WO2023162096A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2023162096A1
WO2023162096A1 PCT/JP2022/007635 JP2022007635W WO2023162096A1 WO 2023162096 A1 WO2023162096 A1 WO 2023162096A1 JP 2022007635 W JP2022007635 W JP 2022007635W WO 2023162096 A1 WO2023162096 A1 WO 2023162096A1
Authority
WO
WIPO (PCT)
Prior art keywords
output side
shaft
output
flow path
end plate
Prior art date
Application number
PCT/JP2022/007635
Other languages
English (en)
French (fr)
Inventor
裕輔 木本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/007635 priority Critical patent/WO2023162096A1/ja
Publication of WO2023162096A1 publication Critical patent/WO2023162096A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This application relates to a rotating electric machine equipped with a cooling mechanism.
  • heat is generated in the stator and rotor due to rotor iron loss that increases according to vehicle speed or copper loss that depends on the current flowing in the coil.
  • magnets provided on the rotor undergo irreversible demagnetization when the allowable temperature is exceeded, resulting in a marked drop in performance.
  • Patent Literature 1 discloses a rotating electrical machine in which a coolant is supplied into the hollow shaft of the rotor to indirectly cool the magnets as highly efficient cooling of the rotor.
  • the present application has been made to solve such problems, and an object thereof is to obtain a rotating electric machine capable of cooling constituent members without lowering the cooling effect.
  • the rotary electric machine disclosed in the present application includes a rotor that rotates around a shaft, a stator core that covers the outer periphery of the rotor and has a coil wound thereon, a holding frame that is provided on the outer peripheral side of the stator core and holds the stator core, a holding A housing provided on the outer peripheral side of the frame, a non-output side bracket provided on one axial end side of the holding frame and housing, and an output side bracket provided on the other axial end side of the holding frame and housing.
  • the non-output side bracket connects the inlet for inflowing the coolant from the outside and the non-output side end of the shaft internal channel to the inlet.
  • the constituent members of the rotating electric machine can be cooled without reducing the cooling effect.
  • FIG. 1 is a side sectional view showing the configuration of a rotating electric machine according to Embodiment 1;
  • FIG. FIG. 2 is a cross-sectional view of the rotating electric machine viewed from line II-II in FIG. 1;
  • FIG. 2 is a cross-sectional view of the rotating electric machine seen from line III-III in FIG. 1;
  • FIG. 7 is a radial cross-sectional view showing the configuration of a rotating electric machine according to Embodiment 2;
  • FIG. 11 is a side cross-sectional view showing the configuration of a rotating electric machine according to Embodiment 3;
  • FIG. 6 is a cross-sectional view of the rotating electric machine seen from line VI-VI in FIG. 5;
  • FIG. 6 is a cross-sectional view of the rotating electric machine seen from line VII-VII in FIG. 5;
  • FIG. 6 is a cross-sectional view of the rotating electric machine seen from line VIII-VIII in FIG. 5;
  • the rotating electric machine in each embodiment is a permanent magnet type rotating electric machine.
  • FIG. 1 is a schematic cross-sectional view along the axial direction of the shaft in the rotating electrical machine of Embodiment 1.
  • FIG. 2 is a diagram of the rotating electric machine viewed from line II-II in FIG. 1
  • FIG. 3 is a diagram of the rotating electric machine viewed from line III-III in FIG. A basic configuration of the rotating electric machine according to Embodiment 1 will be described with reference to FIGS. 1, 2, and 3.
  • FIG. 1 is a schematic cross-sectional view along the axial direction of the shaft in the rotating electrical machine of Embodiment 1.
  • FIG. 2 is a diagram of the rotating electric machine viewed from line II-II in FIG. 1
  • FIG. 3 is a diagram of the rotating electric machine viewed from line III-III in FIG.
  • a basic configuration of the rotating electric machine according to Embodiment 1 will be described with reference to FIGS. 1, 2, and 3.
  • the rotary electric machine 1 is formed by combining a cylindrical housing 2 , a disk-shaped output side bracket 12 , and a disk-shaped non-output side bracket 3 .
