WO2023166970A1 - 基板処理方法 - Google Patents

基板処理方法 Download PDF

Info

Publication number
WO2023166970A1
WO2023166970A1 PCT/JP2023/004908 JP2023004908W WO2023166970A1 WO 2023166970 A1 WO2023166970 A1 WO 2023166970A1 JP 2023004908 W JP2023004908 W JP 2023004908W WO 2023166970 A1 WO2023166970 A1 WO 2023166970A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
wafer
etching
etchant
substrate processing
Prior art date
Application number
PCT/JP2023/004908
Other languages
English (en)
French (fr)
Inventor
祐希 吉田
興司 香川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023166970A1 publication Critical patent/WO2023166970A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the disclosed embodiments relate to substrate processing methods.
  • the present disclosure provides a technique capable of satisfactorily removing at least one of a zirconium oxide film and a hafnium oxide film from a substrate.
  • a substrate processing method includes an etching process.
  • an etchant is supplied to a substrate on which at least one of a zirconium oxide film and a hafnium oxide film is formed, and at least one of the zirconium oxide film and the hafnium oxide film is etched.
  • the etchant to which methanesulfonic acid is added is supplied to the substrate.
  • At least one of the zirconium oxide film and the hafnium oxide film can be satisfactorily removed from the substrate.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to the embodiment;
  • FIG. 3 is a schematic diagram showing an example of the state of the wafer surface after preparatory processing according to the embodiment.
  • FIG. 4 is a diagram showing an SEM observation photograph after an etching treatment test of a zirconium oxide film according to the present disclosure.
  • FIG. 5 is a diagram showing an SEM observation photograph after a zirconium oxide film etching treatment test in the present disclosure.
  • FIG. 6 is a diagram showing an SEM observation photograph after an etching treatment test of a zirconium oxide film in the present disclosure.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to the embodiment;
  • FIG. 3 is a
  • FIG. 7 is a diagram showing an SEM observation photograph after an etching treatment test of a zirconium oxide film according to the present disclosure.
  • FIG. 8 is a diagram showing an SEM observation photograph after an etching treatment test of a hafnium oxide film according to the present disclosure.
  • FIG. 9 is a diagram showing an SEM observation photograph after an etching treatment test of a hafnium oxide film according to the present disclosure.
  • FIG. 10 is a diagram showing an SEM observation photograph after an etching treatment test of a hafnium oxide film according to the present disclosure.
  • FIG. 11 is a diagram showing an SEM observation photograph after an etching treatment test of a hafnium oxide film according to the present disclosure.
  • FIG. 12 is a diagram showing an SEM observation photograph after another etching treatment test of the zirconium oxide film in the present disclosure.
  • FIG. 13 is a diagram showing an SEM observation photograph after another etching treatment test of the zirconium oxide film in the present disclosure.
  • FIG. 14 is a diagram showing an SEM observation photograph after an etching treatment test of the zirconium oxide film in the modified example of the present disclosure.
  • FIG. 15 is a diagram showing an SEM observation photograph after an etching treatment test of the zirconium oxide film in the modified example of the present disclosure.
  • FIG. 16 is a diagram showing an SEM observation photograph after another etching treatment test of the zirconium oxide film in the modified example of the present disclosure.
  • FIG. 17 is a diagram showing an SEM observation photograph after another etching treatment test of the zirconium oxide film in the modified example of the present disclosure.
  • FIG. 18 is a flow chart showing a procedure of substrate processing executed by the substrate processing system according to the embodiment.
  • FIG. 19 is a flowchart illustrating a procedure of substrate processing performed by the substrate processing system according to the modification of the embodiment;
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment.
  • the X-axis, Y-axis and Z-axis are defined to be orthogonal to each other, and the positive direction of the Z-axis is defined as the vertically upward direction.
  • the substrate processing system 1 includes a loading/unloading station 2 and a processing station 3 .
  • the loading/unloading station 2 and the processing station 3 are provided adjacently.
  • the loading/unloading station 2 includes a carrier placement section 11 and a transport section 12 .
  • a plurality of carriers C for accommodating a plurality of substrates, in the embodiment, semiconductor wafers W (hereinafter referred to as wafers W) in a horizontal state are placed on the carrier platform 11 .
  • the transport section 12 is provided adjacent to the carrier mounting section 11 and includes a substrate transport device 13 and a transfer section 14 therein.
  • the substrate transfer device 13 includes a wafer holding mechanism that holds the wafer W. As shown in FIG. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and can rotate about the vertical axis. conduct.
  • the processing station 3 is provided adjacent to the transport section 12 .
  • the processing station 3 comprises a transport section 15 and a plurality of processing units 16 .
  • a plurality of processing units 16 are arranged side by side on both sides of the transport section 15 .
  • the transport unit 15 includes a substrate transport device 17 inside.
  • the substrate transfer device 17 includes a wafer holding mechanism that holds the wafer W. As shown in FIG.
  • the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can rotate about the vertical axis, and transfers the wafer W between the delivery section 14 and the processing unit 16 using a wafer holding mechanism. I do.
  • the processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17 .
  • the substrate processing system 1 also includes a control device 4 .
  • Control device 4 is, for example, a computer, and includes control unit 18 and storage unit 19 .
  • the storage unit 19 stores programs for controlling various processes executed in the substrate processing system 1 .
  • the control unit 18 controls the operation of the substrate processing system 1 by reading and executing programs stored in the storage unit 19 .
  • the program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium.
  • Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnet optical disks (MO), and memory cards.
  • the substrate transfer device 13 of the loading/unloading station 2 takes out the wafer W from the carrier C placed on the carrier platform 11, and receives the taken out wafer W. It is placed on the transfer section 14 .
  • the wafer W placed on the transfer section 14 is taken out from the transfer section 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16 .
  • the wafer W loaded into the processing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transport device 17, and placed on the transfer section 14. Then, the processed wafer W placed on the transfer section 14 is returned to the carrier C on the carrier placement section 11 by the substrate transfer device 13 .
  • FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit 16.
  • the processing unit 16 includes a chamber 20 , a substrate processing section 30 , a liquid supply section 40 and a collection cup 50 .
  • the chamber 20 accommodates the substrate processing section 30 , the liquid supply section 40 and the collection cup 50 .
  • An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20 .
  • FFU 21 forms a downflow in chamber 20 .
  • the substrate processing section 30 includes a holding section 31, a support section 32, and a driving section 33, and performs liquid processing on the placed wafer W.
  • the holding part 31 holds the wafer W horizontally.
  • the column portion 32 is a member extending in the vertical direction, the base end portion of which is rotatably supported by the drive portion 33, and the tip portion of which supports the holding portion 31 horizontally.
  • the drive section 33 rotates the support section 32 around the vertical axis.
  • the substrate processing section 30 rotates the supporting section 31 supported by the supporting section 32 by rotating the supporting section 32 using the driving section 33, thereby rotating the wafer W held by the supporting section 31. .
  • a holding member 31a for holding the wafer W from the side surface is provided on the upper surface of the holding section 31 provided in the substrate processing section 30. As shown in FIG. The wafer W is held horizontally by the holding member 31a while being slightly separated from the upper surface of the holding portion 31. As shown in FIG. The wafer W is held by the holder 31 with the surface on which substrate processing is performed directed upward.
  • the liquid supply unit 40 supplies the processing fluid to the wafer W.
