WO2023165437A1 - 涂层户外使用寿命的评估方法 - Google Patents

涂层户外使用寿命的评估方法 Download PDF

Info

Publication number
WO2023165437A1
WO2023165437A1 PCT/CN2023/078406 CN2023078406W WO2023165437A1 WO 2023165437 A1 WO2023165437 A1 WO 2023165437A1 CN 2023078406 W CN2023078406 W CN 2023078406W WO 2023165437 A1 WO2023165437 A1 WO 2023165437A1
Authority
WO
WIPO (PCT)
Prior art keywords
aging
coating
equivalent
temperature
test
Prior art date
Application number
PCT/CN2023/078406
Other languages
English (en)
French (fr)
Inventor
方可伟
刘洪群
王力
罗坤杰
李成涛
张晏玮
陈志林
Original Assignee
苏州热工研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州热工研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 苏州热工研究院有限公司
Publication of WO2023165437A1 publication Critical patent/WO2023165437A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/004Investigating resistance of materials to the weather, to corrosion, or to light to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating

Definitions

  • the invention relates to the technical field of coating evaluation in reliability engineering, in particular to a method for evaluating the service life of outdoor coatings.
  • a tough and elastic covering layer that is, a coating
  • a coating is formed on the surface of the object to protect and/or decorate the object.
  • Coatings used outdoors are exposed to the outdoor atmospheric environment and must withstand the effects of wind, sun, rain, salt spray corrosion, cold and heat changes, etc. Under the long-term repeated effects of these external natural environments, the coating is prone to cracking Aging phenomena such as , powdering, peeling and discoloration make the coating lose its original decorative and protective functions. Therefore, in engineering applications, in the design and selection stage, it is necessary to carry out aging tests on outdoor coatings according to specific usage requirements, to judge their environmental aging resistance, and even to evaluate and predict their service life.
  • the natural aging test refers to direct exposure to the natural environment, which can truly reflect the environmental conditions that the material is subjected to, and the test results obtained are accurate and reliable, but the test cycle is long, often requiring several years or even decades of test cycles.
  • the artificial climate accelerated aging test in the laboratory uses the experimental box to simulate the effect of the natural environment. Through the accelerated aging test, the test results can be obtained in a short period of time, but it often cannot correspond to the actual use environment and cannot accurately reflect the entire environment. factors.
  • the purpose of the present invention is to provide a method for evaluating the service life of outdoor coatings.
  • a method for evaluating the outdoor service life of a coating comprising the steps of:
  • the adhesion of the coating is measured, and the data fitting is performed on the test results of the adhesion to obtain the service life of the outdoor coating failure.
  • the calculation of the UV radiation equivalent of the coating in outdoor UV aging includes the following steps:
  • the calculation of the temperature and humidity aging equivalent of the coating in the accelerated aging of damp heat comprises the following steps:
  • K is the time acceleration coefficient
  • t 1 and t 2 are the laboratory damp heat aging and natural aging time respectively
  • T 1 and T 2 are the temperature of damp heat aging and natural aging, and are the humidity of damp heat aging and natural aging respectively
  • C is the equivalent accelerated aging coefficient
  • the determination of equivalent accelerated aging coefficient C comprises the following steps:
  • the C j obtained is the best equivalent accelerated aging coefficient C of the outdoor coating.
  • S is the adhesion after aging for t time
  • S 0 is the initial adhesion
  • is the anti-aging ability parameter of the coating
  • is the environmental aging erosion coefficient
  • data fitting is carried out to the coating adhesion test result after each cycle aging, and according to formula (3) obtain the anti-aging ability parameter ⁇ of coating and environmental aging erosion coefficient ⁇ .
  • the service life time of outdoor coating failure is the value F f of the minimum adhesion specified in the fitting equation obtained according to the fitting of coating adhesion and the technical requirements of coating failure, calculated The service life time T f in which the exterior coating fails.
  • the present invention is beneficial in that: the method for evaluating the outdoor service life of coatings of the present invention establishes a method based on evaluating the service life of outdoor coatings, perfecting The theoretical basis and means of coating evaluation are established, and the data is obtained accurately and the results are accurate.
  • Fig. 1 is the correction process of outdoor coating equivalent acceleration coefficient C in the preferred embodiment of the present invention.
  • Fig. 2 is the law of adhesion over time after the artificial accelerated aging of the outdoor coating in the preferred embodiment of the present invention
  • Fig. 3 is the change law of adhesion with time after artificial accelerated aging of coating A' in the preferred embodiment of the present invention
  • Fig. 4 is the law of adhesion over time after artificial accelerated aging of coating B' in the preferred embodiment of the present invention.
  • the coating will be affected by factors such as sun exposure, rain, temperature and humidity, wind and salt spray outdoors, among which the most important factors are sun exposure (sun radiation) and temperature and humidity, and the influence of sunlight on coating aging
  • sun exposure sun radiation
  • temperature and humidity the most important factors
  • sunlight sunlight
  • ultraviolet light ultraviolet light and temperature and humidity are selected as environmental factors to accelerate aging when artificially simulating outdoor aging in the laboratory.
  • the alternating cycles of ultraviolet light and temperature and humidity are carried out monthly to reflect the impact of natural environmental changes (such as alternating sunny and rainy days).
  • the amount of ultraviolet radiation and temperature and humidity in 12 months of the year vary greatly, and for each year , the amount of ultraviolet radiation and changes in temperature and humidity are often negligible, so the service life of the coating can be evaluated through the deterioration effect of 12 months, and the effect of superimposed aging is carried out in units of years.
  • the specific annual aging degradation calculation includes the following step:
  • Step 1 Calculation of UV radiation equivalent for outdoor coatings in UV aging:
  • the degree of aging is related to the total amount of radiation. Therefore, in the accelerated ultraviolet aging test, it is only necessary to keep the amount of ultraviolet radiation consistent with that of natural aging.
