WO2023167513A1 - Epoxy resin composition derived from non-sugar alcohol composition and preparation method therefor, and curable epoxy resin composition including same and cured product thereof - Google Patents

Epoxy resin composition derived from non-sugar alcohol composition and preparation method therefor, and curable epoxy resin composition including same and cured product thereof Download PDF

Info

Publication number
WO2023167513A1
WO2023167513A1 PCT/KR2023/002882 KR2023002882W WO2023167513A1 WO 2023167513 A1 WO2023167513 A1 WO 2023167513A1 KR 2023002882 W KR2023002882 W KR 2023002882W WO 2023167513 A1 WO2023167513 A1 WO 2023167513A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
polyol component
resin composition
weight
composition
Prior art date
Application number
PCT/KR2023/002882
Other languages
French (fr)
Korean (ko)
Inventor
송광석
류훈
노재국
유승현
장민정
Original Assignee
삼양이노켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼양이노켐 주식회사 filed Critical 삼양이노켐 주식회사
Publication of WO2023167513A1 publication Critical patent/WO2023167513A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the present invention relates to an epoxy resin composition derived from an anhydrous sugar alcohol composition, a method for producing the same, a curable epoxy resin composition comprising the same, and a cured product thereof, and more specifically, to a biomass-derived anhydrosugar alcohol composition and an epihalate It is prepared by reacting a mixture containing lohydrin in a weight ratio within a specific range, and exhibits excellent eco-friendliness, high manufacturing yield, increased reactivity and improved usability due to liquid phase, and when used in a curable epoxy resin composition, the crosslinking density of the cured product It relates to an epoxy resin composition capable of increasing shear strength and a method for preparing the same, a curable epoxy resin composition including the same, and a cured product thereof.
  • Epoxy resins have excellent heat resistance, mechanical properties, electrical properties and adhesion. Epoxy resins take advantage of this characteristic and are used for sealing materials such as wiring boards, circuit boards, multilayered circuit boards, semiconductor chips, coils, and electric circuits. Alternatively, epoxy resin is also used as a resin for adhesives, paints, and fiber-reinforced resins.
  • Epoxy resins find widespread use as thermosets in many applications. They are used as a thermosetting matrix in prepregs composed of fibers incorporated in a thermosetting matrix. Also, because of their toughness, flexibility, adhesion and chemical resistance, they can be used as materials for surface coatings, for bonding, molding and laminating, all of which are used in aerospace, automotive, electronics, construction, furniture, green energy and sporting goods. Various applications can be found in a wide variety of industries such as industry.
  • epoxy resins are readily available and may be used depending on their reactivity required for a particular application.
  • resins can be solid, liquid or semi-solid, and can have a variety of reactivity depending on the application to which they are applied.
  • the reactivity of epoxy resins is often measured in terms of epoxy equivalent weight, which is the molecular weight of a resin containing a single reactive epoxy group. The lower the epoxy equivalent, the higher the reactivity of the epoxy resin. Different reactivity is required for different epoxy resin applications, depending on whether it is present as a matrix for fiber-reinforced prepregs, adhesive coatings, or structural adhesives.
  • An epoxy resin is a chemical unit of molecules constituting it, and always has an epoxy bond. It is made by polymerizing epichlorohydrin and bisphenol A. Epoxy resin is not used alone, and it is appropriate to think of it as an intermediate of ordinary resin because it is used by adding a curing agent to change it to a thermoset material. That is, a cured product cannot be obtained with only an epoxy resin, and a thermosetting structure can be obtained only when immovable cross-linking points are formed in combination with an epoxy reactor.
  • Curing agents that can be used together with epoxy resins include phenol, acid anhydrides, and amines. Among them, since phenol may have various structures, various physical property changes obtained by changing the epoxy resin can be obtained by changing the structure of the phenolic resin curing agent, and due to these various properties, phenolic resin curing agents are mainly It is being used. However, a problem has been derived due to free phenol present in the phenolic resin. Free phenol disappears after curing, but it poses a problem for its use because it threatens the health of workers during work.
  • Hydrogenated sugar also referred to as “sugar alcohol” refers to a compound obtained by adding hydrogen to a reducing end group of sugars, and is generally HOCH 2 (CHOH) n CH 2 OH (where n is an integer from 2 to 5) ), and is classified according to carbon atoms into tetratol, pentitol, hexitol, and heptitol (4, 5, 6, and 7 carbon atoms, respectively).
  • hexitol having 6 carbon atoms includes sorbitol, mannitol, iditol, galactitol, and the like, and sorbitol and mannitol are particularly effective substances.
  • Anhydrous sugar alcohol is a substance formed by removing one or more water molecules from the inside of hydrogenated sugar. When one water molecule is removed, it has the form of tetraol with four hydroxyl groups in the molecule, and two water molecules In the case of removal, it has a diol form with two hydroxyl groups in the molecule, and can be prepared using hexitol derived from starch (e.g., Korean Patent Registration No. 10-1079518, Korean Patent Publication No. 10-2012-0066904). Since anhydrosugar alcohol is an environmentally friendly material derived from renewable natural resources, research on its manufacturing method has been conducted with great interest for a long time. Among these anhydrous sugar alcohols, isosorbide prepared from sorbitol currently has the widest range of industrial applications.
  • anhydrous sugar alcohol is very diverse, such as treatment of heart and blood vessel diseases, patch adhesives, pharmaceuticals such as mouthwashes, solvents for compositions in the cosmetic industry, and emulsifiers in the food industry.
  • it can raise the glass transition temperature of polymer materials such as polyester, PET, polycarbonate, polyurethane and epoxy resin, and has the effect of improving the strength of these materials. useful.
  • it can be used as an environmentally friendly solvent for adhesives, eco-friendly plasticizers, biodegradable polymers, and water-soluble lacquers.
  • anhydrous sugar alcohol is receiving a lot of attention due to its various application possibilities, and its use in the actual industry is gradually increasing.
  • Republic of Korea Patent Publication No. 10-2016-0010133 discloses an eco-friendly epoxy resin obtained by reacting isosorbide, an anhydrous sugar alcohol, with epichlorohydrin.
  • the epoxy resin obtained by the method disclosed in the above patent publication exhibits poor shear strength due to low crosslinking density of the cured product upon curing after mixing with a curing agent, it is not suitable for use as an adhesive.
  • An object of the present invention is to utilize a biomass-derived anhydrosugar alcohol composition to provide an epoxy resin composition that has excellent eco-friendliness and can improve the adhesive strength of the cured product when cured after mixing with a curing agent, a manufacturing method thereof, and a method for manufacturing the same, comprising the same It is to provide a curable epoxy resin composition and a cured product thereof.
  • a first aspect of the present invention is an epoxy resin composition, which is prepared by reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin, wherein the anhydrous sugar alcohol composition comprises first to fifth polyol components, ,
  • the first polyol component is anhydrous sugar alcohol
  • the second polyol component is anhydrous sugar alcohol
  • the third polyol component is a polysaccharide alcohol represented by the following formula (1)
  • the fourth polyol component is a polysaccharide alcohol represented by the following formula (1)
  • An anhydrous sugar alcohol formed by removing water molecules from a polysaccharide alcohol represented by , wherein the fifth polyol component is at least one polymer selected from the first to fourth polyol components
  • An epoxy resin composition wherein the epihalohydrin content in the mixture is greater than 90 parts by weight and less than 4,000 parts by weight based on 100 parts by weight of the anhydrous sugar alcohol composition:
  • n is an integer from 0 to 4.
  • a second aspect of the present invention is a method for producing an epoxy resin composition, comprising the steps of reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin, wherein the anhydrous sugar alcohol composition is first to fifth wherein the first polyol component is monohydrosugar alcohol, the second polyol component is dianhydrosugar alcohol, the third polyol component is a polysaccharide alcohol represented by Formula 1, and the fourth polyol component is the polyol component is an anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by Formula 1, and the fifth polyol component is at least one polymer selected from the first to fourth polyol components;
  • the content of the epihalohydrin in the mixture is greater than 90 parts by weight and less than 4,000 parts by weight, based on 100 parts by weight of the anhydrous sugar alcohol composition, provides a method for producing an epoxy resin composition.
  • a third aspect of the present invention is the epoxy resin composition according to the first aspect of the present invention. And a curing agent; provides a curable epoxy resin composition comprising a.
  • a fourth aspect of the present invention provides a cured product obtained by curing the curable epoxy resin composition according to the third aspect of the present invention.
  • a fifth aspect of the present invention provides an adhesive comprising a cured product according to the fourth aspect of the present invention.
  • the epoxy resin composition according to the present invention can be prepared by utilizing the anhydrosugar alcohol composition, which is a by-product obtained in the process of producing an internal dehydration product of hydrogenated sugar, it improves economic feasibility and improves eco-friendliness by solving the by-product disposal problem. can be made, can be produced in high yield, exhibits increased reactivity, shows improved usability because it is obtained in liquid form, and can improve the adhesive strength of the cured product when cured after mixing with a curing agent, the adhesive strength of the adhesive using this (In particular, shear strength) can be remarkably improved.
  • the epoxy resin composition according to the first aspect of the present invention is prepared by reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin, wherein the epihalohydrin content in the mixture is the anhydrous sugar Based on 100 parts by weight of the alcohol composition, it is more than 90 parts by weight and less than 4,000 parts by weight.
  • the epoxy resin in the reaction product is excessively polymerized by chain extension, so that the curing reaction does not occur when combined with the curing agent.
  • the content of epihalohydrin in the mixture is 4,000 parts by weight or more based on 100 parts by weight of the anhydrosugar alcohol composition
  • the molecular weight of the epoxy resin in the reaction product increases, and as a result, the tensile strength of the cured product decreases when combined with the curing agent. Shear strength is deteriorated, and the yield of the epoxy resin composition is reduced due to the use of an excessive amount of epihalohydrin, and productivity is lowered, such as an increase in the amount of unreacted epihalohydrin.
  • the epihalohydrin content in the mixture is, for example, greater than 90 parts by weight, 91 parts by weight or more, 100 parts by weight or more, 110 parts by weight or more, 120 parts by weight or more, based on 100 parts by weight of the anhydrosugar alcohol composition 130 parts by weight or more, 140 parts by weight or more, 150 parts by weight or more, 160 parts by weight or more, 170 parts by weight or more, or 180 parts by weight or more, and also less than 4,000 parts by weight, 3,990 parts by weight or less, 3,950 parts by weight or less.
  • anhydrosugar alcohol composition and epihalohydrin used in the preparation of the epoxy resin composition will be described in more detail below.
  • anhydrous sugar alcohol is generally referred to as hydrogenated sugar or sugar alcohol, which is obtained by adding hydrogen to a reducing end group of sugars by removing one or more water molecules from the compound. means any material obtained.
  • the anhydrosugar-alcohol composition includes first to fifth polyol components, wherein the first polyol component is monohydrosugar alcohol, the second polyol component is dianhydrosugar alcohol, and the third polyol component has the formula 1, the fourth polyol component is an anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by the following formula (1), and the fifth polyol component is the first to fourth polyol components It is one or more polymers selected from
  • n is an integer from 0 to 4.
  • Anhydrous sugar alcohol which is the first polyol component included in the anhydrous sugar-alcohol composition of the present invention; dianhydrosugar alcohol as a second polyol component; a polysaccharide alcohol as a third polyol component; anhydrous sugar alcohol formed by removing water molecules from polysaccharide alcohol, which is the fourth polyol component; And at least one, preferably two or more, more preferably all of one or more polymers selected from the first to fourth polyol components that are the fifth polyol component, a glucose-containing saccharide composition (e.g., glucose , mannose, fructose, and maltose) by hydrogenation reaction to prepare a hydrogenated sugar composition, dehydration reaction by heating the obtained hydrogenated sugar composition under an acid catalyst, and the resulting dehydration reaction It can be obtained in the process of preparing by thin film distillation. More specifically, all of the first to fifth polyol components included in the anhydrous sugar alcohol composition of the present invention may be by-products remaining after obtaining
  • Monohydrosugar alcohol which is the first polyol component, is anhydrosugar alcohol formed by removing one water molecule from the inside of a hydrogenated sugar, and has a tetraol form with four hydroxyl groups in the molecule.
  • the type of monohydrosugar alcohol is not particularly limited, but may preferably be monohydrosugar hexitol, more specifically 1,4-anhydrohexitol, 3,6-anhydrohexitol , 2,5-anhydrohexitol, 1,5-anhydrohexitol, 2,6-anhydrohexitol, or a mixture of two or more thereof.
  • the second polyol component is anhydrosugar alcohol formed by removing two water molecules from the inside of hydrogenated sugar, and has a diol form with two hydroxyl groups in the molecule.
  • dianhydrosugar alcohol is anhydrosugar alcohol formed by removing two water molecules from the inside of hydrogenated sugar, and has a diol form with two hydroxyl groups in the molecule.
  • imudang alcohol is an eco-friendly material derived from renewable natural resources, research on its manufacturing method has been conducted with much interest for a long time.
  • isosorbide prepared from sorbitol currently has the widest range of industrial applications.
  • the type of dianhydrosugar alcohol is not particularly limited, but may be preferably dianhydrosugar hexitol, and more specifically, 1,4:3,6-dianhydrohexitol.
  • the 1,4:3,6-dianhydrohexitol may be isosorbide, isomannide, isoidide, or a mixture of two or more thereof.
  • the polysaccharide alcohol represented by Chemical Formula 1, which is the third polyol component may be prepared from a hydrogenation reaction of disaccharides or higher polysaccharides including maltose.
  • the anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by Formula 1, which is the fourth polyol component, is a compound represented by Formula 2, a compound represented by Formula 3, or a mixture thereof.
  • a compound represented by Formula 2 a compound represented by Formula 3 or a mixture thereof.
  • n is each independently an integer of 0 to 4.
  • the at least one polymer selected from the first to fourth polyol components, which is the fifth polyol component includes at least one selected from the group consisting of condensation polymers prepared from the following polycondensation reaction. can do:
  • the anhydrous sugar alcohol composition may satisfy the following i) to iii):
  • the number average molecular weight (Mn) of the anhydrous sugar alcohol composition is 193 to 1,589 g/mol;
  • the polydispersity index (PDI) of the anhydrous sugar alcohol composition is 1.13 to 3.41;
  • the average number of -OH groups per molecule in the anhydrous sugar alcohol composition is 2.54 to 21.36.
  • the number average molecular weight (Mn: unit g / mol) of the anhydrous sugar alcohol composition may be 193 or more, 195 or more, 200 or more, 202 or more, 205 or more or 208 or more, and also 1,589 or less, 1,560 or less , 1,550 or less, 1,520 or less, 1,500 or less, 1,490 or less, or 1,480 or less.
  • the number average molecular weight (Mn) of the anhydrous sugar alcohol composition may be 193 to 1,589, specifically 195 to 1,550, more specifically 200 to 1,520, and more specifically As may be 202 to 1,500, more specifically may be 205 to 1,490. If the number average molecular weight of the anhydrous sugar alcohol composition deviates from the above level too much, the adhesive strength of an adhesive containing a cured product of an epoxy resin composition prepared using such anhydrous sugar alcohol composition may deteriorate.
  • the polydispersity index (PDI) of the anhydrous sugar alcohol composition may be 1.13 or more, 1.15 or more, 1.20 or more, 1.23 or more or 1.25 or more, and also 3.41 or less, 3.40 or less, 3.35 or less, 3.30 or less, 3.25 or less, 3.22 or less, or 3.19 or less.
  • the polydispersity index (PDI) of the anhydrous sugar alcohol composition may be 1.13 to 3.41, specifically 1.13 to 3.40, more specifically 1.15 to 3.35, and more Specifically, it may be 1.20 to 3.25, and more specifically, it may be 1.23 to 3.22. If the polydispersity index of the anhydrous sugar alcohol composition deviates from the above level too much, the adhesive strength of an adhesive containing a cured product of an epoxy resin composition prepared using such anhydrous sugar alcohol composition may deteriorate.
  • the average number of -OH groups per molecule in the anhydrous sugar alcohol composition may be 2.54 or more, 2.60 or more, 2.65 or more, 2.70 or more, 2.75 or more, or 2.78 or more, and also 21.36 It may be less than or equal to 21.30, less than or equal to 21.0, less than or equal to 20.5, less than or equal to 20.0, less than or equal to 19.95 or less than or equal to 19.92. Also, in one embodiment, the average number of —OH groups per molecule in the anhydrous sugar alcohol composition may be 2.54 to 21.36, more specifically 2.60 to 21.30, and more specifically 2.65 to 21.30. It may be 21.0.
  • the first polyol component is 0.1 to 20% by weight, specifically 0.6 to 20% by weight, more specifically 0.7 to 15% by weight
  • the second polyol component may be included in 0.1 to 28% by weight, specifically 1 to 25% by weight, more specifically 3 to 20% by weight
  • the third polyol component and the fourth polyol The total content of the components may be 0.1 to 6.5% by weight, specifically 0.5 to 6.4% by weight, more specifically 1 to 6.3% by weight
  • the fifth polyol component may be 55 to 90% by weight, specifically 60 to 6.3% by weight 89.9% by weight, more specifically may be included in 70 to 89.9% by weight, but is not particularly limited thereto.
  • the anhydrosugar alcohol composition is a glucose-containing saccharide composition (eg, glucose; mannose; fructose; and a saccharide composition comprising disaccharides or higher polysaccharides including maltose) by hydrogenation reaction to prepare a hydrogenated sugar composition
  • the obtained hydrogenated sugar composition may be dehydrated by heating under an acid catalyst, and the obtained dehydration reaction product may be prepared by thin film distillation, more specifically, thin film distillate obtained by thin film distillation of the obtained dehydration reaction product After that, it may be the remaining by-product.
  • a hydrogenation reaction is performed on the glucose-containing saccharide composition under a hydrogen pressure of 30 to 80 atm and a heating condition of 110° C. to 135° C. to prepare a hydrogenated sugar composition, and the obtained hydrogenated sugar composition is dehydrated.
  • the reaction is carried out under reduced pressure conditions of 1 mmHg to 100 mmHg and heating conditions of 105 ° C to 200 ° C to obtain a dehydration reaction product, and thin film distillation of the obtained dehydration reaction product is performed under reduced pressure conditions of 2 mbar or less and 150 ° C to 175 ° C It may be performed under heating conditions of, but is not limited thereto.
  • the glucose content of the glucose-containing saccharide composition may be 41% by weight or more, 42% by weight or more, 45% by weight or more, 47% by weight or more, or 50% by weight or more, based on the total weight of the saccharide composition.
  • 99 wt% or less, 98.5 wt% or less, 98 wt% or less, 97.5 wt% or less, or 97 wt% or less, such as 41 to 99.5 wt%, 45 to 98.5 wt%, or 50 to 98 wt%. may be %.
  • the content of the polysaccharide alcohol (disaccharide or higher saccharide alcohol) contained in the hydrogenated sugar composition is the total dry weight of the hydrogenated sugar composition (here, the dry weight means the weight of solids remaining after water is removed from the hydrogenated sugar composition) Based on), it may be 0.8% by weight or more, 1% by weight or more, 2% by weight or 3% by weight or more, and 57% by weight or less, 55% by weight or less, 52% by weight or less, 50% by weight or less, or 48% by weight or less It may be, for example, 0.8 to 57% by weight, 1 to 55% by weight, or 3 to 50% by weight.
  • the epoxy resin composition according to the first aspect of the present invention is prepared by reacting a mixture containing the above-described anhydrous sugar alcohol composition and epihalohydrin.
  • the epoxy resin composition according to the first aspect of the present invention is a reaction product of the first polyol component and epihalohydrin, a reaction product of the second polyol component and epihalohydrin, and a third polyol It includes a reaction product of the component and epihalohydrin, a reaction product of the fourth polyol component and epihalohydrin, and a reaction product of the fifth polyol component and epihalohydrin.
  • the epihalohydrin may be an epihalohydrin substituted or unsubstituted with an alkyl group (eg, C1-C4 alkyl), and a bio-based compound derived from a biomass raw material is environmentally friendly.
  • an alkyl group eg, C1-C4 alkyl
  • a bio-based compound derived from a biomass raw material is environmentally friendly.
  • the epihalohydrin is epichlorohydrin, epibromohydrin, epiiodohydrin, methyl epichlorohydrin, methyl epibromohydrin, methyl epiiodohydrin or a combination thereof It may be one or more selected from the group consisting of, but is not limited thereto.
  • the epoxy equivalent of the epoxy resin composition prepared by reacting the above-described anhydrous sugar alcohol composition and epihalohydrin is not particularly limited, but may preferably be 150 to 430 g / eq. If the epoxy equivalent of the epoxy resin composition is excessively higher or lower than the above level, adhesive strength of an adhesive containing a cured product of such an epoxy resin composition may be deteriorated and the production yield of the epoxy resin composition may be reduced.
  • the epoxy equivalent of the epoxy resin composition is, for example, 150 g/eq or more, 151 g/eq or more, 152 g/eq or more, 153 g/eq or more, 154 g/eq or more, 155 g/eq or more, 156 g/eq or more or 157 g/eq or more, and also 430 g/eq or less, 429 g/eq or less, 428 g/eq or less, 427 g/eq or less, 426 g/eq or less, 425 g/eq or less , 424 g/eq or less, 423 g/eq or less, 422 g/eq or less, or 421 g/eq or less, but is not limited thereto.
  • the method for producing the epoxy resin composition of the present invention includes the step of reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin, wherein the anhydrosugar alcohol composition and epihalohydrin are described above.
  • the epihalohydrin content in the mixture is greater than 90 parts by weight and less than 4,000 parts by weight based on 100 parts by weight of the anhydrous sugar-alcohol composition, and the epihalohydrin content in the mixture is also described above. same as bar
  • the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be performed in the presence of a catalyst.
  • the catalyst may be a basic compound, and more specifically, an alkali metal salt such as sodium hydroxide (caustic soda), potassium hydroxide, or a combination thereof, but may be an alkali metal hydroxide, but is not limited thereto.
  • the amount of the catalyst for example, based on 100 parts by weight of the anhydrous sugar alcohol composition, may be, for example, 1 to 99 parts by weight, more specifically 10 to 90 parts by weight, more specifically May be 20 to 80 parts by weight, but is not limited thereto. If the amount of the catalyst used is too less than the above level, the curing reaction may not occur, and conversely, if the amount is too much than the above level, the unreacted catalyst may remain in the reaction product and affect its physical properties.
  • the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be carried out under room temperature to elevated temperature conditions, such as 30 to 100 °C temperature conditions, more specifically 50 to 90 It may be performed under temperature conditions of °C, but is not limited thereto.
  • the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be carried out under normal pressure or reduced pressure conditions, such as normal pressure or reduced pressure conditions of 300 to 80 Torr, more specifically normal pressure Alternatively, it may be performed under reduced pressure conditions of 200 to 100 Torr, but is not limited thereto.
  • reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be carried out for, for example, 1 to 12 hours, more specifically 2 to 10 hours, and more specifically It may be performed for 3 to 8 hours, but is not limited thereto.
  • the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be carried out in a two-step reaction method consisting of a preliminary reaction and a main reaction.
  • the preliminary reaction is performed by adding a relatively small amount of the catalyst described above to a mixture containing anhydrous sugar alcohol composition and epihalohydrin (e.g., 1 to 10 parts by weight based on 100 parts by weight of anhydrous sugar alcohol composition). ) After input, it may be performed for 1 to 3 hours under elevated temperature conditions (eg, 70 to 100 ° C.) and normal pressure conditions.
  • a relatively small amount of the catalyst described above e.g., 1 to 10 parts by weight based on 100 parts by weight of anhydrous sugar alcohol composition.
  • epihalohydrin e.g., 1 to 10 parts by weight based on 100 parts by weight of anhydrous sugar alcohol composition.
  • the present reaction after adding a relatively large amount of catalyst (eg, 20 to 80 parts by weight based on 100 parts by weight of the anhydrous sugar alcohol composition) to the product of the preliminary reaction, elevated temperature conditions (eg , 50 to 90° C.) and reduced pressure conditions (eg, 200 to 100 Torr) for 2 to 9 hours.
  • a relatively large amount of catalyst eg, 20 to 80 parts by weight based on 100 parts by weight of the anhydrous sugar alcohol composition
  • elevated temperature conditions eg , 50 to 90° C.
  • reduced pressure conditions eg, 200 to 100 Torr
  • water generated during the reaction is can be continuously removed from Removal of this water may be performed using, for example, a decanter, but is not limited thereto.
  • the method for preparing the epoxy resin composition of the present invention may further include removing unreacted epihalohydrin from the reaction product after completion of the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin. there is. Removal of such unreacted epihalohydrin may be performed under elevated temperature conditions (eg, 120 to 180° C.) and reduced pressure conditions (eg, 50 to 1 Torr), but is not limited thereto. The removed unreacted epihalohydrin can be recovered and reused.
  • elevated temperature conditions eg, 120 to 180° C.
  • reduced pressure conditions eg, 50 to 1 Torr
  • the epoxy resin composition according to the first aspect of the present invention is provided.
  • a curing agent; containing, a curable epoxy resin composition is provided.
  • the curing agent may be at least one selected from the group consisting of anhydrous sugar alcohol, phenolic compound, acid anhydride-based compound, amine-based compound, or combinations thereof, and more specifically may be anhydrous sugar alcohol, More specifically, it may be isosorbide.
  • the equivalent ratio of the curing agent to the epoxy resin composition of the present invention in the curable epoxy resin composition may be, for example, 0.9 to 1.1, and more specifically, 0.92 to 1.1. It may be 1.08, and more specifically, it may be 0.95 to 1.05. If the hydroxy equivalent of the curing agent relative to the equivalent of the epoxy resin composition is too small, the mechanical strength may deteriorate and physical properties may deteriorate in terms of adhesive strength. Conversely, if the equivalent of the curing agent relative to the equivalent of the epoxy resin composition is too large Also, there may be a problem in that physical properties are deteriorated in terms of mechanical strength, thermal and adhesive strength.
  • the curable epoxy resin composition of the present invention may further include a curing catalyst.
  • Curing catalysts usable in the present invention include, for example, amine-based compounds (eg, tertiary amines) such as benzyldimethylamine, tris(dimethylaminomethyl)phenol, and dimethylcyclohexylamine; imidazole compounds such as 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazole, and 1-benzyl-2-methylimidazole; organophosphorus compounds such as triphenylphosphine and triphenyl phosphite; quaternary phosphonium salts such as tetraphenylphosphonium bromide and tetra-n-butylphosphonium bromide; diazabicycloalkenes such as 1,8-diazabicyclo[5.4.0]undecene-7 and organic acid salts thereof; organometallic compounds such as zinc octylate, tin octylate and
  • the curing catalyst may be at least one selected from the group consisting of an amine-based compound, an imidazole-based compound, an organophosphorus compound, or a combination thereof.
  • the amount used may be 0.01 part by weight to 1.0 part by weight, more specifically, 0.05 part by weight to 0.5 part by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent. It may be parts by weight, and more specifically, it may be 0.08 parts by weight to 0.2 parts by weight, but is not limited thereto. If the amount of the curing catalyst is too small, the curing reaction of the epoxy resin composition may not sufficiently proceed, resulting in deterioration of mechanical and thermal properties. Since the curing reaction proceeds slowly, there may be a problem of increasing the viscosity.
  • the curable epoxy resin composition of the present invention if necessary, additives commonly used in epoxy resin compositions, such as antioxidants, UV absorbers, fillers, resin modifiers, silane coupling agents, diluents, colorants, antifoaming agents, defoaming agents, dispersing agents, It may further include one or more additives selected from the group consisting of viscosity modifiers, gloss modifiers, wetting agents, conductivity imparting agents, and combinations thereof.
  • the antioxidant may be used to further improve heat resistance stability of the cured product obtained, and is not particularly limited, but examples thereof include phenolic antioxidants (dibutylhydroxytoluene, etc.), sulfur-based antioxidants (mercaptopropionic acid derivatives, etc.) , phosphorus antioxidants (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc.) and combinations thereof.
  • the content of the antioxidant in the curable epoxy resin composition may be 0.01 to 10 parts by weight, or 0.05 to 5 parts by weight, or 0.1 to 3 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
  • the benzotriazole type UV absorber represented by BASF Japan Ltd. TINUBIN P and TINUVIN 234; triazine-based UV absorbers such as TINUVIN 1577ED; A hindered amine-based UV absorber such as CHIMASSOLV 2020FDL and a combination thereof may be used.
  • the content of the UV absorber in the curable epoxy resin composition may be 0.01 to 10 parts by weight, 0.05 to 5 parts by weight, or 0.1 to 3 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
  • the filler is used for the main purpose of improving the mechanical properties of a cured product by mixing it with an epoxy resin composition or a curing agent, and generally, mechanical properties are improved when the amount added is increased.
  • Inorganic fillers include extenders such as talc, sand, silica, talc, calcium carbonate, and the like; reinforcing fillers such as mica, quartz, and glass fibers; There are those with special uses such as quartz powder, graphite, alumina, and aerosil (for the purpose of imparting thixotropic properties).
  • Metals include aluminum, aluminum oxide, iron, iron oxide, and copper, which contribute to thermal expansion coefficient, abrasion resistance, thermal conductivity, and adhesion.
  • thixotropic refers to the property of a liquid state when flowing and a solid state when stationary so that resin impregnated into a laminate or attached to a vertical plane or immersion method does not flow or lose during curing. refers to having), fine particles with a large unit surface area are used.
  • colloidal silica (Aerosil) or bentonite-based clay is used.
  • the filler is not particularly limited, but for example, one selected from the group consisting of glass fiber, carbon fiber, titanium oxide, alumina, talc, mica, aluminum hydroxide, and combinations thereof may be used.
  • the content of the filler in the curable epoxy resin composition may be 0.01 to 80 parts by weight, or 0.01 to 50 parts by weight, or 0.1 to 20 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
  • the resin modifier examples include, but are not particularly limited to, flexibility imparting agents such as polypropylene glycidyl ether, polymerized fatty acid polyglycidyl ether, polypropylene glycol, and urethane prepolymer.
  • the content of the resin modifier in the curable epoxy resin composition may be 0.01 to 80 parts by weight, or 0.01 to 50 parts by weight, or 0.1 to 20 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
  • the silane coupling agent is not particularly limited, and examples thereof include chloropropyltrimethoxysilane, vinyltrichlorosilane, ⁇ methacryloxypropyltrimethoxysilane, and ⁇ aminopropyltriethoxysilane. .
  • the content of the silane coupling agent in the curable epoxy resin composition may be 0.01 to 20 parts by weight, or 0.05 to 10 parts by weight, or 0.1 to 5 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
  • the diluent is used for the main purpose of reducing viscosity by adding it to an epoxy resin composition or a curing agent, and when used, improves flowability, defoaming property, improves penetration into details of parts, etc., or effectively adds fillers. do.
  • Diluents generally do not volatilize unlike solvents and remain in the cured product during resin curing, and are divided into reactive and non-reactive diluents.
  • the reactive diluent has one or more epoxy groups and participates in the reaction to form a cross-linked structure in the cured product, and the non-reactive diluent remains only physically mixed and dispersed in the cured product.
  • Commonly used reactive diluents include Butyl Glycidyl Ether (BGE), Phenyl Glycidyl Ether (PGE), and Aliphatic Glycidyl Ether (C12 -C14). , Modified-tert-Carboxylic Glycidyl Ester, etc.
  • Commonly used non-reactive diluents include dibutyl phthalate (DBP), dioctyl phthalate (DOP), nonyl-phenol, hysol, and the like.
  • the diluent is not particularly limited, but examples include n-butyl glycidyl ether, phenyl glycidyl ether, glycidyl methacrylate, vinylcyclohexene dioxide, diglycidyl aniline, What is selected from the group consisting of glycerol triglycidyl ether and combinations thereof may be used.
  • the content of the diluent in the curable epoxy resin composition may be 0.01 to 80 parts by weight, or 0.01 to 50 parts by weight, or 0.1 to 20 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
  • a pigment or dye is used as a colorant for adding color to the resin.
  • Commonly used pigments include colorants such as titanium dioxide, cadmium red, channing green, carbon black, chrome green, chrome yellow, navy blue, and channing blue.
  • antifoaming and defoaming agents used for the purpose of removing air bubbles in resins dispersing agents for increasing the dispersion effect of resins and pigments, wetting agents for improving adhesion between epoxy resins and materials, and viscosity modifiers , gloss control agents for adjusting the glossiness of resin, additives for improving adhesion, additives for imparting electrical properties, and the like, various additives can be used.
  • the method for curing the curable epoxy resin composition of the present invention is not particularly limited, and conventionally known curing equipment such as a closed curing furnace or a tunnel furnace capable of continuous curing can be used.
  • the heating method used for the curing is not particularly limited, but conventionally known methods such as hot air circulation, infrared heating, and high frequency heating can be used.
  • the curing temperature and curing time may be in the range of 30 seconds to 10 hours at 50°C to 250°C.
  • primary curing under conditions of 50 ° C to 85 ° C, 0.5 hours to 5 hours, secondary curing under conditions of 85 ° C to 105 ° C, 0.5 hours to 5 hours, 105 ° C to 145 ° C, 0.5 Third curing under conditions of time to 5 hours, and fourth curing under conditions of 145 ° C to 180 ° C and 0.5 hours to 5 hours can be performed.
  • it may be cured under conditions of 150 ° C. to 250 ° C. for 30 seconds to 30 minutes for short-time curing.
  • the curable epoxy resin composition of the present invention may be divided and stored into two or more components, for example, a component including a curing agent and a component including an epoxy resin composition, and combining them before curing.
  • the curable epoxy resin composition of the present invention may be stored as a thermosetting composition in which each component is blended, and may be used for curing as it is. When stored as a thermosetting composition, it can be stored at a low temperature (usually -40°C).
  • a cured product obtained by curing the curable epoxy resin composition of the present invention is provided.
  • an adhesive comprising the cured product is provided.
  • the adhesive of the present invention may additionally include additives commonly used in epoxy-based adhesives.
  • 1,819 g of polysaccharide alcohol (% by weight and disaccharide or higher polysaccharide alcohol 3.1% by weight) was obtained, which was put into a batch reactor equipped with a stirrer and heated to 100 ° C. to concentrate, thereby obtaining 1,000 g of a concentrated hydrogenated sugar composition.
  • a reactor was charged with 1,000 g of the concentrated hydrogenated sugar composition and 9.6 g of sulfuric acid. Thereafter, the temperature inside the reactor was raised to about 135 ° C, and a dehydration reaction was performed under a reduced pressure of about 45 mmHg to convert to anhydrous sugar alcohol. After completion of the dehydration reaction, the temperature of the reaction product was cooled to 110 ° C or less, and about 15.7 g of a 50% sodium hydroxide aqueous solution was added to neutralize the reaction product. Thereafter, the temperature was cooled to 100 ° C or lower and concentrated for 1 hour or more under a reduced pressure of 45 mmHg to remove residual moisture and low-boiling substances to obtain about 831 g of anhydrous sugar alcohol conversion solution.
  • isosorbide (dianhydrosugar alcohol) [second polyol component] 11.5% by weight, isomannide (dianhydrosugar alcohol) [second polyol component] 0.4% by weight, sorbitan (anhydrous sugar alcohol) 0.4% by weight alcohol) [first polyol component] 7.4% by weight, polysaccharide alcohol represented by Formula 1 [third polyol component] and anhydrosugar alcohol derived therefrom (ie, formed by removing water molecules from polysaccharide alcohol) [agent 4 polyol component] 2.5% by weight and their polymer [fifth polyol component] 78.2% by weight, the number average molecular weight of the composition is 208 g / mol, the polydispersity index of the composition is 1.25, and the hydroxyl group of the composition is About 242 g of an anhydrous sugar alcohol composition having a value of 751 mg KOH/g and an average number of -OH groups per molecule in the composition of 2.78 was obtained.
  • Preparation Example A hydrogenation reaction was performed in the same manner as in A1 to obtain 1,819 g of a liquid hydrogenated sugar composition having a concentration of 55% by weight (based on solid content, 48.5% by weight of sorbitol, 3.6% by weight of mannitol, and 47.9% by weight of disaccharide or higher polysaccharide alcohol).
  • 1,000 g of a concentrated hydrogenated sugar composition was obtained by heating to 100°C and concentrating in a batch reactor equipped with .
  • the above concentrated hydrogenated sugar composition except that the content of sulfuric acid was changed from 9.6 g to 4.85 g, the content of 50% aqueous sodium hydroxide solution was changed from 15.7 g to 7.9 g, and the reaction temperature was changed to 120 ° C. 1,000 g was converted into anhydrous sugar alcohol by performing a dehydration reaction in the same manner as in Preparation Example A1.
  • the anhydrous sugar-alcohol conversion solution obtained as a result of the dehydration reaction was about 890 g, and as a result of analyzing the obtained anhydrosugar-alcohol conversion solution by gas chromatography, the conversion content of isosorbide was 33.7% by weight, through which isosorb from sorbitol The molar conversion of the beads was calculated to be 77.1%.
  • isosorbide (dianhydrosugar alcohol) 0.9% by weight
  • isomannide (dianhydrosugar alcohol) 2.1% by weight
  • sorbitan (monuhydrosugar alcohol) 0.9% by weight
  • the number average molecular weight of the composition is 1,480 g / mol
  • the polydispersity index of the composition is 3.19
  • the hydroxyl value of the composition is 755 mg KOH / g, , to obtain about 586 g of anhydrosugar alcohol composition having an average number of -OH groups per molecule in the composition of 19.92.
  • Example A1 Epoxy resin composition prepared by addition reaction of 180 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
  • anhydrous sugar alcohol composition of Preparation A1 and 180 g of epichlorohydrin were added to a 1,000 ml round bottom flask equipped with a cooling tube, a stirrer, and a nitrogen inlet equipped with a decanter, and dissolved while raising the temperature to 80 ° C.
  • 11 g of 50% caustic soda aqueous solution was injected in a metered amount over 2 hours to conduct a preliminary reaction. Thereafter, the reaction was performed while injecting 109 g of a 50% aqueous caustic soda solution at a temperature of 65° C. and a reduced pressure of 120 Torr over 200 minutes. Water generated during this reaction was continuously removed through a decanter.
  • an epoxy resin composition was obtained by recovering unreacted epichlorohydrin by gradually heating and reducing the filtered reactant to a temperature of 150°C and 5 Torr. At this time, the epoxy equivalent of the resulting epoxy resin composition was 229 g/eq.
  • Example A2 Epoxy resin composition prepared by addition reaction of 900 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
  • An epoxy resin composition was obtained in the same manner as in Example A1, except that the amount of epichlorohydrin was changed from 180 g to 900 g. At this time, the epoxy equivalent of the resulting epoxy resin composition was 173 g/eq.
  • Example A3 Epoxy resin composition prepared by addition reaction of 1,350 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
  • An epoxy resin composition was obtained in the same manner as in Example A1, except that the amount of epichlorohydrin was changed from 180 g to 1,350 g. At this time, the epoxy equivalent of the resulting epoxy resin composition was 157 g/eq.
  • Example A4 Epoxy resin composition prepared by addition reaction of 360 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
  • Example A2 Except for using 100 g of the anhydrous sugar alcohol composition of Preparation Example A2 instead of the anhydrous sugar alcohol composition of Preparation Example A1 and changing the amount of epichlorohydrin from 180 g to 360 g, the same method as in Example A1 was performed. Thus, an epoxy resin composition was obtained. At this time, the epoxy equivalent of the resulting epoxy resin composition was 421 g/eq.
  • Example A5 Epoxy resin composition prepared by addition reaction of 900 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
  • Example A2 Except for using 100 g of the anhydrous sugar alcohol composition of Preparation Example A2 instead of the anhydrous sugar alcohol composition of Preparation Example A1 and changing the amount of epichlorohydrin from 180 g to 900 g, the same method as in Example A1 was performed Thus, an epoxy resin composition was obtained. At this time, the epoxy equivalent of the resulting epoxy resin composition was 322 g/eq.
  • Example A6 Epoxy resin composition prepared by addition reaction of 3,600 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
  • Example A2 The same method as in Example A1, except that 100 g of the anhydrous sugar alcohol composition of Preparation Example A2 was used instead of the anhydrous sugar alcohol composition of Preparation Example A1 and the amount of epichlorohydrin was changed from 180 g to 3,600 g. It was carried out to obtain an epoxy resin composition. At this time, the epoxy equivalent of the resulting epoxy resin composition was 183 g/eq.
  • Example A7 Epoxy resin composition prepared by addition reaction of 900 parts by weight of epibromohydrin per 100 parts by weight of anhydrous sugar alcohol composition
  • An epoxy resin composition was obtained in the same manner as in Example A1, except that 900 g of epibromohydrin was used instead of epichlorohydrin. At this time, the epoxy equivalent of the resulting epoxy resin composition was 173 g/eq.
  • Example A8 Epoxy resin composition prepared by addition reaction of 1,350 parts by weight of epibromohydrin per 100 parts by weight of anhydrous sugar alcohol composition
  • Example A1 The same method as in Example A1, except that 100 g of the anhydrous sugar alcohol composition of Production Example A2 was used instead of the anhydrous sugar alcohol composition of Production Example A1, and 1,350 g of epibromohydrin was used instead of epichlorohydrin. was performed to obtain an epoxy resin composition. At this time, the epoxy equivalent of the resulting epoxy resin composition was 157 g/eq.
  • Example A1 Except for changing the amount of epichlorohydrin from 180 g to 90 g, the same method as in Example A1 was performed, but at this time, the components in the resulting reaction product were excessively polymerized by chain extension, so that the epoxy equivalent could not be measured. It was not possible, and the calculation of the manufacturing yield was meaningless.
  • Comparative Example A2 An epoxy resin composition prepared by addition reaction of 4,500 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
  • An epoxy resin composition was obtained in the same manner as in Example A1, except that the amount of epichlorohydrin was changed from 180 g to 4,500 g. At this time, the epoxy equivalent of the resulting epoxy resin composition was 118 g/eq.
  • An epoxy resin was obtained in the same manner as in A1, except that 100 g of isosorbide was used instead of the anhydrous sugar alcohol composition of Preparation Example A1 and the amount of epichlorohydrin was changed from 180 g to 600 g. At this time, the epoxy equivalent of the resulting epoxy resin was 185 g/eq.
  • the titration of the blank test was performed in the same manner as above, except that 1 g of the measurement sample was not used, and the titration amount of the consumed 0.1N NaOH-Methanol solution was measured.
  • the epoxy equivalent of the epoxy resin composition was calculated using the appropriate amount of 0.1N NaOH-Methanol solution in the titration test using 1 g of the measurement sample and the appropriate amount of 0.1N NaOH-Methanol solution in the blank test as shown in the following formula.
  • EEW is the epoxy equivalent weight, its unit is g/eq, W is the weight of the measurement sample, BT is the appropriate amount of 0.1N NaOH-Methanol solution in the blank test, and A is the measurement It is the titration amount of 0.1N NaOH-Methanol solution in the titration test using 1g of sample, and F is the normal concentration coefficient of 0.1N NaOH-Methanol solution.
  • Production yield (%) (Weight of produced epoxy resin composition or epoxy resin / total weight of anhydrous sugar alcohol composition or anhydrous sugar alcohol and epihalohydrin added during production) X 100
  • Example B1 Preparation of curable epoxy resin composition using the epoxy resin composition of Example A1
  • a mixture was prepared by mixing 100 g of the epoxy resin composition of Example A1 and 32 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent) as a curing agent, based on 100 parts by weight of the mixture,
  • a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
  • DMBA N,N-dimethylbutylamine
  • Example B2 Preparation of curable epoxy resin composition using the epoxy resin composition of Example A2
  • a mixture was prepared by mixing 100 g of the epoxy resin composition of Example A2 and 42 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent) as a curing agent, and 100 parts by weight of the mixture
  • a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
  • DMBA N,N-dimethylbutylamine
  • Example B3 Preparation of curable epoxy resin composition using the epoxy resin composition of Example A3
  • a mixture was prepared by mixing 100 g of the epoxy resin composition of Example A3 and 47 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent) as a curing agent, and 100 parts by weight of the mixture
  • a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
  • DMBA N,N-dimethylbutylamine
  • Example B4 Preparation of curable epoxy resin composition using the epoxy resin composition of Example A4
  • a mixture was prepared by mixing 100 g of the epoxy resin composition of Example A4 and 17 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture,
  • a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
  • DMBA N,N-dimethylbutylamine
  • Example B5 Preparation of curable epoxy resin composition using the epoxy resin composition of Example A5
  • a mixture was prepared by mixing 100 g of the epoxy resin composition of Example A5 and 23 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture,
  • a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
  • DMBA N,N-dimethylbutylamine
  • Example B6 Preparation of curable epoxy resin composition using the epoxy resin composition of Example A6
  • a mixture was prepared by mixing 100 g of the epoxy resin composition of Example A6 and 40 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture,
  • a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
  • DMBA N,N-dimethylbutylamine
  • Example B7 Preparation of curable epoxy resin composition using the epoxy resin composition of Example A7
  • a mixture was prepared by mixing 100 g of the epoxy resin composition of Example A7 and 42 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture,
  • a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
  • DMBA N,N-dimethylbutylamine
  • Example B8 Preparation of curable epoxy resin composition using the epoxy resin composition of Example A8
  • a mixture was prepared by mixing 100 g of the epoxy resin composition of Example A8 with 47 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture,
  • a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
  • DMBA N,N-dimethylbutylamine
  • Comparative Example B1 Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A1
  • a mixture was prepared by mixing 100 g of the reaction product of Comparative Example A1 with 62 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), and based on 100 parts by weight of the mixture, a catalyst A composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as the composition, and curing was attempted, but failed.
  • DMBA N,N-dimethylbutylamine
  • Comparative Example B2 Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A2
  • a mixture was prepared by mixing 100 g of the epoxy resin composition of Comparative Example A2 and 62 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture,
  • a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
  • DMBA N,N-dimethylbutylamine
  • Comparative Example B3 Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A3
  • Comparative Example B4 Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A4
  • Comparative Example B5 Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A5
  • Adhesive specimens were prepared using the curable epoxy resin compositions prepared in Examples B1 to B8 and Comparative Examples B2, B4 and B5 as an adhesive, and the physical properties of the adhesive specimens were measured in the following manner, and the results It is shown in Table 2 below.
  • Stainless steel with a size of 100 mm in length x 20 mm in width x 1 mm in thickness was cleaned using ethanol.
  • Each of the curable epoxy resin compositions obtained in Examples B1 to B8 and Comparative Examples B2, B4 and B5 was applied as an adhesive to one surface of the cleaned stainless steel on a surface having a length of 20 mm ⁇ a width of 20 mm, and then a certain adhesion was applied thereon. A small amount of microbeads were laminated to maintain the thickness. After that, another stainless steel was covered and fixed thereon, followed by primary hardening at 110° C. for 1 hour, and secondary hardening at 150° C. for 1 hour.
  • Shear strength was measured using a universal testing machine (Instron 5967, manufactured by Instron Co., Ltd.) for the adhesive specimens cooled to 23° C. after curing. At this time, the shear strength was measured while applying a load in the direction of 180 degrees at a tensile rate of 5 mm/min.
  • the shear strength was 11 MPa or more and exhibited excellent adhesive strength.