  • the liquid supply unit 40 includes nozzles 41a and 41b, an arm 42a that horizontally supports the nozzles 41a and 41b, and a swing/lift mechanism 43a that swings and lifts the arm 42a.
  • the liquid supply unit 40 also includes a nozzle 41c, an arm 42b that horizontally supports the nozzle 41c, and a turning and lifting mechanism 43b that turns and lifts the arm 42b.
  • the nozzle 41a is connected to an etchant supply section 46a via a valve 44a and a flow rate regulator 45a.
  • Nozzle 41b is connected to additional liquid supply 46b via valve 44b and flow regulator 45b.
  • the etchant supplied from the etchant supply unit 46a contains hydrofluoric acid (HF) having a predetermined concentration and an additive.
  • HF hydrofluoric acid
  • the hydrofluoric acid concentration of the etchant is, for example, 5 (wt %) to 50 (wt %).
  • the additive added to the etchant is, for example, methanesulfonic acid (CH 3 SO 3 H).
  • the concentration of methanesulfonic acid in the etching liquid according to the embodiment is, for example, 0.01 (wt %) or more and less than 0.1 (wt %).
  • the additive added to the etchant is not limited to methanesulfonic acid, and may be hydrochloric acid (HCl), for example.
  • the concentration of hydrochloric acid in the etchant according to the embodiment is, for example, 5 (wt %) to 30 (wt %).
  • the additional liquid supplied from the additional liquid supply unit 46b is, for example, hydrochloric acid or SC1 (mixed liquid of ammonia and hydrogen peroxide solution).
  • the nozzle 41c is connected to the rinse liquid supply section 46c via a valve 44c and a flow rate regulator 45c.
  • the rinse liquid supplied from the rinse liquid supply section 46c is, for example, DIW (DeIonized Water). Note that the rinse liquid according to the embodiment is not limited to DIW.
  • the etchant supplied from the etchant supply unit 60 is discharged from the nozzle 41a.
  • the additional liquid supplied from the additional liquid supply section 46b is discharged from the nozzle 41b.
  • the rinse liquid supplied from the rinse liquid supply portion 46c is discharged from the nozzle 41c.
  • the collection cup 50 is arranged so as to surround the holding portion 31 and collects the processing liquid scattered from the wafer W due to the rotation of the holding portion 31 .
  • a drain port 51 is formed at the bottom of the recovery cup 50 , and the processing liquid collected by the recovery cup 50 is discharged to the outside of the processing unit 16 through the drain port 51 .
  • An exhaust port 52 is formed at the bottom of the collection cup 50 to discharge the gas supplied from the FFU 21 to the outside of the processing unit 16 .
  • FIG. 3 is a schematic diagram showing an example of the state of the surface of the wafer W after preparatory processing according to the embodiment.
  • a multilayer film ML and a metal oxide film Z are formed on the surface of the wafer W.
  • the multilayer film ML is formed on the surface of the underlying layer F0.
  • the underlying layer F0 is made of, for example, silicon oxide (SiO 2 ).
  • the multilayer film ML has, for example, a first layer F1, a second layer F2, and a third layer F3, which are arranged in this order from the surface of the underlying layer F0.
  • the first layer F1 is made of polysilicon, for example.
  • the second layer F2 is made of tungsten, for example.
  • the third layer F3 is made of silicon nitride (SiN), for example.
  • the metal oxide film Z is formed on the surface of the multilayer film ML (specifically, the surface of the third layer F3).
  • the metal oxide film Z is composed of at least one of zirconium oxide (ZrO 2 ) and hafnium oxide (HfO 2 ), and functions as a hard mask. That is, in the present disclosure, the metal oxide film Z is a general term for the zirconium oxide film and the hafnium oxide film.
  • the metal oxide film Z according to the embodiment is formed, for example, by a method called atomic layer deposition (ALD). Specifically, in this method, a precursor of zirconium oxide or hafnium oxide and water are decomposed in a high-temperature vacuum environment (for example, 400 ° C., ⁇ 1 kPa) to form ZrO 2 or HfO 2 molecular layers one by one, A film is formed by lamination.
  • ALD atomic layer deposition
  • the multilayer film ML and the metal oxide film Z are dry-etched into a given shape with a high aspect ratio so that part of the surface of the underlying layer F0 is exposed.
  • the configurations of the underlying layer F0 and the multilayer film ML are not limited to the example of FIG. 3 .
  • the wafer W having the surface structure described so far is carried into the chamber 20 (see FIG. 2) of the processing unit 16 (see FIG. 2) by the substrate transfer device 17 (see FIG. 1).
  • the wafer W is held by the holding member 31a (see FIG. 2) of the substrate processing section 30 (see FIG. 2) with the surface to be processed facing upward.
  • control unit 18 controls the driving unit 33 (see FIG. 2) to rotate the holding member 31a together with the wafer W at a given rotation speed.
  • the metal oxide film Z is etched with an etchant.
  • the control unit 18 moves the nozzle 41a (see FIG. 2) of the liquid supply unit 40 (see FIG. 2) above the center of the wafer W. As shown in FIG.
  • control unit 18 supplies an etchant containing hydrofluoric acid and methanesulfonic acid to the surface of the wafer W by opening the valve 44a (see FIG. 2) for a given time.
  • control unit 18 can satisfactorily etch only the metal oxide film Z among the plurality of films formed on the surface of the wafer W without residue, as described below.
  • FIGS. 4 to 7 are diagrams showing SEM observation photographs after the etching treatment test of the zirconium oxide film in the present disclosure.
  • a SEM observation photograph of a test piece in which a 20 (nm) zirconium oxide film or hafnium oxide film was formed on a substrate by the ALD method was etched in a beaker test. showing.
  • the etching test in the present disclosure is performed at a processing temperature of 50 (°C).
  • FIG. 4 is an SEM observation photograph of the surface of the test piece after etching the zirconium oxide film for 600 (seconds) with an etching solution having a hydrofluoric acid concentration of 13.86 (wt %) and no additives.
  • FIG. 5 shows the surface of the test piece after etching the zirconium oxide film for 600 (seconds) with an etchant having a hydrofluoric acid concentration of 13.85 (wt%) and a methanesulfonic acid concentration of 0.02 (wt%). It is an SEM observation photograph.
  • methanesulfonic acid is also referred to as "MSA.”
  • FIG. 6 shows the surface of the test piece after etching the zirconium oxide film for 600 (seconds) with an etching solution having a hydrofluoric acid concentration of 13.80 (wt%) and a methanesulfonic acid concentration of 0.36 (wt%). It is an SEM observation photograph.
  • FIG. 7 shows the surface of the test piece after etching the zirconium oxide film for 600 (seconds) with an etchant having a hydrofluoric acid concentration of 13.82 (wt %) and a methanesulfonic acid concentration of 0.73 (wt %). It is an SEM observation photograph.
  • the zirconium oxide film can be satisfactorily removed from the wafer W by adding a predetermined amount of methanesulfonic acid to the etchant.
  • the concentration of methanesulfonic acid in the etchant should be 0.01 (wt%) or more and less than 0.1 (wt%). Thereby, the zirconium oxide film can be removed from the wafer W satisfactorily.
  • FIG. 8 to 11 are diagrams showing SEM observation photographs after the etching treatment test of the hafnium oxide film in the present disclosure.
  • FIG. 8 is an SEM observation photograph of the surface of the test piece after the hafnium oxide film was etched for 600 (seconds) with an etchant having a hydrofluoric acid concentration of 41.97 (wt %) and no additive.
  • FIG. 9 shows the surface of the test piece after etching the hafnium oxide film for 600 (seconds) with an etchant having a hydrofluoric acid concentration of 42.01 (wt%) and a methanesulfonic acid concentration of 0.05 (wt%). It is an SEM observation photograph.
  • FIG. 10 shows the surface of the test piece after etching the hafnium oxide film for 600 (seconds) with an etchant having a hydrofluoric acid concentration of 42.01 (wt%) and a methanesulfonic acid concentration of 0.50 (wt%). It is an SEM observation photograph.
  • FIG. 11 shows the surface of the test piece after etching the hafnium oxide film for 600 (seconds) with an etching solution having a hydrofluoric acid concentration of 42.01 (wt%) and a methanesulfonic acid concentration of 1.01 (wt%). It is an SEM observation photograph.
  • the hafnium oxide film can be satisfactorily removed from the wafer W by adding a predetermined amount of methanesulfonic acid to the etchant.
  • the concentration of methanesulfonic acid in the etchant should be 0.1 (wt%) or more and less than 1.0 (wt%). Thereby, the hafnium oxide film can be removed from the wafer W satisfactorily.
  • the etchant preferably contains hydrofluoric acid.
  • the metal oxide film Z on the wafer W can be etched satisfactorily.
