WO2023165096A1 - 一种一体成型电感用低损耗粉末及其制备方法 - Google Patents

一种一体成型电感用低损耗粉末及其制备方法 Download PDF

Info

Publication number
WO2023165096A1
WO2023165096A1 PCT/CN2022/112981 CN2022112981W WO2023165096A1 WO 2023165096 A1 WO2023165096 A1 WO 2023165096A1 CN 2022112981 W CN2022112981 W CN 2022112981W WO 2023165096 A1 WO2023165096 A1 WO 2023165096A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
loss
low
mass
agent
Prior art date
Application number
PCT/CN2022/112981
Other languages
English (en)
French (fr)
Inventor
李伟健
邢冰冰
盖鹏祥
宋岩岩
张芹
缪思敏
Original Assignee
天通控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天通控股股份有限公司 filed Critical 天通控股股份有限公司
Priority to KR1020237026628A priority Critical patent/KR20230145060A/ko
Publication of WO2023165096A1 publication Critical patent/WO2023165096A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Definitions

  • the invention belongs to the field of magnetic functional materials, and in particular relates to an integrally formed low-loss powder for inductors and a preparation method thereof.
  • One-piece inductors are mostly made of carbonyl iron powder or iron-silicon-chromium alloy powder, which is pressed with the coil embedded in it after insulating coating.
  • Carbonyl iron powder is characterized by good DC superposition characteristics, low powder hardness, and high density after pressing, but its magnetic permeability is low.
  • High DC resistance R DC ; FeSiCr alloy powder has the advantages of good anti-rust properties and adjustable magnetic permeability range, but the powder is relatively hard, difficult to compact and compact, and has high loss.
  • the Chinese patent with the notification number CN111063501B has announced a preparation method for producing low-loss powders for integrally formed inductors, that is, after mixing carbonyl iron powder with iron silicon powder or amorphous powder Coating granulation, but the loss of iron-silicon powder is the highest among commonly used soft magnetic metal powders.
  • Amorphous powder has no grain boundaries, which makes it difficult to effectively coat, and its hardness is relatively high, so it is difficult to compress, so the obtained powder is still difficult to achieve Aim for low loss.
  • the Chinese patent with the publication number CN113380487A discloses a magnetic core powder for integrally formed inductors and its preparation method. Its core is still iron-silicon-chromium alloy powder for inorganic and organic coating. Although the obtained magnetic core has a stable structure and is not easy to crack , but still failed to solve the problem of excessive loss.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide a low-loss powder for integrally formed inductors and its preparation method, which can not only reduce the loss caused by magnetic substances, but also reduce the use of copper wires in integrally formed inductors In turn, the resistance and the loss caused by the heating of the copper wire are reduced, and the overall efficiency is improved.
  • the low-loss powder for integrated molding inductors of the present invention is mainly composed of carbonyl iron powder, gas-atomized iron-silicon-aluminum alloy powder, phosphate coating agent, composite coating agent and lubricant, and carbonyl iron powder and gas-atomized iron
  • the mass of the mixed powder after mixing the silicon-aluminum alloy powder is the basis for calculation, where:
  • the phosphate coating agent is produced by the reaction of mixed powder and phosphate-acetone solution, wherein the mass of phosphoric acid is 0.1-0.3% of the mass of the mixed powder, and the acetone is 8-10% of the mass of the mixed powder;
  • the composite coating agent consists of 0.3-1.2% nickel-zinc ferrite powder, 0.2-0.6% quartz fiber powder, 0.1-0.3% film-forming agent, 0.1-0.4% plasticizer, 1.5-2.8% ring Oxygen resin, 0.3-0.5% of curing agent and 0.1-0.4% of coupling agent are mixed in acetone solvent to form; the lubricant accounts for 0.2-0.4% of the mass of the mixed powder.
  • the agent is an epoxy curing agent;
  • the coupling agent is ethyltriethoxysilane;