Abstract

The invention relates to an epoxy resin composition derived from a non-sugar alcohol composition and a preparation method therefor, and a curable epoxy resin composition including same and a cured product thereof. More specifically, the present invention relates to an epoxy resin composition and a preparation method therefor, and a curable epoxy resin composition including same and a cured product thereof, wherein the epoxy resin composition is prepared by reacting a mixture containing a biomass-derived non-sugar alcohol composition and epichlorohydrin within a specific weight ratio range and exhibits excellent environmental friendliness, high preparation yield, increased reactivity, and improved usability due to the liquid form thereof. When used in a curable epoxy resin composition, the epoxy resin composition increases the crosslinking density of the cured product, thereby enhancing shear strength.

Description

무수당 알코올 조성물로부터 유래된 에폭시 수지 조성물 및 그 제조 방법, 및 이를 포함하는 경화성 에폭시 수지 조성물 및 이의 경화물Epoxy resin composition derived from anhydrous sugar alcohol composition and method for producing the same, and curable epoxy resin composition comprising the same and cured product thereof
본 발명은 무수당 알코올 조성물로부터 유래된 에폭시 수지 조성물 및 그 제조 방법, 및 이를 포함하는 경화성 에폭시 수지 조성물 및 이의 경화물에 관한 것으로, 보다 구체적으로는, 바이오매스 유래의 무수당 알코올 조성물과 에피할로히드린을 특정 범위 내의 중량비로 포함하는 혼합물을 반응시켜 제조되며, 우수한 친환경성, 높은 제조 수율, 증가된 반응성 및 액상으로 인한 향상된 사용성을 나타내며, 경화성 에폭시 수지 조성물에 사용시 그 경화물의 가교밀도를 높여 전단 강도를 향상시킬 수 있는 에폭시 수지 조성물 및 그 제조 방법, 및 이를 포함하는 경화성 에폭시 수지 조성물 및 이의 경화물에 관한 것이다.The present invention relates to an epoxy resin composition derived from an anhydrous sugar alcohol composition, a method for producing the same, a curable epoxy resin composition comprising the same, and a cured product thereof, and more specifically, to a biomass-derived anhydrosugar alcohol composition and an epihalate It is prepared by reacting a mixture containing lohydrin in a weight ratio within a specific range, and exhibits excellent eco-friendliness, high manufacturing yield, increased reactivity and improved usability due to liquid phase, and when used in a curable epoxy resin composition, the crosslinking density of the cured product It relates to an epoxy resin composition capable of increasing shear strength and a method for preparing the same, a curable epoxy resin composition including the same, and a cured product thereof.
에폭시 수지는 우수한 내열성, 기계 특성, 전기 특성 및 접착성을 가진다. 에폭시 수지는, 이 특성을 살려, 배선 기판, 회로 기판이나 이들을 다층화한 회로판, 반도체 칩, 코일, 전기 회로 등의 봉지 재료에 사용된다. 또는 에폭시 수지는 접착제, 도료, 섬유 강화 수지용의 수지로도 사용된다.Epoxy resins have excellent heat resistance, mechanical properties, electrical properties and adhesion. Epoxy resins take advantage of this characteristic and are used for sealing materials such as wiring boards, circuit boards, multilayered circuit boards, semiconductor chips, coils, and electric circuits. Alternatively, epoxy resin is also used as a resin for adhesives, paints, and fiber-reinforced resins.
에폭시 수지는 많은 적용에서 열경화성 수지로서의 광범위한 용도를 찾을 수 있다. 이들은 열경화성 매트릭스에 포함된 섬유로 이루어지는 프리프레그에서 열경화성 매트릭스로서 이용된다. 또한 이들은 인성, 가요성, 접착성 및 화학적 내성으로 인하여 표면 코팅용 재료로, 접착, 성형 및 라미네이트화용으로 사용될 수 있으며, 이들 모두는 우주 항공, 자동차, 전자, 건설, 가구, 녹색 에너지 및 스포츠 용품 산업과 같은 광범위한 다양한 산업 분야에서 다양한 응용을 찾아볼 수 있다.Epoxy resins find widespread use as thermosets in many applications. They are used as a thermosetting matrix in prepregs composed of fibers incorporated in a thermosetting matrix. Also, because of their toughness, flexibility, adhesion and chemical resistance, they can be used as materials for surface coatings, for bonding, molding and laminating, all of which are used in aerospace, automotive, electronics, construction, furniture, green energy and sporting goods. Various applications can be found in a wide variety of industries such as industry.
광범위한 에폭시 수지가 용이하게 사용될 수 있으며, 특정 적용에 필요한 이들의 반응성에 따라 사용될 수 있다. 예를 들어, 수지는 고체, 액체 또는 반고체일 수 있으며, 이들이 적용될 용도에 따라 다양한 반응성을 가질 수 있다. 에폭시 수지의 반응성은 단일 반응성 에폭시기를 함유하는 수지의 분자량인 에폭시 당량의 관점에서 종종 측정된다. 에폭시 당량이 낮을수록 에폭시 수지의 반응성은 더 높다. 다양한 에폭시 수지 용도에 다양한 반응성이 필요하지만, 섬유 보강 프리프레그, 접착 코팅, 구조적 접착제의 매트릭스로서 존재하는지의 여부에 따라 달라진다.A wide range of epoxy resins are readily available and may be used depending on their reactivity required for a particular application. For example, resins can be solid, liquid or semi-solid, and can have a variety of reactivity depending on the application to which they are applied. The reactivity of epoxy resins is often measured in terms of epoxy equivalent weight, which is the molecular weight of a resin containing a single reactive epoxy group. The lower the epoxy equivalent, the higher the reactivity of the epoxy resin. Different reactivity is required for different epoxy resin applications, depending on whether it is present as a matrix for fiber-reinforced prepregs, adhesive coatings, or structural adhesives.
에폭시 수지라 함은 그것을 구성하고 있는 분자의 화학적인 단위로서 반드시 에폭시 결합을 갖고 있다. 에피클로로히드린과 비스페놀 A를 중합하여 만든 것이 대표적이다. 에폭시 수지를 단독으로 사용하는 일은 없으며, 경화제를 첨가하여 열경화성(Thermoset)의 물질로 변화시켜 사용되므로 보통 수지의 중간체라고 생각하는 것이 적당할 것이다. 즉, 에폭시 수지만 가지고는 경화물을 얻을 수 없고, 에폭시 반응기와 결합하여 움직일 수 없는 가교점들을 구성해야만 열경화성 구조물을 얻을 수 있다. An epoxy resin is a chemical unit of molecules constituting it, and always has an epoxy bond. It is made by polymerizing epichlorohydrin and bisphenol A. Epoxy resin is not used alone, and it is appropriate to think of it as an intermediate of ordinary resin because it is used by adding a curing agent to change it to a thermoset material. That is, a cured product cannot be obtained with only an epoxy resin, and a thermosetting structure can be obtained only when immovable cross-linking points are formed in combination with an epoxy reactor.
이러한 가교점을 만들어 주는 물질들을 일컬어 경화제라 한다. 에폭시 수지와 함께 사용 가능한 경화제로는 페놀, 산무수물, 아민 등이 있다. 그 중에서, 페놀에는 여러 가지 구조가 존재할 수 있으므로, 에폭시 수지를 변화시켜서 얻어지는 다양한 물성 변화들을 페놀계 수지 경화제의 구조를 변화시켜서도 얻을 수 있으며, 이러한 다양한 성질로 인하여 현재는 페놀계 수지 경화제가 주로 사용되고 있다. 하지만 페놀 수지에 존재하는 유리(free) 페놀로 인하여 문제점이 도출되고 있다. 유리 페놀은 경화 후에는 사라지지만 작업 도중에 작업자의 건강을 위협하여 사용에 문제가 제기되고 있다.Substances that create such cross-linking points are called curing agents. Curing agents that can be used together with epoxy resins include phenol, acid anhydrides, and amines. Among them, since phenol may have various structures, various physical property changes obtained by changing the epoxy resin can be obtained by changing the structure of the phenolic resin curing agent, and due to these various properties, phenolic resin curing agents are mainly It is being used. However, a problem has been derived due to free phenol present in the phenolic resin. Free phenol disappears after curing, but it poses a problem for its use because it threatens the health of workers during work.
수소화 당(“당 알코올”이라고도 함)은 당류가 갖는 환원성 말단기에 수소를 부가하여 얻어지는 화합물을 의미하는 것으로, 일반적으로 HOCH2(CHOH)nCH2OH (여기서, n은 2 내지 5의 정수)의 화학식을 가지며, 탄소수에 따라 테트리톨, 펜티톨, 헥시톨 및 헵티톨(각각, 탄소수 4, 5, 6 및 7)로 분류된다. 그 중에서 탄소수가 6개인 헥시톨에는 소르비톨, 만니톨, 이디톨, 갈락티톨 등이 포함되며, 소르비톨과 만니톨은 특히 효용성이 큰 물질이다.Hydrogenated sugar (also referred to as “sugar alcohol”) refers to a compound obtained by adding hydrogen to a reducing end group of sugars, and is generally HOCH 2 (CHOH) n CH 2 OH (where n is an integer from 2 to 5) ), and is classified according to carbon atoms into tetratol, pentitol, hexitol, and heptitol (4, 5, 6, and 7 carbon atoms, respectively). Among them, hexitol having 6 carbon atoms includes sorbitol, mannitol, iditol, galactitol, and the like, and sorbitol and mannitol are particularly effective substances.
무수당 알코올은 수소화 당의 내부로부터 물 분자가 1개 이상 제거되어 형성되는 물질로서, 물 분자가 1개 제거되는 경우에는 분자 내 하이드록시기가 4개인 테트라올(tetraol) 형태를 가지고, 물 분자가 2개 제거되는 경우에는 분자 내 하이드록시기가 두 개인 디올(diol) 형태를 가지며, 전분에서 유래하는 헥시톨을 활용하여 제조할 수 있다(예컨대, 한국등록특허 제10-1079518호, 한국공개특허공보 제10-2012-0066904호). 무수당 알코올은 재생 가능한 천연 자원으로부터 유래한 친환경 물질이라는 점에서 오래 전부터 많은 관심과 함께 그 제조방법에 관한 연구가 진행되어 오고 있다. 이러한 무수당 알코올 중에서 솔비톨로부터 제조된 이소소르비드가 현재 산업적 응용범위가 가장 넓다. Anhydrous sugar alcohol is a substance formed by removing one or more water molecules from the inside of hydrogenated sugar. When one water molecule is removed, it has the form of tetraol with four hydroxyl groups in the molecule, and two water molecules In the case of removal, it has a diol form with two hydroxyl groups in the molecule, and can be prepared using hexitol derived from starch (e.g., Korean Patent Registration No. 10-1079518, Korean Patent Publication No. 10-2012-0066904). Since anhydrosugar alcohol is an environmentally friendly material derived from renewable natural resources, research on its manufacturing method has been conducted with great interest for a long time. Among these anhydrous sugar alcohols, isosorbide prepared from sorbitol currently has the widest range of industrial applications.
무수당 알코올의 용도는 심장 및 혈관 질환 치료, 패치의 접착제, 구강 청정제 등의 약제, 화장품 산업에서의 조성물의 용매, 식품산업에서의 유화제 등 매우 다양하다. 또한, 폴리에스테르, PET, 폴리카보네이트, 폴리우레탄 및 에폭시 수지 등 고분자 물질의 유리전이온도를 올릴 수 있고, 이들 물질의 강도 개선효과가 있으며, 천연물 유래의 친환경 소재이기 때문에 바이오 플라스틱 등 플라스틱 산업에서도 매우 유용하다. 또한, 접착제, 친환경 가소제, 생분해성 고분자, 수용성 락카의 친환경 용매로도 사용될 수 있는 것으로 알려져 있다.The use of anhydrous sugar alcohol is very diverse, such as treatment of heart and blood vessel diseases, patch adhesives, pharmaceuticals such as mouthwashes, solvents for compositions in the cosmetic industry, and emulsifiers in the food industry. In addition, it can raise the glass transition temperature of polymer materials such as polyester, PET, polycarbonate, polyurethane and epoxy resin, and has the effect of improving the strength of these materials. useful. In addition, it is known that it can be used as an environmentally friendly solvent for adhesives, eco-friendly plasticizers, biodegradable polymers, and water-soluble lacquers.
이렇듯 무수당 알코올은 그 다양한 활용 가능성으로 인해 많은 관심을 받고 있으며, 실제 산업에의 이용도도 점차 증가하고 있다.As such, anhydrous sugar alcohol is receiving a lot of attention due to its various application possibilities, and its use in the actual industry is gradually increasing.
대한민국 공개특허공보 제10-2016-0010133호에는 무수당 알코올인 이소소르비드와 에피클로로히드린을 반응시켜 얻어지는 친환경성 에폭시 수지가 개시되어 있다. 그러나, 상기 공개특허에 개시된 방법에 의하여 얻어진 에폭시 수지는, 경화제와 배합 후 경화시 경화물의 가교 밀도가 낮아 열악한 전단 강도를 나타내기 때문에, 접착제 용도로는 적합하지 않다.Republic of Korea Patent Publication No. 10-2016-0010133 discloses an eco-friendly epoxy resin obtained by reacting isosorbide, an anhydrous sugar alcohol, with epichlorohydrin. However, since the epoxy resin obtained by the method disclosed in the above patent publication exhibits poor shear strength due to low crosslinking density of the cured product upon curing after mixing with a curing agent, it is not suitable for use as an adhesive.
따라서, 환경 친화적이면서도 경화물의 가교 밀도가 높아 향상된 전단 강도를 나타낼 수 있는 에폭시 수지 재료에 대한 개발이 요구되고 있다.Therefore, there is a demand for development of an epoxy resin material that is environmentally friendly and can exhibit improved shear strength due to high crosslinking density of the cured product.
본 발명의 목적은, 바이오매스 유래의 무수당 알코올 조성물을 활용하여 친환경성이 우수하고, 경화제와 배합 후 경화시 그 경화물의 접착력을 향상시킬 수 있는 에폭시 수지 조성물 및 그 제조 방법, 및 이를 포함하는 경화성 에폭시 수지 조성물 및 이의 경화물을 제공하는 것이다.An object of the present invention is to utilize a biomass-derived anhydrosugar alcohol composition to provide an epoxy resin composition that has excellent eco-friendliness and can improve the adhesive strength of the cured product when cured after mixing with a curing agent, a manufacturing method thereof, and a method for manufacturing the same, comprising the same It is to provide a curable epoxy resin composition and a cured product thereof.
본 발명의 제1 측면은, 에폭시 수지 조성물로서, 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물을 반응시켜 제조되며, 상기 무수당 알코올 조성물이 제1 내지 제5의 폴리올 성분을 포함하고, 여기서, 제1의 폴리올 성분이 일무수당 알코올이고, 제2의 폴리올 성분이 이무수당 알코올이며, 제3의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올이고, 제4의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며, 제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체이고; 상기 혼합물 내의 상기 에피할로히드린 함량이, 상기 무수당 알코올 조성물 100 중량부에 대하여, 90 중량부 초과 내지 4,000 중량부 미만인, 에폭시 수지 조성물을 제공한다:A first aspect of the present invention is an epoxy resin composition, which is prepared by reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin, wherein the anhydrous sugar alcohol composition comprises first to fifth polyol components, , Here, the first polyol component is anhydrous sugar alcohol, the second polyol component is anhydrous sugar alcohol, the third polyol component is a polysaccharide alcohol represented by the following formula (1), and the fourth polyol component is a polysaccharide alcohol represented by the following formula (1) An anhydrous sugar alcohol formed by removing water molecules from a polysaccharide alcohol represented by , wherein the fifth polyol component is at least one polymer selected from the first to fourth polyol components; An epoxy resin composition wherein the epihalohydrin content in the mixture is greater than 90 parts by weight and less than 4,000 parts by weight based on 100 parts by weight of the anhydrous sugar alcohol composition:
[화학식 1][Formula 1]
Figure PCTKR2023002882-appb-img-000001
Figure PCTKR2023002882-appb-img-000001
상기 화학식 1에서, n은 0 내지 4의 정수이다.In Formula 1, n is an integer from 0 to 4.
본 발명의 제2 측면은, 에폭시 수지 조성물의 제조 방법으로서, 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물을 반응시키는 단계;를 포함하며, 상기 무수당 알코올 조성물이 제1 내지 제5의 폴리올 성분을 포함하며, 여기서, 제1의 폴리올 성분이 일무수당 알코올이고, 제2의 폴리올 성분이 이무수당 알코올이며, 제3의 폴리올 성분이 상기 화학식 1로 표시되는 다당류 알코올이고, 제4의 폴리올 성분이 상기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며, 제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체이고; 상기 혼합물 내의 상기 에피할로히드린 함량이, 상기 무수당 알코올 조성물 100 중량부에 대하여, 90 중량부 초과 내지 4,000 중량부 미만인, 에폭시 수지 조성물의 제조 방법을 제공한다.A second aspect of the present invention is a method for producing an epoxy resin composition, comprising the steps of reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin, wherein the anhydrous sugar alcohol composition is first to fifth wherein the first polyol component is monohydrosugar alcohol, the second polyol component is dianhydrosugar alcohol, the third polyol component is a polysaccharide alcohol represented by Formula 1, and the fourth polyol component is the polyol component is an anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by Formula 1, and the fifth polyol component is at least one polymer selected from the first to fourth polyol components; The content of the epihalohydrin in the mixture is greater than 90 parts by weight and less than 4,000 parts by weight, based on 100 parts by weight of the anhydrous sugar alcohol composition, provides a method for producing an epoxy resin composition.
본 발명의 제3 측면은, 본 발명의 제1 측면에 따른 에폭시 수지 조성물; 및 경화제;를 포함하는, 경화성 에폭시 수지 조성물을 제공한다.A third aspect of the present invention is the epoxy resin composition according to the first aspect of the present invention; And a curing agent; provides a curable epoxy resin composition comprising a.
본 발명의 제4 측면은, 본 발명의 제3 측면에 따른 경화성 에폭시 수지 조성물을 경화시켜 얻어지는 경화물을 제공한다.A fourth aspect of the present invention provides a cured product obtained by curing the curable epoxy resin composition according to the third aspect of the present invention.
본 발명의 제5 측면은, 본 발명의 제4 측면에 따른 경화물을 포함하는 접착제를 제공한다.A fifth aspect of the present invention provides an adhesive comprising a cured product according to the fourth aspect of the present invention.
본 발명에 따른 에폭시 수지 조성물은, 수소화 당의 내부 탈수물을 제조하는 과정에서 수득되는 부산물인 무수당 알코올 조성물을 활용하여 제조될 수 있기 때문에, 경제성을 높이는 동시에 부산물 처리 문제 해소에 따른 친환경성을 향상시킬 수 있고, 높은 수율로 제조 가능하며, 증가된 반응성을 나타내고, 액상으로 얻어지기 때문에 향상된 사용성을 나타내며, 경화제와 배합 후 경화시 그 경화물의 접착력을 향상시킬 수 있어, 이를 활용한 접착제의 접착 강도(특히, 전단 강도)를 현저히 개선할 수 있다.Since the epoxy resin composition according to the present invention can be prepared by utilizing the anhydrosugar alcohol composition, which is a by-product obtained in the process of producing an internal dehydration product of hydrogenated sugar, it improves economic feasibility and improves eco-friendliness by solving the by-product disposal problem. can be made, can be produced in high yield, exhibits increased reactivity, shows improved usability because it is obtained in liquid form, and can improve the adhesive strength of the cured product when cured after mixing with a curing agent, the adhesive strength of the adhesive using this (In particular, shear strength) can be remarkably improved.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
[에폭시 수지 조성물][Epoxy Resin Composition]
본 발명의 제1 측면에 따른 에폭시 수지 조성물은, 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물을 반응시켜 제조되며, 여기서, 상기 혼합물 내의 상기 에피할로히드린 함량이, 상기 무수당 알코올 조성물 100 중량부에 대하여, 90 중량부 초과 내지 4,000 중량부 미만이다. The epoxy resin composition according to the first aspect of the present invention is prepared by reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin, wherein the epihalohydrin content in the mixture is the anhydrous sugar Based on 100 parts by weight of the alcohol composition, it is more than 90 parts by weight and less than 4,000 parts by weight.
상기 혼합물 내의 에피할로히드린 함량이 무수당 알코올 조성물 100 중량부에 대하여 90 중량부 이하이면, 반응 결과물 내의 에폭시 수지가 사슬 연장에 의해 지나치게 고분자화되어 경화제와 배합시 경화 반응이 일어나지 않게 된다. 반면, 상기 혼합물 내의 에피할로히드린 함량이 무수당 알코올 조성물 100 중량부에 대하여 4,000 중량부 이상이면, 반응 결과물 내의 에폭시 수지의 분자량이 커지고, 이로 인해, 경화제와 배합시 경화물의 인장력이 감소하여 전단 강도가 열악해지며, 또한 과량의 에피할로히드린 사용으로 인하여 에폭시 수지 조성물의 제조 수율이 저하되고 미반응 에피할로히드린의 회수량이 증가하는 등 생산성이 낮아지는 문제가 있다.When the content of epihalohydrin in the mixture is 90 parts by weight or less based on 100 parts by weight of the anhydrous sugar alcohol composition, the epoxy resin in the reaction product is excessively polymerized by chain extension, so that the curing reaction does not occur when combined with the curing agent. On the other hand, when the content of epihalohydrin in the mixture is 4,000 parts by weight or more based on 100 parts by weight of the anhydrosugar alcohol composition, the molecular weight of the epoxy resin in the reaction product increases, and as a result, the tensile strength of the cured product decreases when combined with the curing agent. Shear strength is deteriorated, and the yield of the epoxy resin composition is reduced due to the use of an excessive amount of epihalohydrin, and productivity is lowered, such as an increase in the amount of unreacted epihalohydrin.
일 구체예에서, 상기 혼합물 내의 에피할로히드린 함량은, 무수당 알코올 조성물 100 중량부에 대하여, 예컨대, 90 중량부 초과, 91 중량부 이상, 100 중량부 이상, 110 중량부 이상, 120 중량부 이상, 130 중량부 이상, 140 중량부 이상, 150 중량부 이상, 160 중량부 이상, 170 중량부 이상 또는 180 중량부 이상일 수 있으며, 또한 4,000 중량부 미만, 3,990 중량부 이하, 3,950 중량부 이하, 3,900 중량부 이하, 3,850 중량부 이하, 3,800 중량부 이하, 3,750 중량부 이하, 3,700 중량부 이하, 3,650 중량부 이하 또는 3,600 중량부 이하일 수 있으나, 이에 한정되지 않는다.In one embodiment, the epihalohydrin content in the mixture is, for example, greater than 90 parts by weight, 91 parts by weight or more, 100 parts by weight or more, 110 parts by weight or more, 120 parts by weight or more, based on 100 parts by weight of the anhydrosugar alcohol composition 130 parts by weight or more, 140 parts by weight or more, 150 parts by weight or more, 160 parts by weight or more, 170 parts by weight or more, or 180 parts by weight or more, and also less than 4,000 parts by weight, 3,990 parts by weight or less, 3,950 parts by weight or less. , 3,900 parts by weight or less, 3,850 parts by weight or less, 3,800 parts by weight or less, 3,750 parts by weight or less, 3,700 parts by weight or less, 3,650 parts by weight or less, or 3,600 parts by weight or less, but is not limited thereto.
상기 에폭시 수지 조성물의 제조에 사용되는 무수당 알코올 조성물 및 에피할로히드린에 대하여 이하에서 보다 구체적으로 설명한다.The anhydrosugar alcohol composition and epihalohydrin used in the preparation of the epoxy resin composition will be described in more detail below.
무수당 알코올 조성물Anhydrous Sugar Alcohol Composition
본 발명에 있어서, “무수당 알코올”은 일반적으로 수소화 당(hydrogenated sugar) 또는 당 알코올(sugar alcohol)이라고 불리우는, 당류가 갖는 환원성 말단기에 수소를 부가하여 얻어지는 화합물로부터 하나 이상의 물 분자를 제거하여 얻은 임의의 물질을 의미한다. In the present invention, “anhydrous sugar alcohol” is generally referred to as hydrogenated sugar or sugar alcohol, which is obtained by adding hydrogen to a reducing end group of sugars by removing one or more water molecules from the compound. means any material obtained.
상기 무수당 알코올 조성물은 제1 내지 제5의 폴리올 성분을 포함하며, 여기서, 제1의 폴리올 성분이 일무수당 알코올이고, 제2의 폴리올 성분이 이무수당 알코올이며, 제3의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올이고, 제4의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며, 제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체이다.The anhydrosugar-alcohol composition includes first to fifth polyol components, wherein the first polyol component is monohydrosugar alcohol, the second polyol component is dianhydrosugar alcohol, and the third polyol component has the formula 1, the fourth polyol component is an anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by the following formula (1), and the fifth polyol component is the first to fourth polyol components It is one or more polymers selected from