  • Step 2 Calculation of temperature and humidity aging equivalent of outdoor coatings in accelerated aging of humidity and heat
  • K is the time acceleration coefficient
  • t 1 and t 2 are the laboratory damp heat aging and natural aging time respectively
  • T 1 and T 2 are the temperature of damp heat aging and natural aging, and are the humidity of damp heat aging and natural aging respectively
  • C is the equivalent accelerated aging coefficient.
  • the maximum service temperature of the coating design required for the study is 60°C
  • the environment for accelerated damp heat aging is selected as a temperature of 55°C and a relative humidity of constant temperature and humidity environment. If other coatings are designed with different maximum service temperature, you can choose other set temperature and relative humidity, or you can fix the set temperature t to 55°C and relative humidity In order to form a unified standard to facilitate the comparison of results.
  • Step 201 Confirmation of the equivalent accelerated aging coefficient C of the outdoor coating
  • the equivalent accelerated aging coefficient C is closely related to the composition and performance of the coating.
  • the equivalent accelerated aging coefficient C of each type of outdoor coating has a certain difference. This coefficient has a greater impact on the estimated results of the coating.
  • the equivalent equivalent acceleration coefficient is corrected by using the staged aging test data collected during natural service, so that the aging prediction results obtained in this way are more accurate. The specific steps are as follows:
  • Step 2011 Preliminarily draw up C j based on experience, manuals or literature data (C j can be one value or several values);
  • Step 2012 Determine the time when the damp heat aging test needs to be carried out, and query the average temperature T t and average humidity of the test period in the past three years in this area according to the information of the meteorological department
  • the three-year test period here is three complete years, that is, each year is from January to December, and cannot span the year.
  • Step 2013 Calculate the equivalent time t t of damp heat aging according to formula (2), that is, the damp heat accelerated aging program is
  • Step 2014 According to the damp heat aging procedure Conduct damp heat aging test and indoor natural aging test at the same time;
  • Step 2015 After the test in step 2014, the adhesion test is carried out on the outdoor coating, and the equivalent accelerated aging coefficient C j is synchronously corrected according to the test results, and the accelerated aging test is carried out again.
  • C j is the best equivalent accelerated aging coefficient C of the outdoor coating. The adjustment process of this coefficient is shown in Figure 1.
  • the equivalent here means that the difference between the actual accelerated aging test result and the natural aging result is within 5%, which is usually the test result of adhesion.
  • Step 3 Determination of artificial accelerated aging test method
  • step 1 Based on step 1 and step 2, the natural aging effect of each month is replaced by artificial ultraviolet accelerated aging and damp heat accelerated aging.
  • the environmental spectrum of the one-year accelerated aging test is shown in Table 1.
  • Step 401 Perform an accelerated aging test on the outdoor coating according to the environmental spectrum of the artificial accelerated aging test in Table 1, and each test cycle is one year, including 12 months;
  • Step 402 The adhesion of the coating is one of the most important properties of the various properties of the coating.
  • the coating is damaged by the environment, mainly starting from the electrochemical corrosion of the coating/metal interface, so that the coating is completely or Local loss of adhesion, therefore, by measuring the adhesion of the coating can effectively quantitatively characterize the aging degree of the coating.
  • S is the adhesion after aging for t time
  • S 0 is the initial adhesion
  • is the anti-aging ability parameter of the coating
  • is the environmental aging erosion coefficient
  • reflects the anti-aging ability of the coating itself.
  • reflects the degree of influence of the simulated environment.
  • Step 403 According to the fitting equation of the coating adhesion in step 402 and the minimum adhesion value F f specified in the technical requirements for coating failure, calculate the service life T f of outdoor coating failure.
  • This implementation case is the coating A’ of an outdoor steel plate base in area A.
  • the agreement between Party A and Party B requires that the adhesion of the coating should not be lower than 3.5MPa, and the service life of the coating needs to be evaluated.
  • Step 1 Calculate the UV radiation equivalent in the UV accelerated aging test
  • UV aging was carried out in a UV aging box with a UV irradiation power of 0.60 W/ m2 .
  • the results are shown in Table 2:
  • Step 2 Calculate the humidity aging equivalent in the damp heat accelerated aging test
  • Step 3 Determine the artificial accelerated aging test method
  • step 4 Based on step 1 and step 2, the natural aging effect of each month is replaced by artificial ultraviolet accelerated aging and damp heat accelerated aging.
  • the environmental spectrum of the accelerated aging test for one year is shown in the following table 4:
  • the adhesion of the coating should not be lower than 3.5MPa, that is, 35.29-3.04ln(1+3033.24t) ⁇ 3.5
  • the coating A' can be used for 11.5 years when the adhesion force is not lower than 3.5MPa in the natural environment of area A.
  • This implementation case is an outdoor concrete-based exterior wall coating B’ in area B.
  • the agreement between Party A and Party B requires that the adhesion of the coating should not be lower than 2MPa, and the service life of the coating needs to be evaluated.
  • Step 1 Calculate the UV radiation equivalent in the UV accelerated aging test
  • UV aging was carried out in a UV aging box with a UV irradiation power of 0.60 W/ m2 .
  • the results are shown in Table 5:
  • Step 2 Calculate the humidity aging equivalent in the damp heat accelerated aging test
  • the equivalent accelerated aging parameter C is 75.8 after being verified and corrected by experiments.
  • the time t i required for accelerated aging after equivalent equivalent under temperature and humidity the results are shown in Table 6:
  • Step 3 Determine the artificial accelerated aging test method
  • step 1 Based on step 1 and step 2, the natural aging effect of each month is replaced by artificial ultraviolet accelerated aging and damp heat accelerated aging.
  • the environmental spectrum of the accelerated aging test for one year is shown in Table 7 below:
  • the adhesion of the coating should not be lower than 2MPa, that is, 29.74-2.86ln(1+1865.52t) ⁇ 2
  • the coating B' can be used for 8.7 years when the adhesion force is not lower than 2MPa in the natural environment of area B.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