  • the lubricant is one or more mixtures of stearic acid, paraffin wax powder and magnesium stearate.
  • the outermost layer of the powder is a net-shaped coating film layer composed of a composite coating agent
  • the second outer layer is a phosphate film layer composed of a phosphate coating agent
  • the innermost layer is a matrix composed of sendust and carbonyl iron powder , and finally formed a double-layer coating structure.
  • a method for preparing low-loss powder for integrated molding inductors comprising the following steps:
  • Lubrication and sieving Weigh the lubricant and mix it with the granulated powder, and then sieve it with a mesh size of 50-270.
  • the powder with an intermediate particle size is the powder for low-loss integrated molding inductors.
  • the present invention has the following advantages:
  • the selection of original powder is carbonyl iron powder and gas atomized iron silicon aluminum powder, and its principle is that carbonyl iron is easy to press and form, and has better direct-current superposition characteristic, and powder particle size is little, and in the device
  • the eddy current loss is proportional to the particle size of the powder, so the eddy current loss generated is lower than that of the conventional powder, and the gas-atomized iron-silicon-aluminum powder is due to its high sphericity, low oxygen content, magnetostriction coefficient close to zero, and magnetic crystals.
  • the anisotropy constant is close to zero, which is the lowest loss among conventional soft magnetic materials.
  • the overall loss after mixing the two powders of the present invention is much lower than that of conventional powders, while maintaining the DC superposition characteristics close to conventional powders;
  • the inductance value of the integrally formed inductor is proportional to the square of the powder magnetic permeability and the number of turns of the coil. Since the magnetic permeability of the pressed powder in the present invention is higher than that of the conventional carbonyl iron powder, the integrally formed inductor with the same inductance value The amount of copper wire used will be reduced, which can reduce the loss caused by the heating of the copper wire in the integrated inductor, and the reduction in the number of copper wires will also help reduce production costs;
  • quartz fiber powder is Under the bonding action of film-forming agent, plasticizer, epoxy resin, curing agent, coupling agent and other materials, it can be evenly coated on the surface of the powder.
  • the quartz fiber powder has a certain aspect ratio, under microscopic conditions , can form a net-like coating film layer based on quartz fiber powder, the net-like structure helps to increase the toughness of the coating film layer, and is not easily damaged during the pressing process, thereby maintaining the powder with high insulation resistance, so The film layer has good insulation and reliability, and reduces the overall loss by reducing eddy current loss.
  • Lubrication and sieving Weigh 2g of stearic acid and mix it with the powder, and then sieve it with 50-270 meshes.
  • Example 1 The difference between this comparative example and Example 1 is that all the original powders used are carbonyl iron powders.
  • Example 1 The difference between this comparative example and Example 1 is that all the original powders used are iron-silicon-chromium alloy powders.
  • Example 1 The difference between this comparative example and Example 1 is that the composite coating agent used is to mix 1g plasticizer diethylene glycol dibenzoate, 24g epoxy resin, 5.5g curing agent, 1.5g ethyl triethoxy The base silane coupling agent is dissolved in the solvent of 100g acetone.
  • Example 1 and Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 4 was pressed into a magnetic ring with an outer diameter of 10.15 mm, an inner diameter of 5.1 mm, and a height of 3.98 ⁇ 0.02 mm, and after baking, the magnetic ring was made into a coil.
  • Embodiment 1 and comparative example 1, comparative example 2, comparative example 3, comparative example 4 characteristic test results are as shown in table 1:
  • Example 1 By comparing Example 1 with Comparative Examples 1-3, it can be seen from Table 1 that the present invention uses the mixed powder of sendust powder and carbonyl iron as the original powder, and the magnetic permeability of the prepared material is significantly improved, because the gas mist The magnetostriction coefficient and magnetic anisotropy constant of iron silicon aluminum powder are close to 0, so it has lower loss than iron silicon chromium alloy powder and carbonyl iron powder after mixing.
  • Example 1 and Comparative Example 4 it can be seen that after the composite coating of the present invention, the magnetic permeability of the material is higher than that of the ordinary coating process, and the loss is significantly lower than that of the ordinary coating process.
  • the spherical nickel-zinc-iron Oxygen powder is magnetic, and after coating and pressing, it can be filled into the gaps between carbonyl iron powders, so the performance has been improved.
  • the addition of quartz fiber powder, film-forming agent, and plasticizer can greatly improve the uniformity of coating and the insulation and toughness of the film layer, so that the film layer will not be easily damaged during the pressing process, and the coupling agent can improve The connection between the film layer and the powder matrix, so the coating effect of the film layer is better, the resistivity between the powder and the powder is greatly improved, and the eddy current loss generated between the particles is reduced, so the overall loss is reduced.
  • Lubrication and sieving Weigh 3g of magnesium stearate and mix it with the powder. After mixing, sieve it with a mesh size of 50-270. The powder with an intermediate particle size is the powder for low-loss integral molding inductors.
  • Example 2 The difference between this comparative example and Example 2 is that the composite coating agent used is an acetone solution mixed with 19g of nickel-zinc ferrite powder, 25g of epoxy resin, 5g of curing agent, and 3g of ethyltriethoxysilane coupling agent.
  • the composite coating agent used is an acetone solution mixed with 19g of nickel-zinc ferrite powder, 25g of epoxy resin, 5g of curing agent, and 3g of ethyltriethoxysilane coupling agent.
  • Example 2 The difference between this comparative example and Example 2 is that the composite coating agent used is to mix 6g film-forming agent tripropylene glycol n-butyl ether (TPnB), 4g plasticizer dipropylene glycol dibenzoate, 30g epoxy resin, 9g curing Agent, 3g ethyltriethoxysilane coupling agent in acetone solution.
  • TPnB tripropylene glycol n-butyl ether
  • plasticizer dipropylene glycol dibenzoate 30g epoxy resin
  • 9g curing Agent 9g curing Agent
  • 3g ethyltriethoxysilane coupling agent in acetone solution.
  • Example 2 The difference between this comparative example and Example 2 is that the composite coating agent used is to mix 10g nickel-zinc ferrite powder, 4g quartz fiber powder, 5g film-forming agent tripropylene glycol n-butyl ether (TPnB), 28g epoxy resin, 5g Acetone solution of curing agent.
  • the composite coating agent used is to mix 10g nickel-zinc ferrite powder, 4g quartz fiber powder, 5g film-forming agent tripropylene glycol n-butyl ether (TPnB), 28g epoxy resin, 5g Acetone solution of curing agent.
  • Embodiment 2 and comparative example 5 are as shown in table 2:
  • Example 2 By comparing Example 2 with Comparative Examples 5-8, it can be seen from Table 2 that the present invention uses the mixed powder of sendust powder and carbonyl iron as the original powder, and uses a composite coating agent to coat it.
  • the magnetic permeability of the prepared material is obviously improved, and the loss is obviously reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种一体成型电感用低损耗粉末及其制备方法,采用大粒径的气雾化铁硅铝合金粉末与小粒径的羰基铁粉末混合为磁粉主体进行磷化处理,得到磷化粉末,再混入由镍锌铁氧体粉末、石英纤维粉、成膜剂、增塑剂、环氧树脂、固化剂、偶联剂组成的复合包覆剂,待搅拌均匀后进行造粒、烘烤,冷却至室温后,加入润滑剂混合,经50-270目分筛,得到一体成型电感用低损耗粉末。所制得的粉末具有高磁导率、低损耗的特性,利用该粉末压制的一体成型电感具有成本低、损耗低、发热小、效率高等优点。

