法
CN114595973A (zh) * 2022-03-10 2022-06-07 中车株洲电力机车有限公司 道路交通车辆的调度方法及***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018171464A1 (zh) * 2017-03-21 2018-09-27 广东数相智能科技有限公司 一种根据导航路径规划车速的方法、装置及***
CN110379164A (zh) * 2019-07-26 2019-10-25 公安部交通管理科学研究所 一种动态调控的公交准点控制方法及***
CN112562326A (zh) * 2020-11-26 2021-03-26 上汽通用五菱汽车股份有限公司 车速引导方法、服务器及可读存储介质
CN113516866A (zh) * 2021-04-28 2021-10-19 大连理工大学 一种智能网联技术融合下的公交准点到站调度方法
CN113538935A (zh) * 2021-05-12 2021-10-22 南京理工大学 一种无专用路权环境下公交准点率优化感应式控制方法
CN114595973A (zh) * 2022-03-10 2022-06-07 中车株洲电力机车有限公司 道路交通车辆的调度方法及***

Also Published As

Publication number Publication date
CN114595973A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN107564317B (zh) 一种自动驾驶车辆控制***及方法
CN109767630B (zh) 一种基于车路协同的交通信号控制***
CN102110372B (zh) 基于两阶段优化过程的交叉口应急车辆信号优先控制方法
CN112349110B (zh) 双向4至10车道高速公路自动驾驶专用道汇入汇出超车***及方法
CN106448194A (zh) 交叉路***通信号和车辆协同控制方法及装置、车辆
CN106960583B (zh) 一种有轨电车路口信号优先控制***
CN104021684B (zh) 一种车路协同交通控制***
WO2017124584A1 (zh) 一种支持汽车无人自动驾驶的道路路面的信息化和网络化实施方法
CN205943098U (zh) 一种用于交叉口不停车通行的智能交通诱导***
CN108922177A (zh) 一种无人驾驶车辆通过交叉路口时速度控制***及方法
CN108364486B (zh) 多场景车辆优先自适应交通信号控制***及其工作方法
CN106971562A (zh) 保证公交优先的车道变时分复用方法及***
CN112509343A (zh) 基于车路协同的路侧式导行方法及***
CN110422206B (zh) 一种基于协商机制的智轨列车路口优先引导***及方法
CN102542817A (zh) 左开门式公交专用相位设置及社会车流的协同控制方法
CN107730883A (zh) 一种车联网环境下交叉口区域车辆调度方法
CN114944067B (zh) 一种基于车路协同的弹性公交专用车道实现方法
WO2023169005A1 (zh) 道路交通车辆的调度方法及***
CN115273500A (zh) 一种信号交叉口网联车辆轨迹优化引导方法及***
CN110060490A (zh) 一种基于全息投影的交叉口安全辅助***及其控制方法
CN107452214A (zh) 基于右转和公交共用车道的公交优先信号控制***及方法
CN112687115A (zh) 一种自动驾驶行人接驳车行驶路径与路段过街控制方法
WO2018228161A1 (zh) 轨道车辆控制***、轨道车辆、轨道***以及运输***
CN112298195A (zh) 双向6至10车道高速公路自动驾驶专用车道的自动与手动模式切换***及使用方法
JP3882146B2 (ja) 自動車の自動走行の方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930628

Country of ref document: EP

Kind code of ref document: A1