一种涂层户外使用寿命的评估方法,包括如下步骤:计算一年十二个月中每个月涂层在紫外老化中的紫外光辐照当量以及在湿热加速老化中的温湿度老化当量;根据每个月的紫外光辐照当量和温湿度老化当量设定加速老化试验条件,并以年为一个循环单位,以每个月为一个阶段,每个循环单位年内包括十二个阶段;每个循环单元老化结束后测量涂层的附着力,并对附着力的测试结果进行数据拟合,进而得到户外涂层失效的使用寿命时间。建立了一种基于评估户外涂层使用寿命的方法,完善了涂层评估的理论依据及手段,且数据获得精准,结果准确。

Description

涂层户外使用寿命的评估方法 技术领域
本发明涉及可靠性工程中的涂层评估技术领域,具体涉及一种户外涂层使用寿命的评估方法。
背景技术
涂料涂敷于物体表面干燥硬化后,在物体表面形成坚韧且富有一定弹性的覆盖层即涂层,给物体以保护和/或装饰作用。用于户外的涂层暴露在户外大气环境中,要经受风吹、日晒、雨淋、盐雾腐蚀、冷热变化等作用,在这些外界自然环境的长期反复作用下,涂层易发生开裂、粉化、剥落和变色等老化现象,使得涂层失去原有的装饰和保护功能。因此工程应用中,在设计选用阶段,需要根据具体使用需求,对户外涂层进行老化试验,判断其耐环境老化性能,甚至评估、预测其使用寿命。
目前材料老化寿命评估方法主要有两种:一种是自然老化试验,另外一种是实验室人工气候加速老化试验。自然老化试验是指直接暴露于自然环境下,能真实反映材料所承受的环境条件,获得的试验结果准确可靠,但试验周期较长,往往需要几年甚至几十年的试验周期。实验室人工气候加速老化试验是利用实验箱来模拟自然环境的作用,通过加速老化试验可以在较短的周期内获得试验结果,但是它往往不能与实际使用环境相对应,不能准确反映全部的环境因素的影响。
因此,如何在自然老化环境与实验室加速老化环境之间建立一个等效的对应关系,利用实验室加速老化方法快速评估户外涂层的长期自然老化性能成为迫切需要解决的问题。
发明内容
有鉴于此,为了克服现有技术的缺陷和达到上述目的,本发明的目的是提供一种户外涂层使用寿命的评估方法。
为了达到上述目的,本发明采用以下的技术方案:
一种涂层户外使用寿命的评估方法,包括如下步骤:
计算一年十二个月中每个月,涂层在紫外老化中的紫外光辐照当量以及在湿热加速老化中的温湿度老化当量;
根据每个月的紫外光辐照当量和温湿度老化当量设定加速老化试验条件,并以年为一个循环单位,以每个月为一个阶段,每个循环单位年内包括十二个阶段;
每个循环单元老化结束后测量涂层的附着力,并对附着力的测试结果进行数据拟合,进而得到户外涂层失效的使用寿命时间。
根据本发明的一些优选实施方面,涂层在户外紫外老化中的紫外光辐照当量的计算包括如下步骤:
查询目标地区某年1~12个月的每个月紫外光辐照量UVi,其中i=1,2,3,……,12;
在紫外老化箱中进行紫外加速老化,查询紫外老化箱的紫外光的辐照功率P,通过公式(1)来计算每个月等效紫外加速老化时间tUVi,故每个月的紫外光辐照当量为(P,tUVi),其中i=1,2,3,……,12;
根据本发明的一些优选实施方面,涂层在湿热加速老化中的温湿度老化当量的计算包括如下步骤:
按照公式(2)来计算湿热加速老化的老化作用时间:
式中:K为时间加速系数;t1和t2分别为实验室湿热老化和自然老化时间,T1和T2是湿热老化和自然老化的温度,分别是湿热老化与自然老化的湿度,C为等效加速老化系数;
查询目标地区某年1~12个月的平均温度Ti和平均湿度其中i=1,2,3,……,12;
按照公式(2)计算每个月对应目标温度和目标相对湿度的温湿度下当量等效后加速老化所需要的时间ti,故每个月的温湿度老化当量为其中i=1,2,3,……,12;t设定分别为根据涂层的使用温度而设定的环境温度和相对湿度。
根据本发明的一些优选实施方面,等效加速老化系数C的确定包括如下步骤:
初步拟定Cj
确定需要开展湿热老化试验的时间,并查询目标地区过去三年试验时间段 的平均温度Tt和平均湿度
根据公式(2)计算湿热老化当量时间tt,并根据涂层设计最高使用温度和湿度以及湿热老化当量时间tt得到湿热加速老化程序;
根据湿热老化程序进行湿热老化试验,并同步进行室内自然老化试验;
在试验结束后,对户外涂层进行附着力测试,根据测试结果同步修正等效加速老化系数Cj,并重新进行加速老化试验;
