WO2023167562A1 - 광학 필름, 코팅층 형성용 조성물, 및 전자 기기 - Google Patents

광학 필름, 코팅층 형성용 조성물, 및 전자 기기 Download PDF

Info

Publication number
WO2023167562A1
WO2023167562A1 PCT/KR2023/002978 KR2023002978W WO2023167562A1 WO 2023167562 A1 WO2023167562 A1 WO 2023167562A1 KR 2023002978 W KR2023002978 W KR 2023002978W WO 2023167562 A1 WO2023167562 A1 WO 2023167562A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
less
optical film
compound
Prior art date
Application number
PCT/KR2023/002978
Other languages
English (en)
French (fr)
Inventor
이한나
정순화
홍철석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220027488A external-priority patent/KR20230130384A/ko
Priority claimed from KR1020220027487A external-priority patent/KR20230130383A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2023574264A priority Critical patent/JP2024520623A/ja
Publication of WO2023167562A1 publication Critical patent/WO2023167562A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/41Organic pigments; Organic dyes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Definitions

  • the present invention relates to an optical film, a composition for forming a coating layer, and an electronic device.
  • VR Virtual Reality
  • Augmented Reality refers to a technology that synthesizes virtual objects or information in a real environment to make them look like objects existing in the original environment.
  • Mixed Reality or Hybrid reality refers to creating a new environment or new information by combining the virtual world and the real world. In particular, it is called mixed reality when it refers to real-time interaction between reality and virtual reality in real time.
  • the created virtual environment or situation stimulates the user's five senses and allows them to freely move in and out of the boundary between reality and imagination by allowing them to have a spatial and temporal experience similar to the real one.
  • users are not only immersed in these environments, but also interact with things implemented in these environments, such as manipulating or giving commands using real devices.
  • the user can interact with virtual objects to feel an improved sense of reality, recognize the real environment in which he or she is located, and also recognize virtual information expressed on the real image.
  • a pupil recognition sensor is used to match a virtual reality image to a real world that a user observes.
  • the optical method attaches an infrared LED to a pre-measured position and detects it with a camera.
  • the pupil detected by the infrared LED is detected by the camera, such as the red eye phenomenon caused by the pupil reflecting light.
  • the center point of view is expressed as coordinates through an algorithm designed by taking a picture. Therefore, an error in implementing augmented reality can be minimized by effectively blocking an external infrared region except for an infrared LED for detecting a pupil.
  • the present invention has excellent light absorption performance for near-infrared rays with wavelengths of 750 nm or more and 1500 nm or less, and has excellent light resistance and moisture resistance, thereby providing an optical film capable of realizing excellent light absorption performance even when exposed to harsh conditions, a composition for forming a coating layer, and It is to provide an electronic device.
  • the substrate and a coating layer formed on the substrate, wherein the coating layer includes a vinyl cyan compound-aromatic compound copolymer and a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less, and in a wavelength range of 800 nm to 1000 nm, 30%
  • the coating layer includes a vinyl cyan compound-aromatic compound copolymer and a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less, and in a wavelength range of 800 nm to 1000 nm, 30%
  • an optical film having an initial average transmittance (T0) of the above, and an average transmittance change rate calculated by Equation 1 below of 18% or less.
  • T1 Average transmittance (T1) of the optical film in the wavelength range of 800 nm to 1000 nm after exposure for 15 hours to 30 hours in the wavelength range of 300 nm to 400 nm - Initial average transmittance (T0)) / T0] * 100.
  • an electronic device including the optical film is provided.
  • a vinyl cyan compound-aromatic compound copolymer and a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less wherein the vinyl cyan compound-aromatic vinyl compound copolymer has a weight average molecular weight of 10,000 g/mol or more 200,000 g/mol or less, and the vinyl cyan compound-aromatic vinyl compound copolymer contains 10 parts by weight or more and 50 parts by weight or less of the vinyl cyan compound-derived repeating unit based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer. It provides a composition for forming a coating layer comprising.
  • high temperature may mean a temperature of 60 °C or higher.
  • the high temperature may mean a temperature of 65 °C or higher, 70 °C or higher, 75 °C or higher, 80 °C or higher, 85 °C or higher or 90 °C or higher, and the upper limit thereof is not particularly limited, but is, for example, 110 °C or lower. , 105 °C or less, 100 °C or less, 95 °C or less, 90 °C or less, 85 °C or less, or 80 °C or less.
  • the temperature condition at which the characteristics are measured or described is room temperature (e.g., a temperature that is not particularly reduced or warmed, unless temperature is specifically stated otherwise, in the range of about 15 to 30 ° C).
  • high humidity may mean a relative humidity of 80% or more.
  • the high humidity condition may mean a condition that satisfies a relative humidity of 85% or more, 90% or more, or 95% or more.
  • the humidity condition at which the characteristic is measured or described is a case where the relative humidity is lower than the high humidity condition, for example, 15 or more 80 It may be a relative humidity condition in the range of less than %, specifically, the lower limit is 20% or more, 25% or more, 30% or more, 35% or more, 40% or more, and the upper limit is 75% or less, 70% or less, 65 It may mean a relative humidity condition of less than % or less than 60 %.
  • high temperature/high humidity conditions may refer to environmental conditions that satisfy at least one of the high temperature conditions and high humidity conditions described above.
  • a weight average molecular weight means the weight average molecular weight (unit: g/mol) of polystyrene conversion measured by the GPC method.
  • a conventionally known analyzer and a detector such as a differential refraction detector (Refractive Index Detector) and an analysis column may be used, and a commonly applied temperature Conditions, solvents, and flow rates can be applied.
  • Specific examples of the measurement conditions include a temperature of 25° C., tetrahydrofuran (THF), and a flow rate of 1 mL/min.
  • a substrate and a coating layer formed on the substrate, wherein the coating layer includes a vinyl cyan compound-aromatic compound copolymer and a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less, and in a wavelength range of 800 nm to 1000 nm, 30%
  • An optical film having an initial average transmittance (T0) of greater than or equal to 18% and an average transmittance change rate calculated by Equation 1 below of 18% or less may be provided.
  • T1 Average transmittance (T1) of the optical film in the wavelength range of 800 nm to 1000 nm after exposure for 15 hours to 30 hours in the wavelength range of 300 nm to 400 nm - Initial average transmittance (T0)) / T0] * 100.
  • a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less has poor light stability, and thus, in the case of an optical film including the conventional dye, light absorption performance of the dye is deteriorated due to reduced light resistance.
  • the present inventors conducted research on an optical film that has excellent light resistance and moisture resistance even when used under harsh conditions and can realize excellent light absorption in the wavelength range of 750 nm or more and 1500 nm or less, and the maximum absorption
  • the vinyl cyan compound-aromatic compound copolymer has excellent oxidation stability to heat and light, which affects the stability of the dye.
  • the optical film finally manufactured by increasing the stability of the dye with less generation of reactive species that affect it has excellent light resistance and moisture resistance even when used under harsh conditions, and excellent light for the wavelength range of 750 nm or more and 1500 nm or less. It was confirmed that absorbency could be realized and the invention was completed.
  • the optical film may have an average transmittance change rate of 18% or less calculated by Equation 1 below.
  • T1 Average transmittance (T1) of the optical film in the wavelength range of 800 nm to 1000 nm after exposure for 15 hours to 30 hours in the wavelength range of 300 nm to 400 nm - Initial average transmittance (T0)) / T0] * 100.
  • the average transmittance is a value measured for an optical film having a thickness of 20 ⁇ m or more and 250 ⁇ m or less, and the specific measurement method is not greatly limited. For example, it can be measured using a spectrophotometer such as Shimadzu Solidspec-3700. .
  • the optical film has an average transmittance change rate calculated by Equation 1 of 18% or less, 15% or less, 10% or less, 5% or less, 2% or less, 0.01% or more, 0.1% or more, 0.5% or more. , or 0.01% to 10%, 0.01% to 5%, 0.01% to 2%, 0.1% to 10%, 0.1% to 5%, 0.1% to 2%, 0.5% to 10% , 0.5% or more and 5% or less, or 0.5% or more and 2% or less.
  • Equation 1 As the average transmittance change rate calculated by Equation 1 is 10% or less, the light resistance is excellent, and the light absorption performance does not decrease for the near infrared rays in the wavelength range of 750 nm or more and 1500 nm or less even under harsh conditions, and excellent light absorption
  • an optical film suitable for application to Augmented Reality (AR) may be provided.
  • the initial average transmittance may mean an optical film that is not separately treated after manufacture.
  • the initial average transmittance is 30% or more, 40% or more, 45% or more, 60% or less, 56% or less, 30% or more and 60% or less, 40% or more and 60% or less, 45% or more and 60% or less , 30% or more and 56% or less, 40% or more and 56% or less, or 45% or more and 56% or less.
  • the initial average transmittance of the optical film is 30% or more and 60% or less
  • the light absorption rate for near-infrared rays in the wavelength range of 750 nm or more and 1500 nm or less is excellent, and the optical film is suitable for application to Augmented Reality (AR), etc.
  • a film may be provided.
  • the average transmittance after exposure to ultraviolet rays having a wavelength of 100 nm to 400 nm, or 300 nm to 400 nm in Equation 1 for 15 hours or more and 30 hours or less Q-Lab's QUV equipment for the optical film of the embodiment 800 nm or more and 1000 nm or less measured after exposure to a maximum value of 0.10 to 1.00 W/cm 2 , or 0.68 W/cm 2 at 300 nm to 400 nm, or 340 nm for 15 to 30 hours or 24 hours using It may mean the average transmittance in the wavelength region, and at this time, QUV equipment (Q-Lab) equipment or the like may be used.
  • the average transmittance (T1) of the optical film in the wavelength range of 800 nm to 1000 nm may be 30% or more and 65% or less.
  • the average transmittance (T1) of the optical film in the wavelength range of 800 nm to 1000 nm is 30% or more, 40% or more, 45% or more , 60% or less, 56% or less, 30% or more, 60% or less, 40% or more, 60% or less, 45% or more, 60% or less, 30% or more, 56% or less, 40% or more, 56% or less, 45% or more, 56% or less can
  • the average transmittance (T1) of the optical film in the wavelength range of 800 nm to 1000 nm is 30% or more and 60% or less, so that light resistance is excellent.
  • an optical film suitable for application to augmented reality (AR) or the like can be provided by implementing excellent light absorption for near-infrared rays in the wavelength range of 750 nm to 1500 nm.
  • the optical film may have an initial average transmittance (T0) of 30% or more, or 30% or more and 60% or less in a wavelength range of 800 nm to 1000 nm.
  • T0 initial average transmittance
  • the average transmittance is a value measured for an optical film having a thickness of 20 ⁇ m or more and 250 ⁇ m or less, and the specific measurement method is not greatly limited. For example, it can be measured using a spectrophotometer such as Shimadzu Solidspec-3700. .
  • the optical film has an average transmittance of 30% or more, 40% or more, 45% or more, 60% or less, 56% or less, 30% or more, 60% or less, 40% or more 60 % or less, 45% or more and 60% or less, 30% or more and 56% or less, 40% or more and 56% or less, 45% or more and 56% or less.
  • the optical film has an average transmittance of 30% or more and 60% or less for wavelengths of 800 nm or more and 1000 nm or less, the light absorption rate for near-infrared rays in the wavelength range of 750 nm or more and 1500 nm or less is excellent, and augmented reality (Augmented Reality, AR) and the like can be provided with an optical film suitable for application.
  • augmented reality Augmented Reality, AR
  • the optical film may have an average transmittance change rate calculated by Equation 2 below of 10% or less.
  • exposure under high temperature and high humidity conditions means exposure to a temperature of 70 °C to 100 °C and a humidity of 70% to 90% for 50 to 100 hours.
  • the average transmittance in Equation 2 is a value measured for an optical film having a thickness of 20 ⁇ m or more and 250 ⁇ m or less, and the specific measurement method is not significantly limited, but, for example, using a spectrophotometer such as Shimadzu Solidspec-3700 can be measured
  • the optical film has an average transmittance change rate calculated by Equation 2 of 10% or less, 5% or less, 4.7% or less, 0.01% or more, 0.1% or more, 0.5% or more, or 0.01% or more and 10% or less.
  • 0.01% to 5%, 0.01% to 4.7%, 0.1% to 10%, 0.1% to 5%, 0.1% to 4.7%, 0.5% to 10%, 0.5% to 5% It may be 0.5% or more and 4.7% or less.
  • an optical film suitable for application to augmented reality may be provided.
  • the initial average transmittance may mean an optical film that is not separately treated after manufacture.
  • the initial average transmittance (T0) of the optical film in the wavelength range of 800 nm to 1000 nm is 30% or more, 40% or more, 45% or more, 60% or less, 58% or less, 30% or more. 60% or more, 40% or more and 60% or less, 45% or more and 60% or less, 30% or more and 58% or less, 40% or more and 58% or less, 45% or more and 58% or less.
  • the initial average transmittance of the optical film is 30% or more and 60% or less
  • the light absorption rate for near-infrared rays in the wavelength range of 750 nm or more and 1500 nm or less is excellent, and the optical film is suitable for application to Augmented Reality (AR), etc.
  • a film may be provided.
  • the average transmittance (T2) of the optical film in the wavelength range of 800 nm to 1000 nm is 85° C., 85° C. for 72 hours with respect to the optical film of the embodiment. It may mean the average transmittance in the wavelength range of 800 nm or more and 1000 nm or less measured after evaluation under the % condition, and at this time, a maximum value of 0.10 to 1.00 W/cm 2 or 0.68 W/cm 2 light amount may be applied. Also, QUV equipment (Q-Lab Co.) can be used.
  • the coating layer may be formed from a composition for forming a coating layer according to an embodiment described below.
  • the type of the substrate is not particularly limited, and those known in the related art may be used.
  • substrates such as glass, polyethylene terephthalate (PET), triacetyl cellulose (TAC), polycarbonate (PC), and cyclo-olefin polymer (COP) may be used.
  • the optical film of the embodiment includes the dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less in the coating layer together with the vinyl cyan compound-aromatic compound copolymer
  • the vinyl cyan compound-aromatic compound copolymer has excellent heat and light resistance. Due to the oxidation stability of the dye, there is little generation of reactive species that affect the stability of the dye, and by increasing the stability of the dye, it has excellent light resistance and moisture resistance even when used under harsh conditions, and is excellent light absorption properties can be realized.
  • the coating layer of the embodiment may include a vinyl cyan compound-aromatic vinyl compound copolymer.
  • UV curable polymer resin such as acrylic resin, heat curable resin such as urethane resin or epoxy resin, or thermoplastic resin such as acrylic resin has excellent light resistance.
  • the UV-curable polymer resin or the heat-curable resin has poor light resistance, and when used together with a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less, the light absorption performance of the dye may be deteriorated.
  • the coating layer of the embodiment includes the vinyl cyan compound-aromatic vinyl compound copolymer
  • excellent light resistance and moisture resistance can be realized due to the excellent oxidation stability to heat and light of the vinyl cyan compound-aromatic vinyl compound copolymer. Even under harsh conditions, excellent light absorption performance of the dye can be realized.
  • the vinyl cyan compound-aromatic vinyl compound copolymer may have a weight average molecular weight of 10,000 g/mol or more and 200,000 g/mol or less.
  • the "copolymer” may include random copolymers, block copolymers, and graft copolymers unless otherwise specified.
  • the vinyl cyan compound-aromatic vinyl compound copolymer has a weight average molecular weight of 10,000 g/mol or more, 50,000 g/mol or more, 80,000 g/mol or more, 100,000 g/mol or more, or 200,000 g/mol or less, 150,000 g/mol or less.
  • g/mol or less 120,000 g/mol or less, or 10,000 g/mol or more and 200,000 g/mol or less, 10,000 g/mol or more and 150,000 g/mol or less, 10,000 g/mol or more and 120,000 g/mol or less, 50,000 g/mol or more 200,000 g/mol or less, 50,000 g/mol or more and 150,000 g/mol or less, 50,000 g/mol or more and 120,000 g/mol or less, 80,000 g/mol or more and 200,000 g/mol or less, 80,000 g/mol or more and 150,000 g/mol or less, 80,000 g/mol or more and 120,000 g/mol or less, 100,000 g/mol or more and 200,000 g/mol or less, 100,000 g/mol or more and 150,000 g/mol or less, 100,000 g/mol or more and 120,000 g/mol or less.
  • the vinyl cyan compound-aromatic vinyl compound copolymer has excellent leveling and wetting properties due to flow properties during formation of the coating solution as the weight average molecular weight is 10,000 g/mol or more and 200,000 g/mol or less, resulting in uniform A coating film can be formed and excellent light resistance can be realized.
  • the weight average molecular weight of the vinyl cyan compound-aromatic vinyl compound copolymer is greater than 200,000 g/mol, the viscosity of the coating solution increases and a uniform coating cannot be formed, and when the weight average molecular weight is less than 10,000 g/mol, heat resistance stability of the resin This decrease may cause a problem of deterioration of light fastness characteristics.
  • the vinyl cyan compound-aromatic vinyl compound copolymer includes 10 parts by weight or more and 50 parts by weight or less of the vinyl cyan compound-derived repeating unit based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer. can do.
  • the vinyl cyan compound-aromatic vinyl compound copolymer may be a copolymer containing a vinyl cyan compound and an aromatic vinyl compound as monomers, and may further include additional monomers in addition to the vinyl cyan compound and the aromatic vinyl compound.
  • the copolymer may include a random copolymer, a block copolymer, and a graft copolymer.
  • the content of vinyl cyan compound-derived repeating units included in the vinyl cyan compound-aromatic vinyl compound copolymer may be adjusted.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains 10 parts by weight or more, 15 parts by weight or more, or 17 parts by weight of repeating units derived from the vinyl cyan compound based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer.
  • the vinyl cyan compound-aromatic vinyl compound copolymer includes 10 parts by weight or more and 50 parts by weight or less of repeating units derived from the vinyl cyan compound based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer.
  • the aromatic vinyl compound copolymer includes 10 parts by weight or more and 50 parts by weight or less of the vinyl cyan compound-derived repeating unit with respect to 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer
  • the vinyl cyan compound-aromatic vinyl compound Light stability and gas permeability of the copolymer are improved, so that excellent light resistance stability and heat resistance stability can be implemented.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains less than 10 parts by weight of repeating units derived from the vinyl cyan compound with respect to 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer, the vinyl cyan compound-aromatic vinyl compound air Stability to light and gas permeability of the composite may decrease, resulting in poor light stability, and when included in an amount exceeding 50 parts by weight, stability due to heat may decrease, resulting in poor heat resistance stability.
  • the vinyl cyan compound-aromatic vinyl compound copolymer includes 50 parts by weight or more and 90 parts by weight or less of the aromatic vinyl compound-derived repeating unit based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer. can be included with
  • the content of aromatic vinyl compound-derived repeating units included in the vinyl cyan compound-aromatic vinyl compound copolymer may be adjusted.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains 50 parts by weight or more, 60 parts by weight or more, or 70 parts by weight of repeating units derived from the aromatic vinyl compound based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer.