Description

一种一体成型电感用低损耗粉末及其制备方法 技术领域
本发明属于磁性功能材料领域,具体涉及一种一体成型电感用低损耗粉末及其制备方法。
背景技术
作为电子产品的重要组成部件,新型电子元器件正向着片式化、微型化、高频化、宽频化、高精度化、集成化和绿色环保的方向发展,对功率电感产品尺寸和性能提出了更高的要求,要求其同时具有小尺寸、大电流、较低功耗的特点,因此,为了满足该目的,对一体成型电感用材料的研发成为目前研究的重点。
一体成型电感多采用羰基铁粉或铁硅铬合金粉为材料,经过绝缘包覆后与埋在其中的线圈压制而成。羰基铁粉的特点为直流叠加特性好,粉末硬度低,压制成型后密度高,但其磁导率较低,制作高感值电感时需要增加线圈匝数,导致电感尺寸大、铜线成本高、直流电阻R DC高;铁硅铬合金粉末的优点是防锈特性好、磁导率范围可调,但是粉末硬度较大、难以压制密实,且其损耗较高。为了提升一体成型电感密度、降低其整体损耗,公告号为CN111063501B的中国专利公布了一种生产一体成型电感用低损耗粉末的制备方法,即将羰基铁粉与铁硅粉或非晶粉进行混合后包覆造粒,但是铁硅粉末损耗是常用软磁金属粉末中损耗最高的,非晶粉末没有晶界、难以有效包覆,且其硬度较大,很难压制,因此得到的粉末依然难以达到低损耗的目标。公开号为CN113380487A的中国专利公布了一种一体成型电感用磁芯粉末及其制备方法,其核心依然是铁硅铬合金粉末进行无机、有机包覆,所得到的磁芯虽然结构稳定、不易开裂,但是仍然未能解决损耗过高的问题。
因此,十分有必要研发出一种一体成型电感用低损耗粉末及其制备方法。
发明内容
本发明的目的是为了克服现有技术的不足,提供一种一体成型电感用低损耗粉末及其制备方法,其不仅可以降低磁性物质带来的损耗,还可以降低一体成型电感内铜线的使用量, 继而降低电阻,以及因铜线发热而带来的损耗,提升整体效率。
本发明的一体成型电感用低损耗粉末,材料主要由羰基铁粉、气雾化铁硅铝合金粉末、磷酸盐包覆剂、复合包覆剂和润滑剂组成,以羰基铁粉和气雾化铁硅铝合金粉末混合后的混合粉末质量为计算基础,其中:
羰基铁粉粒径为D50=4-8um,占混合粉末质量的45-55%,气雾化铁硅铝合金粉末粒径为D50=15-20um,占混合粉末质量的55-45%;
磷酸盐包覆剂是由混合粉末与磷酸丙酮溶液反应后产生,其中,磷酸质量为混合粉末质量的0.1-0.3%,丙酮为混合粉末质量的8-10%;
复合包覆剂由0.3-1.2%的镍锌铁氧体粉末、0.2-0.6%的石英纤维粉、0.1-0.3%的成膜剂、0.1-0.4%的增塑剂、1.5-2.8%的环氧树脂、0.3-0.5%的固化剂、0.1-0.4%的偶联剂混合于丙酮溶剂中形成;润滑剂占混合粉末质量的0.2-0.4%。
优选的,羰基铁粉粒径为D50=5um,气雾化铁硅铝合金粉末粒径为D50=15um。
优选的,所用的镍锌铁氧体粉末为D50=0.9-1.1um的球状粉末;石英纤维粉长径比为2:1,目数为7000目;成膜剂为二丙二醇单丁醚(DPnB)、三丙二醇正丁醚(TPnB)中的一种或二者混合;增塑剂为二乙二醇二苯甲酸酯、二丙二醇二苯甲酸酯中的一种或二者混合;固化剂为环氧固化剂;偶联剂为乙基三乙氧基硅烷;润滑剂为硬脂酸、石蜡微粉、硬脂酸镁中的一种或几种混合。
进一步优选的,镍锌铁氧体粉末为粒径为D50=1.0um的球状粉末。
粉末的最外层是由复合包覆剂构成的网状包覆膜层,次外层是由磷酸盐包覆剂构成的磷酸盐膜层,最内部是铁硅铝与羰基铁粉组成的基体,最终形成了双膜层包覆结构。
一种一体成型电感用低损耗粉末的制备方法,包括如下步骤:
(1)原始粉末混合:将羰基铁粉与气雾化铁硅铝合金粉末均匀混合,得到混合粉末;
(2)原始粉末的磷化:将步骤1得到的混合粉末加入磷酸丙酮溶液内进行混合搅拌20-30min, 之后于100-120℃条件下烘烤15-30min,冷却至室温得到磷化粉末,此时在混合粉末表面包覆磷酸盐膜层,其中磷酸质量为混合粉末质量的0.1-0.3%,丙酮为混合粉末质量的8-10%;
(3)制备复合包覆剂:混合镍锌铁氧体粉末、石英纤维粉、成膜剂、增塑剂、环氧树脂、固化剂、偶联剂于丙酮溶剂内搅拌均匀;