当实际加速老化试验结果与自然老化结果相当时所得到的Cj即为该户外涂层最佳等效加速老化系数C。
根据本发明的一些优选实施方面,附着力随时间的变化规律如公式(3)所示,
S=S0-ωln(1+θt)  (3)
式中:S为老化t时间后的附着力,S0为初始附着力,ω表述涂层抗老化能力参数,θ为环境老化侵蚀系数。
根据本发明的一些优选实施方面,对经过每个循环周期老化后的涂层附着力测试结果进行数据拟合,并根据公式(3)得到涂层的抗老化能力参数ω和环境老化侵蚀系数θ。
根据本发明的一些优选实施方面,户外涂层失效的使用寿命时间为根据涂层附着力的拟合得到的拟合方程和涂层失效的技术要求中所规定最低附着力的值Ff,计算户外涂层所失效的使用寿命时间Tf
由于采用了以上的技术方案,相较于现有技术,本发明的有益之处在于:本发明的涂层户外使用寿命的评估方法,建立了一种基于评估户外涂层使用寿命的方法,完善了涂层评估的理论依据及手段,且数据获得精准,结果准确。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明优选实施例中户外涂层等效加速系数C的修正流程;
图2为本发明优选实施例中户外涂层人工加速老化后附着力随时间变化规律;
图3为本发明优选实施例中涂层A’人工加速老化后附着力随时间变化规律;
图4为本发明优选实施例中涂层B’人工加速老化后附着力随时间变化规律。
具体实施方式
为了使本技术领域的人员更好地理解本发明的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
涂层在户外会受到日晒、雨淋、温湿度、风吹和盐雾等因素的影响,其中最主要的因素为日晒(太阳辐照)和温湿度,太阳光中对涂层老化影响最为显著的是紫外光,因此在实验室中人工模拟室外老化时选取紫外光和温湿度作为加速老化的环境因素。
将紫外光和温湿度进行月变化的交替循环来体现自然环境变化(如晴雨天交替)的影响,一年中12个月的紫外光辐照量以及温湿度变化较大,而针对每年来说,紫外光辐照量以及温湿度变化往往可忽略不计,故涂层使用寿命评估可以通过12个月的劣化效果来评估,并以年为单位进行叠加老化的影响,具体每年老化劣化计算包括以下步骤:
步骤一:户外涂层在紫外老化中紫外光辐照当量的计算:
对于紫外光引起的老化,一般认为老化程度与辐照总量相关,因此在紫外加速老化试验中,只要保持紫外辐照量与自然老化的紫外辐照量一致即可。
步骤101:查询某年1~12个月的每个月紫外光辐照量UVi,其中i=1,2,3,……,12;
步骤102:紫外加速老化在紫外老化箱中进行,查询紫外老化箱的紫外光的辐照功率P,通过公式(1)来计算每个月等效紫外加速老化时间tUVi,故每个月的紫外光辐照当量为(P,tUVi),其中i=1,2,3,……,12。
步骤二:户外涂层在湿热加速老化中温湿度老化当量的计算
对于温湿度引起的老化,户外涂层主要发生水解、溶胀等性能衰退,可以选择在高温和高湿度的环境中进行加热老化试验。湿热加速的老化作用时间可以按照公式(2)来计算。
式中:K为时间加速系数;t1和t2分别为实验室湿热老化和自然老化时间,T1和T2是湿热老化和自然老化的温度,分别是湿热老化与自然老化的湿度,C为等效加速老化系数。
因研究所需的涂层设计最高使用温度为60℃,因此选取加速湿热老化的环境为温度55℃,相对湿度的恒温恒湿环境。若其他涂层的设计最高使用温度不同,可以选择其他的设定温度和相对湿度,也可以固定设定温度t设定为55℃和相对湿度以形成统一的标准以方便结果对比。
步骤201:户外涂层等效加速老化系数C的确认
等效加速老化系数C与涂层的组份及性能息息相关,每类户外涂层的等效加速老化系数C都有一定的差异,该系数对涂层的预估结果有较大的影响,需采用在自然服役过程中采集到的阶段性老化测试数据修正当量等效加速系数,这样得到的老化预测结果更加准确,具体步骤如下:
步骤2011:先依据经验、手册或文献数据,初步拟定Cj(Cj可是一个值,也可是几个值);
步骤2012:确定需要开展湿热老化试验的时间,并根据气象部门信息,查询该地区过去三年试验时间段的平均温度Tt和平均湿度
此处的三年试验时间段为三个完整年,即每一年都是1~12月,而不能跨年。
步骤2013:根据公式(2)计算湿热老化当量时间tt,即湿热加速老化程序为
步骤2014:根据湿热老化程序进行湿热老化试验,并同步进行室内自然老化试验;