  • 83 parts by weight or less or 50 parts by weight or more and 90 parts by weight or less, 50 parts by weight or more and 85 parts by weight or less, 50 parts by weight or more and 83 parts by weight or less, 60 parts by weight or more and 90 parts by weight or less, 60 parts by weight or more 85 It may be included in parts by weight or less, 60 parts by weight or more and 83 parts by weight or less, 70 parts by weight or more and 90 parts by weight or less, 70 parts by weight or more and 85 parts by weight or less, 70 parts by weight or more and 83 parts by weight or less.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains 50 parts by weight or more and 90 parts by weight or less of repeating units derived from the aromatic vinyl compound based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer. - Good thermal stability and excellent mechanical properties of the aromatic vinyl compound copolymer are realized, so that the finally manufactured optical film can realize excellent heat resistance stability as well as good scratch resistance.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains less than 50 parts by weight of the repeating unit derived from the aromatic vinyl compound with respect to 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer, stability due to heat is poor and light resistance or Heat resistance stability may be deteriorated, and when it is included in an amount exceeding 90 parts by weight, light stability and gas permeability of the vinyl cyan compound-aromatic vinyl compound copolymer may be reduced, resulting in poor light stability.
  • the vinyl cyan compound-aromatic vinyl compound copolymer may include 110 parts by weight or more and 500 parts by weight or less of the aromatic vinyl compound-derived repeating unit based on 100 parts by weight of the vinyl cyan compound-derived repeating unit.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains 110 parts by weight or more, 150 parts by weight or more, 200 parts by weight or more, 500 450 parts by weight or less, 110 parts by weight or more and 500 parts by weight or less, 150 parts by weight or more and 500 parts by weight or less, 200 parts by weight or more and 500 parts by weight or less, 110 parts by weight or more and 450 parts by weight or less, 150 parts by weight or more 450 It may include less than 200 parts by weight and less than 450 parts by weight.
  • the vinyl cyan compound is not particularly limited, but may include, for example, at least one compound selected from the group consisting of acrylonitrile, metanitrolonitrile, ethylacrylonitrile, and isopropylacrylonitrile.
  • the vinyl cyan compound may include acrylonitrile.
  • the “aromatic” vinyl compound is not particularly limited, but may include, for example, at least one compound selected from the group consisting of styrene, ⁇ -methylstyrene, m-methylstyrene, p-methylstyrene, and p-tert-butylstyrene.
  • the aromatic vinyl compound may include styrene or ⁇ -methylstyrene.
  • the coating layer of the embodiment may further include a polymer resin other than the vinyl cyan compound-aromatic vinyl compound copolymer.
  • the coating layer may include 90 parts by weight or more of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total polymer resin included in the coating layer.
  • the coating layer contains 90 parts by weight or more, 95 parts by weight or more, 99 parts by weight or more, 99.9 parts by weight or more of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total polymer resin included in the coating layer 100 parts by weight or less, or 90 parts by weight or more 100 parts by weight or less, 95 parts by weight or more 100 parts by weight or less, 99 parts by weight or more 100 parts by weight or less, 99.9 parts by weight or more 100 parts by weight or less.
  • the coating layer may include only the vinyl cyan compound-aromatic vinyl compound copolymer as a polymer resin.
  • the coating layer contains 90 parts by weight or more of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total polymer resin included in the coating layer, excellent light resistance and moisture resistance can be implemented, and thus even under harsh conditions Since the oxidation stability of the dye to heat and light is excellent, reactive species that affect the stability of the dye are hardly generated, so that excellent light absorption performance can be implemented.
  • the coating layer includes less than 90 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total polymer resin included in the coating layer, the light absorption performance of the dye is lowered, resulting in a final optical film. Moisture resistance and light resistance may be inferior, so that it may have inferior light absorption performance under harsh conditions.
  • the coating layer may include a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less.
  • the coating layer contains a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less, the light absorption rate for near-infrared rays in the wavelength range of 750 nm or more and 1500 nm or less is excellent, suitable for application to augmented reality (AR), etc.
  • An optical film may be provided.
  • the type of dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less is not particularly limited, and may be appropriately selected and used from compounds known to be capable of performing the function.
  • Usable dyes include, for example, the sulfonium derivative of ceramidonin, new methylene blue, thioerythrosine triethylammonium, 6-acetylamino-2-methyl Ceramidonin (6-acetylamino-2-methylceramidonin), eosin, erythrosine, rose bengal, thionine, basic yellow, pinacyanol chloride chloride, rhodamine 6G, gallocyanine, ethyl violet, Victoria blue R, Celestine blue, QuinaldineRed, crystal crystal violet, brilliant green, astrazon orange G, darrow red, pyronin Y, basic red 29, pyrillium I (pyrylium iodide), safranin O (Safranin O
  • the dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less may include a cyanine-based dye.
  • the coating layer may include 0.1 part by weight or more and 3 parts by weight or less of the dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer in total. there is.
  • the coating layer contains 0.1 part by weight or more, 0.5 part by weight or more, 3 parts by weight or less of the dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less based on a total of 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer, 2 parts by weight or less, 1 part by weight or less, or 0.1 parts by weight or more and 3 parts by weight or less, 0.1 parts by weight or more and 2 parts by weight or less, 0.1 parts by weight or more and 1 part by weight or less, 0.5 parts by weight or more and 3 parts by weight or less, 0.5 parts by weight or more 2 parts by weight or less, 0.5 parts by weight or more and 1 part by weight or less may be included.
  • the coating layer contains 0.1 part by weight or more and 3 parts by weight or less of a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less with respect to a total of 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer.
  • the coating layer includes less than 0.1 parts by weight of a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer in total, light is not sufficiently absorbed and gaze tracking performance deteriorates. may occur, and when included in an amount of more than 3 parts by weight, a decrease in visible light transmittance or an increase in the color value of an optical film may cause a problem of deterioration in optical properties.
  • the coating layer may further include other additives.
  • Other additives that can be used include, for example, antifoaming agents.
  • a silicone-based reactive additive may be used as the antifoaming agent, and a commercially available product such as Tego Rad 2500 may be used.
  • the content of the additives for example, the antifoaming agent or the plasticizer, may be appropriately adjusted to a level that does not interfere with the function of the optical film.
  • the coating layer may include the other additives in an amount of 5 to 50 parts by weight based on 100 parts by weight of the vinyl cyan compound-aromatic compound copolymer.
  • the lower limit of the content of the other additives is, for example, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, 25 parts by weight or more, 30 parts by weight or more, 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more.
  • an example of a method for manufacturing the optical film of the embodiment is not greatly limited, and for example, forming a coating film by applying the composition for forming a coating layer to a substrate (step 1); and drying the coating film (Step 2); Including, it is possible to use a manufacturing method.
  • Step 1 is a step of forming a coating film by applying the above-described composition for forming a coating layer to a substrate.
  • a method of applying the composition for forming a coating layer to a substrate is not particularly limited.
  • the composition for forming the coating layer may include an organic solvent.
  • the composition for forming the coating layer may include a solid content in an amount to have an appropriate viscosity in consideration of processability such as coatability during the film forming process.
  • the composition for forming the coating layer may include a solvent so that the concentration of the total solid content of the components included in the composition is 1 to 70% by weight.
  • the solvent has a concentration of 2% by weight or more, 5% by weight or more, 10% by weight or more, or 20% by weight or more, and 65% by weight or less, 60% by weight or less, or 55% by weight of the total solid content of the components included in the composition.
  • a solvent may be included to be less than or equal to 50% by weight or less.
  • composition for forming the coating layer may further include other components in addition to the organic solvent as described above.
  • an additive capable of improving film thickness uniformity or surface smoothness, improving adhesion to a substrate, changing dielectric constant or conductivity, or increasing density may be further included. there is.
  • Such additives may include surfactants, silane-based compounds, dielectric or cross-linkable compounds, and the like.
  • Step 2 is a step of drying the coating film formed by applying the composition for forming a coating layer to a substrate.
  • the drying step of the coating film may be performed by a heating means such as a hot plate, a hot air circulation furnace, or an infrared furnace, and may be performed at a temperature of 50 ° C. to 150 ° C., or 50 ° C. to 100 ° C.
  • a heating means such as a hot plate, a hot air circulation furnace, or an infrared furnace
  • the thickness of the optical film of the embodiment is not particularly limited, but may be freely adjusted within a range of, for example, 0.01 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness of the optical film increases or decreases by a specific value, physical properties measured in the optical film may also change by a specific value.
  • the thickness of the coating layer is not particularly limited, but may be freely adjusted within a range of, for example, 0.005 ⁇ m or more and 1000 ⁇ m or less. More specifically, the thickness of the coating layer is 0.005 ⁇ m or more, 0.01 ⁇ m or more, 0.1 ⁇ m or more, 1 ⁇ m or more, 3 ⁇ m or more, or 1000 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m or less, or 0.01 ⁇ m or more and 1000 ⁇ m or less, 0.01 ⁇ m to 20 ⁇ m, 0.01 ⁇ m to 15 ⁇ m, 0.0 ⁇ m to 1000 ⁇ m, 0.1 ⁇ m to 20 ⁇ m, 0.1 ⁇ m to 15 ⁇ m, 1 ⁇ m to 1000 ⁇ m, 1 ⁇ m to 20 ⁇ m, 1 ⁇ m or more and 15 ⁇ m or less, 3 ⁇ m or more and 1000 ⁇ m or less, 3 ⁇ m or more and 20 ⁇ m or less, or 3 ⁇ m.
  • the thickness of the substrate is also not particularly limited, and may be, for example, 0.01 ⁇ m or more and 1000 ⁇ m or less, or 1 ⁇ m or more, 3 ⁇ m or more, or 1000 ⁇ m or less, 500 ⁇ m or less, or 100 ⁇ m or less.
  • the optical film may have an average transmittance of 85% or more and 95% or less for a wavelength of 400 nm or more and 500 nm or less.
  • the average transmittance is a value measured for an optical film having a thickness of 20 ⁇ m or more and 250 ⁇ m or less, and the specific measurement method is not greatly limited. For example, it can be measured using a spectrophotometer such as Shimadzu Solidspec-3700. .
  • the optical film has an average transmittance of 85% or more, 89% or more, 95% or less, 90% or less, 85% or more, 95% or less, 85% or more, 90% or less, 89% or more for wavelengths of 400 nm or more and 500 nm or less. % or more and 95% or less, or 89% or more and 90% or less.
  • the average transmittance for the optical wavelength of 400 nm or more and 500 nm or less is 85% or more and 95% or less, excellent visibility can be implemented.
  • a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less has poor light stability, and thus, in the case of an optical film including the conventional dye, light absorption performance of the dye is deteriorated due to reduced light resistance.
  • the present inventors conducted research on a composition for forming a coating layer that has excellent light resistance and moisture resistance even when used under harsh conditions and can realize excellent light absorption in the wavelength range of 750 nm or more and 1500 nm or less,
  • a composition including a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less together with the vinyl cyan compound-aromatic compound copolymer the vinyl cyan compound-aromatic compound copolymer has excellent oxidation stability to heat and light, so that the dye is stable.
  • the optical film finally manufactured by increasing the stability of the dye has excellent light resistance and moisture resistance even when used under harsh conditions, and excellent for the wavelength range of 750 nm or more and 1500 nm or less. It was confirmed that light absorption can be realized and the invention was completed.
  • the optical film may further include a metal oxide layer formed on the other surface of the substrate.
  • the metal oxide layer is made of any one metal selected from the group consisting of indium, zinc, tin, aluminum, gallium, thallium, titanium, zirconium, hapsium, cesium, antimony, vanadium, niomium, tantalum, silicon and germanium.
  • An oxide or a composite oxide of two or more metals selected from the above metals may be included.
  • the metal oxide layer may include indium tin oxide (ITO), indium zinc oxide (IZO), zinc tin oxide (ZTO), aluminum doped zinc oxide (AZO), gallium doped zinc oxide (GZO), antimony doped oxide It may include one or more metal oxides selected from the group consisting of tin (ATO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZTO zinc tin oxide
  • AZO aluminum doped zinc oxide
  • GZO gallium doped zinc oxide
  • antimony doped oxide It may include one or more metal oxides selected from the group consisting of tin (ATO).
  • the film formation method of the metal oxide layer is not particularly limited, and for example, a film formation method by a dry process such as sputtering, vacuum deposition, CVD (Chemical Vapor Deposition), and electron beam deposition can be applied.
  • the thickness of the metal oxide layer is not particularly limited and may be controlled to an appropriate thickness in consideration of desired durability or adhesion.
  • the thickness of each metal oxide layer may be controlled within a range of about 1 nm to 100 nm, or about 3 nm to 45 nm. In one example, the thickness of the metal oxide layer may be about 40 nm or less, 35 nm or less, 30 nm or less, 25 nm or less, or 20 nm or less.
  • the optical film of the embodiment may include an adhesive layer formed on the coating layer. That is, the optical film of the embodiment may include a laminated structure in which a metal oxide layer, a substrate, a coating layer, and an adhesive layer are sequentially laminated.
  • the adhesive layer is a layer that is applied and cured between each layer of the optical film so that each layer adheres to each other, and any one of an optically clear adhesive (OCA) and an optically clear resin (OCR) may be used.
  • OCA optically clear adhesive
  • OCR optically clear resin
  • the optical film of the embodiment may further include a metal oxide layer and a substrate on the other side of the adhesive layer. That is, the optical film of the embodiment may include a laminated structure in which a metal oxide layer, a substrate, a coating layer, an adhesive layer, a substrate, and a metal oxide layer are sequentially stacked. In the optical film, each metal oxide layer and each substrate may each independently be the same or different.
  • the optical film of the embodiment may further include a cover member on the other surface of the adhesive layer. That is, the optical film of the above embodiment may include a laminated structure in which a metal oxide layer, a substrate, a coating layer, an adhesive layer, and a cover member are sequentially laminated.
  • the optical film of the embodiment may further include other layers between or above and below the laminated structure exemplified above, and even in this case, the optical film has excellent light resistance and moisture resistance and excellent light absorption even when exposed to harsh conditions. performance can be realized.
  • the cover member may be made of a plastic material, a metal material, or a “glass” material.
  • a vinyl cyan compound-aromatic compound copolymer and a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less wherein the vinyl cyan compound-aromatic vinyl compound copolymer has a weight average molecular weight of 10,000 g / mol or more and 200,000 g / mol or less, and the vinyl cyan compound-aromatic vinyl compound copolymer contains 10 parts by weight or more of 50 parts by weight of repeating units derived from the vinyl cyan compound based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer.
  • a composition for forming a coating layer comprising less than a part may be provided.
  • the coating layer of the optical film of one embodiment described above may be formed from the composition for forming a coating layer.
  • Descriptions of the vinyl cyan compound-aromatic compound copolymer and the dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less include all of the above.
  • composition for forming a coating layer of one embodiment may include a vinyl cyan compound-aromatic vinyl compound copolymer.
  • the UV-curable polymer resin or the heat-curable resin has poor light resistance, and when used together with a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less, the light absorption performance of the dye may be deteriorated.
  • composition for forming a coating layer of the embodiment includes the vinyl cyan compound-aromatic vinyl compound copolymer, excellent light resistance and moisture resistance can be realized due to the excellent oxidation stability to heat and light of the vinyl cyan compound-aromatic vinyl compound copolymer, Accordingly, excellent light absorption performance of the dye can be implemented even under harsh conditions.
  • the vinyl cyan compound-aromatic vinyl compound copolymer may have a weight average molecular weight of 10,000 g/mol or more and 200,000 g/mol or less.
  • the "copolymer” may include random copolymers, block copolymers, and graft copolymers unless otherwise specified.
  • the vinyl cyan compound-aromatic vinyl compound copolymer has a weight average molecular weight of 10,000 g/mol or more, 50,000 g/mol or more, 80,000 g/mol or more, 100,000 g/mol or more, or 200,000 g/mol or less, 150,000 g/mol or less.
  • g/mol or less 120,000 g/mol or less, or 10,000 g/mol or more and 200,000 g/mol or less, 10,000 g/mol or more and 150,000 g/mol or less, 10,000 g/mol or more and 120,000 g/mol or less, 50,000 g/mol or more 200,000 g/mol or less, 50,000 g/mol or more and 150,000 g/mol or less, 50,000 g/mol or more and 120,000 g/mol or less, 80,000 g/mol or more and 200,000 g/mol or less, 80,000 g/mol or more and 150,000 g/mol or less, 80,000 g/mol or more and 120,000 g/mol or less, 100,000 g/mol or more and 200,000 g/mol or less, 100,000 g/mol or more and 150,000 g/mol or less, 100,000 g/mol or more and 120,000 g/mol or less.
  • the vinyl cyan compound-aromatic vinyl compound copolymer has excellent leveling and wetting properties due to flow properties during formation of the coating solution as the weight average molecular weight is 10,000 g/mol or more and 200,000 g/mol or less, resulting in uniform A coating film can be formed and excellent light resistance can be realized.
  • the weight average molecular weight of the vinyl cyan compound-aromatic vinyl compound copolymer is greater than 200,000 g/mol, the viscosity of the coating solution increases and a uniform coating cannot be formed, and when the weight average molecular weight is less than 10,000 g/mol, heat resistance stability of the resin This decrease may cause a problem of deterioration of light fastness characteristics.
  • the vinyl cyan compound-aromatic vinyl compound copolymer includes 10 parts by weight or more and 50 parts by weight or less of the vinyl cyan compound-derived repeating unit based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer. can do.
  • the vinyl cyan compound-aromatic vinyl compound copolymer may be a copolymer containing a vinyl cyan compound and an aromatic vinyl compound as monomers, and may further include additional monomers in addition to the vinyl cyan compound and the aromatic vinyl compound.
  • the copolymer may include a random copolymer, a block copolymer, and a graft copolymer.
  • the content of vinyl cyan compound-derived repeating units included in the vinyl cyan compound-aromatic vinyl compound copolymer may be adjusted.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains 10 parts by weight or more, 15 parts by weight or more, or 17 parts by weight of repeating units derived from the vinyl cyan compound based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer.
  • the vinyl cyan compound-aromatic vinyl compound copolymer includes 10 parts by weight or more and 50 parts by weight or less of repeating units derived from the vinyl cyan compound based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer. - Light stability and gas permeability of the aromatic vinyl compound copolymer are improved, so that excellent light stability and heat resistance stability can be realized.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains less than 10 parts by weight of repeating units derived from the vinyl cyan compound with respect to 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer, the vinyl cyan compound-aromatic vinyl compound air Stability to light and gas permeability of the composite may decrease, resulting in poor light stability, and when included in an amount exceeding 50 parts by weight, stability due to heat may decrease, resulting in poor heat resistance stability.
