WO2023167076A1 - 垂直共振器型発光素子 - Google Patents

垂直共振器型発光素子 Download PDF

Info

Publication number
WO2023167076A1
WO2023167076A1 PCT/JP2023/006504 JP2023006504W WO2023167076A1 WO 2023167076 A1 WO2023167076 A1 WO 2023167076A1 JP 2023006504 W JP2023006504 W JP 2023006504W WO 2023167076 A1 WO2023167076 A1 WO 2023167076A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
layer
multilayer
vertical cavity
concave reflecting
Prior art date
Application number
PCT/JP2023/006504
Other languages
English (en)
French (fr)
Inventor
大 倉本
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Publication of WO2023167076A1 publication Critical patent/WO2023167076A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present invention relates to a vertical cavity light emitting device such as a vertical cavity surface emitting laser (VCSEL).
  • VCSEL vertical cavity surface emitting laser
  • Patent Document 1 discloses a vertical cavity semiconductor laser having an n-electrode and a p-electrode connected to an n-type semiconductor layer and a p-type semiconductor layer, respectively.
  • an optical cavity is formed by opposing reflecting mirrors.
  • a voltage is applied to a semiconductor layer through an electrode, and light emitted from the semiconductor layer resonates in the optical resonator to generate laser light.
  • vertical cavity semiconductor laser devices have lower luminous efficiency than, for example, horizontal cavity semiconductor lasers having a cavity in the in-plane direction of a semiconductor layer including an active layer. mentioned.
  • the transverse mode of light emitted from a vertical cavity semiconductor laser element tends to be multimode rather than single mode. Therefore, it has been difficult to obtain single-mode light with a stable transverse mode.
  • a vertical cavity light emitting device comprises a gallium nitride based semiconductor substrate, a first multilayer reflector made of a nitride semiconductor and formed on the substrate, and formed on the first multilayer reflector.
  • the reflecting structure is characterized by having a reflecting structure extending to the outside of the region 1 and having a concave reflecting surface facing the first multilayer film reflecting mirror.
  • FIG. 1 is a perspective view of a surface emitting laser of Example 1.
  • FIG. 1 is a top view of a surface emitting laser of Example 1.
  • FIG. 1 is a cross-sectional view of a surface emitting laser of Example 1.
  • FIG. 10 is a top view of a surface-emitting laser of Modification 1;
  • FIG. 11 is a cross-sectional view of a surface-emitting laser of Modification 2;
  • FIG. 11 is a cross-sectional view of a surface-emitting laser according to Modification 3;
  • FIG. 10 is a cross-sectional view of a surface-emitting laser of a modified example;
  • FIG. 10 is a cross-sectional view of a surface-emitting laser of Example 2;
  • FIG. 1 is a perspective view of a vertical cavity surface emitting laser (VCSEL: Vertical Cavity Surface Emitting Laser, hereinafter also simply referred to as a surface emitting laser) 10 according to Example 1.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the substrate 11 is a gallium nitride semiconductor substrate, such as an undoped GaN substrate.
  • the substrate 11 is, for example, a substrate having a rectangular top surface shape.
  • the upper surface of the substrate 11 is a plane that is 0.5° off from the C plane in the M plane direction. Further, the upper surface of the substrate 11 is hardly turned off from the C plane to the A plane direction, and the off angle from the C plane to the A plane direction is 0 ⁇ 0.01°.
  • the axis that passes through the center of the top surface of the substrate 11 and is perpendicular to the top surface will be referred to as a central axis AX1.
  • the substrate 11 is also arranged in the resonator, so it is preferable that the substrate 11 has high light transmittance. Therefore, the substrate 11 is preferably undoped.
  • the convex portion 11P is a convex portion formed in a circular region centered on the central axis AX1 on the lower surface of the substrate 11 and having a downwardly convex curved surface.
  • the convex portion 11P has a plano-convex lens shape.
  • the optical axis of the lens shape formed by the convex portion 11P coincides with the central axis AX1.
  • the back surface multilayer film reflector 12 (indicated by a two-dot chain line in the figure) is a dielectric multilayer film reflector made of a dielectric film formed on the surface of the convex portion 11P.
  • the rear multilayer film reflector 12 is formed by alternately laminating a low refractive index dielectric film made of SiO 2 and a high refractive index dielectric film made of Nb 2 O 5 and having a higher refractive index than the low refractive index dielectric film. It is a dielectric multilayer reflector.
  • the rear multilayer reflector 12 is a distributed Bragg reflector (DBR) made of a dielectric material.
  • the rear multilayer reflector 12 is composed of four pairs of Nb 2 O 5 /SiO 2 layers formed on the surface of the convex portion 11P.
  • a concave reflection structure 12R having an upward concave reflection surface 12RS is formed by the rear multilayer film reflector 12 and the convex portion 11P.
  • the upper surface of the rear multilayer film reflector 12 is the concave reflecting surface 12RS.
  • the first multilayer reflector 13 is a semiconductor multilayer reflector composed of semiconductor layers grown on the substrate 11 .
  • a low refractive index semiconductor film having a composition of AlInN and a high refractive index semiconductor film having a GaN composition and having a higher refractive index than the low refractive index semiconductor film are alternately laminated. It is formed by In other words, the first multilayer reflector 13 is a distributed Bragg reflector (DBR) made of semiconductor material.
  • DBR distributed Bragg reflector
  • the first multilayer reflector 13 for example, a buffer layer having a GaN composition is provided on the upper surface of the substrate 11, and the high refractive index semiconductor film and the low refractive index semiconductor film are alternately formed on the buffer layer. formed by letting In this embodiment, the first multilayer reflector 13 consists of 35 pairs of GaN/AlInN layers laminated on a 1 ⁇ m thick GaN underlayer formed on the upper surface of the substrate 11 .
  • the first multilayer film reflector 13 having such a structure has a reflectance of about 80% with respect to light emitted from the active layer 19 .
  • the semiconductor structure layer 15 is a laminated structure composed of a plurality of semiconductor layers formed on the first multilayer reflector 13 .
  • the semiconductor structure layer 15 includes an n-type semiconductor layer (first semiconductor layer) 17 formed on the first multilayer reflector 13 and a light-emitting layer (or active layer) formed on the n-type semiconductor layer 17. 19 and a p-type semiconductor layer (second semiconductor layer) 21 formed on the active layer 19 .
  • the n-type semiconductor layer 17 as the first conductivity type semiconductor layer is a semiconductor layer formed on the first multilayer film reflector 13 .
  • the n-type semiconductor layer 17 is a semiconductor layer having a GaN composition and being doped with Si as an n-type impurity.
  • the n-type semiconductor layer 17 has a prismatic lower portion 17A and a cylindrical upper portion 17B disposed thereon.
  • the n-type semiconductor layer 17 has a columnar upper portion 17B protruding from an upper surface 17S of a prismatic lower portion 17A.
  • the n-type semiconductor layer 17 has a mesa-shaped structure including the upper portion 17B.
  • the active layer 19 is formed on the upper portion 17B of the n-type semiconductor layer 17, and is a layer having a quantum well structure including well layers having an InGaN composition and barrier layers having a GaN composition. Light is generated in the active layer 19 in the surface emitting laser 10 .
  • the active layer 19 is formed so that its emission center is brought on the central axis AX1.
  • the p-type semiconductor layer 21 as the second conductivity type semiconductor layer is a semiconductor layer having a GaN composition formed on the active layer 19 .
  • the p-type semiconductor layer 21 is doped with Mg as a p-type impurity.
  • the n-electrode 23 is a metal electrode provided on the upper surface 17S of the lower portion 17A of the n-type semiconductor layer 17 and electrically connected to the n-type semiconductor layer 17.
  • N-electrode 23 is formed in an annular shape so as to surround upper portion 17B of n-type semiconductor layer 17 .
  • the n-electrode 23 is in electrical contact with the n-type semiconductor layer 17 and forms a first electrode layer that supplies current to the semiconductor structure layer 15 from the outside.
  • the insulating layer 25 is a layer made of an insulator formed on the p-type semiconductor layer 21 .
  • the insulating layer 25 is made of a material, such as SiO 2 , having a lower refractive index than the material forming the p-type semiconductor layer 21 .
  • the insulating layer 25 is annularly formed on the p-type semiconductor layer 21 and has an opening (not shown) exposing the p-type semiconductor layer 21 in the central portion.
  • the transparent electrode 27 is a transparent metal oxide film formed on the upper surface of the insulating layer 25 .
  • the transparent electrode 27 covers the entire upper surface of the insulating layer 25 and the entire upper surface of the p-type semiconductor layer 21 exposed through the opening formed in the central portion of the insulating layer 25 .
  • the metal oxide film that forms the transparent electrode 27 for example, ITO or IZO, which is transparent to the light emitted from the active layer 19, can be used.
  • the p-electrode 29 is a metal electrode formed on the transparent electrode 27 .
  • the p-electrode 29 is electrically connected via the transparent electrode 27 to the upper surface of the p-type semiconductor layer 21 exposed from the opening of the insulating layer 25 .
  • the transparent electrode 27 and the p-electrode 29 form a second electrode layer that is in electrical contact with the p-type semiconductor layer 21 and supplies current to the semiconductor structure layer 15 from the outside.
  • the p-electrode 29 is annularly formed on the upper surface of the transparent electrode 27 along the outer edge of the upper surface.
  • the second multilayer reflector 31 is a cylindrical multilayer reflector formed in a region surrounded by the p-electrode 29 on the upper surface of the transparent electrode 27 .
  • the second multilayer film reflector 31 is composed of a low refractive index dielectric film made of SiO2 and a high refractive index dielectric film made of Nb2O5 and having a higher refractive index than the low refractive index dielectric film . It is a laminated dielectric multilayer reflector.
  • the second multilayer reflector 31 is a distributed Bragg reflector (DBR) made of dielectric material.
  • DBR distributed Bragg reflector
  • the second multilayer reflector 31 comprises a spacer layer of Nb 2 O 5 formed on the upper surface of the transparent electrode 27, and 10.5 pairs of Nb 2 O deposited on the spacer layer. 5 /SiO 2 layers.
  • the second multilayer film reflector 31 having such a configuration has a reflectance of 99% or more with respect to light emitted from the active layer 19 .
  • the reflectance of the second multilayer film reflector 31 is higher than the reflectance of the first multilayer film reflector 13 .
  • FIG. 2 is a top view of the surface emitting laser 10.
  • the axis along the m-axis direction in the same plane as the upper surface of the substrate 11 is defined as a lateral axis AX2.
  • the surface-emitting laser 10 includes a semiconductor structure layer 15 including an n-type semiconductor layer 17 formed on a substrate 11 having a rectangular top surface, an active layer 19 having a circular top surface, and a p-type semiconductor layer 21 . (see FIG. 1).
  • An insulating layer 25 and a transparent electrode 27 are formed on the p-type semiconductor layer 21 .
  • a p-electrode 29 and a second multilayer film reflector 31 are formed on the transparent electrode 27 .
  • the insulating layer 25 has an opening 25H which is a circular opening exposing the p-type semiconductor layer 21 of the insulating layer 25 described above. As shown in FIG. 2, the opening 25H is formed in the central portion of the insulating layer 25 when viewed from above the surface emitting laser 10, and is covered by the second multilayer reflector 31 when viewed from above the surface emitting laser 10. It is In other words, the opening 25 ⁇ /b>H is formed in a region of the insulating layer 25 facing the lower surface of the multilayer film reflector 31 . In this embodiment, the opening 25H has a diameter of 10 ⁇ m.
