WO2023162705A1 - Composite sheet and laminate - Google Patents

Composite sheet and laminate Download PDF

Info

Publication number
WO2023162705A1
WO2023162705A1 PCT/JP2023/004440 JP2023004440W WO2023162705A1 WO 2023162705 A1 WO2023162705 A1 WO 2023162705A1 JP 2023004440 W JP2023004440 W JP 2023004440W WO 2023162705 A1 WO2023162705 A1 WO 2023162705A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
semi
composite sheet
plate
cured
Prior art date
Application number
PCT/JP2023/004440
Other languages
French (fr)
Japanese (ja)
Inventor
仁孝 南方
征 出木岡
政秀 金子
亮 吉松
真也 坂口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023540575A priority Critical patent/JP7374391B1/en
Publication of WO2023162705A1 publication Critical patent/WO2023162705A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds

Definitions

  • the present disclosure relates to composite sheets and laminates.
  • Components such as power devices, transistors, thyristors, and CPUs are required to efficiently dissipate the heat generated during use.
  • a composite sheet composed of ceramics such as boron nitride and resin is used as a heat dissipation member for such an insulating layer and thermal interface material.
  • a composite sheet in which a porous ceramic sintered plate (for example, a boron nitride sintered plate) is impregnated with a resin is being studied (see, for example, Patent Document 1). Further, in a laminated substrate having a circuit board and a resin-impregnated boron nitride sintered plate, the primary particles constituting the boron nitride sintered plate and the circuit board are brought into direct contact to reduce the thermal resistance of the laminated substrate and improve heat dissipation. is also being studied (see Patent Document 2, for example).
  • the adherend such as the circuit board and the composite described above stronger.
  • the surface roughness of the adherend is large, for example, when the surface roughness Rz is 20 ⁇ m or more, sufficient adhesion may not be achieved.
  • An object of the present disclosure is to provide a composite sheet that can exhibit sufficient adhesion to an adherend even when the surface roughness of the adherend is relatively large.
  • the present disclosure also aims to provide laminates prepared using the composite sheets described above.
  • the present disclosure provides the following [1] to [8].
  • A/B Composite sheet, which is 0.5 to 1.7.
  • the resin layer has a peel adhesion strength of 5 N/cm when peeled at 90 degrees, which is measured based on the peel adhesion strength test specified in JIS K 6854: 1999 when adhered to a copper plate.
  • the composite sheet according to [1], which is a layer exceeding [3] The composite sheet according to [1] or [2], wherein the resin-filled plate has a thickness of 2.0 mm or less.
  • [5] The composite sheet according to any one of [1] to [4], wherein the nitride sintered plate has a porosity of 40 to 65% by volume.
  • [6] The composite sheet according to any one of [1] to [5], wherein the nitride sintered plate has a median pore diameter of 1.5 to 4.0 ⁇ m.
  • [7] comprising an insulating sheet and a metal sheet provided on at least one main surface of the insulating sheet, A laminate, wherein the insulating sheet is a cured product of the composite sheet according to any one of [1] to [6].
  • [8] The laminate according to [7], wherein the main surface of the metal sheet on the insulating sheet side has a surface roughness Rz of 20 ⁇ m or more.
  • One aspect of the present disclosure is a resin-filled plate including a porous nitride sintered plate and a first semi-cured resin filled in the pores of the nitride sintered plate; A resin layer containing a second semi-cured resin provided on at least a part of the surface, and A is the amount of heat generated due to curing of the first semi-cured resin, which is measured by a differential scanning calorimeter; Provided is a composite sheet having a value of A/B of 0.5 to 1.7, where B is the amount of heat generated upon curing of the second semi-cured resin.
  • the composite sheet includes a resin layer containing a semi-cured resin in addition to the resin-filled plate, it can be deformed following minute irregularities on the surface of the adherend when it is joined to the adherend. Also, the ratio of the calorific value measured by the differential scanning calorimeter of the first semi-cured resin and the second semi-cured resin is adjusted to be within a predetermined range, so that the adherend Even if the surface roughness of is relatively large, it can exhibit sufficient adhesiveness to the adherend.
  • the fact that the above-mentioned calorific value ratio (A/B value) is within a predetermined range means that the first semi-cured resin and the second semi-cured resin It can be used as an index for measuring the degree of progress of polymerization.
  • the resin layer When the resin layer is adhered to a copper plate, it is measured based on the peel strength test specified in JIS K 6854: 1999, and the layer has a peel strength of more than 5 N/cm when peeled off at 90 degrees. can be Since the resin layer has a peel strength within the above range as the peel strength measured by the test described above, the adhesion between the resin layer and the adherend exhibits more sufficient adhesion. can.
  • the thickness of the resin-filled plate may be 2.0 mm or less.
  • the thickness of the resin layer may be 2 to 50 ⁇ m.
  • the thickness of the resin layer is within the above range, even if the surface roughness of the bonding surface of the adherend is large, the resin can penetrate and firmly bond, and curing after bonding is possible. It is possible to further suppress deterioration in heat dissipation due to excessive thickness of the resin layer.
  • the porosity of the nitride sintered plate may be 40 to 65% by volume.
  • the median pore size of the nitride sintered plate may be 1.5 to 4.0 ⁇ m.
  • One aspect of the present disclosure provides a laminate comprising an insulating sheet and a metal sheet provided on at least one main surface of the insulating sheet, wherein the insulating sheet is a cured product of the composite sheet described above. do.
  • the laminate is obtained by bonding the composite sheet to the metal sheet, the adhesion between the metal sheet and the cured product of the composite sheet can be excellent.
  • the laminate may have a surface roughness Rz of 20 ⁇ m or more on the main surface of the metal sheet on the insulating sheet side. Since the laminate is obtained by laminating the above-mentioned composite sheet with a metal sheet and then curing the laminate, even if the surface roughness of the metal sheet is large, the laminate can be sufficiently strongly bonded.
  • the present disclosure it is possible to provide a composite sheet that can exhibit sufficient adhesiveness to an adherend even when the surface roughness of the adherend is relatively large.
  • the present disclosure can also provide laminates prepared using the composite sheets described above.
  • FIG. 1 is a perspective view showing an example of a composite sheet.
  • FIG. 2 is a schematic diagram showing a cross section along line II-II in FIG.
  • FIG. 3 is a cross-sectional view showing an example of a laminate.
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • One embodiment of the composite sheet includes a resin-filled plate containing a porous nitride sintered plate, a first semi-cured resin filled in the pores of the nitride sintered plate, and the resin-filled plate. and a resin layer containing a second semi-cured resin provided on at least a portion of the main surface.
  • A is the amount of heat generated due to curing of the first semi-cured resin
  • B is the amount of heat generated due to curing of the second semi-cured resin, as measured by a differential scanning calorimeter
  • a /B has a value of 0.5 to 1.7.
  • FIG. 1 is a perspective view showing an example of a composite sheet.
  • FIG. 2 is a schematic diagram showing a cross section along line II-II in FIG.
  • the composite sheet 10 has a resin-filled plate 12 and resin layers 14 provided on both main surfaces of a pair of main surfaces 12 a of the resin-filled plate 12 .
  • FIG. 1 shows an example in which the composite sheet 10 is provided with the resin layer 14 so as to cover the entire main surface 12a of the resin-filled plate 12. 14 may be provided on at least part of the resin-filled plate 12 . However, when the resin layer 14 is partially provided, it is preferably provided in the center so as not to entrap gas or the like when it comes into contact with the adherend.
  • the resin layer 14 may be provided so as to be smaller than the area of the main surface 12 a of the resin-filled plate 12 .
  • the composite sheet 10 is shown as an example in which the resin layer 14 is provided on both main surfaces 12a of the resin-filled plate 12, depending on the adhesion of the resin-filled plate 12, even one of the main surfaces may good.
  • the composite sheet 10 may further have a resin layer on the side surface of the resin-filled plate 12 .
  • the thickness of the composite sheet 10 may be, for example, less than 8.0 mm, less than 5.0 mm, or less than 3.0 mm.
  • the lower limit of the thickness of the composite sheet 10 may be, for example, 0.1 mm or more, 0.3 mm or more, or 0.5 mm or more. This allows the composite sheet 10 to be sufficiently miniaturized.
  • the thickness of the composite sheet 10 may be adjusted within the above range depending on the application, and may be, for example, 0.1 mm or more and less than 8.0 mm.
  • Such a composite sheet 10 is suitably used as a component of a semiconductor device, for example.
  • the thickness of the composite sheet 10 is measured along the direction perpendicular to the main surface.
  • the thickness of the composite sheet 10 is not constant, the thickness is measured at 10 arbitrary points, and the arithmetic mean value thereof should be within the above range.
  • the size of the main surface 12a of the resin-filled plate 12 is not particularly limited, and may be, for example, 50 mm 2 or more, 200 mm 2 or more, 500 mm 2 or more, 800 mm 2 or more, or 1000 mm 2 or more.
  • the size of the main surface 12a of the resin-filled plate 12 may be, for example, 250000 mm 2 or less, or 150000 mm 2 or less.
  • the sizes of the pair of main surfaces 12a of the resin-filled plate 12 are generally the same, but they do not need to be exactly the same, and may be different from each other.
  • the volume ratio of the first semi-cured resin in the resin-filled plate 12 may be, for example, 40-65% by volume, 45-60% by volume, or 45-55% by volume, based on the total volume of the resin-filled plate 12. .
  • the volume ratio of the nitride particles constituting the porous nitride sintered plate in the resin-filled plate 12 is, based on the total volume of the resin-filled plate 12, for example, 35 to 60% by volume, 40 to 55% by volume, or It may be 45-55% by volume.
  • the resin-filled plate 12 having such a volume ratio can exhibit excellent strength.
  • Examples of the porous nitride sintered plate forming the resin-filled plate 12 include a boron nitride sintered plate.
  • the nitride sintered plate contains nitride particles and pores formed by sintering nitride primary particles.
  • the median pore size of the pores of the nitride sintered plate may be, for example, 4.0 ⁇ m or less, 3.8 ⁇ m or less, 3.6 ⁇ m or less, 3.4 ⁇ m or less, 3.2 ⁇ m or less, or 3.0 ⁇ m or less. . Since such a nitride sintered plate has a small pore size, it is possible to sufficiently increase the contact area between the nitride particles. Therefore, thermal conductivity can be increased.
  • the median pore diameter of the pores of the nitride sintered plate may be, for example, 1.5 ⁇ m or more, 1.6 ⁇ m or more, 1.7 ⁇ m or more, 1.8 ⁇ m or more, 1.9 ⁇ m or more, or 2.0 ⁇ m or more. . Since such a nitride sintered plate can be sufficiently deformed by pressurization during bonding, it can exhibit superior adhesion even when bonded to an adherend having a relatively large surface roughness.
  • the median pore diameter of the pores of the nitride sintered plate may be adjusted within the range described above, and may be, for example, 1.5-4.0 ⁇ m, or 2.0-3.0 ⁇ m.
  • the median pore diameter of the pores of the nitride sintered plate can be measured by the following procedure. First, the composite sheet is heated to remove the resin layer and the first semi-cured resin. Then, using a mercury porosimeter, the pore size distribution is determined when the nitride sintered plate is pressed while increasing the pressure from 0.0042 MPa to 206.8 MPa. When the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume, the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the median pore diameter. As the mercury porosimeter, for example, one manufactured by Shimadzu Corporation can be used.
  • the upper limit of the porosity of the nitride sintered plate that is, the ratio of the volume of the pores in the nitride sintered plate may be, for example, 65% by volume or less, 60% by volume or less, or 58% by volume or less. .
  • the upper limit of the porosity of the nitride sintered body is within the above range, it is possible to more sufficiently suppress the deterioration of the mechanical strength of the nitride sintered plate and to provide a composite sheet with excellent handleability.
  • the lower limit of the porosity of the nitride sintered plate may be, for example, 40% by volume or more, 42% by volume or more, 44% by volume or more, or 45% by volume or more.
  • the content of the first semi-cured resin can be increased, and the bonding with the resin layer can be further improved.
  • the upper limit of the porosity of the nitride sintered body is within the above range, it is possible to impart appropriate flexibility to the resin-filled plate, so when bonding to an adherend having a relatively large surface roughness In addition, the resin-filled plate can be deformed, and the adhesion between the adherend and the composite sheet can be further improved.
  • the porosity of the nitride sintered plate may be adjusted within the above range, and may be, for example, 40-65% by volume, or 40-60% by volume.
  • the bulk density [Y (kg/m 3 )] is calculated from the volume and mass of the nitride sintered plate, and this bulk density and the theoretical density of the nitride [X (kg/m 3 )] can be obtained by the following formula (1).
  • the nitride sintered plate may contain at least one selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride.
  • the theoretical density X is 2280 kg/m 3 .
  • aluminum nitride the theoretical density X is 3260 kg/m 3 .
  • silicon nitride the theoretical density X is 3170 kg/m 3 .
  • Porosity (% by volume) [1-(Y/X)] x 100 (1)
  • the bulk density Y may be from 800 to 1500 kg/m 3 and may be from 1000 to 1400 kg/m 3 . If the bulk density Y becomes too small, the strength of the nitride sintered plate tends to decrease. On the other hand, if the bulk density Y is too high, the amount of resin filled in the composite sheet is reduced, which may impair the good adhesiveness of the composite sheet.
  • the thickness of the nitride sintered plate may be, for example, 5.0 mm or less, 3.0 mm or less, or 2.0 mm or less.
  • the lower limit of the thickness of the nitride sintered plate may be, for example, 0.1 mm or more, 0.3 mm or more, or 0.5 mm or more.
  • the thickness of the nitride sintered plate is measured along the direction perpendicular to the main surface, and if the thickness is not constant, select 10 arbitrary locations to measure the thickness, and the average value is the above may be within the range of The thickness of the nitride sintered plate corresponds to the thickness of the resin-filled plate.
  • the first semi-cured resin contained in the resin-filled plate 12 is a semi-cured material (B stage) of a resin composition containing a main agent and a curing agent.
  • the semi-cured product is obtained by partially progressing the curing reaction of the resin composition.
  • the semi-cured product can be further cured by a subsequent curing treatment.
  • the cured product (C stage) of the above-mentioned resin composition is one in which the curing reaction of the resin composition has progressed completely.
  • the first semi-cured resin may contain a thermosetting resin or the like generated by the reaction of the main agent and the curing agent in the resin composition.
  • the semi-cured product may contain monomers such as a main agent and a curing agent in addition to the thermosetting resin as a resin component. It can be confirmed by, for example, a differential scanning calorimeter that the resin contained in the composite sheet is a semi-cured product (B stage) before becoming a cured product (C stage).
  • the upper limit of the curing rate of the first semi-cured resin contained in the resin-filled plate 12 may be, for example, 50% or less, 48% or less, 46% or less, 42% or less, 40% or less, or 38% or less. .
  • the lower limit of the curing rate of the first semi-cured resin contained in the resin-filled plate 12 may be, for example, 20% or more, 23% or more, 25% or more, 30% or more, 33% or more, or 36% or more. .
  • the curing rate of the first semi-cured resin may be adjusted within the above range, and may be, for example, 20-50%.
  • the cure rate of the first semi-cured resin can be determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition is completely cured is measured. Then, a 10 mg sample of the first semi-cured resin from the resin-filled plate 12 is heated in the same manner, and the calorific value R per unit mass generated when the sample is completely cured is determined.
  • the content c (% by mass) of the first semi-cured resin was determined by cross-sectional SEM image analysis and thermogravimetric differential thermal analysis (TG-DTA) of the resin-filled plate to be measured, and the determined first semi-cured
  • the calorific value of the first semi-cured resin is calculated from the resin content and the calorific value R obtained by the above measurement.
  • Examples of the first semi-cured resin include epoxy resin, cyanate resin, phenol resin, melamine resin, urea resin, bismaleimide resin, thermosetting polyimide, maleimide resin, maleimide-modified resin, silicone resin, silicone rubber, unsaturated polyester, At least one selected from the group consisting of polyurethane and alkyd resin may be included.
  • the resin layer 14 is a layer that contains a second semi-cured resin and exhibits adhesiveness to the adherend. When the main surface of the adherend has fine irregularities, the resin layer 14 is deformed and can be impregnated with the second semi-cured resin in a semi-cured state. Adhesion can be exhibited.
  • the resin layer 14 contains the second semi-cured resin, but may be made of the second semi-cured resin.
  • the lower limit of the thickness of the resin layer 14 may be, for example, 2 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, or 15 ⁇ m or more.
  • the upper limit of the thickness of the resin layer 14 may be, for example, 50 ⁇ m or less, 48 ⁇ m or less, 46 ⁇ m or less, or 45 ⁇ m or less.
  • the thickness of the resin layer 14 may be adjusted within the ranges described above, and may be, for example, 2-50 ⁇ m, 10-50 ⁇ m, or 15-50 ⁇ m.
  • the thickness of each resin layer 14 may be within the above range.
  • the thickness of the plurality of resin layers 14 may be different, but it is preferable that all of the plurality of resin layers 14 have the same thickness.
  • the peel adhesion strength of the resin layer 14 is measured based on the peel adhesion strength test specified in JIS K 6854: 1999 when adhered to a copper plate. For example, it may be a layer of more than 5 N/cm.
  • the peel adhesive strength of the resin layer 14 when peeled at 90 degrees may be, for example, 6 N/cm or more, 8 N/cm or more, or 10 N/cm or more.
  • the upper limit of the peel adhesive strength of the resin layer 14 when peeled at 90 degrees is not particularly limited, but may be, for example, 30 N/cm or less, 25 N/cm or less, or 20 N/cm or less.
  • the upper limit of the curing rate of the second semi-cured resin is, for example, 50% or less, 48% or less, 46% or less, 42% or less, 40% or less, 38% or less, 36% or less, or 34% or less. good.
  • the upper limit of the curing rate of the second semi-cured resin is within the above range, the second semi-cured resin melts moderately when the composite sheet 10 is heat-bonded to the adherend and fills the gaps on the surface of the adherend. Better adhesiveness can be exhibited by being filled.
  • the lower limit of the curing rate of the second semi-cured resin may be, for example, 20% or more, 23% or more, or 25% or more.
  • the flow of the second semi-cured resin from the resin layer is suppressed when the composite sheet 10 is heat-bonded to the adherend.
  • a decrease in adhesion to the body can be more sufficiently suppressed.
  • the curing rate of the second semi-cured resin may be adjusted within the above range, and may be, for example, 20-50%.
  • a /B has a value of 0.5 to 1.7.
  • the first semi-cured resin and the second semi-cured resin are semi-cured products of the same resin composition or similar resin compositions
  • the value of A/B is 1.0
  • the first semi-cured resin and the second semi-cured resin It means that the curing rates of the two semi-cured resins are almost the same.
  • the value of A/B may be 0.5 or more and less than 1.0, 1.0, or more than 1.0 and 1.7 or less.
  • the value of A/B is 0.5 or more and less than 1.0, the outflow of the semi-cured resin is suppressed when the composite sheet 10 and the adherend are bonded, and the resulting laminate has insulating properties. Decrease can be suppressed more.
  • the value of A/B is more than 1.0 and 1.7 or less, the followability of the composite sheet 10 to the surface shape of the adherend when the composite sheet 10 and the adherend are adhered is further improved. can be improved.
  • the lower limit of the value of A/B may be, for example, 0.6 or more, 0.8 or more, or 0.9 or more.
  • the upper limit of the value of A/B may be, for example, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, or 1.0 or less.
  • the value measured under the following conditions shall be used. Specifically, first, the composite sheet to be measured is heated at 100° C. to melt the resin layer containing the second semi-cured resin, which is then removed from the composite sheet by a squeegee to obtain a resin-filled plate. 2 mg of the removed second semi-cured resin is sampled and the calorific value is measured with a differential scanning calorimeter. The calorific value per unit mass of the obtained calorific value is calculated and defined as the calorific value B. Next, 10 mg of the resin-filled plate obtained as described above is sampled, and the calorific value is measured with a differential scanning calorimeter.
  • the content of the first semi-cured resin is determined by cross-sectional SEM image analysis and thermogravimetric differential thermal analysis (TG-DTA) of the resin-filled plate to be measured, and the content of the determined first semi-cured resin and the above-mentioned
  • the calorific value A of the first semi-cured resin is calculated from the calorific value of the resin-filled plate obtained by the measurement. From the calorific value A and the calorific value B thus obtained, the value of A/B can be determined.
  • the differential scanning calorimetry is carried out by raising the temperature from room temperature to 330° C. at a rate of 10° C./min, and the exothermic peak generated in the process is measured.
  • the second semi-cured resin those exemplified as the first semi-cured resin can be applied.
  • the second semi-cured resin may be the same as or different from the first semi-cured resin.
  • the composite sheet 10 described above can be manufactured, for example, by the following manufacturing method.
  • An example of a method for producing a composite sheet includes an impregnation step of impregnating a porous nitride sintered plate with a first resin composition to obtain a resin-impregnated body, and heating the resin-impregnated body to form pores a curing step to obtain a resin-filled board containing a first semi-cured resin by semi-curing the resin composition filled in the resin-filled board; and a covering step provided on the part.
  • a porous nitride sintered plate is impregnated with the first resin composition to obtain a resin-impregnated body having a resin composition layer on the main surface.
  • An impregnation step and a resin-filled plate containing a first semi-cured resin are obtained by heating the resin-impregnated body to semi-cure the resin composition filled in the pores and the resin composition constituting the resin composition layer. and a curing step.
  • a nitride sintered plate prepared in advance may be used as the porous nitride sintered plate, or a nitride sintered plate prepared by the following sintering process may be used.
  • a nitride sintered plate prepared by the following sintering process may be used.
  • the sintering step described later can be omitted.
  • a raw material powder containing nitride is prepared.
  • the nitride contained in the raw material powder may contain, for example, at least one nitride selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride.
  • the boron nitride may be amorphous boron nitride or hexagonal boron nitride.
  • the raw material powder is, for example, an amorphous boron nitride powder having an average particle size of 0.5 to 10.0 ⁇ m, or an average particle size of 3.0 to A 40.0 ⁇ m hexagonal boron nitride powder can be used.
  • a compound containing nitride powder may be molded and sintered to obtain a nitride sintered body.
  • the molding may be carried out by uniaxial pressing or cold isostatic pressing (CIP).
  • a sintering aid may be incorporated to obtain the formulation prior to molding.
  • sintering aids include metal oxides such as yttrium oxide, aluminum oxide and magnesium oxide, alkali metal carbonates such as lithium carbonate and sodium carbonate, and boric acid.