(4)造粒烘干:将磷化粉末混入复合包覆剂内搅拌均匀后进行造粒,后置于烘箱内进行60-80℃条件下40-60min烘烤,得到造粒粉;
(5)润滑与分筛:称取润滑剂与造粒粉混合,混合后进行50-270目分筛,中间粒径粉末即为低损耗一体成型电感用粉末。
本发明与现有技术相比,具有以下优点:
1.本发明中,原始粉末的选择为羰基铁粉与气雾化铁硅铝粉末,其原理在于羰基铁易于压制成型、且有较好的直流叠加特性,而且粉粒径小,器件中的涡流损耗与粉末的粒径成正比关系,因此产生的涡流损耗低于常规粉末,而气雾化铁硅铝粉末因为其球形度高、氧含量低、磁致伸缩系数接近于零、磁晶各向异性常数接近于零,是常规软磁材料中损耗最低的,本发明的两种粉末混合后整体损耗远低于常规粉末、同时保持接近常规粉末的直流叠加特性;
2.调节两种粉末的粒径配比,在一体成型电感压制的过程中,大颗粒气雾化铁硅铝粉末之间在三维空间上存在间隙,这些间隙可以被粒径较小的羰基铁粉末填充,从而提升压制密度、进一步提升磁导率,而羰基铁粉末之间的三维空隙又可以由更细小的球状镍锌铁氧体粉末进行填充,因为镍锌铁氧体粉末具有良好的绝缘性,而磁性材料的涡流损耗又与粉末绝缘电阻的平方成正比,因此镍锌铁氧体粉末的添加能有效降低涡流损耗;
3.一体成型电感的电感值与粉末磁导率、线圈匝数的平方成正比,由于本发明中粉末压制后磁导率高于常规的羰基铁粉,因此在相同电感值的一体成型电感中所用铜线量会减少,从而可以降低一体成型电感中因铜线发热带来的损耗,铜线数量减少还有助于降低生产成本;
4.采用镍锌铁氧体粉末、石英纤维粉、成膜剂、增塑剂、环氧树脂、固化剂、偶联剂所组成 的复合包覆剂,在搅拌造粒后,石英纤维粉在成膜剂、增塑剂、环氧树脂、固化剂、偶联剂等材料的粘结作用下,可以均匀的包覆在粉体表面,由于石英纤维粉具有一定长径比,在微观条件下,可以形成以石英纤维粉为基体的网状包覆膜层,网状结构有助于增加包覆膜层的韧性,在压制过程中不轻易被破坏,从而保持粉末具有高的绝缘电阻,因此该膜层具有良好的绝缘性与可靠性,通过降低涡流损耗而降低整体损耗。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步具体的说明。
在本发明中,若非特指,所有原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
实施例1
(1)原始粉末混合:将羰基铁粉450g与气雾化铁硅铝合金粉末550g均匀混合,羰基铁粉粒径为D50=5um,气雾化铁硅铝合金粉末粒径为D50=15um;
(2)原始粉末的传统磷化:将原始粉末加入磷酸丙酮溶液内进行混合搅拌25min,之后于100℃条件下烘烤25min,冷却至室温得到磷化粉末,其中磷酸质量为2g,丙酮质量为100g;
(3)制备复合包覆剂:混合4g镍锌铁氧体粉末、2g石英纤维粉、1g成膜剂二丙二醇单丁醚(DPnB)、1g增塑剂二乙二醇二苯甲酸酯、18g环氧树脂、3.5g固化剂、1.5g乙基三乙氧基硅烷偶联剂于100g丙酮溶剂内搅拌均匀;
(4)造粒烘干:将磷化粉末混入复合包覆剂内搅拌均匀后进行造粒,后置于烘箱内进行60℃条件下60min烘烤,得到造粒粉;
(5)润滑与分筛:称取2g硬脂酸与粉末混合,混合后进行50-270目分筛,中间粒剂即为低损耗一体成型电感用粉末。
对比例1
本对比例与实施例1的区别在于,使用的原始粉末全部为羰基铁粉末。
对比例2
本对比例与实施例1的区别在于,使用原始粉末全部为铁硅铬合金粉末。
对比例3
本对比例与实施例1的区别在于,使用原始粉末为质量比1:1的铁硅铬合金粉末与羰基铁混合粉末。
对比例4
本对比例与实施例1的区别在于,使用的复合包覆剂为混合1g增塑剂二乙二醇二苯甲酸酯、24g环氧树脂、5.5g固化剂、1.5g乙基三乙氧基硅烷偶联剂溶解于100g丙酮的溶剂。
