WO2023162928A1 - Resin composition and semiconductor device - Google Patents

Resin composition and semiconductor device Download PDF

Info

Publication number
WO2023162928A1
WO2023162928A1 PCT/JP2023/006014 JP2023006014W WO2023162928A1 WO 2023162928 A1 WO2023162928 A1 WO 2023162928A1 JP 2023006014 W JP2023006014 W JP 2023006014W WO 2023162928 A1 WO2023162928 A1 WO 2023162928A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
less
cured product
resin
composition according
Prior art date
Application number
PCT/JP2023/006014
Other languages
French (fr)
Japanese (ja)
Inventor
淳士 古川
貴史 西村
文涛 王
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2023162928A1 publication Critical patent/WO2023162928A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape

Definitions

  • the present invention relates to a resin composition containing a thermosetting resin and an insulating filler.
  • the present invention also relates to a semiconductor device using a cured product of the above resin composition.
  • a semiconductor device used in electronic equipment when manufacturing a semiconductor device used in electronic equipment, it may be slowly cooled to room temperature after being heated to a high temperature. At this time, internal stress is applied to the substrate and the semiconductor element (chip) due to the linear expansion difference between the substrates. This internal stress may cause the substrate or the semiconductor element (chip) to warp.
  • Patent Document 1 discloses a semiconductor protection material that is used by coating on the surface of a semiconductor element in order to protect the semiconductor element.
  • the semiconductor protecting material comprises a flexible epoxy compound, an epoxy compound different from the flexible epoxy compound, a curing agent that is liquid at 23° C., a curing accelerator, and a thermal conductivity of 10 W/m ⁇ . K or more and an inorganic filler that is spherical.
  • Patent Document 2 describes (A) an epoxy resin, (B) an inorganic filler having a mode particle size of 0.1 ⁇ m to 10 ⁇ m in the particle size distribution, and (C) a dispersion having a specific phosphate ester group A curable resin composition is disclosed that includes an agent.
  • Patent Document 1 The semiconductor protection material described in Patent Document 1 is different from the die attach material. Moreover, it is difficult to thinly apply a die attach material containing an inorganic filler having a large particle size to the surface of a substrate. As a result, there is a problem that the heat dissipation cannot be sufficiently improved and the warp of the substrate and the semiconductor element (chip) cannot be suppressed.
  • Patent Document 2 since the cured product of the curable resin composition is very hard, it is impossible to relax the internal stress during manufacturing, and it is impossible to suppress the warping of the substrate and the semiconductor element (chip). I have a problem.
  • a broad aspect of the present invention is a resin composition containing a thermosetting resin and an insulating filler, wherein the insulating filler has a maximum particle size of 45 ⁇ m or less, and the resin is heated at 150° C. for 2 hours.
  • a composition is provided.
  • the insulating filler has a thermal conductivity of 10 W/m ⁇ K or more.
  • the viscosity at 25°C and 10 rpm is 150 Pa ⁇ s or less.
  • the ratio of the viscosity at 25°C and 1 rpm to the viscosity at 25°C and 10 rpm is 2.0 or more.
  • thermosetting resin contains an epoxy resin.
  • the epoxy resin contains a flexible epoxy resin.
  • the content of the flexible epoxy resin is 30% by weight or more and 90% by weight or less in 100% by weight of the epoxy resin.
  • the flexible epoxy resin contains polyalkylene glycol diglycidyl ether.
  • the epoxy equivalent of the flexible epoxy resin is 300 g/eq or more and 1000 g/eq or less.
  • the resin composition further comprises a thermosetting agent, the thermosetting agent comprises a butadiene compound polymer, and the butadiene compound polymer comprises the It has two or more functional groups capable of reacting with the epoxy group of the epoxy resin, and the content of the polymer of the butadiene compound in the thermosetting agent is 25 parts by weight or more with respect to 100 parts by weight of the epoxy resin. be.
  • the material of the insulating filler is alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, or magnesium oxide.
  • the insulating filler has a maximum particle size of 25 ⁇ m or less.
  • the resin composition further comprises a dispersant, the dispersant has an amine value of 40 KOHmg/g or more and 95 KOHmg/g or less, and the dispersant has an acid value is 45 mg KOH/g or more and 95 mg KOH/g or less.
  • the resin composition is a die attach paste.
  • the present invention comprises a substrate, a die attach material arranged on the surface of the substrate, and a semiconductor element arranged on the surface of the die attach material, wherein the die attach material
  • a semiconductor device is provided which is a cured product of the resin composition.
  • the present invention comprises a substrate, a die attach material arranged on the surface of the substrate, and a semiconductor element arranged on the surface of the die attach material, the die attach material A cured product of a resin composition containing a curable resin and an insulating filler, wherein the insulating filler has a maximum particle size of 45 ⁇ m or less, and the cured product has a thermal conductivity of 1.0 W/m ⁇ K or more, and the cured product has a storage elastic modulus at 25° C. of 2000 MPa or less.
  • the resin composition according to the present invention is a resin composition containing a thermosetting resin and an insulating filler, the maximum particle size of the insulating filler being 45 ⁇ m or less, and heated at 150° C. for 2 hours
  • the cured product has a thermal conductivity of 1.0 W/m ⁇ K or more, and a storage elastic modulus of the cured product at 25°C of 2000 MPa or less.
  • the resin composition according to the present invention has the above configuration, it is possible to improve the heat dissipation property of the obtained cured product and improve the flexibility of the obtained cured product.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor device using a cured product of a resin composition according to a first embodiment of the present invention.
  • the resin composition according to the present invention is a resin composition containing a thermosetting resin and an insulating filler.
  • the insulating filler has a maximum particle size of 45 ⁇ m or less.
  • the resin composition according to the present invention when a cured product of the resin composition is obtained by heating at 150 ° C. for 2 hours, the cured product has a thermal conductivity of 1.0 W / m K or more, The storage elastic modulus of the cured product at 25°C is 2000 MPa or less.
  • the displayed image may be distorted due to warpage of the substrate or semiconductor element (chip).
  • the resin composition according to the present invention has the above structure, it can be applied thinly to a substrate or the like, and the heat dissipation property of the cured product can be sufficiently enhanced. Moreover, since the resin composition according to the present invention has the above structure, it is possible to relax the internal stress during production. That is, the cured product of the resin composition according to the present invention can achieve both high heat dissipation and high flexibility, which have been difficult to achieve in the past. As a result, warping of the substrate and the semiconductor element (chip) can be suppressed.
  • the resin composition according to the present invention has the above-described structure, it is assumed that it will become hot when used in a semiconductor element (chip) with a large area or when it is used continuously for a long time. Also when used in a semiconductor device, it is possible to suppress the warping of substrates and semiconductor elements (chips).
  • the resin composition according to the present invention has the above configuration, it can be cured at a low temperature in a short period of time. As a result, the productivity of semiconductor devices using the resin composition can be improved.
  • the viscosity of the resin composition at 25° C. and 10 rpm is preferably 10 Pa ⁇ s or more, more preferably 20 Pa ⁇ s or more, preferably 150 Pa ⁇ s or less, more preferably 100 Pa ⁇ s or less, and still more preferably 80 Pa. ⁇ It is less than or equal to s.
  • the viscosity of the resin composition at 25° C. and 10 rpm is at least the above lower limit and below the above upper limit, it is possible to enhance the heat dissipation property of the resulting cured product and enhance the flexibility of the resulting cured product.
  • the ratio of the viscosity at 25° C. and 1 rpm of the resin composition to the viscosity at 25° C. and 10 rpm is preferably 2.0 or more, more preferably 2.5 or more, and still more preferably 3.0. 0 or more.
  • the upper limit of the thixotropic index is not particularly limited.
  • the thixotropic index may be 7.0 or less, or 5.0 or less.
  • the viscosity of the resin composition at 25°C and 1 rpm and the viscosity at 25°C and 10 rpm can be measured using a Brookfield viscometer.
  • Examples of the B-type viscometer include "TVB-10 model” manufactured by Toki Sangyo Co., Ltd.
  • a low viscosity spindle (TH6-TH1).
  • TH6-TH1 a spindle for medium and high viscosity
  • the resin composition is preferably liquid at 25°C, and preferably not solid at 25°C. From the viewpoint of further enhancing the heat dissipation properties of the resulting cured product, the resin composition is preferably a resin paste. In addition, a viscous paste is also included in the liquid state.
  • the resin composition is preferably a die attach paste.
  • the resin composition is suitably used as a die attach paste.
  • the cured product is a cured product of the resin composition, and is obtained by curing the resin composition.
  • the thickness of the cured product is not particularly limited.
  • the thickness of the cured product may be 5 ⁇ m or more, 10 ⁇ m or more, or 20 ⁇ m or more.
  • the thickness of the cured product may be 500 ⁇ m or less, 100 ⁇ m or less, or 25 ⁇ m or less.
  • the thermal conductivity of the cured product is preferably 1.2 W/m ⁇ K or more, more preferably 1.5 W/m ⁇ K or more, still more preferably 2.0 W/m ⁇ K or more, and preferably 10.0 W/m ⁇ K or more. It is 0 W/m ⁇ K or less, more preferably 6.0 W/m ⁇ K or less, still more preferably 5.0 W/m ⁇ K or less. Curvature of a semiconductor element (chip) can be controlled as thermal conductivity of the above-mentioned hardened material is more than the above-mentioned minimum.
  • the thermal conductivity of the cured product can be measured, for example, by the following method.
  • a resin composition is applied to a thickness of 500 ⁇ m on the surface of the substrate using an applicator. After that, it is heated at 150° C. for 2 hours using a dryer to be cured to obtain a test sample (cured product) of 100 mm ⁇ 100 mm ⁇ 500 ⁇ m in thickness.
  • the thermal conductivity of the obtained test sample is measured using a thermal conductivity meter (for example, "quick thermal conductivity meter QTM-500" manufactured by Kyoto Electronics Industry Co., Ltd.).
  • the storage modulus of the cured product at 25°C is preferably 1500 MPa or less, more preferably 1000 MPa or less, still more preferably 500 MPa or less, particularly preferably 300 MPa or less, and most preferably 100 MPa or less.
  • the lower limit of the storage elastic modulus at 25°C of the cured product is not particularly limited.
  • the storage elastic modulus of the cured product at 25° C. may be 100 MPa or more, or 300 MPa or more.
  • the storage elastic modulus of the cured product at 25°C can be measured, for example, by the following method.
  • a resin composition is applied to a thickness of 500 ⁇ m on the surface of the substrate using an applicator. After that, it is heated at 150° C. for 2 hours using a dryer to be cured to obtain a test sample (cured product) of 20 mm ⁇ 5 mm ⁇ 500 ⁇ m in thickness.
  • a test sample cured product
  • For the obtained test sample using a forced vibration type dynamic viscoelasticity measuring device (for example, "DVA-200" manufactured by IT Instrument Control Co., Ltd.), under tensile conditions, frequency 10 Hz, strain 0.1%, temperature range The measurement is performed under conditions of 0° C. to 150° C. and a heating rate of 2° C./min, and the measured value at 25° C. is taken as the storage modulus.
  • the storage elastic modulus of the cured product at 25°C can be increased, for example, by increasing the degree of cross-linking in the thermosetting resin described later, stretching the thermosetting resin, and the like.
  • the storage elastic modulus of the cured product at 25° C. can be lowered by increasing the number average molecular weight of the thermosetting resin, lowering the glass transition temperature, and the like.
  • the reaction rate in the cured product obtained by heating the resin composition at 150° C. for 15 minutes and curing is preferably 85% or more, more preferably. is 90% or more, more preferably 95% or more, and particularly preferably 99% or more.
  • the reaction rate may be 100%.
  • the above reaction rate can be measured by the following method.
  • a resin composition is applied to a thickness of 50 ⁇ m on the surface of the substrate using an applicator. After that, it is cured by heating at 150° C. for 15 minutes using a dryer to obtain a test sample (cured product) of 100 mm ⁇ 100 mm ⁇ 50 ⁇ m in thickness. The test sample is then crushed in a mortar to obtain crushed material.
  • DSC differential scanning calorimetry calorimetry
  • the cured product of the resin composition is preferably used as a die attach material.
  • a cured product of the above resin composition is particularly suitable as a die attach material for a semiconductor device.
  • thermosetting resin examples include epoxy resin, polyphenylene ether resin, divinylbenzyl ether resin, polyarylate resin, diallyl phthalate resin, polyimide resin, benzoxazine resin, benzoxazole resin, bismaleimide resin and acrylate resin. Only one type of the thermosetting resin may be used, or two or more types may be used in combination.
  • the thermosetting resin preferably contains an epoxy resin, a silicone resin, or an acrylic resin, and more preferably contains an epoxy resin. Only one type of the epoxy resin may be used, or two or more types may be used in combination.
  • the epoxy resin preferably contains a flexible epoxy resin. Only one type of the flexible epoxy resin may be used, or two or more types may be used in combination.
  • the epoxy resin may contain an epoxy resin other than the flexible epoxy resin.
  • Flexible epoxy resins are defined as having a durometer Shore D measurement of 30 or less when cured with a stoichiometric amount of diethylenetriamine (DETA).
  • DETA diethylenetriamine
  • the flexible epoxy resin examples include polyalkylene glycol diglycidyl ether, polybutadiene diglycidyl ether, sulfide-modified epoxy resin, polyalkylene oxide-modified bisphenol A type epoxy resin, aliphatic modified epoxy resin, ⁇ -caprolactone-modified epoxy resin, rubber modified epoxy resins, urethane-modified epoxy resins, amine-modified epoxy resins, dimer acid-modified epoxy resins, and the like. From the viewpoint of further increasing the flexibility of the resulting cured product, the flexible epoxy resin preferably has two or more epoxy groups.
  • the flexible epoxy resin preferably contains a polyalkylene glycol diglycidyl ether, and contains a polyalkylene glycol diglycidyl ether having no bisphenol skeleton. is more preferred.
  • the polyalkylene glycol diglycidyl ether preferably has a structural unit in which 8 or more alkylene glycol groups are repeated. From the viewpoint of further increasing the flexibility of the resulting cured product, the polyalkylene glycol diglycidyl ether more preferably has a structural unit in which 10 or more alkylene glycol groups are repeated.
  • the upper limit of the repeating number of the alkylene glycol group is not particularly limited. The number of repetitions of the alkylene glycol group may be 100 or less, 50 or less, or 30 or less. The number of carbon atoms in the alkylene glycol group is preferably 2 or more and preferably 5 or less.
  • polyalkylene glycol diglycidyl ether examples include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polytetramethylene glycol diglycidyl ether.
  • the viscosity of the polyalkylene glycol diglycidyl ether at 25°C is preferably 100 mPa ⁇ s or more. From the viewpoint of improving workability, the viscosity of the polyalkylene glycol diglycidyl ether at 25° C. is preferably 1000 mPa ⁇ s or less, more preferably 800 mPa ⁇ s or less, still more preferably 500 mPa ⁇ s or less.
  • the viscosity of the polyalkylene glycol diglycidyl ether can be measured, for example, using a Brookfield viscometer or the like under conditions of 25°C and 10 rpm.
  • Examples of the B-type viscometer include "TVB-10 model” manufactured by Toki Sangyo Co., Ltd.
  • the epoxy equivalent of the flexible epoxy resin is preferably 300 g/eq or more, more preferably 350 g/eq or more, still more preferably 450 g/eq or more, and preferably 1500 g/eq or less, more preferably 1000 g/eq or less. , more preferably 750 g/eq or less, particularly preferably 500 g/eq or less.
  • the epoxy equivalent of the flexible epoxy resin is not less than the lower limit and not more than the upper limit, the flexibility of the resulting cured product can be further enhanced.
  • the epoxy equivalent of the flexible epoxy resin can be measured according to JIS K7236:2001.
  • the thermosetting resin preferably contains the flexible epoxy resin and a thermosetting resin other than the flexible epoxy resin.
  • Thermosetting resins other than the flexible epoxy resin preferably have no flexibility.
  • Thermosetting resins other than the above flexible epoxy resins include epoxy resins having a bisphenol skeleton, epoxy resins having a dicyclopentadiene skeleton, epoxy resins having a naphthalene skeleton, epoxy resins having an adamantane skeleton, and epoxy resins having a fluorene skeleton.
  • thermosetting resin other than the flexible epoxy resin preferably contains an epoxy resin having a bisphenol skeleton.
  • the epoxy equivalent of the thermosetting resin other than the flexible epoxy resin is preferably 100 g/eq or more, more preferably 150 g/eq or more, and preferably It is 350 g/eq or less, more preferably 250 g/eq or less.
  • the content of the thermosetting resin is preferably 5% by weight or more, more preferably 7% by weight or more, and preferably 30% by weight or less, more preferably 15% by weight or less. is.
  • the content of the thermosetting resin is at least the above lower limit, the flexibility of the resulting cured product is further enhanced.
  • the content of the thermosetting resin is equal to or less than the upper limit, the heat dissipation property of the resulting cured product can be further enhanced.
  • content of the said thermosetting resin represents the sum total of content of each thermosetting resin.
  • the content of the flexible epoxy resin in 100% by weight of the resin composition is preferably 3% by weight or more, more preferably 5% by weight or more, preferably 30% by weight or less, and more preferably 15% by weight or less. be.
  • the content of the flexible epoxy resin is at least the lower limit, the flexibility of the resulting cured product can be further enhanced.
  • the content of the flexible epoxy resin is equal to or less than the upper limit, the coating properties of the resin composition can be further enhanced.
  • content of the said flexible epoxy resin represents the sum total of content of each flexible epoxy resin.
  • the content of the flexible epoxy resin is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 90% by weight or less. , more preferably 85% by weight or less.
  • the content of the flexible epoxy resin is at least the lower limit, the flexibility of the resulting cured product can be further enhanced.
  • the content of the flexible epoxy resin is equal to or less than the upper limit, the coating properties of the resin composition can be further enhanced.
  • content of the said flexible epoxy resin represents the sum total of content of each flexible epoxy resin.
  • the content of the polyalkylene glycol diglycidyl ether in 100% by weight of the flexible epoxy resin is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably 50% by weight or more. It is 90% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less.
  • the content of the polyalkylene glycol diglycidyl ether is at least the above lower limit, the flexibility of the resulting cured product can be further enhanced.
  • the content of the polyalkylene glycol diglycidyl ether is equal to or less than the upper limit, the coating properties of the resin composition can be further enhanced.
  • the insulating filler has insulating properties.
  • insulating means that the filler has a volume resistivity of 10 10 ⁇ cm or more.
  • the insulating filler may be an organic filler or an inorganic filler. From the viewpoint of further enhancing the heat dissipation properties of the resulting cured product, the insulating filler is preferably an inorganic filler. Only one type of the insulating filler may be used, or two or more types may be used in combination.
  • the maximum particle size of the insulating filler is 45 ⁇ m or less. Since the resin composition according to the present invention has the above structure, it can be applied thinly to a substrate or the like, and the heat dissipation property of the obtained cured product can be enhanced.
  • the maximum particle size of the insulating filler is preferably 30 ⁇ m or less, more preferably 25 ⁇ m, from the viewpoint of further improving the heat dissipation properties of the resulting cured product by applying it more thinly to a substrate or the like and curing it at a low temperature in a short time. Below, more preferably 20 ⁇ m or less, particularly preferably 10 ⁇ m or less.
  • the lower limit of the maximum particle size of the insulating filler is not particularly limited.
  • the maximum particle size of the insulating filler may be 10 ⁇ m or more, or may be 20 ⁇ m or more.
  • the maximum particle size of the insulating filler means the maximum particle size of the entire insulating filler.
  • the maximum particle size of the insulating filler can be obtained, for example, by performing laser diffraction particle size distribution measurement on the resin composition or a cured product of the resin composition.
  • the maximum particle diameter of the insulating filler is the particle diameter (D100) (maximum particle diameter).
  • Examples of the laser diffraction particle size distribution analyzer include "LA-960" manufactured by HORIBA.
  • the cured product of the resin composition the cured product of the resin composition described above can be used.
  • the cured product of the resin composition is obtained, for example, by heating the resin composition at 150° C. for 2 hours to cure it.
  • the thickness of the cured product is not particularly limited. The thickness of the cured product may be 5 ⁇ m or more, 10 ⁇ m or more, 100 ⁇ m or more, 500 ⁇ m or less, or 250 ⁇ m or less.
  • the average particle size of the insulating filler is preferably 0.2 ⁇ m or more, more preferably 4 ⁇ m or more, and preferably 45 ⁇ m or less, more preferably 25 ⁇ m or less. , more preferably 20 ⁇ m or less, particularly preferably 10 ⁇ m or less.
  • the average particle size of the insulating filler is preferably the number average particle size.
  • the average particle size of the insulating filler can be obtained, for example, by observing 50 arbitrary insulating fillers with an electron microscope or an optical microscope and calculating the average particle size of each insulating filler, or by laser diffraction particle size Obtained by performing distribution measurements.
  • the volume-based particle size distribution of the insulating filler has a particle size of 0.1 ⁇ m or more and less than 1.0 ⁇ m, It is preferable that a peak exists in a region where the particle diameter is 1.0 ⁇ m or more and 10 ⁇ m or less.
  • the peak present in the region with a particle diameter of 0.1 ⁇ m or more and less than 1.0 ⁇ m means a peak with a particle diameter of 0.1 ⁇ m or more and less than 1.0 ⁇ m at the peak top.
  • the peak existing in the range of 1.0 ⁇ m or more and 10 ⁇ m or less in particle diameter means a peak in which the particle diameter of the peak top is 1.0 ⁇ m or more and 10 ⁇ m or less.
  • the volume-based particle size distribution of the insulating filler In the volume-based particle size distribution of the insulating filler, two peaks may be present, two or more peaks may be present, three or more peaks may be present, and four peaks may be present. There may be more peaks, 100 or less peaks, or 10 or less peaks. From the viewpoint of further enhancing the heat dissipation property of the obtained cured product and improving the filling property, it is preferable that the volume-based particle size distribution of the insulating filler has two peaks.
  • the insulating filler may contain two or more kinds of insulating fillers having different average particle sizes.
  • the particle diameter (D50) of the insulating filler is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the particle diameter (D50) of the insulating filler is preferably 0.2 ⁇ m or more.
  • the particle diameter (D50) of the insulating filler is the particle diameter of the insulating filler when the cumulative volume of the insulating filler is 50% in the volume-based particle size distribution of the insulating filler.
  • the coefficient of variation (CV value) of the particle size of the insulating filler is preferably 5% or more, more preferably 10% or more, and preferably 40% or less, more preferably 30% or less.
  • CV value of the particle diameter of the insulating filler may be less than 5%.
  • CV value ( ⁇ /Dn) ⁇ 100 ⁇ : standard deviation of the particle size of the insulating filler Dn: average value of the particle size of the insulating filler
  • the shape of the insulating filler may be spherical, may be other than spherical, or may be flat. From the viewpoint of exhibiting the effect of the present invention more effectively, the shape of the insulating filler is preferably spherical.
  • the thermal conductivity of the insulating filler is preferably 10 W/m ⁇ K or more, more preferably 15 W/m ⁇ K or more, and still more preferably 20 W/m ⁇ K. ⁇ K or more.
  • the upper limit of the thermal conductivity of the insulating filler is not particularly limited. Inorganic fillers with a thermal conductivity of about 300 W/m ⁇ K are widely known, and inorganic fillers with a thermal conductivity of about 200 W/m ⁇ K are readily available.
  • the material of the insulating filler is preferably alumina, aluminum hydroxide, synthetic magnesite, magnesium hydroxide, diamond, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide. Further, the material of the insulating filler is more preferably alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide, and more preferably alumina. By using these preferable insulating fillers, the cured product obtained has a higher heat dissipation property.
  • the content of the insulating filler in 100% by weight of the resin composition is preferably 25% by weight or more, more preferably 50% by weight or more, still more preferably 65% by weight or more, particularly preferably 70% by weight or more, and particularly preferably is 80% by weight or more, preferably 93% by weight or less, more preferably 88% by weight or less.
  • the content of the insulating filler is equal to or more than the lower limit and equal to or less than the upper limit, the heat dissipation property of the obtained cured product can be further enhanced.
  • the resin composition may contain a thermosetting agent.
  • the resin composition preferably contains a thermosetting agent.
  • thermosetting agent is not particularly limited.
  • An appropriate thermosetting agent capable of curing a thermosetting resin can be used as the thermosetting agent.
  • the thermosetting agent includes a curing catalyst. Only one kind of the thermosetting agent may be used, or two or more kinds thereof may be used in combination.
  • the thermosetting agent preferably has an aromatic skeleton or an alicyclic skeleton.
  • the heat curing agent preferably contains an amine curing agent (amine compound), an imidazole curing agent, a phenol curing agent (phenol compound) or an acid anhydride curing agent (acid anhydride), and a phenol curing agent (phenol compound) or More preferably, it contains an acid anhydride curing agent (acid anhydride).
  • the acid anhydride curing agent includes an acid anhydride having an aromatic skeleton, a hydrogenated product of the acid anhydride or a modified product of the acid anhydride, or an acid anhydride having an alicyclic skeleton, the It is preferable to contain a water additive of an acid anhydride or a modified product of the acid anhydride.
  • the amine curing agent examples include dicyandiamide, imidazole compounds, diaminodiphenylmethane and diaminodiphenylsulfone. From the viewpoint of further increasing the adhesiveness of the resulting cured product, the amine curing agent is more preferably a dicyandiamide or imidazole compound. From the viewpoint of improving the storage stability of the resin composition, the thermosetting agent preferably contains a curing agent having a melting point of 180° C. or higher.
  • imidazole curing agent examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl -2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2- undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2 '-Methylimidazolyl-(1
  • phenol curing agent examples include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, xylylene-modified novolak, decalin-modified novolak, poly( Di-o-hydroxyphenyl)methane, poly(di-m-hydroxyphenyl)methane, poly(di-p-hydroxyphenyl)methane, and the like.
  • Phenolic resins having a melamine skeleton, phenolic resins having a triazine skeleton, or phenolic resins having an allyl group are preferred from the viewpoint of further enhancing the flexibility and flame retardancy of the resulting cured product.
  • phenolic curing agents include MEH-8000H, MEH-8005, MEH-8010 and MEH-8015 (all of which are manufactured by Meiwa Kasei Co., Ltd.), YLH903 (manufactured by Mitsubishi Chemical Corporation), LA-7052 and LA-7054. , LA-7751, LA-1356 and LA-3018-50P (all of which are manufactured by DIC), and ELPC75, PS6313 and PS6492 (all of which are manufactured by Gun Ei Kagaku).
  • Examples of the acid anhydride having an aromatic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride include styrene/maleic anhydride copolymer, benzophenonetetracarboxylic anhydride, and pyromellitic anhydride.
  • trimellitic anhydride 4,4′-oxydiphthalic anhydride, phenylethynyl phthalic anhydride, glycerol bis(anhydrotrimellitate) monoacetate, ethylene glycol bis(anhydrotrimellitate), methyltetrahydroanhydride Phthalic acid, methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, and the like.
  • SMA Resin EF30 SMA Resin EF40, SMA Resin EF60 and SMA Resin EF80 (any of the above Also manufactured by Sartomer Japan), ODPA-M and PEPA (both manufactured by Manac), Rikashid MTA-10, Rikashid MTA-15, Rikashid TMTA, Rikashid TMEG-100, Rikashid TMEG-200, Rikashid TMEG-300, Rikashid TMEG-500, Rikashid TMEG-S, Rikashid HT-1A, Rikashid MT-500, and Rikashid TDA-100 (all manufactured by Shin Nippon Rika), as well as EPICLON B4400, EPICLON B650, and EPICLON B570 (all of them) DIC Corporation) and the like.
  • the acid anhydride having an alicyclic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride is an acid anhydride having a polyalicyclic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride.
  • a modified acid anhydride, an acid anhydride having an alicyclic skeleton obtained by an addition reaction of a terpene compound and maleic anhydride, a hydrogen additive of the acid anhydride, or a modified acid anhydride. is preferred.
  • Examples of the acid anhydride having an alicyclic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride include methyl nadic acid anhydride, the acid anhydride having a dicyclopentadiene skeleton, or the acid anhydride. Modified products of are also included.
  • thermosetting agent is also preferably methylnadic anhydride or trialkyltetrahydrophthalic anhydride.
  • the use of methylnadic anhydride or trialkyltetrahydrophthalic anhydride increases the water resistance of the resulting cured product.
  • the thermosetting agent preferably contains a butadiene compound polymer.
  • the polymer of the butadiene compound may be a homopolymer of the butadiene compound, or a copolymer of the butadiene compound and a compound copolymerizable with the butadiene compound. From the viewpoint of exhibiting the effects of the present invention more effectively, the polymer of the butadiene compound is preferably a copolymer of the butadiene compound and a copolymerizable compound.
  • the butadiene compound is not particularly limited.
  • examples of the butadiene compound include butadiene and isoprene.
  • Examples of compounds that can be copolymerized with the butadiene compound include maleic acid, maleic anhydride, alcohols, amine compounds, acrylic acid esters, acrylonitrile, and styrene. Diamine etc. are mentioned as said amine compound.
  • the compound copolymerizable with the butadiene compound is preferably maleic acid or maleic anhydride, more preferably maleic anhydride.
  • the polymer of the butadiene compound preferably has two or more functional groups (reactive groups) capable of reacting with the thermosetting functional groups of the thermosetting resin, and functional groups capable of reacting with the epoxy groups of the epoxy resin. It is preferable to have two or more groups (reactive groups).
  • the number of reactive groups per molecule in the polymer of the butadiene compound is preferably 2 or more. From the viewpoint of curing the resin composition at a low temperature in a short time, the number of reactive groups per molecule in the polymer of the butadiene compound is preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more. , particularly preferably 5 or more, preferably 20 or less, more preferably 15 or less, still more preferably 10 or less.
  • the number of reactive groups in the polymer of the butadiene compound can be adjusted to a preferable range by adjusting the mixing ratio of the butadiene compound and the compound having the reactive group.
  • the functional group (reactive group) capable of reacting with the epoxy group of the epoxy resin includes a group having a carbon-carbon unsaturated bond such as a vinyl group, a hydroxyl group, a glycidyl group, an isocyanate group, an amino group, a carboxyl group and an acid anhydride. Physical basis and the like. From the viewpoint of curing the resin composition at a low temperature in a short time, the reactive group in the polymer of the butadiene compound preferably contains a hydroxyl group or an acid anhydride group, and may contain an acid anhydride group. more preferred.
  • the equivalent weight of the reactive group in the polymer of the butadiene compound is preferably 300 g/eq or more, more preferably 450 g/eq or more. is 1500 g/eq or less, more preferably 1000 g/eq or less.
  • the equivalent weight of the reactive group in the polymer of the butadiene compound can be measured by potentiometric titration, indicator titration, and the like.
  • the homopolymer of the butadiene compound can be obtained by polymerizing the butadiene compound.
  • the copolymer of the butadiene compound and the compound copolymerizable with the butadiene compound can be obtained by copolymerizing the butadiene compound and the compound copolymerizable with the butadiene compound.
  • Examples of the polymerization method include known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, polycondensation), addition condensation, living polymerization, and living radical polymerization.
  • Other polymerization methods include suspension polymerization in the presence of a radical polymerization initiator.
  • the viscosity of the thermosetting agent at 25° C. is preferably 100 mPa ⁇ s or more, more preferably 300 mPa ⁇ s or more, still more preferably 500 mPa ⁇ s or more, preferably 10000 mPa ⁇ s or less, more preferably 1000 mPa ⁇ s. It is below.
  • the viscosity of the thermosetting agent at 25°C is equal to or higher than the lower limit and equal to or lower than the upper limit, the coatability of the resin composition can be further enhanced.
  • the content of the thermosetting agent in 100% by weight of the resin composition is preferably 0.1% by weight or more, more preferably 3% by weight or more, and preferably 40% by weight or less, more preferably 25% by weight. It is below.
  • the content of the thermosetting agent is at least the lower limit, it is easy to sufficiently cure the resin composition.
  • the content of the thermosetting agent is equal to or less than the above upper limit, excess thermosetting agent that does not participate in curing is less likely to occur. Therefore, the heat resistance and adhesiveness of the resulting cured product are enhanced.
  • the content of the thermosetting agent is preferably 0.1 parts by weight or more, more preferably 50 parts by weight or more, and preferably 100 parts by weight or less with respect to 100 parts by weight of the thermosetting resin.
  • the content of the thermosetting agent is at least the lower limit, it is easy to sufficiently cure the resin composition.
  • the content of the thermosetting agent is equal to or less than the above upper limit, excess thermosetting agent that does not participate in curing is less likely to occur. Therefore, the heat resistance and adhesiveness of the resulting cured product are enhanced.
  • the content of the polymer of the butadiene compound in the thermosetting agent is preferably 25 parts by weight or more, more preferably 50 parts by weight or more, and preferably 150 parts by weight with respect to 100 parts by weight of the thermosetting resin. parts or less, more preferably 100 parts by weight or less.
  • the content of the polymer of the butadiene compound in the thermosetting agent is at least the lower limit, the resin composition can be cured at a low temperature in a short time.
  • the content of the polymer of the butadiene compound in the thermosetting agent is equal to or less than the above upper limit, it becomes difficult to generate excess of the thermosetting agent that does not participate in curing. Therefore, the heat resistance and adhesiveness of the resulting cured product are enhanced.
  • the content of the polymer of the butadiene compound in the thermosetting agent is preferably 25 parts by weight or more, more preferably 50 parts by weight or more, and preferably 150 parts by weight or less with respect to 100 parts by weight of the epoxy resin. , more preferably 100 parts by weight or less.
  • the content of the polymer of the butadiene compound in the thermosetting agent is at least the lower limit, the resin composition can be cured at a low temperature in a short time.
  • the content of the polymer of the butadiene compound in the thermosetting agent is equal to or less than the above upper limit, it becomes difficult to generate excess of the thermosetting agent that does not participate in curing. Therefore, the heat resistance and adhesiveness of the resulting cured product are enhanced.
  • the resin composition may further contain a dispersant. From the viewpoint of enhancing the dispersibility of the resulting cured product, the resin composition preferably further contains a dispersant.
  • dispersant examples include polycarboxylates, alkylammonium salts, alkylolammonium salts, phosphate ester salts, acrylic block copolymers, and polymer salts. Only one kind of the dispersant may be used, or two or more kinds thereof may be used in combination.
  • the dispersant is preferably a polycarboxylate, an alkylolammonium salt, or a phosphate ester salt.
  • the amine value of the dispersant is preferably 40 mg KOH/g or more, more preferably 50 mg KOH/g or more, and preferably 95 mg KOH/g or less, more preferably 85 mg KOH/g. g or less.
  • the amine value of the dispersant can be measured according to JIS K7237.
  • the acid value of the dispersant is preferably 45 mg KOH/g or more, more preferably 50 mg KOH/g or more, and preferably 95 mg KOH/g or less, more preferably 85 mg KOH/g. It is below.
  • the acid value of the dispersant can be measured according to JIS K0070.
  • the amine value of the dispersant is 40 KOHmg/g or more and 95 KOHmg/g or less, and the acid value of the dispersant is 45 KOHmg/g or more and 95 KOHmg/g or less.
  • the amine value of the dispersant is 40 KOHmg/g or more and 95 KOHmg/g or less, and the acid value of the dispersant is 45 KOHmg/g or more and 95 KOHmg/g or less.
  • the absolute value of the difference between the amine value of the dispersant and the acid value of the dispersant is preferably 10 mg KOH/g or less, more preferably 7 mg KOH/g or less.
  • the lower limit of the absolute value of the difference between the amine value of the dispersant and the acid value of the dispersant is not particularly limited.
  • the absolute value of the difference between the amine value of the dispersant and the acid value of the dispersant may be 0 KOH mg/g (the amine value and the acid value are the same).
  • the content of the dispersant in 100% by weight of the resin composition is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and preferably 2% by weight or less, more preferably 1% by weight. % or less.
  • the content of the dispersant is equal to or more than the lower limit and equal to or less than the upper limit, the dispersibility of the insulating filler is further enhanced.
  • the resin composition may contain a chelating agent, an antioxidant, an ion trapping agent, a storage stabilizer, an antiaging agent, and the like, in addition to the components described above.
  • a semiconductor device includes a substrate, a die attach material arranged on the surface of the substrate, and a semiconductor element (chip) arranged on the surface of the die attach material.
  • the die attach material is a cured product of a resin composition containing a thermosetting resin and an insulating filler.
  • the insulating filler has a maximum particle size of 45 ⁇ m or less.
  • the die attach material is a cured product of the resin composition described above.
  • the cured product of the resin composition is obtained, for example, by heating the resin composition at 150°C for 2 hours to cure it.
  • the thickness of the cured product is not particularly limited.
  • the thickness of the cured product may be 5 ⁇ m or more, 10 ⁇ m or more, or 20 ⁇ m or more.
  • the thickness of the cured product may be 500 ⁇ m or less, 100 ⁇ m or less, or 25 ⁇ m or less.
  • FIG. 1 is a cross-sectional view schematically showing a semiconductor device using a cured product of a resin composition according to the first embodiment of the present invention.
  • a semiconductor device 1 shown in FIG. Prepare.
  • the die attach material 3 is formed by curing the resin composition described above.
  • the die attach material 3 is a cured product of a resin composition containing a thermosetting resin and an insulating filler 3A.
  • the maximum particle size of the insulating filler 3A is 45 ⁇ m or less.
  • the actual size and thickness are different.
  • FIG. 1 is merely an example of a semiconductor device, and the arrangement structure of the cured product of the resin composition and the like may be modified as appropriate.
  • the substrate is not particularly limited.
  • Examples of the substrate include glass substrates, glass epoxy substrates, flexible printed substrates, metal substrates and polyimide substrates.
  • the semiconductor element is not particularly limited.
  • the semiconductor device include an optical semiconductor device and a solid-state imaging device.
  • a light-emitting diode (LED) chip or the like may be used as the optical semiconductor element.
  • the solid-state imaging device include CCD sensors and CMOS sensors.
  • the semiconductor element is a CMOS sensor.
  • the above resin composition is suitable for use in CMOS sensors.
  • Alumina A (“AA05” manufactured by Sumitomo Chemical Co., Ltd., average particle size 0.5 ⁇ m, particle size (D90) 1.0 ⁇ m, particle size (D100) 1.4 ⁇ m, specific gravity 3.8, thermal conductivity 32 W / m K)
  • Alumina B (“AA3” manufactured by Sumitomo Chemical Co., Ltd., average particle size 3.5 ⁇ m, particle size (D90) 6.0 ⁇ m, particle size (D100) 8.0 ⁇ m, specific gravity 3.8, thermal conductivity 32 W / m K)
  • Alumina C Showa Denko "AS50", average particle size 10 ⁇ m, particle size (D90) 25 ⁇ m, particle size (D100) 30 ⁇ m, specific gravity 3.8, thermal conductivity 32 W / m K)
  • Alumina D (“AS30” manufactured by Showa Denko, average particle size 18 ⁇ m, particle size (D90) 40 ⁇ m, particle size (D100) 45 ⁇ m, specific gravity 3.8, thermal
  • Epoxy resin A polyethylene oxide-modified bisphenol A type epoxy resin, "EP4003S” manufactured by ADEKA, epoxy equivalent 470 g / eq, viscosity at 25 ° C.
  • Epoxy resin B polyalkylene glycol diglycidyl ether, "RD119LE” manufactured by Aditya, repeating number of alkylene glycol groups: 8, epoxy equivalent: 310 g / eq, viscosity at 25 ° C.: 80 mPa s
  • Epoxy resin C polyalkylene glycol diglycidyl ether, "EX991” manufactured by Nagase Chemtex Co., Ltd., repeating number of alkylene glycol groups: 10, epoxy equivalent: 450 g / eq, viscosity at 25 ° C.: 180 mPa s
  • Epoxy resin D polyalkylene glycol diglycidyl ether, "EPO-PEG-EPO 2K” manufactured by Nano Soft Polymers, alkylene glycol group repetition number 41, epoxy equivalent 1000 g / eq, viscosity at 25 ° C.
  • Epoxy resin E rubber-modified epoxy resin, "EPR-2000” manufactured by ADEKA, epoxy equivalent 215 g / eq, viscosity at 25 ° C. 23000 mPa s
  • Thermosetting resins other than flexible epoxy resins Epoxy resin 1 (bisphenol A type epoxy resin, "YD127” manufactured by Nippon Steel Chemical Materials Co., Ltd., epoxy equivalent 180 g / eq, viscosity at 25 ° C. 10000 mPa s)
  • Acid anhydride curing agent A (acid anhydride having an alicyclic skeleton, "Rikashid MH700” manufactured by Shin Nippon Rika Co., Ltd., equivalent weight of reactive group (acid anhydride group) 165 g / eq, liquid at 25 ° C., liquid at 25 ° C. Viscosity of 100 mPa s)
  • Acid anhydride curing agent B (acid anhydride having an alicyclic skeleton, "Rikacid OSA” manufactured by Shin Nippon Rika Co., Ltd., equivalent weight of reactive group (acid anhydride group) 210 g / eq, liquid at 25 ° C., liquid at 25 ° C.
  • Acid anhydride curing agent C (acid anhydride having a branched long-chain dibasic acid skeleton, “IPU22AH” manufactured by Okamura Oil Co., Ltd., reactive group (acid anhydride group) equivalent weight 280 g / eq, liquid at 25 ° C., 25 Viscosity at ° C. 1000 mPa s)
  • Phenol curing agent A (phenol novolak, "MEH8000H” manufactured by Meiwa Kasei Co., Ltd., reactive group (phenol group) equivalent 140 g / eq, liquid at 25 ° C., viscosity at 25 ° C.
  • Phenol curing agent B (phenol novolac, "MEH8005" manufactured by Meiwa Kasei Co., Ltd., reactive group (phenol group) equivalent 140 g / eq, liquid at 25 ° C., viscosity at 25 ° C. 10000 mPa s)
  • Phenol curing agent C (phenol novolac, “ELPC75” manufactured by Gunei Chemical Co., Ltd., reactive group (phenol group) equivalent 223 g / eq, liquid at 25 ° C., viscosity at 25 ° C.
  • Polymer A of butadiene compound (copolymer of butadiene and maleic anhydride, number of reactive groups (acid anhydride groups) per molecule: 2, equivalent weight of reactive group: 635 g/eq, viscosity at 25°C: 1000 mPa ⁇ s)
  • Polymer B of butadiene compound (copolymer of butadiene and maleic anhydride, number of reactive groups (acid anhydride groups) per molecule: 4, equivalent weight of reactive group: 750 g/eq, viscosity at 25°C: 30000 mPa ⁇ s)
  • Polymer C of butadiene compound (copolymer of butadiene and maleic anhydride, number of reactive groups (acid anhydride groups) per molecule: 4, equivalent weight of reactive group: 1250 g/eq, viscosity at 25°C: 50000 mPa ⁇ s)
  • Polymer D of butadiene compound (copolymer of butadiene and alcohol,
  • Dispersant Dispersant
  • Dispersant A phosphate ester salt, BYK “DISPERBYK145", acid value 76 KOH mg / g, amine value 71 KOH mg / g
  • Dispersant B phosphate ester salt, BYK “DISPERBYK142”, acid value 46 KOH mg / g, amine value 43 KOH mg / g
  • Dispersant C phosphate ester salt, BYK “DISPERBYK111", acid value 129 KOHmg / g
  • Examples 1 to 47 and Comparative Examples 1 to 5 The ingredients shown in Tables 1 to 28 below were mixed in the amounts shown in Tables 1 to 28 below to obtain a resin composition (die attach paste).
  • Storage modulus of the cured product is 500 MPa or less ⁇ : Storage modulus of the cured product is more than 500 MPa and 1000 MPa or less ⁇ : Storage modulus of the cured product is more than 1000 MPa and 2000 MPa or less ⁇ : Storage elasticity of the cured product rate exceeds 2000 MPa
  • the thermal resistance of the cured product was determined by the following formula. For resin compositions in which the maximum particle diameter of the insulating filler used exceeds 25 ⁇ m, the maximum particle diameter of the insulating filler in each resin composition was taken as the coating thickness.
  • the thermal resistance of the cured product is less than 20 ⁇ : The thermal resistance of the cured product is 20 or more and less than 30 ⁇ : The thermal resistance of the cured product is 30 or more
  • the obtained resin composition was dispensed on a copper substrate with a WX pattern (12 mm ⁇ 9 mm), a silicon wafer (12 mm ⁇ 9 mm) was mounted thereon, and a pressure of 0.3 MPa was applied. Pressed and crimped. After that, it was cured by heating at 150° C. for 2 hours to obtain a structure including a cured product of the resin composition. Next, while heating the bottom surface of the structure from 25° C. to 80° C. at a heating rate of 5° C./min on a hot plate, the warpage height at 25° C. was measured every 5 minutes with a laser microscope (manufactured by Keyence Corporation). The maximum warp height was measured.
  • the coating thickness of the resin composition was set to 25 ⁇ m, and for resin compositions in which the maximum particle diameter of the insulating filler used exceeded 25 ⁇ m, the maximum particle diameter of the insulating filler in each resin composition was taken as the coating thickness. .
  • Comparative Example 1 in which the maximum particle size of the insulating filler exceeds 45 ⁇ m, the resin composition could not be applied thinly, so no warpage test was performed.
  • the warpage suppressing property was judged according to the following criteria.
  • Warp height of 3 ⁇ m or less
  • Warp height of more than 3 ⁇ m and 6 ⁇ m or less
  • Warp height of more than 6 ⁇ m and 9 ⁇ m or less
  • Warp height of more than 9 ⁇ m and 12 ⁇ m or less
  • XX Warp height exceeds 12 ⁇ m
  • a resin composition was applied to the surface of a substrate with a thickness of 50 ⁇ m using an applicator. After that, it was cured by heating at 150° C. for 15 minutes using a dryer to obtain a test sample C (cured product) of 100 mm ⁇ 100 mm ⁇ 50 ⁇ m in thickness. After that, test sample C was crushed with a mortar to obtain a crushed material. Using a differential scanning calorimetry (DSC) device (manufactured by SII "EXSTAR DSC7020”), the crushed material obtained was measured in a nitrogen atmosphere in the range of -50 ° C. to 150 ° C. and at a temperature increase rate of 5 ° C./min.
  • DSC differential scanning calorimetry
  • reaction rate (%) (1-(exothermic peak area B/exothermic peak area A)) x 100" was determined, and the low-temperature and rapid curability was evaluated according to the following criteria.
  • Reaction rate is 95% or more
  • Reaction rate is 90% or more and less than 95%
  • Reaction rate is 85% or more and less than 90%
  • Reaction rate is 75% or more and less than 85%
  • XX Reaction rate is 75 %less than
  • the particle diameter is 0.1 ⁇ m or more and less than 1.0 ⁇ m
  • a peak was present in the region where the particle size was 1.0 ⁇ m or more and 10 ⁇ m or less.
  • a peak (second peak) present in a region where the particle diameter is 1.0 ⁇ m or more and 10 ⁇ m or less the peak height of the second peak was higher.