  • the amount of the sintering aid is, for example, 0.01 parts by mass or more, or 0.10 parts by mass with respect to a total of 100 parts by mass of the nitride and the sintering aid. It may be at least parts by mass.
  • the amount of the sintering aid compounded is, for example, 20.00 parts by mass or less, 15.00 parts by mass or less, or 10.00 parts by mass or less with respect to a total of 100 parts by mass of the nitride and the sintering aid. good.
  • the compound may be formed into a sheet-like molded body by, for example, a doctor blade method.
  • the molding method is not particularly limited, and press molding may be performed using a mold to form a molded body.
  • the molding pressure may be, for example, 5-350 MPa.
  • the shape of the molded product may be a sheet-like shape with a thickness of 5.0 mm or less. If a nitride sintered plate is produced using such a sheet-like compact, a sheet-like composite sheet having a thickness of 8.0 mm or less can be produced without cutting the nitride sintered plate. can.
  • the sintering temperature in the sintering step may be, for example, 1600°C or higher, or 1700°C or higher.
  • the sintering temperature may be, for example, 2200° C. or lower, or 2000° C. or lower.
  • the sintering time may be, for example, 1 hour or more and may be 30 hours or less.
  • the atmosphere during sintering may be, for example, an inert gas atmosphere such as nitrogen, helium, and argon.
  • a batch type furnace and a continuous type furnace can be used.
  • Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like.
  • continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and large continuous furnaces.
  • a nitride sintered body or a nitride sintered plate can be obtained.
  • the nitride sintered body may be block-shaped.
  • a cutting step may be performed to process it so that it has a thickness of 5.0 mm or less.
  • the nitride sintered body is cut using, for example, a wire saw.
  • the wire saw may be, for example, a multi-cut wire saw or the like.
  • a sheet-like nitride sintered plate having a thickness of, for example, 5.0 mm or less can be obtained by such a cutting process.
  • the pores of the nitride sintered body are impregnated with the first resin composition having a viscosity of 10 to 500 mPa ⁇ s to obtain a resin-impregnated body.
  • the impregnation of the first resin composition can be facilitated.
  • the filling rate of the resin filler can be sufficiently increased.
  • the viscosity of the first resin composition when the nitride sintered plate is impregnated with the first resin composition may be, for example, 440 mPa ⁇ s or less, 390 mPa ⁇ s or less, or 340 mPa ⁇ s or less. By reducing the viscosity of the first resin composition in this manner, the impregnation of the first resin composition can be sufficiently promoted.
  • the viscosity of the first resin composition when the nitride sintered plate is impregnated with the first resin composition may be, for example, 15 mPa ⁇ s or more, or 20 mPa ⁇ s or more.
  • the viscosity of the first resin composition may be adjusted within the range described above, and may be, for example, 15 to 440 mPa ⁇ s, or 20 to 340 mPa ⁇ s.
  • the viscosity of the first resin composition may be adjusted by partially polymerizing the monomer component, or may be adjusted by adding a solvent.
  • the above viscosity of the first resin composition is the viscosity at the temperature (T1) of the first resin composition when impregnating the nitride sintered plate with the first resin composition.
  • This viscosity is a value measured using a rotational viscometer at a shear rate of 10 (1/sec) and a temperature (T1). Therefore, by changing the temperature T1, the viscosity when the nitride sintered plate is impregnated with the first resin composition may be adjusted.
  • the temperature (T2) may be, for example, 80-140°C.
  • Impregnation of the nitride sintered plate with the first resin composition may be performed under pressure or under reduced pressure.
  • the impregnation method is not particularly limited, and the nitride sintered plate may be immersed in the first resin composition, or the surface of the nitride sintered plate may be coated with the first resin composition. good.
  • the impregnation step may be performed under either reduced pressure or increased pressure, or a combination of impregnation under reduced pressure and increased pressure.
  • the pressure in the impregnation device when the impregnation step is performed under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less.
  • the pressure in the impregnation device when the impregnation step is performed under pressurized conditions may be, for example, 1 MPa or higher, 3 MPa or higher, 10 MPa or higher, or 30 MPa or higher.
  • the impregnation of the resin composition by capillary action may be promoted, and the filling rate of the resin in the resin filler may be adjusted.
  • the median pore diameter of the nitride sintered plate is, for example, 0.3 to 6.0 ⁇ m, 0.5 to 5.0 ⁇ m, 1.0 to 4.0 ⁇ m, or 1.0 to 3.0 ⁇ m. It may be 5 ⁇ m.
  • the first resin composition for example, one that becomes a semi-cured resin mentioned in the above description of the composite sheet by a semi-curing reaction can be used.
  • the first resin composition may contain a solvent.
  • Solvents include, for example, ethanol and aliphatic alcohols such as isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2-(2-methoxy Ether alcohols such as ethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl Ketones, ketones such as diisobutyl ketone, and aromatic hydrocarbons such as toluene and xylene.
  • solvents include, for example, ethanol and aliphatic alcohols such as isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propano
  • the first resin composition may be thermosetting, for example, at least one compound selected from the group consisting of a compound having a cyanate group, a compound having a bismaleimide group, and a compound having an epoxy group; and an agent.
  • Examples of compounds having a cyanate group include dimethylmethylenebis(1,4-phenylene)biscyanate and bis(4-cyanatophenyl)methane.
  • Dimethylmethylenebis(1,4-phenylene)biscyanate is commercially available, for example, as TACN (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name).
  • Examples of compounds having a bismaleimide group include N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide and 4,4'-diphenylmethanebismaleimide. etc.
  • N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide is commercially available as BMI-80 (manufactured by K.I. Kasei Co., Ltd., trade name), for example. readily available.
  • Examples of compounds having epoxy groups include bisphenol F type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, and polyfunctional epoxy resins.
  • it may be 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene, which is commercially available as HP-4032D (manufactured by DIC Corporation, trade name).
  • the curing agent may contain a phosphine-based curing agent and an imidazole-based curing agent.
  • a phosphine-based curing agent can promote a triazine formation reaction by trimerization of a compound having a cyanate group or a cyanate resin.
  • Phosphine-based curing agents include, for example, tetraphenylphosphonium tetra-p-tolylborate and tetraphenylphosphonium tetraphenylborate. Tetraphenylphosphonium tetra-p-tolylborate is commercially available, for example, as TPP-MK (manufactured by Hokko Chemical Industry Co., Ltd., trade name).
  • the imidazole-based curing agent generates oxazoline and accelerates the curing reaction of the epoxy group-containing compound or epoxy resin.
  • imidazole curing agents include 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole and 2-ethyl-4-methylimidazole.
  • 1-(1-Cyanomethyl)-2-ethyl-4-methyl-1H-imidazole is commercially available, for example, as 2E4MZ-CN (manufactured by Shikoku Kasei Co., Ltd., trade name).
  • the content of the phosphine-based curing agent is, for example, 5 parts by mass or less, 4 parts by mass or less, or 3 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be less than or equal to parts by mass.
  • the content of the phosphine-based curing agent is, for example, 0.1 parts by mass or more or 0.5 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be more than part.
  • the content of the phosphine-based curing agent may be adjusted within the above-mentioned range, and for example, 0.5 parts per 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be 1 to 5 parts by mass.
  • the content of the imidazole-based curing agent is, for example, 0.1 parts by mass or less, 0.05 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. parts or less or 0.03 parts by mass or less.
  • the content of the imidazole-based curing agent is, for example, 0.001 parts by mass or more or 0.005 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be more than part.
  • the content of the imidazole-based curing agent is within the above range, it is easy to prepare the resin-impregnated body.
  • the content of the imidazole-based curing agent may be adjusted within the range described above. 001 to 0.1 parts by mass.
  • the first resin composition may contain components other than the main agent and the curing agent.
  • Other components further include, for example, other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, silane coupling agents, leveling agents, antifoaming agents, surface control agents, and wetting and dispersing agents. It's okay.
  • the content of these other components may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less based on the total amount of the first resin composition.
  • the resin-filled plate containing the first semi-cured resin is prepared by semi-curing the first resin composition in the resin-impregnated body obtained in the impregnation step.
  • the first resin composition is semi-cured by heating and/or light irradiation depending on the type of the first resin composition (or curing agent added as necessary).
  • the heating temperature for semi-curing the first resin composition by heating may be, for example, 80 to 130°C.
  • the first semi-cured resin obtained by semi-curing the first resin composition contains, as a resin component, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins. you can
  • the first semi-cured resin may also contain a curing agent.
  • the first semi-cured resin includes other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, and surface conditioning agents. It may contain ingredients derived from agents, wetting and dispersing agents, and the like.
  • the curing step is preferably performed in a situation where the first resin composition exists around the resin-impregnated body.
  • the first resin composition is supplied from the periphery of the resin-impregnated body, and the formation of voids can be further suppressed.
  • the presence of the similar resin in the surroundings can also suppress the formation of voids.
  • a composite sheet is prepared by providing a resin layer containing a second semi-cured resin on at least a portion of the main surface of the resin-filled plate.
  • the coating step is, for example, a step of attaching the second resin composition to the resin-filled plate obtained in the curing step and heating the resin-filled plate to form a resin layer on at least part of the main surface of the resin-filled plate.
  • the step may include providing a resin layer on at least part of the main surface of the resin-filled plate by bonding a semi-cured material of the second resin composition prepared in advance.
  • the coating method in the coating step is not particularly limited, and the resin-filled plate may be immersed in the second resin composition, or the surface of the resin-filled plate may be coated with the second resin composition. Alternatively, a separately prepared resin layer containing a second semi-cured resin may be adhered. Means for adhering a separately prepared resin layer may be a method of transferring a resin layer separately provided on a support. The amount of the second resin composition adhering to the resin filler may be adjusted by the viscosity of the second resin composition.
  • the viscosity of the second resin composition when adhered to the resin-filled plate may be, for example, 10 to 500 mPa ⁇ s, or 15 to 400 mPa ⁇ s.
  • the viscosity of the second resin composition is the viscosity at the temperature (T4) of the second resin composition when the second resin composition adheres to the resin filling.
  • the viscosity is measured using a rotational viscometer at a shear rate of 10 (1/sec) and under temperature (T4).
  • T4 the viscosity at which the second resin composition adheres to the resin filling may be adjusted.
  • This viscosity may be adjusted by changing the temperature (T4) of the second resin composition, or may be adjusted by changing the blending amount of the solvent as in the case of the first resin composition.
  • the components contained in the second resin composition may be the same as those exemplified for the first resin composition.
  • the compositions of the second resin composition and the first resin composition may be the same or different.
  • the second resin composition is semi-cured to obtain the second resin.
  • the second resin composition is semi-cured by heating and/or light irradiation depending on the type of the second resin composition (or curing agent added as necessary).
  • the heating temperature for semi-curing the second resin composition by heating may be, for example, 80 to 130°C.
  • the first The hardening rate of the second resin can also be lower than the hardening rate of the resin.
  • the second semi-cured resin obtained by semi-curing the second resin composition includes, as resin components, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins and epoxy resins, and a curing agent. may contain In addition to these components, the second semi-cured resin includes other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, and surface conditioning agents. It may contain ingredients derived from agents, wetting and dispersing agents, and the like.
  • the manufacturing method described above may have other steps such as a sintering step, an impregnation step, a curing step, and a coating step.
  • Other steps include, for example, a step of removing impurities from the surface of the nitride sintered body or the surface of the composite sheet obtained through the coating step.
  • Production method B adjusts the amount of the first resin composition to be impregnated into the nitride sintered plate in the impregnation step in production method A so that a resin composition layer is formed on the resin impregnated body, thereby coating It is a method for preparing a composite sheet without providing a separate step.
  • the thickness of the resin composition layer can be adjusted using, for example, a scraper and an applicator. For other conditions, the contents described in the description of the manufacturing method A can be applied.
  • the laminate includes an insulating sheet and a metal sheet provided on at least one main surface of the insulating sheet, and the insulating sheet is a cured product of the composite sheet described above. That is, in one aspect of the laminate, the cured resin-filled plate, the cured resin layer, and the metal sheet are provided in this order. In this case, the cured resin-filled body and the metal sheet are joined via the cured resin layer.
  • the metal sheet is not particularly limited as long as it is made of metal and has a sheet shape.
  • the adherend (another member) mentioned in the description of the composite sheet may be a metal sheet.
  • the metal sheet may be a metal plate or a metal foil. Examples of the material of the metal sheet include aluminum and copper.
  • the lower limit of the surface roughness Rz of the main surface of the metal sheet on the insulating sheet side may be, for example, 20 ⁇ m or more, 25 ⁇ m or more, or 30 ⁇ m or more. Since the laminate is obtained by laminating the above-mentioned composite sheet with a metal sheet and then curing the laminate, even if the surface roughness of the metal sheet is large, the laminate can be sufficiently strongly bonded.
  • the upper limit of the surface roughness Rz of the main surface of the metal sheet on the insulating sheet side may be, for example, 50 ⁇ m or less, 45 ⁇ m or less, or 40 ⁇ m or less.
  • the surface roughness Rz of the main surface of the metal sheet on the insulating sheet side may be adjusted within the range described above, and may be, for example, 20 to 50 ⁇ m, or 20 to 40 ⁇ m. Note that the composite sheet 10 according to the present disclosure can exhibit sufficient adhesiveness even if the surface roughness Rz of the main surface of the metal sheet on the insulating sheet side is small. From this point of view, the surface roughness Rz of the main surface of the metal sheet on the insulating sheet side may be, for example, 1 to 15 ⁇ m, 2 to 10 ⁇ m, or 3 to 10 ⁇ m.
  • the surface roughness Rz in this specification is the maximum height roughness specified in JIS B 0601: 2013 "Use of product geometric properties (GPS) - surface texture: contour curve method - terms, definitions and surface texture parameters" means.
  • the surface roughness Rz is a value measured according to JIS B 0601:2013.
  • FIG. 3 is a cross-sectional view showing an example of a laminate.
  • FIG. 3 shows a cross section of the laminate 20 cut along the lamination direction.
  • the laminate 20 includes an insulating sheet 15 that is a cured product of the composite sheet 10 of FIGS. 1 and 2, and metal sheets 22 laminated on both main surfaces of the insulating sheet 15 .
  • the material and thickness of the plurality of metal sheets 22 may be the same or different. Also, it is not essential to provide the metal sheets 22 on both main surfaces of the insulating sheet 15 . In a modification, only one main surface of the insulating sheet 15 may be provided with the metal sheet 22 .
  • the metal sheet 22 in the laminate 20 is adhered to the resin-filled plate cured product 16 by the cured resin layer 18 with high adhesion. Thereby, the metal sheet 22 and the insulating sheet 15 are strongly bonded. Since the metal sheet 22 and the insulating sheet 15 are adhered to each other with high adhesiveness, the laminated body 20 can be suitably used as a heat dissipation member for a semiconductor device or the like.
  • the thickness of the laminate 20 may be, for example, less than 12.0 mm, less than 6.0 mm, or less than 3.0 mm.
  • the lower limit of the thickness of the laminate 20 may be, for example, 0.6 mm or more.
  • the laminated body 20 can be sufficiently miniaturized.
  • Such a laminate 20 is suitably used as a component of a semiconductor device, for example.
  • the laminate 20 includes the insulating sheet 15 that is the cured product of the composite sheet 10, both thermal conductivity and insulation reliability can be achieved at high levels.
  • One embodiment of a method for manufacturing a laminate has a lamination step of laminating the above-described composite and metal sheets, followed by heating and pressing.
  • the composite a composite obtained by any of the above-described production methods can be used. That is, the manufacturing method of the laminate may be a manufacturing method including the above-described lamination step in addition to the manufacturing method described above.
  • the metal sheet may be a metal plate or a metal foil.
  • a metal sheet is placed on the main surface of the composite. With the main surfaces of the composite and the metal sheet in contact with each other, pressure is applied in the direction in which the main surfaces face each other, and heating is applied. It should be noted that the pressurization and heating do not necessarily have to be performed at the same time, and the heating may be performed after the pressurization and crimping.
  • the laminate thus obtained can be used for manufacturing semiconductor devices and the like.
  • a semiconductor element may be provided on one of the metal sheets.
  • the other metal sheet may be joined with cooling fins.
  • Example 1 [Production of nitride sintered plate] 100 parts by mass of orthoboric acid manufactured by Shin Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated at 2200° C. for 5 hours in an argon atmosphere in an arc furnace to obtain massive boron carbide (B 4 C). The resulting mass was coarsely pulverized with a jaw crusher to obtain coarse powder. This coarse powder was further pulverized by a ball mill having silicon carbide balls ( ⁇ 10 mm) to obtain pulverized powder.
  • HS100 acetylene black
  • the prepared pulverized powder was filled in a crucible made of boron nitride. After that, using a resistance heating furnace, heating was performed for 10 hours under conditions of 2000° C. and 0.85 MPa in a nitrogen gas atmosphere. Thus, a fired product containing boron carbonitride (B 4 CN 4 ) was obtained.
  • a sintering aid was prepared by blending powdered boric acid and calcium carbonate. In preparation, 50.0 parts by mass of calcium carbonate was blended with 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 17.5 atomic % of calcium to 100 atomic % of boron. 20 parts by mass of a sintering aid was blended with 100 parts by mass of the fired product, and mixed using a Henschel mixer to prepare a powdery compound.
  • the compact was placed in a boron nitride container and introduced into a batch-type high-frequency furnace. In a batch-type high-frequency furnace, heating was performed for 5 hours under the conditions of atmospheric pressure, nitrogen flow rate of 5 L/min, and 2000°C. After that, the boron nitride sintered plate was taken out from the boron nitride container. Thus, a sheet-like boron nitride sintered plate was obtained. The thickness of the boron nitride sintered plate was 0.3 mm.
  • the amount of the first resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered plate.
  • the amount of the first resin composition that was dropped A part remained on the main surface without impregnating the boron nitride sintered plate.
  • the first resin composition remaining on the upper main surface of the boron nitride sintered plate was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess of the first resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
  • the resin-impregnated body was heated at 120°C for 180 minutes under atmospheric pressure to semi-cure the first resin composition.
  • the boron nitride sintered body was exposed on a part of the main surface of the resin-filled plate.
  • a resin composition was prepared by the same method as that for preparing the resin-filled plate, and was used as a second resin composition.
  • the second resin composition was heated at 120° C. for 300 minutes to obtain a second semi-cured resin.
  • the second semi-cured resin was dripped onto one main surface of the resin-filled plate while maintaining its temperature. Under atmospheric pressure, the second semi-cured resin dropped onto the main surface of the resin-filled plate is spread using a silicone rubber spatula, spread over the entire main surface, and then cooled to room temperature to solidify and fill with resin.
  • a resin layer was provided on one major surface of the plate. The thickness of the resin layer was 45 ⁇ m.
  • the second resin composition is heated at 120° C.
  • a second semi-cured resin Dropped onto the main surface. Under atmospheric pressure, the second semi-cured resin dropped onto the other main surface of the resin-filled plate is spread using a silicone rubber spatula, spread over the entire main surface, and then cooled to room temperature to solidify. A resin layer was provided on the other surface of the resin-filled plate. The thickness of the resin layer was also 45 ⁇ m. Thus, a composite sheet was obtained in which resin layers containing the second semi-cured resin were provided on both main surfaces of the resin-filled plate.
  • the ratio (value of A/B) of the amount of heat generated during curing of the first semi-cured resin to the amount of heat generated during curing of the second semi-cured resin was measured according to the following procedure. First, the composite sheet was heated at 100° C. to melt the second semi-cured resin, which was then removed from the composite sheet by a squeegee to obtain a resin-filled plate. 2 mg of the removed second semi-cured resin was sampled and heated from room temperature to 330° C.
  • the adhesion was evaluated according to the following criteria. Table 1 shows the results.
  • Example 2-5 Using a boron nitride sintered plate whose porosity, median pore diameter and thickness are shown in Table 1, and that the curing rates of the first semi-cured resin and the second semi-cured resin are the values shown in Table 1.
  • a composite sheet was prepared in the same manner as in Example 1, except that it was adjusted to be Table 1 shows the peel strength of the resin layer and the A/B value of the resulting composite sheet. Furthermore, the obtained composite sheet was evaluated in the same manner as in Example 1. Table 1 shows the results.
  • Table 1 shows the use of a boron nitride sintered plate having a porosity, median pore diameter, and thickness shown in Table 1, and the curing rates of the first semi-cured resin and the second semi-cured resin.
  • a composite sheet was prepared in the same manner as in Example 1, except that the values were adjusted.
  • Table 1 shows the peel strength of the resin layer and the A/B value of the resulting composite sheet. Furthermore, the obtained composite sheet was evaluated in the same manner as in Example 1. Table 1 shows the results.
  • the present disclosure it is possible to provide a composite sheet that can exhibit sufficient adhesiveness to an adherend even when the surface roughness of the adherend is relatively large.
  • the present disclosure can also provide laminates prepared using the composite sheets described above.
  • SYMBOLS 10 Composite sheet, 12... Resin-filled board, 12a... Main surface, 14... Resin layer, 20... Laminate, 22... Metal sheet, 15... Insulating sheet, 16... Hardened resin-filled plate, 18... Hardened resin layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