[화학식 1][Formula 1]
Figure PCTKR2023002882-appb-img-000002
Figure PCTKR2023002882-appb-img-000002
상기 화학식 1에서, n은 0 내지 4의 정수이다.In Formula 1, n is an integer from 0 to 4.
본 발명의 무수당 알코올 조성물에 포함되는 제1의 폴리올 성분인 일무수당 알코올; 제2의 폴리올 성분인 이무수당 알코올; 제3의 폴리올 성분인 다당류 알코올; 제4의 폴리올 성분인 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올; 및 제5의 폴리올 성분인 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체 중 하나 이상, 바람직하게는 둘 이상, 보다 바람직하게는 이들 모두는, 포도당 함유 당류 조성물(예를 들면, 포도당, 만노오스, 과당 및 말토오스를 비롯한 이당류 이상의 다당류를 포함하는 당류 조성물)을 수소 첨가 반응시켜 수소화 당 조성물을 제조하고, 수득된 수소화 당 조성물을 산 촉매 하에 서 가열하여 탈수 반응시키며, 수득된 탈수 반응 결과물을 박막 증류하여 제조하는 과정에서 수득될 수 있다. 보다 구체적으로는 본 발명의 무수당 알코올 조성물에 포함되는 제1 내지 제5의 폴리올 성분들 모두는 상기 수득된 탈수 반응 결과물을 박막 증류하여 박막 증류액을 얻은 후 남은 부산물일 수 있다. Anhydrous sugar alcohol, which is the first polyol component included in the anhydrous sugar-alcohol composition of the present invention; dianhydrosugar alcohol as a second polyol component; a polysaccharide alcohol as a third polyol component; anhydrous sugar alcohol formed by removing water molecules from polysaccharide alcohol, which is the fourth polyol component; And at least one, preferably two or more, more preferably all of one or more polymers selected from the first to fourth polyol components that are the fifth polyol component, a glucose-containing saccharide composition (e.g., glucose , mannose, fructose, and maltose) by hydrogenation reaction to prepare a hydrogenated sugar composition, dehydration reaction by heating the obtained hydrogenated sugar composition under an acid catalyst, and the resulting dehydration reaction It can be obtained in the process of preparing by thin film distillation. More specifically, all of the first to fifth polyol components included in the anhydrous sugar alcohol composition of the present invention may be by-products remaining after obtaining a thin film distillate by thin film distillation of the obtained dehydration reaction product.
상기 제1의 폴리올 성분인 일무수당 알코올은 수소화 당의 내부로부터 물 분자 1개가 제거되어 형성되는 무수당 알코올로서, 분자 내 하이드록시기가 네 개인 테트라올(tetraol) 형태를 가진다. 본 발명에 있어서, 상기 일무수당 알코올의 종류는 특별히 한정되지 않지만, 바람직하게는 일무수당 헥시톨일 수 있으며, 보다 구체적으로는 1,4-언하이드로헥시톨, 3,6-언하이드로헥시톨, 2,5-언하이드로헥시톨, 1,5-언하이드로헥시톨, 2,6-언하이드로헥시톨 또는 이들 중 2 이상의 혼합물일 수 있다.Monohydrosugar alcohol, which is the first polyol component, is anhydrosugar alcohol formed by removing one water molecule from the inside of a hydrogenated sugar, and has a tetraol form with four hydroxyl groups in the molecule. In the present invention, the type of monohydrosugar alcohol is not particularly limited, but may preferably be monohydrosugar hexitol, more specifically 1,4-anhydrohexitol, 3,6-anhydrohexitol , 2,5-anhydrohexitol, 1,5-anhydrohexitol, 2,6-anhydrohexitol, or a mixture of two or more thereof.
상기 제2의 폴리올 성분인 이무수당 알코올은 수소화 당의 내부로부터 물 분자 2개가 제거되어 형성되는 무수당 알코올로서, 분자 내 하이드록시기가 두 개인 디올(diol) 형태를 가지며, 전분에서 유래하는 헥시톨을 활용하여 제조할 수 있다. 이무수당 알코올은 재생 가능한 천연자원으로부터 유래한 친환경 물질이라는 점에서 오래 전부터 많은 관심과 함께 그 제조방법에 관한 연구가 진행되어 오고 있다. 이러한 이무수당 알코올 중에서 솔비톨로부터 제조된 이소소르비드가 현재 산업적 응용범위가 가장 넓다. The second polyol component, dianhydrosugar alcohol, is anhydrosugar alcohol formed by removing two water molecules from the inside of hydrogenated sugar, and has a diol form with two hydroxyl groups in the molecule. can be used to manufacture. Since imudang alcohol is an eco-friendly material derived from renewable natural resources, research on its manufacturing method has been conducted with much interest for a long time. Among these dianhydrosugar alcohols, isosorbide prepared from sorbitol currently has the widest range of industrial applications.
본 발명에 있어서, 상기 이무수당 알코올의 종류는 특별히 한정되지 않지만, 바람직하게는 이무수당 헥시톨일 수 있으며, 보다 구체적으로는 1,4:3,6-디언하이드로헥시톨일 수 있다. 상기 1,4:3,6-디언하이드로헥시톨은 이소소르비드, 이소만니드, 이소이디드 또는 이들 중 2 이상의 혼합물일 수 있다.In the present invention, the type of dianhydrosugar alcohol is not particularly limited, but may be preferably dianhydrosugar hexitol, and more specifically, 1,4:3,6-dianhydrohexitol. The 1,4:3,6-dianhydrohexitol may be isosorbide, isomannide, isoidide, or a mixture of two or more thereof.
일 구체예에서, 상기 제3의 폴리올 성분인 상기 화학식 1로 표시되는 다당류 알코올은, 말토오스를 비롯한 이당류 이상의 다당류의 수소 첨가 반응으로부터 제조될 수 있다.In one embodiment, the polysaccharide alcohol represented by Chemical Formula 1, which is the third polyol component, may be prepared from a hydrogenation reaction of disaccharides or higher polysaccharides including maltose.
일 구체예에서, 상기 제4의 폴리올 성분인 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올은, 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물 또는 이들의 혼합물로부터 선택될 수 있다:In one embodiment, the anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by Formula 1, which is the fourth polyol component, is a compound represented by Formula 2, a compound represented by Formula 3, or a mixture thereof. can be selected from:
[화학식 2][Formula 2]
Figure PCTKR2023002882-appb-img-000003
Figure PCTKR2023002882-appb-img-000003
[화학식 3][Formula 3]
Figure PCTKR2023002882-appb-img-000004
Figure PCTKR2023002882-appb-img-000004
상기 화학식 2 및 3에서, n은 각각 독립적으로, 0 내지 4의 정수이다.In Formulas 2 and 3, n is each independently an integer of 0 to 4.
일 구체예에서, 상기 제5의 폴리올 성분인 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체는, 하기의 축중합 반응으로부터 제조되는 축합 중합체로 이루어진 군으로부터 선택되는 하나 이상을 포함할 수 있다:In one embodiment, the at least one polymer selected from the first to fourth polyol components, which is the fifth polyol component, includes at least one selected from the group consisting of condensation polymers prepared from the following polycondensation reaction. can do:
- 제1의 폴리올 성분의 축중합 반응,- polycondensation reaction of the first polyol component,
- 제2의 폴리올 성분의 축중합 반응,- polycondensation reaction of the second polyol component,
- 제3의 폴리올 성분의 축중합 반응,- polycondensation reaction of the third polyol component,
- 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction of the fourth polyol component,
- 제1의 폴리올 성분과 제2의 폴리올 성분의 축중합 반응,- polycondensation reaction between the first polyol component and the second polyol component;
- 제1의 폴리올 성분과 제3의 폴리올 성분의 축중합 반응,- polycondensation reaction between the first polyol component and the third polyol component;
- 제1의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction between the first polyol component and the fourth polyol component;
- 제2의 폴리올 성분과 제3의 폴리올 성분의 축중합 반응,- polycondensation reaction between the second polyol component and the third polyol component;
- 제2의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction between the second polyol component and the fourth polyol component;
- 제3의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction between the third polyol component and the fourth polyol component;
- 제1의 폴리올 성분, 제2의 폴리올 성분 및 제3의 폴리올 성분의 축중합 반응,- polycondensation reaction of the first polyol component, the second polyol component and the third polyol component,
- 제1의 폴리올 성분, 제2의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction of the first polyol component, the second polyol component and the fourth polyol component,
- 제1의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction of the first polyol component, the third polyol component and the fourth polyol component,
- 제2의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응, 또는- polycondensation reaction of the second polyol component, the third polyol component and the fourth polyol component, or
- 제1의 폴리올 성분, 제2의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응.- Polycondensation reaction of the first polyol component, the second polyol component, the third polyol component and the fourth polyol component.
일 구체예에서, 상기 무수당 알코올 조성물은 하기 i) 내지 iii)을 만족하는 것일 수 있다:In one embodiment, the anhydrous sugar alcohol composition may satisfy the following i) to iii):
i) 무수당 알코올 조성물의 수평균분자량(Mn)이 193 내지 1,589 g/mol이고;i) the number average molecular weight (Mn) of the anhydrous sugar alcohol composition is 193 to 1,589 g/mol;
ii) 무수당 알코올 조성물의 다분산 지수(PDI)가 1.13 내지 3.41이며;ii) the polydispersity index (PDI) of the anhydrous sugar alcohol composition is 1.13 to 3.41;
iii) 무수당 알코올 조성물 내의 분자당 -OH기의 평균 개수가 2.54 개 내지 21.36개이다.iii) The average number of -OH groups per molecule in the anhydrous sugar alcohol composition is 2.54 to 21.36.
일 구체예에서, 상기 무수당 알코올 조성물의 수평균분자량(Mn: 단위 g/mol)은 193 이상, 195 이상, 200 이상, 202 이상, 205 이상 또는 208 이상일 수 있고, 또한, 1,589 이하, 1,560 이하, 1,550 이하, 1,520 이하, 1,500 이하, 1,490 이하 또는 1,480 이하일 수 있다. 또한, 일 구체예에서, 상기 무수당 알코올 조성물의 수평균분자량(Mn)은 193 내지 1,589일 수 있고, 구체적으로 195 내지 1,550일 수 있으며, 보다 구체적으로는 200 내지 1,520일 수 있고, 보다 더 구체적으로는 202 내지 1,500일 수 있으며, 더욱 더 구체적으로는 205 내지 1,490일 수 있다. 상기 무수당 알코올 조성물의 수평균 분자량이 상기한 수준을 지나치게 벗어나면, 그러한 무수당 알코올 조성물을 이용하여 제조된 에폭시 수지 조성물의 경화물을 포함하는 접착제의 접착력이 열악해질 수 있다. In one embodiment, the number average molecular weight (Mn: unit g / mol) of the anhydrous sugar alcohol composition may be 193 or more, 195 or more, 200 or more, 202 or more, 205 or more or 208 or more, and also 1,589 or less, 1,560 or less , 1,550 or less, 1,520 or less, 1,500 or less, 1,490 or less, or 1,480 or less. Also, in one embodiment, the number average molecular weight (Mn) of the anhydrous sugar alcohol composition may be 193 to 1,589, specifically 195 to 1,550, more specifically 200 to 1,520, and more specifically As may be 202 to 1,500, more specifically may be 205 to 1,490. If the number average molecular weight of the anhydrous sugar alcohol composition deviates from the above level too much, the adhesive strength of an adhesive containing a cured product of an epoxy resin composition prepared using such anhydrous sugar alcohol composition may deteriorate.
일 구체예에서, 상기 무수당 알코올 조성물의 다분산 지수(PDI)는 1.13 이상, 1.15 이상, 1.20 이상, 1.23 이상 또는 1.25 이상일 수 있고, 또한, 3.41 이하, 3.40 이하, 3.35 이하, 3.30 이하, 3.25 이하, 3.22 이하 또는 3.19 이하일 수 있다. 또한, 일 구체예에서, 상기 무수당 알코올 조성물의 다분산 지수(PDI)는 1.13 내지 3.41일 수 있고, 구체적으로는 1.13 내지 3.40일 수 있으며, 보다 구체적으로는 1.15 내지 3.35일 수 있으며, 보다 더 구체적으로는 1.20 내지 3.25일 수 있고, 더욱 더 구체적으로는 1.23 내지 3.22일 수 있다. 상기 무수당 알코올 조성물의 다분산 지수가 상기한 수준을 지나치게 벗어나면, 그러한 무수당 알코올 조성물을 이용하여 제조된 에폭시 수지 조성물의 경화물을 포함하는 접착제의 접착력이 열악해질 수 있다. In one embodiment, the polydispersity index (PDI) of the anhydrous sugar alcohol composition may be 1.13 or more, 1.15 or more, 1.20 or more, 1.23 or more or 1.25 or more, and also 3.41 or less, 3.40 or less, 3.35 or less, 3.30 or less, 3.25 or less, 3.22 or less, or 3.19 or less. In addition, in one embodiment, the polydispersity index (PDI) of the anhydrous sugar alcohol composition may be 1.13 to 3.41, specifically 1.13 to 3.40, more specifically 1.15 to 3.35, and more Specifically, it may be 1.20 to 3.25, and more specifically, it may be 1.23 to 3.22. If the polydispersity index of the anhydrous sugar alcohol composition deviates from the above level too much, the adhesive strength of an adhesive containing a cured product of an epoxy resin composition prepared using such anhydrous sugar alcohol composition may deteriorate.
일 구체예에서, 상기 무수당 알코올 조성물 내의 분자당 -OH 기의 평균 개수는 2.54개 이상, 2.60개 이상, 2.65개 이상, 2.70개 이상, 2.75개 이상 또는 2.78개 이상일 수 있고, 또한, 21.36개 이하, 21.30개 이하, 21.0개, 20.5개 이하, 20.0개 이하, 19.95개 이하 또는 19.92개 이하일 수 있다. 또한, 일 구체예에서, 상기 무수당 알코올 조성물 내의 분자당 -OH 기의 평균 개수는 2.54개 내지 21.36개일 수 있고, 보다 구체적으로는 2.60개 내지 21.30개일 수 있으며, 보다 더 구체적으로는 2.65개 내지 21.0개일 수 있다. 상기 무수당 알코올 조성물 내의 분자당 -OH 기의 평균 개수가 상기한 수준을 지나치게 벗어나면, 그러한 무수당 알코올 조성물을 이용하여 제조된 에폭시 수지 조성물의 경화물을 포함하는 접착제의 접착력이 열악해질 수 있다. In one embodiment, the average number of -OH groups per molecule in the anhydrous sugar alcohol composition may be 2.54 or more, 2.60 or more, 2.65 or more, 2.70 or more, 2.75 or more, or 2.78 or more, and also 21.36 It may be less than or equal to 21.30, less than or equal to 21.0, less than or equal to 20.5, less than or equal to 20.0, less than or equal to 19.95 or less than or equal to 19.92. Also, in one embodiment, the average number of —OH groups per molecule in the anhydrous sugar alcohol composition may be 2.54 to 21.36, more specifically 2.60 to 21.30, and more specifically 2.65 to 21.30. It may be 21.0. If the average number of -OH groups per molecule in the anhydrous sugar alcohol composition deviates from the above level too much, the adhesive strength of an adhesive containing a cured product of an epoxy resin composition prepared using such anhydrous sugar alcohol composition may deteriorate. .
일 구체예에서, 상기 무수당 알코올 조성물에는, 조성물 총 중량 기준으로, 예컨대, 제1의 폴리올 성분이 0.1 내지 20 중량%, 구체적으로는 0.6 내지 20 중량%, 보다 구체적으로는 0.7 내지 15 중량%로 포함될 수 있고, 제2의 폴리올 성분이 0.1 내지 28 중량%, 구체적으로는 1 내지 25 중량%, 보다 구체적으로는 3 내지 20 중량%로 포함될 수 있으며, 제3의 폴리올 성분 및 제4의 폴리올 성분의 합계 함량이 0.1 내지 6.5 중량%, 구체적으로는 0.5 내지 6.4 중량%, 보다 구체적으로는 1 내지 6.3 중량%일 수 있으며, 제5의 폴리올 성분이 55 내지 90 중량%, 구체적으로는 60 내지 89.9 중량%, 보다 구체적으로는 70 내지 89.9 중량%로 포함될 수 있으나, 이에 특별히 제한되지 않는다.In one embodiment, in the anhydrous sugar alcohol composition, based on the total weight of the composition, for example, the first polyol component is 0.1 to 20% by weight, specifically 0.6 to 20% by weight, more specifically 0.7 to 15% by weight , and the second polyol component may be included in 0.1 to 28% by weight, specifically 1 to 25% by weight, more specifically 3 to 20% by weight, and the third polyol component and the fourth polyol The total content of the components may be 0.1 to 6.5% by weight, specifically 0.5 to 6.4% by weight, more specifically 1 to 6.3% by weight, and the fifth polyol component may be 55 to 90% by weight, specifically 60 to 6.3% by weight 89.9% by weight, more specifically may be included in 70 to 89.9% by weight, but is not particularly limited thereto.
일 구체예에서, 상기 무수당 알코올 조성물은 포도당 함유 당류 조성물(예를 들면, 포도당; 만노오스; 과당; 및 말토오스를 비롯한 이당류 이상의 다당류를 포함하는 당류 조성물)을 수소 첨가 반응시켜 수소화 당 조성물을 제조하고, 수득된 수소화 당 조성물을 산 촉매 하에서 가열하여 탈수 반응시키며, 수득된 탈수 반응 결과물을 박막 증류하여 제조된 것일 수 있고, 보다 구체적으로는 상기 수득된 탈수 반응 결과물을 박막 증류하여 박막 증류액을 얻은 후, 그 남은 부산물일 수 있다. In one embodiment, the anhydrosugar alcohol composition is a glucose-containing saccharide composition (eg, glucose; mannose; fructose; and a saccharide composition comprising disaccharides or higher polysaccharides including maltose) by hydrogenation reaction to prepare a hydrogenated sugar composition , The obtained hydrogenated sugar composition may be dehydrated by heating under an acid catalyst, and the obtained dehydration reaction product may be prepared by thin film distillation, more specifically, thin film distillate obtained by thin film distillation of the obtained dehydration reaction product After that, it may be the remaining by-product.
보다 구체적으로, 상기 포도당 함유 당류 조성물에 대하여 수소 첨가 반응이 30 기압 내지 80 기압의 수소 압력 조건 및 110℃내지 135℃의 가열 조건 하에서 수행되어 수소화 당 조성물을 제조하고, 수득된 수소화 당 조성물의 탈수 반응이 1 mmHg 내지 100 mmHg의 감압 조건 및 105℃내지 200℃의 가열 조건 하에서 수행되어 탈수 반응 결과물을 수득하며, 수득된 탈수 반응 결과물의 박막 증류가 2 mbar 이하의 감압 조건 및 150℃내지 175℃의 가열 조건 하에서 수행될 수 있으나, 이에 한정되는 것은 아니다.More specifically, a hydrogenation reaction is performed on the glucose-containing saccharide composition under a hydrogen pressure of 30 to 80 atm and a heating condition of 110° C. to 135° C. to prepare a hydrogenated sugar composition, and the obtained hydrogenated sugar composition is dehydrated. The reaction is carried out under reduced pressure conditions of 1 mmHg to 100 mmHg and heating conditions of 105 ° C to 200 ° C to obtain a dehydration reaction product, and thin film distillation of the obtained dehydration reaction product is performed under reduced pressure conditions of 2 mbar or less and 150 ° C to 175 ° C It may be performed under heating conditions of, but is not limited thereto.
일 구체예에서, 상기 포도당 함유 당류 조성물의 포도당 함량은 상기 당류 조성물 총 중량 기준으로, 41 중량% 이상, 42 중량% 이상, 45 중량% 이상, 47 중량% 이상 또는 50 중량% 이상일 수 있고, 99.5 중량% 이하, 99 중량% 이하, 98.5 중량% 이하, 98 중량% 이하, 97.5 중량% 이하 또는 97 중량% 이하일 수 있으며, 예를 들면 41 내지 99.5 중량%, 45 내지 98.5 중량% 또는 50 내지 98 중량%일 수 있다. In one embodiment, the glucose content of the glucose-containing saccharide composition may be 41% by weight or more, 42% by weight or more, 45% by weight or more, 47% by weight or more, or 50% by weight or more, based on the total weight of the saccharide composition. 99 wt% or less, 98.5 wt% or less, 98 wt% or less, 97.5 wt% or less, or 97 wt% or less, such as 41 to 99.5 wt%, 45 to 98.5 wt%, or 50 to 98 wt%. may be %.
일 구체예에서, 상기 수소화 당 조성물에 포함되는 다당류 알코올(이당류 이상의 당류 알코올)의 함량은, 수소화 당 조성물의 총 건조 중량(여기서, 건조 중량은 수소화 당 조성물에서 수분을 제거한 후 남은 고형분 중량을 의미한다) 기준으로, 0.8 중량% 이상, 1 중량% 이상, 2 중량% 또는 3 중량% 이상일 수 있고, 57 중량% 이하, 55 중량% 이하, 52 중량% 이하, 50 중량% 이하 또는 48 중량% 이하일 수 있으며, 예를 들면 0.8 내지 57 중량%, 1 내지 55 중량% 또는 3 내지 50 중량%일 수 있다. In one embodiment, the content of the polysaccharide alcohol (disaccharide or higher saccharide alcohol) contained in the hydrogenated sugar composition is the total dry weight of the hydrogenated sugar composition (here, the dry weight means the weight of solids remaining after water is removed from the hydrogenated sugar composition) Based on), it may be 0.8% by weight or more, 1% by weight or more, 2% by weight or 3% by weight or more, and 57% by weight or less, 55% by weight or less, 52% by weight or less, 50% by weight or less, or 48% by weight or less It may be, for example, 0.8 to 57% by weight, 1 to 55% by weight, or 3 to 50% by weight.
에피할로히드린epihalohydrin
상기 본 발명의 제1 측면에 따른 에폭시 수지 조성물은, 상기 설명한 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물을 반응시켜 제조된 것이다.The epoxy resin composition according to the first aspect of the present invention is prepared by reacting a mixture containing the above-described anhydrous sugar alcohol composition and epihalohydrin.
즉, 본 발명의 제1 측면에 따른 에폭시 수지 조성물은, 상기 제1의 폴리올 성분과 에피할로히드린의 반응 결과물, 제2의 폴리올 성분과 에피할로히드린의 반응 결과물, 제3의 폴리올 성분과 에피할로히드린의 반응 결과물, 제4의 폴리올 성분과 에피할로히드린의 반응 결과물, 및 제5의 폴리올 성분과 에피할로히드린의 반응 결과물을 포함한다. That is, the epoxy resin composition according to the first aspect of the present invention is a reaction product of the first polyol component and epihalohydrin, a reaction product of the second polyol component and epihalohydrin, and a third polyol It includes a reaction product of the component and epihalohydrin, a reaction product of the fourth polyol component and epihalohydrin, and a reaction product of the fifth polyol component and epihalohydrin.
일 구체예에서, 상기 에피할로히드린은 알킬기(예컨대, C1-C4 알킬)로 치환되거나 비치환된 에피할로히드린일 수 있으며, 바이오매스 원료로부터 유래된 바이오 기반의 화합물인 것이 친환경성의 측면에서 바람직하다. In one embodiment, the epihalohydrin may be an epihalohydrin substituted or unsubstituted with an alkyl group (eg, C1-C4 alkyl), and a bio-based compound derived from a biomass raw material is environmentally friendly. preferred in terms of
일 구체예에서, 상기 에피할로히드린은 에피클로로히드린, 에피브로모히드린, 에피요오도히드린, 메틸에피클로로히드린, 메틸에피브로모히드린, 메틸에피요오도히드린 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 한정되지 않는다.In one embodiment, the epihalohydrin is epichlorohydrin, epibromohydrin, epiiodohydrin, methyl epichlorohydrin, methyl epibromohydrin, methyl epiiodohydrin or a combination thereof It may be one or more selected from the group consisting of, but is not limited thereto.
일 구체예에서, 상기 설명한 무수당 알코올 조성물과 에피할로히드린을 반응시켜 제조된 에폭시 수지 조성물의 에폭시 당량은 특별히 한정되지 않지만, 바람직하게는 150 내지 430 g/eq일 수 있다. 에폭시 수지 조성물의 에폭시 당량이 상기 수준보다 지나치게 높거나 낮으면 그러한 에폭시 수지 조성물의 경화물을 포함하는 접착제의 접착력이 열악해질 수 있고 에폭시 수지 조성물의 제조 수율이 저하될 수 있다. In one embodiment, the epoxy equivalent of the epoxy resin composition prepared by reacting the above-described anhydrous sugar alcohol composition and epihalohydrin is not particularly limited, but may preferably be 150 to 430 g / eq. If the epoxy equivalent of the epoxy resin composition is excessively higher or lower than the above level, adhesive strength of an adhesive containing a cured product of such an epoxy resin composition may be deteriorated and the production yield of the epoxy resin composition may be reduced.
보다 구체적으로, 에폭시 수지 조성물의 에폭시 당량은, 예컨대, 150 g/eq 이상, 151 g/eq 이상, 152 g/eq 이상, 153 g/eq 이상, 154 g/eq 이상, 155 g/eq 이상, 156 g/eq 이상 또는 157 g/eq 이상일 수 있고, 또한 430 g/eq 이하, 429 g/eq 이하, 428 g/eq 이하, 427 g/eq 이하, 426 g/eq 이하, 425 g/eq 이하, 424 g/eq 이하, 423 g/eq 이하, 422 g/eq 이하 또는 421 g/eq 이하일 수 있으나, 이에 한정되지 않는다.More specifically, the epoxy equivalent of the epoxy resin composition is, for example, 150 g/eq or more, 151 g/eq or more, 152 g/eq or more, 153 g/eq or more, 154 g/eq or more, 155 g/eq or more, 156 g/eq or more or 157 g/eq or more, and also 430 g/eq or less, 429 g/eq or less, 428 g/eq or less, 427 g/eq or less, 426 g/eq or less, 425 g/eq or less , 424 g/eq or less, 423 g/eq or less, 422 g/eq or less, or 421 g/eq or less, but is not limited thereto.