Abstract

Provided is a resin composition that can enhance heat dissipating ability of an obtained cured product and that can enhance the flexibility of the obtained cured product. A resin composition according to the present invention contains a thermosetting resin and an insulating filler. The insulating filler has a maximum particle size of 45 μm or less. When a cured product of the resin composition is obtained through application of heat for 2 hours at 150°C, the thermal conductivity of the cured product is 1.0 W/m·K or more, and the storage modulus of the cured product at 25°C is 2000 MPa or less.

Description

樹脂組成物及び半導体装置Resin composition and semiconductor device
 本発明は、熱硬化性樹脂と、絶縁性フィラーとを含む樹脂組成物に関する。また、本発明は、上記樹脂組成物の硬化物を用いた半導体装置に関する。 The present invention relates to a resin composition containing a thermosetting resin and an insulating filler. The present invention also relates to a semiconductor device using a cured product of the above resin composition.
 近年、電子機器の高性能化に伴い、半導体装置における発熱量が増加している。電子機器を連続で使用した際には、半導体素子(チップ)に熱が伝わり、基板や半導体素子(チップ)に反りが生じることがある。このため、電子部品から熱を放散させる必要性が高まっている。熱を放散させるために、絶縁性フィラーを含むダイアタッチ材が用いられている。 In recent years, as the performance of electronic devices has improved, the amount of heat generated in semiconductor devices has increased. When an electronic device is used continuously, heat is transferred to a semiconductor element (chip), and the substrate and the semiconductor element (chip) may warp. As a result, there is an increasing need to dissipate heat from electronic components. Die attach materials containing insulating fillers are used to dissipate heat.
 また、電子機器に用いられる半導体装置を製造する際に、高温に加熱した後、室温に徐冷されることがある。このとき、基板間の線膨張差により基板や半導体素子(チップ)に内部応力が加わる。この内部応力により、基板や半導体素子(チップ)に反りが生じることがある。 Also, when manufacturing a semiconductor device used in electronic equipment, it may be slowly cooled to room temperature after being heated to a high temperature. At this time, internal stress is applied to the substrate and the semiconductor element (chip) due to the linear expansion difference between the substrates. This internal stress may cause the substrate or the semiconductor element (chip) to warp.
 さらに、電子機器の大容量化、高画素化に伴い、半導体素子(チップ)の拡大化が進行しており、上記の基板や半導体素子(チップ)の反りの課題がより生じやすくなっている。 In addition, as the capacity and pixels of electronic devices increase, the size of semiconductor elements (chips) is increasing, and the problem of warpage of substrates and semiconductor elements (chips) described above is becoming more likely to occur.
 下記の特許文献1には、半導体素子を保護するために、半導体素子の表面上に塗布して用いられる半導体保護用材料が開示されている。該半導体保護用材料は、可撓性エポキシ化合物と、上記可撓性エポキシ化合物とは異なるエポキシ化合物と、23℃で液状である硬化剤と、硬化促進剤と、熱伝導率が10W/m・K以上であり、かつ球状である無機フィラーとを含む。 Patent Document 1 below discloses a semiconductor protection material that is used by coating on the surface of a semiconductor element in order to protect the semiconductor element. The semiconductor protecting material comprises a flexible epoxy compound, an epoxy compound different from the flexible epoxy compound, a curing agent that is liquid at 23° C., a curing accelerator, and a thermal conductivity of 10 W/m·. K or more and an inorganic filler that is spherical.
 下記の特許文献2には、(A)エポキシ樹脂、(B)粒度分布において、最頻粒径が0.1μm~10μmである無機充填材、及び(C)特定のリン酸エステル基を有する分散剤を含む硬化性樹脂組成物が開示されている。 Patent Document 2 below describes (A) an epoxy resin, (B) an inorganic filler having a mode particle size of 0.1 μm to 10 μm in the particle size distribution, and (C) a dispersion having a specific phosphate ester group A curable resin composition is disclosed that includes an agent.
WO2016/010067A1WO2016/010067A1 特開2016-098312号公報JP 2016-098312 A
 特許文献1に記載の半導体保護用材料は、ダイアタッチ材とは異なる。また、粒子径が大きい無機フィラーを含むダイアタッチ材では、基板の表面に薄く塗布することが困難である。結果として、放熱性を十分に高めることができず、基板や半導体素子(チップ)の反りを抑制することができないという課題がある。 The semiconductor protection material described in Patent Document 1 is different from the die attach material. Moreover, it is difficult to thinly apply a die attach material containing an inorganic filler having a large particle size to the surface of a substrate. As a result, there is a problem that the heat dissipation cannot be sufficiently improved and the warp of the substrate and the semiconductor element (chip) cannot be suppressed.
 また、特許文献2では、硬化性樹脂組成物の硬化物が非常に硬いため、製造時の内部応力を緩和することができず、基板や半導体素子(チップ)の反りを抑制することができないという課題がある。 Moreover, in Patent Document 2, since the cured product of the curable resin composition is very hard, it is impossible to relax the internal stress during manufacturing, and it is impossible to suppress the warping of the substrate and the semiconductor element (chip). I have a problem.
 本発明の目的は、得られる硬化物の放熱性を高め、かつ、得られる硬化物の柔軟性を高めることができる樹脂組成物を提供することである。また、本発明は、上記樹脂組成物の硬化物を用いた半導体装置を提供することも目的とする。 An object of the present invention is to provide a resin composition that can improve the heat dissipation properties of the obtained cured product and improve the flexibility of the obtained cured product. Another object of the present invention is to provide a semiconductor device using a cured product of the resin composition.
 本発明の広い局面では、熱硬化性樹脂と、絶縁性フィラーとを含む樹脂組成物であり、前記絶縁性フィラーの最大粒子径が、45μm以下であり、150℃で2時間加熱して前記樹脂組成物の硬化物を得たときに、前記硬化物の熱伝導率が、1.0W/m・K以上であり、前記硬化物の25℃での貯蔵弾性率が、2000MPa以下である、樹脂組成物が提供される。 A broad aspect of the present invention is a resin composition containing a thermosetting resin and an insulating filler, wherein the insulating filler has a maximum particle size of 45 μm or less, and the resin is heated at 150° C. for 2 hours. A resin having a thermal conductivity of 1.0 W/m·K or more and a storage elastic modulus at 25° C. of 2000 MPa or less when a cured product of the composition is obtained. A composition is provided.
 本発明に係る樹脂組成物のある特定の局面では、前記絶縁性フィラーの熱伝導率が、10W/m・K以上である。 In a specific aspect of the resin composition according to the present invention, the insulating filler has a thermal conductivity of 10 W/m·K or more.
 本発明に係る樹脂組成物のある特定の局面では、25℃及び10rpmでの粘度が、150Pa・s以下である。 In a specific aspect of the resin composition according to the present invention, the viscosity at 25°C and 10 rpm is 150 Pa·s or less.
 本発明に係る樹脂組成物のある特定の局面では、25℃及び1rpmでの粘度の、25℃及び10rpmでの粘度に対する比が、2.0以上である。 In a specific aspect of the resin composition according to the present invention, the ratio of the viscosity at 25°C and 1 rpm to the viscosity at 25°C and 10 rpm is 2.0 or more.
 本発明に係る樹脂組成物のある特定の局面では、前記熱硬化性樹脂が、エポキシ樹脂を含む。 In a specific aspect of the resin composition according to the present invention, the thermosetting resin contains an epoxy resin.
 本発明に係る樹脂組成物のある特定の局面では、前記エポキシ樹脂が、可撓性エポキシ樹脂を含む。 In a specific aspect of the resin composition according to the present invention, the epoxy resin contains a flexible epoxy resin.
 本発明に係る樹脂組成物のある特定の局面では、前記エポキシ樹脂100重量%中、前記可撓性エポキシ樹脂の含有量が、30重量%以上90重量%以下である。 In a specific aspect of the resin composition according to the present invention, the content of the flexible epoxy resin is 30% by weight or more and 90% by weight or less in 100% by weight of the epoxy resin.
 本発明に係る樹脂組成物のある特定の局面では、前記可撓性エポキシ樹脂が、ポリアルキレングリコールジグリシジルエーテルを含む。 In a specific aspect of the resin composition according to the present invention, the flexible epoxy resin contains polyalkylene glycol diglycidyl ether.
 本発明に係る樹脂組成物のある特定の局面では、前記可撓性エポキシ樹脂のエポキシ当量が、300g/eq以上1000g/eq以下である。 In a specific aspect of the resin composition according to the present invention, the epoxy equivalent of the flexible epoxy resin is 300 g/eq or more and 1000 g/eq or less.
 本発明に係る樹脂組成物のある特定の局面では、前記樹脂組成物が、熱硬化剤をさらに含み、前記熱硬化剤が、ブタジエン化合物の重合体を含み、前記ブタジエン化合物の重合体が、前記エポキシ樹脂のエポキシ基と反応可能な官能基を2個以上有し、前記エポキシ樹脂100重量部に対して、前記熱硬化剤中の前記ブタジエン化合物の重合体の含有量が、25重量部以上である。 In a specific aspect of the resin composition according to the present invention, the resin composition further comprises a thermosetting agent, the thermosetting agent comprises a butadiene compound polymer, and the butadiene compound polymer comprises the It has two or more functional groups capable of reacting with the epoxy group of the epoxy resin, and the content of the polymer of the butadiene compound in the thermosetting agent is 25 parts by weight or more with respect to 100 parts by weight of the epoxy resin. be.
 本発明に係る樹脂組成物のある特定の局面では、前記絶縁性フィラーの材質が、アルミナ、合成マグネサイト、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムである。 In a specific aspect of the resin composition according to the present invention, the material of the insulating filler is alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide, or magnesium oxide.
 本発明に係る樹脂組成物のある特定の局面では、前記絶縁性フィラーの最大粒子径が、25μm以下である。 In a specific aspect of the resin composition according to the present invention, the insulating filler has a maximum particle size of 25 μm or less.
 本発明に係る樹脂組成物のある特定の局面では、前記絶縁性フィラーの体積基準での粒度分布において、粒子径が0.1μm以上1.0μm未満の領域と、粒子径が1.0μm以上10μm以下の領域とに、ピークが存在する。 In a specific aspect of the resin composition according to the present invention, in the volume-based particle size distribution of the insulating filler, There are peaks in the following regions.
 本発明に係る樹脂組成物のある特定の局面では、前記樹脂組成物が、分散剤をさらに含み、前記分散剤のアミン価が、40KOHmg/g以上95KOHmg/g以下であり、前記分散剤の酸価が、45KOHmg/g以上95KOHmg/g以下である。 In a specific aspect of the resin composition according to the present invention, the resin composition further comprises a dispersant, the dispersant has an amine value of 40 KOHmg/g or more and 95 KOHmg/g or less, and the dispersant has an acid value is 45 mg KOH/g or more and 95 mg KOH/g or less.
 本発明に係る樹脂組成物のある特定の局面では、前記樹脂組成物は、ダイアタッチペーストである。 In a specific aspect of the resin composition according to the present invention, the resin composition is a die attach paste.
 本発明の広い局面によれば、基板と、前記基板の表面上に配置されたダイアタッチ材と、前記ダイアタッチ材の表面上に配置された半導体素子とを備え、前記ダイアタッチ材が、上述した樹脂組成物の硬化物である、半導体装置が提供される。 According to a broad aspect of the present invention, it comprises a substrate, a die attach material arranged on the surface of the substrate, and a semiconductor element arranged on the surface of the die attach material, wherein the die attach material A semiconductor device is provided which is a cured product of the resin composition.
 本発明の広い局面によれば、基板と、前記基板の表面上に配置されたダイアタッチ材と、前記ダイアタッチ材の表面上に配置された半導体素子とを備え、前記ダイアタッチ材が、熱硬化性樹脂と、絶縁性フィラーとを含む樹脂組成物の硬化物であり、前記絶縁性フィラーの最大粒子径が、45μm以下であり、前記硬化物の熱伝導率が、1.0W/m・K以上であり、前記硬化物の25℃での貯蔵弾性率が、2000MPa以下である、半導体装置が提供される。 According to a broad aspect of the present invention, it comprises a substrate, a die attach material arranged on the surface of the substrate, and a semiconductor element arranged on the surface of the die attach material, the die attach material A cured product of a resin composition containing a curable resin and an insulating filler, wherein the insulating filler has a maximum particle size of 45 µm or less, and the cured product has a thermal conductivity of 1.0 W/m· K or more, and the cured product has a storage elastic modulus at 25° C. of 2000 MPa or less.
 本発明に係る樹脂組成物は、熱硬化性樹脂と、絶縁性フィラーとを含む樹脂組成物であり、上記絶縁性フィラーの最大粒子径が、45μm以下であり、150℃で2時間加熱して上記樹脂組成物の硬化物を得たときに、上記硬化物の熱伝導率が、1.0W/m・K以上であり、上記硬化物の25℃での貯蔵弾性率が、2000MPa以下である。本発明に係る樹脂組成物では、上記の構成が備えられているので、得られる硬化物の放熱性を高め、かつ、得られる硬化物の柔軟性を高めることができる。 The resin composition according to the present invention is a resin composition containing a thermosetting resin and an insulating filler, the maximum particle size of the insulating filler being 45 μm or less, and heated at 150° C. for 2 hours When a cured product of the resin composition is obtained, the cured product has a thermal conductivity of 1.0 W/m·K or more, and a storage elastic modulus of the cured product at 25°C of 2000 MPa or less. . Since the resin composition according to the present invention has the above configuration, it is possible to improve the heat dissipation property of the obtained cured product and improve the flexibility of the obtained cured product.
図1は、本発明の第1の実施形態に係る樹脂組成物の硬化物を用いた半導体装置を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a semiconductor device using a cured product of a resin composition according to a first embodiment of the present invention.
 以下、本発明を詳細に説明する。 The present invention will be described in detail below.
 本発明に係る樹脂組成物は、熱硬化性樹脂と、絶縁性フィラーとを含む樹脂組成物である。本発明に係る樹脂組成物では、上記絶縁性フィラーの最大粒子径が、45μm以下である。本発明に係る樹脂組成物では、150℃で2時間加熱して上記樹脂組成物の硬化物を得たときに、上記硬化物の熱伝導率が、1.0W/m・K以上であり、上記硬化物の25℃での貯蔵弾性率が、2000MPa以下である。 The resin composition according to the present invention is a resin composition containing a thermosetting resin and an insulating filler. In the resin composition according to the present invention, the insulating filler has a maximum particle size of 45 μm or less. In the resin composition according to the present invention, when a cured product of the resin composition is obtained by heating at 150 ° C. for 2 hours, the cured product has a thermal conductivity of 1.0 W / m K or more, The storage elastic modulus of the cured product at 25°C is 2000 MPa or less.
 従来の樹脂組成物では、絶縁性フィラーの粒子径が大きいために、ダイアタッチペーストとして用いる場合に、基板に薄く塗布することが困難である。結果として、樹脂組成物の硬化物において、放熱性を十分に高めることができず、基板や半導体素子(チップ)の反りを抑制することができないという課題がある。また、従来の樹脂組成物では、該樹脂組成物の硬化物が非常に硬いため、製造時の内部応力を緩和できず、基板や半導体素子(チップ)の反りを抑制することができないという課題がある。 With conventional resin compositions, it is difficult to apply a thin layer to the substrate when used as a die attach paste due to the large particle size of the insulating filler. As a result, in the cured product of the resin composition, there is a problem that the heat dissipation cannot be sufficiently improved and the warping of the substrate and the semiconductor element (chip) cannot be suppressed. In addition, conventional resin compositions have a problem that since the cured product of the resin composition is very hard, the internal stress during manufacturing cannot be relieved, and warping of substrates and semiconductor elements (chips) cannot be suppressed. be.
 従来の樹脂組成物のように、樹脂組成物の硬化物の放熱性又は柔軟性が不十分であると、基板や半導体素子(チップ)の反りが生じやすくなる。また、この課題は、半導体素子(チップ)の拡大化により、より顕著となっている。 As with conventional resin compositions, if the heat dissipation or flexibility of the cured resin composition is insufficient, substrates and semiconductor elements (chips) are likely to warp. Moreover, this problem has become more conspicuous due to the enlargement of semiconductor elements (chips).
 また、例えば、ダイアタッチペーストがカメラモジュール内部のセンサー等に用いられた場合には、基板や半導体素子(チップ)の反りによって、表示される画像に歪みが生じることがある。 Also, for example, when the die attach paste is used for the sensor inside the camera module, the displayed image may be distorted due to warpage of the substrate or semiconductor element (chip).
 本発明に係る樹脂組成物では、上記の構成が備えられているので、基板等に薄く塗布することができ、硬化物の放熱性を十分に高めることができる。また、本発明に係る樹脂組成物では、上記の構成が備えられているので、製造時の内部応力を緩和することができる。すなわち、本発明に係る樹脂組成物の硬化物では、従来両立することが困難であった高い放熱性と高い柔軟性とを両立することができる。結果として、基板や半導体素子(チップ)の反りを抑制することができる。 Since the resin composition according to the present invention has the above structure, it can be applied thinly to a substrate or the like, and the heat dissipation property of the cured product can be sufficiently enhanced. Moreover, since the resin composition according to the present invention has the above structure, it is possible to relax the internal stress during production. That is, the cured product of the resin composition according to the present invention can achieve both high heat dissipation and high flexibility, which have been difficult to achieve in the past. As a result, warping of the substrate and the semiconductor element (chip) can be suppressed.
 また、本発明に係る樹脂組成物では、上記の構成が備えられているので、大面積化した半導体素子(チップ)に用いられる場合や、長時間の連続使用により高温になることが想定される半導体装置に用いられた場合にも、基板や半導体素子(チップ)の反りを抑制することができる。 In addition, since the resin composition according to the present invention has the above-described structure, it is assumed that it will become hot when used in a semiconductor element (chip) with a large area or when it is used continuously for a long time. Also when used in a semiconductor device, it is possible to suppress the warping of substrates and semiconductor elements (chips).
 さらに、半導体装置等の生産性向上のため、低温かつ短時間で硬化することのできる樹脂組成物が求められている。 Furthermore, in order to improve the productivity of semiconductor devices, etc., there is a demand for a resin composition that can be cured at a low temperature in a short time.
 本発明に係る樹脂組成物では、上記の構成が備えられているので、低温かつ短時間で硬化することができる。結果として、上記樹脂組成物を用いた半導体装置の生産性を向上することができる。 Since the resin composition according to the present invention has the above configuration, it can be cured at a low temperature in a short period of time. As a result, the productivity of semiconductor devices using the resin composition can be improved.
 上記樹脂組成物の25℃及び10rpmでの粘度は、好ましくは10Pa・s以上、より好ましくは20Pa・s以上であり、好ましくは150Pa・s以下、より好ましくは100Pa・s以下、さらに好ましくは80Pa・s以下である。上記樹脂組成物の25℃及び10rpmでの粘度が、上記下限以上及び上記上限以下であると、得られる硬化物の放熱性を高め、かつ、得られる硬化物の柔軟性を高めることができる。 The viscosity of the resin composition at 25° C. and 10 rpm is preferably 10 Pa·s or more, more preferably 20 Pa·s or more, preferably 150 Pa·s or less, more preferably 100 Pa·s or less, and still more preferably 80 Pa.・It is less than or equal to s. When the viscosity of the resin composition at 25° C. and 10 rpm is at least the above lower limit and below the above upper limit, it is possible to enhance the heat dissipation property of the resulting cured product and enhance the flexibility of the resulting cured product.
 上記樹脂組成物の25℃及び1rpmでの粘度の、25℃及び10rpmでの粘度に対する比(チクソトロピックインデックス)は、好ましくは2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上である。上記チクソトロピックインデックスが、上記下限以上であると、樹脂組成物の塗布性を良好にすることができる。上記チクソトロピックインデックスの上限は、特に限定されない。上記チクソトロピックインデックスは、7.0以下であってもよく、5.0以下であってもよい。 The ratio of the viscosity at 25° C. and 1 rpm of the resin composition to the viscosity at 25° C. and 10 rpm (thixotropic index) is preferably 2.0 or more, more preferably 2.5 or more, and still more preferably 3.0. 0 or more. When the thixotropic index is at least the lower limit, the coating properties of the resin composition can be improved. The upper limit of the thixotropic index is not particularly limited. The thixotropic index may be 7.0 or less, or 5.0 or less.
 上記樹脂組成物の25℃及び1rpmでの粘度、及び25℃及び10rpmでの粘度は、B型粘度計を用いて測定することができる。上記B型粘度計としては、東機産業社製「TVB-10型」等が挙げられる。 The viscosity of the resin composition at 25°C and 1 rpm and the viscosity at 25°C and 10 rpm can be measured using a Brookfield viscometer. Examples of the B-type viscometer include "TVB-10 model" manufactured by Toki Sangyo Co., Ltd.
 上記B型粘度計を用いた粘度の測定において、測定対象物が低粘度(例えば、25℃及び100rpmでの粘度が10Pa・s以下)のときは、低粘度用スピンドル(TH6-TH1)を用いて測定することができる。上記B型粘度計を用いた粘度の測定において、測定対象物が中粘度~高粘度(例えば、25℃及び100rpmでの粘度が10Pa・s以上)のときは、中・高粘度用スピンドル(TH1)を用いて測定することができる。 In the viscosity measurement using the Brookfield viscometer, when the object to be measured has a low viscosity (for example, the viscosity at 25 ° C. and 100 rpm is 10 Pa s or less), use a low viscosity spindle (TH6-TH1). can be measured by In the viscosity measurement using the Brookfield viscometer, when the object to be measured has medium to high viscosity (for example, the viscosity at 25 ° C. and 100 rpm is 10 Pa s or more), a spindle for medium and high viscosity (TH1 ) can be measured using
 樹脂組成物の塗布性をより一層高める観点からは、上記樹脂組成物は、25℃で液状であることが好ましく、25℃で固体ではないことが好ましい。得られる硬化物の放熱性をより一層高める観点からは、上記樹脂組成物は、樹脂ペーストであることが好ましい。なお、液状には、粘稠なペーストも含まれる。 From the viewpoint of further enhancing the applicability of the resin composition, the resin composition is preferably liquid at 25°C, and preferably not solid at 25°C. From the viewpoint of further enhancing the heat dissipation properties of the resulting cured product, the resin composition is preferably a resin paste. In addition, a viscous paste is also included in the liquid state.