According to an aspect of the present disclosure, there is provided a composite sheet having a resin-filled plate including a porous nitride sintered plate and a first semi-cured resin filled into pores of the nitride sintered plate, and a resin layer including a second semi-cured resin provided on at least a portion of a principal surface of the resin-filled plate, and the value of A/B being 0.5-1.7, where A is the calorific value accompanying curing of the first semi-cured resin and B is the calorific value accompanying curing of the second semi-cured resin, measured through use of a differential scanning calorimeter.

Description

複合シート、及び積層体Composite sheet and laminate
 本開示は、複合シート、及び積層体に関する。 The present disclosure relates to composite sheets and laminates.
 パワーデバイス、トランジスタ、サイリスタ、及びCPU等の部品においては、使用時に発生する熱を効率的に放熱することが求められる。このような要請から、従来、電子部品を実装するプリント配線板の絶縁層の高熱伝導化を図ったり、電気絶縁性を有する熱インターフェース材(Thermal Interface Materials)を介して電子部品又はプリント配線板をヒートシンクに取り付けたりすることが行われてきた。このような絶縁層及び熱インターフェース材には、放熱部材として、窒化ホウ素等のセラミックスと樹脂とで構成される複合シートが用いられる。 Components such as power devices, transistors, thyristors, and CPUs are required to efficiently dissipate the heat generated during use. In response to such demands, it has been conventional practice to increase the thermal conductivity of the insulating layer of printed wiring boards on which electronic components are mounted, or to connect electronic components or printed wiring boards via thermal interface materials that have electrical insulation properties. Attachment to a heat sink has been performed. A composite sheet composed of ceramics such as boron nitride and resin is used as a heat dissipation member for such an insulating layer and thermal interface material.
 このような複合シートとして、多孔性のセラミックス焼結板(例えば、窒化ホウ素焼結板)に樹脂を含浸させた複合シートが検討されている(例えば、特許文献1参照)。また、回路基板と樹脂含浸窒化ホウ素焼結板とを有する積層基板において、窒化ホウ素焼結板を構成する一次粒子と回路基板とを直接接触させて、積層基板の熱抵抗を低減し、放熱性を改善することも検討されている(例えば、特許文献2参照)。 As such a composite sheet, a composite sheet in which a porous ceramic sintered plate (for example, a boron nitride sintered plate) is impregnated with a resin is being studied (see, for example, Patent Document 1). Further, in a laminated substrate having a circuit board and a resin-impregnated boron nitride sintered plate, the primary particles constituting the boron nitride sintered plate and the circuit board are brought into direct contact to reduce the thermal resistance of the laminated substrate and improve heat dissipation. is also being studied (see Patent Document 2, for example).
国際公開第2014/196496号WO2014/196496 特開2016-103611号公報JP 2016-103611 A
 積層基板の信頼性を向上させる観点から、回路基板等の被着体と、上述の複合体との接着をより強固なものとすることが求められる。しかし、被着体の表面粗さが大きいと、例えば、表面粗さRzが20μm以上であると、十分な接着を図ることができない場合が生じ得る。 From the viewpoint of improving the reliability of the laminated substrate, it is required to make the adhesion between the adherend such as the circuit board and the composite described above stronger. However, when the surface roughness of the adherend is large, for example, when the surface roughness Rz is 20 μm or more, sufficient adhesion may not be achieved.
 本開示は、被着体の表面粗さが比較的大きな場合であっても、被着体に対して十分な接着性を発揮し得る複合シートを提供することを目的とする。本開示はまた、上述の複合シートを用いて調製される積層体を提供することを目的とする。 An object of the present disclosure is to provide a composite sheet that can exhibit sufficient adhesion to an adherend even when the surface roughness of the adherend is relatively large. The present disclosure also aims to provide laminates prepared using the composite sheets described above.
 本開示は、以下の[1]~[8]を提供する。 The present disclosure provides the following [1] to [8].
[1] 多孔質の窒化物焼結板と、前記窒化物焼結板の細孔に充填された第1半硬化樹脂と、を含む樹脂充填板と、
 前記樹脂充填板の主面上の少なくとも一部に設けられた第2半硬化樹脂を含む樹脂層と、を有し、
 示差走査熱量計によって測定される、前記第1半硬化樹脂の硬化に伴う発熱量をAとし、前記第2半硬化樹脂の硬化に伴う発熱量をBとしたときに、A/Bの値が0.5~1.7である、複合シート。
[2] 前記樹脂層は、銅板との接着した場合にJIS K 6854:1999に規定されるはく離接着強さ試験に基づいて測定される、90度はく離の際のはく離接着強さが5N/cmを超える層である、[1]に記載の複合シート。
[3] 前記樹脂充填板の厚さが2.0mm以下である、[1]又は[2]に記載の複合シート。
[4] 前記樹脂層の厚さが2~50μmである、[1]~[3]のいずれかに記載の複合シート。
[5] 前記窒化物焼結板の細孔率が40~65体積%である、[1]~[4]のいずれかに記載の複合シート。
[6] 前記窒化物焼結板のメジアン細孔径が1.5~4.0μmである、[1]~[5]のいずれかに記載の複合シート。
[7] 絶縁シートと、前記絶縁シートの少なくとも一方の主面上に設けられた金属シートと、を備え、
 前記絶縁シートが[1]~[6]のいずれかに記載の複合シートの硬化物である、積層体。
[8] 前記金属シートの前記絶縁シート側の主面における表面粗さRzが20μm以上である、[7]に記載の積層体。
[1] A resin-filled plate containing a porous nitride sintered plate and a first semi-cured resin filled in the pores of the nitride sintered plate;
a resin layer containing a second semi-cured resin provided on at least a portion of the main surface of the resin-filled plate,
When the amount of heat generated due to curing of the first semi-cured resin measured by a differential scanning calorimeter is A and the amount of heat generated due to curing of the second semi-cured resin is B, the value of A/B is Composite sheet, which is 0.5 to 1.7.
[2] The resin layer has a peel adhesion strength of 5 N/cm when peeled at 90 degrees, which is measured based on the peel adhesion strength test specified in JIS K 6854: 1999 when adhered to a copper plate. The composite sheet according to [1], which is a layer exceeding
[3] The composite sheet according to [1] or [2], wherein the resin-filled plate has a thickness of 2.0 mm or less.
[4] The composite sheet according to any one of [1] to [3], wherein the resin layer has a thickness of 2 to 50 μm.
[5] The composite sheet according to any one of [1] to [4], wherein the nitride sintered plate has a porosity of 40 to 65% by volume.
[6] The composite sheet according to any one of [1] to [5], wherein the nitride sintered plate has a median pore diameter of 1.5 to 4.0 μm.
[7] comprising an insulating sheet and a metal sheet provided on at least one main surface of the insulating sheet,
A laminate, wherein the insulating sheet is a cured product of the composite sheet according to any one of [1] to [6].
[8] The laminate according to [7], wherein the main surface of the metal sheet on the insulating sheet side has a surface roughness Rz of 20 μm or more.
 本開示の一側面は、多孔質の窒化物焼結板と、上記窒化物焼結板の細孔に充填された第1半硬化樹脂と、を含む樹脂充填板と、上記樹脂充填板の主面上の少なくとも一部に設けられた第2半硬化樹脂を含む樹脂層と、を有し、示差走査熱量計によって測定される、上記第1半硬化樹脂の硬化に伴う発熱量をAとし、上記第2半硬化樹脂の硬化に伴う発熱量をBとしたときに、A/Bの値が0.5~1.7である、複合シートを提供する。 One aspect of the present disclosure is a resin-filled plate including a porous nitride sintered plate and a first semi-cured resin filled in the pores of the nitride sintered plate; A resin layer containing a second semi-cured resin provided on at least a part of the surface, and A is the amount of heat generated due to curing of the first semi-cured resin, which is measured by a differential scanning calorimeter; Provided is a composite sheet having a value of A/B of 0.5 to 1.7, where B is the amount of heat generated upon curing of the second semi-cured resin.
 上記複合シートは、樹脂充填板に加えて、半硬化樹脂を含む樹脂層を備えることによって、被着体との接合の際に、被着体表面の微細な凹凸に追従して変形することが可能となっており、また、第1半硬化樹脂及び第二の半硬化樹脂の示差走査熱量計によって測定される発熱量の比が所定範囲となるように調整されていることによって、被着体の表面粗さが比較的大きな場合であっても、被着体に対して十分な接着性を発揮し得る。なお、半硬化樹脂の硬化は一般に発熱反応であることから、上述の発熱量の比(A/Bの値)が所定範囲内であることは、第1半硬化樹脂及び第2半硬化樹脂の重合の進行度合いを図る指標となり得る。 Since the composite sheet includes a resin layer containing a semi-cured resin in addition to the resin-filled plate, it can be deformed following minute irregularities on the surface of the adherend when it is joined to the adherend. Also, the ratio of the calorific value measured by the differential scanning calorimeter of the first semi-cured resin and the second semi-cured resin is adjusted to be within a predetermined range, so that the adherend Even if the surface roughness of is relatively large, it can exhibit sufficient adhesiveness to the adherend. Since the curing of the semi-cured resin is generally an exothermic reaction, the fact that the above-mentioned calorific value ratio (A/B value) is within a predetermined range means that the first semi-cured resin and the second semi-cured resin It can be used as an index for measuring the degree of progress of polymerization.
 上記樹脂層は、銅板との接着した場合にJIS K 6854:1999に規定されるはく離接着強さ試験に基づいて測定される、90度はく離の際のはく離接着強さが5N/cmを超える層であってよい。上記樹脂層が上述の試験によって測定されるはく離接着強さとして上記範囲内のはく離接着強さを有するものであることで、上記樹脂層と被着体との接着によってより十分な接着性を発揮し得る。 When the resin layer is adhered to a copper plate, it is measured based on the peel strength test specified in JIS K 6854: 1999, and the layer has a peel strength of more than 5 N/cm when peeled off at 90 degrees. can be Since the resin layer has a peel strength within the above range as the peel strength measured by the test described above, the adhesion between the resin layer and the adherend exhibits more sufficient adhesion. can.
 上記樹脂充填板の厚さが2.0mm以下であってよい。 The thickness of the resin-filled plate may be 2.0 mm or less.
 上記樹脂層の厚さが2~50μmであってよい。上記樹脂層の厚さが上述の範囲内であることで、被着体の接着面における表面粗さが大きな場合であっても樹脂が浸入し強固な接着が可能であり、また接着後の硬化樹脂層の厚さが大きくなりすぎることによる放熱性の低下もより抑制することができる。 The thickness of the resin layer may be 2 to 50 μm. When the thickness of the resin layer is within the above range, even if the surface roughness of the bonding surface of the adherend is large, the resin can penetrate and firmly bond, and curing after bonding is possible. It is possible to further suppress deterioration in heat dissipation due to excessive thickness of the resin layer.
 上記窒化物焼結板の細孔率が40~65体積%であってよい。 The porosity of the nitride sintered plate may be 40 to 65% by volume.
 上記窒化物焼結板のメジアン細孔径が1.5~4.0μmであってよい。 The median pore size of the nitride sintered plate may be 1.5 to 4.0 μm.
 本開示の一側面は、絶縁シートと、上記絶縁シートの少なくとも一方の主面上に設けられた金属シートと、を備え、上記絶縁シートが上述の複合シートの硬化物である、積層体を提供する。 One aspect of the present disclosure provides a laminate comprising an insulating sheet and a metal sheet provided on at least one main surface of the insulating sheet, wherein the insulating sheet is a cured product of the composite sheet described above. do.
 上記積層体は、上述の複合シートを用いて金属シートと接着したものであるから、金属シートと複合シートの硬化物との接着性に優れたものとなり得る。 Since the laminate is obtained by bonding the composite sheet to the metal sheet, the adhesion between the metal sheet and the cured product of the composite sheet can be excellent.
 上記積層体は、上記金属シートの上記絶縁シート側の主面における表面粗さRzが20μm以上であってよい。上記積層体は、上述の複合シートを金属シートと積層した後、硬化したものであることから、金属シートの表面粗さが大きい場合であっても、十分強固に接着されたものとなり得る。 The laminate may have a surface roughness Rz of 20 μm or more on the main surface of the metal sheet on the insulating sheet side. Since the laminate is obtained by laminating the above-mentioned composite sheet with a metal sheet and then curing the laminate, even if the surface roughness of the metal sheet is large, the laminate can be sufficiently strongly bonded.
 本開示によれば、被着体の表面粗さが比較的大きな場合であっても、被着体に対して十分な接着性を発揮し得る複合シートを提供できる。本開示によればまた、上述の複合シートを用いて調製される積層体を提供できる。 According to the present disclosure, it is possible to provide a composite sheet that can exhibit sufficient adhesiveness to an adherend even when the surface roughness of the adherend is relatively large. The present disclosure can also provide laminates prepared using the composite sheets described above.
図1は、複合シートの一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a composite sheet. 図2は、図1のII-II線に沿った断面を示す模式図である。FIG. 2 is a schematic diagram showing a cross section along line II-II in FIG. 図3は、積層体の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a laminate.
 以下、場合によって図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合によって重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。なお、本明細書において、「~」の記号で示される数値範囲は、下限値及び上限値を含む。すなわち、「x~y」で示される数値範囲は、x以上且つy以下を意味する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same functions, and duplicate descriptions are omitted depending on the case. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratio of each element is not limited to the illustrated ratio. In this specification, the numerical range indicated by the symbol "-" includes the lower limit and the upper limit. That is, the numerical range indicated by "x to y" means x or more and y or less.
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 The materials exemplified in this specification can be used singly or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
 複合シートの一実施形態は、多孔質の窒化物焼結板と、上記窒化物焼結板の細孔に充填された第1半硬化樹脂と、を含む樹脂充填板と、上記樹脂充填板の主面上の少なくとも一部に設けられた第2半硬化樹脂を含む樹脂層と、を有する。上記複合シートにおいて、示差走査熱量計によって測定される、上記第1半硬化樹脂の硬化に伴う発熱量をAとし、上記第2半硬化樹脂の硬化に伴う発熱量をBとしたときに、A/Bの値が0.5~1.7である。 One embodiment of the composite sheet includes a resin-filled plate containing a porous nitride sintered plate, a first semi-cured resin filled in the pores of the nitride sintered plate, and the resin-filled plate. and a resin layer containing a second semi-cured resin provided on at least a portion of the main surface. In the composite sheet, when A is the amount of heat generated due to curing of the first semi-cured resin and B is the amount of heat generated due to curing of the second semi-cured resin, as measured by a differential scanning calorimeter, A /B has a value of 0.5 to 1.7.
 図1は、複合シートの一例を示す斜視図である。図2は、図1のII-II線に沿った断面を示す模式図である。複合シート10は、樹脂充填板12と、樹脂充填板12の一対の主面12aの両主面上に設けられた樹脂層14とを有する。図1においては、複合シート10を、樹脂充填板12の主面12a全体を覆うように樹脂層14を設けられた例で示したが、被着体との接着性を確保できればよく、樹脂層14が樹脂充填板12の少なくとも一部に設けられていればよい。ただし樹脂層14を部分的に設ける場合には、被着体との接触時にガス等をかみこまないように中央に設けられることが望ましく、樹脂層14が溶融し広がる影響を低減する観点から、樹脂充填板12の主面12aの面積よりも小さくなるように樹脂層14を設けてもよい。また、複合シート10は、樹脂層14が樹脂充填板12の両方の主面12a上に設けられた例で示したが、樹脂充填板12の接着性によっては、一方の主面であってもよい。また、複合シート10は、樹脂充填板12の側面に樹脂層を更に有していてもよい。 FIG. 1 is a perspective view showing an example of a composite sheet. FIG. 2 is a schematic diagram showing a cross section along line II-II in FIG. The composite sheet 10 has a resin-filled plate 12 and resin layers 14 provided on both main surfaces of a pair of main surfaces 12 a of the resin-filled plate 12 . FIG. 1 shows an example in which the composite sheet 10 is provided with the resin layer 14 so as to cover the entire main surface 12a of the resin-filled plate 12. 14 may be provided on at least part of the resin-filled plate 12 . However, when the resin layer 14 is partially provided, it is preferably provided in the center so as not to entrap gas or the like when it comes into contact with the adherend. The resin layer 14 may be provided so as to be smaller than the area of the main surface 12 a of the resin-filled plate 12 . Moreover, although the composite sheet 10 is shown as an example in which the resin layer 14 is provided on both main surfaces 12a of the resin-filled plate 12, depending on the adhesion of the resin-filled plate 12, even one of the main surfaces may good. Moreover, the composite sheet 10 may further have a resin layer on the side surface of the resin-filled plate 12 .
 複合シート10の厚さは、例えば、8.0mm未満、5.0mm未満、又は3.0mm未満であってもよい。複合シート10の厚さの下限は、例えば、0.1mm以上、0.3mm以上、又は0.5mm以上であってよい。これによって、複合シート10を十分に小型化することができる。複合シート10の厚さは上述の範囲内で用途等に応じて調整してよく、例えば、0.1mm以上8.0mm未満であってよい。このような複合シート10は、例えば、半導体装置の部品として好適に用いられる。 The thickness of the composite sheet 10 may be, for example, less than 8.0 mm, less than 5.0 mm, or less than 3.0 mm. The lower limit of the thickness of the composite sheet 10 may be, for example, 0.1 mm or more, 0.3 mm or more, or 0.5 mm or more. This allows the composite sheet 10 to be sufficiently miniaturized. The thickness of the composite sheet 10 may be adjusted within the above range depending on the application, and may be, for example, 0.1 mm or more and less than 8.0 mm. Such a composite sheet 10 is suitably used as a component of a semiconductor device, for example.
 複合シート10の厚さは、主面に直交する方向に沿って測定される。複合シート10の厚さが一定ではない場合、任意の10箇所を選択して厚さの測定を行い、その算術平均値が上述の範囲であればよい。 The thickness of the composite sheet 10 is measured along the direction perpendicular to the main surface. When the thickness of the composite sheet 10 is not constant, the thickness is measured at 10 arbitrary points, and the arithmetic mean value thereof should be within the above range.
 樹脂充填板12の主面12aのサイズは特に限定はなく、例えば、50mm以上、200mm以上、500mm以上、800mm以上、又は1000mm以上であってもよい。樹脂充填板12の主面12aのサイズは、例えば、250000mm以下、又は150000mm以下であってよい。樹脂充填板12の一対の主面12aのサイズは、一般に同一であるが、完全に一致している必要はなく、互いに異なっていてもよい。 The size of the main surface 12a of the resin-filled plate 12 is not particularly limited, and may be, for example, 50 mm 2 or more, 200 mm 2 or more, 500 mm 2 or more, 800 mm 2 or more, or 1000 mm 2 or more. The size of the main surface 12a of the resin-filled plate 12 may be, for example, 250000 mm 2 or less, or 150000 mm 2 or less. The sizes of the pair of main surfaces 12a of the resin-filled plate 12 are generally the same, but they do not need to be exactly the same, and may be different from each other.
 樹脂充填板12における第1半硬化樹脂の体積比率は、樹脂充填板12の全体積を基準として、例えば、40~65体積%、45~60体積%、又は45~55体積%であってよい。樹脂充填板12における多孔質の窒化物焼結板を構成する窒化物粒子の体積比率は、樹脂充填板12の全体積を基準として、例えば、35~60体積%、40~55体積%、又は45~55体積%であってよい。このような体積比率の樹脂充填板12は、優れた強度を発揮し得る。 The volume ratio of the first semi-cured resin in the resin-filled plate 12 may be, for example, 40-65% by volume, 45-60% by volume, or 45-55% by volume, based on the total volume of the resin-filled plate 12. . The volume ratio of the nitride particles constituting the porous nitride sintered plate in the resin-filled plate 12 is, based on the total volume of the resin-filled plate 12, for example, 35 to 60% by volume, 40 to 55% by volume, or It may be 45-55% by volume. The resin-filled plate 12 having such a volume ratio can exhibit excellent strength.
 樹脂充填板12を構成する多孔質の窒化物焼結板としては、例えば、窒化ホウ素焼結板等が挙げられる。窒化物焼結板は、窒化物の一次粒子同士が焼結して構成される窒化物粒子と細孔とを含有する。窒化物焼結板の細孔のメジアン細孔径は、例えば、4.0μm以下、3.8μm以下、3.6μm以下、3.4μm以下、3.2μm以下、又は3.0μm以下であってよい。このような窒化物焼結板は、細孔のサイズが小さいことから、窒化物粒子の粒子同士の接触面積を十分に大きくすることができる。したがって、熱伝導率を高くすることができる。窒化物焼結板の細孔のメジアン細孔径は、例えば、1.5μm以上、1.6μm以上、1.7μm以上、1.8μm以上、1.9μm以上、又は2.0μm以上であってよい。このような窒化物焼結板は、接着する際に加圧すると十分に変形できるため、表面粗さの比較的大きな被着体との接着の際にもより優れた密着性を発揮し得る。窒化物焼結板の細孔のメジアン細孔径は上述の範囲内で調整してよく、例えば、1.5~4.0μm、又は2.0~3.0μmであってよい。 Examples of the porous nitride sintered plate forming the resin-filled plate 12 include a boron nitride sintered plate. The nitride sintered plate contains nitride particles and pores formed by sintering nitride primary particles. The median pore size of the pores of the nitride sintered plate may be, for example, 4.0 μm or less, 3.8 μm or less, 3.6 μm or less, 3.4 μm or less, 3.2 μm or less, or 3.0 μm or less. . Since such a nitride sintered plate has a small pore size, it is possible to sufficiently increase the contact area between the nitride particles. Therefore, thermal conductivity can be increased. The median pore diameter of the pores of the nitride sintered plate may be, for example, 1.5 μm or more, 1.6 μm or more, 1.7 μm or more, 1.8 μm or more, 1.9 μm or more, or 2.0 μm or more. . Since such a nitride sintered plate can be sufficiently deformed by pressurization during bonding, it can exhibit superior adhesion even when bonded to an adherend having a relatively large surface roughness. The median pore diameter of the pores of the nitride sintered plate may be adjusted within the range described above, and may be, for example, 1.5-4.0 μm, or 2.0-3.0 μm.