[에폭시 수지 조성물의 제조 방법][Method for Producing Epoxy Resin Composition]
본 발명의 제2 측면에 따르면, 상기 본 발명의 제1 측면에 따른 에폭시 수지 조성물의 제조 방법이 제공된다.According to a second aspect of the present invention, a method for producing the epoxy resin composition according to the first aspect of the present invention is provided.
본 발명의 에폭시 수지 조성물의 제조 방법은, 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물을 반응시키는 단계;를 포함하며, 여기서 상기 무수당 알코올 조성물 및 에피할로히드린에 대해서는 앞서 설명한 바와 같고, 상기 혼합물 내의 상기 에피할로히드린 함량은, 상기 무수당 알코올 조성물 100 중량부에 대하여, 90 중량부 초과 내지 4,000 중량부 미만이며, 이러한 혼합물 내의 에피할로히드린 함량에 대해서도 앞서 설명한 바와 같다.The method for producing the epoxy resin composition of the present invention includes the step of reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin, wherein the anhydrosugar alcohol composition and epihalohydrin are described above. As described above, the epihalohydrin content in the mixture is greater than 90 parts by weight and less than 4,000 parts by weight based on 100 parts by weight of the anhydrous sugar-alcohol composition, and the epihalohydrin content in the mixture is also described above. same as bar
일 구체예에서, 상기 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물의 반응은 촉매의 존재하에 수행될 수 있다. 보다 구체적으로 상기 촉매는 염기성 화합물일 수 있고, 보다 더 구체적으로는 알칼리 금속염, 예컨대, 수산화나트륨(가성소다), 수산화칼륨 또는 이들의 조합과 같은 알칼리 금속 수산화물일 수 있으나, 이에 한정되지 않는다.In one embodiment, the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be performed in the presence of a catalyst. More specifically, the catalyst may be a basic compound, and more specifically, an alkali metal salt such as sodium hydroxide (caustic soda), potassium hydroxide, or a combination thereof, but may be an alkali metal hydroxide, but is not limited thereto.
일 구체예에서, 상기 촉매의 사용량은, 예컨대, 상기 무수당 알코올 조성물 100 중량부에 대하여, 예컨대, 1 내지 99 중량부일 수 있고, 보다 구체적으로는 10 내지 90 중량부일 수 있으며, 보다 더 구체적으로는 20 내지 80 중량부일 수 있으나, 이에 한정되지 않는다. 촉매의 사용량이 상기 수준보다 지나치게 적으면 경화반응이 일어나지 않을 수 있고, 반대로 상기 수준보다 지나치게 많으면 미반응 촉매가 반응 결과물 내에 잔존하여 그 물성에 영항을 미칠 수 있다.In one embodiment, the amount of the catalyst, for example, based on 100 parts by weight of the anhydrous sugar alcohol composition, may be, for example, 1 to 99 parts by weight, more specifically 10 to 90 parts by weight, more specifically May be 20 to 80 parts by weight, but is not limited thereto. If the amount of the catalyst used is too less than the above level, the curing reaction may not occur, and conversely, if the amount is too much than the above level, the unreacted catalyst may remain in the reaction product and affect its physical properties.
일 구체예에서, 상기 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물의 반응은 상온 내지 승온 조건, 예컨대, 30 내지 100℃의 온도 조건 하에 수행될 수 있으며, 보다 구체적으로는 50 내지 90℃의 온도 조건 하에 수행될 수 있으나, 이에 한정되지 않는다.In one embodiment, the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be carried out under room temperature to elevated temperature conditions, such as 30 to 100 ℃ temperature conditions, more specifically 50 to 90 It may be performed under temperature conditions of ℃, but is not limited thereto.
일 구체예에서, 상기 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물의 반응은 상압 또는 감압 조건, 예컨대, 상압 또는 300 내지 80 Torr의 감압 조건 하에 수행될 수 있으며, 보다 구체적으로는 상압 또는 200 내지 100 Torr의 감압 조건 하에 수행될 수 있으나, 이에 한정되지 않는다.In one embodiment, the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be carried out under normal pressure or reduced pressure conditions, such as normal pressure or reduced pressure conditions of 300 to 80 Torr, more specifically normal pressure Alternatively, it may be performed under reduced pressure conditions of 200 to 100 Torr, but is not limited thereto.
일 구체예에서, 상기 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물의 반응은, 예컨대, 1 내지 12시간 동안 수행될 수 있고, 보다 구체적으로는 2 내지 10시간, 보다 더 구체적으로는 3 내지 8시간 동안 수행될 수 있으나, 이에 한정되지 않는다.In one embodiment, the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be carried out for, for example, 1 to 12 hours, more specifically 2 to 10 hours, and more specifically It may be performed for 3 to 8 hours, but is not limited thereto.
본 발명의 일 구체예에 따르면, 상기 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물의 반응은 예비 반응 및 본 반응으로 이루어지는 2단계 반응 방식으로 수행될 수 있다. According to one embodiment of the present invention, the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin may be carried out in a two-step reaction method consisting of a preliminary reaction and a main reaction.
일 구체예에서, 상기 예비 반응은, 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물에 상기 설명한 촉매를 상대적으로 소량(예컨대, 무수당 알코올 조성물 100 중량부에 대하여, 1 내지 10 중량부) 투입한 후, 승온 조건(예컨대, 70 내지 100℃) 및 상압 조건 하에 1 내지 3시간 동안 수행될 수 있다.In one embodiment, the preliminary reaction is performed by adding a relatively small amount of the catalyst described above to a mixture containing anhydrous sugar alcohol composition and epihalohydrin (e.g., 1 to 10 parts by weight based on 100 parts by weight of anhydrous sugar alcohol composition). ) After input, it may be performed for 1 to 3 hours under elevated temperature conditions (eg, 70 to 100 ° C.) and normal pressure conditions.
또한, 일 구체예에서, 상기 본 반응은, 상기 예비 반응의 결과물에 촉매를 상대적으로 다량(예컨대, 무수당 알코올 조성물 100 중량부에 대하여, 20 내지 80 중량부) 투입한 후, 승온 조건(예컨대, 50 내지 90℃) 및 감압 조건(예컨대, 200 내지 100 Torr) 하에 2 내지 9시간 동안 수행될 수 있다.In addition, in one embodiment, the present reaction, after adding a relatively large amount of catalyst (eg, 20 to 80 parts by weight based on 100 parts by weight of the anhydrous sugar alcohol composition) to the product of the preliminary reaction, elevated temperature conditions (eg , 50 to 90° C.) and reduced pressure conditions (eg, 200 to 100 Torr) for 2 to 9 hours.
본 발명의 에폭시 수지 조성물의 제조 방법에서는, 상기 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물의 반응(보다 구체적으로는 상기 본 반응)이 수행되는 동안, 반응 중에 발생하는 물이 반응 혼합물로부터 지속적으로 제거될 수 있다. 이러한 물의 제거는, 예컨대, 디켄터를 사용하여 수행될 수 있으나, 이에 한정되지 않는다.In the method for producing the epoxy resin composition of the present invention, while the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin (more specifically, the present reaction) is performed, water generated during the reaction is can be continuously removed from Removal of this water may be performed using, for example, a decanter, but is not limited thereto.
본 발명의 에폭시 수지 조성물의 제조 방법은, 상기 무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물의 반응 종료 후, 미반응 에피할로히드린을 반응 결과물로부터 제거하는 단계를 더 포함할 수 있다. 이러한 미반응 에피할로히드린의 제거는 승온 조건(예컨대, 120 내지 180℃) 및 감압 조건(예컨대, 50 내지 1 Torr) 하에 수행될 수 있으나, 이에 한정되지 않는다. 제거된 미반응 에피할로히드린은 회수되어 재사용될 수 있다. The method for preparing the epoxy resin composition of the present invention may further include removing unreacted epihalohydrin from the reaction product after completion of the reaction of the mixture containing the anhydrous sugar alcohol composition and epihalohydrin. there is. Removal of such unreacted epihalohydrin may be performed under elevated temperature conditions (eg, 120 to 180° C.) and reduced pressure conditions (eg, 50 to 1 Torr), but is not limited thereto. The removed unreacted epihalohydrin can be recovered and reused.
[경화성 에폭시 수지 조성물 및 그 경화물, 및 이 경화물을 포함하는 접착제][Curable epoxy resin composition, cured product thereof, and adhesive containing the cured product]
본 발명의 다른 측면에 따르면, 상기 본 발명의 제1 측면에 따른 에폭시 수지 조성물; 및 경화제;를 포함하는, 경화성 에폭시 수지 조성물이 제공된다.According to another aspect of the present invention, the epoxy resin composition according to the first aspect of the present invention; And a curing agent; containing, a curable epoxy resin composition is provided.
일 구체예에서, 상기 경화제는 무수당 알코올, 페놀계 화합물, 산무수물계 화합물, 아민계 화합물 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 보다 구체적으로는 무수당 알코올일 수 있으며, 보다 더 구체적으로는 이소소르비드일 수 있다.In one embodiment, the curing agent may be at least one selected from the group consisting of anhydrous sugar alcohol, phenolic compound, acid anhydride-based compound, amine-based compound, or combinations thereof, and more specifically may be anhydrous sugar alcohol, More specifically, it may be isosorbide.
일 구체예에서, 상기 경화성 에폭시 수지 조성물 내의 본 발명의 에폭시 수지 조성물에 대한 경화제의 당량비(경화제의 당량/에폭시 수지 조성물의 당량)는, 예컨대, 0.9~1.1일 수 있고, 보다 구체적으로는 0.92~1.08일 수 있으며, 보다 더 구체적으로는 0.95~1.05일 수 있다. 에폭시 수지 조성물의 당량에 대한 경화제의 히드록시 당량이 지나치게 적으면 기계적 강도가 저하되고 접착 강도 측면에서 물성이 저하되는 문제가 있을 수 있고, 반대로 에폭시 수지 조성물의 당량에 대한 경화제의 당량이 지나치게 많은 경우도 기계적 강도, 열적 및 접착 강도 측면에서 물성이 저하되는 문제가 있을 수 있다.In one embodiment, the equivalent ratio of the curing agent to the epoxy resin composition of the present invention in the curable epoxy resin composition (equivalent of the curing agent / equivalent of the epoxy resin composition) may be, for example, 0.9 to 1.1, and more specifically, 0.92 to 1.1. It may be 1.08, and more specifically, it may be 0.95 to 1.05. If the hydroxy equivalent of the curing agent relative to the equivalent of the epoxy resin composition is too small, the mechanical strength may deteriorate and physical properties may deteriorate in terms of adhesive strength. Conversely, if the equivalent of the curing agent relative to the equivalent of the epoxy resin composition is too large Also, there may be a problem in that physical properties are deteriorated in terms of mechanical strength, thermal and adhesive strength.
일 구체예에서, 본 발명의 경화성 에폭시 수지 조성물은 경화 촉매를 추가로 포함할 수 있다.In one embodiment, the curable epoxy resin composition of the present invention may further include a curing catalyst.
본 발명에서 사용 가능한 경화 촉매로는, 예를 들어, 벤질디메틸아민, 트리스(디메틸아미노메틸)페놀, 디메틸시클로헥실아민 등의 아민계 화합물 (예컨대, 3급아민); 1-시아노에틸-2-에틸-4-메틸이미다졸, 2-에틸-4-메틸이미다졸, 1-벤질-2-메틸이미다졸 등의 이미다졸계 화합물; 트리페닐포스핀, 아인산트리페닐 등의 유기인계 화합물; 테트라페닐포스포늄브로마이드, 테트라-n-부틸포스포늄브로마이드 등의 4급포스포늄염; 1,8-디아자비시클로[5.4.0]운데센-7 등이나 그 유기산염 등의 디아자비시클로알켄; 옥틸산아연, 옥틸산주석이나 알루미늄아세틸아세톤 착체 등의 유기금속 화합물; 테트라에틸암모늄브로마이드, 테트라부틸암모늄브로마이드 등의 4급 암모늄염; 삼불화붕소, 트리페닐보레이트 등의 붕소 화합물; 염화아연, 염화제이주석 등의 금속할로겐화물; 잠재성 경화 촉매(예컨대, 디시안디아미드, 아민을 에폭시 수지 등에 부가한 고융점분산형 잠재성 아민 부가물; 이미다졸계, 인계, 포스핀계 촉진제의 표면을 폴리머로 피복한 마이크로캅셀형 잠재성 촉매; 아민염형 잠재성 촉매; 루이스산염, 브뢴스테드산염 등의 고온해리형의 열양이온 중합형의 잠재성 촉매 등) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 들 수 있으나, 이에 한정되지 않는다.Curing catalysts usable in the present invention include, for example, amine-based compounds (eg, tertiary amines) such as benzyldimethylamine, tris(dimethylaminomethyl)phenol, and dimethylcyclohexylamine; imidazole compounds such as 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazole, and 1-benzyl-2-methylimidazole; organophosphorus compounds such as triphenylphosphine and triphenyl phosphite; quaternary phosphonium salts such as tetraphenylphosphonium bromide and tetra-n-butylphosphonium bromide; diazabicycloalkenes such as 1,8-diazabicyclo[5.4.0]undecene-7 and organic acid salts thereof; organometallic compounds such as zinc octylate, tin octylate and aluminum acetylacetone complex; quaternary ammonium salts such as tetraethylammonium bromide and tetrabutylammonium bromide; boron compounds such as boron trifluoride and triphenylborate; metal halides such as zinc chloride and stannous chloride; Latent curing catalysts (e.g., dicyandiamide, high melting point dispersed latent amine adducts obtained by adding amines to epoxy resins, etc.; microcapsule type latent catalysts in which the surface of an imidazole-based, phosphorus-based, or phosphine-based accelerator is coated with a polymer) amine salt-type latent catalysts; high-temperature dissociation-type thermal cation polymerization-type latent catalysts such as Lewis acid salts and Bronsted acid salts, etc.), and those selected from the group consisting of combinations thereof, but are not limited thereto.
일 구체예에서, 상기 경화 촉매는 아민계 화합물, 이미다졸계 화합물, 유기인계 화합물 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.In one embodiment, the curing catalyst may be at least one selected from the group consisting of an amine-based compound, an imidazole-based compound, an organophosphorus compound, or a combination thereof.
본 발명의 경화성 에폭시 수지 조성물에 경화 촉매가 포함되는 경우, 그 사용량은 상기 에폭시 수지 조성물 및 경화제의 합계 100 중량부에 대하여 0.01 중량부 내지 1.0 중량부일 수 있고, 보다 구체적으로는 0.05 중량부 내지 0.5 중량부일 수 있으며, 보다 더 구체적으로는 0.08 중량부 내지 0.2 중량부일 수 있으나, 이에 한정되지 않는다. 경화 촉매의 사용량이 지나치게 적으면 에폭시 수지 조성물의 경화 반응이 충분히 진행되지 못하여 기계적 물성 및 열적 물성이 저하되는 문제가 있을 수 있고, 반대로 경화 촉매의 사용량이 지나치게 많으면 경화성 에폭시 수지 조성물을 보관하는 동안에도 경화 반응이 서서히 진행되기 때문에 점도가 상승하는 문제가 있을 수 있다.When the curing catalyst is included in the curable epoxy resin composition of the present invention, the amount used may be 0.01 part by weight to 1.0 part by weight, more specifically, 0.05 part by weight to 0.5 part by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent. It may be parts by weight, and more specifically, it may be 0.08 parts by weight to 0.2 parts by weight, but is not limited thereto. If the amount of the curing catalyst is too small, the curing reaction of the epoxy resin composition may not sufficiently proceed, resulting in deterioration of mechanical and thermal properties. Since the curing reaction proceeds slowly, there may be a problem of increasing the viscosity.
본 발명의 경화성 에폭시 수지 조성물은, 필요에 따라, 에폭시 수지 조성물에 통상 사용되는 첨가제, 예컨대, 산화 방지제, UV 흡수제, 충진제, 수지 개질제, 실란 커플링제, 희석제, 착색제, 소포제, 탈포제, 분산제, 점도 조절제, 광택 조절제, 습윤제, 전도성 부여제 및 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상의 첨가제를 추가로 포함할 수 있다.The curable epoxy resin composition of the present invention, if necessary, additives commonly used in epoxy resin compositions, such as antioxidants, UV absorbers, fillers, resin modifiers, silane coupling agents, diluents, colorants, antifoaming agents, defoaming agents, dispersing agents, It may further include one or more additives selected from the group consisting of viscosity modifiers, gloss modifiers, wetting agents, conductivity imparting agents, and combinations thereof.
상기 산화방지제는 얻어지는 경화물의 내열 안정성을 더욱 향상시키기 위하여 사용될 수 있으며, 특별히 한정되지 않지만, 예를 들어, 페놀계 산화방지제(디부틸하이드록시톨루엔 등), 황계 산화방지제 (메르캅토프로피온산유도체 등), 인계 산화방지제(9,10-디하이드로-9-옥사-10-포스파페난트렌-10-옥사이드 등) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 경화성 에폭시 수지 조성물 내의 산화방지제의 함유량은, 상기 에폭시 수지 조성물 및 경화제의 합계 100 중량부에 대하여, 0.01~10 중량부, 또는 0.05~5 중량부, 또는 0.1~3 중량부일 수 있다.The antioxidant may be used to further improve heat resistance stability of the cured product obtained, and is not particularly limited, but examples thereof include phenolic antioxidants (dibutylhydroxytoluene, etc.), sulfur-based antioxidants (mercaptopropionic acid derivatives, etc.) , phosphorus antioxidants (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc.) and combinations thereof. The content of the antioxidant in the curable epoxy resin composition may be 0.01 to 10 parts by weight, or 0.05 to 5 parts by weight, or 0.1 to 3 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
상기 UV 흡수제로는, 특별히 한정되지 않지만, 예를 들어, BASF Japan Ltd.제 TINUBIN P나 TINUVIN 234로 대표되는 벤조트리아졸계 UV 흡수제; TINUVIN 1577ED와 같은 트리아진계 UV 흡수제; CHIMASSOLV 2020FDL과 같은 힌더드아민계 UV 흡수제 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 경화성 에폭시 수지 조성물 내의 UV 흡수제의 함유량은, 상기 에폭시 수지 조성물 및 경화제의 합계 100 중량부에 대하여, 0.01~10 중량부, 또는 0.05~5 중량부, 또는 0.1~3 중량부일 수 있다.Although it does not specifically limit as said UV absorber, For example, the benzotriazole type UV absorber represented by BASF Japan Ltd. TINUBIN P and TINUVIN 234; triazine-based UV absorbers such as TINUVIN 1577ED; A hindered amine-based UV absorber such as CHIMASSOLV 2020FDL and a combination thereof may be used. The content of the UV absorber in the curable epoxy resin composition may be 0.01 to 10 parts by weight, 0.05 to 5 parts by weight, or 0.1 to 3 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
상기 충진제는 에폭시 수지 조성물이나 경화제에 배합하여 경화물의 기계적 특성을 향상시키는 것을 주 목적으로 하여 사용되며, 일반적으로 첨가량이 증가하면 기계적 특성은 향상된다. 무기질 충진제로는 활석, 모래, 실리카, 탈크, 탄산칼슘, 등의 증량제; 마이카, 석영, 유리섬유(Glass fiber) 등의 보강성 충진제; 석영분, 그라파이트, 알루미나, Aerosil(칙소성 부여하는 목적) 등의 특수한 용도를 지닌 것이 있고, 금속질로는 알루미늄, 산화알루미늄, 철, 산화철, 구리 등의 열팽창계수, 내마모성, 열전도성, 접착성에 기여하는 것이나, 산화안티몬(SB2O3)등의 난연성을 부여하는 것, 티탄산 바륨, 유기물로는 미세한 플라스틱구(페놀수지, 요소수지 등)과 같은 경량화용 충진제 등이 있다. 이외에 보강성을 지닌 충진제로서 각종 유리섬유나 화학섬유포는 적층품의 제조에 있어서 넓은 의미의 충진제로서 취급할 수 있다. 수지에 요변성(Thixotropic: 칙소성 또는 요변성이란 수직면이나 침지법으로 부착 또는 적층재에 함침시킨 수지가 경화 중에 흘러내리거나 유실되는 경우가 없도록 유동하고 있을 때는 액상, 정지 상태에서는 고상의 성질을 갖는 것을 말한다)을 부여하기 위해 단위 표면적이 넓은 미세한 입자를 사용한다. 예를 들면, 콜로이드상의 실리카(Aerosil)나 벤토나이트 계열의 점토질이 사용된다. 일 구체예에서, 충진제로는, 특별히 한정되지 않지만, 예를 들어, 유리섬유, 탄소섬유, 산화티탄, 알루미나, 탈크, 마이카, 수산화알루미늄 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 경화성 에폭시 수지 조성물 내의 충진제의 함유량은, 상기 에폭시 수지 조성물 및 경화제의 합계 100 중량부에 대하여, 0.01~80 중량부, 또는 0.01~50 중량부, 또는 0.1~20 중량부일 수 있다.The filler is used for the main purpose of improving the mechanical properties of a cured product by mixing it with an epoxy resin composition or a curing agent, and generally, mechanical properties are improved when the amount added is increased. Inorganic fillers include extenders such as talc, sand, silica, talc, calcium carbonate, and the like; reinforcing fillers such as mica, quartz, and glass fibers; There are those with special uses such as quartz powder, graphite, alumina, and aerosil (for the purpose of imparting thixotropic properties). Metals include aluminum, aluminum oxide, iron, iron oxide, and copper, which contribute to thermal expansion coefficient, abrasion resistance, thermal conductivity, and adhesion. or antimony oxide (SB 2 O 3 ) to impart flame retardancy, barium titanate, organic materials include fillers for weight reduction such as fine plastic spheres (phenolic resin, urea resin, etc.). In addition, as fillers with reinforcing properties, various glass fibers or chemical fiber fabrics can be treated as fillers in a broad sense in the manufacture of laminated products. Thixotropic (thixotropic or thixotropic) refers to the property of a liquid state when flowing and a solid state when stationary so that resin impregnated into a laminate or attached to a vertical plane or immersion method does not flow or lose during curing. refers to having), fine particles with a large unit surface area are used. For example, colloidal silica (Aerosil) or bentonite-based clay is used. In one embodiment, the filler is not particularly limited, but for example, one selected from the group consisting of glass fiber, carbon fiber, titanium oxide, alumina, talc, mica, aluminum hydroxide, and combinations thereof may be used. The content of the filler in the curable epoxy resin composition may be 0.01 to 80 parts by weight, or 0.01 to 50 parts by weight, or 0.1 to 20 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
상기 수지 개질제로는, 특별히 한정되지 않지만, 예를 들어, 폴리프로필렌글리시딜에테르, 중합지방산폴리글리시딜에테르, 폴리프로필렌글리콜, 우레탄프리폴리머 등의 가요성부여제 등을 들 수 있다. 경화성 에폭시 수지 조성물 내의 수지 개질제의 함유량은, 상기 에폭시 수지 조성물 및 경화제의 합계 100 중량부에 대하여, 0.01~80 중량부, 또는 0.01~50 중량부, 또는 0.1~20 중량부일 수 있다.Examples of the resin modifier include, but are not particularly limited to, flexibility imparting agents such as polypropylene glycidyl ether, polymerized fatty acid polyglycidyl ether, polypropylene glycol, and urethane prepolymer. The content of the resin modifier in the curable epoxy resin composition may be 0.01 to 80 parts by weight, or 0.01 to 50 parts by weight, or 0.1 to 20 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
상기 실란커플링제로는, 특별히 한정되지 않지만, 예를 들어, 클로로프로필트리메톡시실란, 비닐트리클로로실란, γ메타크릴록시프로필트리메톡시실란, γ아미노프로필트리에톡시실란 등을 들 수 있다. 경화성 에폭시 수지 조성물 내의 실란커플링제의 함유량은, 상기 에폭시 수지 조성물 및 경화제의 합계 100 중량부에 대하여, 0.01~20 중량부, 또는 0.05~10 중량부, 또는 0.1~5 중량부일 수 있다.The silane coupling agent is not particularly limited, and examples thereof include chloropropyltrimethoxysilane, vinyltrichlorosilane, γmethacryloxypropyltrimethoxysilane, and γaminopropyltriethoxysilane. . The content of the silane coupling agent in the curable epoxy resin composition may be 0.01 to 20 parts by weight, or 0.05 to 10 parts by weight, or 0.1 to 5 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