  • the opening 25H has a circular shape centered on the central axis AX1. Therefore, the p-type semiconductor layer 21 is electrically connected to the transparent electrode 27 via the electrical contact surface 21S in the circular area exposed from the opening 25H on the upper surface of the p-type semiconductor layer 21.
  • the convex portion 11P (thick dashed line in the figure) has a circular shape centered on the central axis AX1 when viewed from above.
  • the convex portion 11P is formed over a region facing the electrical contact surface 21S on the lower surface of the substrate 11.
  • the convex portion 11P is formed to overlap the electrical contact surface 21S when viewed from above, that is, in the normal direction of the upper surface of the substrate 11, and extends to the outside of the outer edge of the electrical contact surface 21S, ie, the outline.
  • the convex portion 11P extends to the outside of the p-electrode 29, that is, to the outside of the upper portion 17B of the n-type semiconductor layer 17 when viewed from above.
  • FIG. 3 is a cross-sectional view of the surface emitting laser 10 taken along line 3-3 in FIG.
  • the surface emitting laser 10 has the substrate 11 which is a GaN substrate, and the first multilayer reflector 13 is formed on the substrate 11 .
  • the rear multilayer film reflector 12 is formed as the third multilayer film reflector. Therefore, the convex portion 11P and the rear multilayer reflector 12 form a concave reflection structure 12R having a concave reflecting surface facing the active layer 19 and the second multilayer reflector 31. As shown in FIG.
  • the rear multilayer film reflector 12 has a function of concentrating the light that has passed through the first multilayer film reflector 13 and reached the rear multilayer film reflector 12 in a region along the central axis AX1.
  • the semiconductor structural layer 15 is formed on the first multilayer reflector 13 .
  • the semiconductor structure layer 15 is a laminate in which an n-type semiconductor layer 17, an active layer 19 and a p-type semiconductor layer 21 are formed in this order. At the center of the upper surface of the p-type semiconductor layer 21, a protruding portion 21P protruding upward is formed.
  • the n-type semiconductor layer 17 is a 350 nm-thick n-GaN layer doped with Si.
  • the active layer 19 has a multiple quantum well structure in which four pairs of 3 nm GaInN layers and 4 nm GaN layers are laminated.
  • an undoped GaN layer with a thickness of 120 nm and an electron barrier layer of Mg-doped AlGaN (Al composition: 30%) with a thickness of 10 nm are formed.
  • a p-type semiconductor layer 21 made of a p-GaN layer having a thickness is formed.
  • the insulating layer 25 is formed so as to cover the region other than the protruding portion 21P on the upper surface of the p-type semiconductor layer 21 .
  • the insulating layer 25 is made of a material having a lower refractive index than the p-type semiconductor layer 21 as described above.
  • the insulating layer 25 has an opening 25H that exposes the protrusion 21P.
  • the opening 25H and the protrusion 21P have the same shape, and the inner surface of the opening 25H and the outer surface of the protrusion 21P are in contact with each other.
  • the insulating layer 25 is a layer of 20 nm SiO 2 .
  • the upper surface of the insulating layer 25 is arranged at the same level as the upper surface of the protruding portion 21P of the p-type semiconductor layer 21 .
  • the protruding portion 21P on the upper surface of the p-type semiconductor layer 21 protrudes from the surrounding area of the protruding portion 21P on the upper surface of the p-type semiconductor layer 21 by 20 nm. Therefore, the p-type semiconductor layer 21 has a layer thickness of 83 nm in the projecting portion 21P and a layer thickness of 63 nm in other regions.
  • the transparent electrode 27 is formed so as to cover the upper surface of the insulating layer 25 and the protruding portion 21P exposed from the opening 25H of the insulating layer 25 . That is, the transparent electrode 27 is in electrical contact with the p-type semiconductor layer 21 in the region exposed through the opening 25H on the upper surface of the p-type semiconductor layer 21 . In other words, the region exposed through the opening 25H on the upper surface of the p-type semiconductor layer 21 serves as an electrical contact surface 21S that provides electrical contact between the p-type semiconductor layer 21 and the transparent electrode 27.
  • the p-electrode 29 is a metal electrode as described above, and is formed along the outer edge of the top surface of the transparent electrode 27 . That is, the p-electrode 29 is in electrical contact with the transparent electrode 27 . Therefore, the p-electrode 29 is in electrical contact or connection with the p-type semiconductor layer 21 through the transparent electrode 27 at the electrical contact surface 21S exposed through the opening 25H on the upper surface of the p-type semiconductor layer 21.
  • the second multilayer reflector 31 is located on the upper surface of the transparent electrode 27 and in the area above the opening 25H of the insulating layer 25, in other words, the area on the electrical contact surface 21S, that is, the central portion of the upper surface of the transparent electrode 27. formed.
  • the lower surface of the second multilayer reflector 31 faces the upper surface of the first multilayer reflector 13 and the upper surface of the rear multilayer reflector 12 with the transparent electrode 27 and the semiconductor structure layer 15 interposed therebetween.
  • a first resonator OC1 is formed between the first multilayer reflector 13 and the second multilayer reflector 31, and between the rear multilayer reflector 12 and the second multilayer reflector 31.
  • a second resonator OC2 is formed.
  • the resonator OC that resonates the light emitted from the active layer 19 includes the first resonator OC1 and the second resonator OC2.
  • the reflectance of the second multilayer reflector 31 is slightly higher than the reflectance of the reflection structure composed of the back multilayer reflector 12 and the first multilayer reflector 13 . Therefore, part of the light resonating between the rear multilayer reflector 12 and the first multilayer reflector 13 and the second multilayer reflector 31 is transmitted through the first multilayer reflector 13 and the substrate 11 . and the rear multilayer film reflecting mirror 12, and taken out to the outside.
  • the operation of the surface emitting laser 10 will be described.
  • the surface-emitting laser 10 when a voltage is applied between the n-electrode 23 and the p-electrode 29, a current flows in the semiconductor structure layer 15 as indicated by the bold dashed-dotted arrow in the figure, and light is emitted from the active layer 19. is emitted.
  • the light emitted from the active layer 19 is repeatedly reflected between the first multilayer reflector 13, the back multilayer reflector 12, and the second multilayer reflector 31, and reaches a resonance state (i.e., laser oscillation). do).
  • the opening 25H has a current confinement structure that limits the current supply range in the active layer 19.
  • FIG. That is, in the surface emitting laser, the p-type semiconductor layer 21 and the insulating layer 25 form a current confinement structure.
  • a columnar region having the electrical contact surface 21S as a bottom surface is formed in the active layer 19 between the first multilayer reflector 13 and the second multilayer reflector 31.
  • a current confinement structure is formed in which the current is confined to one region of the active layer so that the current flows only in the central region CA.
  • a central region CA which includes a region through which current flows within the active layer 19, is defined by an electrical contact surface 21S.
  • the first multilayer reflector 13 has a lower reflectance than the second multilayer reflector 31 . Therefore, part of the light coming from the second multilayer reflecting mirror 31 and the active layer 19 and reaching the first multilayer reflecting mirror 13 is transmitted to the rear multilayer reflecting mirror 12, and is transmitted to the second multilayer reflecting mirror 12. Resonance also occurs between the film reflecting mirror 31 and the rear multilayer film reflecting mirror 12 . A part of the resonated light is transmitted through the first multilayer film reflector 13, the back multilayer film reflector 12, and the substrate 11 and extracted to the outside.
  • the surface emitting laser 10 emits light from the bottom surface of the substrate 11 in a direction perpendicular to the in-plane directions of the bottom surface of the substrate 11 excluding the protrusions 11P and the in-plane direction of each layer of the semiconductor structure layer 15 .
  • the lower surface of the substrate 11 serves as the light emitting surface of the surface emitting laser 10 .
  • the electrical contact surface 21S of the p-type semiconductor layer 21 of the semiconductor structure layer 15 and the opening 25H of the insulating layer 25 define the light emission center, which is the center of the light emission region in the active layer 19, and the central axis of the resonator OC. (luminescence central axis) is defined.
  • the center axis of the resonator OC passes through the center of the electrical contact surface 21S of the p-type semiconductor layer 21 and extends along the direction perpendicular to the in-plane direction of the semiconductor structure layer 15 .
  • the light emission central axis of the resonator OC is the same as the central axis AX1.
  • the central axis AX1 is also referred to as the light emitting central axis AX1.
  • the light emitting region of the active layer 19 is, for example, a region having a predetermined width from which light having a predetermined intensity or more is emitted in the active layer 19, the center of which is the light emitting center. Further, for example, the light emitting region of the active layer 19 is a region into which a current having a predetermined density or more is injected in the active layer 19, and the center thereof is the light emitting center. A straight line perpendicular to the in-plane direction of the upper surface of the substrate 11 or each layer of the semiconductor structure layer 15 passing through the center of light emission is the center axis of light emission AX1.
  • the light emission central axis AX1 is a straight line extending along the cavity length direction of the cavity OC constituted by the first multilayer reflector 13, the back multilayer reflector 12, and the second multilayer reflector 31. . Also, the emission center axis AX1 corresponds to the optical axis of the laser light emitted from the surface emitting laser 10 .
  • the insulating layer 25 has a lower refractive index than the p-type semiconductor layer 21 .
  • the layer thicknesses of the active layer 19 and the n-type semiconductor layer 17 are set to any in-plane thickness. The locations are the same as long as they are in the same layer.
  • the equivalent refractive index (back surface is the optical distance between the multilayer reflector 12 and the first multilayer reflector 13 and the second multilayer reflector 31 and corresponds to the resonance wavelength) is the p-type semiconductor layer 21 and the insulating layer 25 , the cylindrical central region CA having the electrical contact surface 21S as the bottom surface and the cylindrical peripheral region PA surrounding it.
  • the equivalent refractive index of the peripheral area PA is lower than that of the central area CA. is also lower, ie the equivalent resonant wavelength in the central area CA is smaller than the equivalent resonant wavelength in the peripheral area PA.
  • the light-emitting region from which light is emitted in the active layer 19 is the portion of the active layer 19 that overlaps with the central region CA, in other words, the region that overlaps with the electrical contact surface 21S when viewed from above.
  • the central region CA including the light emitting region of the active layer 19 and the central region CA surrounding and surrounding the central region CA are formed by the p-type semiconductor layer 21 and the insulating layer 25 forming the current confining structure.
  • a peripheral area PA having a lower refractive index than CA is formed.
  • the p-type semiconductor layer 21 and the insulating layer 25 forming the current confinement structure also form a light confinement structure that confines light in the central region.