  • the vinyl cyan compound-aromatic vinyl compound copolymer includes 50 parts by weight or more and 90 parts by weight or less of the aromatic vinyl compound-derived repeating unit based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer. can be included with
  • the content of aromatic vinyl compound-derived repeating units included in the vinyl cyan compound-aromatic vinyl compound copolymer may be adjusted.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains 50 parts by weight or more, 60 parts by weight or more, or 70 parts by weight of repeating units derived from the aromatic vinyl compound based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer.
  • 83 parts by weight or less or 50 parts by weight or more and 90 parts by weight or less, 50 parts by weight or more and 85 parts by weight or less, 50 parts by weight or more and 83 parts by weight or less, 60 parts by weight or more and 90 parts by weight or less, 60 parts by weight or more 85 It may be included in parts by weight or less, 60 parts by weight or more and 83 parts by weight or less, 70 parts by weight or more and 90 parts by weight or less, 70 parts by weight or more and 85 parts by weight or less, 70 parts by weight or more and 83 parts by weight or less.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains 50 parts by weight or more and 90 parts by weight or less of repeating units derived from the aromatic vinyl compound based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer. - Good thermal stability and excellent mechanical properties of the aromatic vinyl compound copolymer are realized, so that the finally manufactured optical film can realize excellent heat resistance stability as well as good scratch resistance.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains less than 50 parts by weight of the repeating unit derived from the aromatic vinyl compound with respect to 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer, stability due to heat is poor and light resistance or Heat resistance stability may be deteriorated, and when it is included in an amount exceeding 90 parts by weight, light stability and gas permeability of the vinyl cyan compound-aromatic vinyl compound copolymer may be reduced, resulting in poor light stability.
  • the vinyl cyan compound-aromatic vinyl compound copolymer may include 110 parts by weight or more and 500 parts by weight or less of the aromatic vinyl compound-derived repeating unit based on 100 parts by weight of the vinyl cyan compound-derived repeating unit.
  • the vinyl cyan compound-aromatic vinyl compound copolymer contains 110 parts by weight or more, 150 parts by weight or more, 200 parts by weight or more, 500 450 parts by weight or less, 110 parts by weight or more and 500 parts by weight or less, 150 parts by weight or more and 500 parts by weight or less, 200 parts by weight or more and 500 parts by weight or less, 110 parts by weight or more and 450 parts by weight or less, 150 parts by weight or more 450 It may include less than 200 parts by weight and less than 450 parts by weight.
  • the vinyl cyan compound-aromatic vinyl compound copolymer includes 110 parts by weight or more and 500 parts by weight or less of the aromatic vinyl compound-derived repeating unit based on 100 parts by weight of the vinyl cyan compound-derived repeating unit, the vinyl cyan compound-aromatic vinyl Good thermal stability and excellent mechanical properties of the compound copolymer are implemented, so that the finally manufactured optical film can implement not only excellent heat resistance stability but also good scratch resistance.
  • the vinyl cyan compound-aromatic vinyl compound copolymer includes less than 110 parts by weight of the aromatic vinyl compound-derived repeating unit with respect to 100 parts by weight of the vinyl cyan compound-derived repeating unit, stability due to heat is poor, resulting in poor light resistance or heat resistance stability. If it is included in an amount of more than 500 parts by weight, light stability and gas permeability of the vinyl cyan compound-aromatic vinyl compound copolymer may be reduced, resulting in poor light stability.
  • the vinyl cyan compound is not particularly limited, but may include, for example, at least one compound selected from the group consisting of acrylonitrile, metanitrolonitrile, ethylacrylonitrile, and isopropylacrylonitrile.
  • the vinyl cyan compound may include acrylonitrile.
  • the “aromatic” vinyl compound is not particularly limited, but may include, for example, at least one compound selected from the group consisting of styrene, ⁇ -methylstyrene, m-methylstyrene, p-methylstyrene, and p-tert-butylstyrene.
  • the aromatic vinyl compound may include styrene or ⁇ -methylstyrene.
  • composition for forming a coating layer may further include a polymer resin other than the vinyl cyan compound-aromatic vinyl compound copolymer.
  • the composition for forming the coating layer may include 90 parts by weight or more of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total polymer resin included in the composition for forming the coating layer.
  • the coating layer-forming composition contains 90 parts by weight or more, 95 parts by weight or more, or 99 parts by weight or more of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total polymer resin included in the coating layer-forming composition. , 99.9 parts by weight or more, 100 parts by weight or less, or 90 parts by weight or more 100 parts by weight or less, 95 parts by weight or more 100 parts by weight or less, 99 parts by weight or more 100 parts by weight or less, 99.9 parts by weight or more 100 parts by weight or less can
  • the composition for forming the coating layer may include only the vinyl cyan compound-aromatic vinyl compound copolymer as a polymer resin.
  • the composition for forming the coating layer can realize excellent light resistance and moisture resistance by including 90 parts by weight or more of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total polymer resin included in the composition for forming the coating layer. , Accordingly, even under harsh conditions, the oxidation stability of the dye to heat and light is excellent, so that reactive species affecting the stability of the dye are hardly generated, and thus excellent light absorption performance can be realized.
  • the composition for forming the coating layer includes less than 90 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total polymer resin included in the composition for forming the coating layer, the light absorption performance of the dye is lowered, The final optical film may have inferior light absorption performance under harsh conditions due to inferior moisture resistance and light resistance.
  • the coating layer-forming composition may include 10 parts by weight or more and 30 parts by weight or less of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total coating layer-forming composition. .
  • the composition for forming the coating layer includes 10 parts by weight or more, 12 parts by weight or more, 30 parts by weight or less, 20 parts by weight or more of the vinyl cyan compound-aromatic vinyl compound copolymer based on 100 parts by weight of the total coating layer formation composition. 15 parts by weight or less, or 10 parts by weight or more and 30 parts by weight or less, 12 parts by weight or more and 30 parts by weight or less, 10 parts by weight or more and 20 parts by weight or less, 12 parts by weight or more and 20 parts by weight or less, 10 parts by weight or more 15 It may be included in parts by weight or less, 12 parts by weight or more and 15 parts by weight or less.
  • the composition for forming the coating layer may include a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less.
  • composition for forming the coating layer contains a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less, the light absorption rate for near-infrared rays in the wavelength range of 750 nm or more and 1500 nm or less is excellent, and thus applied to Augmented Reality (AR), etc.
  • An optical film suitable for the following may be provided.
  • the type of dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less is not particularly limited, and may be appropriately selected and used from compounds known to be capable of performing the function.
  • Usable dyes include, for example, the sulfonium derivative of ceramidonin, new methylene blue, thioerythrosine triethylammonium, 6-acetylamino-2-methyl Ceramidonin (6-acetylamino-2-methylceramidonin), eosin, erythrosine, rose bengal, thionine, basic yellow, pinacyanol chloride chloride, rhodamine 6G, gallocyanine, ethyl violet, Victoria blue R, Celestine blue, QuinaldineRed, crystal crystal violet, brilliant green, astrazon orange G, darrow red, pyronin Y, basic red 29, pyrillium I (pyrylium iodide), safranin O (Safranin O
  • the dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less may include a cyanine-based dye.
  • the composition for forming the coating layer contains 0.1 part by weight or more and 3 parts by weight or less of the dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less based on 100 parts by weight of the total of the vinyl cyan compound-aromatic vinyl compound copolymer.
  • the dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less based on 100 parts by weight of the total of the vinyl cyan compound-aromatic vinyl compound copolymer.
  • the composition for forming the coating layer contains 0.1 parts by weight or more, 0.5 parts by weight or more, or 3 parts by weight of a dye having a maximum absorption wavelength of 750 nm or more and 1500 nm or less based on 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer in total.
  • 0.1 part by weight or less 2 parts by weight or less, 1 part by weight or less, or 0.1 part by weight or more and 3 parts by weight or less, 0.1 part by weight or more and 2 parts by weight or less, 0.1 part by weight or more and 1 part by weight or less, 0.5 part by weight or more and 3 parts by weight or less, 0.5 Part by weight or more and 2 parts by weight or less, 0.5 parts by weight or more and 1 part by weight or less may be included.
  • composition for forming the coating layer includes 0.1 part by weight or more and 3 parts by weight or less of the dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less with respect to a total of 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer
  • Eye tracking performance of an electronic device including the optical film may be improved by absorbing incoming light in a range of 750 nm or more and 1500 nm.
  • the composition for forming the coating layer includes less than 0.1 part by weight of the dye having the maximum absorption wavelength of 750 nm or more and 1500 nm or less with respect to 100 parts by weight of the vinyl cyan compound-aromatic vinyl compound copolymer in total, light is not sufficiently absorbed and the eye line It may cause deterioration in tracking performance, and when included in an amount of more than 3 parts by weight, a decrease in visible light transmittance or an increase in the color value of an optical film may cause a problem in that optical properties are degraded.
  • composition for forming the coating layer may further include a solvent.
  • the solvent may be an organic solvent.
  • ketones, alcohols, acetates and ethers, or a mixture of two or more thereof may be used as the organic solvent, but is not limited thereto.
  • organic solvent examples include ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone or isobutyl ketone; alcohols such as methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, or t-butanol; acetates such as ethyl acetate, i-propyl acetate, or polyethylene glycol monomethyl ether acetate; ethers such as tetrahydrofuran or propylene glycol monomethyl ether; toluene, xylene, ethylbenzene, cumene and tetralin or a mixture of two or more thereof.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetylacetone or isobutyl ketone
  • alcohols such as methanol, ethanol
  • the organic solvent may be added at the time of mixing each component included in the composition for forming a coating layer, or may be included in the composition for forming a coating layer while each component is added in a dispersed or mixed state in the organic solvent.
  • the composition for forming the coating layer may include a solvent such that the concentration of the total solid content of the components included in the composition is 1 to 70% by weight.
  • the solvent has a concentration of 2% by weight or more, 5% by weight or more, 10% by weight or more, or 20% by weight or more, and 65% by weight or less, 60% by weight or less, or 55% by weight of the total solid content of the components included in the composition.
  • a solvent may be included to be less than or equal to 50% by weight. If the content of the solvent in the composition is too small, the flowability of the composition is lowered, and defects such as streaks may occur in the final film. In addition, when an excessive amount of solvent is added, the solids content is lowered, and coating and film formation are not sufficiently performed, resulting in deterioration in physical properties or surface characteristics of the optical film, and defects may occur during drying and curing.
  • composition for forming the coating layer may further include other additives.
  • additives that can be used include, for example, antifoaming agents.
  • a silicone-based reactive additive may be used as the antifoaming agent, and a commercially available product such as Tego Rad 2500 may be used.
  • the content of the additives for example, the antifoaming agent or the plasticizer, may be appropriately adjusted to a level that does not interfere with the function of the optical film.
  • the composition for forming the coating layer may include the other additives in an amount of 5 to 50 parts by weight based on 100 parts by weight of the vinyl cyan compound-aromatic compound copolymer.
  • the lower limit of the content of the other additives is, for example, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more, 25 parts by weight or more, 30 parts by weight or more, 35 parts by weight or more, 40 parts by weight or more, or 45 parts by weight or more.
  • It may be parts by weight or more, and the upper limit is, for example, 45 parts by weight or less, 40 parts by weight or less, 35 parts by weight or less, 30 parts by weight or less, 25 parts by weight or less, 20 parts by weight or less, 15 parts by weight or less, or 10 parts by weight or less. may be less than When the above range is satisfied, the effect of using the additive may be appropriately secured without interfering with properties required in the composition for forming a coating layer.
  • an electronic device including the optical film may be provided.
  • a description of the optical film includes all of the above.
  • the electronic device may include a camera device unit acquiring an iris image; a light source in the infrared region; An optical film that blocks external light different from the wavelength band of the light source in the infrared region may be included.
  • the optical film may block external light different from the wavelength band of the light source in the infrared region and mainly transmit only light in the near-infrared band projected in the infrared region.
  • the influence of the external light source can be minimized by blocking the near-infrared region of the specific band of the external light source.
  • the use of the electronic device is not particularly limited. For example, it can be used for applications likely to be exposed to high temperature/high humidity conditions, specifically smart devices such as mobile devices, parts of wearable displays, or parts for automobiles (eg, head up displays). More specifically, the electronic device may be suitable for application to Augmented Reality (AR).
  • AR Augmented Reality
  • a composition for forming an optical film and a coating layer having excellent light absorption performance for near-infrared rays having a wavelength of 750 nm or more and 1500 nm or less, and excellent light resistance and moisture resistance to realize excellent light absorption performance even when exposed to harsh conditions , and electronic devices may be provided.
  • the coating solution was coated on a TAC substrate having a thickness of 60 ⁇ m using a meyer bar and dried at 90° C. within 2 minutes to prepare an optical film having a final thickness of 65 ⁇ m including a coating layer having a thickness of 5 ⁇ m.
  • the coating solution was coated on a TAC substrate having a thickness of 60 ⁇ m using a meyer bar, dried at 60° C. within 2 minutes, and then cured using a mercury lamp at a light intensity of 200 mJ/cm 2 to obtain a final thickness including a coating layer having a thickness of 5 ⁇ m An optical film of 65 ⁇ m was prepared.
  • Example 2 In the same manner as in Example 1, except that 12.5 g of polystyrene (PS, weight average molecular weight 250,000 g/mol, manufacturer: LG Chem) was used instead of the vinyl cyan compound-aromatic compound copolymer having a weight average molecular weight of 120,000 g/mol. A coating solution and an optical film having a final thickness of 65 ⁇ m were prepared.
  • PS polystyrene
  • LG Chem vinyl cyan compound-aromatic compound copolymer having a weight average molecular weight of 120,000 g/mol.
  • a coating solution and an optical film having a final thickness of 65 ⁇ m were prepared.
  • a coating solution and an optical film having a final thickness of 65 ⁇ m were prepared in the same manner as in Example 1, except that 0.44 g of a NIR absorbing dye (cyanine dye) having a maximum absorption wavelength of 930 nm was used instead of the NIR absorption dye with a maximum absorption wavelength of 865 nm. did
  • the thickness of the entire optical film was measured using a digital micrometer (TESA, product name: ⁇ -HITE).
  • the maximum light transmittance was measured in a specific wavelength range of 750 nm or more and 1500 nm or less.
  • Average transmittance change rate Average transmittance for wavelengths of 800 nm or more and 1000 nm or less after exposure to ultraviolet rays of 340 nm wavelength for 24 hours in QUV equipment (Q-Lab) / Average transmittance for wavelengths of 800 nm or more and 1000 nm or less * 100 .
  • Average transmittance change rate (average transmittance for wavelengths of 800 nm or more and 1000 nm or less after exposure to a temperature of 85 ° C. and humidity of 85% for 72 hours - average transmittance for wavelengths of 800 nm or more and 1000 nm or less) / initial 800 nm Average transmittance for wavelengths above 1000 nm and below * 100.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Maximum absorption wavelength (nm) 865 930 865 865 865 930 Average transmittance (%)@400 nm ⁇ 500 nm 89.2 89.3 89.1 89.3 91.2 89.3 85.2 Average transmittance (%)@800 nm to 1000 nm 47.2 55.3 46.9 47.5 75.2 47.1 25.3 Average transmittance (%)@800 nm to 1000 nm after light fastness test 48.1 55.7 48.2 61.2 89.2 53.2 28.2 Change rate of average transmittance after light fastness test (%) @ 800 nm to 1000 nm 1.90 0.72 2.77 28.84 18.62 12.95 11.46 Average transmittance (%)@800 nm to 1000 nm after moisture resistance test 49.4 57.4 48.3 51.7 82.3 48.9 27.4 Change rate of average transmittance after moisture resistance test (%) @ 800 nm to 1000 nm
  • the coating solution was coated on the other side of the PET substrate on which the indium-tin composite oxide (ITO) layer was formed using a Meyer bar, and dried at 90° C. within 2 minutes to form a coating layer having a thickness of 5 ⁇ m.
  • ITO indium-tin composite oxide
  • a 25 ⁇ m film-type OCA was laminated to form an adhesive layer.
  • a PET substrate having an indium-tin composite oxide (ITO) layer formed on the adhesive layer is bonded to the adhesive layer so that the PET substrate of the PET substrate formed with the indium-tin composite oxide (ITO) layer [thickness: 150 nm] is in contact with the adhesive layer, so that the total thickness is 131
  • An optical film of .mu.m was prepared.
  • An optical film having a total thickness of 180 ⁇ m was prepared in the same manner as in Example 1, except that 100 ⁇ m thick Glass (manufacturer: Schott Co.) was adhered on the adhesive layer.
  • An optical film having a total thickness of 130 ⁇ m was prepared in the same manner as in Example 1, except that 0.073 g of the NIR absorbing dye having a maximum absorption wavelength of 930 nm was used instead of the NIR absorption dye having a maximum absorption wavelength of 865 nm.
  • the coating solution was coated on a TAC substrate having a thickness of 60 ⁇ m using a meyer bar, dried at 60° C. within 2 minutes, and then cured using a mercury lamp at a light intensity of 200 mJ/cm 2 to obtain a final thickness including a coating layer having a thickness of 5 ⁇ m An optical film of 131 ⁇ m was prepared.
  • the thickness of the entire optical film was measured using a digital micrometer.
  • the maximum absorption wavelength was measured in a specific wavelength range of 750 nm or more and 1500 nm or less.
  • optical films prepared in Examples 4 to 6 and Comparative Examples 5 to 6 were evaluated under 1 SUN conditions for 72 hours using a Q-SUN (Q LAB) device, and the transmittance measurement method described above
  • the average transmittance for wavelengths of 800 nm to 1000 nm and the average transmittance change rate before and after the light fastness test were measured by the following equation.
  • Average transmittance change rate (average transmittance after exposure to Q-SUN (Q LAB) equipment for 72 hours or less under 1 SUN condition - initial average transmittance) / initial average transmittance * 100.
  • Example 4 Example 5 Example 6 Comparative Example 5 Comparative Example 6 total thickness ( ⁇ m) 131 180 131 131 131 131 Maximum absorption wavelength (nm) 865 865 930 865 865 average transmittance (%) @400nm ⁇ 500nm 86.2 88.5 86.3 86.3 86.1 average transmittance (%) @800 nm to 1000 nm 47.2 55.3 46.9 47.1 75.2 Average transmittance after light fastness test (%) @800 nm to 1000 nm 54.4 62.1 52.3 71.7 89.4 Average transmittance change rate after light fastness test (%) @800 nm to 1000 nm 15.25 12.30 11.51 52.23 18.88 Average transmittance change amount after light fastness test (%) @800 nm to 1000 nm 7.2 6.8 5.4 24.6 14.2
  • the optical films of the examples have excellent light absorption performance for near-infrared rays with wavelengths of 750 nm or more and 1500 nm or less, and have excellent light resistance and moisture heat resistance, so even when exposed to harsh conditions, excellent light absorption performance It was confirmed that the implementation of