상기 희석제는 에폭시 수지 조성물이나 경화제에 첨가하여 점도를 저하시키는 것을 주 목적으로 하여 사용되며, 사용시 흐름성, 탈포성의 개선, 부품 세부에 침투의 개선 등 또는 충진제를 효과적으로 첨가할 수 있도록 하는 역할을 한다. 희석제는 일반적으로 용제와는 달리 휘발하지 않고, 수지 경화시에 경화물에 잔존하는 것으로 반응성과 비반응성의 희석제로 나뉜다. 여기서 반응성의 희석제는 에폭시기를 한 개 또는 그 이상을 가지고 있고 반응에 참여하여 경화물에 가교 구조로 들어가고, 비반응성 희석제는 단지 경화물 속에 물리적으로 혼합 및 분산만 되어 있는 상태로 있다. 일반적으로 많이 사용되는 반응성 희석제로는 부틸 글리시딜 에테르(Butyl Glycidyl Ether, BGE), 페닐 글리시딜 에테르(Phenyl Glycidyl Ether, PGE), 지방족 글리시딜 에테르(Aliphatic Glycidyl Ether(C12 -C14)), 개질 t-카복실 글리시딜 에스테르(Modified-tert-Carboxylic Glycidyl Ester) 등 여러 가지가 있다. 일반적으로 사용되는 비반응성 희석제로는 디부틸프탈레이트(DiButylPhthalate, DBP), 디옥틸프탈레이트(DiOctylPhthalate, DOP), 노닐페놀(Nonyl-Phenol), 하이솔(Hysol) 등이 사용된다. 일 구체예에서, 희석제로는, 특별히 한정되지 않지만, 예를 들어, n-부틸글리시딜에테르, 페닐글리시딜에테르, 글리시딜메타크릴레이트, 비닐시클로헥센디옥사이드, 디글리시딜아닐린, 글리세린트리글리시딜에테르 및 이들의 조합으로 이루어진 군으로부터 선택되는 것을 사용할 수 있다. 경화성 에폭시 수지 조성물 내의 희석제의 함유량은, 상기 에폭시 수지 조성물 및 경화제의 합계 100 중량부에 대하여, 0.01~80 중량부, 또는 0.01~50 중량부, 또는 0.1~20 중량부일 수 있다.The diluent is used for the main purpose of reducing viscosity by adding it to an epoxy resin composition or a curing agent, and when used, improves flowability, defoaming property, improves penetration into details of parts, etc., or effectively adds fillers. do. Diluents generally do not volatilize unlike solvents and remain in the cured product during resin curing, and are divided into reactive and non-reactive diluents. Here, the reactive diluent has one or more epoxy groups and participates in the reaction to form a cross-linked structure in the cured product, and the non-reactive diluent remains only physically mixed and dispersed in the cured product. Commonly used reactive diluents include Butyl Glycidyl Ether (BGE), Phenyl Glycidyl Ether (PGE), and Aliphatic Glycidyl Ether (C12 -C14). , Modified-tert-Carboxylic Glycidyl Ester, etc. Commonly used non-reactive diluents include dibutyl phthalate (DBP), dioctyl phthalate (DOP), nonyl-phenol, hysol, and the like. In one embodiment, the diluent is not particularly limited, but examples include n-butyl glycidyl ether, phenyl glycidyl ether, glycidyl methacrylate, vinylcyclohexene dioxide, diglycidyl aniline, What is selected from the group consisting of glycerol triglycidyl ether and combinations thereof may be used. The content of the diluent in the curable epoxy resin composition may be 0.01 to 80 parts by weight, or 0.01 to 50 parts by weight, or 0.1 to 20 parts by weight based on 100 parts by weight of the total of the epoxy resin composition and the curing agent.
수지에 색을 넣기 위한 착색제로는 안료나 염료가 사용된다. 일반적으로 사용되는 안료로는 이산화티타늄, 카드뮴 레드, 샤닝 그린, 카본 블랙, 크롬 그린, 크롬 옐로우, 네비 블루, 샤닝 블루, 등의 착색제가 사용된다.A pigment or dye is used as a colorant for adding color to the resin. Commonly used pigments include colorants such as titanium dioxide, cadmium red, channing green, carbon black, chrome green, chrome yellow, navy blue, and channing blue.
그밖에, 수지의 기포를 제거하기 위한 목적으로 사용되는 소포제 및 탈포제, 수지와 안료와의 분산효과를 증대시키기 위한 분산제, 에폭시 수지와 소재와의 밀착성을 좋게 하기 위한 습윤(Wetting)제, 점도 조절제, 수지의 광택도 조절을 위한 광택 조절제, 접착력을 향상시키기 위한 첨가제, 전기적 성질을 부여하기 위한 첨가제, 등등 다양한 첨가제들이 사용 가능하다.In addition, antifoaming and defoaming agents used for the purpose of removing air bubbles in resins, dispersing agents for increasing the dispersion effect of resins and pigments, wetting agents for improving adhesion between epoxy resins and materials, and viscosity modifiers , gloss control agents for adjusting the glossiness of resin, additives for improving adhesion, additives for imparting electrical properties, and the like, various additives can be used.
본 발명의 경화성 에폭시 수지 조성물의 경화 방법은, 특별히 한정되지 않고, 예를 들어, 밀폐식 경화로나 연속경화가 가능한 터널로 등의 종래 공지의 경화장치를 사용할 수 있다. 해당 경화에 이용하는 가열방법은, 특별히 한정되지 않지만, 예를 들어, 열풍순환, 적외선가열, 고주파가열 등, 종래 공지의 방법으로 행할 수 있다.The method for curing the curable epoxy resin composition of the present invention is not particularly limited, and conventionally known curing equipment such as a closed curing furnace or a tunnel furnace capable of continuous curing can be used. The heating method used for the curing is not particularly limited, but conventionally known methods such as hot air circulation, infrared heating, and high frequency heating can be used.
경화 온도 및 경화 시간은, 50℃~250℃에서 30초~10시간의 범위일 수 있다. 일 구체예에서는, 50℃~120℃, 0.5시간~5시간의 조건으로 전경화한 후, 120℃~180℃, 0.1시간~5시간의 조건으로 후경화할 수 있다. 다른 구체예에서는, 50℃~85℃, 0.5시간~5시간의 조건으로 1차 경화하고, 85℃~105℃, 0.5시간~5시간의 조건으로 2차 경화하며, 105℃~145℃, 0.5시간~5시간의 조건으로 3차 경화하고, 145℃~180℃, 0.5시간~5시간의 조건으로 4차 경화할 수 있다. 다른 구체예에서는, 단시간 경화를 위하여 150℃~250℃, 30초~30분의 조건으로 경화할 수 있다.The curing temperature and curing time may be in the range of 30 seconds to 10 hours at 50°C to 250°C. In one embodiment, after fore-curing under the conditions of 50 ℃ ~ 120 ℃, 0.5 hours to 5 hours, it may be post-cured under the conditions of 120 ℃ ~ 180 ℃, 0.1 hours to 5 hours. In another embodiment, primary curing under conditions of 50 ° C to 85 ° C, 0.5 hours to 5 hours, secondary curing under conditions of 85 ° C to 105 ° C, 0.5 hours to 5 hours, 105 ° C to 145 ° C, 0.5 Third curing under conditions of time to 5 hours, and fourth curing under conditions of 145 ° C to 180 ° C and 0.5 hours to 5 hours can be performed. In another embodiment, it may be cured under conditions of 150 ° C. to 250 ° C. for 30 seconds to 30 minutes for short-time curing.
일 구체예에서, 본 발명의 경화성 에폭시 수지 조성물은, 2개 이상의 성분, 예를 들어, 경화제를 포함한 성분과 에폭시 수지 조성물을 포함한 성분으로 나누어 보존해두고, 경화 전에 이들을 조합할 수도 있다. 다른 구체예에서, 본 발명의 경화성 에폭시 수지 조성물은, 각 성분을 배합한 열경화성 조성물로서 보존하고, 그대로 경화에 제공할 수도 있다. 열경화성 조성물로서 보존하는 경우에는, 저온(통상 -40℃℃에서 보존할 수 있다.In one embodiment, the curable epoxy resin composition of the present invention may be divided and stored into two or more components, for example, a component including a curing agent and a component including an epoxy resin composition, and combining them before curing. In another specific embodiment, the curable epoxy resin composition of the present invention may be stored as a thermosetting composition in which each component is blended, and may be used for curing as it is. When stored as a thermosetting composition, it can be stored at a low temperature (usually -40°C).
따라서, 본 발명의 다른 측면에 따르면, 본 발명의 경화성 에폭시 수지 조성물을 경화시켜 얻어지는 경화물이 제공된다.Therefore, according to another aspect of the present invention, a cured product obtained by curing the curable epoxy resin composition of the present invention is provided.
또한, 본 발명의 또 다른 측면에 따르면, 상기 경화물을 포함하는 접착제가 제공된다.In addition, according to another aspect of the present invention, an adhesive comprising the cured product is provided.
본 발명의 접착제는 에폭시계 접착제에 통상적으로 사용될 수 있는 첨가제를 추가적으로 포함할 수 있다. The adhesive of the present invention may additionally include additives commonly used in epoxy-based adhesives.
이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세히 설명한다. 그러나 본 발명의 범위가 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through Examples and Comparative Examples. However, the scope of the present invention is not limited by these examples.
[실시예][Example]
<제1 내지 제5의 폴리올 성분들을 포함하는 무수당 알코올 조성물의 제조><Preparation of anhydrous sugar-alcohol composition containing the first to fifth polyol components>
제조예 A1: 97 중량% 함량의 포도당을 이용한 무수당 알코올 조성물의 제조Preparation Example A1: Preparation of anhydrous sugar alcohol composition using 97% by weight of glucose
니켈 촉매의 존재 및 125°C의 온도 및 60 기압의 수소 압력 하에서 97%의 순도를 갖는 포도당 제품을 수첨 반응시켜 농도가 55 중량%인 액상의 수소화 당 조성물 (고형분 기준 소르비톨 96 중량%, 만니톨 0.9 중량% 및 이당류 이상의 다당류 알코올 3.1 중량%) 1,819g을 얻었고, 이를 교반기가 부착된 회분식 반응기에 넣고 100°C로 가열하여 농축시킴으로써, 농축된 수소화 당 조성물 1,000g을 얻었다.A liquid hydrogenated sugar composition having a concentration of 55% by weight (sorbitol 96% by weight, mannitol 0.9% by weight) by hydrogenating a glucose product having a purity of 97% in the presence of a nickel catalyst and under a temperature of 125 ° C and a hydrogen pressure of 60 atm. 1,819 g of polysaccharide alcohol (% by weight and disaccharide or higher polysaccharide alcohol 3.1% by weight) was obtained, which was put into a batch reactor equipped with a stirrer and heated to 100 ° C. to concentrate, thereby obtaining 1,000 g of a concentrated hydrogenated sugar composition.
반응기에 상기 농축된 수소화 당 조성물 1,000g 및 황산 9.6g을 투입하였다. 이후 반응기 내부 온도를 약 135°C로 승온하고 약 45 mmHg의 감압 조건 하에서 탈수 반응을 진행하여 무수당 알코올로 전환하였다. 탈수 반응 완료 후 반응 결과물의 온도를 110°C 이하로 냉각하고, 50% 수산화나트륨 수용액 약 15.7g을 투입하여 반응 결과물을 중화시켰다. 이후 온도를 100°C 이하로 냉각하고 45 mmHg의 감압 조건에서 1시간 이상 농축하여 잔류 수분과 저비점 물질을 제거함으로써 무수당 알코올 전환액 약 831g을 수득하였다. 수득된 무수당 알코올 전환액을 가스 크로마토그래피로 분석한 결과, 이소소르비드로의 전환 함량은 71.9 중량%이었고, 이를 통해 소르비톨로부터 이소소르비드로의 몰 전환율은 77.6%로 계산되었다.A reactor was charged with 1,000 g of the concentrated hydrogenated sugar composition and 9.6 g of sulfuric acid. Thereafter, the temperature inside the reactor was raised to about 135 ° C, and a dehydration reaction was performed under a reduced pressure of about 45 mmHg to convert to anhydrous sugar alcohol. After completion of the dehydration reaction, the temperature of the reaction product was cooled to 110 ° C or less, and about 15.7 g of a 50% sodium hydroxide aqueous solution was added to neutralize the reaction product. Thereafter, the temperature was cooled to 100 ° C or lower and concentrated for 1 hour or more under a reduced pressure of 45 mmHg to remove residual moisture and low-boiling substances to obtain about 831 g of anhydrous sugar alcohol conversion solution. As a result of analyzing the obtained anhydrosugar alcohol conversion solution by gas chromatography, the conversion content to isosorbide was 71.9% by weight, and through this, the molar conversion from sorbitol to isosorbide was calculated as 77.6%.
상기 수득된 무수당 알코올 전환액 831g을 박막 증류기(SPD)에 투입하여 증류를 진행하였다. 이때, 증류는 160°C의 온도 및 1 mbar의 진공 압력 하에서 진행하였으며, 증류액 약 589g을 수득하였다(증류 수율: 약 70.9%). 이때 증류액 내의 이소소르비드의 순도는 96.8%로 측정되었고, 이로부터 계산된 이소소르비드의 증류 수율은 95.3%이었다. 증류액을 분리한 후, 이소소르비드(이무수당 알코올) [제2의 폴리올 성분] 11.5 중량%, 이소만니드(이무수당 알코올) [제2의 폴리올 성분] 0.4 중량%, 소르비탄 (일무수당 알코올) [제1의 폴리올 성분] 7.4 중량%, 상기 화학식 1로 표시되는 다당류 알코올 [제3의 폴리올 성분] 및 그로부터 유래된 (즉, 다당류 알코올로부터 물 분자를 제거하여 형성된) 무수당 알코올 [제4의 폴리올 성분] 2.5 중량% 및 이들의 중합체 [제5의 폴리올 성분] 78.2 중량%를 포함하고, 조성물의 수평균 분자량이 208 g/mol이며, 조성물의 다분산 지수가 1.25이고, 조성물의 수산기 값이 751 mg KOH/g이며, 조성물 내의 한 분자당 -OH기의 평균 갯수가 2.78개인 무수당 알코올 조성물 약 242g을 수득하였다.831 g of the obtained anhydrous sugar alcohol conversion solution was put into a thin film distiller (SPD) to proceed with distillation. At this time, distillation was carried out at a temperature of 160 ° C and a vacuum pressure of 1 mbar, and about 589 g of distillate was obtained (distillation yield: about 70.9%). At this time, the purity of isosorbide in the distillate was measured to be 96.8%, and the distillation yield of isosorbide calculated therefrom was 95.3%. After separating the distillate, isosorbide (dianhydrosugar alcohol) [second polyol component] 11.5% by weight, isomannide (dianhydrosugar alcohol) [second polyol component] 0.4% by weight, sorbitan (anhydrous sugar alcohol) 0.4% by weight alcohol) [first polyol component] 7.4% by weight, polysaccharide alcohol represented by Formula 1 [third polyol component] and anhydrosugar alcohol derived therefrom (ie, formed by removing water molecules from polysaccharide alcohol) [agent 4 polyol component] 2.5% by weight and their polymer [fifth polyol component] 78.2% by weight, the number average molecular weight of the composition is 208 g / mol, the polydispersity index of the composition is 1.25, and the hydroxyl group of the composition is About 242 g of an anhydrous sugar alcohol composition having a value of 751 mg KOH/g and an average number of -OH groups per molecule in the composition of 2.78 was obtained.
제조예 A2: 50.2 중량%의 포도당 함유 당류 조성물을 이용한 무수당 알코올 조성물의 제조Preparation Example A2: Preparation of Anhydrous Sugar Alcohol Composition Using 50.2% by Weight of Glucose-Containing Saccharide Composition
순도 97%의 포도당 제품을 대신하여 50.2 중량%의 포도당 함유 당류 조성물 (포도당 50.2중량%와 만노오스, 과당 및 다당류(말토오스 등의 이당류 이상 당류) 합계 49.8 중량%)을 사용한 것을 제외하고는, 제조예 A1과 동일한 방법으로 수첨 반응을 수행하여 농도가 55 중량%인 액상의 수소화 당 조성물 (고형분 기준, 소르비톨 48.5 중량%, 만니톨 3.6 중량%, 이당류 이상의 다당류 알코올 47.9 중량%) 1,819g을 얻었고, 이를 교반기가 부착된 회분식 반응기에 넣고 100°C로 가열하여 농축시킴으로써, 농축된 수소화 당 조성물 1,000g을 얻었다.Except for using 50.2% by weight of a glucose-containing saccharide composition (50.2% by weight of glucose and 49.8% by weight of mannose, fructose and polysaccharides (disaccharide or higher saccharide such as maltose)) instead of a glucose product with a purity of 97%, Preparation Example A hydrogenation reaction was performed in the same manner as in A1 to obtain 1,819 g of a liquid hydrogenated sugar composition having a concentration of 55% by weight (based on solid content, 48.5% by weight of sorbitol, 3.6% by weight of mannitol, and 47.9% by weight of disaccharide or higher polysaccharide alcohol). 1,000 g of a concentrated hydrogenated sugar composition was obtained by heating to 100°C and concentrating in a batch reactor equipped with .
황산의 함량을 9.6g에서 4.85g으로 변경하고, 50% 수산화나트륨 수용액의 함량을 15.7g에서 7.9g으로 변경하며, 반응 온도를 120°C로 변경한 것을 제외하고는, 상기 농축된 수소화 당 조성물 1,000g에 대해 제조예 A1과 동일한 방법으로 탈수 반응을 수행하여 무수당 알코올로 전환하였다. 상기 탈수 반응 결과 수득된 무수당 알코올 전환액은 약 890g이었고, 수득된 무수당 알코올 전환액을 가스 크로마토그래피로 분석한 결과, 이소소르비드의 전환 함량은 33.7 중량%이었고, 이를 통해 소르비톨로부터 이소소르비드의 몰 전환율은 77.1%로 계산되었다.The above concentrated hydrogenated sugar composition except that the content of sulfuric acid was changed from 9.6 g to 4.85 g, the content of 50% aqueous sodium hydroxide solution was changed from 15.7 g to 7.9 g, and the reaction temperature was changed to 120 ° C. 1,000 g was converted into anhydrous sugar alcohol by performing a dehydration reaction in the same manner as in Preparation Example A1. The anhydrous sugar-alcohol conversion solution obtained as a result of the dehydration reaction was about 890 g, and as a result of analyzing the obtained anhydrosugar-alcohol conversion solution by gas chromatography, the conversion content of isosorbide was 33.7% by weight, through which isosorb from sorbitol The molar conversion of the beads was calculated to be 77.1%.
상기 수득된 무수당 알코올 전환액 890g에 대해 제조예 A1과 동일한 방법으로 박막 증류를 수행하여 증류액 약 304g을 수득하였다(증류 수율: 약 34.2%). 이때 증류액 내의 이소소르비드의 순도는 96.9%로 측정되었고, 이로부터 계산된 이소소르비드의 증류 수율은 98.3%이었다. 증류액을 분리한 후, 이소소르비드(이무수당 알코올) 0.9 중량%, 이소만니드(이무수당 알코올) 2.1 중량%, 소르비탄 (일무수당 알코올) 0.9 중량%, 이당류 이상의 다당류 알코올 및 이들로부터 유래된 무수당 알코올 6.2 중량% 및 이들의 중합체 89.9중량%를 포함하고, 조성물의 수평균 분자량이 1,480 g/mol이며, 조성물의 다분산 지수가 3.19이고, 조성물의 수산기 값이 755 mg KOH/g이며, 조성물 내의 한 분자당-OH기의 평균 개수가 19.92개인 무수당 알코올 조성물 약 586g을 수득하였다.Thin-film distillation was performed on 890 g of the obtained anhydrous sugar alcohol conversion solution in the same manner as in Preparation Example A1 to obtain about 304 g of a distillate (distillation yield: about 34.2%). At this time, the purity of isosorbide in the distillate was measured to be 96.9%, and the distillation yield of isosorbide calculated therefrom was 98.3%. After separating the distillate, isosorbide (dianhydrosugar alcohol) 0.9% by weight, isomannide (dianhydrosugar alcohol) 2.1% by weight, sorbitan (monuhydrosugar alcohol) 0.9% by weight, disaccharide or higher polysaccharide alcohols and derived therefrom 6.2% by weight of anhydrous sugar alcohol and 89.9% by weight of polymers thereof, the number average molecular weight of the composition is 1,480 g / mol, the polydispersity index of the composition is 3.19, the hydroxyl value of the composition is 755 mg KOH / g, , to obtain about 586 g of anhydrosugar alcohol composition having an average number of -OH groups per molecule in the composition of 19.92.
<에폭시 수지 조성물의 제조><Preparation of Epoxy Resin Composition>
실시예 A1: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 180 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Example A1: Epoxy resin composition prepared by addition reaction of 180 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
디켄터가 장착된 냉각관, 교반기 및 질소 유입구가 있는 1,000ml 둥근 바닥 플라스크에 제조예 A1의 무수당 알코올 조성물 100g과 에피클로로히드린 180g을 투입하여 80℃까지 승온하면서 용해시켰다. 계내의 용액이 완전히 용해가 되면 50% 가성소다 수용액 11g을 2 시간에 걸쳐 정량 주입하여 예비반응을 진행하였다. 이후, 65℃의 온도 및 120 Torr의 감압 하에 50% 가성소다 수용액 109g을 200분에 걸쳐 정량 주입하면서 본 반응을 진행하였다. 본 반응 중 발생하는 물을 디켄터를 통하여 지속적으로 제거하였다. 본반응 종료 후 반응물을 여과지로 감압 여과하였으며 남아있는 수지는 아세톤으로 세척해주었다. 여과된 반응물을 150℃의 온도 및 5 Torr까지 서서히 승온 감압하여 미반응된 에피클로로히드린을 회수함으로써, 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 229 g/eq 였다.100 g of the anhydrous sugar alcohol composition of Preparation A1 and 180 g of epichlorohydrin were added to a 1,000 ml round bottom flask equipped with a cooling tube, a stirrer, and a nitrogen inlet equipped with a decanter, and dissolved while raising the temperature to 80 ° C. When the solution in the system was completely dissolved, 11 g of 50% caustic soda aqueous solution was injected in a metered amount over 2 hours to conduct a preliminary reaction. Thereafter, the reaction was performed while injecting 109 g of a 50% aqueous caustic soda solution at a temperature of 65° C. and a reduced pressure of 120 Torr over 200 minutes. Water generated during this reaction was continuously removed through a decanter. After completion of the main reaction, the reactant was filtered under reduced pressure with a filter paper, and the remaining resin was washed with acetone. An epoxy resin composition was obtained by recovering unreacted epichlorohydrin by gradually heating and reducing the filtered reactant to a temperature of 150°C and 5 Torr. At this time, the epoxy equivalent of the resulting epoxy resin composition was 229 g/eq.
실시예 A2: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 900 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Example A2: Epoxy resin composition prepared by addition reaction of 900 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
에피클로로히드린의 양을 180g에서 900g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법을 수행하여 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 173 g/eq 였다.An epoxy resin composition was obtained in the same manner as in Example A1, except that the amount of epichlorohydrin was changed from 180 g to 900 g. At this time, the epoxy equivalent of the resulting epoxy resin composition was 173 g/eq.
실시예 A3: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 1,350 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Example A3: Epoxy resin composition prepared by addition reaction of 1,350 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
에피클로로히드린의 양을 180g에서 1,350g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법을 수행하여 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 157 g/eq 였다.An epoxy resin composition was obtained in the same manner as in Example A1, except that the amount of epichlorohydrin was changed from 180 g to 1,350 g. At this time, the epoxy equivalent of the resulting epoxy resin composition was 157 g/eq.
실시예 A4: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 360 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Example A4: Epoxy resin composition prepared by addition reaction of 360 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
제조예 A1의 무수당 알코올 조성물을 대신하여 제조예 A2의 무수당 알코올 조성물 100g을 사용하고, 에피클로로히드린의 양을 180g에서 360g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법을 수행하여 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 421 g/eq 였다.Except for using 100 g of the anhydrous sugar alcohol composition of Preparation Example A2 instead of the anhydrous sugar alcohol composition of Preparation Example A1 and changing the amount of epichlorohydrin from 180 g to 360 g, the same method as in Example A1 was performed. Thus, an epoxy resin composition was obtained. At this time, the epoxy equivalent of the resulting epoxy resin composition was 421 g/eq.
실시예 A5: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 900 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Example A5: Epoxy resin composition prepared by addition reaction of 900 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
제조예 A1의 무수당 알코올 조성물을 대신하여 제조예 A2의 무수당 알코올 조성물 100g을 사용하고, 에피클로로히드린의 양을 180g에서 900g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법을 수행하여 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 322 g/eq 였다.Except for using 100 g of the anhydrous sugar alcohol composition of Preparation Example A2 instead of the anhydrous sugar alcohol composition of Preparation Example A1 and changing the amount of epichlorohydrin from 180 g to 900 g, the same method as in Example A1 was performed Thus, an epoxy resin composition was obtained. At this time, the epoxy equivalent of the resulting epoxy resin composition was 322 g/eq.
실시예 A6: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 3,600 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Example A6: Epoxy resin composition prepared by addition reaction of 3,600 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
제조예 A1의 무수당 알코올 조성물을 대신하여 제조예 A2의 무수당 알코올 조성물 100g을 사용하고, 에피클로로히드린의 양을 180g에서 3,600g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법을 수행하여 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 183 g/eq 였다.The same method as in Example A1, except that 100 g of the anhydrous sugar alcohol composition of Preparation Example A2 was used instead of the anhydrous sugar alcohol composition of Preparation Example A1 and the amount of epichlorohydrin was changed from 180 g to 3,600 g. It was carried out to obtain an epoxy resin composition. At this time, the epoxy equivalent of the resulting epoxy resin composition was 183 g/eq.