 本発明の効果をより一層効果的に発揮する観点からは、上記樹脂組成物は、ダイアタッチペーストであることが好ましい。上記樹脂組成物は、ダイアタッチペーストとして好適に用いられる。 From the viewpoint of exhibiting the effects of the present invention more effectively, the resin composition is preferably a die attach paste. The resin composition is suitably used as a die attach paste.
 (樹脂組成物の硬化物)
 本発明に係る樹脂組成物では、150℃で2時間加熱して上記樹脂組成物の硬化物を得たときに、上記硬化物の熱伝導率が、1.0W/m・K以上であり、上記硬化物の25℃での貯蔵弾性率が、2000MPa以下である。
(Cured product of resin composition)
In the resin composition according to the present invention, when a cured product of the resin composition is obtained by heating at 150 ° C. for 2 hours, the cured product has a thermal conductivity of 1.0 W / m K or more, The storage elastic modulus of the cured product at 25°C is 2000 MPa or less.
 上記硬化物は、上記樹脂組成物の硬化物であり、上記樹脂組成物を硬化させることにより得られる。なお、上記硬化物の厚みは、特に限定されない。上記硬化物の厚みは、5μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよい。また、上記硬化物の厚みは、500μm以下であってもよく、100μm以下であってもよく、25μm以下であってもよい。 The cured product is a cured product of the resin composition, and is obtained by curing the resin composition. In addition, the thickness of the cured product is not particularly limited. The thickness of the cured product may be 5 μm or more, 10 μm or more, or 20 μm or more. The thickness of the cured product may be 500 μm or less, 100 μm or less, or 25 μm or less.
 上記硬化物の熱伝導率は、好ましくは1.2W/m・K以上、より好ましくは1.5W/m・K以上、さらに好ましくは2.0W/m・K以上であり、好ましくは10.0W/m・K以下、より好ましくは6.0W/m・K以下、さらに好ましくは5.0W/m・K以下である。上記硬化物の熱伝導率が上記下限以上であると、半導体素子(チップ)の反りを抑制することができる。 The thermal conductivity of the cured product is preferably 1.2 W/m·K or more, more preferably 1.5 W/m·K or more, still more preferably 2.0 W/m·K or more, and preferably 10.0 W/m·K or more. It is 0 W/m·K or less, more preferably 6.0 W/m·K or less, still more preferably 5.0 W/m·K or less. Curvature of a semiconductor element (chip) can be controlled as thermal conductivity of the above-mentioned hardened material is more than the above-mentioned minimum.
 上記硬化物の熱伝導率は、例えば、以下の方法で測定することができる。基板の表面に、アプリケーターを用いて樹脂組成物を厚み500μmで塗布する。その後、乾燥機を用いて150℃で2時間加熱し、硬化させ、100mm×100mm×厚み500μmの試験サンプル(硬化物)を得る。得られた試験サンプルの熱伝導率を、熱伝導率計(例えば、京都電子工業社製「迅速熱伝導率計QTM-500」)を用いて測定する。 The thermal conductivity of the cured product can be measured, for example, by the following method. A resin composition is applied to a thickness of 500 μm on the surface of the substrate using an applicator. After that, it is heated at 150° C. for 2 hours using a dryer to be cured to obtain a test sample (cured product) of 100 mm×100 mm×500 μm in thickness. The thermal conductivity of the obtained test sample is measured using a thermal conductivity meter (for example, "quick thermal conductivity meter QTM-500" manufactured by Kyoto Electronics Industry Co., Ltd.).
 上記硬化物の25℃での貯蔵弾性率は、好ましくは1500MPa以下、より好ましくは1000MPa以下、さらに好ましくは500MPa以下、特に好ましくは300MPa以下、最も好ましくは100MPa以下である。上記硬化物の25℃での貯蔵弾性率が上記上限以下であると、得られる硬化物の柔軟性をより一層高めることができ、半導体素子(チップ)の反りを抑制することができる。上記硬化物の25℃での貯蔵弾性率の下限は、特に限定されない。上記硬化物の25℃での貯蔵弾性率は、100MPa以上であってもよく、300MPa以上であってもよい。 The storage modulus of the cured product at 25°C is preferably 1500 MPa or less, more preferably 1000 MPa or less, still more preferably 500 MPa or less, particularly preferably 300 MPa or less, and most preferably 100 MPa or less. When the storage elastic modulus at 25° C. of the cured product is equal to or less than the above upper limit, the flexibility of the cured product obtained can be further increased, and warpage of the semiconductor element (chip) can be suppressed. The lower limit of the storage elastic modulus at 25°C of the cured product is not particularly limited. The storage elastic modulus of the cured product at 25° C. may be 100 MPa or more, or 300 MPa or more.
 上記硬化物の25℃での貯蔵弾性率は、例えば、以下の方法で測定することができる。基板の表面に、アプリケーターを用いて樹脂組成物を厚み500μmで塗布する。その後、乾燥機を用いて150℃で2時間加熱し、硬化させ、20mm×5mm×厚み500μmの試験サンプル(硬化物)を得る。得られた試験サンプルについて、強制振動型動的粘弾性測定装置(例えば、アイティー計測制御社製「DVA-200」)を用いて、引張条件下、周波数10Hz、歪み0.1%、温度範囲0℃~150℃、及び昇温速度2℃/分の測定条件で測定を行い、25℃での測定値を貯蔵弾性率とする。 The storage elastic modulus of the cured product at 25°C can be measured, for example, by the following method. A resin composition is applied to a thickness of 500 μm on the surface of the substrate using an applicator. After that, it is heated at 150° C. for 2 hours using a dryer to be cured to obtain a test sample (cured product) of 20 mm×5 mm×500 μm in thickness. For the obtained test sample, using a forced vibration type dynamic viscoelasticity measuring device (for example, "DVA-200" manufactured by IT Instrument Control Co., Ltd.), under tensile conditions, frequency 10 Hz, strain 0.1%, temperature range The measurement is performed under conditions of 0° C. to 150° C. and a heating rate of 2° C./min, and the measured value at 25° C. is taken as the storage modulus.
 上記硬化物の25℃での貯蔵弾性率は、例えば、後述する熱硬化性樹脂における架橋度を高めること、上記熱硬化性樹脂を延伸すること等により、高めることができる。また、上記硬化物の25℃での貯蔵弾性率は、上記熱硬化性樹脂において数平均分子量を上げること、及びガラス転移温度を下げること等により、低くすることができる。 The storage elastic modulus of the cured product at 25°C can be increased, for example, by increasing the degree of cross-linking in the thermosetting resin described later, stretching the thermosetting resin, and the like. The storage elastic modulus of the cured product at 25° C. can be lowered by increasing the number average molecular weight of the thermosetting resin, lowering the glass transition temperature, and the like.
 樹脂組成物をより一層低温かつ短時間で硬化させる観点からは、上記樹脂組成物を150℃で15分間加熱し、硬化させて得られる硬化物における反応率は、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、特に好ましくは99%以上である。上記反応率は、100%であってもよい。 From the viewpoint of curing the resin composition at a lower temperature and in a short time, the reaction rate in the cured product obtained by heating the resin composition at 150° C. for 15 minutes and curing is preferably 85% or more, more preferably. is 90% or more, more preferably 95% or more, and particularly preferably 99% or more. The reaction rate may be 100%.
 上記反応率は、以下の方法で測定することができる。基板の表面に、アプリケーターを用いて樹脂組成物を厚み50μmで塗布する。その後、乾燥機を用いて150℃で15分間加熱し、硬化させ、100mm×100mm×厚み50μmの試験サンプル(硬化物)を得る。その後、試験サンプルを乳鉢で砕いて、破砕物を得る。得られた破砕物について、示差走査熱量測定熱量測定(DSC)装置(例えば、SII社製「EXSTAR DSC7020」)を用いて、窒素雰囲気下で-50℃~150℃の範囲、及び昇温速度5℃/分の条件で破砕物の発熱ピーク面積Bを測定する。同様に、硬化前の樹脂組成物の発熱ピーク面積Aを測定する。「反応率(%)=(1-(発熱ピーク面積B/発熱ピーク面積A))×100」として、反応率を計算する。 The above reaction rate can be measured by the following method. A resin composition is applied to a thickness of 50 μm on the surface of the substrate using an applicator. After that, it is cured by heating at 150° C. for 15 minutes using a dryer to obtain a test sample (cured product) of 100 mm×100 mm×50 μm in thickness. The test sample is then crushed in a mortar to obtain crushed material. Using a differential scanning calorimetry calorimetry (DSC) device (for example, SII's "EXSTAR DSC7020"), the resulting crushed material was measured in a nitrogen atmosphere at a temperature range of -50 ° C to 150 ° C and a heating rate of 5 The exothermic peak area B of the crushed material is measured under the conditions of °C/min. Similarly, the exothermic peak area A of the resin composition before curing is measured. The reaction rate is calculated as "reaction rate (%) = (1-(exothermic peak area B/exothermic peak area A)) x 100".
 上記樹脂組成物の硬化物は、ダイアタッチ材として用いられることが好ましい。上記樹脂組成物の硬化物は、特に、半導体装置のダイアタッチ材として好適である。 The cured product of the resin composition is preferably used as a die attach material. A cured product of the above resin composition is particularly suitable as a die attach material for a semiconductor device.
 以下、本発明に係る樹脂組成物に含まれる成分を説明する。 The components contained in the resin composition according to the present invention are described below.
 (熱硬化性樹脂)
 上記熱硬化性樹脂としては、エポキシ樹脂、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。上記熱硬化性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting resin)
Examples of the thermosetting resin include epoxy resin, polyphenylene ether resin, divinylbenzyl ether resin, polyarylate resin, diallyl phthalate resin, polyimide resin, benzoxazine resin, benzoxazole resin, bismaleimide resin and acrylate resin. Only one type of the thermosetting resin may be used, or two or more types may be used in combination.
 得られる硬化物の放熱性及び柔軟性をより一層高める観点からは、上記熱硬化性樹脂は、エポキシ樹脂、シリコーン樹脂、又はアクリル樹脂を含むことが好ましく、エポキシ樹脂を含むことがより好ましい。上記エポキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 From the viewpoint of further enhancing the heat dissipation and flexibility of the resulting cured product, the thermosetting resin preferably contains an epoxy resin, a silicone resin, or an acrylic resin, and more preferably contains an epoxy resin. Only one type of the epoxy resin may be used, or two or more types may be used in combination.
 得られる硬化物の柔軟性をより一層高める観点からは、上記エポキシ樹脂は、可撓性エポキシ樹脂を含むことが好ましい。上記可撓性エポキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記エポキシ樹脂は、可撓性エポキシ樹脂以外のエポキシ樹脂を含んでいてもよい。 From the viewpoint of further increasing the flexibility of the resulting cured product, the epoxy resin preferably contains a flexible epoxy resin. Only one type of the flexible epoxy resin may be used, or two or more types may be used in combination. The epoxy resin may contain an epoxy resin other than the flexible epoxy resin.
 可撓性エポキシ樹脂における可撓性の指標は以下の通りである。化学量論量のジエチレントリアミン(DETA)で硬化されたときに、デュロメーターShoreDの測定が30以下であるエポキシ樹脂が、可撓性エポキシ樹脂であると定義される。 The indices of flexibility in flexible epoxy resin are as follows. Flexible epoxy resins are defined as having a durometer Shore D measurement of 30 or less when cured with a stoichiometric amount of diethylenetriamine (DETA).
 上記可撓性エポキシ樹脂としては、ポリアルキレングリコールジグリシジルエーテル、ポリブタジエンジグリシジルエーテル、サルファイド変性エポキシ樹脂、ポリアルキレンオキサイド変性ビスフェノールA型エポキシ樹脂、脂肪族変性エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂、ゴム変性エポキシ樹脂、ウレタン変性エポキシ樹脂、アミン変性エポキシ樹脂、及びダイマー酸変性エポキシ樹脂等が挙げられる。得られる硬化物の柔軟性をより一層高める観点からは、上記可撓性エポキシ樹脂は、エポキシ基を2個以上有することが好ましい。得られる硬化物の柔軟性をより一層高める観点からは、上記可撓性エポキシ樹脂は、ポリアルキレングリコールジグリシジルエーテルを含むことが好ましく、ビスフェノール骨格を有さないポリアルキレングリコールジグリシジルエーテルを含むことがより好ましい。 Examples of the flexible epoxy resin include polyalkylene glycol diglycidyl ether, polybutadiene diglycidyl ether, sulfide-modified epoxy resin, polyalkylene oxide-modified bisphenol A type epoxy resin, aliphatic modified epoxy resin, ε-caprolactone-modified epoxy resin, rubber modified epoxy resins, urethane-modified epoxy resins, amine-modified epoxy resins, dimer acid-modified epoxy resins, and the like. From the viewpoint of further increasing the flexibility of the resulting cured product, the flexible epoxy resin preferably has two or more epoxy groups. From the viewpoint of further enhancing the flexibility of the resulting cured product, the flexible epoxy resin preferably contains a polyalkylene glycol diglycidyl ether, and contains a polyalkylene glycol diglycidyl ether having no bisphenol skeleton. is more preferred.
 得られる硬化物の柔軟性をより一層高める観点からは、上記ポリアルキレングリコールジグリシジルエーテルは、アルキレングリコール基が8以上繰り返された構造単位を有することが好ましい。得られる硬化物の柔軟性をより一層高める観点からは、上記ポリアルキレングリコールジグリシジルエーテルは、アルキレングリコール基が10以上繰り返された構造単位を有することがより好ましい。上記アルキレングリコール基の繰り返し数の上限は特に限定されない。上記アルキレングリコール基の繰り返し数は、100以下であってもよく、50以下であってもよく、30以下であってもよい。上記アルキレングリコール基の炭素数は、好ましくは2以上であり、好ましくは5以下である。 From the viewpoint of further increasing the flexibility of the resulting cured product, the polyalkylene glycol diglycidyl ether preferably has a structural unit in which 8 or more alkylene glycol groups are repeated. From the viewpoint of further increasing the flexibility of the resulting cured product, the polyalkylene glycol diglycidyl ether more preferably has a structural unit in which 10 or more alkylene glycol groups are repeated. The upper limit of the repeating number of the alkylene glycol group is not particularly limited. The number of repetitions of the alkylene glycol group may be 100 or less, 50 or less, or 30 or less. The number of carbon atoms in the alkylene glycol group is preferably 2 or more and preferably 5 or less.
 上記ポリアルキレングリコールジグリシジルエーテルとしては、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、及びポリテトラメチレングリコールジグリシジルエーテル等が挙げられる。 Examples of the polyalkylene glycol diglycidyl ether include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polytetramethylene glycol diglycidyl ether.
 樹脂組成物の塗布性を高める観点からは、上記ポリアルキレングリコールジグリシジルエーテルの25℃での粘度は、好ましくは100mPa・s以上である。作業性を高める観点からは、上記ポリアルキレングリコールジグリシジルエーテルの25℃での粘度は、好ましくは1000mPa・s以下、より好ましくは800mPa・s以下、さらに好ましくは500mPa・s以下である。 From the viewpoint of enhancing the applicability of the resin composition, the viscosity of the polyalkylene glycol diglycidyl ether at 25°C is preferably 100 mPa·s or more. From the viewpoint of improving workability, the viscosity of the polyalkylene glycol diglycidyl ether at 25° C. is preferably 1000 mPa·s or less, more preferably 800 mPa·s or less, still more preferably 500 mPa·s or less.
 上記ポリアルキレングリコールジグリシジルエーテルの粘度は、例えば、B型粘度計等を用いて、25℃及び10rpmの条件で測定することができる。上記B型粘度計としては、東機産業社製「TVB-10型」等が挙げられる。 The viscosity of the polyalkylene glycol diglycidyl ether can be measured, for example, using a Brookfield viscometer or the like under conditions of 25°C and 10 rpm. Examples of the B-type viscometer include "TVB-10 model" manufactured by Toki Sangyo Co., Ltd.
 上記可撓性エポキシ樹脂のエポキシ当量は、好ましくは300g/eq以上、より好ましくは350g/eq以上、さらに好ましくは450g/eq以上であり、好ましくは1500g/eq以下、より好ましくは1000g/eq以下、さらに好ましくは750g/eq以下、特に好ましくは500g/eq以下である。上記可撓性エポキシ樹脂のエポキシ当量が上記下限以上及び上記上限以下であると、得られる硬化物の柔軟性をより一層高めることができる。 The epoxy equivalent of the flexible epoxy resin is preferably 300 g/eq or more, more preferably 350 g/eq or more, still more preferably 450 g/eq or more, and preferably 1500 g/eq or less, more preferably 1000 g/eq or less. , more preferably 750 g/eq or less, particularly preferably 500 g/eq or less. When the epoxy equivalent of the flexible epoxy resin is not less than the lower limit and not more than the upper limit, the flexibility of the resulting cured product can be further enhanced.
 上記可撓性エポキシ樹脂のエポキシ当量は、JIS K7236:2001に準拠して、測定することができる。 The epoxy equivalent of the flexible epoxy resin can be measured according to JIS K7236:2001.
 得られる硬化物の機械的強度を高める観点からは、上記熱硬化性樹脂は、上記可撓性エポキシ樹脂と、上記可撓性エポキシ樹脂以外の熱硬化性樹脂を含むことが好ましい。上記可撓性エポキシ樹脂以外の熱硬化性樹脂は、可撓性を有さないことが好ましい。上記可撓性エポキシ樹脂以外の熱硬化性樹脂としては、ビスフェノール骨格を有するエポキシ樹脂、ジシクロペンタジエン骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、バイ(グリシジルオキシフェニル)メタン骨格を有するエポキシ樹脂、キサンテン骨格を有するエポキシ樹脂、アントラセン骨格を有するエポキシ樹脂、及びピレン骨格を有するエポキシ樹脂、並びにこれらの水素添加物又は変性物等が挙げられる。得られる硬化物の機械的強度を高める観点からは、上記可撓性エポキシ樹脂以外の熱硬化性樹脂は、ビスフェノール骨格を有するエポキシ樹脂を含むことが好ましい。 From the viewpoint of increasing the mechanical strength of the resulting cured product, the thermosetting resin preferably contains the flexible epoxy resin and a thermosetting resin other than the flexible epoxy resin. Thermosetting resins other than the flexible epoxy resin preferably have no flexibility. Thermosetting resins other than the above flexible epoxy resins include epoxy resins having a bisphenol skeleton, epoxy resins having a dicyclopentadiene skeleton, epoxy resins having a naphthalene skeleton, epoxy resins having an adamantane skeleton, and epoxy resins having a fluorene skeleton. Resins, epoxy resins having a biphenyl skeleton, epoxy resins having a bi(glycidyloxyphenyl)methane skeleton, epoxy resins having a xanthene skeleton, epoxy resins having an anthracene skeleton, epoxy resins having a pyrene skeleton, and hydrogenated products thereof Or a modified product etc. are mentioned. From the viewpoint of increasing the mechanical strength of the resulting cured product, the thermosetting resin other than the flexible epoxy resin preferably contains an epoxy resin having a bisphenol skeleton.
 得られる硬化物の機械的強度を高める観点からは、上記可撓性エポキシ樹脂以外の熱硬化性樹脂のエポキシ当量は、好ましくは100g/eq以上、より好ましくは150g/eq以上であり、好ましくは350g/eq以下、より好ましくは250g/eq以下である。 From the viewpoint of increasing the mechanical strength of the resulting cured product, the epoxy equivalent of the thermosetting resin other than the flexible epoxy resin is preferably 100 g/eq or more, more preferably 150 g/eq or more, and preferably It is 350 g/eq or less, more preferably 250 g/eq or less.
 上記樹脂組成物100重量%中、上記熱硬化性樹脂の含有量は、好ましくは5重量%以上、より好ましくは7重量%以上であり、好ましくは30重量%以下、より好ましくは15重量%以下である。上記熱硬化性樹脂の含有量が上記下限以上であると、得られる硬化物の柔軟性がより一層高くなる。上記熱硬化性樹脂の含有量が上記上限以下であると、得られる硬化物の放熱性をより一層高めることができる。なお、上記樹脂組成物が、上記熱硬化性樹脂を2種以上含む場合は、上記熱硬化性樹脂の含有量は、各熱硬化性樹脂の含有量の合計を表す。 In 100% by weight of the resin composition, the content of the thermosetting resin is preferably 5% by weight or more, more preferably 7% by weight or more, and preferably 30% by weight or less, more preferably 15% by weight or less. is. When the content of the thermosetting resin is at least the above lower limit, the flexibility of the resulting cured product is further enhanced. When the content of the thermosetting resin is equal to or less than the upper limit, the heat dissipation property of the resulting cured product can be further enhanced. In addition, when the said resin composition contains 2 or more types of said thermosetting resins, content of the said thermosetting resin represents the sum total of content of each thermosetting resin.
 上記樹脂組成物100重量%中、上記可撓性エポキシ樹脂の含有量は、好ましくは3重量%以上、より好ましくは5重量%以上、好ましくは30重量%以下、より好ましくは15重量%以下である。上記可撓性エポキシ樹脂の含有量が上記下限以上であると、得られる硬化物の柔軟性をより一層高めることができる。上記可撓性エポキシ樹脂の含有量が上記上限以下であると、樹脂組成物の塗布性をより一層高めることができる。なお、上記樹脂組成物が、上記可撓性エポキシ樹脂を2種以上含む場合は、上記可撓性エポキシ樹脂の含有量は、各可撓性エポキシ樹脂の含有量の合計を表す。 The content of the flexible epoxy resin in 100% by weight of the resin composition is preferably 3% by weight or more, more preferably 5% by weight or more, preferably 30% by weight or less, and more preferably 15% by weight or less. be. When the content of the flexible epoxy resin is at least the lower limit, the flexibility of the resulting cured product can be further enhanced. When the content of the flexible epoxy resin is equal to or less than the upper limit, the coating properties of the resin composition can be further enhanced. In addition, when the said resin composition contains 2 or more types of said flexible epoxy resins, content of the said flexible epoxy resin represents the sum total of content of each flexible epoxy resin.
 上記エポキシ樹脂100重量%中、上記可撓性エポキシ樹脂の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下である。上記可撓性エポキシ樹脂の含有量が上記下限以上であると、得られる硬化物の柔軟性をより一層高めることができる。上記可撓性エポキシ樹脂の含有量が上記上限以下であると、樹脂組成物の塗布性をより一層高めることができる。なお、上記エポキシ樹脂が、上記可撓性エポキシ樹脂を2種以上含む場合は、上記可撓性エポキシ樹脂の含有量は、各可撓性エポキシ樹脂の含有量の合計を表す。 In 100% by weight of the epoxy resin, the content of the flexible epoxy resin is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 90% by weight or less. , more preferably 85% by weight or less. When the content of the flexible epoxy resin is at least the lower limit, the flexibility of the resulting cured product can be further enhanced. When the content of the flexible epoxy resin is equal to or less than the upper limit, the coating properties of the resin composition can be further enhanced. In addition, when the said epoxy resin contains 2 or more types of said flexible epoxy resins, content of the said flexible epoxy resin represents the sum total of content of each flexible epoxy resin.