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Filters (AREA)

Abstract

본 발명은 750 nm 이상 1500 nm 이하 파장의 근적외선에 대한 광흡수 성능이 우수하며, 내광성 및 내습성이 우수하여 가혹 조건에 노출되더라도 우수한 광 흡수 성능을 구현할 수 있는 광학 필름, 코팅층 형성용 조성물, 및 전자 기기에 관한 것으로서, 기재 및 상기 기재 상에 형성된 코팅층을 포함하고, 상기 코팅층은 비닐시안 화합물-방향족 화합물 공중합체 및 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함하고, 800 nm 내지 1000 nm의 파장 영역에서 30% 이상의 초기 평균 투과율(T0)을 갖고, 평균 투과율 변화율이 18 % 이하인 광학 필름을 제공한다.

Description

광학 필름, 코팅층 형성용 조성물, 및 전자 기기
관련 출원(들)과의 상호 인용
본 출원은 2022년 3월 3일자 한국특허출원 제10-2022-0027487호 및 한국특허출원 제 10-2022-0027488호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 광학 필름, 코팅층 형성용 조성물, 및 전자 기기에 관한 것이다.
가상현실(Virtual Reality, VR)은 컴퓨터 등을 사용한 인공적인 기술로 만들어낸 실제와 유사하지만 실제가 아닌 어떤 특정한 환경이나 상황 혹은 그 기술 자체를 말한다.
또한, 증강현실(Augmented Reality, AR)은 실제 환경에 가상 사물이나 정보를 합성하여 원래의 환경에 존재하는 사물처럼 보이도록 하는 기술을 말한다.
혼합현실 (Mixed Reality, MR) 혹은 혼성현실 (Hybrid reality)은 가상 세계와 현실 세계를 합쳐서 새로운 환경이나 새로운 정보를 만들어 내는 것을 말한다. 특히, 실시간으로 현실과 가상에 존재하는 것 사이에서 실시간으로 상호작용할 수 있는 것을 말할 때 혼합현실이라 한다.
이 때, 만들어진 가상의 환경이나 상황 등은 사용자의 오감을 자극하며 실제와 유사한 공간적, 시간적 체험을 하게 함으로써 현실과 상상의 경계를 자유롭게 드나들게 한다. 또한 사용자는 이러한 환경에 단순히 몰입할 뿐만 아니라 실재하는 디바이스를 이용해 조작이나 명령을 가하는 등 이러한 환경 속에 구현된 것들과 상호작용이 가능하다.
즉, 현실 세계를 바탕으로 사용자가 가상의 물체와 상호작용하여 향상된 현실감을 느낄 수 있으며, 자신이 위치해 있는 실제 환경을 인식함과 동시에 실제 영상 위에 표현된 가상의 정보 또한 인식할 수 있다.
이러한 기술분야에서는, 사용자가 주시하는 실제 세계에 가상 현실의 이미지를 매칭하기 위하여, 동공 인식 센서가 사용되고 있다.
트래킹의 방법 중 하나인 광학 방식은 미리 측정된 위치에 적외선 LED를 부착하여 카메라로 검출하는 방식으로, 사진을 찍을 때 동공이 빛을 반사하여 생기는 적목 현상과 같이 적외선 LED가 감지한 동공을 카메라로 촬영하여 설계된 알고리즘을 통해 중심 시각을 좌표로 나타낸다. 따라서, 동공을 감지하는 적외선 LED 를 제외한 외부 적외선 영역을 효과적으로 차단함에 따라 증강 현실 실행에 있어서의 오차를 최소화할 수 있다.
이에, 증강현실(Augmented Reality, AR)에 적용하여 동공 인식 센서의 오차를 최소화하기 위하여, 외부로부터 유입된 근적외선을 효과적으로 차단하는 광학 필름에 대한 연구가 요구되고 있는 실정이다.
본 발명은 750 nm 이상 1500 nm 이하 파장의 근적외선에 대한 광흡수 성능이 우수하며, 내광성 및 내습성이 우수하여 가혹 조건에 노출되더라도 우수한 광 흡수 성능을 구현할 수 있는 광학 필름, 코팅층 형성용 조성물, 및 전자 기기를 제공하기 위한 것이다.
본 명세서에서는, 기재; 및 상기 기재 상에 형성된 코팅층;을 포함하고, 상기 코팅층은 비닐시안 화합물-방향족 화합물 공중합체 및 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함하고, 800 nm 내지 1000 nm의 파장 영역에서 30% 이상의 초기 평균 투과율(T0)을 갖고, 하기 수학식 1에 의해 계산되는 평균 투과율 변화율이 18 % 이하인, 광학 필름을 제공한다.
[수학식 1]
평균 투과율 변화율 =
[(300nm 내지 400nm의 파장 영역에서 15 시간 내지 30 시간 노광시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 평균 투과율(T1) - 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 초기 평균 투과율(T0)) / T0 ] * 100.
또한, 본 명세서에서는, 상기 광학 필름을 포함하는, 전자 기기를 제공한다.
또한, 본 명세서에서는, 비닐시안 화합물-방향족 화합물 공중합체 및 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함하고, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상 200,000 g/mol 이하이고, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상 50 중량부 이하로 포함하는, 코팅층 형성용 조성물을 제공한다.
이하 발명의 구체적인 구현예에 따른 광학 필름, 코팅층 형성용 조성물, 및 전자 기기에 관하여 보다 상세하게 설명하기로 한다.
본 명세서에서, 「고온」이란 60 ℃ 이상의 온도를 의미할 수 있다. 예를 들어, 상기 고온은 65 ℃ 이상, 70 ℃ 이상, 75 ℃ 이상, 80 ℃ 이상, 85 ℃ 이상 또는 90 ℃ 이상의 온도를 의미할 수 있고, 그 상한은 특별히 제한되지 않으나 예를 들어 110 ℃ 이하, 105 ℃ 이하, 100 ℃ 이하, 95 ℃ 이하, 90 ℃ 이하, 85 ℃ 이하 또는 80 ℃ 이하일 수 있다. 물질, 물건 또는 각 구성의 특징에 온도가 영향을 주는 경우, 특별히 달리 온도를 언급하지 않는 이상, 상기 특징이 측정 또는 설명되는 온도 조건은 상온(예: 특별히 감온 또는 가온이 이루어지지 않은 온도로서, 약 15 내지 30 ℃ 범위)을 의미할 수 있다.
또한, 본 명세서에서, 「고습」이란 80 % 이상의 상대 습도를 의미할 수 있다. 예를 들어, 고습 조건이란 85 % 이상 90 % 이상 또는 95 % 이상의 상대습도를 만족하는 조건을 의미할 수 있다. 물질, 물건 또는 각 구성의 특징에 습도가 영향을 주는 경우, 특별히 달리 언급하지 않는 이상, 상기 특징이 측정 또는 설명되는 습도 조건은 상기 고습 조건 보다 상대습도가 낮은 경우로서, 예를 들어 15 이상 80 % 미만 범위의 상대습도 조건일 수 있고, 구체적으로는 그 하한이 20 % 이상, 25 % 이상, 30 % 이상, 35 % 이상, 40 % 이상이고, 그 상한이 75 % 이하, 70 % 이하, 65 % 이하 또는 60 % 이하인 상대습도 조건을 의미할 수 있다.
또한, 본 명세서에서 고온/고습 조건이란, 상기 설명된 고온 조건과 고습 조건 중 어느 하나 이상을 만족하는 환경 조건을 의미할 수 있다.
본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 "포함"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
또한, 본 명세서에서, 중량 평균 분자량은 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량(단위: g/mol)을 의미한다. 상기 GPC법에 의해 측정한 폴리스티렌 환산의 중량 평균 분자량을 측정하는 과정에서는, 통상적으로 알려진 분석 장치와 시차 굴절 검출기(Refractive Index Detector) 등의 검출기 및 분석용 컬럼을 사용할 수 있으며, 통상적으로 적용되는 온도 조건, 용매, flow rate를 적용할 수 있다. 상기 측정 조건의 구체적인 예로, 25 ℃ 온도, 테트라하드로퓨란(THF) 및 1 mL/min의 flow rate를 들 수 있다.
발명의 일 구현예에 따르면, 기재; 및 상기 기재 상에 형성된 코팅층;을 포함하고, 상기 코팅층은 비닐시안 화합물-방향족 화합물 공중합체 및 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함하고, 800 nm 내지 1000 nm의 파장 영역에서 30% 이상의 초기 평균 투과율(T0)을 갖고, 하기 수학식 1에 의해 계산되는 평균 투과율 변화율이 18 % 이하인, 광학 필름이 제공될 수 있다.
[수학식 1]
평균 투과율 변화율 =
[(300nm 내지 400nm의 파장 영역에서 15 시간 내지 30 시간 노광시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 평균 투과율(T1) - 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 초기 평균 투과율(T0)) / T0 ] * 100.
최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료는 광에 대한 안정성이 취약하여, 종래 이를 포함하는 광학 필름의 경우 내광성이 저하되어 염료의 광흡수 성능이 저하되는 문제점이 있었다.
이에, 본 발명자들은 가혹 조건에서 사용되는 경우에도 내광성 및 내습성이 우수하고, 750 nm 이상 1500 nm 이하의 파장 영역에 대한 우수한 광 흡수성을 구현할 수 있는 광학 필름에 관한 연구를 진행하여, 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 상기 비닐시안 화합물-방향족 화합물 공중합체와 함께 포함하는 광학 필름의 경우, 비닐시안 화합물-방향족 화합물 공중합체의 열과 광에 대한 산화 안정성이 우수하여 염료의 안정성에 영향을 미치는 반응종의 생성이 적어 염료의 안정성을 높임에 의해 최종 제조된 광학 필름이 가혹 조건에서 사용되는 경우에도 내광성 및 내습성이 우수하고, 750 nm 이상 1500 nm 이하의 파장 영역에 대한 우수한 광 흡수성을 구현할 수 있다는 점을 확인하고 발명을 완성하였다.
구체적으로, 상기 광학 필름은 하기 수학식 1에 의해 계산되는 평균 투과율 변화율이 18 % 이하일 수 있다.
[수학식 1]
평균 투과율 변화율 =
[(300nm 내지 400nm의 파장 영역에서 15 시간 내지 30 시간 노광시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 평균 투과율(T1) - 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 초기 평균 투과율(T0)) / T0 ] * 100.
상기 평균 투과율은 두께 20 ㎛ 이상 250 ㎛ 이하의 광학 필름에 대하여 측정된 값으로, 구체적인 측정방법이 크게 제한되지는 않으나, 예를 들어 shimadzu 社 solidspec-3700 등의 분광 광도계를 이용하여 측정할 수 있다.
구체적으로, 상기 광학 필름은 상기 수학식 1에 의해 계산되는 평균 투과율 변화율이 18 % 이하인, 15% 이하, 10 % 이하, 5% 이하, 2 %이하, 0.01 % 이상, 0.1% 이상, 0.5 % 이상, 또는 0.01 % 이상 10 % 이하, 0.01 % 이상 5 % 이하, 0.01 % 이상 2 % 이하, 0.1 % 이상 10 % 이하, 0.1 % 이상 5 % 이하, 0.1 % 이상 2 % 이하, 0.5 % 이상 10 % 이하, 0.5 % 이상 5 % 이하, 0.5 % 이상 2 % 이하일 수 있다.
상기 수학식 1에 의해 계산되는 평균 투과율 변화율이 10 % 이하임에 따라, 내광성이 우수하여 가혹조건에서도 750 nm 이상 1500 nm 이하 파장 영역의 근적외선에 대해 광흡수율 성능이 저하되지 않고, 우수한 광 흡수성을 구현하여, 증강현실(Augmented Reality, AR) 등에 적용하기에 적합한 광학 필름이 제공될 수 있다.
상기 수학식 1에서 상기 초기 평균 투과율이란 제조 후 별도 처리를 하지 않은 광학 필름을 의미할 수 있다. 상기 수학식 1에서 상기 초기 평균 투과율은 30 % 이상, 40 % 이상, 45 % 이상, 60 % 이하, 56 % 이하, 30 % 이상 60 % 이하, 40 % 이상 60 % 이하, 45 % 이상 60 % 이하, 30 % 이상 56 % 이하, 40 % 이상 56 % 이하, 45 % 이상 56 % 이하일 수 있다.
상기 광학 필름의 초기 평균 투과율이 30 % 이상 60 % 이하임에 따라, 750 nm 이상 1500 nm 이하 파장 영역의 근적외선에 대한 광흡수율이 우수하여, 증강현실(Augmented Reality, AR) 등에 적용하기에 적합한 광학 필름이 제공될 수 있다.
또한, 상기 수학식 1에서 100 nm 내지 400 nm, 또는 300nm 내지 400nm의 파장을 가지는 자외선에 15 시간 이상 30 시간 이하 노출시킨 후 평균 투과율이란, 상기 구현예의 광학 필름에 대하여 Q-Lab 社 의 QUV 장비를 이용하여, 15 시간 내지 30시간, 또는 24 시간 동안 300nm 내지 400nm, 또는 340nm에서 최대값 0.10 내지 1.00 W/cm2 , 또는 0.68W/cm2 광량 에 노출시킨 이후 측정한 800 nm 이상 1000 nm 이하 파장 영역에서의 평균 투과율을 의미할 수 있고, 이때 QUV 장비(Q-Lab 社) 기기 등을 사용할 수 있다.
상기 300nm 내지 400nm의 파장 영역에서 15 시간 내지 30 시간 노광시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 평균 투과율(T1)은 30 % 이상 65 % 이하일 수 있다.
구체적으로, 상기 300nm 내지 400nm의 파장 영역에서 15 시간 내지 30 시간 노광시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 평균 투과율(T1)은 30 % 이상, 40 % 이상, 45 % 이상, 60 % 이하, 56 % 이하, 30 % 이상 60 % 이하, 40 % 이상 60 % 이하, 45 % 이상 60 % 이하, 30 % 이상 56 % 이하, 40 % 이상 56 % 이하, 45 % 이상 56 % 이하일 수 있다.
상기 300nm 내지 400nm의 파장 영역에서 15 시간 내지 30 시간 노광시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 평균 투과율(T1)이 30 % 이상 60 % 이하임에 따라, 내광성이 우수하여 가혹조건에서도 750 nm 이상 1500 nm 이하 파장 영역의 근적외선에 대해 우수한 광흡수율을 구현하여, 증강현실(Augmented Reality, AR) 등에 적용하기에 적합한 광학 필름이 제공될 수 있다.
한편, 상기 광학 필름은 800 nm 내지 1000 nm의 파장 영역에서 30% 이상, 또는 30 % 이상 60 % 이하의 초기 평균 투과율(T0)을 가질 수 있다.
상기 평균 투과율은 두께 20 ㎛ 이상 250 ㎛ 이하의 광학 필름에 대하여 측정된 값으로, 구체적인 측정방법이 크게 제한되지는 않으나, 예를 들어 shimadzu 社 solidspec-3700 등의 분광 광도계를 이용하여 측정할 수 있다.
구체적으로, 상기 광학 필름은 800 nm 이상 1000 nm 이하 파장에 대한 평균 투과율이 30 % 이상, 40 % 이상, 45 % 이상, 60 % 이하, 56 % 이하, 30 % 이상 60 % 이하, 40 % 이상 60 % 이하, 45 % 이상 60 % 이하, 30 % 이상 56 % 이하, 40 % 이상 56 % 이하, 45 % 이상 56 % 이하일 수 있다.
상기 광학 필름이 800 nm 이상 1000 nm 이하 파장에 대한 평균 투과율이 30 % 이상 60 % 이하임에 따라, 750 nm 이상 1500 nm 이하 파장 영역의 근적외선에 대한 광흡수율이 우수하여, 증강현실(Augmented Reality, AR) 등에 적용하기에 적합한 광학 필름이 제공될 수 있다.
한편, 상기 광학 필름은 하기 수학식 2에 의해 계산되는 평균 투과율 변화율이 10 % 이하일 수 있다.
[수학식 2]
평균 투과율 변화율
= [(고온 및 고습 조건에 노출 시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 상기 광학 필름이 갖는 평균 투과율(T2) - 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 초기 평균 투과율(T0)) / T0 ] * 100
이때, 고온 및 고습 조건에서의 노출은 70 ℃ 내지 100 ℃ 의 온도 및 70 % 내지 90 % 의 습도 조건에 50 내지 100 시간을 노출한 것을 의미한다.
상기 수학식 2에의 평균 투과율은 두께 20 ㎛ 이상 250 ㎛ 이하의 광학 필름에 대하여 측정된 값으로, 구체적인 측정방법이 크게 제한되지는 않으나, 예를 들어 shimadzu 社 solidspec-3700 등의 분광 광도계를 이용하여 측정할 수 있다.
구체적으로, 상기 광학 필름은 상기 수학식 2에 의해 계산되는 평균 투과율 변화율이 10 % 이하, 5% 이하, 4.7 %이하, 0.01 % 이상, 0.1% 이상, 0.5 % 이상, 또는 0.01 % 이상 10 % 이하, 0.01 % 이상 5 % 이하, 0.01 % 이상 4.7 % 이하, 0.1 % 이상 10 % 이하, 0.1 % 이상 5 % 이하, 0.1 % 이상 4.7 % 이하, 0.5 % 이상 10 % 이하, 0.5 % 이상 5 % 이하, 0.5 % 이상 4.7 % 이하일 수 있다.
상기 수학식 2 에 의해 계산되는 평균 투과율 변화율이 10 % 이하임에 따라, 내습성이 우수하여 가혹조건에서도 750 nm 이상 1500 nm 이하 파장 영역의 근적외선에 대해 광흡수율 성능이 저하되지 않고, 우수한 광 흡수성을 구현하여, 증강현실(Augmented Reality, AR) 등에 적용하기에 적합한 광학 필름이 제공될 수 있다.
상기 수학식 2에서 상기 초기 평균 투과율이란 제조 후 별도 처리를 하지 않은 광학 필름을 의미할 수 있다.
즉, 상기 수학식 2에서 상기 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 초기 평균 투과율(T0)은 30 % 이상, 40 % 이상, 45 % 이상, 60 % 이하, 58 % 이하, 30 % 이상 60 % 이하, 40 % 이상 60 % 이하, 45 % 이상 60 % 이하, 30 % 이상 58 % 이하, 40 % 이상 58 % 이하, 45 % 이상 58 % 이하일 수 있다.
상기 광학 필름의 초기 평균 투과율이 30 % 이상 60 % 이하임에 따라, 750 nm 이상 1500 nm 이하 파장 영역의 근적외선에 대한 광흡수율이 우수하여, 증강현실(Augmented Reality, AR) 등에 적용하기에 적합한 광학 필름이 제공될 수 있다.
상기 수학식 2에서, 상기 고온 및 고습 조건에 노출 시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 상기 광학 필름이 갖는 평균 투과율(T2)은 상기 구현예의 광학 필름에 대하여 72 시간 동안 85℃, 85% 조건 에서 평가를 진행한 이후 측정한 800 nm 이상 1000 nm 이하 파장 영역에서의 평균 투과율을 의미할 수 있고, 이때 최대값 0.10 내지 1.00 W/cm2 , 또는 0.68W/cm2 광량을 적용할 수 있으며, 또한 QUV 장비(Q-Lab 社) 기기 등을 이용할 수 있다.
상기 코팅층은 후술하는 일 구현예의 코팅층 형성용 조성물로부터 형성될 수 있다.
상기 기재의 종류는 특별히 제한되지 않고, 관련 기술 분야에서 공지된 것이 사용될 수 있다. 예를 들어, 유리(glass), PET(polyethylene terephthalate), TAC(triacetyl cellulose), PC(poluycarbonate), COP(cyclo-olefin polymer) 등 과 같은 기재가 사용될 수 있다.
상기 구현예의 광학 필름은 코팅층에 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 상기 비닐시안 화합물-방향족 화합물 공중합체와 함께 포함함에 따라, 상기 비닐시안 화합물-방향족 화합물 공중합체의 우수한 열과 광에 대한 산화 안정성에 의해 염료의 안정성에 영향을 미치는 반응종의 생성이 적어 염료의 안정성을 높임에 의해 가혹 조건에서 사용되는 경우에도 내광성 및 내습성이 우수하고, 750 nm 이상 1500 nm 이하의 파장 영역에 대한 우수한 광 흡수성을 구현할 수 있다.
상기 일 구현예의 코팅층은 비닐시안 화합물-방향족 비닐 화합물 공중합체를 포함할 수 있다.
비닐시안 화합물-방향족 비닐 화합물 공중합체를 포함하는 경우 아크릴 수지 등의 UV 경화형 고분자 수지 또는 우레탄 수지, 에폭시 수지 등의 열 경화형 수지, 아크릴 수지 등의 열 가소성 수지를 포함하는 경우와 비교하여, 우수한 내광성을 구현할 수 있다.