  • the hydrofluoric acid concentration of the etchant is preferably 5 (wt %) to 50 (wt %). Accordingly, since the metal oxide film Z can be etched at a high etching rate, the metal oxide film Z can be removed from the wafer W efficiently.
  • the temperature of the etchant may be room temperature to 60 (° C.). Accordingly, since the metal oxide film Z can be etched at a high etching rate, the metal oxide film Z can be removed from the wafer W efficiently.
  • the film thickness of the metal oxide film Z is preferably 5 (nm) or more and less than 20 (nm). Thereby, the metal oxide film Z can be satisfactorily removed without remaining on the wafer W.
  • the metal oxide film Z may be formed on the surface of at least one of the silicon nitride film, the polysilicon film, and the silicon oxide film formed on the wafer W. As a result, the metal oxide film Z can be selectively etched while leaving these underlying films on the wafer W. FIG.
  • FIG. 3 shows the case where a single film of the metal oxide film Z formed on the wafer W is etched
  • the present disclosure is not limited to this example.
  • a laminated film of zirconium oxide film/aluminum oxide film/zirconium oxide film (so-called ZAZ structure) formed on the wafer W may be etched.
  • the lamination film of hafnium oxide film/aluminum oxide film/hafnium oxide film formed on the wafer W may be etched by the technique of the present disclosure. Even in these cases, such laminated films can be removed from the wafer W satisfactorily.
  • 12 and 13 are diagrams showing SEM observation photographs after another etching treatment test of the zirconium oxide film in the present disclosure.
  • FIG. 12 is an SEM observation photograph of the surface of the test piece after etching the zirconium oxide film for 300 (seconds) with an etching solution having a hydrofluoric acid concentration of 50 (wt %) and no additive.
  • FIG. 13 shows the zirconium oxide film after the zirconium oxide film has been etched for 300 (seconds) with an etchant having a hydrofluoric acid concentration of 37.8 (wt %) and a hydrochloric acid concentration of 9.2 (wt %) as an additive. It is an SEM observation photograph of the test piece surface.
  • the zirconium oxide film can be satisfactorily removed from the wafer W by adding a predetermined amount of hydrochloric acid to the etchant.
  • FIG. 14 and 15 are diagrams showing SEM observation photographs after the etching treatment test of the zirconium oxide film in the modified example of the present disclosure.
  • the surface of the wafer W after the etching process is treated with an additional solution of hydrochloric acid to remove residues. , etc., can be reduced.
  • the zirconium oxide film can be satisfactorily removed from the wafer W by performing additional processing with hydrochloric acid after the etching processing with hydrofluoric acid.
  • 16 and 17 are diagrams showing SEM observation photographs after another etching treatment test of the zirconium oxide film in the modified example of the present disclosure.
  • FIG. 17 shows that after etching the zirconium oxide film for 300 (seconds) with an etchant having a hydrofluoric acid concentration of 37.8 (wt %) and a hydrochloric acid concentration of an additive of 9.2 (wt %), It is an SEM observation photograph of the test piece surface after supplying SC1 as an additional liquid to the wafer W for 60 (seconds).
  • SC1 has a mixture ratio of ammonia:hydrogen peroxide solution:water of 1:10:10.
  • the surface after the etching treatment is treated with an additional SC1 solution after the etching treatment. It can be seen that a state with little residue can be achieved. In particular, in the example of FIG. 17, it can be seen that the surface after the etching process is in a good state without any residue or the like.
  • the zirconium oxide film can be satisfactorily removed from the wafer W by performing additional processing in SC1 after the etching processing with hydrofluoric acid.
  • a single-layer metal oxide film formed around the gate of a transistor may be etched.
  • the laminated films such as the ZAZ structure formed over the entire wafer W only the laminated film formed on the bevel portion may be etched.
  • the present disclosure is not limited to such an example, and a plurality of wafers W are collectively processed.
  • the technology of the present disclosure may also be applied to batch processing. As a result, the metal oxide films Z can be satisfactorily removed from the plurality of wafers W.
  • FIG. 18 is a flow chart showing the procedure of substrate processing executed by the substrate processing system 1 according to the embodiment.
  • step S101 preparation processing is performed (step S101).
  • a metal oxide film Z is formed on the laminated film ML, and a wafer W is prepared which is dry-etched into a given shape.
  • control section 18 controls the processing unit 16 and the like to perform holding processing for holding the wafer W in the holding section 31 (step S102). Then, the control unit 18 controls the liquid supply unit 40 and the like to supply an etchant containing hydrofluoric acid and an additive to the wafer W, and performs an etching process for etching the metal oxide film Z (step S103). .
  • control unit 18 controls the liquid supply unit 40 and the like to perform the rinsing process of the wafer W with the rinsing liquid (step S104). Then, the controller 18 controls the processing unit 16 to dry the wafer W (step S105), thus completing a series of substrate processing.
  • Such a drying process may be performed, for example, by shaking off the surface of the wafer W wet with the rinse liquid as it is, or by substituting the surface of the wafer W wet with the rinse liquid with IPA and then performing the shaking off process. good.
  • FIG. 19 is a flow chart showing the procedure of substrate processing executed by the substrate processing system 1 according to the modification of the embodiment.
  • a preparatory processing is performed (step S201).
  • control section 18 controls the processing unit 16 and the like to perform holding processing for holding the wafer W in the holding section 31 (step S202).
  • the processing of steps S201 and S202 is the same as the processing of steps S101 and S102 described above.
  • control unit 18 controls the liquid supply unit 40 and the like to supply an etchant containing hydrofluoric acid to the wafer W to perform an etching process for etching the metal oxide film Z (step S203).
  • an etching process may be performed with an etching solution containing hydrofluoric acid and an additive.
  • control unit 18 controls the liquid supply unit 40 and the like to perform an additional process of supplying additional liquid to the wafer W (step S204). Then, the control unit 18 controls the liquid supply unit 40 and the like to perform the rinsing process of the wafer W with the rinsing liquid (step S205).
  • control unit 18 controls the processing unit 16 to dry the wafer W (step S206), completing a series of substrate processing.
  • the substrate processing method includes an etching process (steps S103, S203).
  • an etchant is supplied to a substrate (wafer W) on which at least one of a zirconium oxide film and a hafnium oxide film is formed to remove at least one of the zirconium oxide film and the hafnium oxide film.
  • Etch also, in the etching step (steps S103 and S203), an etchant to which methanesulfonic acid is added is supplied to the substrate (wafer W). Thereby, the metal oxide film Z can be removed from the wafer W satisfactorily.
  • the zirconium oxide film is a single layer film or a laminated film of zirconium oxide film/aluminum oxide film/zirconium oxide film.
  • the single layer film or laminated film of the zirconium oxide film can be removed from the wafer W satisfactorily.
  • the hafnium oxide film is a single layer film or a laminated film of hafnium oxide film/aluminum oxide film/hafnium oxide film.
  • At least one of the zirconium oxide film and the hafnium oxide film is at least one of a silicon nitride film, a polysilicon film and a silicon oxide film formed on the substrate (wafer W). formed on the surface of As a result, the metal oxide film Z can be selectively etched while leaving these underlying films on the wafer W.
  • the film thickness of at least one of the zirconium oxide film and the hafnium oxide film is 5 (nm) or more and less than 20 (nm).
  • the etchant contains hydrofluoric acid.
  • the hydrofluoric acid concentration of the etching liquid is 5 (wt %) to 50 (wt %).
  • the temperature of the etchant is room temperature to 60 (°C). Therefore, the metal oxide film Z can be removed from the wafer W efficiently.
  • the concentration of methanesulfonic acid in the etchant for etching the zirconium oxide film is 0.01 (wt%) or more and less than 0.1 (wt%).
  • the concentration of methanesulfonic acid in the etchant for etching the hafnium oxide film is 0.1 (wt%) or more and less than 1.0 (wt%).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Weting (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