 窒化物焼結板の細孔のメジアン細孔径は、以下の手順で測定することができる。まず、複合シートを加熱して樹脂層及び第1半硬化樹脂を除去する。そして、水銀ポロシメーターを用い、0.0042MPaから206.8MPaまで圧力を増やしながら窒化物焼結板を加圧したときの細孔径分布を求める。横軸を細孔径、縦軸を累積細孔容積としたときに、累積細孔容積が全細孔容積の50%に達するときの細孔径がメジアン細孔径である。水銀ポロシメーターとしては、例えば、株式会社島津製作所製のものを用いることができる。 The median pore diameter of the pores of the nitride sintered plate can be measured by the following procedure. First, the composite sheet is heated to remove the resin layer and the first semi-cured resin. Then, using a mercury porosimeter, the pore size distribution is determined when the nitride sintered plate is pressed while increasing the pressure from 0.0042 MPa to 206.8 MPa. When the horizontal axis is the pore diameter and the vertical axis is the cumulative pore volume, the pore diameter when the cumulative pore volume reaches 50% of the total pore volume is the median pore diameter. As the mercury porosimeter, for example, one manufactured by Shimadzu Corporation can be used.
 窒化物焼結板の細孔率、すなわち、窒化物焼結板における細孔の体積の比率の上限値は、例えば、65体積%以下、60体積%以下、又は58体積%以下であってよい。窒化物焼結体の細孔率の上限値が上記範囲内であることで、窒化物焼結板の機械強度の低下をより十分に抑制し、より取扱い性に優れた複合シートを提供できる。窒化物焼結板の細孔率の下限値は、例えば、40体積%以上、42体積%以上、44体積%以上、又は45体積%以上であってよい。窒化物焼結体の細孔率の上限値が上記範囲内であることで、第1半硬化樹脂の含有量を向上させ、樹脂層との接合をより向上させることができる。窒化物焼結体の細孔率の上限値が上記範囲内であることでまた、樹脂充填板に適度な柔軟性を付与できることから、表面粗さの比較的大きな被着体との接着の際に、樹脂充填板の変形を可能とし、被着体と複合シートとの接着性をより向上させることができる。窒化物焼結板の細孔率は上述の範囲内で調整してよく、例えば、40~65体積%、又は40~60体積%であってよい。 The upper limit of the porosity of the nitride sintered plate, that is, the ratio of the volume of the pores in the nitride sintered plate may be, for example, 65% by volume or less, 60% by volume or less, or 58% by volume or less. . When the upper limit of the porosity of the nitride sintered body is within the above range, it is possible to more sufficiently suppress the deterioration of the mechanical strength of the nitride sintered plate and to provide a composite sheet with excellent handleability. The lower limit of the porosity of the nitride sintered plate may be, for example, 40% by volume or more, 42% by volume or more, 44% by volume or more, or 45% by volume or more. When the upper limit of the porosity of the nitride sintered body is within the above range, the content of the first semi-cured resin can be increased, and the bonding with the resin layer can be further improved. When the upper limit of the porosity of the nitride sintered body is within the above range, it is possible to impart appropriate flexibility to the resin-filled plate, so when bonding to an adherend having a relatively large surface roughness In addition, the resin-filled plate can be deformed, and the adhesion between the adherend and the composite sheet can be further improved. The porosity of the nitride sintered plate may be adjusted within the above range, and may be, for example, 40-65% by volume, or 40-60% by volume.
 細孔率は、窒化物焼結板の体積及び質量から、かさ密度[Y(kg/m)]を算出し、このかさ密度と窒化物の理論密度[X(kg/m)]とから、下記式(1)によって求めることができる。窒化物焼結板は、窒化ホウ素、窒化アルミニウム、又は窒化ケイ素からなる群から選択される少なくとも一種を含んでよい。窒化ホウ素の場合、理論密度Xは2280kg/mである。窒化アルミニウムの場合、理論密度Xは3260kg/mである。窒化ケイ素の場合、理論密度Xは3170kg/mである。
  細孔率(体積%)=[1-(Y/X)]×100   (1)
For the porosity, the bulk density [Y (kg/m 3 )] is calculated from the volume and mass of the nitride sintered plate, and this bulk density and the theoretical density of the nitride [X (kg/m 3 )] can be obtained by the following formula (1). The nitride sintered plate may contain at least one selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride. For boron nitride, the theoretical density X is 2280 kg/m 3 . For aluminum nitride, the theoretical density X is 3260 kg/m 3 . For silicon nitride, the theoretical density X is 3170 kg/m 3 .
Porosity (% by volume) = [1-(Y/X)] x 100 (1)
 窒化物焼結板が窒化ホウ素焼結体である場合、かさ密度Yは、800~1500kg/mであってよく、1000~1400kg/mであってもよい。かさ密度Yが小さくなり過ぎると窒化物焼結板の強度が低下する傾向にある。一方、かさ密度Yが大きくなり過ぎると樹脂の充填量が減少して複合シートの良好な接着性が損なわれる場合がある。 When the nitride sintered plate is a boron nitride sintered body, the bulk density Y may be from 800 to 1500 kg/m 3 and may be from 1000 to 1400 kg/m 3 . If the bulk density Y becomes too small, the strength of the nitride sintered plate tends to decrease. On the other hand, if the bulk density Y is too high, the amount of resin filled in the composite sheet is reduced, which may impair the good adhesiveness of the composite sheet.
 窒化物焼結板の厚さは、例えば、5.0mm以下、3.0mm以下、又は2.0mm以下であってもよい。窒化物焼結板の厚さの下限は、例えば、0.1mm以上、0.3mm以上、又は0.5mm以上であってよい。窒化物焼結板の厚さは、主面に直交する方向に沿って測定され、厚さが一定ではない場合、任意の10箇所を選択して厚さの測定を行い、その平均値が上述の範囲であればよい。なお、窒化物焼結板の厚さは樹脂充填板の厚さに相当する。 The thickness of the nitride sintered plate may be, for example, 5.0 mm or less, 3.0 mm or less, or 2.0 mm or less. The lower limit of the thickness of the nitride sintered plate may be, for example, 0.1 mm or more, 0.3 mm or more, or 0.5 mm or more. The thickness of the nitride sintered plate is measured along the direction perpendicular to the main surface, and if the thickness is not constant, select 10 arbitrary locations to measure the thickness, and the average value is the above may be within the range of The thickness of the nitride sintered plate corresponds to the thickness of the resin-filled plate.
 樹脂充填板12に含まれる第1半硬化樹脂は、主剤及び硬化剤を含む樹脂組成物の半硬化物(Bステージ)である。半硬化物は、樹脂組成物の硬化反応が一部進行したものである。半硬化物は、その後の硬化処理によって、更に硬化させることができる。なお、上述の樹脂組成物の硬化物(Cステージ)は、樹脂組成物の硬化反応が完全に進行したものである。 The first semi-cured resin contained in the resin-filled plate 12 is a semi-cured material (B stage) of a resin composition containing a main agent and a curing agent. The semi-cured product is obtained by partially progressing the curing reaction of the resin composition. The semi-cured product can be further cured by a subsequent curing treatment. In addition, the cured product (C stage) of the above-mentioned resin composition is one in which the curing reaction of the resin composition has progressed completely.
 第1半硬化樹脂は、樹脂組成物中の主剤及び硬化剤が反応して生成する熱硬化性樹脂等を含んでもよい。上記半硬化物は、樹脂成分として、熱硬化性樹脂に加えて主剤及び硬化剤等のモノマーを含んでもよい。複合シートに含まれる樹脂が硬化物(Cステージ)となる前の半硬化物(Bステージ)であることは、例えば、示差走査熱量計によって確認することができる。 The first semi-cured resin may contain a thermosetting resin or the like generated by the reaction of the main agent and the curing agent in the resin composition. The semi-cured product may contain monomers such as a main agent and a curing agent in addition to the thermosetting resin as a resin component. It can be confirmed by, for example, a differential scanning calorimeter that the resin contained in the composite sheet is a semi-cured product (B stage) before becoming a cured product (C stage).
 樹脂充填板12に含まれる第1半硬化樹脂の硬化率の上限値は、例えば、50%以下、48%以下、46%以下、42%以下、40%以下、又は38%以下であってよい。第1半硬化樹脂の硬化率の上限値が上記範囲内であることで、第2半硬化樹脂を含む樹脂層又は被着体との接着性をより向上できる。樹脂充填板12に含まれる第1半硬化樹脂の硬化率の下限値は、例えば、20%以上、23%以上、25%以上、30%以上、33%以上、又は36%以上であってよい。第1半硬化樹脂の硬化率の下限値が上記範囲内であることで、複合シート10を被着体と加熱接着させる際に樹脂充填板12から第1半硬化樹脂が過度に流れ出すことを抑制し、接着性と絶縁性とをより高水準で両立できる。第1半硬化樹脂の硬化率は上述の範囲内で調整してよく、例えば、20~50%であってよい。 The upper limit of the curing rate of the first semi-cured resin contained in the resin-filled plate 12 may be, for example, 50% or less, 48% or less, 46% or less, 42% or less, 40% or less, or 38% or less. . When the upper limit of the curing rate of the first semi-cured resin is within the above range, the adhesiveness to the resin layer containing the second semi-cured resin or the adherend can be further improved. The lower limit of the curing rate of the first semi-cured resin contained in the resin-filled plate 12 may be, for example, 20% or more, 23% or more, 25% or more, 30% or more, 33% or more, or 36% or more. . Since the lower limit of the curing rate of the first semi-cured resin is within the above range, excessive flow of the first semi-cured resin from the resin-filled plate 12 is suppressed when the composite sheet 10 is heat-bonded to the adherend. It is possible to achieve both adhesion and insulation at a higher level. The curing rate of the first semi-cured resin may be adjusted within the above range, and may be, for example, 20-50%.
 第1半硬化樹脂の硬化率は、示差走査熱量計を用いた測定によって決定することができる。まず、未硬化の状態の樹脂組成物2mgを完全に硬化させた際に生じる単位質量当たりの発熱量Qを測定する。そして、樹脂充填板12から第1半硬化樹脂のサンプル10mgを同様に昇温させて、完全に硬化させた際に生じる単位質量当たりの発熱量Rを求める。また、測定対象とした樹脂充填板の断面SEM画像解析及び熱重量示差熱分析(TG-DTA)によって第1半硬化樹脂の含有量c(質量%)を決定し、決定された第1半硬化樹脂の含有量及び上述の測定によって得られた発熱量Rから第1半硬化樹脂の発熱量が算出する。そして、下記式(2)によって樹脂充填板12に含浸している第1半硬化樹脂の硬化率が求められる。なお、樹脂が完全に硬化したか否かは、示差走査熱量測定によって得られる発熱曲線において、発熱が終了することで確認することができる。
  第1半硬化樹脂の硬化率(%)={1-[(R/c)×100]/Q}×100・・・(2)
The cure rate of the first semi-cured resin can be determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition is completely cured is measured. Then, a 10 mg sample of the first semi-cured resin from the resin-filled plate 12 is heated in the same manner, and the calorific value R per unit mass generated when the sample is completely cured is determined. In addition, the content c (% by mass) of the first semi-cured resin was determined by cross-sectional SEM image analysis and thermogravimetric differential thermal analysis (TG-DTA) of the resin-filled plate to be measured, and the determined first semi-cured The calorific value of the first semi-cured resin is calculated from the resin content and the calorific value R obtained by the above measurement. Then, the curing rate of the first semi-cured resin impregnated in the resin-filled plate 12 is obtained by the following formula (2). Whether or not the resin is completely cured can be confirmed by the end of heat generation in the heat generation curve obtained by differential scanning calorimetry.
Curing rate (%) of first semi-cured resin={1-[(R/c)×100]/Q}×100 (2)
 第1半硬化樹脂は、例えば、エポキシ樹脂、シアネート樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ビスマレイミド樹脂、熱硬化性ポリイミド、マレイミド樹脂、マレイミド変性樹脂、シリコーン樹脂、シリコーンゴム、不飽和ポリエステル、ポリウレタン、及びアルキド樹脂からなる群より選ばれる少なくとも一種を含んでいてよい。 Examples of the first semi-cured resin include epoxy resin, cyanate resin, phenol resin, melamine resin, urea resin, bismaleimide resin, thermosetting polyimide, maleimide resin, maleimide-modified resin, silicone resin, silicone rubber, unsaturated polyester, At least one selected from the group consisting of polyurethane and alkyd resin may be included.
 樹脂層14は第2半硬化樹脂を含み、被着体との接着性を発揮する層である。被着体の主面における表面に微細な凹凸がある場合には、樹脂層14が変形し、半硬化状態にある第2半硬化樹脂が含浸することができることから、硬化させることで、優れた接着性を発揮し得る。樹脂層14は第2半硬化樹脂を含むが、第2半硬化樹脂からなってもよい。 The resin layer 14 is a layer that contains a second semi-cured resin and exhibits adhesiveness to the adherend. When the main surface of the adherend has fine irregularities, the resin layer 14 is deformed and can be impregnated with the second semi-cured resin in a semi-cured state. Adhesion can be exhibited. The resin layer 14 contains the second semi-cured resin, but may be made of the second semi-cured resin.
 樹脂層14の厚さの下限値は、例えば、2μm以上、5μm以上、10μm以上、又は15μm以上であってよい。樹脂層14の厚さの下限値が上記範囲内であることで、複合シート10と被着体との接着の際、被着体の表面形状により追従しやすく、硬化後の接着性をより強固なものとすることができる。樹脂層14の厚さの上限値は、例えば、50μm以下、48μm以下、46μm以下、又は45μm以下であってよい。樹脂層14の厚さの上限値が上記範囲内であることで、複合シート10と被着体との接着し硬化させた後に、樹脂充填板12の硬化物と被着体との間に存在し得る硬化樹脂層の厚みを低減し、より放熱性に優れる積層体を調製し得る。樹脂層14の厚さは上述の範囲内で調整してよく、例えば、2~50μm、10~50μm、又は15~50μmであってよい。なお、樹脂層14を樹脂充填板12の両主面上に設ける場合には、樹脂層14のそれぞれの厚さが上述の範囲内であってよい。複数存在する樹脂層14の厚さはそれぞれ異なってもよいが、複数存在する樹脂層14のいずれもが同じ厚さであることが好ましい。 The lower limit of the thickness of the resin layer 14 may be, for example, 2 μm or more, 5 μm or more, 10 μm or more, or 15 μm or more. When the lower limit value of the thickness of the resin layer 14 is within the above range, when the composite sheet 10 and the adherend are adhered, the surface shape of the adherend can be easily followed, and the adhesiveness after curing is stronger. can be The upper limit of the thickness of the resin layer 14 may be, for example, 50 μm or less, 48 μm or less, 46 μm or less, or 45 μm or less. When the upper limit of the thickness of the resin layer 14 is within the above range, after the composite sheet 10 and the adherend are adhered and cured, a By reducing the thickness of the cured resin layer, it is possible to prepare a laminate having more excellent heat dissipation properties. The thickness of the resin layer 14 may be adjusted within the ranges described above, and may be, for example, 2-50 μm, 10-50 μm, or 15-50 μm. When the resin layer 14 is provided on both main surfaces of the resin-filled plate 12, the thickness of each resin layer 14 may be within the above range. The thickness of the plurality of resin layers 14 may be different, but it is preferable that all of the plurality of resin layers 14 have the same thickness.
 樹脂層14は第2半硬化樹脂を含むことから、25℃付近では固化し、粘着性等が抑制されているが、被着体と積層し、接着する際の加熱等によって、適度な硬化によって適度な流動性を発揮し得る。樹脂層14のはく離接着強さは、銅板との接着した場合にJIS K 6854:1999に規定されるはく離接着強さ試験に基づいて測定される、90度はく離の際のはく離接着強さが、例えば、5N/cmを超える層であってよい。樹脂層14の上記90度はく離の際のはく離接着強さが、例えば、6N/cm以上、8N/cm以上、又は10N/cm以上であってよい。樹脂層14の上記90度はく離の際のはく離接着強さの上限値は特に限定されるものではないが、例えば、30N/cm以下、25N/cm以下、又は20N/cm以下であってよい。 Since the resin layer 14 contains the second semi-cured resin, it is solidified at around 25° C. and its adhesiveness is suppressed. Appropriate fluidity can be exhibited. The peel adhesion strength of the resin layer 14 is measured based on the peel adhesion strength test specified in JIS K 6854: 1999 when adhered to a copper plate. For example, it may be a layer of more than 5 N/cm. The peel adhesive strength of the resin layer 14 when peeled at 90 degrees may be, for example, 6 N/cm or more, 8 N/cm or more, or 10 N/cm or more. The upper limit of the peel adhesive strength of the resin layer 14 when peeled at 90 degrees is not particularly limited, but may be, for example, 30 N/cm or less, 25 N/cm or less, or 20 N/cm or less.
 第2半硬化樹脂の硬化率の上限値は、例えば、50%以下、48%以下、46%以下、42%以下、40%以下、38%以下、36%以下、又は34%以下であってよい。第2半硬化樹脂の硬化率の上限値が上記範囲内であることで、複合シート10を被着体と加熱接着する際に第2半硬化樹脂が適度に溶融し被着体表面の隙間に充填されることによって、より優れた接着性を発現できる。第2半硬化樹脂の硬化率の下限値は、例えば、20%以上、23%以上、又は25%以上であってよい。第2半硬化樹脂の硬化率の下限値が上記範囲内であることで、複合シート10を被着体と加熱接着する際に樹脂層から第2半硬化樹脂が流れ出すことを抑制し、被着体との接着性が低下することをより十分に抑制できる。第2半硬化樹脂の硬化率は上述の範囲内で調整してよく、例えば、20~50%であってよい。 The upper limit of the curing rate of the second semi-cured resin is, for example, 50% or less, 48% or less, 46% or less, 42% or less, 40% or less, 38% or less, 36% or less, or 34% or less. good. When the upper limit of the curing rate of the second semi-cured resin is within the above range, the second semi-cured resin melts moderately when the composite sheet 10 is heat-bonded to the adherend and fills the gaps on the surface of the adherend. Better adhesiveness can be exhibited by being filled. The lower limit of the curing rate of the second semi-cured resin may be, for example, 20% or more, 23% or more, or 25% or more. When the lower limit of the curing rate of the second semi-cured resin is within the above range, the flow of the second semi-cured resin from the resin layer is suppressed when the composite sheet 10 is heat-bonded to the adherend. A decrease in adhesion to the body can be more sufficiently suppressed. The curing rate of the second semi-cured resin may be adjusted within the above range, and may be, for example, 20-50%.
 複合シート10において、示差走査熱量計によって測定される、上記第1半硬化樹脂の硬化に伴う発熱量をAとし、上記第2半硬化樹脂の硬化に伴う発熱量をBとしたときに、A/Bの値が0.5~1.7である。第1半硬化樹脂及び第2半硬化樹脂が同じ樹脂組成物又は類似の樹脂組成物の半硬化物である場合、A/Bの値が1.0であるとき、第1半硬化樹脂及び第2半硬化樹脂の硬化率が同程度であることを意味する。上記A/Bの値は、0.5以上1.0未満、1.0、又は1.0超1.7以下であってよい。上記A/Bの値が0.5以上1.0未満であることで、複合シート10と被着体とを接着する際の半硬化樹脂の流れ出しを抑制し、得られる積層体の絶縁性の低下をより抑制できる。上記A/Bの値が1.0超1.7以下であることで、複合シート10と被着体とを接着する際の、被着体の表面形状への複合シート10の追従性をより向上させることができる。 In the composite sheet 10, when A is the amount of heat generated due to curing of the first semi-cured resin and B is the amount of heat generated due to curing of the second semi-cured resin, as measured by a differential scanning calorimeter, A /B has a value of 0.5 to 1.7. When the first semi-cured resin and the second semi-cured resin are semi-cured products of the same resin composition or similar resin compositions, when the value of A/B is 1.0, the first semi-cured resin and the second semi-cured resin It means that the curing rates of the two semi-cured resins are almost the same. The value of A/B may be 0.5 or more and less than 1.0, 1.0, or more than 1.0 and 1.7 or less. When the value of A/B is 0.5 or more and less than 1.0, the outflow of the semi-cured resin is suppressed when the composite sheet 10 and the adherend are bonded, and the resulting laminate has insulating properties. Decrease can be suppressed more. When the value of A/B is more than 1.0 and 1.7 or less, the followability of the composite sheet 10 to the surface shape of the adherend when the composite sheet 10 and the adherend are adhered is further improved. can be improved.
 上記A/Bの値の下限値は、例えば、0.6以上、0.8以上、又は0.9以上であってよい。上記A/Bの値の下限値が上記範囲内であることで、複合シート10と被着体とを加熱接着する際に、複合シート10及び被着体の間に形成される硬化樹脂層の厚みをより十分に低減することができ、得られる積層体の放熱性をより向上させることができる。上記A/Bの値の上限値は、例えば、1.6以下、1.5以下、1.4以下、1.3以下、1.2以下、又は1.0以下であってよい。上記A/Bの値の上限値が上記範囲内であることで、複合シート10と被着体とを加熱接着する際に、第1半硬化樹脂が流れ出すことをより抑制することができ、得られる積層体の絶縁性をより向上させることができる。 The lower limit of the value of A/B may be, for example, 0.6 or more, 0.8 or more, or 0.9 or more. When the lower limit of the value of A/B is within the above range, the cured resin layer formed between the composite sheet 10 and the adherend when the composite sheet 10 and the adherend are heat-bonded. The thickness can be more sufficiently reduced, and the heat dissipation properties of the obtained laminate can be further improved. The upper limit of the value of A/B may be, for example, 1.6 or less, 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, or 1.0 or less. When the upper limit of the value of A/B is within the above range, it is possible to further suppress the first semi-cured resin from flowing out when the composite sheet 10 and the adherend are heat-bonded. It is possible to further improve the insulation properties of the laminated body.