  • the light that has passed through the first multilayer reflector 13 and reaches the rear multilayer reflector 12 is reflected by the concave reflecting structure 12 R formed by the rear multilayer reflector 12 . It is converged in the central area CA by the surface 12RS. That is, the light is confined in the central area CA also by the rear multilayer film reflecting mirror 12 .
  • the resonator OC is formed by the rear multilayer reflector 12, the first multilayer reflector 13, and the second multilayer reflector 31, as described above.
  • the rear multilayer reflector 12 is removed from the surface-emitting laser 10 of the present application, and the reflectances of the first multilayer reflector 13 and the second multilayer reflector 31 are made close to form a resonator alone.
  • a configuration hereinafter also referred to as a comparative configuration.
  • the diameter of the opening 25H that forms the current confining structure that limits the flow of current into the active layer 19 and defines the light emitting region is about 5.5 .mu.m or less, the extracted light is unlikely to be single mode. It has been found by the inventors of the present application.
  • the current injection region had to be kept small in the case of a comparative configuration in which light was confined simply by a structure forming a current confinement structure and the transverse mode was controlled to a single mode. This is because when the current injection region of the active layer is increased to increase the optical output, spatial hole burning occurs near the emission center of the active layer, resulting in a decrease in optical gain near the emission center.
  • This spatial hole burning is a phenomenon in which the light density is excessively increased in a specific region of the active layer, resulting in a large amount of stimulated emission, and the injected carriers are consumed in the region where the light density is high, resulting in a decrease in carrier density. is.
  • the opening 25H is made larger than 5.5 ⁇ m in order to increase the light output
  • the light confinement effect caused by the current confinement structure causes the light to concentrate too much around the emission center of the active layer.
  • the light density becomes excessively high, and hole burning occurs.
  • the optical gain of the cavity in the width direction will have a plurality of peaks, and the transverse modes of the extracted light will be multiple modes.
  • the rear multilayer reflecting mirror 12 and the first multilayer reflecting mirror 13 form a reflecting structure for reflecting light upward
  • the second multilayer reflecting mirror 31 form a reflecting structure that reflects light downward, and these form a resonator.
  • part of the light from the first resonator OC1 composed of the first multilayer reflector 13 and the second multilayer reflector 31 is transmitted to the first multilayer reflector. 13 and directed downward.
  • a second resonator OC2 is also formed between the second multilayer reflector 31 and the rear multilayer reflector 12 having the concave reflecting surface 12RS that reflects while converging toward the central axis AX1.
  • the luminous center It is possible to reduce the light density in the region around the axis AX1 and suppress the occurrence of spatial hole burning.
  • the surface emitting laser 10 not only the light confining structure formed between the first multilayer reflector 13 and the second multilayer reflector 31 but also the rear multilayer reflector 12 It has another lateral light confinement structure that concentrates light in the central area CA. Moreover, since the reflectance of the first multilayer film reflector 13 is low as described above, the first resonator between the first multilayer film reflector 13 and the second multilayer film reflector 31 The light confinement effect by the current confinement structure, which is strongly generated in OC1, becomes milder than in the conventional case.
  • the optical confinement effect by the current confinement structure causes resonance only in the first resonator OC1 between the first multilayer reflector 13 and the second multilayer reflector 31. It becomes looser than the comparative configuration. Instead, the rear multilayer reflector 12 having a concave reflecting surface 12RS that reflects the light passing through the first multilayer reflector 13 and directed downward while converging upward toward the central axis AX1, It is in the form of compensating for the light confinement effect by the current confinement structure that has become moderate.
  • the surface-emitting laser 10 hole burning does not occur even if the current injection region of the active layer 19 is enlarged by enlarging the opening 25H, and the light intensity distribution of the emitted light can easily maintain the Gaussian distribution. . That is, in the surface-emitting laser 10, the transverse mode of the emitted light is likely to be maintained in a single mode.
  • the curvature radius R of the concave reflecting surface 12RS of the concave reflecting structure 12R preferably satisfies the following formula (1).
  • Z is originally the distance between the reflecting surface of the concave reflecting structure and the active layer 19, but since the distance between the active layer 19 and the lower surface of the second multilayer film reflecting mirror 31 is small enough to approximate, It is the distance between the reflecting surface of the reflecting structure 12R and the lower surface of the second multilayer film reflecting mirror 31 (see FIG. 3).
  • n eq is the equivalent refractive index of the semiconductor between the reflecting surface of the concave reflecting structure 12R and the lower surface of the second multilayer reflector 31;
  • This relationship is derived from the position of 1/e of the light intensity at the peak from the position of the peak in the light intensity distribution in the plane perpendicular to the emission direction of the light emitted from the surface-emitting laser 10 in the first cavity OC1.
  • ⁇ 0 which is the distance to , i.e., 1/2 of the beam spot diameter, and Eq. (2) below.
  • the above formula (1) is derived from the above formula (2) showing the relationship between ⁇ 0 and R. Specifically, the condition is that the spot diameter ⁇ 0 of the light output from the first resonator OC1 is 1.65 ⁇ m at maximum, and the spot diameter of the light output from the second resonator OC2 is less than this. It is derived by introducing the condition that it is preferable to be large into the above formula (1).
  • the upper surface of the substrate 11 is a plane that is 0.5° off from the C-plane in the M-plane direction.
  • the optical gain of the light having the polarization direction in the m-axis direction is changed to the other direction.
  • the laser light having the polarization direction in the m-axis direction easily oscillates. Therefore, most of the light emitted from the central region CA of the surface emitting laser 10 has the polarization direction in the m-axis direction. That is, the surface-emitting laser 10 emits more light that has a polarization direction along the horizontal axis AX2.
  • the surface emitting laser of the present invention it becomes easy to increase the emission output while maintaining the transverse mode of the emitted light in the single mode. In addition, it has high luminous efficiency, and it is possible to stably obtain emitted light in a specific polarization direction. This is very effective when the light emitted from the surface emitting laser is used in a device having an optical system using liquid crystals or polarizers.
  • a GaN substrate whose upper surface is a crystal plane inclined from the C plane to the M plane is prepared as described above.
  • a GaN layer (thickness: 1 ⁇ m) is formed as a base layer on the upper surface of the substrate 11 by metal-organic vapor phase epitaxy (MOVPE). After that, 35 pairs of n-GaN/AlInN layers are formed on the underlying layer to form the first multilayer reflector 13 .
  • MOVPE metal-organic vapor phase epitaxy
  • Si-doped n-GaN (layer thickness: 350 nm) is formed on the first multilayer reflector 13 to form an n-type semiconductor layer 17, and GaInN (layer thickness: 3 nm) and GaN (layer thickness: 3 nm) are formed thereon.
  • the active layer 19 is formed by laminating four pairs of layers each having a layer thickness of 4 nm).
  • the surrounding portions of the p-type semiconductor layer 21, the active layer 19 and the n-type semiconductor layer 17 are etched to form a mesa shape in which the upper surface 17S of the n-type semiconductor layer 17 is exposed in the surrounding portions.
  • the semiconductor structure layer 15 having a columnar portion composed of the n-type semiconductor layer 17, the active layer 19 and the p-type semiconductor layer 21 shown in FIG. 1 is completed.
  • the periphery of the central portion of the upper surface of the p-type semiconductor layer 21 is etched to form a protruding portion 21P.
  • an insulating layer 25 is formed by forming a film of SiO 2 to a thickness of 20 nm on the semiconductor structure layer 15 and partially removing it to form an opening 25H. In other words, SiO 2 is buried in the etched away portion of the upper surface of the p-type semiconductor layer 21 .
  • an ITO film having a thickness of 20 nm is formed on the insulating layer 25 to form a transparent electrode 27, and an Au film is formed on the upper surface of the transparent electrode 27 and the upper surface 17S of the n-type semiconductor layer 17 to form a p-electrode 29 and an n-electrode. 23 is formed.
  • a 38 nm Nb 2 O 5 film is formed on the transparent electrode 27 as a spacer layer (not shown).
  • a pair of films are formed to form the second multilayer film reflector 31 .
  • the convex portion 11P is formed on the back surface of the substrate 11 .
  • the convex portion 11P is formed by a reflow process such that the center axis of the lens shape coincides with the light emission center axis AX1. Note that the convex portion 11P may be formed using exposure patterning and dry etching.
  • a resist is deposited on the back surface of the substrate 11 in the same shape as the projections 11P, the entire back surface of the substrate 11 is dry-etched, and the shape of the resist is transferred to the back surface of the substrate 11. You may form the convex part 11P by this.
  • Modification 1 A surface-emitting laser 40, which is a first modification of the surface-emitting laser 10 according to the first embodiment of the present invention, will be described below. Modification 1 differs from the surface emitting laser 10 in that the convex portion 11P is not circular, that is, the concave reflecting surface formed by the concave reflecting structure 12R is not circular.
  • FIG. 4 is a top view of the surface-emitting laser 40 of Modification 1.
  • the top surface shape of the convex portion 11P has an elliptical shape whose major axis is in the same direction as the lateral axis AX2. That is, the convex portion 11P has an elliptical upper surface shape having a major axis along the m-axis direction when viewed from above.
  • the convex portion 11P has an elliptical shape with a long axis in the m-axis direction
  • the reflecting surface of the concave reflecting structure 12R has an elliptical upper surface shape with a long axis in the m-axis direction. Then, in the central area CA of the light polarized along the m-axis, the optical gain of the light polarized along the m-axis increases and the loss in the m-axis decreases. , was discovered by the inventor of the present invention.
  • the surface-emitting laser 40 a large amount of light having a polarization direction along the m-axis can be extracted from the lower surface of the substrate 11, which is the light emitting surface of the surface-emitting laser 10, and Emission of light having a polarization direction other than the parallel direction can be suppressed. Therefore, according to the surface emitting laser 40, it is possible to further suppress variations in the polarization direction of the light extracted from the light emitting surface in the in-plane direction of the light emitting surface.
  • the shape of the convex portion 11P for further suppressing the variation in the polarization direction in other words, the shape of the upper surface of the reflecting surface of the concave reflecting structure 12R may be any shape as long as the direction along the lateral axis AX2 is the longitudinal direction. may be in the shape of In other words, the shape of the upper surface of the convex portion 11P may be any shape other than an ellipse as long as it has a longitudinal direction along the horizontal axis AX2.