구체적으로, UV 경화형 고분자 수지 또는 열 경화형 수지는 내광성이 취약하여, 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료와 함께 사용하는 경우 염료의 광흡수 성능이 저하될 수 있다.
상기 구현예의 코팅층은 비닐시안 화합물-방향족 비닐 화합물 공중합체를 포함함에 따라 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체의 열과 광에 대한 우수한 산화 안정성에 의해 우수한 내광성 및 내습성을 구현할 수 있으며, 이에 따라 가혹 조건에서도 염료의 우수한 광흡수 성능이 구현될 수 있다.
상기 일 구현예에서 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상 200,000 g/mol 이하일 수 있다.
상기 「공중합체」는, 특별히 달리 언급하지 않는 이상 랜덤공중합체, 블록공중합체, 그라프트 공중합체를 포함할 수 있다.
구체적으로, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상, 50,000 g/mol 이상, 80,000 g/mol 이상, 100,000 g/mol 이상, 또는 200,000 g/mol 이하, 150,000 g/mol 이하, 120,000 g/mol 이하, 또는 10,000 g/mol 이상 200,000 g/mol 이하, 10,000 g/mol 이상 150,000 g/mol 이하, 10,000 g/mol 이상 120,000 g/mol 이하, 50,000 g/mol 이상 200,000 g/mol 이하, 50,000 g/mol 이상 150,000 g/mol 이하, 50,000 g/mol 이상 120,000 g/mol 이하, 80,000 g/mol 이상 200,000 g/mol 이하, 80,000 g/mol 이상 150,000 g/mol 이하, 80,000 g/mol 이상 120,000 g/mol 이하, 100,000 g/mol 이상 200,000 g/mol 이하, 100,000 g/mol 이상 150,000 g/mol 이하, 100,000 g/mol 이상 120,000 g/mol 이하일 수 있다.
상기 일 구현예에서 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상 200,000 g/mol 이하임에 따라 코팅액 형성 시의 유동적 특성에 의해 레벨링과 젖음 특성이 우수하여 균일한 코팅 도막을 형성할 수 있는 동시에 우수한 내광 특성을 구현할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체의 중량 평균 분자량이 200,000 g/mol 초과인 경우 코팅액의 점도가 높아져 균일한 도막을 형성할 수 없으며, 중량 평균 분자량이 10,000 g/mol 미만인 경우 수지의 내열 안정성이 감소하여 내광 특성이 저하되는 문제가 발생할 수 있다.
상기 일 구현예에서, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상 50 중량부 이하로 포함할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 비닐시안 화합물 및 방향족 비닐 화합물을 단량체로 포함하는 공중합체일 수 있으며, 상기 비닐시안 화합물 및 방향족 비닐 화합물 외에 추가적인 단량체를 더 포함할 수도 있다.
상기 공중합체는 랜덤공중합체, 블록공중합체, 그라프트 공중합체를 포함할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 제조시 사용되는 단량체 간의 중량비를 조절함에 따라, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 에 포함되는 비닐시안 화합물 유래 반복단위의 함량을 조절할 수 있다.
구체적으로, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상, 15 중량부 이상, 17 중량부 이상, 50 중량부 이하, 40 중량부 이하, 30 중량부 이하, 또는 10 중량부 이상 50 중량부 이하, 10 중량부 이상 40 중량부 이하, 10 중량부 이상 30 중량부 이하, 15 중량부 이상 50 중량부 이하, 15 중량부 이상 40 중량부 이하, 15 중량부 이상 30 중량부 이하, 17 중량부 이상 50 중량부 이하, 17 중량부 이상 40 중량부 이하, 17 중량부 이상 30 중량부 이하로 포함할 수 있다.
즉, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 제조시 사용되는 단량체 전체 100 중량부에 대하여 상기 비닐시안 화합물이 10 중량부 이상, 15 중량부 이상, 17 중량부 이상, 50 중량부 이하, 40 중량부 이하, 30 중량부 이하, 또는 10 중량부 이상 50 중량부 이하, 10 중량부 이상 40 중량부 이하, 10 중량부 이상 30 중량부 이하, 15 중량부 이상 50 중량부 이하, 15 중량부 이상 40 중량부 이하, 15 중량부 이상 30 중량부 이하, 17 중량부 이상 50 중량부 이하, 17 중량부 이상 40 중량부 이하, 17 중량부 이상 30 중량부 이하로 포함될 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상 50 중량부 이하로 포함함에 따라 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상 50 중량부 이하로 포함함에 따라 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체의 빛에 대한 안정성 및 기체 투과도가 향상되어, 우수한 내광 안정성 및 내열 안정성을 구현할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 미만으로 포함하는 경우 비닐시안 화합물-방향족 비닐 화합물 공중합체의 빛에 대한 안정성 및 기체 투과도가 저하되어 내광 안정성이 불량해질 수 있으며, 50 중량부 초과로 포함하는 경우 열에 의한 안정성이 저하되어 내열 안정성이 불량해질 수 있다.
한편, 상기 일 구현예에서, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 50 중량부 이상 90 중량부 이하로 포함할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 제조시 사용되는 단량체 간의 중량비를 조절함에 따라, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 에 포함되는 방향족 비닐 화합물 유래 반복단위의 함량을 조절할 수 있다.
구체적으로, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 50 중량부 이상, 60 중량부 이상, 70 중량부 이상, 90 중량부 이하, 85 중량부 이하, 83 중량부 이하, 또는 50 중량부 이상 90 중량부 이하, 50 중량부 이상 85 중량부 이하, 50 중량부 이상 83 중량부 이하, 60 중량부 이상 90 중량부 이하, 60 중량부 이상 85 중량부 이하, 60 중량부 이상 83 중량부 이하, 70 중량부 이상 90 중량부 이하, 70 중량부 이상 85 중량부 이하, 70 중량부 이상 83 중량부 이하로 포함할 수 있다.
즉, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 제조시 사용되는 단량체 전체 100 중량부에 대하여 상기 방향족 비닐 화합물이 50 중량부 이상, 60 중량부 이상, 70 중량부 이상, 90 중량부 이하, 85 중량부 이하, 83 중량부 이하, 또는 50 중량부 이상 90 중량부 이하, 50 중량부 이상 85 중량부 이하, 50 중량부 이상 83 중량부 이하, 60 중량부 이상 90 중량부 이하, 60 중량부 이상 85 중량부 이하, 60 중량부 이상 83 중량부 이하, 70 중량부 이상 90 중량부 이하, 70 중량부 이상 85 중량부 이하, 70 중량부 이상 83 중량부 이하로 포함될 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 50 중량부 이상 90 중량부 이하로 포함함에 따라 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체의 양호한 열적 안정성 및 우수한 기계적 특성이 구현되어, 최종 제조되는 광학 필름이 우수한 내열 안정성을 구현할 수 있을 뿐만 아니라, 양호한 내찰상성을 구현할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 50 중량부 미만으로 포함하는 경우 열에 의한 안정성이 불량하여 내광 혹은 내열 안정성이 저하될 수 있으며, 90 중량부 초과로 포함하는 경우 비닐시안 화합물-방향족 비닐 화합물 공중합체의 빛에 대한 안정성 및 기체 투과도가 저하되어 내광 안정성이 불량해질 수 있다.
또한, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물 유래 반복단위 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 110 중량부 이상 500 중량부 이하로 포함할 수 있다.
구체적으로, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물 유래 반복단위 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 110 중량부 이상, 150 중량부 이상, 200 중량부 이상, 500 중량부 이하, 450 중량부 이하, 110 중량부 이상 500 중량부 이하, 150 중량부 이상 500 중량부 이하, 200 중량부 이상 500 중량부 이하, 110 중량부 이상 450 중량부 이하, 150 중량부 이상 450 중량부 이하, 200 중량부 이상 450 중량부 이하로 포함할 수 있다.
상기 비닐시안 화합물은 크게 제한되지 않으나, 예를 들어 아크릴로니트릴, 메타니트롤로니트릴, 에틸아크릴로니트릴 및 이소프로필아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다. 예를 들어 상기 비닐시안 화합물은 아크릴로니트릴을 포함할 수 있다.
또한, 상기 방향족 비닐 화합물은 크게 제한되지 않으나, 예를 들어 스티렌, α-메틸스티렌, m-메틸스티렌, p-메틸스티렌 및 p-tert-부틸스티렌으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다. 예를 들어 상기 방향족 비닐 화합물은 스티렌 또는 α-메틸스티렌을 포함할 수 있다.
한편, 상기 일 구현예의 코팅층은 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 외의 고분자 수지를 더 포함할 수 있다.
상기 코팅층은 코팅층에 포함되는 전체 고분자 수지 총 100 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 90 중량부 이상으로 포함할 수 있다.
구체적으로, 상기 코팅층은 코팅층에 포함되는 전체 고분자 수지 총 100 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 90 중량부 이상, 95 중량부 이상, 99 중량부 이상, 99.9 중량부 이상, 100 중량부 이하, 또는 90 중량부 이상100 중량부 이하, 95 중량부 이상100 중량부 이하, 99 중량부 이상100 중량부 이하, 99.9 중량부 이상100 중량부 이하로 포함할 수 있다. 예를 들면, 코팅층은 고분자 수지로 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 만을 포함할 수 있다.
상기 코팅층은 코팅층에 포함되는 전체 고분자 수지 총 100 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 90 중량부 이상으로 포함함에 따라 우수한 내광성 및 내습성을 구현할 수 있으며, 이에 따라 가혹 조건에서도 염료의 염료의 열과 광에 대한 산화 안정성이 우수하여 염료의 안정성에 영향을 미치는 반응종이 거의 생성되지 않아 우수한 광흡수 성능이 구현될 수 있다.
상기 코팅층이 코팅층에 포함되는 전체 고분자 수지 총 100 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 90 중량부 미만으로 포함하는 경우 염료의 광흡수 성능이 저하되어, 최종 제조되는 광학 필름이 내습성 및 내광성이 열등하여 가혹 조건에서 열등한 광흡수 성능을 가질 수 있다.
상기 일 구현예에서, 상기 코팅층은 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함할 수 있다.
상기 코팅층이 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함함에 따라, 750 nm 이상 1500 nm 이하 파장 영역의 근적외선에 대한 광흡수율이 우수하여, 증강현실(Augmented Reality, AR) 등에 적용하기에 적합한 광학 필름이 제공될 수 있다.
상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료의 종류는 특별히 제한되지 않고, 상기 기능을 수행할 수 있는 것으로 알려진 화합물 중에서 적절히 선택되어 사용될 수 있다. 사용 가능한 염료로는, 예를 들어, 세라미도닌의 술포늄 유도체(sulfonium derivative), 뉴 메틸렌 블루(new methylene blue), 티오에리트로신 트리에틸암모늄(thioerythrosine triethylammonium), 6-아세틸아미노-2-메틸세라미도닌(6-acetylamino-2-methylceramidonin), 에오신(eosin), 에리트로신(erythrosine), 로즈 벵갈(rose bengal), 티오닌(thionine), 베이직 옐로우(baseic yellow), 피나시놀 클로라이드(Pinacyanol chloride), 로다민 6G(rhodamine 6G), 갈로시아닌(gallocyanine), 에틸 바이올렛(ethyl violet), 빅토리아 블루 R(Victoria blue R), 셀레스틴 블루(Celestine blue), 퀴날딘 레드(QuinaldineRed), 크리스탈 바이올렛(crystal violet), 브릴리언트 그린(Brilliant Green), 아스트라존 오렌지 G(Astrazon orange G), 다로우 레드(darrow red), 피로닌 Y(pyronin Y), 베이직 레드 29(basic red 29), 피릴륨I(pyrylium iodide), 사프라닌 O(Safranin O), 시아닌, 메틸렌 블루, 아주레 A(Azure A), 또는 이들 중에서 선택되는 2 이상의 조합을 들 수 있다.
구체적으로, 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료는 시아닌계 염료를 포함할 수 있다.
상기 일 구현예에서, 상기 코팅층은 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 이상 3 중량부 이하로 포함할 수 있다.
구체적으로, 상기 코팅층은 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 이상, 0.5 중량부 이상, 3 중량부 이하, 2 중량부 이하, 1 중량부 이하 또는 0.1 중량부 이상 3 중량부 이하, 0.1 중량부 이상 2 중량부 이하, 0.1 중량부 이상 1 중량부 이하, 0.5 중량부 이상 3 중량부 이하, 0.5 중량부 이상 2 중량부 이하, 0.5 중량부 이상 1 중량부 이하로 포함할 수 있다.
상기 코팅층이 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 이상 3 중량부 이하로 포함함에 따라 외부환경에서 들어오는 750nm 이상 1500nm 영역의 빛을 흡수하여 AR/VR 기기의 시선 추적 성능을 높일 수 있다.
상기 코팅층이 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 미만으로 포함하는 경우 빛을 충분히 흡수하지 못해 시선추적 성능 저하를 발생시킬 수 있으며, 3 중량부 초과로 포함하는 경우 가시광선 투과율 저하 혹은 광학 필름의 색값이 높아져 광특성이 저하되는 문제가 발생할 수 있다.
또한, 상기 하나의 예시에서, 상기 코팅층은 기타 첨가제를 더 포함할 수 있다. 사용 가능한 기타 첨가제로는, 예를 들어, 소포제를 들 수 있다.
하나의 예시에서, 상기 소포제로는 실리콘계 반응성 첨가제를 사용할 수 있으며, Tego Rad 2500 등과 같은 시판품을 사용할 수 있다.
상기 첨가제, 예를 들어, 소포제나 가소제의 함량은 광학 필름의 기능에 장애가 되지 않는 수준에서 적절히 조절될 수 있다.
상기 코팅층은 상기 비닐시안 화합물-방향족 화합물 공중합체 100 중량부 기준으로, 상기 기타 첨가제를 5 내지 50 중량부 범위로 포함할 수 있다. 구체적으로, 상기 기타 첨가제의 함량 하한은 예를 들어, 10 중량부 이상, 15 중량부 이상, 20 중량부 이상, 25 중량부 이상, 30 중량부 이상, 35 중량부 이상, 40 중량부 이상 또는 45 중량부 이상일 수 있고, 그 상한은 예를 들어, 45 중량부 이하, 40 중량부 이하, 35 중량부 이하, 30 중량부 이하, 25 중량부 이하, 20 중량부 이하, 15 중량부 이하 또는 10 중량부 이하 일 수 있다. 상기 범위를 만족하는 경우, 코팅층에서 요구되는 특성을 방해하지 않으면서 첨가제 사용에 따른 효과를 적절히 확보할 수 있다.
구체적으로 상기 구현예의 광학 필름을 제조하는 방법의 예가 크게 한정되는 것은 아니며, 예를 들어, 상기 코팅층 형성용 조성물을 기재에 도포하여 도막을 형성하는 단계(단계 1); 및 상기 도막을 건조하는 단계(단계 2); 를 포함하는, 제조 방법을 사용할 수 있다.
상기 단계 1은, 상술한 코팅층 형성용 조성물을 기재에 도포하여 도막을 형성하는 단계이다. 상기 코팅층 형성용 조성물을 기재에 도포하는 방법은 특별히 제한되지 않는다.
상술한 바와 같이, 상기 코팅층 형성용 조성물은 유기 용매를 포함할 수 있다. 상기 코팅층 형성용 조성물은 필름 형성 공정시의 도포성 등의 공정성을 고려하여 적절한 점도를 갖도록 하는 양으로 고형분을 포함할 수 있다. 예를 들어, 상기 코팅층 형성용 조성물은 조성물에 포함되는 성분 전체 고형분의 농도가 1 내지 70 중량%가 되도록 용매를 포함할 수 있다. 구체적으로, 상기 용매는 조성물에 포함되는 성분 전체 고형분의 농도가 2 중량% 이상, 5 중량% 이상, 10 중량% 이상 또는 20 중량% 이상이고, 65 중량% 이하, 60 중량% 이하, 55 중량% 이하 또는 50 중량% 이하가 되도록 용매를 포함할 수 있다.
또한, 상기 코팅층 형성용 조성물은 상술한 바와 같이 유기 용매 외에 다른 성분을 추가로 포함할 수 있다. 비제한적인 예로, 막 두께의 균일성이나 표면 평활성을 향상시키거나, 혹은 기판과의 밀착성을 향상시키거나, 혹은 유전율이나 도전성을 변화시키거나, 혹은 치밀성을 증가시킬 수 있는 첨가제가 추가로 포함될 수 있다. 이러한 첨가제로는 계면 활성제, 실란계 화합물, 유전체 또는 가교성 화합물 등이 예시될 수 있다.
상기 단계 2는, 상기 코팅층 형성용 조성물을 기재에 도포하여 형성된 도막을 건조하는 단계이다.
상기 도막의 건조 단계는 핫 플레이트, 열풍 순환로, 적외선로 등의 가열 수단에 의해 실시될 수 있고, 50 ℃ 이상 150 ℃ 이하, 또는 50 ℃ 이상 100 ℃이하 온도로 수행할 수 있다.
상기 구현예의 광학 필름의 두께가 크게 한정되는 것은 아니나, 예를 들어, 0.01 ㎛ 이상 1000 ㎛ 이하 범위내에서 자유롭게 조절 가능하다. 상기 광학 필름의 두께가 특정 수치만큼 증가하거나 감소하는 경우 광학 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
상기 구현예에서, 코팅층의 두께는 크게 한정되는 것은 아니나, 예를 들어, 0.005 ㎛ 이상 1000 ㎛ 이하 범위내에서 자유롭게 조절 가능하다. 보다 구체적으로, 상기 코팅층의 두께는 0.005 ㎛ 이상, 0.01 ㎛ 이상, 0.1 ㎛ 이상, 1 ㎛ 이상, 3 ㎛ 이상, 또는 1000 ㎛ 이하, 20 ㎛ 이하, 15 ㎛ 이하, 또는 0.01 ㎛ 이상 1000 ㎛ 이하, 0.01 ㎛ 이상 20 ㎛ 이하, 0.01 ㎛ 이상 15 ㎛ 이하, 0.0 ㎛ 이상 1000 ㎛ 이하, 0.1 ㎛ 이상 20 ㎛ 이하, 0.1 ㎛ 이상 15 ㎛ 이하, 1 ㎛ 이상 1000 ㎛ 이하, 1 ㎛ 이상 20 ㎛ 이하, 1 ㎛ 이상 15 ㎛ 이하, 3 ㎛ 이상 1000 ㎛ 이하, 3 ㎛ 이상 20㎛ 이하, 3 ㎛ 이상 15 ㎛ 이하일 수 있다. 상기 코팅층의 두께가 특정 수치만큼 증가하거나 감소하는 경우 광학 필름에서 측정되는 물성 또한 일정 수치만큼 변화할 수 있다.