실시예 A7: 무수당 알코올 조성물 100 중량부당 에피브로모히드린 900 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Example A7: Epoxy resin composition prepared by addition reaction of 900 parts by weight of epibromohydrin per 100 parts by weight of anhydrous sugar alcohol composition
에피클로로히드린을 대신하여 에피브로모히드린 900g을 사용한 것을 제외하고는, 실시예 A1과 동일한 방법을 수행하여 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 173 g/eq 였다.An epoxy resin composition was obtained in the same manner as in Example A1, except that 900 g of epibromohydrin was used instead of epichlorohydrin. At this time, the epoxy equivalent of the resulting epoxy resin composition was 173 g/eq.
실시예 A8: 무수당 알코올 조성물 100 중량부당 에피브로모히드린 1,350 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Example A8: Epoxy resin composition prepared by addition reaction of 1,350 parts by weight of epibromohydrin per 100 parts by weight of anhydrous sugar alcohol composition
제조예 A1의 무수당 알코올 조성물을 대신하여 제조예 A2의 무수당 알코올 조성물 100g을 사용하고, 에피클로로히드린을 대신하여 에피브로모히드린 1,350g을 사용한 것을 제외하고는, 실시예 A1과 동일한 방법을 수행하여 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 157 g/eq였다.The same method as in Example A1, except that 100 g of the anhydrous sugar alcohol composition of Production Example A2 was used instead of the anhydrous sugar alcohol composition of Production Example A1, and 1,350 g of epibromohydrin was used instead of epichlorohydrin. was performed to obtain an epoxy resin composition. At this time, the epoxy equivalent of the resulting epoxy resin composition was 157 g/eq.
비교예 A1: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 90 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Comparative Example A1: Epoxy resin composition prepared by addition reaction of 90 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
에피클로로히드린의 양을 180g에서 90g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법을 수행하였으나, 이때, 생성된 반응 결과물 내 성분들이 사슬 연장에 의해 지나치게 고분자화되어 에폭시 당량을 측정할 수 없었으며, 그 제조 수율의 계산이 무의미하였다.Except for changing the amount of epichlorohydrin from 180 g to 90 g, the same method as in Example A1 was performed, but at this time, the components in the resulting reaction product were excessively polymerized by chain extension, so that the epoxy equivalent could not be measured. It was not possible, and the calculation of the manufacturing yield was meaningless.
비교예 A2: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 4,500 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Comparative Example A2: An epoxy resin composition prepared by addition reaction of 4,500 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
에피클로로히드린의 양을 180g에서 4,500g으로 변경한 것을 제외하고는, 실시예 A1과 동일한 방법을 수행하여 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 118 g/eq 였다.An epoxy resin composition was obtained in the same manner as in Example A1, except that the amount of epichlorohydrin was changed from 180 g to 4,500 g. At this time, the epoxy equivalent of the resulting epoxy resin composition was 118 g/eq.
비교예 A3: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 90 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Comparative Example A3: Epoxy resin composition prepared by addition reaction of 90 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
제조예 A1의 무수당 알코올 조성물을 대신하여 제조예 A2의 무수당 알코올 조성물 100g을 사용하고, 에피클로로히드린의 양을 180g에서 90g으로 변경한 것을 제외하고는, A1과 동일한 방법을 수행하였으나, 이때, 생성된 반응 결과물 내 성분들이 사슬 연장에 의해 지나치게 고분자화되어 에폭시 당량을 측정할 수 없었으며, 그 제조 수율의 계산이 무의미하였다.Except for using 100 g of the anhydrous sugar alcohol composition of Preparation Example A2 instead of the anhydrous sugar alcohol composition of Preparation Example A1 and changing the amount of epichlorohydrin from 180 g to 90 g, the same method as in A1 was carried out, At this time, the components in the resulting reaction product were excessively polymerized by chain extension, so the epoxy equivalent could not be measured, and the calculation of the manufacturing yield was meaningless.
비교예 A4: 무수당 알코올 조성물 100 중량부당 에피클로로히드린 5,400 중량부를 부가 반응시켜 제조된 에폭시 수지 조성물Comparative Example A4: Epoxy resin composition prepared by addition reaction of 5,400 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol composition
제조예 A1의 무수당 알코올 조성물을 대신하여 제조예 A2의 무수당 알코올 조성물 100g을 사용하고, 에피클로로히드린의 양을 180g에서 5,400g으로 변경한 것을 제외하고는, A1과 동일한 방법을 수행하여 에폭시 수지 조성물을 수득하였다. 이때, 생성된 에폭시 수지 조성물의 에폭시 당량은 156 g/eq 였다.Except for using 100 g of the anhydrous sugar alcohol composition of Preparation Example A2 instead of the anhydrous sugar alcohol composition of Preparation Example A1 and changing the amount of epichlorohydrin from 180 g to 5,400 g, the same method as in A1 was carried out An epoxy resin composition was obtained. At this time, the epoxy equivalent of the resulting epoxy resin composition was 156 g/eq.
비교예 A5: 무수당 알코올 100 중량부당 에피클로로히드린 600 중량부를 부가 반응시켜 제조된 에폭시 수지Comparative Example A5: Epoxy resin prepared by addition reaction of 600 parts by weight of epichlorohydrin per 100 parts by weight of anhydrous sugar alcohol
제조예 A1의 무수당 알코올 조성물을 대신하여 이소소르비드 100g을 사용하고, 에피클로로히드린의 양을 180g에서 600g으로 변경한 것을 제외하고는, A1과 동일한 방법을 수행하여 에폭시 수지를 수득하였다. 이때, 생성된 에폭시 수지의 에폭시 당량은 185 g/eq 였다.An epoxy resin was obtained in the same manner as in A1, except that 100 g of isosorbide was used instead of the anhydrous sugar alcohol composition of Preparation Example A1 and the amount of epichlorohydrin was changed from 180 g to 600 g. At this time, the epoxy equivalent of the resulting epoxy resin was 185 g/eq.
<물성 측정 방법><How to measure physical properties>
1. 에폭시 당량의 측정1. Determination of Epoxy Equivalent Weight
실시예 A1 내지 A8 및 비교예 A2, A4 및 A5에서 수득된 에폭시 수지 조성물 또는 에폭시 수지로부터 측정 시료 1g을 채취하여 100ml 삼각 플라스크에 넣고, 다이옥세인(Dioxane) 용액 10ml를 첨가하여 용해시킨 후, 0.2N HCl-methanol 용액 25mL를 첨가하고 30분간 실온(25±3℃)에서 방치시켰다. 이후 Cresol red 용액을 지시약으로 첨가하였고, 0.1N NaOH-Methanol 용액을 사용하여 적정을 수행하였으며, 자색에서 황색으로 변한 후 다시 자색으로 변하는 시점을 종결점으로 하여 소비된 0.1N NaOH-Methanol 용액의 적정량을 측정하였다. 1 g of measurement sample was taken from the epoxy resin compositions or epoxy resins obtained in Examples A1 to A8 and Comparative Examples A2, A4 and A5, put into a 100 ml Erlenmeyer flask, dissolved by adding 10 ml of a dioxane solution, and 0.2 25 mL of N HCl-methanol solution was added and allowed to stand at room temperature (25±3° C.) for 30 minutes. Afterwards, Cresol red solution was added as an indicator, titration was performed using 0.1N NaOH-Methanol solution, and the titration of the consumed 0.1N NaOH-Methanol solution was performed with the point at which the color changed from purple to yellow and then purple again as the end point. was measured.
또한, 상기 측정 시료 1g을 사용하지 않은 것을 제외하고는, 상기와 동일한 방법으로 바탕 시험의 적정을 수행하여 소비된 0.1N NaOH-Methanol 용액의 적정량을 측정하였다.In addition, the titration of the blank test was performed in the same manner as above, except that 1 g of the measurement sample was not used, and the titration amount of the consumed 0.1N NaOH-Methanol solution was measured.
상기 측정 시료 1g을 이용한 적정 시험에서의 0.1N NaOH-Methanol 용액의 적정량과 상기 바탕 시험에서의 0.1N NaOH-Methanol 용액의 적정량을 이용하여 하기 식과 같이, 에폭시 수지 조성물의 에폭시 당량을 계산하였다.The epoxy equivalent of the epoxy resin composition was calculated using the appropriate amount of 0.1N NaOH-Methanol solution in the titration test using 1 g of the measurement sample and the appropriate amount of 0.1N NaOH-Methanol solution in the blank test as shown in the following formula.
EEW = 10,000 x (W/BT-A) x FEEW = 10,000 x (W/BT-A) x F
상기 식에서, EEW는 에폭시 당량(epoxy equivalent weight)이고, 그 단위는 g/eq이고, W는 측정 시료의 중량이며, BT는 바탕 시험에서의 0.1N NaOH-Methanol 용액의 적정량이며, A는 상기 측정 시료 1g을 이용한 적정 시험에서의 0.1N NaOH-Methanol 용액의 적정량이고, F는 0.1N NaOH-Methanol 용액의 노르말 농도 계수이다.In the above formula, EEW is the epoxy equivalent weight, its unit is g/eq, W is the weight of the measurement sample, BT is the appropriate amount of 0.1N NaOH-Methanol solution in the blank test, and A is the measurement It is the titration amount of 0.1N NaOH-Methanol solution in the titration test using 1g of sample, and F is the normal concentration coefficient of 0.1N NaOH-Methanol solution.
2. 제조 수율 계산2. Manufacturing Yield Calculation
실시예 A1 내지 A8 및 비교예 A2, A4 및 A5에서 수득된 에폭시 수지 조성물 또는 에폭시 수지의 제조 수율을 하기와 같은 식으로 계산하였다.Production yields of the epoxy resin compositions or epoxy resins obtained in Examples A1 to A8 and Comparative Examples A2, A4 and A5 were calculated in the following formula.
제조 수율(%) = (생성된 에폭시 수지 조성물 또는 에폭시 수지의 중량 / 제조시 투입되는 무수당 알코올 조성물 또는 무수당 알코올과 에피할로히드린의 합계 중량) X 100Production yield (%) = (Weight of produced epoxy resin composition or epoxy resin / total weight of anhydrous sugar alcohol composition or anhydrous sugar alcohol and epihalohydrin added during production) X 100
상기 실시예 A1 내지 A8 및 비교예 A2, A4 및 A5에서 사용된 반응 물질 및 사용량, 및 수득된 에폭시 수지 조성물 또는 에폭시 수지의 에폭시 당량을 하기 표 1에 기재하였다.The reaction materials and amounts used in Examples A1 to A8 and Comparative Examples A2, A4 and A5, and the epoxy equivalent of the obtained epoxy resin composition or epoxy resin are shown in Table 1 below.
[표 1][Table 1]
Figure PCTKR2023002882-appb-img-000005
Figure PCTKR2023002882-appb-img-000005
<경화성 에폭시 수지<Curable Epoxy Resin 조성물의 제조>Preparation of Composition>
실시예 B1: 실시예 A1의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Example B1: Preparation of curable epoxy resin composition using the epoxy resin composition of Example A1
실시예 A1의 에폭시 수지 조성물 100g과 경화제로서 이소소르비드(㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1 당량) 32g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.A mixture was prepared by mixing 100 g of the epoxy resin composition of Example A1 and 32 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent) as a curing agent, based on 100 parts by weight of the mixture, A curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
실시예 B2: 실시예 A2의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Example B2: Preparation of curable epoxy resin composition using the epoxy resin composition of Example A2
실시예 A2의 에폭시 수지 조성물 100g과 경화제로서 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 42g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.A mixture was prepared by mixing 100 g of the epoxy resin composition of Example A2 and 42 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent) as a curing agent, and 100 parts by weight of the mixture On the other hand, a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
실시예 B3: 실시예 A3의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Example B3: Preparation of curable epoxy resin composition using the epoxy resin composition of Example A3
실시예 A3의 에폭시 수지 조성물 100g과 경화제로서 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 47g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.A mixture was prepared by mixing 100 g of the epoxy resin composition of Example A3 and 47 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent) as a curing agent, and 100 parts by weight of the mixture On the other hand, a curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
실시예 B4: 실시예 A4의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Example B4: Preparation of curable epoxy resin composition using the epoxy resin composition of Example A4
실시예 A4의 에폭시 수지 조성물 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 17g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.A mixture was prepared by mixing 100 g of the epoxy resin composition of Example A4 and 17 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture, A curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
실시예 B5: 실시예 A5의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Example B5: Preparation of curable epoxy resin composition using the epoxy resin composition of Example A5
실시예 A5의 에폭시 수지 조성물 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 23g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.A mixture was prepared by mixing 100 g of the epoxy resin composition of Example A5 and 23 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture, A curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
실시예 B6: 실시예 A6의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Example B6: Preparation of curable epoxy resin composition using the epoxy resin composition of Example A6
실시예 A6의 에폭시 수지 조성물 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 40g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.A mixture was prepared by mixing 100 g of the epoxy resin composition of Example A6 and 40 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture, A curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
실시예 B7: 실시예 A7의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Example B7: Preparation of curable epoxy resin composition using the epoxy resin composition of Example A7
실시예 A7의 에폭시 수지 조성물 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 42g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.A mixture was prepared by mixing 100 g of the epoxy resin composition of Example A7 and 42 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture, A curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
실시예 B8: 실시예 A8의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Example B8: Preparation of curable epoxy resin composition using the epoxy resin composition of Example A8
실시예 A8의 에폭시 수지 조성물 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 47g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.A mixture was prepared by mixing 100 g of the epoxy resin composition of Example A8 with 47 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture, A curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
비교예 B1: 비교예 A1의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Comparative Example B1: Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A1
비교예 A1의 반응 결과물 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 62g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 조성물을 제조하고, 경화를 시도하였으나 실패하였다.A mixture was prepared by mixing 100 g of the reaction product of Comparative Example A1 with 62 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), and based on 100 parts by weight of the mixture, a catalyst A composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as the composition, and curing was attempted, but failed.
비교예 B2: 비교예 A2의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Comparative Example B2: Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A2
비교예 A2의 에폭시 수지 조성물 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 62g을 혼합하여 혼합물을 제조하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.A mixture was prepared by mixing 100 g of the epoxy resin composition of Comparative Example A2 and 62 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent), based on 100 parts by weight of the mixture, A curable epoxy resin composition was prepared by adding 0.1 parts by weight of N,N-dimethylbutylamine (DMBA, Sigma aldrich) as a catalyst.
비교예 B3: 비교예 A3의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Comparative Example B3: Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A3
비교예 A3의 반응 결과물 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 47g을 혼합하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 조성물을 제조하고, 경화를 시도하였으나 실패하였다.100 g of the reaction product of Comparative Example A3 and 47 g of isosorbide (Isosorbide, Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent) were mixed, and N and N as catalysts were mixed with respect to 100 parts by weight of the mixture - A composition was prepared by adding 0.1 part by weight of dimethylbutylamine (N,N-dimethylbutylamine, DMBA, Sigma aldrich), and curing was attempted but failed.
비교예 B4: 비교예 A4의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Comparative Example B4: Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A4
비교예 A4의 에폭시 수지 조성물 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 47g을 혼합하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다.100 g of the epoxy resin composition of Comparative Example A4 and 47 g of isosorbide (Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent) were mixed, and based on 100 parts by weight of the mixture, N as a catalyst, A curable epoxy resin composition was prepared by adding 0.1 parts by weight of N-dimethylbutylamine (DMBA, Sigma aldrich).
비교예 B5: 비교예 A5의 에폭시 수지 조성물을 이용한 경화성 에폭시 수지 조성물의 제조Comparative Example B5: Preparation of curable epoxy resin composition using the epoxy resin composition of Comparative Example A5
비교예 A5의 에폭시 수지 100g과 이소소르비드 (Isosorbide, ㈜삼양사, Hydroxy equivalent weight(HEW): 73 g/eq, 1당량) 39g을 혼합하고, 상기 혼합물 100 중량부에 대하여, 촉매로서 N,N-디메틸부틸아민(N,N-dimethylbutylamine, DMBA, Sigma aldrich) 0.1 중량부를 첨가하여 경화성 에폭시 수지 조성물을 제조하였다100 g of the epoxy resin of Comparative Example A5 and 39 g of isosorbide (Isosorbide, Samyang Corporation, Hydroxy equivalent weight (HEW): 73 g/eq, 1 equivalent) were mixed, and with respect to 100 parts by weight of the mixture, N and N as catalysts - A curable epoxy resin composition was prepared by adding 0.1 part by weight of dimethylbutylamine (N, N-dimethylbutylamine, DMBA, Sigma aldrich)
<접착 시편의 제조><Preparation of adhesive specimen>
상기 실시예 B1 내지 B8 및 비교예 B2, B4 및 B5에서 제조된 경화성 에폭시 수지 조성물을 접착제로서 이용하여 접착 시편을 제조하였고, 상기 접착제 시편에 대해 하기와 같은 방법으로 물성을 측정하고, 그 결과를 하기 표 2에 나타내었다. Adhesive specimens were prepared using the curable epoxy resin compositions prepared in Examples B1 to B8 and Comparative Examples B2, B4 and B5 as an adhesive, and the physical properties of the adhesive specimens were measured in the following manner, and the results It is shown in Table 2 below.
<물성 측정><Measurement of physical properties>
(1) 전단 강도 (단위: MPa)(1) Shear strength (Unit: MPa)
에탄올을 사용하여 길이 100 mm × 폭 20 mm × 두께 1 mm 크기의 스테인리스 스틸을 세정하였다. 상기 세정된 스테인리스 스틸의 일면에 접착제로서 상기 실시예 B1 내지 B8 및 비교예 B2, B4 및 B5에서 수득된 경화성 에폭시 수지 조성물 각각을 길이 20 mm × 폭 20 mm의 면으로 도포한 후 그 위에 일정한 접착 두께를 유지하기 위해 마이크로 비즈를 소량 적층하였다. 그후 다른 스테인리스 스틸을 그 위에 덮고 고정시킨 후 110℃에서 1 시간 동안 1차 경화시키고, 150℃에서 1 시간 동안 2차 경화시켰다. 경화 이후 23℃로 냉각된 접착 시편에 대하여 만능재료 시험기(Instron 5967 제품, Instron 社(제))를 이용하여 전단 강도를 측정하였다. 이때 전단 강도의 측정은 5 mm/min의 인장 속도로 180도 방향으로 하중을 가하면서 수행되었다. Stainless steel with a size of 100 mm in length x 20 mm in width x 1 mm in thickness was cleaned using ethanol. Each of the curable epoxy resin compositions obtained in Examples B1 to B8 and Comparative Examples B2, B4 and B5 was applied as an adhesive to one surface of the cleaned stainless steel on a surface having a length of 20 mm × a width of 20 mm, and then a certain adhesion was applied thereon. A small amount of microbeads were laminated to maintain the thickness. After that, another stainless steel was covered and fixed thereon, followed by primary hardening at 110° C. for 1 hour, and secondary hardening at 150° C. for 1 hour. Shear strength was measured using a universal testing machine (Instron 5967, manufactured by Instron Co., Ltd.) for the adhesive specimens cooled to 23° C. after curing. At this time, the shear strength was measured while applying a load in the direction of 180 degrees at a tensile rate of 5 mm/min.
구체적으로, 각 접착 시편에 대해 총 5회의 전단 강도를 측정 후, 그들의 평균값을 계산하였다.Specifically, after measuring the shear strength of a total of 5 times for each adhesive specimen, their average value was calculated.
[표 2][Table 2]
Figure PCTKR2023002882-appb-img-000006
Figure PCTKR2023002882-appb-img-000006
상기 표 2에 기재된 바와 같이, 본 발명에 따른 실시예 B1 내지 B8의 경우, 전단 강도가 11 MPa 이상으로 우수한 접착력을 발휘하였다.As shown in Table 2, in the case of Examples B1 to B8 according to the present invention, the shear strength was 11 MPa or more and exhibited excellent adhesive strength.
그러나 비교예 B1 및 비교예 B3의 경우, 각각 고분자화가 지나치게 진행된 비교예 A1 및 비교예 A3의 반응 결과물을 이용하였기 때문에 경화 반응이 일어나지 않았다. 또한 비교예 B2 및 비교예 B4의 경우, 사용된 에폭시 수지 조성물의 분자량이 상대적으로 낮아, 경화물의 인장력이 감소하여 전단 강도가 5 MPa 이하로 열악하였고, 또한 에폭시 수지 조성물의 제조 시에 과량의 에피할로히드린을 사용해서 미반응된 에피할로히드린의 함량이 너무 많아 제조 수율이 저하되었으며, 이로 인해 생산성이 저하되었다. 또한 비교예 B5의 경우, 경화물의 낮은 가교 밀도로 인하여 전단 강도가 상대적으로 저하되었다.However, in the case of Comparative Example B1 and Comparative Example B3, the curing reaction did not occur because the reaction products of Comparative Example A1 and Comparative Example A3, respectively, in which polymerization was excessively progressed were used. In addition, in the case of Comparative Example B2 and Comparative Example B4, the molecular weight of the epoxy resin composition used was relatively low, the tensile strength of the cured product was reduced, and the shear strength was poor at 5 MPa or less, and an excessive amount of epi The content of unreacted epihalohydrin using the halohydrin was too high, resulting in a decrease in manufacturing yield, which led to a decrease in productivity. In addition, in the case of Comparative Example B5, the shear strength was relatively reduced due to the low crosslinking density of the cured product.