  • the shape of the upper surface of the convex portion 11P may be rectangular or rectangular with the longitudinal direction along the lateral axis AX2. Further, for example, the shape of the upper surface of the convex portion 11P may be an elliptical shape having the same contour as that of a land track whose longitudinal direction is along the direction of the lateral axis AX2. Further, for example, the shape of the upper surface of the convex portion 11P may be a diamond shape whose longitudinal direction is along the direction of the axis AX2.
  • a surface-emitting laser 50 which is a modification 2 of the surface-emitting laser 10 of the first embodiment of the present invention, will be described below with reference to FIG.
  • the surface-emitting laser 50 of Modification 2 differs from the surface-emitting laser 10 of Example 1 in that the rear multilayer reflector 12 is not formed.
  • FIG. 5 is a cross-sectional view showing a cut surface when the surface-emitting laser 50 is cut along the same cutting line as shown in FIG. 2, that is, a cut surface corresponding to FIG.
  • the surface-emitting laser 50 does not have the rear multilayer film reflector 12, but has a diffraction grating 53 (inside the dashed line in the figure) made up of a plurality of slit grooves 51 on the surface of the convex portion 11P. formed. That is, the convex portion 11P and the diffraction grating 53 form a concave reflecting structure 55R having a concave reflecting surface 55RS.
  • the slit groove 51 has its longitudinal direction in the same direction as the lateral axis AX2 (see FIG. 2), which is the axis along the direction perpendicular to the paper surface of FIG. That is, the slit groove 51 has a longitudinal direction along the m-axis direction when viewed from above.
  • the diffraction grating 53 formed by the slit grooves 51 provides a high reflectance for light whose polarization direction is the extension direction of each of the slit grooves 51 forming the diffraction grating, that is, the m-axis direction. That is, since the diffraction grating 53 made up of the slit grooves 51 is formed, the reflectance of the light whose polarization direction is the m-axis direction is higher than that of light having other polarization directions, and the m-axis direction is the polarization direction.
  • the light that is set to is preferentially easier to oscillate.
  • the diffraction grating 53 made up of the slit grooves 51 is formed on the lower surface of the substrate 11 to form the concave reflection structure 55R, thereby further controlling the polarization of the emitted light. It is possible to stably obtain emitted light in which directional light is dominant.
  • the slit grooves 51 can be formed by performing an etching process such as dry etching on the lower surface of the substrate 11 in the final step of manufacturing the surface emitting laser 10 of the first embodiment described above.
  • a surface-emitting laser 60 that is a third modification of the first embodiment of the present invention will be described below with reference to FIG.
  • the surface emitting laser 60 differs from the surface emitting laser 10 of Example 1 in that a tunnel junction structure is formed in the semiconductor structure layer 15 instead of the insulating layer 25 in order to form the above-described current confinement structure.
  • the surface emitting laser 60 differs from the surface emitting laser 10 in the structure above the p-type semiconductor layer 21 .
  • FIG. 6 is a cross-sectional view showing a cut surface when the surface-emitting laser 60 is cut along the same cutting line as shown in FIG. 2, that is, a cut surface corresponding to FIG.
  • a tunnel junction layer 61 is formed on the projecting portion 21P of the p-type semiconductor layer 21.
  • a tunnel junction layer 61 is formed in the central region CA within the semiconductor structure layer 15 .
  • the tunnel junction layer 61 is formed on the p-type semiconductor layer 21 and includes a highly doped p-type semiconductor layer 61A, which is a p-type semiconductor layer having an impurity concentration higher than that of the p-type semiconductor layer 21, and on the highly doped p-type semiconductor layer 61A. and a highly doped n-type semiconductor layer 61 ⁇ /b>B, which is an n-type semiconductor layer having an impurity concentration higher than that of the n-type semiconductor layer 17 .
  • the n-type semiconductor layer 63 is formed on the p-type semiconductor layer 21 and the tunnel junction layer 61 .
  • the n-type semiconductor layer 63 is formed to bury the tunnel junction layer 61 on the upper surface of the p-type semiconductor layer 21 .
  • the n-type semiconductor layer 63 is formed to cover the side surfaces of the protruding portion 21 ⁇ /b>P and the side surfaces and upper surface of the tunnel junction layer 61 .
  • the second multilayer reflector 65 is formed on the upper surface of the n-type semiconductor layer 63 and is an n-type semiconductor layer having the same doping concentration as the n-type semiconductor layer 17 . That is, the n-type semiconductor layer 63 has a doping concentration lower than that of the highly doped n-type semiconductor layer 61B.
  • the tunnel junction layer 61 and the n-type semiconductor layer 63 Due to such a laminated structure of the p-type semiconductor layer 21, the tunnel junction layer 61 and the n-type semiconductor layer 63, a tunnel effect occurs in the tunnel junction layer 61 portion. As a result, in the surface-emitting laser 60, between the p-type semiconductor layer 21 and the n-type semiconductor layer 63, a current flows only through the tunnel junction layer 61, and a current is confined in the central region CA. It is formed.
  • the second multilayer reflector 65 is a semiconductor multilayer reflector comprising a semiconductor layer formed on the n-type semiconductor layer 63 .
  • a low refractive index semiconductor film having a composition of AlInN and a high refractive index semiconductor film having a GaN composition and having a higher refractive index than the low refractive index semiconductor film are alternately laminated. and has the characteristics of an n-type semiconductor.
  • the second multilayer reflector 65 is a distributed Bragg reflector (DBR) made of semiconductor material.
  • DBR distributed Bragg reflector
  • the p-side electrode 67 is a metal electrode formed along the periphery of the top surface of the second multilayer film reflector 65 .
  • the second multilayer reflector 65 is conductive, from the p-side electrode 67, the second multilayer reflector 65, the n-type semiconductor layer 63, the tunnel junction layer 61, the p-type semiconductor A current flows through layer 21 , active layer 19 and n-type semiconductor layer 17 to n-electrode 23 .
  • the tunnel junction layer 61 that forms a tunnel junction in the same region as the electrical contact surface 21S when viewed from above, the same current constriction effect as the electrical contact surface 21S is formed. , a light confinement effect can be obtained.
  • the n-electrode 23 is formed on the n-type semiconductor layer 17 in the first embodiment and modified examples 1 to 3 above, the n-side electrode may be formed on the rear surface of the substrate 11 instead.
  • FIG. 7 shows a case where an n-side electrode 68 is formed in the region around the convex portion 11P, that is, in the region outside the concave reflecting structure 12R, instead of the n-electrode 23 in the surface emitting laser 10 of the first embodiment.
  • a cross-sectional view is shown.
  • the substrate 11 must be doped because the substrate 11 serves as a current path.
  • the substrate 11 is also arranged in the resonator, so it is preferable that the substrate 11 has high light transmittance. Therefore, the n-type dopant with which the substrate 11 is doped is preferably Si rather than oxygen, and the dopant concentration is preferably low.
  • the n-type dopant with which the substrate 11 is doped is preferably Si rather than oxygen, and the dopant concentration is preferably low.
  • the substrate 11 it is preferable that 80% of the regions in the first resonator OC1 and the second resonator OC2 have a Si dopant concentration of 2 ⁇ 10 18 /cm 3 or less.
  • the area of 1 ⁇ 10 18 /cm 3 or less occupies 80%.
  • the portion where the n-side electrode is formed needs to have a high dopant concentration.
  • the substrate 11 satisfying the above dopant concentration condition is formed.
  • oxygen may be used as the dopant for the portion where the n-side electrode is to be formed, since it is a region outside the resonator OC.
  • FIG. 8 is a cross-sectional view showing a cut surface when the surface-emitting laser 79 is cut along the same cutting line as shown in FIG. 2, that is, a cut surface corresponding to FIG.
  • a concave reflecting structure 71R having a concave reflecting surface 71RS is provided below the substrate 11.
  • the forming output coupler 71 is arranged. In other words, the output coupler 71 is spaced below the substrate 11 .
  • the output coupler 71 consists of a transparent substrate 72 having a concave surface 72S facing the lower surface of the substrate 11 and an external multilayer reflector 73 which is a dielectric DBR covering the concave surface 72S.
  • a concave reflecting structure 71 R corresponding to the concave reflecting structure 12 R of the surface emitting laser 10 is formed by the transparent substrate 72 and the external multilayer film reflector 73 .
  • a second resonator OC2 is formed between the second multilayer reflector 31 and the external multilayer reflector 73. As shown in FIG.
  • the rear surface of the substrate 11 is formed with, for example, four pairs of AR coats of Nb 2 O 5 /SiO 2 so that the rear surface of the substrate 11 does not reflect light.
  • Such a configuration using the output coupler 71 instead of the concave reflecting structure 12R formed by the convex portion 11P formed on the lower surface of the substrate 11 is used when the concave reflecting structure 12R has to be enlarged in the surface emitting laser 10 from the design point of view.
  • This configuration is advantageous for
  • the concave reflection structure 12R when a large number of surface-emitting lasers 10 are formed on a wafer and separated into individual pieces, if the concave reflection structure 12R must be enlarged, the number of surface-emitting lasers 10 to be manufactured per wafer is reduced to the convex portion. It may be limited by the size of 11P. In such a case, by replacing the concave reflecting structure 12R with the concave reflecting structure 71R of the external output coupler 71, it is possible to increase the size of the concave reflecting structure without reducing the number of surface emitting lasers manufactured per wafer. can.
  • the upper surface of the substrate 11 is 0.5° off from the C plane in the direction of the M plane, that is, when the off angle from the C plane to the direction of the M plane is 0.5°.
  • the off angle is not limited to this angle. If the off angle is, for example, about 0.3° to 0.8°, the above-described polarization control effect can be sufficiently obtained. Further, when the off-angle of the upper surface of the substrate 11 is 0.8° or less, the semiconductor multilayer film constituting the first multilayer reflector 13 can be stably formed to have a sufficient reflectance. .
  • the upper surface of the substrate 11 is turned off in the direction of the M plane from the C plane. It does not have to be almost off in the direction.
  • the off angle from the C plane to the A plane direction is about 0.3° to 0.8° for the same reason as the explanation about the range of the off angle of the C plane. and the off angle from the C plane to the M plane is preferably 0 ⁇ 0.1°.
  • the longitudinal direction of the upper surface shape of the protrusion 11P in Modification 1 and the longitudinal direction of the slit groove 51 in Modification 2 are described in the lateral direction. It should be understood by rereading that the axis AX2 corresponds to the a axis.
  • the upper surface of the substrate 11 When the upper surface of the substrate 11 is turned off from the C plane to the A plane direction, a large amount of light having a polarization direction along the a-axis direction can be extracted, and light having a polarization direction other than the direction along the a-axis can be extracted. emission can be suppressed. Therefore, according to the surface emitting laser 10, it is possible to suppress variations in the polarization direction of the light extracted from the light emitting surface in the in-plane direction of the light emitting surface.
  • the substrate 11 may be a C-plane substrate in which the C-plane is exposed on the upper surface.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