本開示の一態様による基板処理方法は、エッチング工程を含む。エッチング工程は、表面に酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方が形成された基板にエッチング液を供給して、酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方をエッチングする。また、エッチング工程は、メタンスルホン酸が添加されたエッチング液を基板に供給する。

Description

基板処理方法
 開示の実施形態は、基板処理方法に関する。
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板上に形成される高誘電率絶縁材料のメタル膜を選択的にエッチングする技術が知られている。この技術では、キレート剤が添加されたエッチング液が用いられている(特許文献1参照)。
特許第5050850号公報
 本開示は、酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方を基板上から良好に除去することができる技術を提供する。
 本開示の一態様による基板処理方法は、エッチング工程を含む。エッチング工程は、表面に酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方が形成された基板にエッチング液を供給して、前記酸化ジルコニウム膜および前記酸化ハフニウム膜の少なくとも一方をエッチングする。また、前記エッチング工程は、メタンスルホン酸が添加された前記エッチング液を前記基板に供給する。
 本開示によれば、酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方を基板上から良好に除去することができる。
図1は、実施形態に係る基板処理システムの概略構成を示す模式図である。 図2は、実施形態に係る処理ユニットの具体的な構成の一例を示す模式図である。 図3は、実施形態に係る準備処理後のウェハ表面の状態の一例を示す模式図である。 図4は、本開示における酸化ジルコニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図5は、本開示における酸化ジルコニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図6は、本開示における酸化ジルコニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図7は、本開示における酸化ジルコニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図8は、本開示における酸化ハフニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図9は、本開示における酸化ハフニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図10は、本開示における酸化ハフニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図11は、本開示における酸化ハフニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図12は、本開示における酸化ジルコニウム膜の別のエッチング処理試験後のSEM観察写真を示す図である。 図13は、本開示における酸化ジルコニウム膜の別のエッチング処理試験後のSEM観察写真を示す図である。 図14は、本開示の変形例における酸化ジルコニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図15は、本開示の変形例における酸化ジルコニウム膜のエッチング処理試験後のSEM観察写真を示す図である。 図16は、本開示の変形例における酸化ジルコニウム膜の別のエッチング処理試験後のSEM観察写真を示す図である。 図17は、本開示の変形例における酸化ジルコニウム膜の別のエッチング処理試験後のSEM観察写真を示す図である。 図18は、実施形態に係る基板処理システムが実行する基板処理の手順を示すフローチャートである。 図19は、実施形態の変形例に係る基板処理システムが実行する基板処理の手順を示すフローチャートである。
 以下、添付図面を参照して、本願の開示する基板処理方法の実施形態を詳細に説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板上に形成される高誘電率絶縁材料のメタル膜を選択的にエッチングする技術が知られている。この技術では、キレート剤が添加されたエッチング液が用いられている。
 一方で、上記の従来技術を適用して基板上に形成される酸化ジルコニウム膜、酸化ハフニウム膜、酸化ランタン膜または酸化セリウム膜をエッチングしようとした場合、残渣無く良好に除去することは非常に困難であった。
 そこで、上述の問題点を克服し、酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方を基板上から良好に除去することができる技術の実現が期待されている。
<基板処理システムの概要>
 最初に、図1を参照しながら、実施形態に係る基板処理システム1の概略構成について説明する。図1は、実施形態に係る基板処理システム1の概略構成を示す図である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。
 搬入出ステーション2は、キャリア載置部11と、搬送部12とを備える。キャリア載置部11には、複数枚の基板、実施形態では半導体ウェハW(以下、ウェハWと呼称する。)を水平状態で収容する複数のキャリアCが載置される。
 搬送部12は、キャリア載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてキャリアCと受渡部14との間でウェハWの搬送を行う。
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。
 搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部14と処理ユニット16との間でウェハWの搬送を行う。
 処理ユニット16は、基板搬送装置17によって搬送されるウェハWに対して所定の基板処理を行う。
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、キャリア載置部11に載置されたキャリアCからウェハWを取り出し、取り出したウェハWを受渡部14に載置する。受渡部14に載置されたウェハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。
 処理ユニット16へ搬入されたウェハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウェハWは、基板搬送装置13によってキャリア載置部11のキャリアCへ戻される。
<処理ユニットの構成>
 次に、処理ユニット16の構成について、図2を参照しながら説明する。図2は、処理ユニット16の具体的な構成の一例を示す模式図である。図2に示すように、処理ユニット16は、チャンバ20と、基板処理部30と、液供給部40と、回収カップ50とを備える。
 チャンバ20は、基板処理部30と、液供給部40と、回収カップ50とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。
 基板処理部30は、保持部31と、支柱部32と、駆動部33とを備え、載置されたウェハWに液処理を施す。保持部31は、ウェハWを水平に保持する。支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。
 かかる基板処理部30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された保持部31を回転させ、これにより、保持部31に保持されたウェハWを回転させる。