 上記可撓性エポキシ樹脂100重量%中、上記ポリアルキレングリコールジグリシジルエーテルの含有量は、好ましくは30重量%以上、より好ましくは40重量%以上、さらに好ましくは50重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下、さらに好ましくは70重量%以下である。上記ポリアルキレングリコールジグリシジルエーテルの含有量が、上記下限以上であると、得られる硬化物の柔軟性をより一層高めることができる。上記ポリアルキレングリコールジグリシジルエーテルの含有量が上記上限以下であると、樹脂組成物の塗布性をより一層高めることができる。 The content of the polyalkylene glycol diglycidyl ether in 100% by weight of the flexible epoxy resin is preferably 30% by weight or more, more preferably 40% by weight or more, and still more preferably 50% by weight or more. It is 90% by weight or less, more preferably 80% by weight or less, and even more preferably 70% by weight or less. When the content of the polyalkylene glycol diglycidyl ether is at least the above lower limit, the flexibility of the resulting cured product can be further enhanced. When the content of the polyalkylene glycol diglycidyl ether is equal to or less than the upper limit, the coating properties of the resin composition can be further enhanced.
 (絶縁性フィラー)
 絶縁性フィラーは絶縁性を有する。なお、絶縁性とは、フィラーの体積抵抗率が1010Ω・cm以上であることを意味する。
(insulating filler)
The insulating filler has insulating properties. In addition, insulating means that the filler has a volume resistivity of 10 10 Ω·cm or more.
 上記絶縁性フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。得られる硬化物の放熱性をより一層高める観点からは、上記絶縁性フィラーは、無機フィラーであることが好ましい。上記絶縁性フィラーは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The insulating filler may be an organic filler or an inorganic filler. From the viewpoint of further enhancing the heat dissipation properties of the resulting cured product, the insulating filler is preferably an inorganic filler. Only one type of the insulating filler may be used, or two or more types may be used in combination.
 上記絶縁性フィラーの最大粒子径は、45μm以下である。本発明に係る樹脂組成物では、上記の構成が備えられているので、基板等に薄く塗布することができ、得られる硬化物の放熱性を高めることができる。基板等により一層薄く塗布し、低温かつ短時間で硬化させ、得られる硬化物の放熱性をより一層高める観点からは、上記絶縁性フィラーの最大粒子径は、好ましくは30μm以下、より好ましくは25μm以下、さらに好ましくは20μm以下、特に好ましくは10μm以下である。上記絶縁性フィラーの最大粒子径の下限は、特に限定されない。上記絶縁性フィラーの最大粒子径は、10μm以上であってもよく、20μm以上であってもよい。 The maximum particle size of the insulating filler is 45 μm or less. Since the resin composition according to the present invention has the above structure, it can be applied thinly to a substrate or the like, and the heat dissipation property of the obtained cured product can be enhanced. The maximum particle size of the insulating filler is preferably 30 μm or less, more preferably 25 μm, from the viewpoint of further improving the heat dissipation properties of the resulting cured product by applying it more thinly to a substrate or the like and curing it at a low temperature in a short time. Below, more preferably 20 μm or less, particularly preferably 10 μm or less. The lower limit of the maximum particle size of the insulating filler is not particularly limited. The maximum particle size of the insulating filler may be 10 µm or more, or may be 20 µm or more.
 なお、上記絶縁性フィラーが、平均粒子径の異なる2種以上の絶縁性フィラーを含む場合、上記絶縁性フィラーの最大粒子径は、絶縁性フィラー全体の最大粒子径を意味する。 When the insulating filler contains two or more kinds of insulating fillers having different average particle sizes, the maximum particle size of the insulating filler means the maximum particle size of the entire insulating filler.
 上記絶縁性フィラーの最大粒子径は、例えば、上記樹脂組成物又は上記樹脂組成物の硬化物にレーザー回折式粒度分布測定を行うことにより求められる。具体的に、上記絶縁性フィラーの最大粒子径は、絶縁性フィラーの体積基準での粒度分布において、絶縁性フィラーの累積体積が100%であるときの絶縁性フィラーの粒子径(D100)(最大粒子径)を算出することにより求められる。レーザー回折式粒度分布測定装置としては、HORIBA社製「LA-960」等が挙げられる。上記樹脂組成物の硬化物として、上述した樹脂組成物の硬化物を用いることができる。上記樹脂組成物の硬化物は、例えば、上記樹脂組成物を150℃で2時間加熱し、硬化させて得られる。なお、上記硬化物の厚みは、特に限定されない。上記硬化物の厚みは、5μm以上であってもよく、10μm以上であってもよく、100μm以上であってもよく、500μm以下であってもよく、250μm以下であってもよい。 The maximum particle size of the insulating filler can be obtained, for example, by performing laser diffraction particle size distribution measurement on the resin composition or a cured product of the resin composition. Specifically, the maximum particle diameter of the insulating filler is the particle diameter (D100) (maximum particle diameter). Examples of the laser diffraction particle size distribution analyzer include "LA-960" manufactured by HORIBA. As the cured product of the resin composition, the cured product of the resin composition described above can be used. The cured product of the resin composition is obtained, for example, by heating the resin composition at 150° C. for 2 hours to cure it. In addition, the thickness of the cured product is not particularly limited. The thickness of the cured product may be 5 μm or more, 10 μm or more, 100 μm or more, 500 μm or less, or 250 μm or less.
 得られる硬化物の放熱性をより一層高める観点からは、上記絶縁性フィラーの平均粒子径は、好ましくは0.2μm以上、より好ましくは4μm以上であり、好ましくは45μm以下、より好ましくは25μm以下、さらに好ましくは20μm以下、特に好ましくは10μm以下である。 From the viewpoint of further enhancing the heat dissipation properties of the resulting cured product, the average particle size of the insulating filler is preferably 0.2 μm or more, more preferably 4 μm or more, and preferably 45 μm or less, more preferably 25 μm or less. , more preferably 20 μm or less, particularly preferably 10 μm or less.
 上記絶縁性フィラーの平均粒子径は、数平均粒子径であることが好ましい。上記絶縁性フィラーの平均粒子径は、例えば、任意の絶縁性フィラー50個を電子顕微鏡又は光学顕微鏡にて観察し、各絶縁性フィラーの粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。 The average particle size of the insulating filler is preferably the number average particle size. The average particle size of the insulating filler can be obtained, for example, by observing 50 arbitrary insulating fillers with an electron microscope or an optical microscope and calculating the average particle size of each insulating filler, or by laser diffraction particle size Obtained by performing distribution measurements.
 得られる硬化物の放熱性をより一層高め、充填性を良好にする観点からは、上記絶縁性フィラーの体積基準での粒度分布において、粒子径が0.1μm以上1.0μm未満の領域と、粒子径が1.0μm以上10μm以下の領域とに、ピークが存在することが好ましい。 From the viewpoint of further enhancing the heat dissipation property of the obtained cured product and improving the filling property, the volume-based particle size distribution of the insulating filler has a particle size of 0.1 μm or more and less than 1.0 μm, It is preferable that a peak exists in a region where the particle diameter is 1.0 μm or more and 10 μm or less.
 なお、粒子径が0.1μm以上1.0μm未満の領域に存在するピークとは、ピークトップの粒子径が0.1μm以上1.0μm未満であるピークを意味する。粒子径が1.0μm以上10μm以下の領域に存在するピークとは、ピークトップの粒子径が1.0μm以上10μm以下であるピークを意味する。 In addition, the peak present in the region with a particle diameter of 0.1 μm or more and less than 1.0 μm means a peak with a particle diameter of 0.1 μm or more and less than 1.0 μm at the peak top. The peak existing in the range of 1.0 μm or more and 10 μm or less in particle diameter means a peak in which the particle diameter of the peak top is 1.0 μm or more and 10 μm or less.
 得られる硬化物の放熱性をより一層高め、充填性を良好にする観点からは、上記粒子径が0.1μm以上1.0μm未満の領域に存在するピーク(第1のピーク)と、上記粒子径が1.0μm以上10μm以下の領域に存在するピーク(第2のピーク)とでは、上記第2のピークのピーク高さの方が高いことが好ましい。 From the viewpoint of further increasing the heat dissipation property of the resulting cured product and improving the filling property, the peak (first peak) present in the region where the particle diameter is 0.1 μm or more and less than 1.0 μm, and the particles It is preferable that the peak height of the second peak is higher than that of the peak (second peak) present in the region having a diameter of 1.0 μm or more and 10 μm or less.
 上記絶縁性フィラーの体積基準での粒度分布において、2個のピークが存在してもよく、2個以上のピークが存在してもよく、3個以上のピークが存在してもよく、4個以上のピークが存在してもよく、100個以下のピークが存在していてもよく、10個以下のピークが存在していてもよい。得られる硬化物の放熱性をより一層高め、充填性を良好にする観点からは、上記絶縁性フィラーの体積基準での粒度分布において、2個のピークが存在することが好ましい。上記の好ましい態様に調整するために、上記絶縁性フィラーは、平均粒子径の異なる2種以上の絶縁性フィラーを含んでいてもよい。 In the volume-based particle size distribution of the insulating filler, two peaks may be present, two or more peaks may be present, three or more peaks may be present, and four peaks may be present. There may be more peaks, 100 or less peaks, or 10 or less peaks. From the viewpoint of further enhancing the heat dissipation property of the obtained cured product and improving the filling property, it is preferable that the volume-based particle size distribution of the insulating filler has two peaks. In order to adjust to the above preferable aspect, the insulating filler may contain two or more kinds of insulating fillers having different average particle sizes.
 上記絶縁性フィラーの体積基準での粒度分布において、上記絶縁性フィラーの粒子径(D50)は、好ましくは20μm以下、より好ましくは10μm以下である。上記絶縁性フィラーの粒子径(D50)は、0.2μm以上であることが好ましい。上記絶縁性フィラーの粒子径(D50)が上記下限以上であると、本発明の効果をより一層効果的に発揮することができる。 In the volume-based particle size distribution of the insulating filler, the particle diameter (D50) of the insulating filler is preferably 20 μm or less, more preferably 10 μm or less. The particle diameter (D50) of the insulating filler is preferably 0.2 μm or more. When the particle diameter (D50) of the insulating filler is at least the lower limit, the effects of the present invention can be exhibited more effectively.
 なお、上記絶縁性フィラーの粒子径(D50)は、上述した絶縁性フィラーの体積基準での粒度分布において、絶縁性フィラーの累積体積が50%であるときの絶縁性フィラーの粒子径である。 The particle diameter (D50) of the insulating filler is the particle diameter of the insulating filler when the cumulative volume of the insulating filler is 50% in the volume-based particle size distribution of the insulating filler.
 上記絶縁性フィラーの粒子径の変動係数(CV値)は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記絶縁性フィラーの粒子径の変動係数が上記下限以上及び上記上限以下であると、得られる硬化物の放熱性をより一層高めることができる。但し、上記絶縁性フィラーの粒子径のCV値は、5%未満であってもよい。 The coefficient of variation (CV value) of the particle size of the insulating filler is preferably 5% or more, more preferably 10% or more, and preferably 40% or less, more preferably 30% or less. When the variation coefficient of the particle size of the insulating filler is equal to or more than the lower limit and equal to or less than the upper limit, it is possible to further improve the heat dissipation properties of the obtained cured product. However, the CV value of the particle diameter of the insulating filler may be less than 5%.
 上記変動係数(CV値)は、以下のようにして測定できる。
 CV値(%)=(ρ/Dn)×100
 ρ:絶縁性フィラーの粒子径の標準偏差
 Dn:絶縁性フィラーの粒子径の平均値
The coefficient of variation (CV value) can be measured as follows.
CV value (%) = (ρ/Dn) × 100
ρ: standard deviation of the particle size of the insulating filler Dn: average value of the particle size of the insulating filler
 上記絶縁性フィラーの形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。本発明の効果をより一層効果的に発揮する観点からは、上記絶縁性フィラーの形状は、球状であることが好ましい。 The shape of the insulating filler may be spherical, may be other than spherical, or may be flat. From the viewpoint of exhibiting the effect of the present invention more effectively, the shape of the insulating filler is preferably spherical.
 得られる硬化物の放熱性をより一層高める観点からは、上記絶縁性フィラーの熱伝導率は、好ましくは10W/m・K以上、より好ましくは15W/m・K以上、さらに好ましくは20W/m・K以上である。上記絶縁性フィラーの熱伝導率の上限は特に限定されない。熱伝導率が300W/m・K程度である無機フィラーは広く知られており、また熱伝導率が200W/m・K程度である無機フィラーは容易に入手できる。 From the viewpoint of further enhancing the heat dissipation properties of the resulting cured product, the thermal conductivity of the insulating filler is preferably 10 W/m·K or more, more preferably 15 W/m·K or more, and still more preferably 20 W/m·K.・K or more. The upper limit of the thermal conductivity of the insulating filler is not particularly limited. Inorganic fillers with a thermal conductivity of about 300 W/m·K are widely known, and inorganic fillers with a thermal conductivity of about 200 W/m·K are readily available.
 上記絶縁性フィラーの材質は、アルミナ、水酸化アルミニウム、合成マグネサイト、水酸化マグネシウム、ダイヤモンド、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムであることが好ましい。また、上記絶縁性フィラーの材質は、アルミナ、合成マグネサイト、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムであることがより好ましく、アルミナであることがさらに好ましい。これらの好ましい上記絶縁性フィラーの使用により、得られる硬化物の放熱性がより一層高くなる。 The material of the insulating filler is preferably alumina, aluminum hydroxide, synthetic magnesite, magnesium hydroxide, diamond, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide. Further, the material of the insulating filler is more preferably alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide, and more preferably alumina. By using these preferable insulating fillers, the cured product obtained has a higher heat dissipation property.
 上記樹脂組成物100重量%中、上記絶縁性フィラーの含有量は、好ましくは25重量%以上、より好ましくは50重量%以上、さらに好ましくは65重量%以上、特に好ましくは70重量以上、特に好ましくは80重量%以上であり、好ましくは93重量%以下、より好ましくは88重量%以下である。上記絶縁性フィラーの含有量が、上記下限以上及び上記上限以下であると、得られる硬化物の放熱性をより一層高めることができる。 The content of the insulating filler in 100% by weight of the resin composition is preferably 25% by weight or more, more preferably 50% by weight or more, still more preferably 65% by weight or more, particularly preferably 70% by weight or more, and particularly preferably is 80% by weight or more, preferably 93% by weight or less, more preferably 88% by weight or less. When the content of the insulating filler is equal to or more than the lower limit and equal to or less than the upper limit, the heat dissipation property of the obtained cured product can be further enhanced.
 (熱硬化剤)
 上記樹脂組成物は、熱硬化剤を含んでいてもよい。上記樹脂組成物は、熱硬化剤を含むことが好ましい。
(Heat curing agent)
The resin composition may contain a thermosetting agent. The resin composition preferably contains a thermosetting agent.
 上記熱硬化剤は特に限定されない。上記熱硬化剤として、熱硬化性樹脂を硬化させることができる適宜の熱硬化剤を用いることができる。また、本明細書において、上記熱硬化剤には、硬化触媒が含まれる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The above thermosetting agent is not particularly limited. An appropriate thermosetting agent capable of curing a thermosetting resin can be used as the thermosetting agent. Further, in this specification, the thermosetting agent includes a curing catalyst. Only one kind of the thermosetting agent may be used, or two or more kinds thereof may be used in combination.
 得られる硬化物の耐熱性をより一層高める観点からは、上記熱硬化剤は、芳香族骨格又は脂環式骨格を有することが好ましい。上記熱硬化剤は、アミン硬化剤(アミン化合物)、イミダゾール硬化剤、フェノール硬化剤(フェノール化合物)又は酸無水物硬化剤(酸無水物)を含むことが好ましく、フェノール硬化剤(フェノール化合物)又は酸無水物硬化剤(酸無水物)を含むことがより好ましい。上記酸無水物硬化剤は、芳香族骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物を含むか、又は、脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物を含むことが好ましい。 From the viewpoint of further increasing the heat resistance of the resulting cured product, the thermosetting agent preferably has an aromatic skeleton or an alicyclic skeleton. The heat curing agent preferably contains an amine curing agent (amine compound), an imidazole curing agent, a phenol curing agent (phenol compound) or an acid anhydride curing agent (acid anhydride), and a phenol curing agent (phenol compound) or More preferably, it contains an acid anhydride curing agent (acid anhydride). The acid anhydride curing agent includes an acid anhydride having an aromatic skeleton, a hydrogenated product of the acid anhydride or a modified product of the acid anhydride, or an acid anhydride having an alicyclic skeleton, the It is preferable to contain a water additive of an acid anhydride or a modified product of the acid anhydride.
 上記アミン硬化剤としては、ジシアンジアミド、イミダゾール化合物、ジアミノジフェニルメタン及びジアミノジフェニルスルフォン等が挙げられる。得られる硬化物の接着性をより一層高める観点からは、上記アミン硬化剤は、ジシアンジアミド又はイミダゾール化合物であることがより一層好ましい。樹脂組成物の貯蔵安定性を高める観点からは、上記熱硬化剤は、融点が180℃以上である硬化剤を含むことが好ましい。 Examples of the amine curing agent include dicyandiamide, imidazole compounds, diaminodiphenylmethane and diaminodiphenylsulfone. From the viewpoint of further increasing the adhesiveness of the resulting cured product, the amine curing agent is more preferably a dicyandiamide or imidazole compound. From the viewpoint of improving the storage stability of the resin composition, the thermosetting agent preferably contains a curing agent having a melting point of 180° C. or higher.
 上記イミダゾール硬化剤としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole curing agent include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl -2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2- undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2 '-Methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-undecylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino -6-[2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl- s-triazine isocyanurate, 2-phenylimidazole isocyanurate, 2-methylimidazole isocyanurate, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-dihydroxymethyl imidazole and the like.
 上記フェノール硬化剤としては、フェノールノボラック、o-クレゾールノボラック、p-クレゾールノボラック、t-ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、キシリレン変性ノボラック、デカリン変性ノボラック、ポリ(ジ-o-ヒドロキシフェニル)メタン、ポリ(ジ-m-ヒドロキシフェニル)メタン、及びポリ(ジ-p-ヒドロキシフェニル)メタン等が挙げられる。得られる硬化物の柔軟性及び難燃性をより一層高める観点からは、メラミン骨格を有するフェノール樹脂、トリアジン骨格を有するフェノール樹脂、又はアリル基を有するフェノール樹脂が好ましい。 Examples of the phenol curing agent include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, xylylene-modified novolak, decalin-modified novolak, poly( Di-o-hydroxyphenyl)methane, poly(di-m-hydroxyphenyl)methane, poly(di-p-hydroxyphenyl)methane, and the like. Phenolic resins having a melamine skeleton, phenolic resins having a triazine skeleton, or phenolic resins having an allyl group are preferred from the viewpoint of further enhancing the flexibility and flame retardancy of the resulting cured product.
 上記フェノール硬化剤の市販品としては、MEH-8000H、MEH-8005、MEH-8010及びMEH-8015(以上いずれも明和化成社製)、YLH903(三菱化学社製)、LA-7052、LA-7054、LA-7751、LA-1356及びLA-3018-50P(以上いずれもDIC社製)、並びにELPC75、PS6313及びPS6492(以上いずれも群栄化学社製)等が挙げられる。 Commercially available phenolic curing agents include MEH-8000H, MEH-8005, MEH-8010 and MEH-8015 (all of which are manufactured by Meiwa Kasei Co., Ltd.), YLH903 (manufactured by Mitsubishi Chemical Corporation), LA-7052 and LA-7054. , LA-7751, LA-1356 and LA-3018-50P (all of which are manufactured by DIC), and ELPC75, PS6313 and PS6492 (all of which are manufactured by Gun Ei Kagaku).
 上記芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、例えば、スチレン/無水マレイン酸コポリマー、ベンゾフェノンテトラカルボン酸無水物、ピロメリット酸無水物、トリメリット酸無水物、4,4’-オキシジフタル酸無水物、フェニルエチニルフタル酸無水物、グリセロールビス(アンヒドロトリメリテート)モノアセテート、エチレングリコールビス(アンヒドロトリメリテート)、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、及びトリアルキルテトラヒドロ無水フタル酸等が挙げられる。 Examples of the acid anhydride having an aromatic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride include styrene/maleic anhydride copolymer, benzophenonetetracarboxylic anhydride, and pyromellitic anhydride. , trimellitic anhydride, 4,4′-oxydiphthalic anhydride, phenylethynyl phthalic anhydride, glycerol bis(anhydrotrimellitate) monoacetate, ethylene glycol bis(anhydrotrimellitate), methyltetrahydroanhydride Phthalic acid, methylhexahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, and the like.
 上記芳香族骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、SMAレジンEF30、SMAレジンEF40、SMAレジンEF60及びSMAレジンEF80(以上いずれもサートマー・ジャパン社製)、ODPA-M及びPEPA(以上いずれもマナック社製)、リカシッドMTA-10、リカシッドMTA-15、リカシッドTMTA、リカシッドTMEG-100、リカシッドTMEG-200、リカシッドTMEG-300、リカシッドTMEG-500、リカシッドTMEG-S、リカシッドHT-1A、リカシッドMT-500、及びリカシッドTDA-100(以上いずれも新日本理化社製)、並びにEPICLON B4400、EPICLON B650、及びEPICLON B570(以上いずれもDIC社製)等が挙げられる。 Commercially available products of the acid anhydride having an aromatic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride include SMA Resin EF30, SMA Resin EF40, SMA Resin EF60 and SMA Resin EF80 (any of the above Also manufactured by Sartomer Japan), ODPA-M and PEPA (both manufactured by Manac), Rikashid MTA-10, Rikashid MTA-15, Rikashid TMTA, Rikashid TMEG-100, Rikashid TMEG-200, Rikashid TMEG-300, Rikashid TMEG-500, Rikashid TMEG-S, Rikashid HT-1A, Rikashid MT-500, and Rikashid TDA-100 (all manufactured by Shin Nippon Rika), as well as EPICLON B4400, EPICLON B650, and EPICLON B570 (all of them) DIC Corporation) and the like.