[課題] 高い発光効率及び出力を有し、安定してシングルモードの光を出射することが可能な垂直共振器型発光素子を提供することを目的とする。 [解決手段] 本発明の垂直共振器型発光素子は、基板上に形成された窒化物半導体よりなる第1の多層膜反射鏡と、前記第1の多層膜反射鏡上に形成された第1の導電型を有する窒化物半導体よりなり活性層を含む半導体構造層と、前記半導体構造層上に形成され、前記第1の多層膜反射鏡との間で共振器を構成する第2の多層膜反射鏡と、前記第1の多層膜反射鏡と前記第2の多層膜反射鏡との間に形成され、前記活性層の1の領域に電流を集中させる電流狭窄構造と、を有し、前記窒化ガリウム系半導体基板の下面または当該下面より下方の領域に配され、前記窒化ガリウム系半導体基板の上面に垂直な方向から見た上面視において前記1の領域よりも外側まで延在しかつ前記第1の多層膜反射鏡に対向する凹状反射面を有する凹状反射構造を有する。

Description

垂直共振器型発光素子
 本発明は、垂直共振器型面発光レーザ(VCSEL:vertical cavity surface emitting laser)などの垂直共振器型発光素子に関する。
 従来から、半導体レーザの1つとして、電圧の印加によって光を放出する半導体層と、当該半導体層を挟んで互いに対向する多層膜反射鏡と、を有する垂直共振器型の半導体面発光レーザ(以下、単に面発光レーザとも称する)が知られている。例えば、特許文献1には、n型半導体層及びp型半導体層にそれぞれ接続されたn電極及びp電極を有する垂直共振器型の半導体レーザが開示されている。
特開2017-98328号公報
 例えば、面発光レーザなどの垂直共振器型発光素子には、対向する反射鏡によって光共振器が形成されている。例えば、面発光レーザ内においては、電極を介して半導体層に電圧が印加されることで、当該半導体層から放出された光が当該光共振器内で共振し、レーザ光が生成される。
 しかし、垂直共振器型の半導体レーザ素子には、例えば、活性層を含む半導体層の面内方向に共振器を有する水平共振器型の半導体レーザに比べ発光効率が低いということが課題の一例として挙げられる。
 また垂直共振器型の半導体レーザ素子にから出射される光は、横モードがシングルモードではなくマルチモードになりやすい。そのため、横モードが安定したシングルモードの光を得るのが困難であった。
 本発明は上記した点に鑑みてなされたものであり、高い発光効率及び出力を有し、安定してシングルモードの光を出射することが可能な垂直共振器型発光素子を提供することを目的としている。
 本発明による垂直共振器型発光素子は、窒化ガリウム系半導体基板と、前記基板上に形成された窒化物半導体よりなる第1の多層膜反射鏡と、前記第1の多層膜反射鏡上に形成された第1の導電型を有する窒化物半導体よりなる第1の半導体層、前記第1の半導体層上に形成された窒化物半導体よりなる活性層、及び前記活性層上に形成されかつ前記第1の導電型とは反対の第2の導電型を有する窒化物半導体よりなる第2の半導体層を含む半導体構造層と、前記半導体構造層上に形成され、前記第1の多層膜反射鏡との間で共振器を構成する第2の多層膜反射鏡と、前記第1の多層膜反射鏡と前記第2の多層膜反射鏡との間に形成され、前記活性層の1の領域に電流を集中させる電流狭窄構造と、を有し、前記窒化ガリウム系半導体基板の下面または当該下面より下方の領域に配され、前記窒化ガリウム系半導体基板の上面に垂直な方向から見た上面視において前記1の領域よりも外側まで延在しかつ前記第1の多層膜反射鏡に対向する凹状反射面を有する反射構造を有することを特徴とする。
実施例1の面発光レーザの斜視図である 実施例1の面発光レーザの上面図である。 実施例1の面発光レーザの断面図である。 変形例1の面発光レーザの上面図である。 変形例2の面発光レーザの断面図である。 変形例3の面発光レーザの断面図である。 変形例の面発光レーザの断面図である。 実施例2の面発光レーザの断面図である。
 以下、本発明の実施例について詳細に説明する。以下の説明においては、半導体面発光レーザ素子を例に説明するが、本発明は、面発光レーザのみならず、垂直共振器型発光ダイオードなど、種々の垂直共振器型発光素子に適用することができる。
 図1は、実施例1に係る垂直共振器型面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser、以下、単に面発光レーザとも称する)10の斜視図である。
 基板11は、窒化ガリウム系半導体基板、例えばアンドープのGaN基板である。基板11は、例えば、上面形状が矩形の基板である。基板11の上面は、C面からM面方向に0.5°オフした面である。また、基板11の上面は、C面からA面方向にはほとんどオフしておらず、C面からA面方向へのオフ角は0±0.01°である。以下の説明において、基板11の上面の中心を通りかつ当該上面に垂直な軸を中心軸AX1として説明する。
 なお、面発光レーザ10においては、基板11も共振器内に配されることになるので、光の透過性が高いことが好ましい。そのため、基板11は、アンドープであることが好ましい。
 凸部11Pは、基板11の下面の中心軸AX1を中心とした円状の領域に形成された、下方に凸の曲面からなる凸部である。本実施例では、凸部11Pは平凸レンズ形状を有している。また、本実施例では凸部11Pが形成するレンズ形状の光軸が中心軸AX1と一致している。
 裏面多層膜反射鏡12(図中二点鎖線)は、凸部11Pの表面に形成された誘電体膜からなる誘電体多層膜反射鏡である。裏面多層膜反射鏡12は、SiOからなる低屈折率誘電体膜と、Nbからなり低屈折率誘電体膜よりも屈折率が高い高屈折率誘電体膜とが交互に積層された誘電体多層膜反射鏡である。
 言い換えれば、裏面多層膜反射鏡12は、誘電体材料からなる分布ブラッグ反射器(DBR:Distributed Bragg Reflector)である。本実施例において、裏面多層膜反射鏡12は、凸部11Pの表面に形成された4ペアのNb/SiO層からなる。この裏面多層膜反射鏡12と凸部11Pとで上方に凹の凹状反射面12RSを有する凹状反射構造12Rが形成されている。言い換えれば、裏面多層膜反射鏡12の上面が凹状反射面12RSになっている。
 第1の多層膜反射鏡13は、基板11の上に成長させられた半導体層からなる半導体多層膜反射鏡である。第1の多層膜反射鏡13は、AlInNの組成を有する低屈折率半導体膜と、GaN組成を有し低屈折率半導体膜よりも屈折率が高い高屈折率半導体膜とが交互に積層されることで形成されている。言い換えれば、第1の多層膜反射鏡13は、半導体材料からなる分布ブラッグ反射器(DBR)である。
 第1の多層膜反射鏡13は、例えば、基板11の上面に、GaN組成を有するバッファ層を設け、当該バッファ層上に上記高屈折率半導体膜と低屈折率半導体膜とを交互に成膜させることで形成される。本実施例では、第1の多層膜反射鏡13は、基板11上面に形成された1μmのGaN下地層の上に積層された35ペアのGaN/AlInN層からなる。このような構成の第1の多層膜反射鏡13は、活性層19からの出射光に対し、80%程度の反射率を有する。
 半導体構造層15は、第1の多層膜反射鏡13上に形成された複数の半導体層からなる積層構造体である。半導体構造層15は、第1の多層膜反射鏡13上に形成されたn型半導体層(第1の半導体層)17と、n型半導体層17上に形成された発光層(または活性層)19と、活性層19上に形成されたp型半導体層(第2の半導体層)21と、を有する。
 第1の導電型の半導体層としてのn型半導体層17は、第1の多層膜反射鏡13上に形成された半導体層である。n型半導体層17は、GaN組成を有し、n型不純物としてSiがドーピングされている半導体層である。n型半導体層17は、角柱状の下部17Aとその上に配された円柱状の上部17Bとを有する。具体的には、例えば、n型半導体層17は、角柱状の下部17Aの上面17Sから突出した円柱状の上部17Bを有している。言い換えれば、n型半導体層17は、上部17Bを含むメサ形状の構造を有する。
 活性層19は、n型半導体層17の上部17B上に形成されており、InGaN組成を有する井戸層及びGaN組成を有する障壁層を含む量子井戸構造を有する層である。面発光レーザ10においては、活性層19において光が発生する。本実施例において、活性層19は、その発光中心が中心軸AX1上に持ち来されるように形成されている。
 第2の導電型の半導体層としてのp型半導体層21は、活性層19上に形成されたGaN組成を有する半導体層である。p型半導体層21には、p型の不純物としてMgがドーピングされている。
 n電極23は、n型半導体層17の下部17Aの上面17Sに設けられ、n型半導体層17と電気的に接続されている金属電極である。n電極23は、n型半導体層17の上部17Bを囲繞するように環状に形成されている。n電極23は、n型半導体層17と電気的に接触し、半導体構造層15に外部からの電流を供給する第1の電極層を形成している。
 絶縁層25は、p型半導体層21上に形成されている絶縁体からなる層である。絶縁層25は、例えばSiO等のp型半導体層21を形成する材料よりも低い屈折率を有する物質によって形成されている。絶縁層25は、p型半導体層21上において環状に形成されており、中央部分にp型半導体層21を露出する開口部(図示せず)を有している。
 透明電極27は、絶縁層25の上面に形成された透光性を有する金属酸化膜である。透明電極27は、絶縁層25の上面全体及び絶縁層25の中央部分に形成された開口から露出するp型半導体層21の上面の全体を覆っている。透明電極27を形成する金属酸化膜としては、例えば、活性層19からの出射光に対して透光性を有するITOやIZOを用いることができる。
 p電極29は、透明電極27上に形成された金属電極である。p電極29は、絶縁層25の上記開口部から露出したp型半導体層21の上面と、透明電極27を介して電気的に接続されている。透明電極27とp電極29とで、p型半導体層21に電気的に接触しかつ半導体構造層15に外部からの電流を供給する第2の電極層が形成されている。本実施例において、p電極29は、透明電極27の上面に当該上面の外縁に沿って環状に形成されている。
 第2の多層膜反射鏡31は、透明電極27の上面のp電極29に囲まれた領域に形成された円柱上の多層膜反射鏡である。第2の多層膜反射鏡31は、SiOからなる低屈折率誘電体膜と、Nbからなり低屈折率誘電体膜よりも屈折率が高い高屈折率誘電体膜とが交互に積層された誘電体多層膜反射鏡である。言い換えれば、第2の多層膜反射鏡31は、誘電体材料からなる分布ブラッグ反射器(DBR)である。
 本実施例において、第2の多層膜反射鏡31は、透明電極27の上面に形成されたNbのスペーサー層、及び当該スペーサー層上に成膜された10.5ペアのNb/SiO層からなる。このような構成の第2の多層膜反射鏡31は、活性層19からの出射光に対し、99%以上の反射率を有する。この第2の多層膜反射鏡31の反射率は、第1の多層膜反射鏡13の反射率よりも高くなっている。
 図2は、面発光レーザ10の上面図である。図2において、基板11の上面と同一面内においてm軸方向に沿っている軸を横方向軸AX2とする。上述したように、面発光レーザ10は、矩形の上面形状を有する基板11上に形成されたn型半導体層17、上面形状が円形の活性層19及びp型半導体層21を含む半導体構造層15を有している(図1参照)。p型半導体層21上には、絶縁層25及び透明電極27が形成されている。透明電極27上には、p電極29及び第2の多層膜反射鏡31が形成されている。
 絶縁層25は、上述した絶縁層25のp型半導体層21を露出する円形の開口部である開口部25Hを有している。図2に示すように、開口部25Hは、面発光レーザ10の上方からみて絶縁層25の中央部に形成されており、面発光レーザ10の上方からみて第2の多層膜反射鏡31に覆われている。言い換えれば、開口部25Hは、絶縁層25の多層膜反射鏡31の下面と対向する領域に形成されている。本実施例において、開口部25Hは直径10μmである。
 開口部25Hは、中心軸AX1上に中心を有する円形である。従って、p型半導体層21は、p型半導体層21の上面の開口部25Hから露出している円形の領域にある電気的接触面21Sを介して透明電極27と電気的に接続されている。
 図2に示すように、凸部11P(図中太い破線)は、上面視において、中心軸AX1上に中心を有する円形である。凸部11Pは、基板11の下面の電気的接触面21Sと対向する領域に亘って形成されている。凸部11Pは上面視、すなわち基板11の上面の法線方向からみて電気的接触面21Sと重なるように形成され、かつ電気的接触面21Sの外縁すなわち輪郭よりも外側まで延在している。本実施例においては、凸部11Pは、上面視においてp電極29の外側、すなわちn型半導体層17の上部17Bの外側にまで延在している。
 図3は、面発光レーザ10の図2の3-3線に沿った断面図である。上述のように、面発光レーザ10は、GaN基板である基板11を有し、基板11上に第1の多層膜反射鏡13が形成されている。
 また、上述したように、基板11の下面の凸部11Pの表面には、第3の多層膜反射鏡としての裏面多層膜反射鏡12が形成されている。従って、凸部11P及び裏面多層膜反射鏡12によって、活性層19及び第2の多層膜反射鏡31に対向する上方に凹の反射面を有する凹状反射構造12Rが形成されている。
 この上方に凹の反射面によって、活性層19の方向から第1の多層膜反射鏡13を下方に通過してきた光が、上方にかつ中心軸AX1に向かって絞られながら反射される。すなわち、裏面多層膜反射鏡12は、第1の多層膜反射鏡13を通過して裏面多層膜反射鏡12に到達した光を、中心軸AX1に沿った領域に集める機能を有する。
 図1について上述したように、第1の多層膜反射鏡13上には、半導体構造層15が形成されている。半導体構造層15は、n型半導体層17、活性層19及びp型半導体層21がこの順に形成されてなる積層体である。p型半導体層21の上面の中央部には、上方に突出している突出部21Pが形成されている。