상기 기재의 두께 또한 크게 한정되는 것은 아니며, 예를 들어 0.01 ㎛ 이상 1000 ㎛ 이하 범위, 또는 1 ㎛ 이상, 3 ㎛ 이상, 또는 1000 ㎛ 이하, 500 ㎛ 이하, 100 ㎛ 이하일 수 있다.
한편, 상기 광학 필름은 400 nm 이상 500 nm 이하 파장에 대한 평균 투과율이 85 % 이상 95 % 이하일 수 있다.
상기 평균 투과율은 두께 20 ㎛ 이상 250 ㎛ 이하의 광학 필름에 대하여 측정된 값으로, 구체적인 측정방법이 크게 제한되지는 않으나, 예를 들어 shimadzu 社 solidspec-3700 등의 분광 광도계를 이용하여 측정할 수 있다.
구체적으로, 상기 광학 필름은 400 nm 이상 500 nm 이하 파장에 대한 평균 투과율이 85 % 이상, 89 % 이상, 95 % 이하, 90 % 이하, 85 % 이상 95 % 이하, 85 % 이상 90 % 이하, 89 % 이상 95 % 이하, 89 % 이상 90 % 이하일 수 있다.
상기 광학 400 nm 이상 500 nm 이하 파장에 대한 평균 투과율이 85 % 이상 95 % 이하임에 따라, 우수한 시인성이 구현될 수 있다.
최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료는 광에 대한 안정성이 취약하여, 종래 이를 포함하는 광학 필름의 경우 내광성이 저하되어 염료의 광흡수 성능이 저하되는 문제점이 있었다.
이에, 본 발명자들은 가혹 조건에서 사용되는 경우에도 내광성 및 내습성이 우수하고, 750 nm 이상 1500 nm 이하의 파장 영역에 대한 우수한 광 흡수성을 구현할 수 있는 코팅층 형성용 조성물에 관한 연구를 진행하여, 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 상기 비닐시안 화합물-방향족 화합물 공중합체와 함께 포함하는 조성물의 경우, 비닐시안 화합물-방향족 화합물 공중합체의 열과 광에 대한 산화 안정성이 우수하여 염료의 안정성에 영향을 미치는 반응종의 생성이 적어 염료의 안정성을 높임에 의해 최종 제조된 광학 필름이 가혹 조건에서 사용되는 경우에도 내광성 및 내습성이 우수하고, 750 nm 이상 1500 nm 이하의 파장 영역에 대한 우수한 광 흡수성을 구현할 수 있다는 점을 확인하고 발명을 완성하였다.
한편, 상기 광학 필름은 상기 기재의 다른 일면에 형성된 금속 산화물층을 더 포함할 수 있다.
또한, 상기 금속 산화물층은 인듐, 아연, 주석, 알루미늄, 갈륨, 탈륨, 티탄, 지르코늄, 하프슘, 세슘, 안티몬, 바나듐, 니오뮴, 탄탈, 규소 및 게르마늄으로 이루어진 군에서 선택된 어느 하나의 금속의 산화물 또는 상기 금속에서 선택된 2개 이상의 금속의 복합 산화물을 포함할 수 있다.
예를 들어, 상기 금속 산화물층은, 산화 인듐주석(ITO), 산화 인듐아연(IZO), 산화 아연주석(ZTO), 알루미늄 도프 산화 아연(AZO), 갈륨 도프 산화 아연(GZO), 안티몬 도프 산화 주석 (ATO)으로 이루어진 군에서 선택되는 하나 이상의 금속 산화물을 포함할 수 있다.
상기 금속 산화물층의 제막 방법은 특별히 한정되지 않고, 예를 들면, 스퍼터링, 진공 증착, CVD(Chemical Vapor Deposition), 전자선 증착법 등의 드라이 프로세스에 의한 제막 방식을 적용할 수 있다.
상기 금속 산화물층의 두께는 특별히 제한되지 않고, 목적하는 내구성이나 밀착성을 고려하여 적정한 두께로 제어될 수 있다. 예를 들면, 각 금속 산화물층의 두께는 약 1 nm 내지 100 nm, 또는 3 nm 내지 45 nm 정도의 범위 내에서 제어될 수 있다. 일 예시에서 상기 금속 산화물층의 두께는 약 40 nm 이하, 35 nm 이하, 30 nm 이하, 25 nm 이하 또는 20 nm 이하 정도일 수 있다.
한편, 상기 구현예의 광학 필름은 상기 코팅층 상에 형성된 접착층을 포함할 수 있다. 즉, 상기 구현예의 광학 필름은 금속 산화물층, 기재, 코팅층 및 접착층이 순서대로 적층된 적층 구조를 포함할 수 있다.
상기 접착층은 광학 필름의 각 층들 사이에 도포, 경화되어 각 층이 서로 부착되도록 해주는 층으로서, 광학 투명 접착제(OCA) 및 광학 투명 수지(OCR) 중 어느 하나가 사용될 수 있다.
한편, 상기 구현예의 광학 필름은 상기 접착층의 다른 일면에 금속 산화물 층 및 기재를 더 포함할 수 있다. 즉, 상기 구현예의 광학 필름은, 금속 산화물층, 기재, 코팅층, 접착층, 기재 및 금속 산화물층이 순서대로 적층된 적층 구조를 포함할 수 있다. 상기 광학 필름에서, 각 금속 산화물층과 각 기재는 각각 독립적으로 동일하거나 상이할 수 있다.
또한, 상기 구현예의 광학 필름은 상기 접착층의 다른 일면에 커버 부재를 더 포함할 수 있다. 즉, 상기 구현예의 광학 필름은 금속 산화물층, 기재, 코팅층, 접착층, 및 커버 부재가 순서대로 적층된 적층 구조를 포함할 수 있다.
또한, 상기 구현예의 광학 필름은 상기에 예시된 적층 구조 사이 또는 그 상하에 다른 층을 더 포함할 수 있으며, 이와 같은 경우에도 광학 필름은 내광성 및 내습성이 우수하여 가혹 조건에 노출되더라도 우수한 광 흡수 성능을 구현할 수 있다.
상기 커버 부재는 플라스틱 재질, 금속 재질, 또는 유리 재질로 이루어질 수 있다.
발명의 다른 일 구현예에 따르면, 비닐시안 화합물-방향족 화합물 공중합체 및 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함하고, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상 200,000 g/mol 이하이고, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상 50 중량부 이하로 포함하는, 코팅층 형성용 조성물이 제공될 수 있다.
상기 코팅층 형성용 조성물로부터 상술한 일 구현예의 광학 필름의 코팅층이 형성될 수 있다. 상기 비닐시안 화합물-방향족 화합물 공중합체 및 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료에 대한 설명은 상술한 모든 내용을 포함한다.
상기 일 구현예의 코팅층 형성용 조성물은 비닐시안 화합물-방향족 비닐 화합물 공중합체를 포함할 수 있다.
비닐시안 화합물-방향족 비닐 화합물 공중합체를 포함하는 경우 아크릴레이트 수지, 에폭시 수지 등의 UV 경화형 고분자 수지 또는 우레탄 수지, 에폭시 수지 등의 열 경화형 수지를 포함하는 경우와 비교하여, 우수한 내광성을 구현할 수 있다.
구체적으로, UV 경화형 고분자 수지 또는 열 경화형 수지는 내광성이 취약하여, 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료와 함께 사용하는 경우 염료의 광흡수 성능이 저하될 수 있다.
상기 구현예의 코팅층 형성용 조성물은 비닐시안 화합물-방향족 비닐 화합물 공중합체를 포함함에 따라 비닐시안 화합물-방향족 비닐 화합물 공중합체의 우수한 열과 광에 대한 산화 안정성에 의해 우수한 내광성 및 내습성을 구현할 수 있으며, 이에 따라 가혹 조건에서도 염료의 우수한 광흡수 성능이 구현될 수 있다.
상기 일 구현예에서 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상 200,000 g/mol 이하일 수 있다.
상기 「공중합체」는, 특별히 달리 언급하지 않는 이상 랜덤공중합체, 블록공중합체, 그라프트 공중합체를 포함할 수 있다.
구체적으로, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상, 50,000 g/mol 이상, 80,000 g/mol 이상, 100,000 g/mol 이상, 또는 200,000 g/mol 이하, 150,000 g/mol 이하, 120,000 g/mol 이하, 또는 10,000 g/mol 이상 200,000 g/mol 이하, 10,000 g/mol 이상 150,000 g/mol 이하, 10,000 g/mol 이상 120,000 g/mol 이하, 50,000 g/mol 이상 200,000 g/mol 이하, 50,000 g/mol 이상 150,000 g/mol 이하, 50,000 g/mol 이상 120,000 g/mol 이하, 80,000 g/mol 이상 200,000 g/mol 이하, 80,000 g/mol 이상 150,000 g/mol 이하, 80,000 g/mol 이상 120,000 g/mol 이하, 100,000 g/mol 이상 200,000 g/mol 이하, 100,000 g/mol 이상 150,000 g/mol 이하, 100,000 g/mol 이상 120,000 g/mol 이하일 수 있다.
상기 일 구현예에서 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상 200,000 g/mol 이하임에 따라 코팅액 형성 시의 유동적 특성에 의해 레벨링과 젖음 특성이 우수하여 균일한 코팅 도막을 형성할 수 있는 동시에 우수한 내광 특성을 구현할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체의 중량 평균 분자량이 200,000 g/mol 초과인 경우 코팅액의 점도가 높아져 균일한 도막을 형성할 수 없으며, 중량 평균 분자량이 10,000 g/mol 미만인 경우 수지의 내열 안정성이 감소하여 내광 특성이 저하되는 문제가 발생할 수 있다.
상기 일 구현예에서, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상 50 중량부 이하로 포함할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 비닐시안 화합물 및 방향족 비닐 화합물을 단량체로 포함하는 공중합체일 수 있으며, 상기 비닐시안 화합물 및 방향족 비닐 화합물 외에 추가적인 단량체를 더 포함할 수도 있다.
상기 공중합체는 랜덤공중합체, 블록공중합체, 그라프트 공중합체를 포함할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 제조시 사용되는 단량체 간의 중량비를 조절함에 따라, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 에 포함되는 비닐시안 화합물 유래 반복단위의 함량을 조절할 수 있다.
구체적으로, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상, 15 중량부 이상, 17 중량부 이상, 50 중량부 이하, 40 중량부 이하, 30 중량부 이하, 또는 10 중량부 이상 50 중량부 이하, 10 중량부 이상 40 중량부 이하, 10 중량부 이상 30 중량부 이하, 15 중량부 이상 50 중량부 이하, 15 중량부 이상 40 중량부 이하, 15 중량부 이상 30 중량부 이하, 17 중량부 이상 50 중량부 이하, 17 중량부 이상 40 중량부 이하, 17 중량부 이상 30 중량부 이하로 포함할 수 있다.
즉, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 제조시 사용되는 단량체 전체 100 중량부에 대하여 상기 비닐시안 화합물이 10 중량부 이상, 15 중량부 이상, 17 중량부 이상, 50 중량부 이하, 40 중량부 이하, 30 중량부 이하, 또는 10 중량부 이상 50 중량부 이하, 10 중량부 이상 40 중량부 이하, 10 중량부 이상 30 중량부 이하, 15 중량부 이상 50 중량부 이하, 15 중량부 이상 40 중량부 이하, 15 중량부 이상 30 중량부 이하, 17 중량부 이상 50 중량부 이하, 17 중량부 이상 40 중량부 이하, 17 중량부 이상 30 중량부 이하로 포함될 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상 50 중량부 이하로 포함함에 따라 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체의 빛에 대한 안정성 및 기체 투과도가 향상되어, 우수한 내광 안정성 및 내열 안정성을 구현할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 미만으로 포함하는 경우 비닐시안 화합물-방향족 비닐 화합물 공중합체의 빛에 대한 안정성 및 기체 투과도가 저하되어 내광 안정성이 불량해질 수 있으며, 50 중량부 초과로 포함하는 경우 열에 의한 안정성이 저하되어 내열 안정성이 불량해질 수 있다.
한편, 상기 일 구현예에서, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 50 중량부 이상 90 중량부 이하로 포함할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 제조시 사용되는 단량체 간의 중량비를 조절함에 따라, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 에 포함되는 방향족 비닐 화합물 유래 반복단위의 함량을 조절할 수 있다.
구체적으로, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 50 중량부 이상, 60 중량부 이상, 70 중량부 이상, 90 중량부 이하, 85 중량부 이하, 83 중량부 이하, 또는 50 중량부 이상 90 중량부 이하, 50 중량부 이상 85 중량부 이하, 50 중량부 이상 83 중량부 이하, 60 중량부 이상 90 중량부 이하, 60 중량부 이상 85 중량부 이하, 60 중량부 이상 83 중량부 이하, 70 중량부 이상 90 중량부 이하, 70 중량부 이상 85 중량부 이하, 70 중량부 이상 83 중량부 이하로 포함할 수 있다.
즉, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 제조시 사용되는 단량체 전체 100 중량부에 대하여 상기 방향족 비닐 화합물이 50 중량부 이상, 60 중량부 이상, 70 중량부 이상, 90 중량부 이하, 85 중량부 이하, 83 중량부 이하, 또는 50 중량부 이상 90 중량부 이하, 50 중량부 이상 85 중량부 이하, 50 중량부 이상 83 중량부 이하, 60 중량부 이상 90 중량부 이하, 60 중량부 이상 85 중량부 이하, 60 중량부 이상 83 중량부 이하, 70 중량부 이상 90 중량부 이하, 70 중량부 이상 85 중량부 이하, 70 중량부 이상 83 중량부 이하로 포함될 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 50 중량부 이상 90 중량부 이하로 포함함에 따라 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체의 양호한 열적 안정성 및 우수한 기계적 특성이 구현되어, 최종 제조되는 광학 필름이 우수한 내열 안정성을 구현할 수 있을 뿐만 아니라, 양호한 내찰상성을 구현할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 50 중량부 미만으로 포함하는 경우 열에 의한 안정성이 불량하여 내광 혹은 내열 안정성이 저하될 수 있으며, 90 중량부 초과로 포함하는 경우 비닐시안 화합물-방향족 비닐 화합물 공중합체의 빛에 대한 안정성 및 기체 투과도가 저하되어 내광 안정성이 불량해질 수 있다.
또한, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물 유래 반복단위 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 110 중량부 이상 500 중량부 이하로 포함할 수 있다.
구체적으로, 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물 유래 반복단위 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 110 중량부 이상, 150 중량부 이상, 200 중량부 이상, 500 중량부 이하, 450 중량부 이하, 110 중량부 이상 500 중량부 이하, 150 중량부 이상 500 중량부 이하, 200 중량부 이상 500 중량부 이하, 110 중량부 이상 450 중량부 이하, 150 중량부 이상 450 중량부 이하, 200 중량부 이상 450 중량부 이하로 포함할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물 유래 반복단위 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 110 중량부 이상 500 중량부 이하로 포함함에 따라 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체의 양호한 열적 안정성 및 우수한 기계적 특성이 구현되어, 최종 제조되는 광학 필름이 우수한 내열 안정성을 구현할 수 있을 뿐만 아니라, 양호한 내찰상성을 구현할 수 있다.
상기 비닐시안 화합물-방향족 비닐 화합물 공중합체가 상기 비닐시안 화합물 유래 반복단위 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 110 중량부 미만으로 포함하는 경우 열에 의한 안정성이 불량하여 내광 혹은 내열 안정성이 저하될 수 있으며, 500 중량부 초과로 포함하는 경우 비닐시안 화합물-방향족 비닐 화합물 공중합체의 빛에 대한 안정성 및 기체 투과도가 저하되어 내광 안정성이 불량해질 수 있다.
상기 비닐시안 화합물은 크게 제한되지 않으나, 예를 들어 아크릴로니트릴, 메타니트롤로니트릴, 에틸아크릴로니트릴 및 이소프로필아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다. 예를 들어 상기 비닐시안 화합물은 아크릴로니트릴을 포함할 수 있다.
또한, 상기 방향족 비닐 화합물은 크게 제한되지 않으나, 예를 들어 스티렌, α-메틸스티렌, m-메틸스티렌, p-메틸스티렌 및 p-tert-부틸스티렌으로 이루어진 군으로부터 선택된 1종 이상의 화합물을 포함할 수 있다. 예를 들어 상기 방향족 비닐 화합물은 스티렌 또는 α-메틸스티렌을 포함할 수 있다.
한편, 상기 일 구현예의 코팅층 형성용 조성물은 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 외의 고분자 수지를 더 포함할 수 있다.
상기 코팅층 형성용 조성물은 코팅층 형성용 조성물에 포함되는 전체 고분자 수지 총 100 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 90 중량부 이상으로 포함할 수 있다.
구체적으로, 상기 코팅층 형성용 조성물은 코팅층 형성용 조성물에 포함되는 전체 고분자 수지 총 100 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 90 중량부 이상, 95 중량부 이상, 99 중량부 이상, 99.9 중량부 이상, 100 중량부 이하, 또는 90 중량부 이상100 중량부 이하, 95 중량부 이상100 중량부 이하, 99 중량부 이상100 중량부 이하, 99.9 중량부 이상100 중량부 이하로 포함할 수 있다. 예를 들면, 코팅층 형성용 조성물은 고분자 수지로 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 만을 포함할 수 있다.
상기 코팅층 형성용 조성물은 코팅층 형성용 조성물에 포함되는 전체 고분자 수지 총 100 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 90 중량부 이상으로 포함함에 따라 우수한 내광성 및 내습성을 구현할 수 있으며, 이에 따라 가혹 조건에서도 염료의 열과 광에 대한 산화 안정성이 우수하여 염료의 안정성에 영향을 미치는 반응종이 거의 생성되지 않아 우수한 광흡수 성능이 구현될 수 있다.
상기 코팅층 형성용 조성물은 코팅층 형성용 조성물에 포함되는 전체 고분자 수지 총 100 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 90 중량부 미만으로 포함하는 경우 염료의 광흡수 성능이 저하되어, 최종 제조되는 광학 필름이 내습성 및 내광성이 열등하여 가혹 조건에서 열등한 광흡수 성능을 가질 수 있다.
상기 일 구현예에서, 상기 코팅층 형성용 조성물은 총 코팅층 형성용 조성물 100 중량부에 대하여 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 10 중량부 이상 30 중량부 이하로 포함할 수 있다.
구체적으로, 상기 코팅층 형성용 조성물은 총 코팅층 형성용 조성물 100 중량부에 대하여 중량부에 대하여 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체를 10 중량부 이상, 12 중량부 이상, 30 중량부 이하, 20 중량부 이하, 15 중량부 이하 또는 10 중량부 이상 30 중량부 이하, 12 중량부 이상 30 중량부 이하, 10 중량부 이상 20 중량부 이하, 12 중량부 이상 20 중량부 이하, 10 중량부 이상 15 중량부 이하, 12 중량부 이상 15 중량부 이하로 포함할 수 있다.