 上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物は、多脂環式骨格を有する酸無水物、該酸無水物の水添加物もしくは該酸無水物の変性物、又はテルペン系化合物と無水マレイン酸との付加反応により得られる脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物であることが好ましい。これらの熱硬化剤の使用により、得られる硬化物の柔軟性、耐湿性及び接着性がより一層高くなる。 The acid anhydride having an alicyclic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride is an acid anhydride having a polyalicyclic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride. A modified acid anhydride, an acid anhydride having an alicyclic skeleton obtained by an addition reaction of a terpene compound and maleic anhydride, a hydrogen additive of the acid anhydride, or a modified acid anhydride. is preferred. By using these thermosetting agents, the flexibility, moisture resistance and adhesiveness of the resulting cured product are further enhanced.
 上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物としては、メチルナジック酸無水物、ジシクロペンタジエン骨格を有する酸無水物又は該酸無水物の変性物等も挙げられる。 Examples of the acid anhydride having an alicyclic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride include methyl nadic acid anhydride, the acid anhydride having a dicyclopentadiene skeleton, or the acid anhydride. Modified products of are also included.
 上記脂環式骨格を有する酸無水物、該酸無水物の水添加物又は該酸無水物の変性物の市販品としては、リカシッドMH-700、リカシッドHH、リカシッドTH、リカシッドDDSA、リカシッドOSA、リカシッドHNA及びリカシッドHNA-100(以上いずれも新日本理化社製)、並びにエピキュアYH306、エピキュアYH307、エピキュアYH308H及びエピキュアYH309(以上いずれも三菱化学社製)等が挙げられる。 Commercially available products of the acid anhydride having an alicyclic skeleton, the hydrogenated product of the acid anhydride, or the modified product of the acid anhydride include Rikacid MH-700, Rikacid HH, Rikacid TH, Rikacid DDSA, Rikacid OSA, Rikashid HNA and Rikashid HNA-100 (all manufactured by Shin Nippon Rika), Epicure YH306, Epicure YH307, Epicure YH308H and Epicure YH309 (all manufactured by Mitsubishi Chemical) and the like.
 上記熱硬化剤は、メチルナジック酸無水物又はトリアルキルテトラヒドロ無水フタル酸であることも好ましい。メチルナジック酸無水物又はトリアルキルテトラヒドロ無水フタル酸の使用により、得られる硬化物の耐水性が高くなる。 The thermosetting agent is also preferably methylnadic anhydride or trialkyltetrahydrophthalic anhydride. The use of methylnadic anhydride or trialkyltetrahydrophthalic anhydride increases the water resistance of the resulting cured product.
 上記樹脂組成物では、上記熱硬化剤は、ブタジエン化合物の重合体を含むことが好ましい。上記ブタジエン化合物の重合体は、ブタジエン化合物の単独重合体であってもよく、ブタジエン化合物と、上記ブタジエン化合物と共重合可能な化合物との共重合体であってもよい。本発明の効果をより一層効果的に発揮する観点からは、上記ブタジエン化合物の重合体は、上記ブタジエン化合物と共重合可能な化合物との共重合体であることが好ましい。 In the resin composition, the thermosetting agent preferably contains a butadiene compound polymer. The polymer of the butadiene compound may be a homopolymer of the butadiene compound, or a copolymer of the butadiene compound and a compound copolymerizable with the butadiene compound. From the viewpoint of exhibiting the effects of the present invention more effectively, the polymer of the butadiene compound is preferably a copolymer of the butadiene compound and a copolymerizable compound.
 上記ブタジエン化合物としては、特に限定されない。上記ブタジエン化合物としては、ブタジエン、及びイソプレン等が挙げられる。 The butadiene compound is not particularly limited. Examples of the butadiene compound include butadiene and isoprene.
 上記ブタジエン化合物と共重合可能な化合物としては、マレイン酸、マレイン酸無水物、アルコール、アミン化合物、アクリル酸エステル、アクリロニトリル、及びスチレン等が挙げられる。上記アミン化合物としては、ジアミン等が挙げられる。上記エポキシ樹脂をより一層良好に硬化させる観点からは、上記ブタジエン化合物と共重合可能な化合物は、マレイン酸又はマレイン酸無水物であることが好ましく、マレイン酸無水物であることがさらに好ましい。 Examples of compounds that can be copolymerized with the butadiene compound include maleic acid, maleic anhydride, alcohols, amine compounds, acrylic acid esters, acrylonitrile, and styrene. Diamine etc. are mentioned as said amine compound. From the viewpoint of better curing of the epoxy resin, the compound copolymerizable with the butadiene compound is preferably maleic acid or maleic anhydride, more preferably maleic anhydride.
 上記ブタジエン化合物の重合体は、上記熱硬化性樹脂の熱硬化性官能基と反応可能な官能基(反応性基)を2個以上有することが好ましく、上記エポキシ樹脂のエポキシ基と反応可能な官能基(反応性基)を2個以上有することが好ましい。上記ブタジエン化合物の重合体中の、1分子当たりの上記反応性基数は、2以上であることが好ましい。樹脂組成物を低温かつ短時間で硬化させる観点からは、上記ブタジエン化合物の重合体中の、1分子当たりの上記反応性基数は、好ましくは2以上、より好ましくは3以上、さらに好ましくは4以上、特に好ましくは5以上であり、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下である。 The polymer of the butadiene compound preferably has two or more functional groups (reactive groups) capable of reacting with the thermosetting functional groups of the thermosetting resin, and functional groups capable of reacting with the epoxy groups of the epoxy resin. It is preferable to have two or more groups (reactive groups). The number of reactive groups per molecule in the polymer of the butadiene compound is preferably 2 or more. From the viewpoint of curing the resin composition at a low temperature in a short time, the number of reactive groups per molecule in the polymer of the butadiene compound is preferably 2 or more, more preferably 3 or more, and still more preferably 4 or more. , particularly preferably 5 or more, preferably 20 or less, more preferably 15 or less, still more preferably 10 or less.
 上記ブタジエン化合物の重合体中の、上記反応性基数は、ブタジエン化合物と上記反応性基を有する化合物との混合比を調整することにより好ましい範囲に調整することができる。 The number of reactive groups in the polymer of the butadiene compound can be adjusted to a preferable range by adjusting the mixing ratio of the butadiene compound and the compound having the reactive group.
 上記エポキシ樹脂のエポキシ基と反応可能な官能基(反応性基)としては、ビニル基等の炭素-炭素不飽和結合を有する基、水酸基、グリシジル基、イソシアネート基、アミノ基、カルボキシル基及び酸無水物基等が挙げられる。樹脂組成物を低温かつ短時間で硬化させる観点からは、上記ブタジエン化合物の重合体中の、上記反応性基は、水酸基又は酸無水物基を含むことが好ましく、酸無水物基を含むことがより好ましい。 The functional group (reactive group) capable of reacting with the epoxy group of the epoxy resin includes a group having a carbon-carbon unsaturated bond such as a vinyl group, a hydroxyl group, a glycidyl group, an isocyanate group, an amino group, a carboxyl group and an acid anhydride. Physical basis and the like. From the viewpoint of curing the resin composition at a low temperature in a short time, the reactive group in the polymer of the butadiene compound preferably contains a hydroxyl group or an acid anhydride group, and may contain an acid anhydride group. more preferred.
 樹脂組成物を低温かつ短時間で硬化させる観点からは、上記ブタジエン化合物の重合体中の、上記反応性基の当量は、好ましくは300g/eq以上、より好ましくは450g/eq以上であり、好ましくは1500g/eq以下、より好ましくは1000g/eq以下である。 From the viewpoint of curing the resin composition at a low temperature in a short time, the equivalent weight of the reactive group in the polymer of the butadiene compound is preferably 300 g/eq or more, more preferably 450 g/eq or more. is 1500 g/eq or less, more preferably 1000 g/eq or less.
 上記ブタジエン化合物の重合体中の、上記反応性基の当量は、電位差滴定法、及び指示薬滴定法等で測定することができる。 The equivalent weight of the reactive group in the polymer of the butadiene compound can be measured by potentiometric titration, indicator titration, and the like.
 上記ブタジエン化合物の単独重合体は、ブタジエン化合物を重合させることによって得ることができる。また、上記ブタジエン化合物と、上記ブタジエン化合物と共重合可能な化合物との共重合体は、ブタジエン化合物と上記ブタジエン化合物と共重合可能な化合物を共重合させることによって得ることができる。上記の重合方法としては、ラジカル重合、イオン重合、重縮合(縮合重合、縮重合)、付加縮合、リビング重合、及びリビングラジカル重合等の公知の方法が挙げられる。また、他の重合方法としては、ラジカル重合開始剤の存在下での懸濁重合が挙げられる。 The homopolymer of the butadiene compound can be obtained by polymerizing the butadiene compound. The copolymer of the butadiene compound and the compound copolymerizable with the butadiene compound can be obtained by copolymerizing the butadiene compound and the compound copolymerizable with the butadiene compound. Examples of the polymerization method include known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, polycondensation), addition condensation, living polymerization, and living radical polymerization. Other polymerization methods include suspension polymerization in the presence of a radical polymerization initiator.
 上記熱硬化剤の25℃での粘度は、好ましくは100mPa・s以上、より好ましくは300mPa・s以上、さらに好ましくは500mPa・s以上であり、好ましくは10000mPa・s以下、より好ましくは1000mPa・s以下である。上記熱硬化剤の25℃での粘度が、上記下限以上及び上記上限以下であると、樹脂組成物の塗布性をより一層高めることができる。 The viscosity of the thermosetting agent at 25° C. is preferably 100 mPa·s or more, more preferably 300 mPa·s or more, still more preferably 500 mPa·s or more, preferably 10000 mPa·s or less, more preferably 1000 mPa·s. It is below. When the viscosity of the thermosetting agent at 25°C is equal to or higher than the lower limit and equal to or lower than the upper limit, the coatability of the resin composition can be further enhanced.
 上記樹脂組成物100重量%中、上記熱硬化剤の含有量は、好ましくは0.1重量%以上、より好ましくは3重量%以上であり、好ましくは40重量%以下、より好ましくは25重量%以下である。上記熱硬化剤の含有量が上記下限以上であると、上記樹脂組成物を充分に硬化させることが容易である。上記熱硬化剤の含有量が上記上限以下であると、硬化に関与しない余剰な上記熱硬化剤が発生し難くなる。このため、得られる硬化物の耐熱性及び接着性が高くなる。 The content of the thermosetting agent in 100% by weight of the resin composition is preferably 0.1% by weight or more, more preferably 3% by weight or more, and preferably 40% by weight or less, more preferably 25% by weight. It is below. When the content of the thermosetting agent is at least the lower limit, it is easy to sufficiently cure the resin composition. When the content of the thermosetting agent is equal to or less than the above upper limit, excess thermosetting agent that does not participate in curing is less likely to occur. Therefore, the heat resistance and adhesiveness of the resulting cured product are enhanced.
 上記熱硬化性樹脂100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.1重量部以上、より好ましくは50重量部以上であり、好ましくは100重量部以下である。上記熱硬化剤の含有量が上記下限以上であると、上記樹脂組成物を充分に硬化させることが容易である。上記熱硬化剤の含有量が上記上限以下であると、硬化に関与しない余剰な上記熱硬化剤が発生し難くなる。このため、得られる硬化物の耐熱性及び接着性が高くなる。 The content of the thermosetting agent is preferably 0.1 parts by weight or more, more preferably 50 parts by weight or more, and preferably 100 parts by weight or less with respect to 100 parts by weight of the thermosetting resin. When the content of the thermosetting agent is at least the lower limit, it is easy to sufficiently cure the resin composition. When the content of the thermosetting agent is equal to or less than the above upper limit, excess thermosetting agent that does not participate in curing is less likely to occur. Therefore, the heat resistance and adhesiveness of the resulting cured product are enhanced.
 上記熱硬化性樹脂100重量部に対して、上記熱硬化剤中の上記ブタジエン化合物の重合体の含有量は、好ましくは25重量部以上、より好ましくは50重量部以上であり、好ましくは150重量部以下、より好ましくは100重量部以下である。上記熱硬化剤中の上記ブタジエン化合物の重合体の含有量が上記下限以上であると、樹脂組成物を低温かつ短時間で硬化させることができる。上記熱硬化剤中の上記ブタジエン化合物の重合体の含有量が上記上限以下であると、硬化に関与しない余剰な上記熱硬化剤が発生し難くなる。このため、得られる硬化物の耐熱性及び接着性が高くなる。 The content of the polymer of the butadiene compound in the thermosetting agent is preferably 25 parts by weight or more, more preferably 50 parts by weight or more, and preferably 150 parts by weight with respect to 100 parts by weight of the thermosetting resin. parts or less, more preferably 100 parts by weight or less. When the content of the polymer of the butadiene compound in the thermosetting agent is at least the lower limit, the resin composition can be cured at a low temperature in a short time. When the content of the polymer of the butadiene compound in the thermosetting agent is equal to or less than the above upper limit, it becomes difficult to generate excess of the thermosetting agent that does not participate in curing. Therefore, the heat resistance and adhesiveness of the resulting cured product are enhanced.
 上記エポキシ樹脂100重量部に対して、上記熱硬化剤中の上記ブタジエン化合物の重合体の含有量は、好ましくは25重量部以上、より好ましくは50重量部以上であり、好ましくは150重量部以下、より好ましくは100重量部以下である。上記熱硬化剤中の上記ブタジエン化合物の重合体の含有量が上記下限以上であると、樹脂組成物を低温かつ短時間で硬化させることができる。上記熱硬化剤中の上記ブタジエン化合物の重合体の含有量が上記上限以下であると、硬化に関与しない余剰な上記熱硬化剤が発生し難くなる。このため、得られる硬化物の耐熱性及び接着性が高くなる。 The content of the polymer of the butadiene compound in the thermosetting agent is preferably 25 parts by weight or more, more preferably 50 parts by weight or more, and preferably 150 parts by weight or less with respect to 100 parts by weight of the epoxy resin. , more preferably 100 parts by weight or less. When the content of the polymer of the butadiene compound in the thermosetting agent is at least the lower limit, the resin composition can be cured at a low temperature in a short time. When the content of the polymer of the butadiene compound in the thermosetting agent is equal to or less than the above upper limit, it becomes difficult to generate excess of the thermosetting agent that does not participate in curing. Therefore, the heat resistance and adhesiveness of the resulting cured product are enhanced.
 (分散剤)
 上記樹脂組成物は、分散剤をさらに含んでいてもよい。得られる硬化物の分散性を高める観点からは、上記樹脂組成物は、分散剤をさらに含むことが好ましい。
(dispersant)
The resin composition may further contain a dispersant. From the viewpoint of enhancing the dispersibility of the resulting cured product, the resin composition preferably further contains a dispersant.
 上記分散剤としては、ポリカルボン酸塩、アルキルアンモニウム塩、アルキロールアンモニウム塩、リン酸エステル塩、アクリル系ブロック共重合物、及びポリマー塩等が挙げられる。上記分散剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the dispersant include polycarboxylates, alkylammonium salts, alkylolammonium salts, phosphate ester salts, acrylic block copolymers, and polymer salts. Only one kind of the dispersant may be used, or two or more kinds thereof may be used in combination.
 得られる硬化物の分散性を高める観点からは、上記分散剤は、ポリカルボン酸塩、アルキロールアンモニウム塩、又はリン酸エステル塩であることが好ましい。 From the viewpoint of enhancing the dispersibility of the resulting cured product, the dispersant is preferably a polycarboxylate, an alkylolammonium salt, or a phosphate ester salt.
 得られる硬化物の分散性を高める観点からは、上記分散剤のアミン価は、好ましくは40KOHmg/g以上、より好ましくは50KOHmg/g以上であり、好ましくは95KOHmg/g以下、より好ましくは85KOHmg/g以下である。なお、上記分散剤のアミン価は、JIS K7237に準拠して測定することができる。 From the viewpoint of enhancing the dispersibility of the resulting cured product, the amine value of the dispersant is preferably 40 mg KOH/g or more, more preferably 50 mg KOH/g or more, and preferably 95 mg KOH/g or less, more preferably 85 mg KOH/g. g or less. The amine value of the dispersant can be measured according to JIS K7237.
 絶縁性フィラーの分散性を高める観点からは、上記分散剤の酸価は、好ましくは45KOHmg/g以上、より好ましくは50KOHmg/g以上であり、好ましくは95KOHmg/g以下、より好ましくは85KOHmg/g以下である。なお、上記分散剤の酸価は、JIS K0070に準拠して測定することができる。 From the viewpoint of enhancing the dispersibility of the insulating filler, the acid value of the dispersant is preferably 45 mg KOH/g or more, more preferably 50 mg KOH/g or more, and preferably 95 mg KOH/g or less, more preferably 85 mg KOH/g. It is below. The acid value of the dispersant can be measured according to JIS K0070.
 絶縁性フィラーの分散性を高める観点からは、上記分散剤のアミン価が、40KOHmg/g以上95KOHmg/g以下であり、かつ、上記分散剤の酸価が、45KOHmg/g以上95KOHmg/g以下であることが好ましい。 From the viewpoint of enhancing the dispersibility of the insulating filler, the amine value of the dispersant is 40 KOHmg/g or more and 95 KOHmg/g or less, and the acid value of the dispersant is 45 KOHmg/g or more and 95 KOHmg/g or less. Preferably.
 絶縁性フィラーの分散性を高める観点からは、上記分散剤のアミン価と上記分散剤の酸価との差の絶対値は、好ましくは10KOHmg/g以下、より好ましくは7KOHmg/g以下である。上記分散剤のアミン価と上記分散剤の酸価との差の絶対値の下限は、特に限定されない。上記分散剤のアミン価と上記分散剤の酸価との差の絶対値は0KOHmg/g(アミン価と酸価とが同じ)であってもよい。 From the viewpoint of enhancing the dispersibility of the insulating filler, the absolute value of the difference between the amine value of the dispersant and the acid value of the dispersant is preferably 10 mg KOH/g or less, more preferably 7 mg KOH/g or less. The lower limit of the absolute value of the difference between the amine value of the dispersant and the acid value of the dispersant is not particularly limited. The absolute value of the difference between the amine value of the dispersant and the acid value of the dispersant may be 0 KOH mg/g (the amine value and the acid value are the same).
 上記樹脂組成物100重量%中、上記分散剤の含有量は、好ましくは0.05重量%以上、より好ましくは0.1重量%以上であり、好ましくは2重量%以下、より好ましくは1重量%以下である。上記分散剤の含有量が上記下限以上及び上記上限以下であると、上記絶縁性フィラーの分散性がより一層高くなる。 The content of the dispersant in 100% by weight of the resin composition is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and preferably 2% by weight or less, more preferably 1% by weight. % or less. When the content of the dispersant is equal to or more than the lower limit and equal to or less than the upper limit, the dispersibility of the insulating filler is further enhanced.
 (他の成分)
 上記樹脂組成物は、上述した成分の他に、キレート剤、酸化防止剤、イオントラップ剤、保存安定剤、及び老化防止剤等を含んでいてもよい。
(other ingredients)
The resin composition may contain a chelating agent, an antioxidant, an ion trapping agent, a storage stabilizer, an antiaging agent, and the like, in addition to the components described above.
 (半導体装置)
 本発明に係る半導体装置は、基板と、上記基板の表面上に配置されたダイアタッチ材と、上記ダイアタッチ材の表面上に配置された半導体素子(チップ)とを備える。本発明に係る半導体装置では、上記ダイアタッチ材が、熱硬化性樹脂と、絶縁性フィラーとを含む樹脂組成物の硬化物である。本発明に係る半導体装置では、上記絶縁性フィラーの最大粒子径が、45μm以下である。本発明に係る半導体装置では、上記ダイアタッチ材が、上述した樹脂組成物の硬化物である。
(semiconductor device)
A semiconductor device according to the present invention includes a substrate, a die attach material arranged on the surface of the substrate, and a semiconductor element (chip) arranged on the surface of the die attach material. In the semiconductor device according to the present invention, the die attach material is a cured product of a resin composition containing a thermosetting resin and an insulating filler. In the semiconductor device according to the present invention, the insulating filler has a maximum particle size of 45 μm or less. In the semiconductor device according to the present invention, the die attach material is a cured product of the resin composition described above.
 上記樹脂組成物の硬化物は、例えば、上記樹脂組成物を150℃で2時間加熱し、硬化させて、得られる。なお、上記硬化物の厚みは、特に限定されない。上記硬化物の厚みは、5μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよい。また、上記硬化物の厚みは、500μm以下であってもよく、100μm以下であってもよく、25μm以下であってもよい。 The cured product of the resin composition is obtained, for example, by heating the resin composition at 150°C for 2 hours to cure it. In addition, the thickness of the cured product is not particularly limited. The thickness of the cured product may be 5 μm or more, 10 μm or more, or 20 μm or more. The thickness of the cured product may be 500 μm or less, 100 μm or less, or 25 μm or less.
 図1は、本発明の第1の実施形態に係る樹脂組成物の硬化物を用いた半導体装置を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a semiconductor device using a cured product of a resin composition according to the first embodiment of the present invention.
 図1に示す半導体装置1は、基板2と、基板2の表面上に配置されたダイアタッチ材3と、ダイアタッチ材3の基板2側とは反対の表面上に配置された半導体素子4とを備える。ダイアタッチ材3は、上述した樹脂組成物を硬化させることにより形成されている。ダイアタッチ材3は、熱硬化性樹脂と、絶縁性フィラー3Aとを含む樹脂組成物の硬化物である。絶縁性フィラー3Aの最大粒子径は、45μm以下である。なお、図1では、図示の便宜上、実際の大きさ及び厚みとは異なっている。 A semiconductor device 1 shown in FIG. Prepare. The die attach material 3 is formed by curing the resin composition described above. The die attach material 3 is a cured product of a resin composition containing a thermosetting resin and an insulating filler 3A. The maximum particle size of the insulating filler 3A is 45 μm or less. In addition, in FIG. 1, for convenience of illustration, the actual size and thickness are different.
 なお、図1に示す構造は、半導体装置の一例にすぎず、樹脂組成物の硬化物の配置構造等は適宜変形され得る。 It should be noted that the structure shown in FIG. 1 is merely an example of a semiconductor device, and the arrangement structure of the cured product of the resin composition and the like may be modified as appropriate.
 上記基板は、特に限定されない。上記基板としては、ガラス基板、ガラスエポキシ基板、フレキシブルプリント基板、金属基板及びポリイミド基板等が挙げられる。 The substrate is not particularly limited. Examples of the substrate include glass substrates, glass epoxy substrates, flexible printed substrates, metal substrates and polyimide substrates.
 上記半導体素子は、特に限定されない。上記半導体素子としては、光半導体素子、及び固体撮像素子等が挙げられる。上記光半導体素子としては、発光ダイオード(LED)チップ等が挙げられる。上記固体撮像素子としては、CCDセンサー、及びCMOSセンサー等が挙げられる。上記半導体素子は、CMOSセンサーであることが好ましい。上記樹脂組成物は、CMOSセンサーに好適に用いられる。 The semiconductor element is not particularly limited. Examples of the semiconductor device include an optical semiconductor device and a solid-state imaging device. A light-emitting diode (LED) chip or the like may be used as the optical semiconductor element. Examples of the solid-state imaging device include CCD sensors and CMOS sensors. Preferably, the semiconductor element is a CMOS sensor. The above resin composition is suitable for use in CMOS sensors.