 本実施例においては、n型半導体層17は、Siがドープされた350nmの層厚のn-GaN層である。活性層19は、3nmのGaInN層及び4nmのGaN層が4ペア積層された多重量子井戸構造の活性層である。活性層19上には、120nmのアンドープのGaN層、10nmのMgドープされたAlGaN(Al組成30%)の電子障壁層が形成され、その上に突出部21Pが形成されている部分において83nmの層厚を有するp-GaN層からなるp型半導体層21が形成されている。
 絶縁層25は、p型半導体層21の上面の突出部21P以外の領域を覆うように形成されている。絶縁層25は、上述のようにp型半導体層21よりも低い屈折率を有している材料からなっている。絶縁層25は、突出部21Pを露出せしめる開口部25Hを有している。例えば、開口部25Hと突出部21Pとは同様の形状を有しており、開口部25Hの内側面と突出部21Pの外側面は接している。
 絶縁層25は、20nmのSiOからなる層である。絶縁層25の上面は、p型半導体層21の突出部21Pの上面と同一の高さ位置に配置されるように構成されている。言い換えれば、p型半導体層21の上面の突出部21Pは、p型半導体層21の上面の突出部21Pの周囲の領域から20nm突出している。従って、p型半導体層21は、突出部21Pにおいて83nmの層厚を有し、それ以外の領域において63nmの層厚を有する。
 透明電極27は、絶縁層25及び絶縁層25の開口部25Hから露出している突出部21Pの上面を覆うように形成されている。すなわち、透明電極27は、p型半導体層21の上面の開口部25Hによって露出している領域において、p型半導体層21と電気的に接触している。言い換えれば、p型半導体層21の上面の開口部25Hを介して露出している領域が、p型半導体層21と透明電極27との電気的接触をもたらす電気的接触面21Sとなっている。
 p電極29は、上述したように金属電極であり、透明電極27の上面の外縁に沿って形成されている。すなわち、p電極29は、透明電極27と電気的に接触している。従って、p電極29は、p型半導体層21の上面の開口部25Hによって露出している電気的接触面21Sにおいて、透明電極27を介してp型半導体層21と電気的に接触または接続している。
 第2の多層膜反射鏡31は、透明電極27の上面であって、絶縁層25の開口部25H上の領域、言い換えれば電気的接触面21S上の領域すなわち透明電極27の上面の中央部分に形成されている。第2の多層膜反射鏡31の下面は、透明電極27及び半導体構造層15を挟んで第1の多層膜反射鏡13の上面及び裏面多層膜反射鏡12の上面と対向している。第1の多層膜反射鏡13と第2の多層膜反射鏡31との間に第1の共振器OC1、が形成され裏面多層膜反射鏡12と第2の多層膜反射鏡31との間に第2の共振器OC2が形成される。活性層19から出射した光を共振させる共振器OCは、この第1の共振器OC1及び第2の共振器OC2を含む。
 面発光レーザ10において、第2の多層膜反射鏡31の反射率は、裏面多層膜反射鏡12及び第1の多層膜反射鏡13からなる反射構造の反射率よりもわずかに高くなっている。従って、裏面多層膜反射鏡12及び第1の多層膜反射鏡13と第2の多層膜反射鏡31との間で共振した光は、その一部が第1の多層膜反射鏡13、基板11及び裏面多層膜反射鏡12を透過し、外部に取り出される。
 ここで、面発光レーザ10の動作について説明する。面発光レーザ10において、n電極23及びp電極29との間に電圧が印加されると、図中太線一点鎖線矢印に示す様に、半導体構造層15内に電流が流れ、活性層19から光が放出される。活性層19から放出された光は、第1の多層膜反射鏡13及び裏面多層膜反射鏡12と第2の多層膜反射鏡31との間において反射を繰り返し、共振状態に至る(すなわちレーザ発振する)。
 面発光レーザ10においては、p型半導体層21には、開口部25Hによって露出している部分、すなわち電気的接触面21Sのみから電流が注入される。また、p型半導体層21は非常に薄いため、p型半導体層21内では面内方向、すなわち半導体構造層15の面内に沿った方向には電流は拡散しない。
 従って、面発光レーザ10においては、活性層19のうち、開口部25Hによって画定される電気的接触面21Sの直下の領域にのみ電流が供給されて、当該領域からのみ光が放出される。すなわち、面発光レーザ10において、開口部25Hが活性層19における電流の供給範囲を制限する電流狭窄構造となっている。すなわち、面発光レーザにおいては、p型半導体層21及び絶縁層25によって電流狭窄構造が形成されている。
 言い換えれば、面発光レーザ10においては、第1の多層膜反射鏡13と第2の多層膜反射鏡31との間に、活性層19のうち、電気的接触面21Sを底面とする柱状の領域である中央領域CAのみに電流が流れるように電流を狭窄する、すなわち、活性層の1の領域に電流を集中させる電流狭窄構造が形成されている。活性層19内の電流が流れる領域を含む中央領域CAは、電気的接触面21Sによって画定される。
 上述のように、本実施例においては、第1の多層膜反射鏡13は、第2の多層膜反射鏡31よりも低い反射率を有する。従って、第2の多層膜反射鏡31及び活性層19から到来して第1の多層膜反射鏡13に至った光は、その一部が裏面多層膜反射鏡12へ透過し、第2の多層膜反射鏡31と裏面多層膜反射鏡12との間でも共振が発生する。これら共振した光の一部は、第1の多層膜反射鏡13、裏面多層膜反射鏡12及び基板11を透過し、外部に取り出される。
 このようにして、面発光レーザ10は、基板11の下面から、基板11の凸部11Pを除く下面及び半導体構造層15の各層の面内方向に対して垂直な方向に光を出射する。言い換えれば、基板11の下面が、面発光レーザ10の光出射面となっている。
 なお、半導体構造層15のp型半導体層21の電気的接触面21S及び絶縁層25の開口部25Hは、活性層19における発光領域の中心である発光中心を画定し、共振器OCの中心軸(発光中心軸)を画定する。共振器OCの中心軸は、p型半導体層21の電気的接触面21Sの中心を通り、半導体構造層15の面内方向に対して垂直な方向に沿って延びる。本実施例においては、共振器OCの発光中心軸と中心軸AX1とが同一であるとして説明する。以下の説明においては、中心軸AX1を発光中心軸AX1とも称する。
 活性層19の発光領域とは、例えば、活性層19内における所定の強度以上の光が放出される所定の幅を有する領域であり、その中心が発光中心である。また、例えば、活性層19の発光領域とは、活性層19内において所定の密度以上の電流が注入される領域であり、その中心が発光中心である。また、当該発光中心を通る基板11の上面または半導体構造層15の各層の面内方向に対して垂直な直線が発光中心軸AX1である。
 発光中心軸AX1は、第1の多層膜反射鏡13及び裏面多層膜反射鏡12と第2の多層膜反射鏡31とによって構成される共振器OCの共振器長方向に沿って延びる直線である。また、発光中心軸AX1は、面発光レーザ10から出射されるレーザ光の光軸に対応する。
 以下、面発光レーザ10内部の光学的な特性について説明する。上述のように、面発光レーザ10において、絶縁層25は、p型半導体層21よりも低い屈折率を有する。また、裏面多層膜反射鏡12及び第1の多層膜反射鏡13と第2の多層膜反射鏡31との間において、活性層19及びn型半導体層17の層厚は、面内のいずれの箇所においても同じ層内であれば同一である。
 従って、面発光レーザ10の裏面多層膜反射鏡12及び第1の多層膜反射鏡13と第2の多層膜反射鏡31との間で形成される共振器OC内における等価的な屈折率(裏面多層膜反射鏡12及び第1の多層膜反射鏡13と第2の多層膜反射鏡31との間の光学的距離であり、共振波長に対応する)は、p型半導体層21と絶縁層25との屈折率の差によって、電気的接触面21Sを底面とする円柱状の中央領域CAとその周りの筒状の周辺領域PAとで異なる。
 具体的には、裏面多層膜反射鏡12及び第1の多層膜反射鏡13と第2の多層膜反射鏡31との間において、周辺領域PAの等価屈折率は中央領域CAの等価屈折率よりも低い、すなわち、中央領域CAにおける等価的な共振波長は、周辺領域PAの等価的な共振波長よりも小さい。なお、活性層19において光が放出されるのは、開口部25H及び電気的接触面21Sの直下の領域である。すなわち、活性層19において光が放出される発光領域は、活性層19のうち中央領域CAと重なる部分、言い換えれば上面視において電気的接触面21Sと重なる領域である。
 このように、面発光レーザ10においては、電流狭窄構造を形成するp型半導体層21及び絶縁層25によって、活性層19の発光領域を含む中央領域CAと、中央領域CAを囲繞しかつ中央領域CAよりも屈折率が低い周辺領域PAとが形成されている。
 これによって、中央領域CA内の定在波が周辺領域PAに発散(放射)することによる光損失が抑制される。すなわち、中央領域CAに多くの光が留まり、またその状態でレーザ光が外部に取り出される。
 つまり、面発光レーザ10においては、電流狭窄構造を形成するp型半導体層21及び絶縁層25によって、光を中央領域に留める、すなわち閉じ込める光閉じ込め構造も形成されている。
 また、面発光レーザ10においては、第1の多層膜反射鏡13を通過して裏面多層膜反射鏡12に達した光が、裏面多層膜反射鏡12によって形成される凹状反射構造12Rの凹状反射面12RSによって中央領域CAに集められる。すなわち、裏面多層膜反射鏡12によっても中央領域CAに光が留められる。
 従って、上記電流狭窄構造及び裏面多層膜反射鏡12によって、多くの光が共振器OCの発光中心軸AX1の周辺の中央領域CAに集中し、高出力かつ高密度なレーザ光を生成及び出射することができる。
 また、面発光レーザ10においては、上述のように共振器OCを裏面多層膜反射鏡12及び第1の多層膜反射鏡13と第2の多層膜反射鏡31とで形成している。このことで、面発光レーザ10からの出射光をシングルモードに維持しつつ活性層19の電流の流れる領域、いわゆる電流注入領域を大きくして発光領域を大きくし、光出力を高めることが容易になっている。
 例えば、本願の面発光レーザ10から裏面多層膜反射鏡12を除き、第1の多層膜反射鏡13と第2の多層膜反射鏡31との反射率を近づけてこれらのみで共振器を形成する構成(以下、比較構成とも称する)を考える。この場合、活性層19への電流の流れ込みを制限して発光領域を画定する電流狭窄構造を形成する開口部25Hの径を約5.5μm以下にしなければ、取り出す光がシングルモードになりにくいということが、本願発明者らによって見出されていた。
 言い換えれば、単に、電流狭窄構造を形成する構造で光閉じ込めを行って横モードをシングルモードに制御する比較構成の場合、電流注入領域を小さく収めなければならないことが見出されていた。これは、活性層の電流注入領域を大きくして光出力を上げると、活性層の発光中心付近で空間的ホールバーニングが発生し、当該発光中心付近における光利得が小さくなってしまう故である。
 この空間的ホールバーニングは、活性層の特定の領域で光密度が過度に高まることで、誘導放出が多くなり、当該光密度が高い領域で注入キャリアが消費されてキャリア密度が低くなってしまう現象である。
 上記した比較構成では、光出力を上げようとした際、5.5μmを超えて開口部25Hを大きくすると、電流狭窄構造によって生ずる光閉じ込め効果により、活性層の発光中心周辺に光が集中しすぎて光密度が過度に高まってしまい、ホールバーニングが発生する。面発光レーザにおいて、このホールバーニングが発生すると、幅方向における共振器の光利得が複数のピークを持つようになり、取り出される光の横モードが多モードになってしまう。
 本実施例の面発光レーザ10では、上述のように、裏面多層膜反射鏡12及び第1の多層膜反射鏡13で上方に光反射する反射構造を形成し、第2の多層膜反射鏡31で下方に光を反射する反射構造を形成し、これらによって共振器を形成している。
 このように、面発光レーザ10では、第1の多層膜反射鏡13と第2の多層膜反射鏡31とからなる第1の共振器OC1から、一部の光を第1の多層膜反射鏡13を通過させて下方に向かわせる。それにより、中心軸AX1に向かって絞りながら反射する凹状反射面12RSを有する裏面多層膜反射鏡12と第2の多層膜反射鏡31との間でも第2の共振器OC2が形成される。
 このようにすることで、活性層19において、単に第1の多層膜反射鏡13及び第2の多層膜反射鏡31との間のみで第1の共振器OC1を形成する場合よりも、発光中心軸AX1の周辺の領域における光密度を低下させることが出来、空間的ホールバーニングの発生を抑えることが可能である。
 具体的には、面発光レーザ10においては、第1の多層膜反射鏡13と第2の多層膜反射鏡31との間に形成された光閉じ込め構造だけでなく、裏面多層膜反射鏡12によって光を中央領域CAに集めるもう一つの横方向光閉じ込め構造をとっている。また、上述のように第1の多層膜反射鏡13の反射率を低くしているので、第1の多層膜反射鏡13と第2の多層膜反射鏡31との間の第1の共振器OC1において強く生ずる上記電流狭窄構造による光閉じ込め効果が、従来よりも緩やかなものになる。
 面発光レーザ10においては、上記電流狭窄構造による光閉じ込め効果が、上記第1の多層膜反射鏡13と第2の多層膜反射鏡31との間の第1の共振器OC1でのみ共振が起きる比較構成に比べて緩やかになる。その代わりに、第1の多層膜反射鏡13を通過して下方に向かった光を上方に、かつ中心軸AX1に向かって絞りながら反射する凹状反射面12RSを有する裏面多層膜反射鏡12が、緩やかになった電流狭窄構造による光閉じ込め効果の補填をする形になる。
 このように、光閉じ込めを上記した電流狭窄構造とで裏面多層膜反射鏡12との組み合わせで行うことで、中央領域CAには十分に光が閉じ込められるものの、活性層19の中心軸AX1近傍の領域に光が過度に集中せず、光密度が過度に高くならなくなる。これによって、活性層19の電流注入領域を大きくしても、光密度が過度に高くなることによるホールバーニングが発生しにくくなる。
 このように、面発光レーザ10では、開口部25Hを大きくして活性層19の電流注入領域を大きくしてもホールバーニングが発生せず、出射光の光強度分布がガウシアン分布を維持しやすくなる。すなわち、面発光レーザ10では、出射光の横モードがシングルモードに保たれやすくなる。
 なお、凹状反射構造12Rの凹状反射面12RSの曲率半径Rは、以下の式(1)を満たすことが好ましい。
Figure JPOXMLDOC01-appb-M000002
               