步骤2015:在步骤2014试验结束后,对户外涂层进行附着力测试,根据测试结果同步修正等效加速老化系数Cj,重新进行加速老化试验。当实际加速老化试验结果与自然老化结果相当时所得到的Cj是该户外涂层最佳等效加速老化系数C,该系数的调整流程如图1所示。
此处的相当为实际加速老化试验结果与自然老化结果相差在5%以内,通常为附着力的测试结果。
步骤202:查询某年1~12个月的平均温度Ti和平均湿度其中i=1,2,3,……,12。
步骤203:按照公式(2)计算步骤201中每个月对应温度55℃和相对湿度温湿度下当量等效后加速老化所需要的时间ti,故每个月的温湿度老化当 量为其中i=1,2,3,……,12。
步骤三:人工加速老化试验方法的确定
基于步骤一和步骤二,将每个月的自然老化效应由人工紫外加速老化和湿热加速老化替代,一年的加速老化试验的环境谱见表1所示。
步骤四:户外涂层使用寿命的评估
步骤401:按照表1的人工加速老化试验环境谱对户外涂层进行加速老化试验,每一个测试循环周期为一年,包括12个月;
步骤402:涂层的附着力是涂层各种性能中最为重要的性质之一,涂层受环境作用导致失效破坏,主要起始于涂层/金属界面电化学腐蚀发生,使涂层全部或局部丧失附着力,因此,通过测量涂层的附着力可以有效的定量化表征涂层的老化程度。
在老化试验过程中,每个循环周期定期取出试验件进行附着力测试,附着力随时间变化规律见图2,这种变化规律服从于古尼耶夫公式,简化后可用公式(3)表达:
S=S0-ωln(1+θt)  (3)
式中:S为老化t时间后的附着力,S0为初始附着力,ω表述涂层抗老化能力参数,θ为环境老化侵蚀系数。
对步骤401中每个周期的涂层附着力测试结果进行数据拟合,得到涂层抗老化能力参数ω和环境老化侵蚀系数θ。其中,ω反映涂层自身抗老化的能力,ω值越大,涂层抗老化能力越差;θ反映模拟环境影响的程度,θ值越大,影响程度越大。
步骤403:根据步骤402涂层附着力的拟合方程和涂层失效的技术要求中所规定最低附着力的值Ff,计算户外涂层所失效的使用寿命时间Tf
以下以带有具体数值的实施案例对本发明的技术方案做进一步的说明。
实施例1
本实施案例为A地区某一户外用钢板基的涂层A’,甲乙双方协议要求涂层附着力不能低于3.5MPa,需评估该涂层可使用年限。
步骤一:计算紫外加速老化试验中紫外光辐照当量
采用紫外光辐照功率为0.60W/m2的紫外老化箱进行紫外老化。查询A地区过去一年每个月紫外光辐照量UVi,并通过公式(1)计算出每个月等效紫外加速老化时间tUVi,结果见表2:
步骤二:计算湿热加速老化试验中湿度老化当量
按照图1流程经试验验证修正后,等效加速老化参数C=87.2。查询A地区过去一年每个月平均温度Ti和平均湿度并根据公式(2)计算每个月对应温度55℃和相对湿度温湿度下当量等效后加速老化所需要的时间ti,结果见表3:
表3中1月和12月得到的加速时间过短,没有试验的意义,固设为0。
步骤三:确定人工加速老化试验方法
基于步骤一和步骤二,将每个月的自然老化效应由人工紫外加速老化和湿热加速老化替代,一年的加速老化试验的环境谱见下表4:
表4中1月和12月得到的加速时间过短,没有试验的意义,固设为0。
步骤四:使用寿命的评估
按照表4的人工加速老化试验环境谱对涂层A’进行加速老化试验,试验周期为一年,一共开展了6个周期试验,每周期试验后取出试验件进行附着力测试,并对测试数据用古尼耶夫公式进行拟合,见图3,拟合后曲线公式为公式4,相关系数R=0.972。
S=35.29-3.04ln(1+3033.24t)  (4)
对比公式(3)和公式(4)可知:涂层抗老化能力参数ω=3.04,环境老化侵蚀系数θ=3033.24。
根据甲乙双方协议要求涂层附着力不能低于3.5MPa,亦即是
35.29-3.04ln(1+3033.24t)≥3.5
则t≤11.5
即是涂层A’在A地区的自然环境中满足附着力不低于3.5MPa时可用11.5年。
实施例2
本实施案例为B地区某一户外用混凝土基的外墙涂层B’,甲乙双方协议要求涂层附着力不能低于2MPa,需评估该涂层可使用年限。
步骤一:计算紫外加速老化试验中紫外光辐照当量
采用紫外光辐照功率为0.60W/m2的紫外老化箱进行紫外老化。查询A地区过去一年每个月紫外光辐照量UVi,并通过公式(1)计算出每个月等效紫外加速老化时间tUVi,结果见表5:

步骤二:计算湿热加速老化试验中湿度老化当量
按照图1流程经试验验证修正后,等效加速老化参数C=75.8。查询B地区过去一年每个月平均温度Ti和平均湿度并根据公式(2)计算每个月对应温度55℃和相对湿度温湿度下当量等效后加速老化所需要的时间ti,结果见表6:
表6中1月和12月得到的加速时间过短,没有试验的意义,固设为0。
步骤三:确定人工加速老化试验方法
基于步骤一和步骤二,将每个月的自然老化效应由人工紫外加速老化和湿热加速老化替代,一年的加速老化试验的环境谱见下表7:
表7中1月和12月得到的加速时间过短,没有试验的意义,固设为0。
步骤四:使用寿命的评估
按照表7的人工加速老化试验环境谱对涂层A’进行加速老化试验,试验周 期为一年,一共开展了6个周期试验,每周期试验后取出试验件进行附着力测试,并对测试数据用古尼耶夫公式进行拟合,见图4,拟合后曲线公式为公式5,相关系数R=0.979。
S=29.74-2.86ln(1+1865.52t)  (5)
对比公式(3)和公式(5)可知:涂层抗老化能力参数ω=2.86,环境老化侵蚀系数θ=1865.52。
根据甲乙双方协议要求涂层附着力不能低于2MPa,亦即是
29.74-2.86ln(1+1865.52t)≥2
则t≤8.7
即是涂层B’在B地区的自然环境中满足附着力不低于2MPa时可用8.7年。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (11)