 基板処理部30が備える保持部31の上面には、ウェハWを側面から保持する保持部材31aが設けられる。ウェハWは、かかる保持部材31aによって保持部31の上面からわずかに離間した状態で水平保持される。なお、ウェハWは、基板処理が行われる表面を上方に向けた状態で保持部31に保持される。
 液供給部40は、ウェハWに対して処理流体を供給する。液供給部40は、ノズル41a、41bと、ノズル41a、41bを水平に支持するアーム42aと、アーム42aを旋回および昇降させる旋回昇降機構43aとを備える。また、液供給部40は、ノズル41cと、ノズル41cを水平に支持するアーム42bと、アーム42bを旋回および昇降させる旋回昇降機構43bとを備える。
 ノズル41aは、バルブ44aおよび流量調整器45aを介してエッチング液供給部46aに接続される。ノズル41bは、バルブ44bおよび流量調整器45bを介して追加液供給部46bに接続される。
 エッチング液供給部46aから供給されるエッチング液は、所定の濃度を有するフッ酸(HF)と、添加剤とを含んで構成される。エッチング液のフッ酸濃度は、たとえば、5(wt%)~50(wt%)である。
 また、エッチング液に添加される添加剤は、たとえば、メタンスルホン酸(CHSOH)である。実施形態に係るエッチング液におけるメタンスルホン酸の濃度は、たとえば、0.01(wt%)以上0.1(wt%)未満である。
 なお、本開示において、エッチング液に添加される添加剤はメタンスルホン酸に限られず、たとえば、塩酸(HCl)であってもよい。実施形態に係るエッチング液における塩酸の濃度は、たとえば、5(wt%)~30(wt%)である。
 追加液供給部46bから供給される追加液は、たとえば、塩酸やSC1(アンモニアと過酸化水素水との混合液)などである。
 ノズル41cは、バルブ44cおよび流量調整器45cを介してリンス液供給部46cに接続される。リンス液供給部46cから供給されるリンス液は、たとえば、DIW(DeIonized Water:脱イオン水)である。なお、実施形態に係るリンス液は、DIWに限られない。
 ノズル41aからは、エッチング液供給部60より供給されるエッチング液が吐出される。ノズル41bからは、追加液供給部46bより供給される追加液が吐出される。ノズル41cからは、リンス液供給部46cより供給されるリンス液が吐出される。
 回収カップ50は、保持部31を取り囲むように配置され、保持部31の回転によってウェハWから飛散する処理液を捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液は、かかる排液口51から処理ユニット16の外部へ排出される。また、回収カップ50の底部には、FFU21から供給される気体を処理ユニット16の外部へ排出する排気口52が形成される。
<基板処理の詳細>
 次に、処理ユニット16におけるウェハWに対する基板処理の詳細について、図3~図13を参照しながら説明する。実施形態に係る基板処理では、まず、図3に示すような表面構造を有するウェハWが準備される。図3は、実施形態に係る準備処理後のウェハW表面の状態の一例を示す模式図である。
 図3に示すように、ウェハWの表面には、多層膜MLと、酸化金属膜Zとが形成される。多層膜MLは、下地層F0の表面に形成される。下地層F0は、たとえば、酸化シリコン(SiO)で構成される。
 多層膜MLは、たとえば、第1層F1と、第2層F2と、第3層F3とを有し、下地層F0の表面からこの順に配置される。第1層F1は、たとえば、ポリシリコンで構成される。第2層F2は、たとえば、タングステンで構成される。第3層F3は、たとえば、窒化シリコン(SiN)で構成される。
 酸化金属膜Zは、多層膜MLの表面(具体的には、第3層F3の表面)に形成される。酸化金属膜Zは、酸化ジルコニウム(ZrO)および酸化ハフニウム(HfO)の少なくとも一方で構成され、ハードマスクとして機能する。すなわち、本開示では、酸化金属膜Zが酸化ジルコニウム膜および酸化ハフニウム膜の総称である。
 実施形態に係る酸化金属膜Zは、たとえば、原子層堆積(ALD:Atomic Layer Deposition)と呼ばれる手法で形成される。具体的には、この手法で酸化ジルコニウムまたは酸化ハフニウムの前駆体と水とを高温の真空環境下(たとえば400℃、<1kPa)で分解し、ZrOまたはHfOを1分子層ずつ形成し、積層化することで膜が形成される。
 また、図3に示すように、多層膜MLおよび酸化金属膜Zは、下地層F0の表面の一部が露出するように、高いアスペクト比で所与の形状にドライエッチングされる。なお、本開示において、下地層F0および多層膜MLの構成は図3の例に限られない。
 次に、ここまで説明した表面構造を有するウェハWが、基板搬送装置17(図1参照)によって、処理ユニット16(図2参照)のチャンバ20(図2参照)内に搬入される。そして、ウェハWは、基板処理される表面を上方に向けた状態で基板処理部30(図2参照)の保持部材31a(図2参照)に保持される。
 その後、制御部18(図1参照)は、駆動部33(図2参照)を制御して、保持部材31aをウェハWとともに所与の回転数で回転させる。
 そして、処理ユニット16では、エッチング液による酸化金属膜Zのエッチング処理が行われる。かかるエッチング処理では、制御部18が、液供給部40(図2参照)のノズル41a(図2参照)をウェハWの中央上方に移動させる。
 その後、制御部18は、バルブ44a(図2参照)を所与の時間開放することにより、ウェハWの表面に対して、フッ酸およびメタンスルホン酸を含んだエッチング液を供給する。
 これにより、制御部18は、以下において説明するように、ウェハWの表面上に形成される複数の膜のうち、酸化金属膜Zのみを残渣無く良好にエッチングすることができる。
 図4~図7は、本開示における酸化ジルコニウム膜のエッチング処理試験後のSEM観察写真を示す図である。なお、以降に示す本開示のエッチング試験では、基板上に20(nm)の酸化ジルコニウム膜または酸化ハフニウム膜がALD法で成膜された試験片をビーカテストでエッチング処理した後のSEM観察写真を示している。また、本開示におけるエッチング試験は、処理温度50(℃)で行っている。
 図4は、フッ酸濃度が13.86(wt%)で添加剤無しのエッチング液により600(秒)酸化ジルコニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。図5は、フッ酸濃度が13.85(wt%)でメタンスルホン酸の濃度が0.02(wt%)のエッチング液により600(秒)酸化ジルコニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。なお、本開示では、メタンスルホン酸を「MSA」とも表記する。
 図6は、フッ酸濃度が13.80(wt%)でメタンスルホン酸の濃度が0.36(wt%)のエッチング液により600(秒)酸化ジルコニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。図7は、フッ酸濃度が13.82(wt%)でメタンスルホン酸の濃度が0.73(wt%)のエッチング液により600(秒)酸化ジルコニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。
 図4に示すように、本開示において、メタンスルホン酸を添加しないエッチング液を用いたエッチング処理では、エッチング処理後の表面に残渣や粒状の残留が多く存在する。一方で、図5に示すように、エッチング液にメタンスルホン酸を0.02(wt%)添加することで、エッチング処理後の表面を残渣等がない良好な状態にすることができる。
 これは、酸化ジルコニウム膜をフッ酸でエッチング処理する際に発生するジルコニウムのフッ化物ZrF 2-を、以下の化学式(1)で示すように錯化することで、上記のフッ化物で構成される残渣の再付着を抑制することができるためと推測される。
ZrF 2-+CHSOH→[Zr(CHSO)F2-+HF ・・・(1)
 このように、実施形態では、エッチング液にメタンスルホン酸を所定の量添加することで、酸化ジルコニウム膜をウェハW上から良好に除去することができる。
 また、図6および図7に示すように、本開示において、メタンスルホン酸を0.36(wt%)または0.73(wt%)添加したエッチング液を用いたエッチング処理では、エッチング処理後の表面に残渣や粒状の残留が多く存在する。