 ここで、Zは、本来では凹状反射構造の反射面と活性層19との距離であるが、活性層19と第2の多層膜反射鏡31の下面との距離が近似できるほど小さいので、凹状反射構造12Rの反射面と第2の多層膜反射鏡31の下面との距離とする(図3参照)。
 また、neqは凹状反射構造12Rの反射面と第2の多層膜反射鏡31の下面との間半導体による等価屈折率、λlasingは活性層19から出射される光の波長である。
 この関係性は、第1の共振器OC1での面発光レーザ10からの出射光の出射方向と垂直な面内の光強度分布において、ピークの位置からピークにおける光強度の1/eになる位置までの距離、すなわちビームスポット径の1/2であるω及び以下の式(2)に基づいて導出された。
Figure JPOXMLDOC01-appb-M000003
 なお、上記式(1)は、ωとRとの関係を示す上記式(2)から導き出されている。具体的には、第1の共振器OC1によって出力される光のスポット径ωが最大で1.65μmであると言う条件、第2の共振器OC2によって出力される光のスポット径がこれより大きくなる事が好ましいと言う条件を上記式(1)に導入することで導き出されている。
 また、上述のように、本実施例の面発光レーザ10では、基板11の上面がC面からM面方向に0.5°オフした面となっている。本実施例の面発光レーザ10のように、基板11のM面にオフセットした成長面に半導体層を成長させた場合、m軸方向に偏光方向を有する光の光学利得が他の方向に偏光方向を有する光よりも大きくなるため、m軸方向に偏光方向を有するレーザ光が発振しやすい。そのため、面発光レーザ10の中央領域CAから出射される光は、m軸方向に偏光方向を有する光が多くなる。すなわち、面発光レーザ10は、横方向軸AX2に沿った方向に偏光方向を有する光が多くなる。
 上述のように、本発明の面発光レーザによれば、出射光の横モードをシングルモードに維持しつつ発光出力を上げることが容易になる。また、高い発光効率を有し、安定して特定の偏光方向の出射光を得ることが可能となる。これは、面発光レーザの出射光を、液晶や偏光子を用いた光学系を有する装置に用いる場合に非常に有効である。
[製造方法]
 以下に、面発光レーザ10の製造方法の一例について説明する。まず、基板11として、上述のように上面がC面からM面に傾斜した結晶面となっているGaN基板を用意する。
 次に、当該基板11の上面に、有機金属気相成長法(MOVPE)により、下地層としてGaN(層厚1μm)層を形成する。その後、当該下地層上にn-GaN/AlInNの層を35ペア成膜し、第1の多層膜反射鏡13を形成する。
 次に、第1の多層膜反射鏡13上に、Siドープn-GaN(層厚350nm)を形成してn型半導体層17を形成し、その上に、GaInN(層厚3nm)及びGaN(層厚4nm)からなる層を4ペア積層することで、活性層19を形成する。
 次に、活性層19上に、MgドープAlGaN(Al組成30%)からなる電子障壁層(10nm)を形成し(図示せず)、当該電子障壁層上にp-GaN層(層厚83nm)を成膜してp型半導体層21を形成する。
 次に、p型半導体層21、活性層19及びn型半導体層17の周囲の部分をエッチングして、当該周囲の部分においてn型半導体層17の上面17Sが露出するようなメサ形状を形成する。言い換えれば、この工程で、図1のn型半導体層17、活性層19及びp型半導体層21からなる円柱上の部分を有する半導体構造層15が完成する。
 次に、p型半導体層21の上面の中央部の周囲をエッチングして、突出部21Pを形成する。その後、半導体構造層15上に、SiOを20nm成膜して、その一部を除去して開口部25Hを形成することで絶縁層25を形成する。言い換えれば、p型半導体層21の上面のエッチング除去された部分に、SiOを埋め込む。
 次に、絶縁層25上にITOを20nm成膜して透明電極27を形成し、透明電極27の上面及びn型半導体層17の上面17SにそれぞれAuを成膜してp電極29及びn電極23を形成する。
 次に、透明電極27上にNbを38nm、スペーサー層(図示せず)として成膜し、当該スペーサー層上に、1ペアがNb25/SiO2からなる層を10.5ペア成膜して、第2の多層膜反射鏡31を形成する。
 次に、基板11の裏面を研磨して厚さを200μm以下にした後、基板11の裏面に凸部11Pを形成する。凸部11Pはリフロープロセスによって、そのレンズ形状の中心軸が、発光中心軸AX1と一致するように形成される。なお、凸部11Pは、露光パターニング及びドライエッチングを用いて形成されてもよい。
 具体的には、例えば、基板11の裏面に凸部11Pと同様の形状にレジストを堆積させ、基板11の裏面全体をドライエッチングし、レジストの形状を基板11の裏面に転写することで形成することで凸部11Pを形成してもよい。
 [変形例1]
 以下、本発明の実施例1の面発光レーザ10の変形例1である面発光レーザ40について説明する。変形例1は、凸部11Pが円形では無い点、すなわち凹状反射構造12Rが形成する凹状反射面が円形では無い点で面発光レーザ10と異なる。
 図4は、変形例1の面発光レーザ40の上面図である。図4に示すように、面発光レーザ40において、凸部11Pの上面形状は横方向軸AX2と同じ方向の軸を長軸とする楕円形を有している。すなわち、凸部11Pが、上面視においてm軸方向沿ったに長軸を有する楕円状の上面形状を有している。
 面発光レーザ40において、凸部11Pをm軸方向に長軸を有する楕円形状とすると、すなわち凹状反射構造12Rの反射面を、m軸方向に長軸を有する楕円形の上面形状を有する反射面とすると、m軸方向に沿った偏光方向を有する光の中央領域CA内での、m軸方向に沿った偏光方向を有する光の光利得が高くなり、かつm軸方向損失が低くなることが、本願発明の発明者によって見出された。
 従って、面発光レーザ40によれば、面発光レーザ10の光出射面となっている基板11の下面から、m軸方向に沿った偏光方向を有する光を多く取り出すことができ、かつm軸に沿った方向以外の偏光方向を有する光の出射を抑制することができる。よって、面発光レーザ40によれば、光出射面から取り出される光の、光出射面の面内方向における偏光方向バラツキをさらに抑制することが可能となる。
 なお、偏光方向のバラツキをさらに抑制するための凸部11Pの形状、言い換えれば凹状反射構造12Rの反射面の上面形状は、横方向軸AX2に沿った方向を長手方向とする形状であれば他の形状であってもよい。言い換えれば、凸部11Pの上面形状は、横方向軸AX2に沿った方向を長手方向とする形状であれば楕円以外の他の形状であってもよい。
 例えば、凸部11Pの上面形状は、横方向軸AX2に沿った方向を長手方向とする長方形または矩形状であってもよい。また、例えば、凸部11Pの上面形状は、横方向軸AX2方向に沿った方向を長手方向とする陸上トラックと同一の輪郭を有する長円状であってもよい。また、例えば、凸部11Pの上面形状は、軸AX2方向に沿った方向を長手方向とする菱形状であってもよい。
 [変形例2]
 以下、本発明の実施例1の面発光レーザ10の変形例2である面発光レーザ50について、図5を参照して説明する。変形例2の面発光レーザ50は、裏面多層膜反射鏡12が形成されていない点で実施例1の面発光レーザ10とは異なる。
 図5は、図2に示したのと同様の切断線で面発光レーザ50を切断した際の切断面、すなわち図3に対応した切断面を示す断面図である。図5に示すように、面発光レーザ50は、裏面多層膜反射鏡12が形成されていない代わりに、凸部11Pの表面に複数のスリット溝51からなる回折格子53(図中破線内)が形成されている。すなわち、凸部11Pと回折格子53とで凹状反射面得55RSを有する凹状反射構造55Rが形成されている。このスリット溝51は、図5の紙面に垂直な方向に沿った軸である横方向軸AX2(図2参照)と同じ方向に長手方向を有している。すなわちスリット溝51は、上面視においてm軸方向に沿った方向に長手方向を有している。
 このスリット溝51によって形成される回折格子53は、回折格子を形成するスリット溝51の各々の伸長方向、すなわちm軸方向が偏光方向となっている光に対する高い反射率をもたらす。すなわち、スリット溝51からなる回折格子53が形成されていることで、他の偏光方向を有する光よりもm軸方向が偏光方向になっている光の反射率が高まり、m軸方向が偏光方向になっている光が優先的に発振しやすくなる。
 従って、面発光レーザ50によれば、基板11の下面にスリット溝51からなる回折格子53を形成して凹状反射構造55Rを形成することで、出射光の更なる偏光制御を行い、1の偏光方向を有する光が支配的な出射光を安定して得ることが可能となる。
 なお、スリット溝51は、上記説明した実施例1の面発光レーザ10の製法の最後の工程において、基板11の下面にドライエッチング等のエッチング処理をすることで形成することが可能である。
 [変形例3]
 以下、本発明の実施例1の変形例3である面発光レーザ60について、図6を参照して説明する。面発光レーザ60は、上述した電流狭窄構造を形成するために、絶縁層25の代わりに半導体構造層15内にトンネル接合構造を形成する点で、実施例1の面発光レーザ10とは異なる。具体的には、面発光レーザ60は、p型半導体層21より上の構造が面発光レーザ10と異なる。
 図6は、図2に示したのと同様の切断線で面発光レーザ60を切断した際の切断面、すなわち図3に対応した切断面を示す断面図である。図6に示すように、面発光レーザ60においては、p型半導体層21の突出部21P上に、トンネル接合層61が形成されている。すなわち、面発光レーザ60においては、半導体構造層15内の中央領域CAにトンネル接合層61が形成されている。
 トンネル接合層61は、p型半導体層21上に形成され、p型半導体層21よりも高い不純物濃度を有するp型半導体層であるハイドープp型半導体層61Aと、ハイドープp型半導体層61A上に形成され、n型半導体層17よりも高い不純物濃度を有するn型半導体層であるハイドープn型半導体層61Bと、を含んでいる。
 n型半導体層63は、p型半導体層21及びトンネル接合層61上に形成されている。n型半導体層63は、p型半導体層21の上面においてトンネル接合層61を埋め込むように形成されている。言い換えれば、n型半導体層63は、突出部21Pの側面並びにトンネル接合層61の側面及び上面を覆うように形成されている。
 第2の多層膜反射鏡65は、n型半導体層63の上面に形成されており、n型半導体層17と同様のドーピング濃度を有するn型半導体層である。すなわち、n型半導体層63は、ハイドープn型半導体層61Bよりも低いドーピング濃度を有している。
 このような、p型半導体層21、トンネル接合層61及びn型半導体層63の積層構造により、トンネル接合層61部分でトンネル効果が生ずる。これにより、面発光レーザ60においてはp型半導体層21とn型半導体層63との間において、トンネル接合層61の部分にのみ電流が流れ、電流が中央領域CAに狭窄される電流狭窄構造が形成される。
 第2の多層膜反射鏡65は、n型半導体層63上に形成された半導体層からなる半導体多層膜反射鏡である。第2の多層膜反射鏡65は、AlInNの組成を有する低屈折率半導体膜と、GaN組成を有し低屈折率半導体膜よりも屈折率が高い高屈折率半導体膜とが交互に積層されることで形成されており、n型半導体の特性を有している。言い換えれば、第2の多層膜反射鏡65は、半導体材料からなる分布ブラッグ反射器(DBR:Distributed Bragg Reflector)である。
 p側電極67は、第2の多層膜反射鏡65の上面の周縁部に沿って形成された金属電極である。面発光レーザ60においては、第2の多層膜反射鏡65が導電性を有するので、p側電極67から第2の多層膜反射鏡65、n型半導体層63、トンネル接合層61、p型半導体層21、活性層19、n型半導体層17を通ってn電極23まで電流が流れる。
 この構成を有する半導体構造層において、p-GaN層からn型半導体層17には、トンネル接合層の部分のみから電流が流入する。そのため、上記した絶縁層25を形成した場合と同様な電流狭窄効果を生じさせることが可能となる。また、トンネル接合層61とその周囲の領域で屈折率が異なることにより、実施例1と同様の光閉じ込め効果も生じさせることが可能である。
 言い換えれば、上面視において、上記した電気的接触面21Sと同じ領域にトンネル接合を形成するトンネル接合層61を形成することで、上記した電気的接触面21Sを形成したのと同様の電流狭窄効果、光閉じ込め効果を得ることが可能となる。
 以上の実施例1、変形例1乃至3においては、n電極23をn型半導体層17に形成するとしたが、これに代えて基板11の裏面にn側電極を形成しても良い。
 図7に、実施例1の面発光レーザ10において、n電極23に代えて、凸部11Pの周囲の領域、すなわち、凹状反射構造12Rよりも外側の領域にn側電極68を形成する場合の断面図を示す。この場合、基板11が電流の経路となるため、基板11にドーピングをしなければならない。
 しかしながら、上述のように面発光レーザ10においては、基板11も共振器内に配されることになるので、基板11は光の透過性が高いことが好ましい。従って、基板11にドーピングするn型ドーパントは酸素ではなくSiであるのが好ましく、ドーパント濃度は低いことが好ましい。例えば、基板11においては、第1の共振器OC1及び第2の共振器OC2内の領域において、Siドーパントの濃度が2×1018/cm以下の領域が80%を占めることが好ましく、さらに好ましくは1×1018/cm以下の領域が80%を占めることが好ましい。
 具体的には、n側電極を形成する部分において、ドーパントの濃度が高いことが必要となるため、例えば、その部分だけドーパント濃度を高くし、共振器OCを含むそれ以外の領域でドーパント濃度を低くすることで、上記ドーパント濃度の条件を満たす基板11を形成する。なお、n側電極を形成する部分については、共振器OCの外側の領域であるので、ドーパントは酸素でも構わない。
 上記した変形例1乃至3及びn側電極を基板11の裏面に形成する例は、全て組み合わせ可能である。
 以下、本発明の実施例2である面発光レーザ70について説明する。図8は、図2に示したのと同様の切断線で面発光レーザ79を切断した際の切断面、すなわち図3に対応した切断面を示す断面図である。
 図8に示すように、面発光レーザ70では、基板11の裏面に凸部11Pを設けて凹状反射構造12Rを形成する代わりに、基板11の下方に凹状反射面71RSを有する凹状反射構造71Rを形成するアウトプットカプラー71を配置する。言い換えれば、アウトプットカプラー71は、基板11の下方に離隔して配されている。
 アウトプットカプラー71は、基板11の下面に対向する凹状の表面72Sを有する透明基板72及び凹状の表面72Sを覆う誘電体からなるDBRである外部多層膜反射鏡73からなる。
 面発光レーザ70においては、面発光レーザ10の凹状反射構造12Rに対応する凹状反射構造71Rが透明基板72及び外部多層膜反射鏡73によって形成されている。面発光レーザ70においては、第2の共振器OC2が第2の多層膜反射鏡31と外部多層膜反射鏡73との間で形成されている。
 なお、面発光レーザ10では、基板11の裏面で光の反射が起きないように、基板11の裏面に、例えば、4ペアのNb/SiOからなるARコートを形成する。
 このような、基板11の下面に形成された凸部11Pによる凹状反射構造12Rではなく、アウトプットカプラー71を用いる構成は、面発光レーザ10において設計上凹状反射構造12Rを大きくしなければならない場合に有利な構成である。
 例えば、ウェハに多数の面発光レーザ10を形成して個片化する場合に、凹状反射構造12Rを大きくしなければならない場合には、1ウェハ当たりの面発光レーザ10の製造個数が、凸部11Pの大きさによって制限され得る。そのような場合に、凹状反射構造12Rを外部のアウトプットカプラー71の凹状反射構造71Rで置換することで、面発光レーザの1ウェハ当たりの製造個数を減らすことなく凹状反射構造を大きくすることができる。
 上述の実施例においては、基板11の上面は、C面からM面方向に0.5°オフした面である場合、すなわちC面からM面方向へのオフ角が0.5°である場合を説明したが、オフ角はこの角度に限られない。オフ角が、例えば、0.3°から0.8°程度であれば充分に上記した偏光制御効果を得ることができる。また、基板11の上面のオフ角が0.8°以下であれば、第1の多層膜反射鏡13を構成する半導体多層膜を、安定して十分な反射率をもつように形成可能である。
 また、上記実施例においては、基板11の上面は、C面からM面方向にオフしている場合を説明したが、基板11の上面がC面からA面方向にオフしており、C面方向にはほとんどオフしていなくともよい。
 この場合、上記偏光制御効果を得るために、上記C面のオフ角の範囲についての説明と同様の理由で、C面からA面方向へのオフ角は0.3°~0.8°程度が好ましく、C面からM面へのオフ角は0±0.1°であるのが好ましい。なお、基板11の上面がC面からA面にオフしている場合、上記変形例1における凸部11Pの上面形状の長手方向及び変形例2におけるスリット溝51の長手方向について説明において、横方向軸AX2がa軸に対応するとして読み替えて理解されたい。
 基板11の上面がC面からA面方向にオフしている場合、a軸方向に沿った偏光方向を有する光を多く取り出すことができ、かつa軸に沿った方向以外の偏光方向を有する光の出射を抑制することができる。よって、面発光レーザ10によれば、光出射面から取り出される光の、光出射面の面内方向における偏光方向バラツキを抑制することが可能となる。
 なお、上記オフ角があることによる偏向方向のバラツキの抑制効果を必要としない場合、基板11は上面にC面が露出しているC面基板であってもよい。
 上述した実施例における種々の数値、寸法、材料等は、例示に過ぎず、用途及び製造される面発光レーザに応じて、適宜選択することができる。
10、40、50、60、70 面発光レーザ
11 基板
12 裏面多層膜反射鏡
12R 凹状反射構造
13 第1の多層膜反射鏡
15 半導体構造層
17 n型半導体層
19 活性層
21 p型半導体層
23 n電極
25 絶縁層
27 透明電極
29 p電極
51 スリット溝
53 回折格子
55R 凹状反射構造
31 第2の多層膜反射鏡
61 トンネル接合層
63 n型半導体層
65 第2の多層膜反射鏡
67 第2のn電極
71 アウトプットカプラー
71R 凹状反射構造
72 透明基板
73 外部多層膜反射鏡