  1. 一种涂层户外使用寿命的评估方法,其特征在于,包括如下步骤:
    计算一年十二个月中每个月涂层在紫外老化中的紫外光辐照当量以及在湿热加速老化中的温湿度老化当量;
    根据每个月的紫外光辐照当量和温湿度老化当量设定加速老化试验条件,并以年为一个循环单位,以每个月为一个阶段,每个循环单位年内包括对应从一月至十二月的十二个阶段;
    每个循环单元老化结束后测量涂层的附着力,并对附着力的测试结果进行数据拟合,进而得到户外涂层失效的使用寿命时间。
  2. 根据权利要求1所述的评估方法,其特征在于,涂层在户外紫外老化中的紫外光辐照当量的计算包括如下步骤:
    查询目标地区某年1~12个月的每个月紫外光辐照量UVi,其中i=1,2,3,……,12;
    在紫外老化箱中进行紫外加速老化,查询紫外老化箱的紫外光的辐照功率P,通过公式(1)来计算每个月等效紫外加速老化时间tUVi,故每个月的紫外光辐照当量为(P,tUVi),其中i=1,2,3,……,12;
  3. 根据权利要求1所述的评估方法,其特征在于,涂层在湿热加速老化中的温湿度老化当量的计算包括如下步骤:
    按照公式(2)来计算湿热加速老化的老化作用时间:
    式中:K为时间加速系数;t1和t2分别为实验室湿热老化和自然老化时间,T1和T2是湿热老化和自然老化的温度,分别是湿热老化与自然老化的湿度,C为等效加速老化系数;
    查询目标地区某年1~12个月的平均温度Ti和平均湿度其中i=1,2,3,……,12;
    按照公式(2)计算每个月对应目标温度和目标相对湿度的温湿度下当量等效后加速老化所需要的时间ti,故每个月的温湿度老化当量为其中i=1,2,3,……,12;t设定分别为根据涂层的使用温度而设定的环境温度和相对湿度。
  4. 根据权利要求3所述的评估方法,其特征在于,所述涂层设计最高使用温 度为60℃,选取加速湿热老化的环境为温度55℃,相对湿度的恒温恒湿环境。
  5. 根据权利要求1所述的评估方法,其特征在于,等效加速老化系数C的确定包括如下步骤:
    初步拟定Cj
    确定需要开展湿热老化试验的时间,并查询目标地区过去三年试验时间段的平均温度Tt和平均湿度
    根据公式(2)计算湿热老化当量时间tt,并根据涂层设计最高使用温度和湿度以及湿热老化当量时间tt得到湿热加速老化程序;
    根据湿热老化程序进行湿热老化试验,并同步进行室内自然老化试验;
    在试验结束后,对户外涂层进行附着力测试,根据测试结果同步修正等效加速老化系数Cj,并重新进行加速老化试验;
    当实际加速老化试验结果与自然老化结果相当时所得到的Cj即为该户外涂层最佳等效加速老化系数C。
  6. 根据权利要求5所述的评估方法,其特征在于,所述相当为实际加速老化试验结果与自然老化结果相差在5%以内。
  7. 根据权利要求5所述的评估方法,其特征在于,所述过去三年为过去三年中每年的1月至12月。
  8. 根据权利要求5所述的评估方法,其特征在于,所述Cj依据经验、手册或文献数据初步拟定。
  9. 根据权利要求1所述的评估方法,其特征在于,附着力随时间的变化规律如公式(3)所示,
    S=S0-ωln(1+θt)  (3)
    式中:S为老化t时间后的附着力,S0为初始附着力,ω表述涂层抗老化能力参数,θ为环境老化侵蚀系数。
  10. 根据权利要求9所述的评估方法,其特征在于,对经过每个循环周期老化后的涂层附着力测试结果进行数据拟合,并根据公式(3)得到涂层的抗老化能力参数ω和环境老化侵蚀系数θ。
  11. 根据权利要求10所述的评估方法,其特征在于,户外涂层失效的使用寿命时间为根据涂层附着力的拟合得到的拟合方程和涂层失效的技术要求中所规 定最低附着力的值Ff,计算户外涂层所失效的使用寿命时间Tf
PCT/CN2023/078406 2022-03-02 2023-02-27 涂层户外使用寿命的评估方法 WO2023165437A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210197950.2A CN114705612A (zh) 2022-03-02 2022-03-02 涂层户外使用寿命的评估方法
CN202210197950.2 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023165437A1 true WO2023165437A1 (zh) 2023-09-07

Family

ID=82167212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078406 WO2023165437A1 (zh) 2022-03-02 2023-02-27 涂层户外使用寿命的评估方法

Country Status (2)