 すなわち、実施形態では、エッチング液のメタンスルホン酸の濃度を、0.01(wt%)以上0.1(wt%)未満にするとよい。これにより、酸化ジルコニウム膜をウェハW上から良好に除去することができる。
 図8~図11は、本開示における酸化ハフニウム膜のエッチング処理試験後のSEM観察写真を示す図である。図8は、フッ酸濃度が41.97(wt%)で添加剤無しのエッチング液により600(秒)酸化ハフニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。
 図9は、フッ酸濃度が42.01(wt%)でメタンスルホン酸の濃度が0.05(wt%)のエッチング液により600(秒)酸化ハフニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。図10は、フッ酸濃度が42.01(wt%)でメタンスルホン酸の濃度が0.50(wt%)のエッチング液により600(秒)酸化ハフニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。
 図11は、フッ酸濃度が42.01(wt%)でメタンスルホン酸の濃度が1.01(wt%)のエッチング液により600(秒)酸化ハフニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。
 図8に示すように、本開示において、メタンスルホン酸を添加しないエッチング液を用いたエッチング処理では、エッチング処理後の表面に残渣や粒状の残留が多く存在する。また、図9に示すように、本開示において、メタンスルホン酸を0.05(wt%)添加したエッチング液を用いたエッチング処理では、エッチング処理後の表面に残渣や粒状の残留が多く存在する。
 一方で、図10に示すように、エッチング液にメタンスルホン酸を0.50(wt%)添加することで、エッチング処理後の表面を残渣等がない良好な状態にすることができる。
 これは、酸化ハフニウム膜をフッ酸でエッチング処理する際に発生するハフニウムのフッ化物HfF 2-を、以下の化学式(2)で示すように錯化することで、上記のフッ化物で構成される残渣の再付着を抑制することができるためと推測される。
HfF 2-+CHSOH→[Hf(CHSO)F2-+HF ・・・(2)
 このように、実施形態では、エッチング液にメタンスルホン酸を所定の量添加することで、酸化ハフニウム膜をウェハW上から良好に除去することができる。
 また、図11に示すように、本開示において、メタンスルホン酸を1.01(wt%)添加したエッチング液を用いたエッチング処理では、エッチング処理後の表面に残渣や粒状の残留が多く存在する。
 すなわち、実施形態では、エッチング液のメタンスルホン酸の濃度を、0.1(wt%)以上1.0(wt%)未満にするとよい。これにより、酸化ハフニウム膜をウェハW上から良好に除去することができる。
 また、実施形態では、エッチング液がフッ酸を含むとよい。これにより、ウェハW上の酸化金属膜Zを良好にエッチング処理することができる。
 また、実施形態では、エッチング液のフッ酸濃度が5(wt%)~50(wt%)であるとよい。これにより、高いエッチングレートで酸化金属膜Zをエッチング処理できることから、酸化金属膜ZをウェハW上から効率よく除去することができる。
 また、実施形態では、エッチング液の温度は、室温~60(℃)であるとよい。これにより、高いエッチングレートで酸化金属膜Zをエッチング処理できることから、酸化金属膜ZをウェハW上から効率よく除去することができる。
 また、実施形態では、酸化金属膜Zの膜厚が5(nm)以上20(nm)未満であるとよい。これにより、酸化金属膜ZがウェハW上に残ることなく良好に除去することができる。
 また、実施形態では、酸化金属膜Zが、ウェハWに形成された窒化シリコン膜、ポリシリコン膜および酸化シリコン膜のうち少なくとも1種の膜の表面に形成されるとよい。これにより、これらの下地膜をウェハW上に残しながら、酸化金属膜Zを選択的にエッチング処理することができる。
 なお、図3の例では、ウェハW上に形成された酸化金属膜Zの単膜をエッチング処理する場合について示したが、本開示はかかる例に限られない。たとえば、本開示の技術によって、ウェハW上に形成された酸化ジルコニウム膜/酸化アルミニウム膜/酸化ジルコニウム膜の積層膜(いわゆるZAZ構造)をエッチング処理してもよい。
 また、本開示の技術によって、ウェハW上に形成された酸化ハフニウム膜/酸化アルミニウム膜/酸化ハフニウム膜の積層膜をエッチング処理してもよい。これらの場合でも、かかる積層膜をウェハW上から良好に除去することができる。
 また、上記の実施形態では、フッ酸にメタンスルホン酸を添加したエッチング液を用いた例について示したが、フッ酸に添加される添加剤はメタンスルホン酸に限られない。図12および図13は、本開示における酸化ジルコニウム膜の別のエッチング処理試験後のSEM観察写真を示す図である。
 なお、図12は、フッ酸濃度が50(wt%)で添加剤無しのエッチング液により300(秒)酸化ジルコニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。また、図13は、フッ酸濃度が37.8(wt%)、添加剤である塩酸の濃度が9.2(wt%)のエッチング液により300(秒)酸化ジルコニウム膜をエッチング処理した後の試験片表面のSEM観察写真である。
 図12に示すように、本開示において、塩酸を添加しないエッチング液を用いたエッチング処理では、エッチング処理後の表面に残渣や粒状の残留が多く存在する。一方で、図13に示すように、エッチング液に塩酸を9.2(wt%)添加することで、エッチング処理後の表面を残渣等が少ない状態にすることができる。
 これは、酸化ジルコニウム膜をフッ酸でエッチング処理する際に、エッチング液に塩酸を添加してエッチング液をより低いpHにすることで、ジルコニウムのイオン化を促進して酸化ジルコニウム膜を効率よく除去できるためと推測される。
 このように、実施形態では、エッチング液に塩酸を所定の量添加することで、酸化ジルコニウム膜をウェハW上から良好に除去することができる。
<変形例>
 つづいては、実施形態に係る基板処理の変形例について、図14~図17を参照しながら説明する。図14および図15は、本開示の変形例における酸化ジルコニウム膜のエッチング処理試験後のSEM観察写真を示す図である。
 なお、図14は、フッ酸濃度が50(wt%)で添加剤無しのエッチング液により300(秒)酸化ジルコニウム膜をエッチング処理した後に、追加液として濃度9.2(wt%)の塩酸をウェハWに60(秒)供給した後の試験片表面のSEM観察写真である。
 また、図15は、フッ酸濃度が50(wt%)で添加剤無しのエッチング液により300(秒)酸化ジルコニウム膜をエッチング処理した後に、追加液として濃度26.0(wt%)の塩酸をウェハWに60(秒)供給した後の試験片表面のSEM観察写真である。
 図14および図15の例と、上述の図12の例とを比較することで、本開示では、エッチング処理した後に塩酸の追加液で追加処理することによって、エッチング処理後のウェハW表面を残渣等が少ない状態にすることができることがわかる。
 これは、酸化ジルコニウム膜をフッ酸でエッチング処理した後に、塩酸で追加処理してウェハW上をより低いpHにすることで、ジルコニウムのイオン化を促進して酸化ジルコニウム膜を効率よく除去できるためと推測される。
 このように、変形例では、フッ酸でのエッチング処理の後に塩酸で追加処理を行うことで、酸化ジルコニウム膜をウェハW上から良好に除去することができる。
 なお、上記の変形例では、追加液として塩酸を用いた例について示したが、追加処理に用いられる追加液は塩酸に限られない。図16および図17は、本開示の変形例における酸化ジルコニウム膜の別のエッチング処理試験後のSEM観察写真を示す図である。
 なお、図16は、フッ酸濃度が50(wt%)で添加剤無しのエッチング液により300(秒)酸化ジルコニウム膜をエッチング処理した後に、追加液としてSC1をウェハWに60(秒)供給した後の試験片表面のSEM観察写真である。