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。本発明は以下の実施例に限定されない。 The present invention will be clarified below by giving specific examples and comparative examples of the present invention. The invention is not limited to the following examples.
 以下の材料を用意した。 "I prepared the following materials."
 (絶縁性フィラー)
 アルミナA(住友化学社製「AA05」、平均粒子径0.5μm、粒子径(D90)1.0μm、粒子径(D100)1.4μm、比重3.8、熱伝導率32W/m・K)
 アルミナB(住友化学社製「AA3」、平均粒子径3.5μm、粒子径(D90)6.0μm、粒子径(D100)8.0μm、比重3.8、熱伝導率32W/m・K)
 アルミナC(昭和電工社製「AS50」、平均粒子径10μm、粒子径(D90)25μm、粒子径(D100)30μm、比重3.8、熱伝導率32W/m・K)
 アルミナD(昭和電工社製「AS30」、平均粒子径18μm、粒子径(D90)40μm、粒子径(D100)45μm、比重3.8、熱伝導率32W/m・K)
 アルミナ1(マイクロン社製「AL35-75」、平均粒子径40μm、粒子径(D90)85μm、粒子径(D100)90μm、比重3.8、熱伝導率32W/m・K)
(insulating filler)
Alumina A (“AA05” manufactured by Sumitomo Chemical Co., Ltd., average particle size 0.5 μm, particle size (D90) 1.0 μm, particle size (D100) 1.4 μm, specific gravity 3.8, thermal conductivity 32 W / m K)
Alumina B (“AA3” manufactured by Sumitomo Chemical Co., Ltd., average particle size 3.5 μm, particle size (D90) 6.0 μm, particle size (D100) 8.0 μm, specific gravity 3.8, thermal conductivity 32 W / m K)
Alumina C (Showa Denko "AS50", average particle size 10 μm, particle size (D90) 25 μm, particle size (D100) 30 μm, specific gravity 3.8, thermal conductivity 32 W / m K)
Alumina D ("AS30" manufactured by Showa Denko, average particle size 18 µm, particle size (D90) 40 µm, particle size (D100) 45 µm, specific gravity 3.8, thermal conductivity 32 W/m K)
Alumina 1 (“AL35-75” manufactured by Micron, average particle size 40 μm, particle size (D90) 85 μm, particle size (D100) 90 μm, specific gravity 3.8, thermal conductivity 32 W / m K)
 (熱硬化性樹脂)
 可撓性エポキシ樹脂:
 エポキシ樹脂A(ポリエチレンオキサイド変性ビスフェノールA型エポキシ樹脂、ADEKA社製「EP4003S」、エポキシ当量470g/eq、25℃での粘度1600mPa・s)
 エポキシ樹脂B(ポリアルキレングリコールジグリシジルエーテル、Aditya社製「RD119LE」、アルキレングリコール基の繰り返し数8、エポキシ当量310g/eq、25℃での粘度80mPa・s)
 エポキシ樹脂C(ポリアルキレングリコールジグリシジルエーテル、ナガセケムテックス社製「EX991」、アルキレングリコール基の繰り返し数10、エポキシ当量450g/eq、25℃での粘度180mPa・s)
 エポキシ樹脂D(ポリアルキレングリコールジグリシジルエーテル、Nano soft polymers社製「EPO-PEG-EPO 2K」、アルキレングリコール基の繰り返し数41、エポキシ当量1000g/eq、25℃での粘度20000mPa・s)
 エポキシ樹脂E(ゴム変性エポキシ樹脂、ADEKA社製「EPR-2000」、エポキシ当量215g/eq、25℃での粘度23000mPa・s)
 可撓性エポキシ樹脂以外の熱硬化性樹脂:
 エポキシ樹脂1(ビスフェノールA型エポキシ樹脂、日鉄ケミカルマテリアル社製「YD127」、エポキシ当量180g/eq、25℃での粘度10000mPa・s)
(Thermosetting resin)
Flexible epoxy resin:
Epoxy resin A (polyethylene oxide-modified bisphenol A type epoxy resin, "EP4003S" manufactured by ADEKA, epoxy equivalent 470 g / eq, viscosity at 25 ° C. 1600 mPa s)
Epoxy resin B (polyalkylene glycol diglycidyl ether, "RD119LE" manufactured by Aditya, repeating number of alkylene glycol groups: 8, epoxy equivalent: 310 g / eq, viscosity at 25 ° C.: 80 mPa s)
Epoxy resin C (polyalkylene glycol diglycidyl ether, "EX991" manufactured by Nagase Chemtex Co., Ltd., repeating number of alkylene glycol groups: 10, epoxy equivalent: 450 g / eq, viscosity at 25 ° C.: 180 mPa s)
Epoxy resin D (polyalkylene glycol diglycidyl ether, "EPO-PEG-EPO 2K" manufactured by Nano Soft Polymers, alkylene glycol group repetition number 41, epoxy equivalent 1000 g / eq, viscosity at 25 ° C. 20000 mPa s)
Epoxy resin E (rubber-modified epoxy resin, "EPR-2000" manufactured by ADEKA, epoxy equivalent 215 g / eq, viscosity at 25 ° C. 23000 mPa s)
Thermosetting resins other than flexible epoxy resins:
Epoxy resin 1 (bisphenol A type epoxy resin, "YD127" manufactured by Nippon Steel Chemical Materials Co., Ltd., epoxy equivalent 180 g / eq, viscosity at 25 ° C. 10000 mPa s)
 (熱硬化剤)
 酸無水物硬化剤A(脂環式骨格を有する酸無水物、新日本理化社製「リカシッドMH700」、反応性基(酸無水物基)の当量165g/eq、25℃で液体、25℃での粘度100mPa・s)
 酸無水物硬化剤B(脂環式骨格を有する酸無水物、新日本理化社製「リカシッドOSA」、反応性基(酸無水物基)の当量210g/eq、25℃で液体、25℃での粘度500mPa・s)
 酸無水物硬化剤C(分岐型長鎖二塩基酸骨格を有する酸無水物、岡村製油社製「IPU22AH」、反応性基(酸無水物基)の当量280g/eq、25℃で液体、25℃での粘度1000mPa・s)
 フェノール硬化剤A(フェノールノボラック、明和化成社製「MEH8000H」、反応性基(フェノール基)の当量140g/eq、25℃で液体、25℃での粘度1000mPa・s)
 フェノール硬化剤B(フェノールノボラック、明和化成社製「MEH8005」、反応性基(フェノール基)の当量140g/eq、25℃で液体、25℃での粘度10000mPa・s)
 フェノール硬化剤C(フェノールノボラック、群栄化学社製「ELPC75」、反応性基(フェノール基)の当量223g/eq、25℃で液体、25℃での粘度20000mPa・s)
 ブタジエン化合物の重合体A(ブタジエンとマレイン酸無水物の共重合体、1分子当たりの反応性基(酸無水物基)数2、反応性基の当量635g/eq、25℃での粘度1000mPa・s)
 ブタジエン化合物の重合体B(ブタジエンとマレイン酸無水物の共重合体、1分子当たりの反応性基(酸無水物基)数4、反応性基の当量750g/eq、25℃での粘度30000mPa・s)
 ブタジエン化合物の重合体C(ブタジエンとマレイン酸無水物の共重合体、1分子当たりの反応性基(酸無水物基)数4、反応性基の当量1250g/eq、25℃での粘度50000mPa・s)
 ブタジエン化合物の重合体D(ブタジエンとアルコールの共重合体、1分子当たりの反応性基(水酸基)数4、反応性基の当量1250g/eq、25℃での粘度50000mPa・s)
 ブタジエン化合物の重合体E(ブタジエンとマレイン酸の共重合体、1分子当たりの反応性基(カルボキシ基)数4、反応性基の当量1250g/eq、25℃での粘度50000mPa・s)
 ブタジエン化合物の重合体F(ブタジエンとジアミンの共重合体、1分子当たりの反応性基(アミノ基)数4、反応性基の当量1250g/eq、25℃での粘度50000mPa・s)
 ブタジエン化合物の重合体G(ブタジエンとマレイン酸無水物の共重合体、1分子当たりの反応性基(酸無水物基)数5、反応性基の当量600g/eq、25℃での粘度100000mPa・s)
 ブタジエン化合物の重合体H(ブタジエンとマレイン酸無水物の共重合体、1分子当たりの反応性基(酸無水物基)数10、反応性基の当量300g/eq、25℃での粘度50000mPa・s)
 ブタジエン化合物の重合体I(1分子当たりの反応性基(酸無水物基)数15、反応性基の当量150g/eq、25℃での粘度50000mPa・s)
(Heat curing agent)
Acid anhydride curing agent A (acid anhydride having an alicyclic skeleton, "Rikashid MH700" manufactured by Shin Nippon Rika Co., Ltd., equivalent weight of reactive group (acid anhydride group) 165 g / eq, liquid at 25 ° C., liquid at 25 ° C. Viscosity of 100 mPa s)
Acid anhydride curing agent B (acid anhydride having an alicyclic skeleton, "Rikacid OSA" manufactured by Shin Nippon Rika Co., Ltd., equivalent weight of reactive group (acid anhydride group) 210 g / eq, liquid at 25 ° C., liquid at 25 ° C. Viscosity of 500 mPa s)
Acid anhydride curing agent C (acid anhydride having a branched long-chain dibasic acid skeleton, “IPU22AH” manufactured by Okamura Oil Co., Ltd., reactive group (acid anhydride group) equivalent weight 280 g / eq, liquid at 25 ° C., 25 Viscosity at ° C. 1000 mPa s)
Phenol curing agent A (phenol novolak, "MEH8000H" manufactured by Meiwa Kasei Co., Ltd., reactive group (phenol group) equivalent 140 g / eq, liquid at 25 ° C., viscosity at 25 ° C. 1000 mPa s)
Phenol curing agent B (phenol novolac, "MEH8005" manufactured by Meiwa Kasei Co., Ltd., reactive group (phenol group) equivalent 140 g / eq, liquid at 25 ° C., viscosity at 25 ° C. 10000 mPa s)
Phenol curing agent C (phenol novolac, “ELPC75” manufactured by Gunei Chemical Co., Ltd., reactive group (phenol group) equivalent 223 g / eq, liquid at 25 ° C., viscosity at 25 ° C. 20000 mPa s)
Polymer A of butadiene compound (copolymer of butadiene and maleic anhydride, number of reactive groups (acid anhydride groups) per molecule: 2, equivalent weight of reactive group: 635 g/eq, viscosity at 25°C: 1000 mPa・s)
Polymer B of butadiene compound (copolymer of butadiene and maleic anhydride, number of reactive groups (acid anhydride groups) per molecule: 4, equivalent weight of reactive group: 750 g/eq, viscosity at 25°C: 30000 mPa・s)
Polymer C of butadiene compound (copolymer of butadiene and maleic anhydride, number of reactive groups (acid anhydride groups) per molecule: 4, equivalent weight of reactive group: 1250 g/eq, viscosity at 25°C: 50000 mPa・s)
Polymer D of butadiene compound (copolymer of butadiene and alcohol, number of reactive groups (hydroxyl groups) per molecule: 4, equivalent weight of reactive group: 1250 g/eq, viscosity at 25°C: 50000 mPa s)
Polymer E of butadiene compound (copolymer of butadiene and maleic acid, number of reactive groups (carboxy groups) per molecule: 4, equivalent weight of reactive group: 1250 g/eq, viscosity at 25°C: 50000 mPa s)
Polymer F of butadiene compound (copolymer of butadiene and diamine, number of reactive groups (amino groups) per molecule: 4, equivalent weight of reactive group: 1250 g/eq, viscosity at 25°C: 50000 mPa s)
Polymer G of butadiene compound (copolymer of butadiene and maleic anhydride, number of reactive groups (acid anhydride groups) per molecule: 5, equivalent weight of reactive group: 600 g/eq, viscosity at 25°C: 100,000 mPa・s)
Polymer H of butadiene compound (copolymer of butadiene and maleic anhydride, number of reactive groups (acid anhydride groups) per molecule: 10, equivalent weight of reactive group: 300 g/eq, viscosity at 25°C: 50000 mPa・s)
Polymer I of butadiene compound (number of reactive groups (acid anhydride groups) per molecule: 15, equivalent weight of reactive group: 150 g/eq, viscosity at 25°C: 50000 mPa s)
 (分散剤)
 分散剤A(リン酸エステル塩、BYK社製「DISPERBYK145」、酸価76KOHmg/g、アミン価71KOHmg/g)
 分散剤B(リン酸エステル塩、BYK社製「DISPERBYK142」、酸価46KOHmg/g、アミン価43KOHmg/g)
 分散剤C(リン酸エステル塩、BYK社製「DISPERBYK111」、酸価129KOHmg/g)
(dispersant)
Dispersant A (phosphate ester salt, BYK "DISPERBYK145", acid value 76 KOH mg / g, amine value 71 KOH mg / g)
Dispersant B (phosphate ester salt, BYK "DISPERBYK142", acid value 46 KOH mg / g, amine value 43 KOH mg / g)
Dispersant C (phosphate ester salt, BYK "DISPERBYK111", acid value 129 KOHmg / g)
 (触媒)
 触媒(旭化成社製「HX3721」)
(catalyst)
Catalyst (“HX3721” manufactured by Asahi Kasei Corporation)
 (実施例1~47及び比較例1~5)
 下記の表1~28に示す配合成分を、下記の表1~28に示す配合量で混合して、樹脂組成物(ダイアタッチペースト)を得た。
(Examples 1 to 47 and Comparative Examples 1 to 5)
The ingredients shown in Tables 1 to 28 below were mixed in the amounts shown in Tables 1 to 28 below to obtain a resin composition (die attach paste).
 (評価)
 (1)絶縁性フィラーの粒子径(D90)及び粒子径(D100)(最大粒子径)
 得られた樹脂組成物について、レーザー回折式粒度分布測定装置(HORIBA社製「LA-960」)を用いて、レーザー回折式粒度分布測定を行った。絶縁性フィラーの体積基準での粒度分布において、絶縁性フィラーの累積体積が90%であるときの絶縁性フィラーの粒子径(D90)及び100%であるときの絶縁性フィラーの粒子径(D100)(最大粒子径)を算出した。
(evaluation)
(1) Particle size (D90) and particle size (D100) of insulating filler (maximum particle size)
The resulting resin composition was subjected to laser diffraction particle size distribution measurement using a laser diffraction particle size distribution analyzer ("LA-960" manufactured by HORIBA). In the volume-based particle size distribution of the insulating filler, the particle size of the insulating filler when the cumulative volume of the insulating filler is 90% (D90) and the particle size of the insulating filler when the cumulative volume is 100% (D100) (maximum particle size) was calculated.
 (2)粘度
 B型粘度計(東機産業社製「TVB-10型」)を用いて、得られた樹脂組成物の25℃及び10rpmでの粘度(Pa・s)を測定した。また、25℃及び1rpmでの粘度の、25℃及び10rpmでの粘度に対する比(チクソトロピックインデックス)を求めた。
(2) Viscosity Using a Brookfield viscometer (“TVB-10 model” manufactured by Toki Sangyo Co., Ltd.), the viscosity (Pa·s) of the obtained resin composition was measured at 25° C. and 10 rpm. Also, the ratio of the viscosity at 25° C. and 1 rpm to the viscosity at 25° C. and 10 rpm (thixotropic index) was determined.
 (3)硬化物の貯蔵弾性率
 基板として、麗光社製「PETフィルム JP4020」を用意した。上記基板の表面に、アプリケーターを用いて樹脂組成物を厚み500μmで塗布した。その後、乾燥機を用いて150℃で2時間加熱し、硬化させ、20mm×5mm×厚み500μmの試験サンプルA(硬化物)を得た。試験サンプルAについて、強制振動型動的粘弾性測定装置(アイティー計測制御社製「DVA-200」)を用いて、引張条件下、周波数10Hz、歪み0.1%、温度範囲0℃~150℃、及び昇温速度2℃/分の測定条件で測定を行い、25℃での測定値を貯蔵弾性率とした。
(3) Storage elastic modulus of cured product As a substrate, "PET film JP4020" manufactured by Reiko Co., Ltd. was prepared. An applicator was used to apply the resin composition to a thickness of 500 μm on the surface of the substrate. After that, it was cured by heating at 150° C. for 2 hours using a dryer to obtain a test sample A (cured product) of 20 mm×5 mm×500 μm in thickness. For test sample A, using a forced vibration type dynamic viscoelasticity measuring device ("DVA-200" manufactured by IT Keisoku Co., Ltd.) under tensile conditions, frequency 10 Hz, strain 0.1%, temperature range 0 ° C. to 150 °C and a heating rate of 2°C/min, and the measured value at 25°C was taken as the storage modulus.
 (4)硬化物の熱伝導率
 基板として、麗光社製「PETフィルム JP4020」を用意した。上記基板の表面に、アプリケーターを用いて樹脂組成物を厚み500μmで塗布した。その後、乾燥機を用いて150℃で2時間加熱し、硬化させ、100mm×100mm×厚み500μmの試験サンプルB(硬化物)を得た。試験サンプルBの熱伝導率を、熱伝導率計(京都電子工業社製「迅速熱伝導率計QTM-500」)を用いて測定した。
(4) Thermal conductivity of cured product As a substrate, "PET film JP4020" manufactured by Reiko Co., Ltd. was prepared. An applicator was used to apply the resin composition to a thickness of 500 μm on the surface of the substrate. After that, it was cured by heating at 150° C. for 2 hours using a dryer to obtain a test sample B (cured product) of 100 mm×100 mm×500 μm in thickness. The thermal conductivity of test sample B was measured using a thermal conductivity meter (Kyoto Denshi Kogyo Co., Ltd., "rapid thermal conductivity meter QTM-500").
 (5)柔軟性
 (3)で測定した硬化物の貯蔵弾性率をもとに、硬化物の柔軟性を、下記の基準で判定した。
(5) Flexibility Based on the storage elastic modulus of the cured product measured in (3), the flexibility of the cured product was determined according to the following criteria.
 [柔軟性の判定基準]
 ○○:硬化物の貯蔵弾性率が、500MPa以下
 ○:硬化物の貯蔵弾性率が、500MPaを超え1000MPa以下
 △:硬化物の貯蔵弾性率が、1000MPaを超え2000MPa以下
 ×:硬化物の貯蔵弾性率が、2000MPaを超える
[Flexibility Criteria]
○○: Storage modulus of the cured product is 500 MPa or less ○: Storage modulus of the cured product is more than 500 MPa and 1000 MPa or less △: Storage modulus of the cured product is more than 1000 MPa and 2000 MPa or less ×: Storage elasticity of the cured product rate exceeds 2000 MPa
 (6)放熱性
 (4)で測定した硬化物の熱伝導率と、樹脂組成物の塗布厚み(25μm)とを用いて、硬化物の熱抵抗を下記式により求めた。なお、用いた絶縁性フィラーの最大粒子径が25μmを超える樹脂組成物については、各樹脂組成物中の絶縁性フィラーの最大粒子径を塗布厚みとした。硬化物の放熱性を、下記の基準で判定した。
 硬化物の熱抵抗(m・K・μm/W)=樹脂組成物の塗布厚み(μm)/熱伝導率(W/m・K)
(6) Heat Dissipation Using the thermal conductivity of the cured product measured in (4) and the coating thickness (25 μm) of the resin composition, the thermal resistance of the cured product was determined by the following formula. For resin compositions in which the maximum particle diameter of the insulating filler used exceeds 25 μm, the maximum particle diameter of the insulating filler in each resin composition was taken as the coating thickness. The heat dissipation property of the cured product was determined according to the following criteria.
Thermal resistance of cured product (m·K·μm/W)=application thickness of resin composition (μm)/thermal conductivity (W/m·K)
 [放熱性の判定基準]
 ○○:硬化物の熱抵抗が、20未満
 ○:硬化物の熱抵抗が、20以上30未満
 ×:硬化物の熱抵抗が、30以上
[Heat dissipation criteria]
○○: The thermal resistance of the cured product is less than 20 ○: The thermal resistance of the cured product is 20 or more and less than 30 ×: The thermal resistance of the cured product is 30 or more
 (7)反りの抑制性
 得られた樹脂組成物を、銅基板にWXパターン(12mm×9mm)でディスペンスし、その上にシリコンウェハー(12mm×9mm)をマウントし、0.3MPaの圧力で加圧し圧着させた。その後、150℃で2時間加熱して、硬化させ、樹脂組成物の硬化物を備える構造体を得た。次いで、上記構造体の底面をホットプレートで昇温速度5℃/分で25℃から80℃まで加熱しながら、5分ごとに25℃での反りの高さをレーザー顕微鏡(キーエンス社製)で計測し、反りの高さの最大値を計測した。なお、樹脂組成物の塗布厚みは、25μmとし、用いた絶縁性フィラーの最大粒子径が25μmを超える樹脂組成物については、各樹脂組成物中の絶縁性フィラーの最大粒子径を塗布厚みとした。また、絶縁性フィラーの最大粒子径が45μmを超える比較例1では、樹脂組成物を薄く塗布することができないため、反り試験を行わなかった。反りの抑制性を、下記の基準で判定した。
(7) Suppressing property of warpage The obtained resin composition was dispensed on a copper substrate with a WX pattern (12 mm × 9 mm), a silicon wafer (12 mm × 9 mm) was mounted thereon, and a pressure of 0.3 MPa was applied. Pressed and crimped. After that, it was cured by heating at 150° C. for 2 hours to obtain a structure including a cured product of the resin composition. Next, while heating the bottom surface of the structure from 25° C. to 80° C. at a heating rate of 5° C./min on a hot plate, the warpage height at 25° C. was measured every 5 minutes with a laser microscope (manufactured by Keyence Corporation). The maximum warp height was measured. The coating thickness of the resin composition was set to 25 μm, and for resin compositions in which the maximum particle diameter of the insulating filler used exceeded 25 μm, the maximum particle diameter of the insulating filler in each resin composition was taken as the coating thickness. . In Comparative Example 1, in which the maximum particle size of the insulating filler exceeds 45 μm, the resin composition could not be applied thinly, so no warpage test was performed. The warpage suppressing property was judged according to the following criteria.
 [反りの抑制性の判定基準]
 ○○:反りの高さが3μm以下
 ○:反りの高さが3μmを超え6μm以下
 △:反りの高さが6μmを超え9μm以下
 ×:反りの高さが9μmを超え12μm以下
 ××:反りの高さが12μmを超える
[Criteria for judgment of suppression of warpage]
○○: Warp height of 3 μm or less ○: Warp height of more than 3 μm and 6 μm or less △: Warp height of more than 6 μm and 9 μm or less ×: Warp height of more than 9 μm and 12 μm or less XX: Warp height exceeds 12 μm
 (8)低温・速硬化性
 基板の表面に、アプリケーターを用いて樹脂組成物を厚み50μmで塗布した。その後、乾燥機を用いて150℃で15分間加熱し、硬化させ、100mm×100mm×厚さ50μmの試験サンプルC(硬化物)を得た。その後、試験サンプルCを乳鉢で砕いて、破砕物を得た。得られた破砕物について、示差走査熱量測定(DSC)装置(SII社製「EXSTAR DSC7020」)を用いて、窒素雰囲気下で-50℃~150℃の範囲、及び昇温速度5℃/分の条件で破砕物の発熱ピーク面積Bを測定した。同様に、硬化前の樹脂組成物の発熱ピーク面積Aを測定した。「反応率(%)=(1-(発熱ピーク面積B/発熱ピーク面積A))×100」を求め、低温・速硬化性を下記の基準で判定した。
(8) Low-temperature/fast-curing properties A resin composition was applied to the surface of a substrate with a thickness of 50 µm using an applicator. After that, it was cured by heating at 150° C. for 15 minutes using a dryer to obtain a test sample C (cured product) of 100 mm×100 mm×50 μm in thickness. After that, test sample C was crushed with a mortar to obtain a crushed material. Using a differential scanning calorimetry (DSC) device (manufactured by SII "EXSTAR DSC7020"), the crushed material obtained was measured in a nitrogen atmosphere in the range of -50 ° C. to 150 ° C. and at a temperature increase rate of 5 ° C./min. The exothermic peak area B of the crushed material was measured under the conditions. Similarly, the exothermic peak area A of the resin composition before curing was measured. "Reaction rate (%) = (1-(exothermic peak area B/exothermic peak area A)) x 100" was determined, and the low-temperature and rapid curability was evaluated according to the following criteria.
 [低温・速硬化性の判定基準]
 ○○:反応率が95%以上
 ○:反応率が90%以上95%未満
 △:反応率が85%以上90%未満
 △△:反応率が75%以上85%未満
 ××:反応率が75%未満
[Criteria for determination of low-temperature/fast-curing property]
○○: Reaction rate is 95% or more ○: Reaction rate is 90% or more and less than 95% △: Reaction rate is 85% or more and less than 90% △△: Reaction rate is 75% or more and less than 85% XX: Reaction rate is 75 %less than
 組成及び結果を、以下の表1~28に示す。 The composition and results are shown in Tables 1 to 28 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 なお、実施例1~16、18~34、36~47及び比較例2、5では、絶縁性フィラーの体積基準での粒度分布において、粒子径が0.1μm以上1.0μm未満の領域と、粒子径が1.0μm以上10μm以下の領域とに、ピークが存在していた。また、上記粒子径が0.1μm以上1.0μm未満の領域に存在するピーク(第1のピーク)と、上記粒子径が1.0μm以上10μm以下の領域に存在するピーク(第2のピーク)とでは、上記第2のピークのピーク高さの方が高かった。 In Examples 1 to 16, 18 to 34, 36 to 47 and Comparative Examples 2 and 5, in the volume-based particle size distribution of the insulating filler, the particle diameter is 0.1 μm or more and less than 1.0 μm, A peak was present in the region where the particle size was 1.0 μm or more and 10 μm or less. In addition, a peak (first peak) present in a region where the particle diameter is 0.1 μm or more and less than 1.0 μm, and a peak (second peak) present in a region where the particle diameter is 1.0 μm or more and 10 μm or less , the peak height of the second peak was higher.
 1…半導体装置
 2…基板
 3…ダイアタッチ材(樹脂組成物の硬化物)
 3A…絶縁性フィラー
 4…半導体素子
DESCRIPTION OF SYMBOLS 1... Semiconductor device 2... Substrate 3... Die attach material (cured material of resin composition)
3A... Insulating filler 4... Semiconductor element