Country Link
CN (1) CN114705612A (zh)
WO (1) WO2023165437A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114580187A (zh) * 2022-03-10 2022-06-03 中国建筑科学研究院有限公司 服役中预制节段拼装用环氧胶粘剂剩余使用年限评估方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705612A (zh) * 2022-03-02 2022-07-05 苏州热工研究院有限公司 涂层户外使用寿命的评估方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075283A1 (fr) * 2001-03-15 2002-09-26 Solsys Procede de vieillissement solaire accelere et dispositif permettant l'application de ce procede
CN103954550A (zh) * 2014-05-04 2014-07-30 中国兵器工业第五九研究所 一种涂层海洋大气环境模拟加速试验方法
CN110954469A (zh) * 2019-12-04 2020-04-03 山东非金属材料研究所 一种聚氨酯弹性体涂料干湿交替海洋环境腐蚀快速评价方法
CN113640208A (zh) * 2021-08-11 2021-11-12 中国人民解放军海军航空大学青岛校区 一种海洋环境下含涂层金属结构腐蚀损伤多尺度仿真方法
CN114705612A (zh) * 2022-03-02 2022-07-05 苏州热工研究院有限公司 涂层户外使用寿命的评估方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075283A1 (fr) * 2001-03-15 2002-09-26 Solsys Procede de vieillissement solaire accelere et dispositif permettant l'application de ce procede
CN103954550A (zh) * 2014-05-04 2014-07-30 中国兵器工业第五九研究所 一种涂层海洋大气环境模拟加速试验方法
CN110954469A (zh) * 2019-12-04 2020-04-03 山东非金属材料研究所 一种聚氨酯弹性体涂料干湿交替海洋环境腐蚀快速评价方法
CN113640208A (zh) * 2021-08-11 2021-11-12 中国人民解放军海军航空大学青岛校区 一种海洋环境下含涂层金属结构腐蚀损伤多尺度仿真方法
CN114705612A (zh) * 2022-03-02 2022-07-05 苏州热工研究院有限公司 涂层户外使用寿命的评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, CHAOGAN ET AL.: "Environmental Factor Equivalent Accelerated Aging Test Method for Composites", ENGINEERING PLASTICS APPLICATION, vol. 48, no. 8, 31 August 2020 (2020-08-31), pages 104 - 106, XP009548361, ISSN: 1001-3539 *
LU, LIN ET AL.: "Effect of Photo Degradation on the Adhesion at Acrylic Polyurethane Varnish/steel Interface", ACTA MATERIAE COMPOSITAE SINICA, vol. 28, no. 2, 30 April 2011 (2011-04-30), pages 94 - 95, XP009548362, ISSN: 1000-3851 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114580187A (zh) * 2022-03-10 2022-06-03 中国建筑科学研究院有限公司 服役中预制节段拼装用环氧胶粘剂剩余使用年限评估方法

Also Published As

Publication number Publication date
CN114705612A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2023165437A1 (zh) 涂层户外使用寿命的评估方法
CN107579708B (zh) 一种结合数学模型的室内光伏组件加速老化方法
CN104819929A (zh) 一种快速评价涂层耐候性的检测方法
CN105371357B (zh) 一种供热管网调控方法及***
CN106546626B (zh) 一种求解光伏组件温度系数的电池片温度修正方法
Rodríguez-Hidalgo et al. Instantaneous performance of solar collectors for domestic hot water, heating and cooling applications
WO2021056751A1 (zh) 一种利用太阳跟踪聚光加速老化试验预测聚苯乙烯材料服役寿命的方法
Murano et al. The new Italian climatic data and their effect in the calculation of the energy performance of buildings
Naveros et al. Analysis of capabilities and limitations of the regression method based in averages, applied to the estimation of the U value of building component tested in Mediterranean weather
Leprince et al. Durability of building airtightness, review and analysis of existing studies
CN110851940A (zh) 一种基于应力分布的产品可靠性加速验证试验方法
CN104579168A (zh) 一种光伏组件户外暴露试验方法
Sutter et al. Acceptance criteria for accelerated aging testing of silvered-glass mirrors for concentrated solar power technologies
CN106546715B (zh) 一种模拟建筑涂料施工环境变化的装置与方法
CN109297891A (zh) 一种高分子材料的干热环境户外老化加速试验方法
CN112683767A (zh) 一种“热-光-水”耦合循环作用下沥青室内老化方法
CN113567374B (zh) 计算光致变色玻璃太阳能得热系数的方法
CN104181062A (zh) 灯具涂层硬度测试方法
Yik et al. A method to estimate direct and diffuse radiation in Hong Kong and its accuracy
CN111007102A (zh) 一种光伏组件温湿度加速老化因子的计算方法
Sorloaica-Hickman et al. Comparative study of the performance of field-aged photovoltaic modules located in a hot and humid environment
Gillett et al. Solar collector testing in the European Community
Norvaišienė et al. Durability tests on painted facade rendering by accelerated ageing
de Andrade et al. Hygrothermal simulation applied to degradation modeling of ceramic facades
Li et al. How Climate Change Impacts Energy Load Demand for Commercial and Residential Buildings in a Large City in Northern China.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762837

Country of ref document: EP

Kind code of ref document: A1