Claims (18)

  1. 에폭시 수지 조성물로서,As an epoxy resin composition,
    무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물을 반응시켜 제조되며,It is prepared by reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin,
    상기 무수당 알코올 조성물이 제1 내지 제5의 폴리올 성분을 포함하고, 여기서, 제1의 폴리올 성분이 일무수당 알코올이고, 제2의 폴리올 성분이 이무수당 알코올이며, 제3의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올이고, 제4의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며, 제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체이고;The anhydrosugar-alcohol composition includes first to fifth polyol components, wherein the first polyol component is monohydrosugar alcohol, the second polyol component is dianhydrosugar alcohol, and the third polyol component is represented by the formula 1, the fourth polyol component is an anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by the following formula (1), and the fifth polyol component is the first to fourth polyol components at least one polymer selected from;
    상기 혼합물 내의 상기 에피할로히드린 함량이, 상기 무수당 알코올 조성물 100 중량부에 대하여, 90 중량부 초과 내지 4,000 중량부 미만인,The epihalohydrin content in the mixture is greater than 90 parts by weight and less than 4,000 parts by weight based on 100 parts by weight of the anhydrous sugar alcohol composition,
    에폭시 수지 조성물:Epoxy Resin Composition:
    [화학식 1][Formula 1]
    Figure PCTKR2023002882-appb-img-000007
    Figure PCTKR2023002882-appb-img-000007
    상기 화학식 1에서, n은 0 내지 4의 정수이다.In Formula 1, n is an integer from 0 to 4.
  2. 제1항에 있어서, According to claim 1,
    제1의 폴리올 성분이 일무수당 헥시톨이고;the first polyol component is monohydrosugar hexitol;
    제2의 폴리올 성분이 이무수당 헥시톨이며;the second polyol component is dianhydrosugar hexitol;
    제4의 폴리올 성분이 하기 화학식 2로 표시되는 화합물, 하기 화학식 3으로 표시되는 화합물 또는 이들의 혼합물로부터 선택된 것인, 에폭시 수지 조성물:An epoxy resin composition wherein the fourth polyol component is selected from a compound represented by Formula 2 below, a compound represented by Formula 3 below, or a mixture thereof:
    [화학식 2][Formula 2]
    Figure PCTKR2023002882-appb-img-000008
    Figure PCTKR2023002882-appb-img-000008
    [화학식 3][Formula 3]
    Figure PCTKR2023002882-appb-img-000009
    Figure PCTKR2023002882-appb-img-000009
    상기 화학식 2 및 3에서, n은 각각 독립적으로, 0 내지 4의 정수이다. In Formulas 2 and 3, n is each independently an integer of 0 to 4.
  3. 제1항에 있어서, 제5의 폴리올 성분이 하기의 축중합 반응으로부터 제조되는 축합 중합체로 이루어진 군으로부터 선택되는 하나 이상을 포함하는, 에폭시 수지 조성물:The epoxy resin composition according to claim 1, wherein the fifth polyol component includes at least one selected from the group consisting of condensation polymers prepared from the following polycondensation reaction:
    - 제1의 폴리올 성분의 축중합 반응,- polycondensation reaction of the first polyol component,
    - 제2의 폴리올 성분의 축중합 반응,- polycondensation reaction of the second polyol component,
    - 제3의 폴리올 성분의 축중합 반응,- polycondensation reaction of the third polyol component,
    - 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction of the fourth polyol component,
    - 제1의 폴리올 성분과 제2의 폴리올 성분의 축중합 반응,- polycondensation reaction between the first polyol component and the second polyol component;
    - 제1의 폴리올 성분과 제3의 폴리올 성분의 축중합 반응,- polycondensation reaction between the first polyol component and the third polyol component;
    - 제1의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction between the first polyol component and the fourth polyol component;
    - 제2의 폴리올 성분과 제3의 폴리올 성분의 축중합 반응,- polycondensation reaction between the second polyol component and the third polyol component;
    - 제2의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction between the second polyol component and the fourth polyol component;
    - 제3의 폴리올 성분과 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction between the third polyol component and the fourth polyol component;
    - 제1의 폴리올 성분, 제2의 폴리올 성분 및 제3의 폴리올 성분의 축중합 반응,- polycondensation reaction of the first polyol component, the second polyol component and the third polyol component,
    - 제1의 폴리올 성분, 제2의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction of the first polyol component, the second polyol component and the fourth polyol component,
    - 제1의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응,- polycondensation reaction of the first polyol component, the third polyol component and the fourth polyol component,
    - 제2의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응, 또는- polycondensation reaction of the second polyol component, the third polyol component and the fourth polyol component, or
    - 제1의 폴리올 성분, 제2의 폴리올 성분, 제3의 폴리올 성분 및 제4의 폴리올 성분의 축중합 반응.- Polycondensation reaction of the first polyol component, the second polyol component, the third polyol component and the fourth polyol component.
  4. 제1항에 있어서, 상기 무수당 알코올 조성물은 하기 i) 내지 iii)을 만족하는, 에폭시 수지 조성물:The epoxy resin composition according to claim 1, wherein the anhydrous sugar alcohol composition satisfies the following i) to iii):
    i) 무수당 알코올 조성물의 수평균분자량(Mn)이 193 내지 1,589 g/mol이고;i) the number average molecular weight (Mn) of the anhydrous sugar alcohol composition is 193 to 1,589 g/mol;
    ii) 무수당 알코올 조성물의 다분산 지수(PDI)가 1.13 내지 3.41이며;ii) the polydispersity index (PDI) of the anhydrous sugar alcohol composition is 1.13 to 3.41;
    iii) 무수당 알코올 조성물 내의 분자당 -OH기의 평균 개수가 2.54 개 내지 21.36개이다.iii) The average number of -OH groups per molecule in the anhydrous sugar alcohol composition is 2.54 to 21.36.
  5. 제1항에 있어서, 무수당 알코올 조성물이 포도당 함유 당류 조성물을 수소 첨가 반응시켜 수소화 당 조성물을 제조하고, 상기 수득된 수소화 당 조성물을 산 촉매 하에서 가열하여 탈수 반응시키며, 상기 수득된 탈수 반응 결과물을 박막 증류하여 제조된 것인, 에폭시 수지 조성물.The method of claim 1, wherein the anhydrous sugar alcohol composition hydrogenates a glucose-containing saccharide composition to prepare a hydrogenated sugar composition, heats the obtained hydrogenated sugar composition under an acid catalyst for a dehydration reaction, and the obtained dehydration reaction product An epoxy resin composition prepared by thin film distillation.
  6. 제5항에 있어서, 포도당 함유 당류 조성물이 상기 당류 조성물 총 중량 기준으로, 41 중량% 내지 99.5 중량%의 포도당을 함유하는, 에폭시 수지 조성물.The epoxy resin composition according to claim 5, wherein the glucose-containing saccharide composition contains 41% to 99.5% by weight of glucose based on the total weight of the saccharide composition.
  7. 제1항에 있어서, 에피할로히드린은 C1-C4 알킬기로 치환되거나 비치환된 에피할로히드린인, 에폭시 수지 조성물.The epoxy resin composition according to claim 1, wherein the epihalohydrin is an epihalohydrin unsubstituted or substituted with a C1-C4 alkyl group.
  8. 제1항에 있어서, 에피할로히드린은 에피클로로히드린, 에피브로모히드린, 에피요오도히드린, 메틸에피클로로히드린, 메틸에피브로모히드린, 메틸에피요오도히드린 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상인, 에폭시 수지 조성물.The method of claim 1, wherein the epihalohydrin is epichlorohydrin, epibromohydrin, epiiodohydrin, methyl epichlorohydrin, methyl epibromohydrin, methyl epiiodohydrin or a combination thereof At least one selected from the group consisting of, the epoxy resin composition.
  9. 제1항에 있어서, 에폭시 수지 조성물의 에폭시 당량이 150 내지 430 g/eq인, 에폭시 수지 조성물.The epoxy resin composition according to claim 1, wherein the epoxy equivalent of the epoxy resin composition is 150 to 430 g/eq.
  10. 에폭시 수지 조성물의 제조 방법으로서,As a method for producing an epoxy resin composition,
    무수당 알코올 조성물과 에피할로히드린을 포함하는 혼합물을 반응시키는 단계;를 포함하며,Including; reacting a mixture containing an anhydrous sugar alcohol composition and epihalohydrin,
    상기 무수당 알코올 조성물이 제1 내지 제5의 폴리올 성분을 포함하며, 여기서, 제1의 폴리올 성분이 일무수당 알코올이고, 제2의 폴리올 성분이 이무수당 알코올이며, 제3의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올이고, 제4의 폴리올 성분이 하기 화학식 1로 표시되는 다당류 알코올로부터 물 분자를 제거하여 형성된 무수당 알코올이며, 제5의 폴리올 성분이 상기 제1 내지 제4의 폴리올 성분들 중에서 선택되는 하나 이상의 중합체이고; The anhydrous sugar-alcohol composition includes first to fifth polyol components, wherein the first polyol component is monohydrosugar alcohol, the second polyol component is dianhydrosugar alcohol, and the third polyol component has the formula 1, the fourth polyol component is an anhydrous sugar alcohol formed by removing water molecules from the polysaccharide alcohol represented by the following formula (1), and the fifth polyol component is the first to fourth polyol components at least one polymer selected from;
    상기 혼합물 내의 상기 에피할로히드린 함량이, 상기 무수당 알코올 조성물 100 중량부에 대하여, 90 중량부 초과 내지 4,000 중량부 미만인,The epihalohydrin content in the mixture is greater than 90 parts by weight and less than 4,000 parts by weight based on 100 parts by weight of the anhydrous sugar alcohol composition,
    에폭시 수지 조성물의 제조 방법:Method for preparing the epoxy resin composition:
    [화학식 1][Formula 1]
    Figure PCTKR2023002882-appb-img-000010
    Figure PCTKR2023002882-appb-img-000010
    상기 화학식 1에서, n은 0 내지 4의 정수이다.In Formula 1, n is an integer from 0 to 4.
  11. 제1항 내지 제9항 중 어느 한 항의 에폭시 수지 조성물; 및The epoxy resin composition according to any one of claims 1 to 9; and
    경화제;를 포함하는,Curing agent; including,
    경화성 에폭시 수지 조성물.A curable epoxy resin composition.
  12. 제11항에 있어서, 경화제가 무수당 알코올, 페놀계 화합물, 산무수물계 화합물, 아민계 화합물 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상인, 경화성 에폭시 수지 조성물.The curable epoxy resin composition according to claim 11, wherein the curing agent is at least one selected from the group consisting of anhydrous sugar alcohols, phenolic compounds, acid anhydride compounds, amine compounds, or combinations thereof.
  13. 제11항에 있어서, 에폭시 수지 조성물에 대한 경화제의 당량비(경화제의 당량/에폭시 수지 조성물의 당량)가 0.9 내지 1.1인, 경화성 에폭시 수지 조성물.The curable epoxy resin composition according to claim 11, wherein the equivalent ratio of the curing agent to the epoxy resin composition (the equivalent of the curing agent/the equivalent of the epoxy resin composition) is 0.9 to 1.1.
  14. 제11항에 있어서, 경화 촉매를 추가로 포함하는, 경화성 에폭시 수지 조성물. The curable epoxy resin composition according to claim 11, further comprising a curing catalyst.
  15. 제14항에 있어서, 경화 촉매가 아민계 화합물, 이미다졸계 화합물, 유기인계 화합물 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상인, 경화성 에폭시 수지 조성물.The curable epoxy resin composition according to claim 14, wherein the curing catalyst is at least one selected from the group consisting of an amine-based compound, an imidazole-based compound, an organophosphorus compound, or a combination thereof.
  16. 제11항에 있어서, 산화 방지제, UV 흡수제, 충진제, 수지 개질제, 실란 커플링제, 희석제, 착색제, 소포제, 탈포제, 분산제, 점도 조절제, 광택 조절제, 습윤제, 전도성 부여제 또는 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상의 첨가제를 추가로 포함하는, 경화성 에폭시 수지 조성물.12. The group of claim 11, consisting of an antioxidant, a UV absorber, a filler, a resin modifier, a silane coupling agent, a diluent, a colorant, an antifoaming agent, a defoaming agent, a dispersing agent, a viscosity modifier, a gloss modifier, a wetting agent, a conductivity imparting agent, or a combination thereof. Further comprising one or more additives selected from, curable epoxy resin composition.
  17. 제11항의 경화성 에폭시 수지 조성물을 경화시켜 얻어지는 경화물.A cured product obtained by curing the curable epoxy resin composition of claim 11.
  18. 제17항의 경화물을 포함하는 접착제.An adhesive comprising the cured product of claim 17.
PCT/KR2023/002882 2022-03-03 2023-03-02 Epoxy resin composition derived from non-sugar alcohol composition and preparation method therefor, and curable epoxy resin composition including same and cured product thereof WO2023167513A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0027702 2022-03-03
KR1020220027702A KR20230130468A (en) 2022-03-03 2022-03-03 Epoxy resin composition derived from anhydrosugar alcohol composition and method for preparing the same, and curable epoxy resin composition comprising the same and cured product thereof