Claims (11)

  1.  窒化ガリウム系半導体基板と、
     前記基板上に形成された窒化物半導体よりなる第1の多層膜反射鏡と、
     前記第1の多層膜反射鏡上に形成された第1の導電型を有する窒化物半導体よりなる第1の半導体層、前記第1の半導体層上に形成された窒化物半導体よりなる活性層、及び前記活性層上に形成されかつ前記第1の導電型とは反対の第2の導電型を有する窒化物半導体よりなる第2の半導体層を含む半導体構造層と、
     前記半導体構造層上に形成され、前記第1の多層膜反射鏡との間で共振器を構成する第2の多層膜反射鏡と、
     前記第1の多層膜反射鏡と前記第2の多層膜反射鏡との間に形成され、前記活性層の1の領域に電流を集中させる電流狭窄構造と、を有し、
     前記窒化ガリウム系半導体基板の下面または当該下面より下方の領域に配され、前記窒化ガリウム系半導体基板の上面に垂直な方向から見た上面視において前記1の領域よりも外側まで延在しかつ前記第1の多層膜反射鏡に対向する凹状反射面を有する凹状反射構造を有することを特徴とする垂直共振器型発光素子。
  2.  前記凹状反射構造は、前記窒化ガリウム系半導体基板の下面に形成されかつ前記上面視において前記1の領域よりも外側まで延在する凸部及び前記凸部の表面を覆って前記凹状反射面を形成する第3の多層膜反射鏡からなることを特徴とする請求項1に記載の垂直共振器型発光素子。
  3.  前記凹状反射構造は、前記窒化ガリウム系半導体基板の下面に形成されかつ前記上面視において前記1の領域よりも外側まで延在する凸部及び前記凸部の表面に互いに平行に形成された複数のスリット溝からなり前記凹状反射面を形成する回折格子からなることを特徴とする請求項1に記載の垂直共振器型発光素子。
  4.  前記凹状反射構造は、前記窒化ガリウム系半導体基板の下方に離隔して配されかつ前記凹状反射面を有する部材であることを特徴とする請求項1に記載の垂直共振器型発光素子。
  5.  前記窒化ガリウム系半導体基板の下面の前記上面視において前記凹状反射構造よりも外側の領域に形成された第1の電極と前記半導体構造層の上面に形成された第2の電極とを有し、窒化ガリウム系半導体基板はn型ドーパントでドーピングされていることを特徴とする請求項1乃至4のいずれか1つに記載の垂直共振器型発光素子。
  6.  前記n型ドーパントはSiであることを特徴とする請求項5に記載の垂直共振器型発光素子。
  7.  前記窒化ガリウム系半導体基板の前記第1の電極に接する領域において、他の領域よりもドーパント濃度が高くなっていることを特徴とする請求項5または6に記載の垂直共振器型発光素子。
  8.  前記窒化ガリウム系半導体基板の上面は、C面からM面またはA面のいずれかの結晶面にオフセットした面であり、前記凹状反射面は、前記上面がM面にオフセットしている場合にはm軸方向に長手方向を有し、前記上面がA面にオフセットしている場合にはa軸方向に長手方向を有することを特徴とする請求項2に記載の垂直共振器型発光素子。
  9.  前記窒化ガリウム系半導体基板の上面は、C面からM面またはA面のいずれかの結晶面にオフセットした面であり、前記複数のスリットの各々は、前記上面がM面にオフセットしている場合にはm軸方向に伸張し、前記上面がA面にオフセットしている場合にはa軸方向に伸張することを特徴とする請求項3に記載の垂直共振器型発光素子。
  10.  前記窒化ガリウム系半導体基板の前記上面は、前記上面がM面にオフセットしている場合にはc面からM面に0.8°以下の角度だけオフセットした面であり、前記上面がA面にオフセットしている場合にはc面からA面に0.8°以下の角度だけオフセットした面であることを特徴とする請求項8または9に記載の垂直共振器型発光素子。
  11.  前記凹状反射構造の前記凹状反射面の曲率半径Rは、前記凹状反射面と前記活性層との距離をZ、前記凹状反射面と第2の多層膜反射鏡との間の等価屈折率をneq、前記活性層からの出射光の波長をλlasingλとした際に以下の式を満たすことを特徴とする請求項1乃至10のいずれか1つに記載の垂直共振器型発光素子。
    Figure JPOXMLDOC01-appb-M000001
PCT/JP2023/006504 2022-03-01 2023-02-22 垂直共振器型発光素子 WO2023167076A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-030773 2022-03-01
JP2022030773A JP2023127163A (ja) 2022-03-01 2022-03-01 垂直共振器型発光素子

Publications (1)

Publication Number Publication Date
WO2023167076A1 true WO2023167076A1 (ja) 2023-09-07

Family

ID=87883581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006504 WO2023167076A1 (ja) 2022-03-01 2023-02-22 垂直共振器型発光素子

Country Status (2)

Country Link
JP (1) JP2023127163A (ja)
WO (1) WO2023167076A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168461A (ja) * 1999-10-01 2001-06-22 Fuji Xerox Co Ltd 面発光型半導体レーザ及びレーザアレイ
US20020176473A1 (en) * 2001-05-23 2002-11-28 Aram Mooradian Wavelength selectable, controlled chirp, semiconductor laser
JP2011096856A (ja) * 2009-10-29 2011-05-12 Sony Corp 半導体レーザ
JP2013229580A (ja) * 2012-03-22 2013-11-07 Palo Alto Research Center Inc 第3の反射器を組み込んだ面発光レーザ
JP2016086156A (ja) * 2014-10-22 2016-05-19 株式会社東芝 光学デバイスおよび光学デバイスを製造する方法
JP2020188206A (ja) * 2019-05-16 2020-11-19 スタンレー電気株式会社 垂直共振器型面発光素子
US20210399522A1 (en) * 2020-06-23 2021-12-23 Hewlett Packard Enterprise Development Lp Coupled-cavity vcsels for enhanced modulation bandwidth

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001168461A (ja) * 1999-10-01 2001-06-22 Fuji Xerox Co Ltd 面発光型半導体レーザ及びレーザアレイ
US20020176473A1 (en) * 2001-05-23 2002-11-28 Aram Mooradian Wavelength selectable, controlled chirp, semiconductor laser
JP2011096856A (ja) * 2009-10-29 2011-05-12 Sony Corp 半導体レーザ
JP2013229580A (ja) * 2012-03-22 2013-11-07 Palo Alto Research Center Inc 第3の反射器を組み込んだ面発光レーザ
JP2016086156A (ja) * 2014-10-22 2016-05-19 株式会社東芝 光学デバイスおよび光学デバイスを製造する方法
JP2020188206A (ja) * 2019-05-16 2020-11-19 スタンレー電気株式会社 垂直共振器型面発光素子
US20210399522A1 (en) * 2020-06-23 2021-12-23 Hewlett Packard Enterprise Development Lp Coupled-cavity vcsels for enhanced modulation bandwidth

Also Published As

Publication number Publication date
JP2023127163A (ja) 2023-09-13

Similar Documents

Publication Publication Date Title
US8385381B2 (en) Vertical cavity surface emitting laser
US7675956B2 (en) Vertical cavity surface emitting laser and method for manufacturing the same
US7466738B2 (en) Surface emitting laser device and production method
US20060088072A1 (en) Semiconductor laser apparatus
JP4233366B2 (ja) 光ポンピング可能な垂直エミッタを有する面発光半導体レーザ装置
JP7453489B2 (ja) 波長変換装置及び発光装置
CN112913094B (zh) 垂直谐振器式发光元件
EP4089860A1 (en) Vertical-resonator-type light-emitting element
US20050152420A1 (en) Semiconductor device having quantum well structure including dual barrier layers, semiconductor laser employing the semiconductor device, and methods of manufacturing the semiconductor device and the semiconductor laser
US20220368107A1 (en) Vertical cavity surface emitting device
JP2002223033A (ja) 光素子及び光システム
JP3932466B2 (ja) 半導体レーザ
WO2023167076A1 (ja) 垂直共振器型発光素子
JP2017204579A (ja) 垂直共振器型発光素子及び垂直共振器型発光素子の製造方法
WO2023013457A1 (ja) 垂直共振器型発光素子
WO2023022005A1 (ja) 垂直共振器型発光素子
JP2004235339A (ja) 半導体レーザ
JP2001148536A (ja) 半導体レーザ装置
JP2009238846A (ja) 発光装置
WO2023106080A1 (ja) 垂直共振器型発光素子
WO2022172663A1 (ja) 垂直共振器型面発光レーザ素子
JP5184804B2 (ja) 半導体レーザ、それを備えたレーザモジュールおよび半導体レーザの製造方法
JP2003332684A (ja) 面発光レーザ素子
JP2014138023A (ja) 垂直共振器型面発光レーザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763335

Country of ref document: EP

Kind code of ref document: A1