Claims (17)

  1.  熱硬化性樹脂と、絶縁性フィラーとを含む樹脂組成物であり、
     前記絶縁性フィラーの最大粒子径が、45μm以下であり、
     150℃で2時間加熱して前記樹脂組成物の硬化物を得たときに、
     前記硬化物の熱伝導率が、1.0W/m・K以上であり、
     前記硬化物の25℃での貯蔵弾性率が、2000MPa以下である、樹脂組成物。
    A resin composition containing a thermosetting resin and an insulating filler,
    The maximum particle size of the insulating filler is 45 μm or less,
    When the cured product of the resin composition was obtained by heating at 150° C. for 2 hours,
    The thermal conductivity of the cured product is 1.0 W / m K or more,
    The resin composition, wherein the cured product has a storage modulus of 2000 MPa or less at 25°C.
  2.  前記絶縁性フィラーの熱伝導率が、10W/m・K以上である、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the insulating filler has a thermal conductivity of 10 W/m·K or more.
  3.  25℃及び10rpmでの粘度が、150Pa・s以下である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, wherein the viscosity at 25°C and 10 rpm is 150 Pa·s or less.
  4.  25℃及び1rpmでの粘度の、25℃及び10rpmでの粘度に対する比が、2.0以上である、請求項1~3のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 3, wherein the ratio of the viscosity at 25°C and 1 rpm to the viscosity at 25°C and 10 rpm is 2.0 or more.
  5.  前記熱硬化性樹脂が、エポキシ樹脂を含む、請求項1~4のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the thermosetting resin contains an epoxy resin.
  6.  前記エポキシ樹脂が、可撓性エポキシ樹脂を含む、請求項5に記載の樹脂組成物。 The resin composition according to claim 5, wherein the epoxy resin comprises a flexible epoxy resin.
  7.  前記エポキシ樹脂100重量%中、前記可撓性エポキシ樹脂の含有量が、30重量%以上90重量%以下である、請求項6に記載の樹脂組成物。 The resin composition according to claim 6, wherein the content of said flexible epoxy resin is 30% by weight or more and 90% by weight or less in 100% by weight of said epoxy resin.
  8.  前記可撓性エポキシ樹脂が、ポリアルキレングリコールジグリシジルエーテルを含む、請求項6又は7に記載の樹脂組成物。 The resin composition according to claim 6 or 7, wherein the flexible epoxy resin contains polyalkylene glycol diglycidyl ether.
  9.  前記可撓性エポキシ樹脂のエポキシ当量が、300g/eq以上1000g/eq以下である、請求項6~8のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 6 to 8, wherein the flexible epoxy resin has an epoxy equivalent weight of 300 g/eq or more and 1000 g/eq or less.
  10.  熱硬化剤をさらに含み、
     前記熱硬化剤が、ブタジエン化合物の重合体を含み、
     前記ブタジエン化合物の重合体が、前記エポキシ樹脂のエポキシ基と反応可能な官能基を2個以上有し、
     前記エポキシ樹脂100重量部に対して、前記熱硬化剤中の前記ブタジエン化合物の重合体の含有量が、25重量部以上である、請求項5~9のいずれか1項に記載の樹脂組成物。
    further comprising a thermosetting agent;
    The thermosetting agent contains a polymer of a butadiene compound,
    The polymer of the butadiene compound has two or more functional groups capable of reacting with the epoxy groups of the epoxy resin,
    The resin composition according to any one of claims 5 to 9, wherein the content of the polymer of the butadiene compound in the thermosetting agent is 25 parts by weight or more with respect to 100 parts by weight of the epoxy resin. .
  11.  前記絶縁性フィラーの材質が、アルミナ、合成マグネサイト、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、酸化亜鉛又は酸化マグネシウムである、請求項1~10のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 10, wherein the material of the insulating filler is alumina, synthetic magnesite, boron nitride, aluminum nitride, silicon nitride, silicon carbide, zinc oxide or magnesium oxide. .
  12.  前記絶縁性フィラーの最大粒子径が、25μm以下である、請求項1~11のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 11, wherein the insulating filler has a maximum particle size of 25 µm or less.
  13.  前記絶縁性フィラーの体積基準での粒度分布において、
     粒子径が0.1μm以上1.0μm未満の領域と、粒子径が1.0μm以上10μm以下の領域とに、ピークが存在する、請求項1~12のいずれか1項に記載の樹脂組成物。
    In the volume-based particle size distribution of the insulating filler,
    The resin composition according to any one of claims 1 to 12, wherein peaks are present in a region having a particle size of 0.1 µm or more and less than 1.0 µm and a region having a particle size of 1.0 µm or more and 10 µm or less. .
  14.  分散剤をさらに含み、
     前記分散剤のアミン価が、40KOHmg/g以上95KOHmg/g以下であり、
     前記分散剤の酸価が、45KOHmg/g以上95KOHmg/g以下である、請求項1~13のいずれか1項に記載の樹脂組成物。
    further comprising a dispersant;
    The dispersant has an amine value of 40 KOHmg/g or more and 95 KOHmg/g or less,
    The resin composition according to any one of claims 1 to 13, wherein the dispersant has an acid value of 45 mg KOH/g or more and 95 mg KOH/g or less.
  15.  ダイアタッチペーストである、請求項1~14のいずれか1項に記載の樹脂組成物。 The resin composition according to any one of claims 1 to 14, which is a die attach paste.
  16.  基板と、前記基板の表面上に配置されたダイアタッチ材と、前記ダイアタッチ材の表面上に配置された半導体素子とを備え、
     前記ダイアタッチ材が、請求項1~15のいずれか1項に記載の樹脂組成物の硬化物である、半導体装置。
    A substrate, a die attach material arranged on the surface of the substrate, and a semiconductor element arranged on the surface of the die attach material,
    A semiconductor device, wherein the die attach material is a cured product of the resin composition according to any one of claims 1 to 15.
  17.  基板と、前記基板の表面上に配置されたダイアタッチ材と、前記ダイアタッチ材の表面上に配置された半導体素子とを備え、
     前記ダイアタッチ材が、熱硬化性樹脂と、絶縁性フィラーとを含む樹脂組成物の硬化物であり、
     前記絶縁性フィラーの最大粒子径が、45μm以下であり、
     前記硬化物の熱伝導率が、1.0W/m・K以上であり、
     前記硬化物の25℃での貯蔵弾性率が、2000MPa以下である、半導体装置。
    A substrate, a die attach material arranged on the surface of the substrate, and a semiconductor element arranged on the surface of the die attach material,
    The die attach material is a cured product of a resin composition containing a thermosetting resin and an insulating filler,
    The maximum particle size of the insulating filler is 45 μm or less,
    The thermal conductivity of the cured product is 1.0 W / m K or more,
    The semiconductor device, wherein the cured product has a storage elastic modulus of 2000 MPa or less at 25°C.
PCT/JP2023/006014 2022-02-22 2023-02-20 Resin composition and semiconductor device WO2023162928A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022025835 2022-02-22
JP2022-025837 2022-02-22
JP2022-025835 2022-02-22
JP2022025837 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023162928A1 true WO2023162928A1 (en) 2023-08-31