상기 일 구현예에서, 상기 코팅층 형성용 조성물은 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함할 수 있다.
상기 코팅층 형성용 조성물이 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함함에 따라, 750 nm 이상 1500 nm 이하 파장 영역의 근적외선에 대한 광흡수율이 우수하여, 증강현실(Augmented Reality, AR) 등에 적용하기에 적합한 광학 필름이 제공될 수 있다.
상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료의 종류는 특별히 제한되지 않고, 상기 기능을 수행할 수 있는 것으로 알려진 화합물 중에서 적절히 선택되어 사용될 수 있다. 사용 가능한 염료로는, 예를 들어, 세라미도닌의 술포늄 유도체(sulfonium derivative), 뉴 메틸렌 블루(new methylene blue), 티오에리트로신 트리에틸암모늄(thioerythrosine triethylammonium), 6-아세틸아미노-2-메틸세라미도닌(6-acetylamino-2-methylceramidonin), 에오신(eosin), 에리트로신(erythrosine), 로즈 벵갈(rose bengal), 티오닌(thionine), 베이직 옐로우(baseic yellow), 피나시놀 클로라이드(Pinacyanol chloride), 로다민 6G(rhodamine 6G), 갈로시아닌(gallocyanine), 에틸 바이올렛(ethyl violet), 빅토리아 블루 R(Victoria blue R), 셀레스틴 블루(Celestine blue), 퀴날딘 레드(QuinaldineRed), 크리스탈 바이올렛(crystal violet), 브릴리언트 그린(Brilliant Green), 아스트라존 오렌지 G(Astrazon orange G), 다로우 레드(darrow red), 피로닌 Y(pyronin Y), 베이직 레드 29(basic red 29), 피릴륨I(pyrylium iodide), 사프라닌 O(Safranin O), 시아닌, 메틸렌 블루, 아주레 A(Azure A), 또는 이들 중에서 선택되는 2 이상의 조합을 들 수 있다.
구체적으로, 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료는 시아닌계 염료를 포함할 수 있다.
상기 일 구현예에서, 상기 코팅층 형성용 조성물은 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 이상 3 중량부 이하로 포함할 수 있다.
구체적으로, 상기 코팅층 형성용 조성물은 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 이상, 0.5 중량부 이상, 3 중량부 이하, 2 중량부 이하, 1 중량부 이하 또는 0.1 중량부 이상 3 중량부 이하, 0.1 중량부 이상 2 중량부 이하, 0.1 중량부 이상 1 중량부 이하, 0.5 중량부 이상 3 중량부 이하, 0.5 중량부 이상 2 중량부 이하, 0.5 중량부 이상 1 중량부 이하로 포함할 수 있다.
상기 코팅층 형성용 조성물이 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 이상 3 중량부 이하로 포함함에 따라 외부환경에서 들어오는 750nm 이상 1500nm 영역의 빛을 흡수하여 상기 광학 필름을 포함하는 전자 기기, 예를 들어 AR/VR 기기의 시선 추적 성능을 높일 수 있다.
상기 코팅층 형성용 조성물이 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 미만으로 포함하는 경우 빛을 충분히 흡수하지 못해 시선추적 성능 저하를 발생시킬 수 있으며, 3 중량부 초과로 포함하는 경우 가시광선 투과율 저하 혹은 광학 필름의 색값이 높아져 광특성이 저하되는 문제가 발생할 수 있다.
한편, 상기 코팅층 형성용 조성물은 용매를 더 포함할 수 있다.
상기 용매는 유기 용매일 수 있다. 예를 들어, 케톤류, 알코올류, 아세테이트류 및 에테르류, 또는 이들의 2종 이상의 혼합물이 유기 용매로 사용될 수 있으나, 이들에 제한되는 것은 아니다.
이러한 유기 용매의 구체적인 예로는, 메틸에틸케톤, 메틸이소부틸케톤, 아세틸아세톤 또는 이소부틸케톤 등의 케톤류; 메탄올, 에탄올, n-프로판올, i-프로판올, n-부탄올, i-부탄올, 또는 t-부탄올 등의 알코올류; 에틸아세테이트, i-프로필아세테이트, 또는 폴리에틸렌글리콜 모노메틸에테르 아세테이트 등의 아세테이트류; 테트라하이드로퓨란 또는 프로필렌글라이콜 모노메틸에테르 등의 에테르류; 톨루엔, 자일렌, 에틸벤젠, 큐멘 및 테트랄린 또는 이들의 2종 이상의 혼합물을 들 수 있다.
상기 유기 용매는 상기 코팅층 형성용 조성물에 포함되는 각 성분들을 혼합하는 시기에 첨가되거나 각 성분들이 유기 용매에 분산 또는 혼합된 상태로 첨가되면서 상기 코팅층 형성용 조성물에 포함될 수 있다.
예를 들어 상기 코팅층 형성용 조성물은 조성물에 포함되는 성분 전체 고형분의 농도가 1 내지 70 중량%가 되도록 용매를 포함할 수 있다. 구체적으로, 상기 용매는 조성물에 포함되는 성분 전체 고형분의 농도가 2 중량% 이상, 5 중량% 이상, 10 중량% 이상 또는 20 중량% 이상이고, 65 중량% 이하, 60 중량% 이하, 55 중량% 이하 또는 50 중량% 이하가 되도록 용매를 포함할 수 있다. 상기 조성물 중 용매의 함량이 지나치게 적으면 상기 조성물의 흐름성이 저하되어 최종 제조되는 필름에 줄무늬가 생기는 등 불량이 발생할 수 있다. 또한, 용매가 과량 과량 첨가되는 경우에는 고형분 함량이 낮아져, 코팅 및 성막이 충분히 되지 않아서 광학 필름의 물성이나 표면 특성이 저하될 수 있고, 건조 및 경화 과정에서 불량이 발생할 수 있다.
또한, 상기 하나의 예시에서, 상기 코팅층 형성용 조성물은 기타 첨가제를 더 포함할 수 있다. 사용 가능한 기타 첨가제로는, 예를 들어, 소포제를 들 수 있다.
하나의 예시에서, 상기 소포제로는 실리콘계 반응성 첨가제를 사용할 수 있으며, Tego Rad 2500 등과 같은 시판품을 사용할 수 있다.
상기 첨가제, 예를 들어, 소포제나 가소제의 함량은 광학 필름의 기능에 장애가 되지 않는 수준에서 적절히 조절될 수 있다.
상기 코팅층 형성용 조성물은 상기 비닐시안 화합물-방향족 화합물 공중합체 100 중량부 기준으로, 상기 기타 첨가제를 5 내지 50 중량부 범위로 포함할 수 있다. 구체적으로, 상기 기타 첨가제의 함량 하한은 예를 들어, 10 중량부 이상, 15 중량부 이상, 20 중량부 이상, 25 중량부 이상, 30 중량부 이상, 35 중량부 이상, 40 중량부 이상 또는 45 중량부 이상일 수 있고, 그 상한은 예를 들어, 45 중량부 이하, 40 중량부 이하, 35 중량부 이하, 30 중량부 이하, 25 중량부 이하, 20 중량부 이하, 15 중량부 이하 또는 10 중량부 이하 일 수 있다. 상기 범위를 만족하는 경우, 코팅층 형성용 조성물에서 요구되는 특성을 방해하지 않으면서 첨가제 사용에 따른 효과를 적절히 확보할 수 있다.
한편, 발명의 다른 일 구현예에 따르면 상기 광학 필름을 포함하는, 전자 기기가 제공될 수 있다.
상기 광학 필름에 대한 설명은 상술한 모든 내용을 포함한다.
상기 전자 기기는 홍채 이미지를 취득하는 카메라 장치부; 적외선 영역의 광원; 상기 적외선 영역의 광원의 파장 대역과 다른 외부광을 차단시키는 광학 필름을 포함할 수 있다.
상기 광학 필름은 상기 적외선 영역의 광원의 파장 대역과 다른 외부광을 차단시키고 적외선 영역에서 투사된 근적외선 대역의 빛만 주로 투과시킬 수 있다.
이에 따라, 상기 광학 필름에 의하면, 외부광원의 특정 대역의 근적외선 영역을 차단시킴으로써 외부광원의 영향을 최소화 할 수 있다.
상기 전자 기기의 용도는 특별히 제한되지 않는다. 예를 들어, 고온/고습 조건에 노출될 가능성이 높은 용도, 구체적으로는 모바일 기기와 같은 스마트 기기, 웨어러블 디스플레이의 부품, 또는 자동차용 부품(예: head up display) 등에 사용될 수 있다. 보다 구체적으로 상기 전자 기기는 증강현실(Augmented Reality, AR) 에 적용하기 적합할 수 있다.
본 발명에 따르면, 750 nm 이상 1500 nm 이하 파장의 근적외선에 대한 광흡수 성능이 우수하며, 내광성 및 내습성이 우수하여 가혹 조건에 노출되더라도 우수한 광 흡수 성능을 구현할 수 있는 광학 필름, 코팅층 형성용 조성물, 및 전자 기기가 제공될 수 있다.
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.
<실시예 1 내지 3 및 비교예 1 내지 4>
실시예 1
중량 평균 분자량 120,000 g/mol 인 비닐시안 화합물-방향족 화합물 공중합체 12.5g (제조사: LG화학, Styrene-Acrylonitrile, 비닐시안 화합물 유래 반복단위의 함량:17 중량%), 염료 0.12 g (최대 흡수 파장 865nm인 NIR 흡수 시아닌계 염료), 및 용매인 메틸에틸케톤(MEK) 50 g 과 톨루엔 37.5 g 을 첨가하고, 빛을 차단한 상태에서 Paste 믹서로 약 30 분간 교반하여 코팅액을 제조하였다.
상기 코팅액을 meyer bar를 이용하여, 60 ㎛ 두께의 TAC 기재에 코팅하고, 90 ℃에서 2 분 이내로 건조시켜 두께 5 ㎛ 의 코팅층을 포함하는 최종 두께 65 ㎛ 의 광학 필름을 제조하였다.
실시예 2
최대 흡수 파장 865nm인 NIR 흡수 염료(시아닌계 염료) 대신 최대 흡수 파장 930 nm인 NIR 흡수 염료(시아닌계 염료) 0.073 g을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 코팅액 및 최종 두께 65 ㎛ 의 광학 필름을 제조하였다.
실시예 3
중량 평균 분자량 120,000 g/mol 인 비닐시안 화합물-방향족 화합물 공중합체 대신, 중량 평균 분자량 110,000 g/mol 인 비닐시안 화합물-방향족 화합물 공중합체 12.5 g (제조사: LG화학)을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 코팅액 및 최종 두께 65 ㎛ 의 광학 필름을 제조하였다.
비교예 1
중량 평균 분자량 120,000 g/mol 인 비닐시안 화합물-방향족 화합물 공중합체 대신, 폴리메틸메타크릴레이트 12.5 g (PMMA, Poly(Methyl Methacrylate), 중량 평균 분자량 100,000 g/mol, 제조사: LG화학) 를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 코팅액 및 최종 두께 65 ㎛ 의 광학 필름을 제조하였다.
비교예 2
펜타에리스리톨 트리아크릴레이트 25 g (제조사: SK Entis), 6 관능 아크릴레이트 25 g(제품명: EB1290, 제조사: SK Entis)을 넣고, 염료 0.5 g (최대 흡수 파장 865nm인 NIR 흡수 염료), 광중합 개시제 2.5 g (Irgacure 184) 및 용매인 메틸에틸케톤(MEK) 50 g을 첨가하고, 빛을 차단한 상태에서 Paste 믹서로 약 30분간 교반하여 코팅액을 제조하였다.
상기 코팅액을 meyer bar를 이용하여, 60 ㎛ 두께의 TAC 기재에 코팅하고, 60 ℃에서 2 분 이내로 건조한 후 수은램프를 이용하여 200mJ/cm2 광량으로 경화시켜 두께 5 ㎛ 의 코팅층을 포함하는 최종 두께 65 ㎛ 의 광학 필름을 제조하였다.
비교예 3
중량 평균 분자량 120,000 g/mol 인 비닐시안 화합물-방향족 화합물 공중합체 대신 폴리스티렌 12.5 g (PS, 중량 평균 분자량 250,000 g/mol, 제조사: LG화학) 를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 코팅액 및 최종 두께 65 ㎛ 의 광학 필름을 제조하였다.
비교예 4
최대 흡수 파장 865nm인 NIR 흡수 염료 대신 최대 흡수 파장 930 nm인 NIR 흡수 염료(시아닌계 염료) 0.44 g을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 코팅액 및 최종 두께 65 ㎛ 의 광학 필름을 제조하였다.
<실험예>
1. 두께
실시예 및 비교예에서 제조된 광학 필름에 대하여, 디지털 마이크로 미터기 (TESA 社, 제품명: μ-HITE 을 이용하여, 전체 광학 필름의 두께를 측정하였다.
2. 투과율
실시예 및 비교예에서 제조된 광학 필름에 대하여, shimadzu 社 solidspec-3700을 이용하여 400 nm 내지 500 nm 의 파장에 대한 평균 투과율 및 800 nm 내지 1000 nm 의 파장에 대한 평균 투과율을 측정하였다.
또한, 750 nm 이상 1500 nm 이하의 특정 파장 영역에서 최대 광선 투과율을 측정하였다.
3. 내광성
실시예 및 비교예에서 제조된 광학 필름에 대하여, QUV 장비(Q-Lab 社) 기기에 15 시간 이상 30 시간 이하 노출시킨 후 평균 투과율이란, 상기 구현예의 광학 필름에 대하여 QUV 장비(Q-Lab 社) 기기를 이용하여, 24 시간 동안 340nm에서 최대값 0.68W/cm2 광량 조건에서 평가를 진행한 이후, 상술한 투과율 측정방법에 의하여 800 nm 내지 1000 nm 의 파장에 대한 평균 투과율 및 하기 수학식에 의하여 내광성 시험 전후의 평균 투과율 변화율을 측정하였다.
[수학식 1]
평균 투과율 변화율 = QUV 장비(Q-Lab 社) 기기에서 340nm 파장의 자외선에 24 시간 노출시킨 후 800 nm 이상 1000 nm 이하 파장에 대한 평균 투과율 / 초기 800 nm 이상 1000 nm 이하 파장에 대한 평균 투과율 * 100.
4. 내습열 신뢰성
실시예 및 비교예에서 제조된 광학 필름에 대하여, 항온항습 챔버(Jeiotech사)에서 72 시간 동안 85℃, 85% 조건에 노출시킨 이후, 상술한 투과율 측정방법에 의하여 800 nm 내지 1000 nm 의 파장에 대한 평균 투과율 및 하기 수학식에 의하여 내습성 시험 전후의 평균 투과율 변화율을 측정하였다.
[수학식 2]
평균 투과율 변화율 = (85 ℃ 의 온도 및 85 % 의 습도 조건에 72 시간 노출시킨 후 800 nm 이상 1000 nm 이하 파장에 대한 평균 투과율 - 초기 800 nm 이상 1000 nm 이하 파장에 대한 평균 투과율) / 초기 800 nm 이상 1000 nm 이하 파장에 대한 평균 투과율 * 100.
실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4
최대흡수파장(nm) 865 930 865 865 865 865 930
평균 투과율(%)@400 nm~500 nm 89.2 89.3 89.1 89.3 91.2 89.3 85.2
평균 투과율(%)@800 nm 내지 1000 nm 47.2 55.3 46.9 47.5 75.2 47.1 25.3
내광성 시험 후 평균 투과율(%)@800 nm 내지 1000 nm 48.1 55.7 48.2 61.2 89.2 53.2 28.2
내광성 시험 후 평균투과율의 변화율(%)@800 nm 내지 1000 nm 1.90 0.72 2.77 28.84 18.62 12.95 11.46
내습성 시험 후 평균 투과율(%)@800 nm 내지 1000 nm 49.4 57.4 48.3 51.7 82.3 48.9 27.4
내습성 시험 후 평균투과율의 변화율(%)@800 nm 내지 1000 nm 4.66 3.80 2.99 8.84 9.44 3.82 8.30
<실시예 4 내지 6 및 비교예 5 내지 8>
실시예 4
비닐시안 화합물-방향족 화합물 공중합체 12.5g (중량 평균 분자량 120,000 g/mol, 제조사: LG화학), 염료 0.12 g (최대 흡수 파장 865nm인 NIR 흡수 염료), 및 용매인 메틸에틸케톤(MEK) 50 g, 톨루엔 37.5 g 을 첨가하고, 빛을 차단한 상태에서 Paste 믹서로 약 30 분간 교반하여 코팅액을 제조하였다.
상기 코팅액을 meyer bar를 이용하여, 인듐-주석 복합 산화물(ITO)층이 형성된 PET 기재의 다른 일면에 코팅하고, 90 ℃에서 2 분 이내로 건조시켜 두께 5 ㎛ 의 코팅층을 형성하였다.
상기 코팅층 상에 필름 타입 OCA 25㎛를 라미네이션 접착층을 형성한다.
상기 접착층과 인듐-주석 복합 산화물(ITO)층[두께:150nm]이 형성된 PET 기재의 PET 기재가 접하도록 상기 접착층 상에 인듐-주석 복합 산화물(ITO)층이 형성된 PET 기재를 접착시켜 총 두께 131 ㎛ 인 광학 필름을 제조하였다.
실시예 5
접착층 상에 100 ㎛ 두께의 Glass (제조사: Schott사) 를 접착시킨 것을 제외하고, 상기 실시예 1과 동일한 방법으로 총 두께 180 ㎛ 인 광학 필름을 제조하였다.
실시예 6
최대 흡수 파장 865nm인 NIR 흡수 염료 대신 최대 흡수 파장 930 nm인 NIR 흡수 염료 0.073 g을 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 총 두께 130 ㎛ 인 광학 필름을 제조하였다.
비교예 5
비닐시안 화합물-방향족 화합물 공중합체 대신 폴리메틸메타크릴레이트 12.5 g (PMMA, Poly(Methyl Methacrylate), 중량 평균 분자량 100,000 g/mol, 제조사: LG화학) 를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 코팅액 및 최종 두께 131 ㎛ 의 광학 필름을 제조하였다.
비교예 6
펜타에리스리톨 트리아크릴레이트 25 g (제조사: SK Entis), 6 관능 아크릴레이트 25 g(제품명: EB1290, 제조사: SK Entis)을 넣고, 염료 0.5 g (최대 흡수 파장 865nm인 NIR 흡수 염료), 광중합 개시제 2.5 g (Irgacure 184) 및 용매인 메틸에틸케톤(MEK) 50 g을 첨가하고, 빛을 차단한 상태에서 Paste 믹서로 약 30분간 교반하여 코팅액을 제조하였다.
상기 코팅액을 meyer bar를 이용하여, 60 ㎛ 두께의 TAC 기재에 코팅하고, 60 ℃에서 2 분 이내로 건조한 후 수은램프를 이용하여 200mJ/cm2 광량으로 경화시켜 두께 5 ㎛ 의 코팅층을 포함하는 최종 두께 131 ㎛ 의 광학 필름을 제조하였다.
<실험예>
1. 두께
상기 실시예 4 내지 6 및 비교예 5 내지 6에서 제조된 광학 필름에 대하여, 디지털 마이크로 미터기를 이용하여, 전체 광학 필름의 두께를 측정하였다.
2. 투과율
상기 실시예 4 내지 6 및 비교예 5 내지 6에서 제조된 광학 필름에 대하여, shimadzu 社 solidspec-3700 을 이용하여, 400 nm 내지 500 nm 의 파장에 대한 평균 투과율 및 800 nm 내지 1000 nm 의 파장에 대한 평균 투과율을 측정하였다.
또한, 750 nm 이상 1500 nm 이하의 특정 파장 영역에서 최대 흡수 파장을 측정하였다.
3. 내광성
상기 실시예 4 내지 6 및 비교예 5 내지 6에서 제조된 광학 필름에 대하여, Q-SUN (Q LAB 社) 기기을 이용하여, 72 시간 동안 1 SUN 조건에서 평가를 진행한 이후, 상술한 투과율 측정방법에 의하여 800 nm 내지 1000 nm 의 파장에 대한 평균 투과율 및 하기 수학식에 의하여 내광성 시험 전후의 평균 투과율 변화율을 측정하였다.
[수학식 1]
평균 투과율 변화율 = (Q-SUN (Q LAB 社) 기기에 1 SUN 조건으로 72 시간 이하 노출시킨 후 평균 투과율 - 초기 평균 투과율) / 초기 평균 투과율 * 100.
실시예4 실시예5 실시예6 비교예5 비교예6
총 두께
(㎛)
131 180 131 131 131
최대흡수파장(nm) 865 865 930 865 865
평균 투과율
(%)
@400 nm~500 nm
86.2 88.5 86.3 86.3 86.1
평균 투과율
(%)
@800 nm 내지 1000 nm
47.2 55.3 46.9 47.1 75.2
내광성 시험 후 평균 투과율
(%)
@800 nm 내지 1000 nm
54.4 62.1 52.3 71.7 89.4
내광성 시험 후 평균투과율변화율(%)
@800 nm 내지 1000 nm
15.25 12.30 11.51 52.23 18.88
내광성 시험 후 평균투과율변화량
(%)
@800 nm 내지 1000 nm
7.2 6.8 5.4 24.6 14.2
상기 표1 및 2에 나타난 바와 같이, 실시예의 광학 필름은 750 nm 이상 1500 nm 이하 파장의 근적외선에 대한 광흡수 성능이 우수하며, 내광성 및 내습열 신뢰성이 우수하여 가혹 조건에 노출되더라도 우수한 광 흡수 성능을 구현한다는 점을 확인할 수 있었다.
한편, 비교예의 광학 필름은 내광성 및/또는 내습성이 불량함을 확인하였다.