 本明細書における半硬化樹脂の硬化に伴う発熱量は、以下の条件で測定する値を用いるものとする。具体的には、まず、測定対象となる複合シートを、100℃で加熱して第2半硬化樹脂を含む樹脂層を溶融状態とし、スキージによって複合シートから除去し、樹脂充填板とする。除去された第2半硬化樹脂を2mg採取し、示差走査熱量計によって発熱量を測定する。得られた発熱量の単位質量あたりの発熱量を算出し、発熱量Bとする。次に、上述のようにして得た樹脂充填板を10mg採取し、示差走査熱量計によって発熱量を測定する。測定対象とした樹脂充填板の断面SEM画像解析及び熱重量示差熱分析(TG-DTA)によって第1半硬化樹脂の含有量を決定し、決定された第1半硬化樹脂の含有量及び上述の測定によって得られた樹脂充填板の発熱量から第1半硬化樹脂の発熱量が算出し、発熱量Aとする。このようにして得られた発熱量A及び発熱量Bとから、上述のA/Bの値を決定することができる。なお、示差走査熱量測定は、室温から330℃まで10℃/分で昇温させて行い、その過程で生じる発熱ピークを測定するものとする。 For the amount of heat generated by the curing of the semi-cured resin in this specification, the value measured under the following conditions shall be used. Specifically, first, the composite sheet to be measured is heated at 100° C. to melt the resin layer containing the second semi-cured resin, which is then removed from the composite sheet by a squeegee to obtain a resin-filled plate. 2 mg of the removed second semi-cured resin is sampled and the calorific value is measured with a differential scanning calorimeter. The calorific value per unit mass of the obtained calorific value is calculated and defined as the calorific value B. Next, 10 mg of the resin-filled plate obtained as described above is sampled, and the calorific value is measured with a differential scanning calorimeter. The content of the first semi-cured resin is determined by cross-sectional SEM image analysis and thermogravimetric differential thermal analysis (TG-DTA) of the resin-filled plate to be measured, and the content of the determined first semi-cured resin and the above-mentioned The calorific value A of the first semi-cured resin is calculated from the calorific value of the resin-filled plate obtained by the measurement. From the calorific value A and the calorific value B thus obtained, the value of A/B can be determined. In addition, the differential scanning calorimetry is carried out by raising the temperature from room temperature to 330° C. at a rate of 10° C./min, and the exothermic peak generated in the process is measured.
 第2半硬化樹脂は、第1半硬化樹脂として例示したものを適用できる。第2半硬化樹脂は、第1半硬化樹脂と同一であってもよく、異なってもよいが、複合シート10の製造が容易となる観点からは同一である。 For the second semi-cured resin, those exemplified as the first semi-cured resin can be applied. The second semi-cured resin may be the same as or different from the first semi-cured resin.
 上述の複合シート10は、例えば、以下のような製造方法によって製造できる。複合シートの製造方法の一例(製法A)は、多孔質の窒化物焼結板に第1樹脂組成物を含浸して樹脂含浸体を得る含浸工程と、上記樹脂含浸体を加熱して細孔に充填された上記樹脂組成物を半硬化して第1半硬化樹脂を含む樹脂充填板を得る硬化工程と、第2半硬化樹脂を含む樹脂層を上記樹脂充填板の主面上の少なくとも一部に設ける被覆工程と、を有する。また複合シートの製造方法の別の例(製法B)は、多孔質の窒化物焼結板に第1樹脂組成物を含浸して、主面上に樹脂組成物層を有する樹脂含浸体を得る含浸工程と、上記樹脂含浸体を加熱して細孔に充填された上記樹脂組成物及び樹脂組成物層を構成する樹脂組成物を半硬化して第1半硬化樹脂を含む樹脂充填板を得る硬化工程と、を有する。まず、製法Aについて説明する。 The composite sheet 10 described above can be manufactured, for example, by the following manufacturing method. An example of a method for producing a composite sheet (manufacturing method A) includes an impregnation step of impregnating a porous nitride sintered plate with a first resin composition to obtain a resin-impregnated body, and heating the resin-impregnated body to form pores a curing step to obtain a resin-filled board containing a first semi-cured resin by semi-curing the resin composition filled in the resin-filled board; and a covering step provided on the part. In another example of the method for producing a composite sheet (manufacturing method B), a porous nitride sintered plate is impregnated with the first resin composition to obtain a resin-impregnated body having a resin composition layer on the main surface. An impregnation step and a resin-filled plate containing a first semi-cured resin are obtained by heating the resin-impregnated body to semi-cure the resin composition filled in the pores and the resin composition constituting the resin composition layer. and a curing step. First, manufacturing method A will be described.
 多孔質の窒化物焼結板は、予め調製された窒化物焼結板を使用してもよく、また、次のような焼結工程で調製した窒化物焼結板を用いてもよい。多孔質の窒化物焼結板として、予め調製された窒化物焼結板を使用する場合には、後述する焼結工程は省略することができる。 A nitride sintered plate prepared in advance may be used as the porous nitride sintered plate, or a nitride sintered plate prepared by the following sintering process may be used. When a previously prepared nitride sintered plate is used as the porous nitride sintered plate, the sintering step described later can be omitted.
 焼結工程によって窒化物焼結板を調製する場合には、まず、窒化物を含む原料粉末を準備する。原料粉末に含まれる窒化物は、例えば、窒化ホウ素、窒化アルミニウム、及び窒化ケイ素からなる群から選択される少なくとも一種の窒化物を含有してよい。窒化ホウ素を含有する場合、窒化ホウ素は、アモルファス状の窒化ホウ素であってよく、六方晶状の窒化ホウ素であってもよい。窒化物焼結板として窒化ホウ素焼結板を調製する場合、原料粉末として、例えば、平均粒径が0.5~10.0μmであるアモルファス窒化ホウ素粉末、又は、平均粒径が3.0~40.0μmである六方晶窒化ホウ素粉末を用いることができる。 When preparing a nitride sintered plate by a sintering process, first, a raw material powder containing nitride is prepared. The nitride contained in the raw material powder may contain, for example, at least one nitride selected from the group consisting of boron nitride, aluminum nitride, and silicon nitride. When boron nitride is contained, the boron nitride may be amorphous boron nitride or hexagonal boron nitride. When preparing a boron nitride sintered plate as a nitride sintered plate, the raw material powder is, for example, an amorphous boron nitride powder having an average particle size of 0.5 to 10.0 μm, or an average particle size of 3.0 to A 40.0 μm hexagonal boron nitride powder can be used.
 焼結工程では、窒化物粉末を含む配合物を成形して焼結し窒化物焼結体を得てもよい。成形は、一軸加圧で行ってよく、冷間等方加圧(CIP)法で行ってもよい。成形の前に、焼結助剤を配合して配合物を得てもよい。焼結助剤としては、例えば、酸化イットリウム、酸化アルミニウム及び酸化マグネシウム等の金属酸化物、炭酸リチウム及び炭酸ナトリウム等のアルカリ金属の炭酸塩、並びにホウ酸等が挙げられる。 In the sintering step, a compound containing nitride powder may be molded and sintered to obtain a nitride sintered body. The molding may be carried out by uniaxial pressing or cold isostatic pressing (CIP). A sintering aid may be incorporated to obtain the formulation prior to molding. Examples of sintering aids include metal oxides such as yttrium oxide, aluminum oxide and magnesium oxide, alkali metal carbonates such as lithium carbonate and sodium carbonate, and boric acid.
 焼結助剤を配合する場合は、焼結助剤の配合量は、例えば、窒化物及び焼結助剤の合計100質量部に対して、例えば、0.01質量部以上、又は0.10質量部以上であってよい。焼結助剤の配合量は、窒化物及び焼結助剤の合計100質量部に対して、例えば、20.00質量部以下、15.00質量部以下又は10.00質量部以下であってよい。焼結助剤の添加量を上記範囲内とすることで、窒化物焼結体のメジアン細孔径を後述の範囲に調整し易くなる。 When a sintering aid is blended, the amount of the sintering aid is, for example, 0.01 parts by mass or more, or 0.10 parts by mass with respect to a total of 100 parts by mass of the nitride and the sintering aid. It may be at least parts by mass. The amount of the sintering aid compounded is, for example, 20.00 parts by mass or less, 15.00 parts by mass or less, or 10.00 parts by mass or less with respect to a total of 100 parts by mass of the nitride and the sintering aid. good. By setting the amount of the sintering aid to be added within the above range, it becomes easier to adjust the median pore diameter of the nitride sintered body within the range described below.
 配合物は、例えば、ドクターブレード法によってシート状の成形体としてよい。成形方法は特に限定されず、金型を用いてプレス成形を行って成形体としてもよい。成形圧力は、例えば、5~350MPaであってよい。成形体の形状は、厚さが5.0mm以下のシート状であってよい。このようなシート状の成形体を用いて窒化物焼結板を製造すれば、窒化物焼結板を切断することなく、厚さが8.0mm以下のシート状の複合シートを製造することができる。また、ブロック状の窒化物焼結体を切断してシート状とする場合に比べて、成形体の段階からシート状にすることによって、加工による材料ロスを低減することができる。したがって、高い歩留まりで複合シートを製造することができる。 The compound may be formed into a sheet-like molded body by, for example, a doctor blade method. The molding method is not particularly limited, and press molding may be performed using a mold to form a molded body. The molding pressure may be, for example, 5-350 MPa. The shape of the molded product may be a sheet-like shape with a thickness of 5.0 mm or less. If a nitride sintered plate is produced using such a sheet-like compact, a sheet-like composite sheet having a thickness of 8.0 mm or less can be produced without cutting the nitride sintered plate. can. In addition, compared to the case where a block-shaped nitride sintered body is cut to form a sheet, the material loss due to processing can be reduced by forming the block into a sheet from the compact stage. Therefore, composite sheets can be manufactured with a high yield.
 焼結工程の焼結温度は、例えば、1600℃以上であってよく、1700℃以上であってもよい。焼結温度は、例えば、2200℃以下であってよく、2000℃以下であってもよい。焼結時間は、例えば、1時間以上であってよく、30時間以下であってもよい。焼結時の雰囲気は、例えば、窒素、ヘリウム、及びアルゴン等の不活性ガス雰囲気下であってよい。 The sintering temperature in the sintering step may be, for example, 1600°C or higher, or 1700°C or higher. The sintering temperature may be, for example, 2200° C. or lower, or 2000° C. or lower. The sintering time may be, for example, 1 hour or more and may be 30 hours or less. The atmosphere during sintering may be, for example, an inert gas atmosphere such as nitrogen, helium, and argon.
 焼結には、例えば、バッチ式炉及び連続式炉等を用いることができる。バッチ式炉としては、例えば、マッフル炉、管状炉、及び雰囲気炉等を挙げることができる。連続式炉としては、例えば、ロータリーキルン、スクリューコンベア炉、トンネル炉、ベルト炉、プッシャー炉、及び大形連続炉等を挙げることができる。このようにして、窒化物焼結体又は窒化物焼結板を得ることができる。窒化物焼結体はブロック状であってよい。 For sintering, for example, a batch type furnace and a continuous type furnace can be used. Batch type furnaces include, for example, muffle furnaces, tubular furnaces, atmosphere furnaces, and the like. Examples of continuous furnaces include rotary kilns, screw conveyor furnaces, tunnel furnaces, belt furnaces, pusher furnaces, and large continuous furnaces. Thus, a nitride sintered body or a nitride sintered plate can be obtained. The nitride sintered body may be block-shaped.
 窒化物焼結体がブロック状である場合、5.0mm以下の厚さとなるように加工する切断工程を行ってもよい。切断工程では、窒化物焼結体を、例えばワイヤーソーを用いて切断する。ワイヤーソーは、例えば、マルチカットワイヤーソー等であってよい。このような切断工程によって、例えば厚さが5.0mm以下のシート状の窒化物焼結板を得ることができる。これによって、次の含浸工程において、窒化物焼結体に第1樹脂組成物を円滑に含浸することができる。 When the nitride sintered body is in the form of a block, a cutting step may be performed to process it so that it has a thickness of 5.0 mm or less. In the cutting step, the nitride sintered body is cut using, for example, a wire saw. The wire saw may be, for example, a multi-cut wire saw or the like. A sheet-like nitride sintered plate having a thickness of, for example, 5.0 mm or less can be obtained by such a cutting process. Thereby, the nitride sintered body can be smoothly impregnated with the first resin composition in the next impregnation step.
 含浸工程では、窒化物焼結体の細孔に10~500mPa・sの粘度を有する第1樹脂組成物を含浸して樹脂含浸体を得る。窒化物焼結体の厚さを小さくすることで、第1樹脂組成物の含浸を円滑にすることができる。また、第1樹脂組成物の粘度を含浸に適した範囲にすることによって、樹脂充填体の充填率を十分に高くすることができる。 In the impregnation step, the pores of the nitride sintered body are impregnated with the first resin composition having a viscosity of 10 to 500 mPa·s to obtain a resin-impregnated body. By reducing the thickness of the nitride sintered body, the impregnation of the first resin composition can be facilitated. Also, by setting the viscosity of the first resin composition to a range suitable for impregnation, the filling rate of the resin filler can be sufficiently increased.
 窒化物焼結板に第1樹脂組成物を含浸する際の第1樹脂組成物の粘度は、例えば、440mPa・s以下、390mPa・s以下、又は340mPa・s以下であってよい。このように第1樹脂組成物の粘度を低くすることによって、第1樹脂組成物の含浸を十分に促進することができる。窒化物焼結板に第1樹脂組成物を含浸する際の第1樹脂組成物の粘度は、例えば、15mPa・s以上、又は20mPa・s以上であってよい。このように第1樹脂組成物の粘度に下限を設けることによって、一旦細孔内に含浸した第1樹脂組成物が細孔から流出することをより抑制することができる。第1樹脂組成物の粘度は上述の範囲内で調整してよく、例えば、15~440mPa・s、又は20~340mPa・sであってよい。第1樹脂組成物の粘度は、モノマー成分を一部重合して調整してもよく、溶剤を加えて調整してもよい。 The viscosity of the first resin composition when the nitride sintered plate is impregnated with the first resin composition may be, for example, 440 mPa·s or less, 390 mPa·s or less, or 340 mPa·s or less. By reducing the viscosity of the first resin composition in this manner, the impregnation of the first resin composition can be sufficiently promoted. The viscosity of the first resin composition when the nitride sintered plate is impregnated with the first resin composition may be, for example, 15 mPa·s or more, or 20 mPa·s or more. By thus setting the lower limit of the viscosity of the first resin composition, it is possible to further suppress the first resin composition once impregnated in the pores from flowing out from the pores. The viscosity of the first resin composition may be adjusted within the range described above, and may be, for example, 15 to 440 mPa·s, or 20 to 340 mPa·s. The viscosity of the first resin composition may be adjusted by partially polymerizing the monomer component, or may be adjusted by adding a solvent.
 上述の第1樹脂組成物の上記粘度は、窒化物焼結板に第1樹脂組成物を含浸する際の第1樹脂組成物の温度(T1)における粘度である。この粘度は、回転式粘度計を用いて、剪断速度が10(1/秒)、温度(T1)の下で測定される値である。したがって、温度T1を変えることによって、窒化物焼結板に第1樹脂組成物を含浸する際の粘度を調節してもよい。 The above viscosity of the first resin composition is the viscosity at the temperature (T1) of the first resin composition when impregnating the nitride sintered plate with the first resin composition. This viscosity is a value measured using a rotational viscometer at a shear rate of 10 (1/sec) and a temperature (T1). Therefore, by changing the temperature T1, the viscosity when the nitride sintered plate is impregnated with the first resin composition may be adjusted.
 窒化物焼結板に第1樹脂組成物を含浸する際の温度(T1)は、例えば、第1樹脂組成物を半硬化する温度(T2)以上、且つ温度T3(=T2+20℃)未満であってよい。温度(T2)は、例えば、80~140℃であってよい。窒化物焼結板への第1樹脂組成物の含浸は、加圧下で行ってよく、減圧下で行ってもよい。含浸する方法は特に限定されず、第1樹脂組成物中に窒化物焼結板を浸漬してもよいし、窒化物焼結板の表面に第1樹脂組成物を塗布することで行ってもよい。 The temperature (T1) at which the nitride sintered plate is impregnated with the first resin composition is, for example, the temperature (T2) at which the first resin composition is semi-cured or higher and the temperature T3 (=T2 + 20 ° C.) or lower. you can The temperature (T2) may be, for example, 80-140°C. Impregnation of the nitride sintered plate with the first resin composition may be performed under pressure or under reduced pressure. The impregnation method is not particularly limited, and the nitride sintered plate may be immersed in the first resin composition, or the surface of the nitride sintered plate may be coated with the first resin composition. good.
 含浸工程は、減圧条件下及び加圧条件下のどちらで行ってもよく、減圧条件下での含浸と、加圧条件下での含浸とを組み合わせて行ってもよい。減圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1000Pa以下、500Pa以下、100Pa以下、50Pa以下、又は20Pa以下であってよい。加圧条件下で含浸工程を実施する場合における含浸装置内の圧力は、例えば、1MPa以上、3MPa以上、10MPa以上、又は30MPa以上であってよい。 The impregnation step may be performed under either reduced pressure or increased pressure, or a combination of impregnation under reduced pressure and increased pressure. The pressure in the impregnation device when the impregnation step is performed under reduced pressure conditions may be, for example, 1000 Pa or less, 500 Pa or less, 100 Pa or less, 50 Pa or less, or 20 Pa or less. The pressure in the impregnation device when the impregnation step is performed under pressurized conditions may be, for example, 1 MPa or higher, 3 MPa or higher, 10 MPa or higher, or 30 MPa or higher.
 窒化物焼結板における細孔の細孔径を調整することによって、毛細管現象による樹脂組成物の含浸を促進し、樹脂充填体における樹脂の充填率を調整してもよい。このような観点から、窒化物焼結板のメジアン細孔径は、例えば、0.3~6.0μm、0.5~5.0μm、1.0~4.0μm、又は1.0~3.5μmであってもよい。 By adjusting the pore diameter of the pores in the nitride sintered plate, the impregnation of the resin composition by capillary action may be promoted, and the filling rate of the resin in the resin filler may be adjusted. From this point of view, the median pore diameter of the nitride sintered plate is, for example, 0.3 to 6.0 μm, 0.5 to 5.0 μm, 1.0 to 4.0 μm, or 1.0 to 3.0 μm. It may be 5 μm.
 第1樹脂組成物は、例えば、半硬化反応によって上述の複合シートの説明で挙げた半硬化樹脂となるものを用いることができる。 For the first resin composition, for example, one that becomes a semi-cured resin mentioned in the above description of the composite sheet by a semi-curing reaction can be used.
 第1樹脂組成物は溶剤を含んでいてもよい。溶剤としては、例えば、エタノール、及びイソプロパノール等の脂肪族アルコール、2-メトキシエタノール、1-メトキシエタノール、2-エトキシエタノール、1-エトキシ-2-プロパノール、2-ブトキシエタノール、2-(2-メトキシエトキシ)エタノール、2-(2-エトキシエトキシ)エタノール、及び2-(2-ブトキシエトキシ)エタノール等のエーテルアルコール、エチレングリコールモノメチルエーテル、及びエチレングリコールモノブチルエーテル等のグリコールエーテル、アセトン、メチルエチルケトン、メチルイソブチルケトン、及びジイソブチルケトン等のケトン、並びに、トルエン、及びキシレン等の芳香族炭化水素などが挙げられる。 The first resin composition may contain a solvent. Solvents include, for example, ethanol and aliphatic alcohols such as isopropanol, 2-methoxyethanol, 1-methoxyethanol, 2-ethoxyethanol, 1-ethoxy-2-propanol, 2-butoxyethanol, 2-(2-methoxy Ether alcohols such as ethoxy)ethanol, 2-(2-ethoxyethoxy)ethanol, and 2-(2-butoxyethoxy)ethanol, glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, acetone, methyl ethyl ketone, methyl isobutyl Ketones, ketones such as diisobutyl ketone, and aromatic hydrocarbons such as toluene and xylene.
 第1樹脂組成物は、熱硬化性であってよく、例えば、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種の化合物と、硬化剤と、を含有してよい。 The first resin composition may be thermosetting, for example, at least one compound selected from the group consisting of a compound having a cyanate group, a compound having a bismaleimide group, and a compound having an epoxy group; and an agent.
 シアネート基を有する化合物としては、例えば、ジメチルメチレンビス(1,4-フェニレン)ビスシアナート、及びビス(4-シアネートフェニル)メタン等が挙げられる。ジメチルメチレンビス(1,4-フェニレン)ビスシアナートは、例えば、TACN(三菱ガス化学株式会社製、商品名)として商業的に入手可能である。 Examples of compounds having a cyanate group include dimethylmethylenebis(1,4-phenylene)biscyanate and bis(4-cyanatophenyl)methane. Dimethylmethylenebis(1,4-phenylene)biscyanate is commercially available, for example, as TACN (manufactured by Mitsubishi Gas Chemical Company, Inc., trade name).
 ビスマレイミド基を有する化合物としては、例えば、N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミド、及び4,4’-ジフェニルメタンビスマレイミド等が挙げられる。N,N’-[(1-メチルエチリデン)ビス[(p-フェニレン)オキシ(p-フェニレン)]]ビスマレイミドは、例えば、BMI-80(ケイ・アイ化成株式会社製、商品名)として商業的に入手可能である。 Examples of compounds having a bismaleimide group include N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide and 4,4'-diphenylmethanebismaleimide. etc. N,N'-[(1-methylethylidene)bis[(p-phenylene)oxy(p-phenylene)]]bismaleimide is commercially available as BMI-80 (manufactured by K.I. Kasei Co., Ltd., trade name), for example. readily available.
 エポキシ基を有する化合物としては、例えば、ビスフェノールF型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、及び多官能エポキシ樹脂等が挙げられる。例えば、HP-4032D(DIC株式会社製、商品名)として商業的に入手可能である1,6-ビス(2,3-エポキシプロパン-1-イルオキシ)ナフタレン等であってもよい。 Examples of compounds having epoxy groups include bisphenol F type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, and polyfunctional epoxy resins. For example, it may be 1,6-bis(2,3-epoxypropan-1-yloxy)naphthalene, which is commercially available as HP-4032D (manufactured by DIC Corporation, trade name).
 硬化剤は、ホスフィン系硬化剤及びイミダゾール系硬化剤を含有してもよい。ホスフィン系硬化剤はシアネート基を有する化合物又はシアネート樹脂の三量化によるトリアジン生成反応を促進し得る。ホスフィン系硬化剤としては、例えば、テトラフェニルホスホニウムテトラ-p-トリルボレート、及びテトラフェニルホスホニウムテトラフェニルボレート等が挙げられる。テトラフェニルホスホニウムテトラ-p-トリルボレートは、例えば、TPP-MK(北興化学工業株式会社製、商品名)として商業的に入手可能である。 The curing agent may contain a phosphine-based curing agent and an imidazole-based curing agent. A phosphine-based curing agent can promote a triazine formation reaction by trimerization of a compound having a cyanate group or a cyanate resin. Phosphine-based curing agents include, for example, tetraphenylphosphonium tetra-p-tolylborate and tetraphenylphosphonium tetraphenylborate. Tetraphenylphosphonium tetra-p-tolylborate is commercially available, for example, as TPP-MK (manufactured by Hokko Chemical Industry Co., Ltd., trade name).
 イミダゾール系硬化剤はオキサゾリンを生成し、エポキシ基を有する化合物又はエポキシ樹脂の硬化反応を促進する。イミダゾール系硬化剤としては、例えば、1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾール、及び2-エチル-4-メチルイミダゾール等が挙げられる。1-(1-シアノメチル)-2-エチル-4-メチル-1H-イミダゾールは、例えば、2E4MZ-CN(四国化成工業株式会社製、商品名)として商業的に入手可能である。 The imidazole-based curing agent generates oxazoline and accelerates the curing reaction of the epoxy group-containing compound or epoxy resin. Examples of imidazole curing agents include 1-(1-cyanomethyl)-2-ethyl-4-methyl-1H-imidazole and 2-ethyl-4-methylimidazole. 1-(1-Cyanomethyl)-2-ethyl-4-methyl-1H-imidazole is commercially available, for example, as 2E4MZ-CN (manufactured by Shikoku Kasei Co., Ltd., trade name).
 ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、5質量部以下、4質量部以下又は3質量部以下であってよい。ホスフィン系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以上又は0.5質量部以上であってよい。ホスフィン系硬化剤の含有量が上記範囲内であると、樹脂含浸体の調製が容易である。ホスフィン系硬化剤の含有量は上述の範囲内で調整してよく、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1~5質量部であってよい。 The content of the phosphine-based curing agent is, for example, 5 parts by mass or less, 4 parts by mass or less, or 3 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be less than or equal to parts by mass. The content of the phosphine-based curing agent is, for example, 0.1 parts by mass or more or 0.5 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be more than part. When the content of the phosphine-based curing agent is within the above range, it is easy to prepare the resin-impregnated body. The content of the phosphine-based curing agent may be adjusted within the above-mentioned range, and for example, 0.5 parts per 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group and the compound having an epoxy group. It may be 1 to 5 parts by mass.
 イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.1質量部以下、0.05質量部以下又は0.03質量部以下であってよい。イミダゾール系硬化剤の含有量は、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.001質量部以上又は0.005質量部以上であってよい。イミダゾール系硬化剤の含有量が上記範囲内であると、樹脂含浸体の調製が容易である。イミダゾール系硬化剤の含有量は上述の範囲内で調整してよく、シアネート基を有する化合物、ビスマレイミド基を有する化合物及びエポキシ基を有する化合物の合計量100質量部に対して、例えば、0.001~0.1質量部であってよい。 The content of the imidazole-based curing agent is, for example, 0.1 parts by mass or less, 0.05 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. parts or less or 0.03 parts by mass or less. The content of the imidazole-based curing agent is, for example, 0.001 parts by mass or more or 0.005 parts by mass with respect to 100 parts by mass of the total amount of the compound having a cyanate group, the compound having a bismaleimide group, and the compound having an epoxy group. It may be more than part. When the content of the imidazole-based curing agent is within the above range, it is easy to prepare the resin-impregnated body. The content of the imidazole-based curing agent may be adjusted within the range described above. 001 to 0.1 parts by mass.
 第1樹脂組成物は、主剤及び硬化剤とは別の成分を含んでよい。その他の成分としては、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、並びに湿潤分散剤等を更に含んでもよい。これらのその他の成分の含有量は、第1樹脂組成物全量を基準として、例えば、20質量%以下であってよく、10質量%以下であってよく、5質量%以下であってよい。 The first resin composition may contain components other than the main agent and the curing agent. Other components further include, for example, other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, silane coupling agents, leveling agents, antifoaming agents, surface control agents, and wetting and dispersing agents. It's okay. The content of these other components may be, for example, 20% by mass or less, 10% by mass or less, or 5% by mass or less based on the total amount of the first resin composition.
 硬化工程では、含浸工程によって得られた樹脂含浸体における第1樹脂組成物を半硬化させることによって、第1半硬化樹脂を含む樹脂充填板を調製する。硬化工程では、第1樹脂組成物(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射によって、第1樹脂組成物を半硬化させる。 In the curing step, the resin-filled plate containing the first semi-cured resin is prepared by semi-curing the first resin composition in the resin-impregnated body obtained in the impregnation step. In the curing step, the first resin composition is semi-cured by heating and/or light irradiation depending on the type of the first resin composition (or curing agent added as necessary).
 硬化工程において、加熱によって第1樹脂組成物を半硬化させる場合の加熱温度は、例えば、80~130℃であってよい。第1樹脂組成物の半硬化によって得られる第1半硬化樹脂は、樹脂成分として、シアネート樹脂、ビスマレイミド樹脂、及びエポキシ樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂を含有してよい。また第1半硬化樹脂は、硬化剤を含有してもよい。第1半硬化樹脂は、これらの成分の他に、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、並びに、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、及び湿潤分散剤等に由来する成分を含有してもよい。 In the curing step, the heating temperature for semi-curing the first resin composition by heating may be, for example, 80 to 130°C. The first semi-cured resin obtained by semi-curing the first resin composition contains, as a resin component, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins, and epoxy resins. you can The first semi-cured resin may also contain a curing agent. In addition to these components, the first semi-cured resin includes other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, and surface conditioning agents. It may contain ingredients derived from agents, wetting and dispersing agents, and the like.
 硬化工程は樹脂含浸体の周囲に第1樹脂組成物が存在する状況で行うことが好ましい。このようにすることによって、第1樹脂組成物の硬化収縮によって体積が減じる場合にも樹脂含浸体の周囲から第1樹脂組成物が供給され、空隙が生じることを更に抑制することができる。また硬化反応を停止させ、冷却する際に生じる第1半硬化樹脂の固化収縮によって体積が減じる場合にも周囲に同様の樹脂が存在することによって、やはり空隙の発生を抑制し得る。 The curing step is preferably performed in a situation where the first resin composition exists around the resin-impregnated body. By doing so, even when the volume is reduced due to curing shrinkage of the first resin composition, the first resin composition is supplied from the periphery of the resin-impregnated body, and the formation of voids can be further suppressed. Also, even when the volume is reduced due to solidification shrinkage of the first semi-cured resin that occurs when the curing reaction is stopped and cooled, the presence of the similar resin in the surroundings can also suppress the formation of voids.
 被覆工程では樹脂充填板の主面上の少なくとも一部に第2半硬化樹脂を含む樹脂層を設けることで、複合シートを調製する。被覆工程は、例えば、硬化工程で得られた樹脂充填板に第2樹脂組成物を付着させ、加熱することによって、樹脂充填板の主面上の少なくとも一部に樹脂層を設ける工程であってよく、また予め調製された第2樹脂組成物の半硬化物を接着することによって、樹脂充填板の主面上の少なくとも一部に樹脂層を設ける工程個であってもよい。 In the coating step, a composite sheet is prepared by providing a resin layer containing a second semi-cured resin on at least a portion of the main surface of the resin-filled plate. The coating step is, for example, a step of attaching the second resin composition to the resin-filled plate obtained in the curing step and heating the resin-filled plate to form a resin layer on at least part of the main surface of the resin-filled plate. Alternatively, the step may include providing a resin layer on at least part of the main surface of the resin-filled plate by bonding a semi-cured material of the second resin composition prepared in advance.
 被覆工程における、被覆の方法は特に限定されず、第2樹脂組成物中に樹脂充填板を浸漬してもよいし、樹脂充填板の表面に第2樹脂組成物を塗布することで行ってもよいし、別途調製した第2半硬化樹脂を含む樹脂層を接着することで行ってもよい。別途調製した樹脂層を接着する手段は、別途支持体上に設けられた樹脂層を転写する方法であってよい。樹脂充填体に付着する第2樹脂組成物の量は、第2樹脂組成物の粘度で調節してもよい。 The coating method in the coating step is not particularly limited, and the resin-filled plate may be immersed in the second resin composition, or the surface of the resin-filled plate may be coated with the second resin composition. Alternatively, a separately prepared resin layer containing a second semi-cured resin may be adhered. Means for adhering a separately prepared resin layer may be a method of transferring a resin layer separately provided on a support. The amount of the second resin composition adhering to the resin filler may be adjusted by the viscosity of the second resin composition.
 樹脂充填板に付着する際の第2樹脂組成物の粘度は、例えば、10~500mPa・s、又は15~400mPa・sであってよい。 The viscosity of the second resin composition when adhered to the resin-filled plate may be, for example, 10 to 500 mPa·s, or 15 to 400 mPa·s.
 第2樹脂組成物の上記粘度は、樹脂充填体に第2樹脂組成物を付着する際の第2樹脂組成物の温度(T4)における粘度である。この粘度は、回転式粘度計を用いて、剪断速度が10(1/秒)であり、温度(T4)の下で測定される。温度(T4)を変えることによって、樹脂充填体に第2樹脂組成物を付着する際の粘度を調節してもよい。この粘度は、第2樹脂組成物の温度(T4)を変えることによって調整してもよいし、第1樹脂組成物と同様に溶剤の配合量を変えることで調整してもよい。 The viscosity of the second resin composition is the viscosity at the temperature (T4) of the second resin composition when the second resin composition adheres to the resin filling. The viscosity is measured using a rotational viscometer at a shear rate of 10 (1/sec) and under temperature (T4). By changing the temperature (T4), the viscosity at which the second resin composition adheres to the resin filling may be adjusted. This viscosity may be adjusted by changing the temperature (T4) of the second resin composition, or may be adjusted by changing the blending amount of the solvent as in the case of the first resin composition.
 第2樹脂組成物の含有成分は、第1樹脂組成物で例示したものと同じものを使用できる。第2樹脂組成物と第1樹脂組成物の組成は、互いに同一であってもよいし、異なっていてもよい。樹脂充填板に第2樹脂組成物を付着した後、第2樹脂組成物を半硬化させて第2樹脂を得る。第2樹脂組成物(又は必要に応じて添加される硬化剤)の種類に応じて、加熱、及び/又は光照射によって、第2樹脂組成物を半硬化させる。 The components contained in the second resin composition may be the same as those exemplified for the first resin composition. The compositions of the second resin composition and the first resin composition may be the same or different. After the second resin composition is adhered to the resin-filled plate, the second resin composition is semi-cured to obtain the second resin. The second resin composition is semi-cured by heating and/or light irradiation depending on the type of the second resin composition (or curing agent added as necessary).
 加熱によって第2樹脂組成物を半硬化させる場合の加熱温度は、例えば、80~130℃であってよい。第1樹脂組成物と第2樹脂組成物の組成が同一である場合、ここでの加熱温度を硬化工程時の加熱温度よりも低く設定すること、又は加熱時間を短く設定することによって、第1樹脂の硬化率よりも第2樹脂の硬化率を低くすることもできる。 The heating temperature for semi-curing the second resin composition by heating may be, for example, 80 to 130°C. When the compositions of the first resin composition and the second resin composition are the same, the first The hardening rate of the second resin can also be lower than the hardening rate of the resin.
 第2樹脂組成物の半硬化によって得られる第2半硬化樹脂は、樹脂成分として、シアネート樹脂、ビスマレイミド樹脂及びエポキシ樹脂からなる群より選択される少なくとも1種の熱硬化性樹脂、並びに硬化剤を含有してよい。第2半硬化樹脂は、これらの成分の他に、例えば、フェノール樹脂、メラミン樹脂、尿素樹脂、及びアルキド樹脂等のその他の樹脂、並びに、シランカップリング剤、レベリング剤、消泡剤、表面調整剤、及び湿潤分散剤等に由来する成分を含有してもよい。 The second semi-cured resin obtained by semi-curing the second resin composition includes, as resin components, at least one thermosetting resin selected from the group consisting of cyanate resins, bismaleimide resins and epoxy resins, and a curing agent. may contain In addition to these components, the second semi-cured resin includes other resins such as phenolic resins, melamine resins, urea resins, and alkyd resins, as well as silane coupling agents, leveling agents, antifoaming agents, and surface conditioning agents. It may contain ingredients derived from agents, wetting and dispersing agents, and the like.
 上述の製造方法は、焼結工程、含浸工程、硬化工程及び被覆工程の他の工程を有してもよい。他の工程としては、例えば、窒化物焼結体の表面又は被覆工程を経て得られる複合シートの表面から不純物を取り除く工程等が挙げられる。 The manufacturing method described above may have other steps such as a sintering step, an impregnation step, a curing step, and a coating step. Other steps include, for example, a step of removing impurities from the surface of the nitride sintered body or the surface of the composite sheet obtained through the coating step.
 製法Bは、製法Aにおける含浸工程において、窒化物焼結板に含浸させる第1樹脂組成物の量を調整し、樹脂含浸体上に樹脂組成物層が形成されるようにすることで、被覆工程を別途設けずに、複合シートを調製する方法である。樹脂組成物層の厚さの調製は、例えば、スクレーパー、及びアプリケーター等によって調整できる。その他の条件は、製法Aの説明において記載した内容を適用できる。 Production method B adjusts the amount of the first resin composition to be impregnated into the nitride sintered plate in the impregnation step in production method A so that a resin composition layer is formed on the resin impregnated body, thereby coating It is a method for preparing a composite sheet without providing a separate step. The thickness of the resin composition layer can be adjusted using, for example, a scraper and an applicator. For other conditions, the contents described in the description of the manufacturing method A can be applied.
 上述の複合シート10は、金属シート等の被着体と積層する場合においても樹脂充填体の性状変化が実用上、十分に抑制されており、高度な絶縁性を要求される積層体を形成するために有用である。積層体の一実施形態は、絶縁シートと、上記絶縁シートの少なくとも一方の主面上に設けられた金属シートと、を備え、上記絶縁シートが上述の複合シートの硬化物である。つまり、積層体の一態様では、樹脂充填板硬化物、硬化樹脂層、及び金属シートをこの順に備える。この場合、樹脂充填体硬化物及び金属シートは硬化樹脂層を介して接合されている。 In the composite sheet 10 described above, even when laminated with an adherend such as a metal sheet, the property change of the resin filling is sufficiently suppressed in practice, and a laminate that requires a high degree of insulation is formed. useful for One embodiment of the laminate includes an insulating sheet and a metal sheet provided on at least one main surface of the insulating sheet, and the insulating sheet is a cured product of the composite sheet described above. That is, in one aspect of the laminate, the cured resin-filled plate, the cured resin layer, and the metal sheet are provided in this order. In this case, the cured resin-filled body and the metal sheet are joined via the cured resin layer.
 金属シートは、シート形状を有する金属製のものであれば特に制限されない。上述の複合シートの説明で挙げた被着体(他部材)が金属シートであってよい。金属シートは、金属板であってよく、金属箔であってもよい。金属シートの材質は、アルミニウム、及び銅等が挙げられる。 The metal sheet is not particularly limited as long as it is made of metal and has a sheet shape. The adherend (another member) mentioned in the description of the composite sheet may be a metal sheet. The metal sheet may be a metal plate or a metal foil. Examples of the material of the metal sheet include aluminum and copper.
 上記積層体においては、上記金属シートの上記絶縁シート側の主面における表面粗さRzの下限値は、例えば、20μm以上、25μm以上、又は30μm以上であってよい。上記積層体は、上述の複合シートを金属シートと積層した後、硬化したものであることから、金属シートの表面粗さが大きい場合であっても、十分強固に接着されたものとなり得る。上記金属シートの上記絶縁シート側の主面における表面粗さRzの上限値は、例えば、50μm以下、45μm以下、又は40μm以下であってよい。上記金属シートの上記絶縁シート側の主面における表面粗さRzは上述の範囲内で調整してよく、例えば、20~50μm、又は20~40μmであってよい。なお、本開示に係る複合シート10は上記金属シートの上記絶縁シート側の主面における表面粗さRzの小さなものであっても十分な接着性を発揮し得る。このような観点からは、上記金属シートの上記絶縁シート側の主面における表面粗さRzは、例えば、1~15μm、2~10μm、又は3~10μmであってもよい。 In the laminate, the lower limit of the surface roughness Rz of the main surface of the metal sheet on the insulating sheet side may be, for example, 20 μm or more, 25 μm or more, or 30 μm or more. Since the laminate is obtained by laminating the above-mentioned composite sheet with a metal sheet and then curing the laminate, even if the surface roughness of the metal sheet is large, the laminate can be sufficiently strongly bonded. The upper limit of the surface roughness Rz of the main surface of the metal sheet on the insulating sheet side may be, for example, 50 μm or less, 45 μm or less, or 40 μm or less. The surface roughness Rz of the main surface of the metal sheet on the insulating sheet side may be adjusted within the range described above, and may be, for example, 20 to 50 μm, or 20 to 40 μm. Note that the composite sheet 10 according to the present disclosure can exhibit sufficient adhesiveness even if the surface roughness Rz of the main surface of the metal sheet on the insulating sheet side is small. From this point of view, the surface roughness Rz of the main surface of the metal sheet on the insulating sheet side may be, for example, 1 to 15 μm, 2 to 10 μm, or 3 to 10 μm.
 本明細書における表面粗さRzは、JIS B 0601:2013「製品の幾何特性使用(GPS)-表面性状:輪郭曲線方式-用語、定義及び表面性状パラメータ」で規定される最大高さ粗さを意味する。表面粗さRzは、JIS B 0601:2013の記載に準拠して測定される値である。 The surface roughness Rz in this specification is the maximum height roughness specified in JIS B 0601: 2013 "Use of product geometric properties (GPS) - surface texture: contour curve method - terms, definitions and surface texture parameters" means. The surface roughness Rz is a value measured according to JIS B 0601:2013.
 図3は、積層体の一例を示す断面図である。図3は、積層体20を積層方向に沿って切断したときの断面を示している。積層体20は、図1及び図2の複合シート10の硬化物である絶縁シート15と、当該絶縁シート15の両主面上に積層された金属シート22とを備える。複数ある金属シート22の材質及び厚さは互いに同じであってよく、異なっていてもよい。また、絶縁シート15の両方の主面に金属シート22を備えることは必須ではない。変形例では、絶縁シート15の一方の主面のみに金属シート22を備えていてもよい。 FIG. 3 is a cross-sectional view showing an example of a laminate. FIG. 3 shows a cross section of the laminate 20 cut along the lamination direction. The laminate 20 includes an insulating sheet 15 that is a cured product of the composite sheet 10 of FIGS. 1 and 2, and metal sheets 22 laminated on both main surfaces of the insulating sheet 15 . The material and thickness of the plurality of metal sheets 22 may be the same or different. Also, it is not essential to provide the metal sheets 22 on both main surfaces of the insulating sheet 15 . In a modification, only one main surface of the insulating sheet 15 may be provided with the metal sheet 22 .
 積層体20における金属シート22は、硬化樹脂層18によって樹脂充填板硬化物16と高い密着性で接着されている。これによって、金属シート22と絶縁シート15とが強固に接着している。積層体20は、このように金属シート22と絶縁シート15とが高い密着性で接着しているため、例えば放熱部材として、半導体装置等に好適に用いることができる。 The metal sheet 22 in the laminate 20 is adhered to the resin-filled plate cured product 16 by the cured resin layer 18 with high adhesion. Thereby, the metal sheet 22 and the insulating sheet 15 are strongly bonded. Since the metal sheet 22 and the insulating sheet 15 are adhered to each other with high adhesiveness, the laminated body 20 can be suitably used as a heat dissipation member for a semiconductor device or the like.
 積層体20の厚さは、例えば、12.0mm未満、6.0mm未満、又は3.0mm未満であってよい。積層体20の厚さの下限は、例えば、0.6mm以上であってよい。これによって、積層体20を十分に小型化することができる。このような積層体20は、例えば半導体装置の部品として好適に用いられる。 The thickness of the laminate 20 may be, for example, less than 12.0 mm, less than 6.0 mm, or less than 3.0 mm. The lower limit of the thickness of the laminate 20 may be, for example, 0.6 mm or more. As a result, the laminated body 20 can be sufficiently miniaturized. Such a laminate 20 is suitably used as a component of a semiconductor device, for example.
 積層体20は、複合シート10の硬化物である絶縁シート15を備えるため、熱伝導性と絶縁信頼性を高水準に両立することができる。
 積層体の製造方法の一実施形態は、上述の複合体と、金属シートと、を積層し、加熱及び加圧する積層工程を有する。上記複合体としては、上述のいずれかの製造方法で得られた複合体を用いることができる。すなわち、積層体の製造方法は、上述の製造方法に加えて、上記積層工程を有する製造方法であってよい。金属シートは、金属板であってよく、金属箔であってもよい。
Since the laminate 20 includes the insulating sheet 15 that is the cured product of the composite sheet 10, both thermal conductivity and insulation reliability can be achieved at high levels.
One embodiment of a method for manufacturing a laminate has a lamination step of laminating the above-described composite and metal sheets, followed by heating and pressing. As the composite, a composite obtained by any of the above-described production methods can be used. That is, the manufacturing method of the laminate may be a manufacturing method including the above-described lamination step in addition to the manufacturing method described above. The metal sheet may be a metal plate or a metal foil.
 積層工程では、複合体の主面上に金属シートを配置する。複合体と金属シートの主面同士を接触させた状態で、主面同士が対向する方向に加圧するとともに、加熱する。なお、加圧と加熱は必ずしも同時に行う必要はなく、加圧して圧着した後に加熱してもよい。 In the lamination process, a metal sheet is placed on the main surface of the composite. With the main surfaces of the composite and the metal sheet in contact with each other, pressure is applied in the direction in which the main surfaces face each other, and heating is applied. It should be noted that the pressurization and heating do not necessarily have to be performed at the same time, and the heating may be performed after the pressurization and crimping.