将实施例1与对比例1、对比例2、对比例3、对比例4所得粉末压制外径10.15mm、内径5.1mm、高3.98±0.02mm的磁环,烘烤后将磁环绕制线圈,使用WK6500B LCR测试测试磁环电感值,根据公式μe=(L*Le)/(4*3.14*Ae*N2)计算磁环有效磁导率,其中,μe:有效磁导率,L:电感量(μH),Le:有效磁路长度(mm),Ae:有效截面积(mm2),N:线圈匝数,最后测试磁环损耗。
实施例1与对比例1、对比例2、对比例3、对比例4特性测试结果如表1所示:
表1:实施例1与对比例1、对比例2、对比例3、对比例4特性测试结果
Figure PCTCN2022112981-appb-000001
通过对比实施例1与对比例1-3,根据表1可以看出,本发明使用铁硅铝合金粉末与羰基铁的混合粉末作为原始粉末,所制备材料的磁导率明显提高,因为气雾化铁硅铝粉末磁致伸 缩系数与磁各向异性常数接近于0,所以混合后具有比铁硅铬合金粉、羰基铁粉等更低的损耗。通过对比实施例1与对比例4可以看到,经过本发明的复合包覆后,材料磁导率高于普通包覆工艺,损耗明显低于普通包覆工艺,这是因为球状的镍锌铁氧体粉末具有磁性,在包覆、压制后,又可以填充到羰基铁粉末之间的空隙内部,因此性能得到了升高。而石英纤维粉、成膜剂、增塑剂的加入,可以大幅提升包覆的均匀性与膜层的绝缘性与韧性,使膜层在压制过程中不会被轻易破坏,偶联剂可以提升膜层与粉末基体之间的联结,因此膜层包覆效果更好,粉体与粉体之间的电阻率大幅提升,降低了颗粒之间产生的涡流损耗,因此整体损耗得到降低。
实施例2
(1)原始粉末混合:将羰基铁粉500g与气雾化铁硅铝合金粉末500g均匀混合,其中羰基铁粉粒径为D50=5um,气雾化铁硅铝合金粉末粒径为D50=15um;
(2)原始粉末的传统磷化:将原始粉末加入磷酸丙酮溶液内进行混合搅拌30min,之后于120℃条件下烘烤15min,冷却至室温得到磷化粉末,其中磷酸质量为3g,丙酮质量为100g;
(3)制备复合包覆剂:混合10g镍锌铁氧体粉末、4g石英纤维粉、2g成膜剂三丙二醇正丁醚(TPnB)、3g增塑剂二丙二醇二苯甲酸酯、25g环氧树脂、5g固化剂、3g乙基三乙氧基硅烷偶联剂于100g丙酮溶剂内搅拌均匀;
(4)造粒烘干:将磷化粉末混入复合包覆剂内搅拌均匀后,进行造粒,后置于烘箱内进行80℃条件下60min烘烤,得到造粒粉;
(5)润滑与分筛:称取3g硬脂酸镁与粉末混合,混合后进行50-270目分筛,中间粒径粉末即为低损耗一体成型电感用粉末。
对比例5
本对比例与实施例2的区别在于原始粉末中羰基铁粉粒径为D50=10um,气雾化铁硅铝合金粉末粒径为D50=22um。
对比例6
本对比例与实施例2的区别在于使用的复合包覆剂为混合19g镍锌铁氧体粉末、25g环氧树脂、5g固化剂、3g乙基三乙氧基硅烷偶联剂的丙酮溶液。
对比例7
本对比例与实施例2的区别在于使用的复合包覆剂为混合6g成膜剂三丙二醇正丁醚(TPnB)、4g增塑剂二丙二醇二苯甲酸酯、30g环氧树脂、9g固化剂、3g乙基三乙氧基硅烷偶联剂的丙酮溶液。
对比例8
本对比例与实施例2的区别在于使用的复合包覆剂为混合10g镍锌铁氧体粉末、4g石英纤维粉、5g成膜剂三丙二醇正丁醚(TPnB)、28g环氧树脂、5g固化剂的丙酮溶液。
实施例2与对比例5、对比例6、对比例7、对比例8特性测试结果如表2所示:
表2:实施例2与对比例5、对比例6、对比例7、对比例8特性测试结果
Figure PCTCN2022112981-appb-000002
通过对比实施例2与对比例5-8,根据表2可以看出,本发明使用铁硅铝合金粉末与羰基铁的混合粉末作为原始粉末,并采用复合包覆剂将其进行包覆,所制备材料的磁导率明显提高,损耗明显降低。
最后应说明的是,以上实施例仅用以说明本发明的技术方案,而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解,依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种一体成型电感用低损耗粉末,其特征在于,材料主要由羰基铁粉、气雾化铁硅铝合金粉末、磷酸盐包覆剂、复合包覆剂和润滑剂组成,以羰基铁粉和气雾化铁硅铝合金粉末混合后的混合粉末质量为计算基础,其中:
    羰基铁粉粒径为D50=4-8um,占混合粉末质量的45-55%,气雾化铁硅铝合金粉末粒径为D50=15-20um,占混合粉末质量的55-45%;
    磷酸盐包覆剂是由混合粉末与磷酸丙酮溶液反应后产生,其中,磷酸质量为混合粉末质量的0.1-0.3%,丙酮为混合粉末质量的8-10%;
    复合包覆剂由0.3-1.2%的镍锌铁氧体粉末、0.2-0.6%的石英纤维粉、0.1-0.3%的成膜剂、0.1-0.4%的增塑剂、1.5-2.8%的环氧树脂、0.3-0.5%的固化剂、0.1-0.4%的偶联剂混合于丙酮溶剂中形成;
    润滑剂占混合粉末质量的0.2-0.4%。
  2. 根据权利要求1所述的一种一体成型电感用低损耗粉末,其特征在于,所述羰基铁粉粒径为D50=5um,气雾化铁硅铝合金粉末粒径为D50=15um,镍锌铁氧体粉末粒径为D50=0.9-1.1um。
  3. 根据权利要求2所述的一种一体成型电感用低损耗粉末,其特征在于,所述镍锌铁氧体粉末为粒径是D50=1.0um的球状粉末。
  4. 根据权利要求1所述的一种一体成型电感用低损耗粉末,其特征在于,所述石英纤维粉长径比为2:1,目数为7000目。
  5. 根据权利要求1所述的一种一体成型电感用低损耗粉末,其特征在于,所述成膜剂为二丙二醇单丁醚、三丙二醇正丁醚中的一种或二种混合;增塑剂为二乙二醇二苯甲酸酯、二丙二醇二苯甲酸酯中的一种或二种混合;固化剂为环氧固化剂;偶联剂为乙基三乙氧基硅烷;润滑剂为硬脂酸、石蜡微粉、硬脂酸镁中的一种或几种混合。
  6. 根据权利要求1-5任一所述的一种一体成型电感用低损耗粉末,其特征在于,所述低损耗 粉末的最外层是由复合包覆剂构成的网状包覆膜层,次外层是磷酸盐膜层,最内部是铁硅铝与羰基铁粉组成的基体,最终形成了双膜层包覆结构。
  7. 权利要求1所述一体成型电感用低损耗粉末的制备方法,其特征在于,包括如下步骤:
    (1)原始粉末混合:将羰基铁粉与气雾化铁硅铝合金粉末均匀混合得到混合粉末;
    (2)原始粉末的磷化:将步骤1得到的混合粉末加入磷酸丙酮溶液内进行混合搅拌、烘烤、冷却至室温得到磷化粉末,即在混合粉末表面形成磷酸盐膜层;
    (3)制备复合包覆剂:将镍锌铁氧体粉末、石英纤维粉、成膜剂、增塑剂、环氧树脂、固化剂、偶联剂于丙酮溶剂内混合均匀;
    (4)造粒烘干:将磷化粉末混入复合包覆剂内搅拌均匀后进行造粒,烘烤后得到造粒粉;
    (5)润滑与分筛:将润滑剂与造粒粉混合,混合后进行50-270目分筛,中间粒径的粉末为低损耗一体成型电感用粉末。
  8. 根据权利要求7所述一种一体成型电感用低损耗粉末的制备方法,其特征在于,所述步骤(2)中,将混合粉末加入磷酸丙酮溶液内进行混合搅拌20-30min,之后于100-120℃条件下烘烤15-30min,冷却至室温得到磷化粉末,其中磷酸质量为混合粉末质量的0.1-0.3%,丙酮为混合粉末质量的8-10%。
  9. 根据权利要求7所述一种一体成型电感用低损耗粉末的制备方法,其特征在于,所述步骤(3)中,丙酮溶剂质量为混合粉末质量的10-12%。
  10. 根据权利要求7所述一种一体成型电感用低损耗粉末的制备方法,其特征在于,所述步骤(4)中,烘烤温度为60-80℃,烘烤时间为40-60min。
PCT/CN2022/112981 2022-03-02 2022-08-17 一种一体成型电感用低损耗粉末及其制备方法 WO2023165096A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237026628A KR20230145060A (ko) 2022-03-02 2022-08-17 일체 성형 인덕터용 저손실 분말 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210195282.X 2022-03-02
CN202210195282.XA CN114255952B (zh) 2022-03-02 2022-03-02 一种一体成型电感用低损耗粉末及其制备方法