 また、図17は、フッ酸濃度が37.8(wt%)、添加剤である塩酸の濃度が9.2(wt%)のエッチング液により300(秒)酸化ジルコニウム膜をエッチング処理した後に、追加液としてSC1をウェハWに60(秒)供給した後の試験片表面のSEM観察写真である。なお、図16および図17の例において、SC1の混合比は、アンモニア:過酸化水素水:水が1:10:10である。
 図16および図17の例と、上述の図12および図13の例とを比較することで、本開示では、エッチング処理した後にSC1の追加液で追加処理することによって、エッチング処理後の表面を残渣等が少ない状態にすることができることがわかる。特に、図17の例では、エッチング処理後の表面を残渣等がない良好な状態になっていることがわかる。
 これは、SC1で追加処理して下地膜の表面電位をプラスからマイナスに変化させることで、フッ化物ZrF 2-で構成される残渣の再付着を静電反発により抑制することができるためと推測される。
 このように、変形例では、フッ酸でのエッチング処理の後にSC1で追加処理を行うことで、酸化ジルコニウム膜をウェハW上から良好に除去することができる。
 なお、図14~図17の例では、酸化ジルコニウム膜に対して塩酸またはSC1の追加液による追加処理を行う例について示したが、本開示はかかる例に限られず、酸化ハフニウム膜に対して塩酸またはSC1の追加液による追加処理を行ってもよい。
 また、ここまで示した実施形態および変形例では、多層膜ML(図3参照)の上に形成された酸化金属膜Zをエッチング処理する例について示したが、本開示はかかる例に限られない。
 たとえば、本開示では、トランジスタのゲート周りに形成される単層の酸化金属膜をエッチング処理してもよい。また、本開示では、ウェハWの全体に形成されるZAZ構造などの積層膜のうち、ベベル部に形成される積層膜のみをエッチング処理してもよい。
 また、ここまで示した実施形態および変形例では、処理ユニット16においてウェハWを枚葉処理でエッチング処理する例について示したが、本開示はかかる例に限られず、複数のウェハWを一括で処理するバッチ処理に本開示の技術を適用してもよい。これにより、複数のウェハW上から酸化金属膜Zを良好に除去することができる。
<基板処理の手順>
 つづいて、実施形態に係る基板処理の手順について、図18および図19を参照しながら説明する。図18は、実施形態に係る基板処理システム1が実行する基板処理の手順を示すフローチャートである。
 実施形態に係る基板処理では、まず、準備処理が行われる(ステップS101)。かかる準備処理では、図3に示したように、積層膜ML上に酸化金属膜Zが形成され、さらに所与の形状にドライエッチングされたウェハWが準備される。
 次に、制御部18は、処理ユニット16などを制御して、保持部31でウェハWを保持する保持処理を行う(ステップS102)。そして、制御部18は、液供給部40などを制御して、ウェハWに対してフッ酸および添加剤を含むエッチング液を供給し、酸化金属膜Zをエッチングするエッチング処理を行う(ステップS103)。
 次に、制御部18は、液供給部40などを制御して、リンス液によるウェハWのリンス処理を実施する(ステップS104)。そして、制御部18は、処理ユニット16を制御して、ウェハWの乾燥処理を実施し(ステップS105)、一連の基板処理が完了する。
 かかる乾燥処理は、たとえば、リンス液で濡れたウェハWの表面をそのまま振切処理してもよいし、リンス液で濡れたウェハWの表面をIPAで置換した後に振切処理を実施してもよい。
 図19は、実施形態の変形例に係る基板処理システム1が実行する基板処理の手順を示すフローチャートである。変形例に係る基板処理では、まず、準備処理が行われる(ステップS201)。
 次に、制御部18は、処理ユニット16などを制御して、保持部31でウェハWを保持する保持処理を行う(ステップS202)。なお、かかるステップS201およびS202の処理は、上述のステップS101およびS102の処理と同様である。
 次に、制御部18は、液供給部40などを制御して、ウェハWに対してフッ酸を含むエッチング液を供給し、酸化金属膜Zをエッチングするエッチング処理を行う(ステップS203)。なお、このステップS203の処理では、フッ酸および添加剤を含むエッチング液でエッチング処理を行ってもよい。
 次に、制御部18は、液供給部40などを制御して、ウェハWに対して追加液を供給する追加処理を行う(ステップS204)。そして、制御部18は、液供給部40などを制御して、リンス液によるウェハWのリンス処理を実施する(ステップS205)。
 最後に、制御部18は、処理ユニット16を制御して、ウェハWの乾燥処理を実施し(ステップS206)、一連の基板処理が完了する。
 実施形態に係る基板処理方法は、エッチング工程(ステップS103、S203)を含む。エッチング工程(ステップS103、S203)は、表面に酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方が形成された基板(ウェハW)にエッチング液を供給して、酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方をエッチングする。また、エッチング工程(ステップS103、S203)は、メタンスルホン酸が添加されたエッチング液を基板(ウェハW)に供給する。これにより、酸化金属膜ZをウェハW上から良好に除去することができる。
 また、実施形態に係る基板処理方法において、酸化ジルコニウム膜は、単層膜、または酸化ジルコニウム膜/酸化アルミニウム膜/酸化ジルコニウム膜の積層膜である。これにより、酸化ジルコニウム膜の単層膜または積層膜をウェハW上から良好に除去することができる。
 また、実施形態に係る基板処理方法において、酸化ハフニウム膜は、単層膜、または酸化ハフニウム膜/酸化アルミニウム膜/酸化ハフニウム膜の積層膜である。これにより、酸化ハフニウム膜の単層膜または積層膜をウェハW上から良好に除去することができる。
 また、実施形態に係る基板処理方法において、酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方は、基板(ウェハW)に形成された窒化シリコン膜、ポリシリコン膜および酸化シリコン膜のうち少なくとも1種の膜の表面に形成される。これにより、これらの下地膜をウェハW上に残しながら、酸化金属膜Zを選択的にエッチング処理することができる。
 また、実施形態に係る基板処理方法において、酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方の膜厚は、5(nm)以上20(nm)未満である。これにより、酸化金属膜ZがウェハW上に残ることなく良好に除去することができる。
 また、実施形態に係る基板処理方法において、エッチング液は、フッ酸を含む。これにより、ウェハW上の酸化金属膜Zを良好にエッチング処理することができる。
 また、実施形態に係る基板処理方法において、エッチング液のフッ酸濃度は、5(wt%)~50(wt%)である。これにより、酸化金属膜ZをウェハW上から効率よく除去することができる。
 また、実施形態に係る基板処理方法において、エッチング液の温度は、室温~60(℃)である。これにより、酸化金属膜ZをウェハW上から効率よく除去することができる。
 また、実施形態に係る基板処理方法において、酸化ジルコニウム膜をエッチングするエッチング液のメタンスルホン酸の濃度は、0.01(wt%)以上0.1(wt%)未満である。これにより、酸化ジルコニウム膜をウェハW上から良好に除去することができる。
 また、実施形態に係る基板処理方法において、酸化ハフニウム膜をエッチングするエッチング液のメタンスルホン酸の濃度は、0.1(wt%)以上1.0(wt%)未満である。これにより、酸化ハフニウム膜をウェハW上から良好に除去することができる。
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 W   ウェハ(基板の一例)
 1   基板処理システム
 16  処理ユニット
 18  制御部
 31  保持部
 40  液供給部
 Z   酸化金属膜(酸化ジルコニウム膜および酸化ハフニウム膜の一例)