 このようにして得られた積層体は、半導体装置等の製造に用いることができる。一方の金属シート上に半導体素子を設けてもよい。他方の金属シートは冷却フィンと接合されてもよい。 The laminate thus obtained can be used for manufacturing semiconductor devices and the like. A semiconductor element may be provided on one of the metal sheets. The other metal sheet may be joined with cooling fins.
 以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。 Although several embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Also, the descriptions of the above-described embodiments can be applied to each other.
 以下、本開示について、実施例及び比較例を用いてより詳細に説明する。なお、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail using examples and comparative examples. It should be noted that the present disclosure is not limited to the following examples.
(実施例1)
[窒化物焼結板の作製]
 新日本電工株式会社製のオルトホウ酸100質量部と、デンカ株式会社製のアセチレンブラック(商品名:HS100)35質量部とをヘンシェルミキサーを用いて混合した。得られた混合物を、黒鉛製のルツボ中に充填し、アーク炉にて、アルゴン雰囲気で、2200℃にて5時間加熱し、塊状の炭化ホウ素(BC)を得た。得られた塊状物を、ジョークラッシャーで粗粉砕して粗粉を得た。この粗粉を、炭化珪素製のボール(φ10mm)を有するボールミルによってさらに粉砕して粉砕粉を得た。
(Example 1)
[Production of nitride sintered plate]
100 parts by mass of orthoboric acid manufactured by Shin Nippon Denko Co., Ltd. and 35 parts by mass of acetylene black (trade name: HS100) manufactured by Denka Co., Ltd. were mixed using a Henschel mixer. The obtained mixture was filled in a graphite crucible and heated at 2200° C. for 5 hours in an argon atmosphere in an arc furnace to obtain massive boron carbide (B 4 C). The resulting mass was coarsely pulverized with a jaw crusher to obtain coarse powder. This coarse powder was further pulverized by a ball mill having silicon carbide balls (φ10 mm) to obtain pulverized powder.
 調製した粉砕粉を、窒化ホウ素製のルツボに充填した。その後、抵抗加熱炉を用い、窒素ガス雰囲気下で、2000℃、0.85MPaの条件で10時間加熱した。このようにして炭窒化ホウ素(BCN)を含む焼成物を得た。 The prepared pulverized powder was filled in a crucible made of boron nitride. After that, using a resistance heating furnace, heating was performed for 10 hours under conditions of 2000° C. and 0.85 MPa in a nitrogen gas atmosphere. Thus, a fired product containing boron carbonitride (B 4 CN 4 ) was obtained.
 粉末状のホウ酸と炭酸カルシウムを配合して焼結助剤を調製した。調製にあたっては、100質量部のホウ酸に対して、炭酸カルシウムを50.0質量部配合した。このときのホウ素とカルシウムの原子比率は、ホウ素100原子%に対してカルシウムが17.5原子%であった。焼成物100質量部に対して焼結助剤を20質量部配合し、ヘンシェルミキサーを用いて混合して粉末状の配合物を調製した。 A sintering aid was prepared by blending powdered boric acid and calcium carbonate. In preparation, 50.0 parts by mass of calcium carbonate was blended with 100 parts by mass of boric acid. At this time, the atomic ratio of boron to calcium was 17.5 atomic % of calcium to 100 atomic % of boron. 20 parts by mass of a sintering aid was blended with 100 parts by mass of the fired product, and mixed using a Henschel mixer to prepare a powdery compound.
 配合物を、粉末プレス機を用いて、150MPaで30秒間加圧して、シート状(縦×横×厚さ=50mm×50mm×0.35mm)の成形体を得た。成形体を窒化ホウ素製容器に入れ、バッチ式高周波炉に導入した。バッチ式高周波炉において、常圧、窒素流量5L/分、2000℃の条件で5時間加熱した。その後、窒化ホウ素製容器から窒化ホウ素焼結板を取り出した。このようにして、シート状の窒化ホウ素焼結板を得た。窒化ホウ素焼結板の厚さは0.3mmであった。 The compound was pressed at 150 MPa for 30 seconds using a powder press to obtain a sheet-like (length x width x thickness = 50 mm x 50 mm x 0.35 mm) compact. The compact was placed in a boron nitride container and introduced into a batch-type high-frequency furnace. In a batch-type high-frequency furnace, heating was performed for 5 hours under the conditions of atmospheric pressure, nitrogen flow rate of 5 L/min, and 2000°C. After that, the boron nitride sintered plate was taken out from the boron nitride container. Thus, a sheet-like boron nitride sintered plate was obtained. The thickness of the boron nitride sintered plate was 0.3 mm.
<細孔率の測定>
 得られた窒化ホウ素焼結板の細孔率を決定した。まず、窒化ホウ素焼結板の体積及び質量から、かさ密度[Y(kg/m)]を算出し、このかさ密度と窒化物の理論密度[X(kg/m)]とから、下記式(1)によって求めた。結果を表1に示す。窒窒化ホウ素書輸血板の理論密度Xは2280kg/mを用いた。
  細孔率(体積%)=[1-(Y/X)]×100   (1)
<Measurement of porosity>
The porosity of the obtained boron nitride sintered plate was determined. First, from the volume and mass of the boron nitride sintered plate, the bulk density [Y (kg/m 3 )] is calculated, and from this bulk density and the theoretical density of the nitride [X (kg/m 3 )], the following It was obtained by the formula (1). Table 1 shows the results. The theoretical density X of the boron nitride nitride plate was 2280 kg/m 3 .
Porosity (% by volume) = [1-(Y/X)] x 100 (1)
<メジアン細孔径の測定>
 得られた窒化ホウ素焼結板について、株式会社島津製作所製の水銀ポロシメーター(装置名:オートポアIV9500)を用い、0.0042MPaから206.8MPaまで圧力を増加しながら細孔容積分布を測定した。積算細孔容積が全細孔容積の50%に達する細孔径を、「メジアン細孔径」とした。結果を表1に示す。
<Measurement of median pore size>
The pore volume distribution of the obtained boron nitride sintered plate was measured using a mercury porosimeter (device name: Autopore IV9500) manufactured by Shimadzu Corporation while increasing the pressure from 0.0042 MPa to 206.8 MPa. The pore diameter at which the accumulated pore volume reached 50% of the total pore volume was defined as the "median pore diameter". Table 1 shows the results.
[樹脂充填板の作製]
 市販のエポキシ樹脂(三菱ケミカル株式会社製、商品名:エピコート807)100質量部に対し、市販の硬化剤(日本合成化学工業株式会社製、商品名:アクメックスH-8を10質量部配合して、第1樹脂組成物を調製した。調製した第1樹脂組成物を120℃で15分間加熱した後、その温度を維持したままディスペンサーを用いて、窒化ホウ素焼結板の上側の主面上に滴下して第1樹脂組成物を含浸した。第1樹脂組成物の滴下量は、窒化ホウ素焼結板の細孔の総体積の1.5倍とした。滴下した第1樹脂組成物の一部は、窒化ホウ素焼結板に含浸せず、主面上に残存した。
[Preparation of resin-filled plate]
10 parts by mass of a commercially available curing agent (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., product name: Akmex H-8) was blended with 100 parts by mass of a commercially available epoxy resin (manufactured by Mitsubishi Chemical Corporation, product name: Epicoat 807). After heating the prepared first resin composition at 120 ° C. for 15 minutes, using a dispenser while maintaining the temperature, on the upper main surface of the boron nitride sintered plate and impregnated with the first resin composition.The amount of the first resin composition dropped was 1.5 times the total volume of the pores of the boron nitride sintered plate.The amount of the first resin composition that was dropped A part remained on the main surface without impregnating the boron nitride sintered plate.
 大気圧下、窒化ホウ素焼結板の上側の主面上に残存する第1樹脂組成物を、ステンレス製のスクレーパー(株式会社ナルビー製)を用いて平滑化した。余剰分の第1樹脂組成物を除去し、主面が平滑である樹脂含浸体を得た。 Under atmospheric pressure, the first resin composition remaining on the upper main surface of the boron nitride sintered plate was smoothed using a stainless steel scraper (manufactured by Narby Co., Ltd.). An excess of the first resin composition was removed to obtain a resin-impregnated body having a smooth main surface.
 樹脂含浸体を、大気圧下、120℃で180分間加熱して第1樹脂組成物を半硬化させた。このようにして、四角柱状の樹脂充填板(縦×横×厚さ=50mm×50mm×0.30mm)を作製した。樹脂充填板の主面の一部には、窒化ホウ素焼結体が露出していた。 The resin-impregnated body was heated at 120°C for 180 minutes under atmospheric pressure to semi-cure the first resin composition. In this way, a resin-filled plate in the shape of a quadrangular prism (length x width x thickness = 50 mm x 50 mm x 0.30 mm) was produced. The boron nitride sintered body was exposed on a part of the main surface of the resin-filled plate.
<第1半硬化樹脂の硬化率の測定>
 上記第1半硬化樹脂の硬化率は、示差走査熱量計を用いた測定によって決定した。まず、未硬化の状態の樹脂組成物2mgを完全に硬化させた際に生じる単位質量当たりの発熱量Qを測定した。そして、樹脂充填板から採取した半硬化樹脂のサンプル10mgを同様に昇温させて、完全に硬化させた際に生じる単位質量当たりの発熱量Rを求めた。半硬化物中に熱硬化性を有する成分がc(質量%)含有されているとして、下記式(A)によって複合体に含浸している樹脂組成物の硬化率が求めた。第1樹脂の硬化率は20%であった。
  含浸されている樹脂組成物の硬化率(%)={1-[(R/c)×100]/Q}×100・・・(A)
<Measurement of cure rate of first semi-cured resin>
The curing rate of the first semi-cured resin was determined by measurement using a differential scanning calorimeter. First, the calorific value Q per unit mass generated when 2 mg of the uncured resin composition was completely cured was measured. Then, a 10 mg sample of the semi-cured resin collected from the resin-filled plate was heated in the same manner, and the amount of heat generated per unit mass R generated when the resin was completely cured was determined. Assuming that c (% by mass) of a thermosetting component is contained in the semi-cured material, the curing rate of the resin composition impregnated in the composite was obtained by the following formula (A). The curing rate of the first resin was 20%.
Curing rate (%) of impregnated resin composition={1-[(R/c)×100]/Q}×100 (A)
[複合シートの作製]
 まず、樹脂充填板を調製する際に調製したのと同じ方法によって樹脂組成物を用意し、第2樹脂組成物とした。当該第2樹脂組成物を120℃で300分間加熱し、第2半硬化樹脂とした。第2半硬化樹脂をその温度を維持したまま、樹脂充填板の一方の主面に滴下した。大気圧下、樹脂充填板の主面に滴下した第2半硬化樹脂をシリコーンゴム製のヘラを用いて塗り伸ばし、主面全体に塗り広げた後、室温まで冷却することによって固化し、樹脂充填板の一方の主面上に樹脂層を設けた。上記樹脂層の厚さは45μmであった。次に、上述の方法と同様にして、上記第2樹脂組成物を120℃で300分間加熱することで、第2半硬化樹脂を用意し、その温度を維持したまま、樹脂充填板の他方の主面上に、滴下した。大気圧下、樹脂充填板の他方の主面上に滴下した第2半硬化樹脂をシリコーンゴム製のヘラを用いて塗り伸ばし、主面全体に塗り広げた後、室温まで冷却することによって固化し、樹脂充填板の他方の面上に樹脂層を設けた。当該樹脂層の厚さも45μmであった。このようにして、樹脂充填板の両主面上に、第2半硬化樹脂を含む樹脂層を設けた複合シートを得た。
[Production of composite sheet]
First, a resin composition was prepared by the same method as that for preparing the resin-filled plate, and was used as a second resin composition. The second resin composition was heated at 120° C. for 300 minutes to obtain a second semi-cured resin. The second semi-cured resin was dripped onto one main surface of the resin-filled plate while maintaining its temperature. Under atmospheric pressure, the second semi-cured resin dropped onto the main surface of the resin-filled plate is spread using a silicone rubber spatula, spread over the entire main surface, and then cooled to room temperature to solidify and fill with resin. A resin layer was provided on one major surface of the plate. The thickness of the resin layer was 45 μm. Next, in the same manner as described above, the second resin composition is heated at 120° C. for 300 minutes to prepare a second semi-cured resin. Dropped onto the main surface. Under atmospheric pressure, the second semi-cured resin dropped onto the other main surface of the resin-filled plate is spread using a silicone rubber spatula, spread over the entire main surface, and then cooled to room temperature to solidify. A resin layer was provided on the other surface of the resin-filled plate. The thickness of the resin layer was also 45 μm. Thus, a composite sheet was obtained in which resin layers containing the second semi-cured resin were provided on both main surfaces of the resin-filled plate.
<第2半硬化樹脂の硬化率の測定>
 第1半硬化樹脂と同様の方法によって、第2半硬化樹脂の硬化率を測定した。結果を表1に示す。
<Measurement of curing rate of second semi-cured resin>
The cure rate of the second semi-cured resin was measured by the same method as for the first semi-cured resin. Table 1 shows the results.
<樹脂層のはく離接着強さの測定>
 樹脂層のはく離接着強さについて、下記の手順で測定を行った。具体的には、銅板(縦×横×厚さ=100mm×20mm×1mm)の縦方向の片方の端から3.5mmの位置から44mm×14mmの領域に溶融させた樹脂を塗布し、塗膜を形成する。当該塗膜の周りを耐熱ポリイミドテープ(厚さ=0.5mm、3M社製)で囲い、上記塗膜の上に、縦×横×厚さがそれぞれ88mm×14mm×35μmである銅箔を半分に折り畳んだうえで積層し、200℃、5MPa、5分間の条件にて加熱接着を行った。その後、200℃、120分間で追加硬化した後に、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法」にしたがって、90°はく離試験を行い、万能試験機(株式会社エーアンドディ製、商品名:RTG-1310)を用いて20℃における複合体のピール強度を求めた。試験速度:50mm/分、ロードセル:5kN、測定温度:室温(20℃)の条件で測定を行った。結果を表1に示す。
<Measurement of peel strength of resin layer>
The peel adhesive strength of the resin layer was measured according to the following procedure. Specifically, a copper plate (length x width x thickness = 100 mm x 20 mm x 1 mm) was melted from a position of 3.5 mm from one end in the vertical direction to an area of 44 mm x 14 mm. to form The coating film is surrounded by a heat-resistant polyimide tape (thickness = 0.5 mm, manufactured by 3M), and a copper foil having length x width x thickness of 88 mm x 14 mm x 35 µm is placed on the coating film in half. , and laminated, and heat-adhered under the conditions of 200° C., 5 MPa, and 5 minutes. After that, after additional curing at 200 ° C. for 120 minutes, a 90 ° peel test was performed according to JIS K 6854-1: 1999 "Adhesive-Peeling adhesive strength test method". (trade name: RTG-1310)) to determine the peel strength of the composite at 20°C. Measurement was performed under conditions of test speed: 50 mm/min, load cell: 5 kN, and measurement temperature: room temperature (20°C). Table 1 shows the results.
<第2半硬化樹脂の硬化に伴う発熱量Bに対する、第1半硬化樹脂の硬化に伴う発熱量Aの比(A/Bの値)の測定>
 第2半硬化樹脂の硬化に伴う発熱量Bに対する、第1半硬化樹脂の硬化に伴う発熱量Aの比(A/Bの値)について、下記の手順で測定を行った。まず、複合シートを100℃で加熱し、第2半硬化樹脂を溶融状態として、スキージによって複合シートから除去し、樹脂充填板とした。除去された第2半硬化樹脂を2mg採取し、示差走査熱量計によって室温から330℃まで10℃/分で昇温させ、その過程に生じる発熱ピークを測定した。測定結果から、単位質量当たりの発熱量を算出し、これを発熱量Bとした。次に、上述のようにして得られた樹脂充填板を10mg採取し、同様に発熱量を求めた。測定対象とした樹脂充填板の断面SEM画像解析及び熱重量示差熱分析(TG-DTA)によって第1半硬化樹脂の含有量は、34質量%であった。得られた第1半硬化樹脂の含有量及び樹脂充填板について得られた発熱量とから、第1半硬化樹脂の発熱量を算出し、これを発熱量Aとした。得られたAとBとの値からA/Bの値を決定した。A/Bの値は1.4となった。
<Measurement of the ratio (value of A/B) of the heat generation amount A accompanying the curing of the first semi-cured resin to the heat generation amount B accompanying the curing of the second semi-cured resin>
The ratio (value of A/B) of the amount of heat generated during curing of the first semi-cured resin to the amount of heat generated during curing of the second semi-cured resin was measured according to the following procedure. First, the composite sheet was heated at 100° C. to melt the second semi-cured resin, which was then removed from the composite sheet by a squeegee to obtain a resin-filled plate. 2 mg of the removed second semi-cured resin was sampled and heated from room temperature to 330° C. at a rate of 10° C./min by a differential scanning calorimeter, and an exothermic peak generated during the process was measured. From the measurement results, the calorific value per unit mass was calculated and defined as calorific value B. Next, 10 mg of the resin-filled plate obtained as described above was sampled, and the calorific value was determined in the same manner. Cross-sectional SEM image analysis and thermogravimetric differential thermal analysis (TG-DTA) of the resin-filled plate to be measured revealed that the content of the first semi-cured resin was 34% by mass. The amount of heat generated by the first semi-cured resin was calculated from the obtained content of the first semi-cured resin and the amount of heat generated from the resin-filled plate. The value of A/B was determined from the values of A and B thus obtained. The A/B value was 1.4.
<複合シートの接着性評価>
 後述する方法で、複合シートの接着性を評価した。まず、上述の複合シート(縦×横×厚さ=50mm×50mm×0.30mm)の一方の主面上に銅箔(縦×横×厚さ=50mm×50mm×0.035mm、表面粗さRz:21μm)を四隅が一致するように積層し200℃及び5MPaの条件下で5分間加熱及び加圧し、更に200℃及び大気圧の条件下で2時間加熱して積層体を調製し、これを測定対象とした。測定は、JIS K 6854-1:1999「接着剤-はく離接着強さ試験方法」に従って、90°はく離試験を行い、凝集破壊部分の面積を測定した。測定結果から、以下の基準で接着性を評価した。結果を表1に示す。
A:凝集破壊部分の面積が90面積%以上である。
B:凝集破壊部分の面積が70面積%以上90面積%未満である。
C:凝集破壊部分の面積が50面積%以上70面積%未満である。
D:凝集破壊部分の面積が50面積%未満である。
<Adhesive evaluation of composite sheet>
The adhesiveness of the composite sheet was evaluated by the method described later. First, copper foil (length x width x thickness = 50 mm x 50 mm x 0.035 mm, surface roughness Rz: 21 μm) are laminated so that the four corners are aligned, heated and pressed under conditions of 200 ° C. and 5 MPa for 5 minutes, and further heated under conditions of 200 ° C. and atmospheric pressure for 2 hours to prepare a laminate. was the object of measurement. A 90° peeling test was carried out according to JIS K 6854-1:1999 "Adhesive-Peeling adhesion strength test method", and the area of the cohesive failure portion was measured. Based on the measurement results, the adhesion was evaluated according to the following criteria. Table 1 shows the results.
A: The area of the cohesive failure portion is 90 area % or more.
B: The area of the cohesive failure portion is 70 area % or more and less than 90 area %.
C: The area of the cohesive failure portion is 50 area % or more and less than 70 area %.
D: The area of the cohesive failure portion is less than 50 area %.
(実施例2~5)
 細孔率、メジアン細孔径及び厚さが表1に示されるような窒化ホウ素焼結板を用いたこと、第1半硬化樹脂及び第2半硬化樹脂の硬化率が表1に示される値となるように調整したこと以外は、実施例1と同様にして、複合シートを調製した。得られた複合シートにおける樹脂層のはく離強さ、及びA/Bの値は表1に示すとおりであった。さらに、得られた複合シートについて、実施例1と同様に評価を行った。結果を表1に示す。
(Examples 2-5)
Using a boron nitride sintered plate whose porosity, median pore diameter and thickness are shown in Table 1, and that the curing rates of the first semi-cured resin and the second semi-cured resin are the values shown in Table 1. A composite sheet was prepared in the same manner as in Example 1, except that it was adjusted to be Table 1 shows the peel strength of the resin layer and the A/B value of the resulting composite sheet. Furthermore, the obtained composite sheet was evaluated in the same manner as in Example 1. Table 1 shows the results.
(比較例1)
 細孔率、メジアン細孔径、及び厚さが表1に示されるような窒化ホウ素焼結板を用いたこと、第1半硬化樹脂及び第2半硬化樹脂の硬化率が表1に示される値となるように調整したこと、並びに、第2半硬化樹脂を作製する際には予め樹脂をPETフィルムに挟んでアプリケーターで所定の厚みとし、それを100℃、0.5MPaの加熱接着で転写したこと以外は、実施例1と同様にして、複合シートを調製した。得られた複合シートにおける樹脂層のはく離強さ、及びA/Bの値は表1に示すとおりであった。さらに、得られた複合シートについて、実施例1と同様に評価を行った。結果を表1に示す。
(Comparative example 1)
Using a boron nitride sintered plate whose porosity, median pore diameter, and thickness are shown in Table 1, and the values shown in Table 1 for the curing rates of the first semi-cured resin and the second semi-cured resin and when producing the second semi-cured resin, the resin was sandwiched between PET films in advance to a predetermined thickness with an applicator, and it was transferred by heat adhesion at 100 ° C. and 0.5 MPa. A composite sheet was prepared in the same manner as in Example 1, except for the above. Table 1 shows the peel strength of the resin layer and the A/B value of the resulting composite sheet. Furthermore, the obtained composite sheet was evaluated in the same manner as in Example 1. Table 1 shows the results.
(比較例2)
 細孔率、メジアン細孔径及び厚さが表1に示されるような窒化ホウ素焼結板を用いたこと、並びに、第1半硬化樹脂及び第2半硬化樹脂の硬化率が表1に示される値となるように調整したこと以外は、実施例1と同様にして、複合シートを調製した。得られた複合シートにおける樹脂層のはく離強さ、及びA/Bの値は表1に示すとおりであった。さらに、得られた複合シートについて、実施例1と同様に評価を行った。結果を表1に示す。
(Comparative example 2)
Table 1 shows the use of a boron nitride sintered plate having a porosity, median pore diameter, and thickness shown in Table 1, and the curing rates of the first semi-cured resin and the second semi-cured resin. A composite sheet was prepared in the same manner as in Example 1, except that the values were adjusted. Table 1 shows the peel strength of the resin layer and the A/B value of the resulting composite sheet. Furthermore, the obtained composite sheet was evaluated in the same manner as in Example 1. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、被着体の表面粗さが比較的大きな場合であっても、被着体に対して十分な接着性を発揮し得る複合シートを提供できる。本開示によればまた、上述の複合シートを用いて調製される積層体を提供できる。 According to the present disclosure, it is possible to provide a composite sheet that can exhibit sufficient adhesiveness to an adherend even when the surface roughness of the adherend is relatively large. The present disclosure can also provide laminates prepared using the composite sheets described above.
 10…複合シート、12…樹脂充填板、12a…主面、14…樹脂層、20…積層体、22…金属シート、15…絶縁シート、16…樹脂充填板硬化物、18…硬化樹脂層。