Publications (1)

Publication Number Publication Date
WO2023165096A1 true WO2023165096A1 (zh) 2023-09-07

Family

ID=80797274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112981 WO2023165096A1 (zh) 2022-03-02 2022-08-17 一种一体成型电感用低损耗粉末及其制备方法

Country Status (3)

Country Link
KR (1) KR20230145060A (zh)
CN (1) CN114255952B (zh)
WO (1) WO2023165096A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117275927A (zh) * 2023-11-20 2023-12-22 天通控股股份有限公司 一种防锈的高性能软磁金属粉末及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114255952B (zh) * 2022-03-02 2022-05-17 天通控股股份有限公司 一种一体成型电感用低损耗粉末及其制备方法
CN114582580B (zh) * 2022-05-06 2022-07-29 天通控股股份有限公司 一种软磁金属粉末及其制备方法
CN114864255B (zh) * 2022-05-13 2024-07-16 深圳市旭盛电子有限公司 一种低损耗一体电感及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060506A (ja) * 2006-09-04 2008-03-13 Nec Tokin Corp インダクタ及びその製造方法
CN110181036A (zh) * 2019-05-14 2019-08-30 合肥博微田村电气有限公司 一种复合软磁金属粉末、制备方法及一体成型电感
CN111063501A (zh) * 2019-12-26 2020-04-24 深圳市艺感科技有限公司 一种生产一体成型电感用低损耗粉末的制备方法
CN112435844A (zh) * 2020-12-04 2021-03-02 横店集团东磁股份有限公司 一种一体共烧电感及其制备方法
CN112768166A (zh) * 2020-12-30 2021-05-07 横店集团东磁股份有限公司 一种磁芯材料及其制备方法与应用
CN113223844A (zh) * 2021-04-25 2021-08-06 宁波中科毕普拉斯新材料科技有限公司 一种粉末包覆方法
CN114255952A (zh) * 2022-03-02 2022-03-29 天通控股股份有限公司 一种一体成型电感用低损耗粉末及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060506A (ja) * 2006-09-04 2008-03-13 Nec Tokin Corp インダクタ及びその製造方法
CN110181036A (zh) * 2019-05-14 2019-08-30 合肥博微田村电气有限公司 一种复合软磁金属粉末、制备方法及一体成型电感
CN111063501A (zh) * 2019-12-26 2020-04-24 深圳市艺感科技有限公司 一种生产一体成型电感用低损耗粉末的制备方法
CN112435844A (zh) * 2020-12-04 2021-03-02 横店集团东磁股份有限公司 一种一体共烧电感及其制备方法
CN112768166A (zh) * 2020-12-30 2021-05-07 横店集团东磁股份有限公司 一种磁芯材料及其制备方法与应用
CN113223844A (zh) * 2021-04-25 2021-08-06 宁波中科毕普拉斯新材料科技有限公司 一种粉末包覆方法
CN114255952A (zh) * 2022-03-02 2022-03-29 天通控股股份有限公司 一种一体成型电感用低损耗粉末及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117275927A (zh) * 2023-11-20 2023-12-22 天通控股股份有限公司 一种防锈的高性能软磁金属粉末及其制备方法
CN117275927B (zh) * 2023-11-20 2024-01-26 天通控股股份有限公司 一种防锈的高性能软磁金属粉末及其制备方法

Also Published As

Publication number Publication date
CN114255952A (zh) 2022-03-29
CN114255952B (zh) 2022-05-17
KR20230145060A (ko) 2023-10-17

Similar Documents

Publication Publication Date Title
WO2023165096A1 (zh) 一种一体成型电感用低损耗粉末及其制备方法
CN112768166B (zh) 一种磁芯材料及其制备方法与应用
CN109545537B (zh) 一种磁粉芯及其制备方法
WO2018179812A1 (ja) 圧粉磁心
US10121586B2 (en) Method for manufacturing Fe-based amorphous metal powder and method for manufacturing amorphous soft magnetic cores using same
CN111063501B (zh) 一种生产一体成型电感用低损耗粉末的制备方法
US9245676B2 (en) Soft magnetic alloy powder, compact, powder magnetic core, and magnetic element
CN103666364B (zh) 金属软磁复合材料用有机绝缘粘结剂及制备金属软磁复合材料方法
CN109216006B (zh) 软磁合金粉芯及其制备方法
CN112908677B (zh) 一种高磁导率低损耗一体化电感材料的制备方法
JP2012009825A (ja) 軟磁性粉末、造粒粉、圧粉磁心、電磁部品及び圧粉磁心の製造方法
JP2010272604A (ja) 軟磁性粉末及びそれを用いた圧粉磁芯、インダクタ並びにその製造方法
CN109103010B (zh) 一种提高磁粉芯绝缘层致密度的材料及其方法
CN109877315B (zh) 一种低磁导率铁硅铝磁粉心材及制作磁粉心的方法
CN111986866A (zh) 一种高频低磁损的功率型软磁复合材料及其制备方法
CN103745791A (zh) 一种具有超高磁导率的铁基纳米晶磁粉芯的制备方法
CN114156037A (zh) 一种铁硅铬软磁粉体材料
CN111696744A (zh) 一种高直流偏置性能铁硅铝软磁粉心及其制备方法
CN113990595A (zh) 一种软磁合金材料、制备方法及电感产品
CN114512323A (zh) 一种MnO-SiO2绝缘包覆的金属软磁粉芯制备方法
CN104036903A (zh) 一种铁硅镍磁粉芯的制备方法
CN113628825A (zh) 一种铁基非晶复合磁粉芯及其制备方法和应用
CN110957096A (zh) 一种铁硅铝磁芯及其制备工艺
CN111383810A (zh) 一种非晶合金磁粉芯的制备方法
JP4527225B2 (ja) 圧粉磁心の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929528

Country of ref document: EP

Kind code of ref document: A1