Publications (1)

Publication Number Publication Date
WO2023167513A1 true WO2023167513A1 (en) 2023-09-07

Family

ID=87884038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002882 WO2023167513A1 (en) 2022-03-03 2023-03-02 Epoxy resin composition derived from non-sugar alcohol composition and preparation method therefor, and curable epoxy resin composition including same and cured product thereof

Country Status (2)

Country Link
KR (1) KR20230130468A (en)
WO (1) WO2023167513A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160010133A (en) * 2014-07-18 2016-01-27 국도화학 주식회사 Preparation methode of Biobased Epoxy Resin and It's Composition for Cured System
KR20160111914A (en) * 2014-01-21 2016-09-27 로께뜨프레르 Process for producing isohexide glycidyl ethers, products thus obtained, and uses thereof
KR20210014784A (en) * 2019-07-30 2021-02-10 주식회사 삼양사 Anhydrodugar alcohol composition having acid functional group added thereto and dispersant for concrete comprising the same, and concrete composition comprising the dispersant
KR20210075279A (en) * 2019-12-12 2021-06-23 주식회사 제일화성 Photocurable composition for 3d printing using bio epoxy acrylate resin and method for manufacturing the same
KR20220006297A (en) * 2020-07-08 2022-01-17 주식회사 삼양사 Polyol composition added with alkylene oxide and surfactant using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160111914A (en) * 2014-01-21 2016-09-27 로께뜨프레르 Process for producing isohexide glycidyl ethers, products thus obtained, and uses thereof
KR20160010133A (en) * 2014-07-18 2016-01-27 국도화학 주식회사 Preparation methode of Biobased Epoxy Resin and It's Composition for Cured System
KR20210014784A (en) * 2019-07-30 2021-02-10 주식회사 삼양사 Anhydrodugar alcohol composition having acid functional group added thereto and dispersant for concrete comprising the same, and concrete composition comprising the dispersant
KR20210075279A (en) * 2019-12-12 2021-06-23 주식회사 제일화성 Photocurable composition for 3d printing using bio epoxy acrylate resin and method for manufacturing the same
KR20220006297A (en) * 2020-07-08 2022-01-17 주식회사 삼양사 Polyol composition added with alkylene oxide and surfactant using the same

Also Published As

Publication number Publication date
KR20230130468A (en) 2023-09-12

Similar Documents

Publication Publication Date Title
CN102317343B (en) Long chain alkylene group-containing epoxy compound
WO2016010261A1 (en) Highly functional natural material-derived epoxy resin, preparation method therefor, and epoxy resin curing composition using same
WO2019216700A1 (en) Solid dispersion, preparation method therefor, chain-extended polyurethane using same, and epoxy resin composition comprising same
KR20210090137A (en) Epoxy resin composition comprising eco-friendly curing agent and cured product thereof
WO2016140459A1 (en) Phosphorus-based epoxy compound, preparation method therefor, and epoxy composition containing same
KR102520657B1 (en) An isocyanate prepolymer composition derived from anhydrosugar alcohol-alkylene glycol composition, a polyurethane-modified epoxy resin composition using the prepolymer composition and a toughening agent for epoxy resin comprising the same, and an epoxy resin composition comprising the toughening agent and an adhesive comprising the same
WO2021133048A1 (en) Polycarbonate copolymer comprising units derived from anhydrosugar alcohol and anhydrosugar alcohol-alkylene glycol, method for producing same, and molded article comprising same
WO2023167513A1 (en) Epoxy resin composition derived from non-sugar alcohol composition and preparation method therefor, and curable epoxy resin composition including same and cured product thereof
US5756564A (en) Epoxy resin composition for encapsulation of semiconductors
WO2023167505A1 (en) Epoxy resin composition derived from anhydrosugar alcohol-alkylene glycol composition and method for preparing same, and curable epoxy resin composition comprising same and cured product thereof
KR102548181B1 (en) An end-capped isocyanate prepolymer composition capable of providing adhesive with improved adhesiveness and impact resistance and an adhesion promoter for epoxy resin comprising the same, and an epoxy resin composition comprising the adhesion promoter and an adhesive comprising the same
WO2023085883A1 (en) Isocyanate prepolymer composition, end-capped isocyanate prepolymer composition using same prepolymer composition and adhesion promoter comprising same for epoxy resin, and epoxy resin composition comprising same adhesion promoter and adhesive comprising same
WO2017200339A1 (en) Epoxy compound, preparation method therefor, and epoxy composition using same
WO2021010654A1 (en) Anhydrous alcohol-alkylene glycol composition, anhydrous alcohol-based urethane-modified polyol composition, and uses of same for expoxy resin composition
KR102099795B1 (en) Compound having anhydrosugar alcohol core and method for preparing the same
EP0539331B1 (en) Adducts of diaminodiphenyl sulfone compounds as hardeners for epoxy resins
US4857607A (en) Epoxidized polycycloacetals
JP2789325B2 (en) New epoxy resin and epoxy resin composition
WO2023243994A1 (en) Tetramethylbiphenol type epoxy resin and preparation method therefor
KR102161127B1 (en) Anhydrodugar alcohol-alkylene glycol composition and hardener for epoxy resin comprising the same, and epoxy resin composition comprising the hardener
KR20230141211A (en) Epoxy resin composition derived from polyol composition prepared by chain extension of alkylene oxide-added anhydrosugar alcohol composition with lactone-based compound, and method for preparing the same, and curable epoxy resin composition comprising the same and cured product thereof
KR20230141196A (en) Epoxy resin composition derived from polyol composition prepared by chain extension of alkylene oxide-added anhydrosugar alcohol composition with diester of dicarboxylic acid, and method for preparing the same, and curable epoxy resin composition comprising the same and cured product thereof
KR102513599B1 (en) An isocyanate prepolymer composition using anhydrosugar alcohol-alkylene glycol composition, a polyurethane-modified epoxy resin composition using the prepolymer composition and a toughening agent for epoxy resin comprising the same, and an epoxy resin composition comprising the toughening agent and an adhesive comprising the same
KR20230134242A (en) Epoxy resin composition derived from polyol composition prepared by adding alkylene oxide to anhydrosugar alcohol composition crosslinked with epoxy compound, and method for preparing the same, and curable epoxy resin composition comprising the same and cured product thereof
KR20230141182A (en) Epoxy resin composition derived from polyol composition prepared by chain extension of alkylene oxide-added anhydrosugar alcohol composition, and method for preparing the same, and curable epoxy resin composition comprising the same and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763711

Country of ref document: EP

Kind code of ref document: A1