Claims (10)

  1.  表面に酸化ジルコニウム膜および酸化ハフニウム膜の少なくとも一方が形成された基板にエッチング液を供給して、前記酸化ジルコニウム膜および前記酸化ハフニウム膜の少なくとも一方をエッチングするエッチング工程、を含み、
     前記エッチング工程は、メタンスルホン酸が添加された前記エッチング液を前記基板に供給する
     基板処理方法。
  2.  前記酸化ジルコニウム膜は、単層膜、または酸化ジルコニウム膜/酸化アルミニウム膜/酸化ジルコニウム膜の積層膜である
     請求項1に記載の基板処理方法。
  3.  前記酸化ハフニウム膜は、単層膜、または酸化ハフニウム膜/酸化アルミニウム膜/酸化ハフニウム膜の積層膜である
     請求項1または2に記載の基板処理方法。
  4.  前記酸化ジルコニウム膜および前記酸化ハフニウム膜の少なくとも一方は、前記基板に形成された窒化シリコン膜、ポリシリコン膜および酸化シリコン膜のうち少なくとも1種の膜の表面に形成される
     請求項1~3のいずれか一つに記載の基板処理方法。
  5.  前記酸化ジルコニウム膜および前記酸化ハフニウム膜の少なくとも一方の膜厚は、5(nm)以上20(nm)未満である
     請求項1~4のいずれか一つに記載の基板処理方法。
  6.  前記エッチング液は、フッ酸を含む
     請求項1~5のいずれか一つに記載の基板処理方法。
  7.  前記エッチング液のフッ酸濃度は、5(wt%)~50(wt%)である
     請求項6に記載の基板処理方法。
  8.  前記エッチング液の温度は、室温~60(℃)である
     請求項6または7に記載の基板処理方法。
  9.  前記酸化ジルコニウム膜をエッチングする前記エッチング液のメタンスルホン酸の濃度は、0.01(wt%)以上0.1(wt%)未満である
     請求項1~8のいずれか一つに記載の基板処理方法。
  10.  前記酸化ハフニウム膜をエッチングする前記エッチング液のメタンスルホン酸の濃度は、0.1(wt%)以上1.0(wt%)未満である
     請求項1~8のいずれか一つに記載の基板処理方法。
PCT/JP2023/004908 2022-03-01 2023-02-14 基板処理方法 WO2023166970A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-030715 2022-03-01
JP2022030715 2022-03-01

Publications (1)

Publication Number Publication Date
WO2023166970A1 true WO2023166970A1 (ja) 2023-09-07

Family

ID=87883386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004908 WO2023166970A1 (ja) 2022-03-01 2023-02-14 基板処理方法

Country Status (2)

Country Link
TW (1) TW202403869A (ja)
WO (1) WO2023166970A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332297A (ja) * 2002-05-10 2003-11-21 Daikin Ind Ltd エッチング液及びエッチング方法
JP2009177007A (ja) * 2008-01-25 2009-08-06 Panasonic Corp 絶縁膜のエッチング方法
JP2014029942A (ja) * 2012-07-31 2014-02-13 Advanced Technology Materials Inc 酸化ハフニウム用エッチング組成物
WO2018061670A1 (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 処理液、および積層体の処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332297A (ja) * 2002-05-10 2003-11-21 Daikin Ind Ltd エッチング液及びエッチング方法
JP2009177007A (ja) * 2008-01-25 2009-08-06 Panasonic Corp 絶縁膜のエッチング方法
JP2014029942A (ja) * 2012-07-31 2014-02-13 Advanced Technology Materials Inc 酸化ハフニウム用エッチング組成物
WO2018061670A1 (ja) * 2016-09-29 2018-04-05 富士フイルム株式会社 処理液、および積層体の処理方法

Also Published As

Publication number Publication date
TW202403869A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US20210143001A1 (en) Method of Manufacturing Semiconductor Device, Substrate Processing Apparatus and Non-transitory Computer-readable Recording Medium
CN1976003A (zh) 半导体装置的制造方法及基板处理***
US11551941B2 (en) Substrate cleaning method
JP7129932B2 (ja) 基板処理方法および基板処理システム
KR102493554B1 (ko) 기판 처리 방법, 기판 처리 장치 및 기억 매체
JP4895256B2 (ja) 基板の表面処理方法
KR102638072B1 (ko) 기판 처리 방법 및 기판 처리 장치
JP2013251379A (ja) エッチング方法、エッチング装置及び記憶媒体
JP7241594B2 (ja) 基板処理方法および基板処理装置
WO2023166970A1 (ja) 基板処理方法
JP7175310B2 (ja) 基板処理装置および基板処理方法
US20230041889A1 (en) Substrate processing apparatus, substrate processing method, and chemical liquid
KR102152911B1 (ko) 기판 세정 조성물, 기판 처리 방법 및 기판 처리 장치
JP6917807B2 (ja) 基板処理方法
WO2022085449A1 (ja) 基板処理方法、及び基板処理装置
CN112424916B (zh) 半导体装置的制造方法、基板处理装置和记录介质
KR20220130016A (ko) 기판 처리 방법 및 기판 처리 장치
JP2023020501A (ja) 基板処理方法及び基板処理装置
KR20230150327A (ko) 기판 처리 방법 및 기판 처리 시스템
JP2024079047A (ja) 基板処理装置および基板処理方法
KR20030061515A (ko) 반도체 건식식각장치 및 이를 이용한 건식식각방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763232

Country of ref document: EP

Kind code of ref document: A1