Family

ID=87765754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006014 WO2023162928A1 (en) 2022-02-22 2023-02-20 Resin composition and semiconductor device

Country Status (2)

Country Link
TW (1) TW202342638A (en)
WO (1) WO2023162928A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515030A (en) * 2002-11-26 2006-05-18 ダウ グローバル テクノロジーズ インコーポレイティド Curing agent composition for epoxy resin
JP2011016948A (en) * 2009-07-10 2011-01-27 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device fabricated by using the liquid resin composition
JP2012041422A (en) * 2010-08-18 2012-03-01 Sekisui Chem Co Ltd Curable composition and optical semiconductor device using the same
JP2012041421A (en) * 2010-08-18 2012-03-01 Sekisui Chem Co Ltd Curable composition and optical semiconductor device using the same
US20120329913A1 (en) * 2011-06-24 2012-12-27 E.I. Du Pont De Nemours And Company Curable composition comprising a di-isoimide, method of curing, and the cured composition so formed
JP2017075324A (en) * 2014-12-04 2017-04-20 積水化学工業株式会社 Curable composition, manufacturing method of curable composition and semiconductor device
JP2019131668A (en) * 2018-01-30 2019-08-08 積水化学工業株式会社 Heat releasing resin composition
WO2021125248A1 (en) * 2019-12-17 2021-06-24 積水化学工業株式会社 Heat-dissipating resin composition for chip resistor protective film, chip resistor protective film, and electronic component
WO2021256081A1 (en) * 2020-06-18 2021-12-23 株式会社スリーボンド Epoxy resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006515030A (en) * 2002-11-26 2006-05-18 ダウ グローバル テクノロジーズ インコーポレイティド Curing agent composition for epoxy resin
JP2011016948A (en) * 2009-07-10 2011-01-27 Sumitomo Bakelite Co Ltd Liquid resin composition and semiconductor device fabricated by using the liquid resin composition
JP2012041422A (en) * 2010-08-18 2012-03-01 Sekisui Chem Co Ltd Curable composition and optical semiconductor device using the same
JP2012041421A (en) * 2010-08-18 2012-03-01 Sekisui Chem Co Ltd Curable composition and optical semiconductor device using the same
US20120329913A1 (en) * 2011-06-24 2012-12-27 E.I. Du Pont De Nemours And Company Curable composition comprising a di-isoimide, method of curing, and the cured composition so formed
JP2017075324A (en) * 2014-12-04 2017-04-20 積水化学工業株式会社 Curable composition, manufacturing method of curable composition and semiconductor device
JP2019131668A (en) * 2018-01-30 2019-08-08 積水化学工業株式会社 Heat releasing resin composition
WO2021125248A1 (en) * 2019-12-17 2021-06-24 積水化学工業株式会社 Heat-dissipating resin composition for chip resistor protective film, chip resistor protective film, and electronic component
WO2021256081A1 (en) * 2020-06-18 2021-12-23 株式会社スリーボンド Epoxy resin composition

Also Published As

Publication number Publication date
TW202342638A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
US9029438B2 (en) Thermosetting resin composition, B-stage heat conductive sheet, and power module
JP4469416B2 (en) Insulating sheet and laminated structure
US7560821B2 (en) Area mount type semiconductor device, and die bonding resin composition and encapsulating resin composition used for the same
JP5913884B2 (en) Insulating material and laminated structure
JP2011168672A (en) Insulation sheet
JP2010205498A (en) Insulating sheet, and laminated structure
JP6212660B1 (en) Thermosetting material and cured product
JP6093880B2 (en) Curable composition, method for producing curable composition, and semiconductor device
TWI543312B (en) Method for manufacturing parts for laminated bodies and power semiconductor modules
JP2013098217A (en) Method for manufacturing component for power semiconductor module
JP2018188350A (en) Boron nitride particle aggregate and thermosetting material
JP7188070B2 (en) LAMINATED STRUCTURE WITH RADIATION INSULATING SHEET AND CURED SHEET AS INSULATING LAYER
JP2012116146A (en) Insulating sheet and multilayer structure
WO2023162928A1 (en) Resin composition and semiconductor device
JP5346363B2 (en) Laminated body
JP2013206902A (en) Manufacturing method of component for power semiconductor module
JP6235733B2 (en) Laminate
JP5092050B1 (en) Laminated body
JP2023122244A (en) Resin composition and semiconductor device
JP2018188628A (en) Thermosetting material
JP5837839B2 (en) Laminated structure
JP2013201338A (en) Manufacturing method of power semiconductor module component
JP2013107353A (en) Laminated structure
JP5114597B1 (en) Laminated body and cut laminated body
JP2017128475A (en) Composite filler and thermosetting material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759929

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024503136

Country of ref document: JP