Claims (18)

  1. 기재; 및 상기 기재 상에 형성된 코팅층;을 포함하고,
    상기 코팅층은 비닐시안 화합물-방향족 화합물 공중합체 및 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함하고,
    800 nm 내지 1000 nm의 파장 영역에서 30% 이상의 초기 평균 투과율(T0)을 갖고,
    하기 수학식 1에 의해 계산되는 평균 투과율 변화율이 18 % 이하인, 광학 필름:
    [수학식 1]
    평균 투과율 변화율 =
    [(300nm 내지 400nm의 파장 영역에서 15 시간 내지 30 시간 노광시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 평균 투과율(T1) - 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 초기 평균 투과율(T0)) / T0 ] * 100.
  2. 제1항에 있어서,
    하기 수학식 2에 의해 계산되는 평균 투과율 변화율이 10 % 이하인, 광학 필름:
    [수학식 2]
    평균 투과율 변화율
    = [(고온 및 고습 조건에 노출 시킨 후, 800 nm 내지 1000 nm의 파장 영역에서 상기 광학 필름이 갖는 평균 투과율(T2) - 800 nm 내지 1000 nm의 파장 영역에서 광학 필름이 갖는 초기 평균 투과율(T0)) / T0 ] * 100
    이때, 고온 및 고습 조건에서의 노출은 70 ℃ 내지 100 ℃ 의 온도 및 70 % 내지 90 % 의 습도 조건에 50 내지 100 시간을 노출한 것을 의미한다.
  3. 제1항에 있어서,
    상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상 200,000 g/mol 이하인, 광학 필름.
  4. 제1항에 있어서,
    상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상 50 중량부 이하로 포함하는, 광학 필름.
  5. 제1항에 있어서,
    상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물 유래 반복단위 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 110 중량부 이상 500 중량부 이하로 포함하는, 광학 필름.
  6. 제1항에 있어서,
    상기 코팅층은 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 이상 3 중량부 이하로 포함하는, 광학 필름.
  7. 제1항에 있어서,
    상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료는 시아닌계 염료를 포함하는, 광학 필름.
  8. 제1항에 있어서,
    상기 코팅층의 두께가 0.005 ㎛ 이상 1000 ㎛ 이고,
    상기 광학 필름의 두께가 0.01 ㎛ 이상 1000 ㎛ 인, 광학 필름.
  9. 제1항에 있어서,
    상기 기재의 다른 일면에 형성된 금속 산화물층을 더 포함하는, 광학 필름.
  10. 제1항 또는 제9항에 있어서,
    상기 수학식 1에 의해 계산되는 평균 투과율 변화율이 15 % 이하인, 광학 필름.
  11. 제9항에 있어서,
    상기 금속 산화물층은 인듐, 아연, 주석, 알루미늄, 갈륨, 탈륨, 티탄, 지르코늄, 하프슘, 세슘, 안티몬, 바나듐, 니오뮴, 탄탈, 규소 및 게르마늄으로 이루어진 군에서 선택된 어느 하나의 금속의 산화물 또는 상기 금속에서 선택된 2개 이상의 금속의 복합 산화물을 포함하는, 광학 필름.
  12. 제9항에 있어서,
    상기 금속 산화물층은 1 nm 내지 100 nm의 두께를 갖는, 광학 필름.
  13. 제1항의 광학 필름을 포함하는, 전자 기기.
  14. 제13항에 있어서,
    상기 전자 기기는 홍채 이미지를 취득하는 카메라 장치부; 적외선 영역의 광원; 상기 적외선 영역의 광원의 파장 대역과 다른 외부광을 차단시키는 광학 필름을 포함하는, 전자 기기.
  15. 비닐시안 화합물-방향족 화합물 공중합체 및 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 포함하고,
    상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 중량 평균 분자량이 10,000 g/mol 이상 200,000 g/mol 이하이고,
    상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 100 중량부에 대하여 상기 비닐시안 화합물 유래 반복단위를 10 중량부 이상 50 중량부 이하로 포함하는, 코팅층 형성용 조성물.
  16. 제15항에 있어서,
    상기 코팅층 형성용 조성물은 상기 비닐시안 화합물-방향족 비닐 화합물 공중합체 총 100 중량부에 대하여 상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료를 0.1 중량부 이상 3 중량부 이하로 포함하는, 코팅층 형성용 조성물.
  17. 제15항에 있어서,
    상기 비닐시안 화합물-방향족 비닐 화합물 공중합체는 상기 비닐시안 화합물 유래 반복단위 100 중량부에 대하여 상기 방향족 비닐 화합물 유래 반복단위를 110 중량부 이상 500 중량부 이하로 포함하는, 코팅층 형성용 조성물.
  18. 제15항에 있어서,
    상기 최대 흡수 파장이 750 nm 이상 1500 nm 이하인 염료는 시아닌계 염료를 포함하는, 코팅층 형성용 조성물.
PCT/KR2023/002978 2022-03-03 2023-03-03 광학 필름, 코팅층 형성용 조성물, 및 전자 기기 WO2023167562A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023574264A JP2024520623A (ja) 2022-03-03 2023-03-03 光学フィルム、コーティング層形成用組成物、および電子機器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020220027488A KR20230130384A (ko) 2022-03-03 2022-03-03 광학 필름, 및 전자 기기
KR1020220027487A KR20230130383A (ko) 2022-03-03 2022-03-03 광학 필름, 코팅층 형성용 조성물, 및 전자 기기
KR10-2022-0027488 2022-03-03
KR10-2022-0027487 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023167562A1 true WO2023167562A1 (ko) 2023-09-07

Family

ID=87884072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002978 WO2023167562A1 (ko) 2022-03-03 2023-03-03 광학 필름, 코팅층 형성용 조성물, 및 전자 기기

Country Status (2)

Country Link
JP (1) JP2024520623A (ko)
WO (1) WO2023167562A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464173B2 (ja) 2019-12-23 2024-04-09 コニカミノルタ株式会社 保護フィルムおよびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140049941A (ko) * 2012-10-18 2014-04-28 후지필름 가부시키가이샤 광학 필름 및 그 제조 방법, 편광판 그리고 액정 표시 장치
US20160231482A1 (en) * 2011-06-06 2016-08-11 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
KR20160113660A (ko) * 2014-02-27 2016-09-30 코니카 미놀타 가부시키가이샤 편광판 보호 필름, 그 제조 방법, 편광판 및 액정 표시 장치
JP2016183312A (ja) * 2015-03-27 2016-10-20 株式会社日本触媒 熱可塑性樹脂組成物とそれを用いた光学フィルム
KR20180101761A (ko) * 2017-03-06 2018-09-14 나노스 주식회사 근적외선 차단 필터 및 근적외선 차단 필터를 포함하는 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160231482A1 (en) * 2011-06-06 2016-08-11 Asahi Glass Company, Limited Optical filter, solid-state imaging element, imaging device lens and imaging device
KR20140049941A (ko) * 2012-10-18 2014-04-28 후지필름 가부시키가이샤 광학 필름 및 그 제조 방법, 편광판 그리고 액정 표시 장치
KR20160113660A (ko) * 2014-02-27 2016-09-30 코니카 미놀타 가부시키가이샤 편광판 보호 필름, 그 제조 방법, 편광판 및 액정 표시 장치
JP2016183312A (ja) * 2015-03-27 2016-10-20 株式会社日本触媒 熱可塑性樹脂組成物とそれを用いた光学フィルム
KR20180101761A (ko) * 2017-03-06 2018-09-14 나노스 주식회사 근적외선 차단 필터 및 근적외선 차단 필터를 포함하는 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464173B2 (ja) 2019-12-23 2024-04-09 コニカミノルタ株式会社 保護フィルムおよびその製造方法

Also Published As

Publication number Publication date
JP2024520623A (ja) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2018034411A1 (ko) 필름 터치 센서 및 필름 터치 센서용 구조체
WO2017069528A1 (ko) 편광판 일체형 윈도우 기판 및 이의 제조 방법
WO2015016456A1 (ko) 위상차 필름 및 이를 구비하는 화상 표시 장치
WO2023167562A1 (ko) 광학 필름, 코팅층 형성용 조성물, 및 전자 기기
WO2021172787A1 (ko) 코어-쉘 화합물, 이를 포함하는 감광성 수지 조성물, 감광성 수지막, 컬러필터 및 cmos 이미지 센서
WO2018043807A1 (ko) Pedot/pss 분산액, 상기 분산액으로 제조된 광경화형 대전 방지 코팅조성물, 및 상기 코팅조성물을 포함하는 집진통
WO2013051831A2 (ko) 배향막 형성용 조성물, 그로부터 제조된 배향막 및 위상차 필름
WO2014193072A1 (ko) 자외선 차단 기능이 우수한 광학 필름 및 이를 포함하는 편광판
WO2017119764A1 (ko) 필름 터치 센서 및 이의 제조 방법
WO2021187859A1 (ko) 반사 방지 필름
WO2019132138A1 (ko) 잔텐계 화합물 및 이를 포함하는 감광성 수지 조성물
WO2016085087A2 (ko) 고굴절률 (메트)아크릴계 화합물, 이의 제조방법, 이를 포함하는 광학시트 및 이를 포함하는 광학표시장치
WO2013055015A1 (ko) 점착제 조성물, 점착필름, 그 제조방법 및 이를 이용한 디스플레이 부재
WO2021075740A1 (ko) 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막 및 상기 경화막을 포함하는 컬러필터
WO2017171272A1 (ko) 컬러필터 및 이를 포함하는 화상표시장치
WO2022182014A1 (ko) 광결정 구조체 및 이의 제조 방법
WO2021246851A1 (ko) 폴리에스테르 이형 필름 및 이의 제조 방법
WO2021132865A1 (ko) 고분자 수지 화합물, 이의 제조 방법 및 이를 포함하는 감광성 수지 조성물
WO2017171271A1 (ko) 필름 터치 센서 및 이를 포함하는 터치 스크린 패널
WO2020197179A1 (ko) 알칼리 가용성, 광경화성 및 열경화성을 갖는 공중합체, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름, 및 컬러필터
WO2021167368A1 (ko) 점착제 조성물, 점착 필름, 점착 광학 필터 및 디스플레이 장치
WO2021261848A1 (ko) 간섭 무늬가 개선된 다층 구조의 필름 및 이를 포함하는 표시장치
WO2022260283A1 (ko) 감광성 수지 조성물, 이를 이용한 감광성 수지막, 컬러필터 및 디스플레이 장치
WO2023022452A1 (ko) 감광성 수지 조성물 및 표시 소자
WO2019045433A1 (ko) 자외선 차단 기능이 우수한 점착 시트, 점착 조성물 및 이를 포함하는 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763760

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023574264

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18570612

Country of ref document: US