 
DESCRIPTION OF SYMBOLS 10... Composite sheet, 12... Resin-filled board, 12a... Main surface, 14... Resin layer, 20... Laminate, 22... Metal sheet, 15... Insulating sheet, 16... Hardened resin-filled plate, 18... Hardened resin layer.

Claims (8)

  1.  多孔質の窒化物焼結板と、前記窒化物焼結板の細孔に充填された第1半硬化樹脂と、を含む樹脂充填板と、
     前記樹脂充填板の主面上の少なくとも一部に設けられた第2半硬化樹脂を含む樹脂層と、を有し、
     示差走査熱量計によって測定される、前記第1半硬化樹脂の硬化に伴う発熱量をAとし、前記第2半硬化樹脂の硬化に伴う発熱量をBとしたときに、A/Bの値が0.5~1.7である、複合シート。
    a resin-filled plate containing a porous nitride sintered plate and a first semi-cured resin filled in the pores of the nitride sintered plate;
    a resin layer containing a second semi-cured resin provided on at least a portion of the main surface of the resin-filled plate,
    When the amount of heat generated due to curing of the first semi-cured resin measured by a differential scanning calorimeter is A, and the amount of heat generated due to curing of the second semi-cured resin is B, the value of A/B is Composite sheet, which is 0.5 to 1.7.
  2.  前記樹脂層は、銅板との接着した場合にJIS K 6854:1999に規定されるはく離接着強さ試験に基づいて測定される、90度はく離の際のはく離接着強さが5N/cmを超える層である、請求項1に記載の複合シート。 The resin layer has a peel strength of more than 5 N/cm when peeled at 90 degrees, which is measured based on the peel strength test specified in JIS K 6854: 1999 when adhered to a copper plate. The composite sheet according to claim 1, wherein
  3.  前記樹脂充填板の厚さが2.0mm以下である、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, wherein the resin-filled plate has a thickness of 2.0 mm or less.
  4.  前記樹脂層の厚さが2~50μmである、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, wherein the resin layer has a thickness of 2 to 50 µm.
  5.  前記窒化物焼結板の細孔率が40~65体積%である、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, wherein the nitride sintered plate has a porosity of 40 to 65% by volume.
  6.  前記窒化物焼結板のメジアン細孔径が1.5~4.0μmである、請求項1又は2に記載の複合シート。 The composite sheet according to claim 1 or 2, wherein the nitride sintered plate has a median pore diameter of 1.5 to 4.0 µm.
  7.  絶縁シートと、前記絶縁シートの少なくとも一方の主面上に設けられた金属シートと、を備え、
     前記絶縁シートが請求項1又は2に記載の複合シートの硬化物である、積層体。
    An insulating sheet and a metal sheet provided on at least one main surface of the insulating sheet,
    A laminate, wherein the insulating sheet is a cured product of the composite sheet according to claim 1 or 2.
  8.  前記金属シートの前記絶縁シート側の主面における表面粗さRzが20μm以上である、請求項7に記載の積層体。

     
    8. The laminate according to claim 7, wherein the main surface of the metal sheet on the insulating sheet side has a surface roughness Rz of 20 μm or more.

PCT/JP2023/004440 2022-02-28 2023-02-09 Composite sheet and laminate WO2023162705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023540575A JP7374391B1 (en) 2022-02-28 2023-02-09 Composite sheets and laminates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-030025 2022-02-28
JP2022030025 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023162705A1 true WO2023162705A1 (en) 2023-08-31

Family

ID=87765708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004440 WO2023162705A1 (en) 2022-02-28 2023-02-09 Composite sheet and laminate

Country Status (2)

Country Link
JP (1) JP7374391B1 (en)
WO (1) WO2023162705A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022956A1 (en) * 2013-08-14 2015-02-19 電気化学工業株式会社 Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
JP2016103611A (en) * 2014-11-28 2016-06-02 デンカ株式会社 Boron nitride resin composite circuit board
JP2019145744A (en) * 2018-02-23 2019-08-29 イビデン株式会社 Heat transfer substrate
WO2021230328A1 (en) * 2020-05-15 2021-11-18 デンカ株式会社 Composite body and layered body
WO2022209325A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Composite, method for manufacturing same, resin-filled plate, laminate, and method for manufacturing same
WO2022209971A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Composite body and method for manufacturing same, and laminated body and method for manufacturing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7458479B2 (en) 2020-05-15 2024-03-29 デンカ株式会社 Composite and method for producing the composite

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022956A1 (en) * 2013-08-14 2015-02-19 電気化学工業株式会社 Boron nitride/resin composite circuit board, and circuit board including boron nitride/resin composite integrated with heat radiation plate
JP2016103611A (en) * 2014-11-28 2016-06-02 デンカ株式会社 Boron nitride resin composite circuit board
JP2019145744A (en) * 2018-02-23 2019-08-29 イビデン株式会社 Heat transfer substrate
WO2021230328A1 (en) * 2020-05-15 2021-11-18 デンカ株式会社 Composite body and layered body
WO2022209325A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Composite, method for manufacturing same, resin-filled plate, laminate, and method for manufacturing same
WO2022209971A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Composite body and method for manufacturing same, and laminated body and method for manufacturing same

Also Published As

Publication number Publication date
JPWO2023162705A1 (en) 2023-08-31
JP7374391B1 (en) 2023-11-06

Similar Documents

Publication Publication Date Title
JP7217391B1 (en) Composite and its manufacturing method, and laminate and its manufacturing method
WO2020203586A1 (en) Composite, method for producing composite, laminate, and method for producing laminate
WO2022209971A1 (en) Composite body and method for manufacturing same, and laminated body and method for manufacturing same
WO2023162705A1 (en) Composite sheet and laminate
JP7458479B2 (en) Composite and method for producing the composite
JP7248867B2 (en) Composite sheet and laminate
JP7478803B2 (en) Composite sheet, laminate, and power device
JP7381806B2 (en) Laminated parts and methods for manufacturing the same, laminates and methods for manufacturing the same
WO2021200965A1 (en) Composite sheet
JP7176159B2 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
JP7165844B2 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
JP7148758B1 (en) Composite sheet and its manufacturing method, and laminate and its manufacturing method
JP7319482B2 (en) Ceramic plate manufacturing method, ceramic plate, composite sheet, and laminated substrate
WO2022071304A1 (en) Composite sheet, laminate, and evaluation method for estimating adhesiveness of composite sheet
WO2024048206A1 (en) Laminate, method for producing laminate, laminated substrate, and method for producing laminated substrate
JP2024033151A (en) Composite substrate manufacturing method and composite substrate
EP4112588B1 (en) Method for producing composite body
WO2023190575A1 (en) Circuit board manufacturing method and circuit board

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023540575

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759709

Country of ref document: EP

Kind code of ref document: A1