  • the housing 2, the output-side bracket 12, and the non-output-side bracket 3 are made of metal, but may be made of resin. If metal is used, the weight of the rotating machine is increased, but the material strength and heat resistance are high. On the other hand, if it is made of resin, it is inferior to metal in terms of strength, but in addition to being excellent in corrosion resistance, the weight of the rotating machine itself can be reduced, and the efficiency of the equipment to which the rotating machine is installed can be improved. can be done.
  • a cylindrical shaft 11 made of metal is provided at the center of the housing 2 , the output-side bracket 12 , and the non-output-side bracket 3 .
  • the non-output side bracket 3 is composed of a non-output side bracket base 3a and a non-output side bracket cover 3b.
  • the non-output side bracket base 3a has a through hole in the center so that the shaft 11 can pass therethrough, and the non-output side bracket cover 3b covers the non-output side end surface of the shaft 11 penetrating the non-output side bracket base 3a. are placed.
  • a non-output side bracket inner flow path 22 is formed extending from the upper portion to the center of the rotary electric machine 1.
  • the non-output side bracket cover 3b has a non-output side bracket cover 3b.
  • An inlet 20 is provided for supplying coolant to the side bracket inner channel 22 .
  • the inlet 20 is provided radially outside the shaft 11 in the non-output side bracket cover 3b.
  • the mating surfaces of the non-output side bracket base 3a and the non-output side bracket cover 3b are sealed by an O-ring, welding, or the like so that the coolant does not leak out from the non-output side bracket inner channel 22.
  • FIG. 1 An inlet 20 is provided for supplying coolant to the side bracket inner channel 22 .
  • the output side bracket 12 is composed of an output side bracket base 12a and an output side bracket cover 12b.
  • the output-side bracket base 12a and the output-side bracket cover 12b are provided with a through hole in the center so that the shaft 11 can pass therethrough.
  • an output-side bracket inner flow path 24 extending from the upper portion to the center of the rotating electric machine 1 is formed.
  • An output-side in-bracket discharge hole 12c is provided for discharging the refrigerant flowing through 24 .
  • the mating surfaces of the output-side bracket base 12a and the output-side bracket cover 12b are sealed by an O-ring, welding, or the like so that the refrigerant does not leak out from the output-side bracket inner channel 24. As shown in FIG.
  • the shaft 11 protrudes from the output side bracket 12 on the output side.
  • the output of the rotary electric machine 1 is taken out on the side of the output side bracket 12 .
  • the built-in portion is accommodated and protected by being covered with housing 2 , output-side bracket 12 , and non-output-side bracket 3 .
  • the shaft 11 is rotatably supported in the output side bracket 12 by the output side bearing 9b. Further, the shaft 11 is rotatably supported in the non-output side bracket 3 by the non-output side bearing 9a.
  • the output side bearing 9b and the non-output side bearing 9a are made of metal and have a donut shape. The output side bearing 9b and the non-output side bearing 9a rotate the shaft 11 accurately and smoothly.
  • the shaft 11 has a hollow shaft inner channel 23 extending from the non-output side toward the output side, and communicates with the non-output side bracket inner channel 22 at the shaft end face on the non-output side. That is, the shaft end surface on the non-output side of the shaft 11 serves as the inflow path of the shaft internal flow path 23 .
  • a non-output side seal 10a that suppresses the refrigerant from entering the inside of the rotary electric machine when the refrigerant flows from the stationary non-output side bracket inner flow path 22 on the non-output side shaft end surface to the rotating shaft inner flow path 23.
  • a radial flow path 23a extending from the shaft internal flow path 23 to the radially outer side of the rotor is formed on the shaft end face on the output side of the shaft.
  • the radial flow path 23 a communicates with the output side bracket inner flow path 24 . That is, the output side of the shaft 11 becomes the outflow port of the in-shaft flow path 23 .
  • the radial flow path 23 a is arranged at the same position as the output side bracket internal flow path 24 in the axial direction of the shaft 11 .
  • the seal 10b in front of the output side which suppresses the coolant from entering the inside of the rotary electric machine, is coaxial with the non-output side bearing 9a. It is arranged at the center of the end face of the shaft 11 and the output side bracket base 12a so as to be. Further, the end surface of the shaft 11 and the output side are arranged so that the seal 10c at the rear of the output side, which suppresses the refrigerant from flowing out of the rotary electric machine 1 from the output side bracket inner flow path 24, is coaxial with the non-output side bearing 9a. It is arranged in the center of the bracket base 12a.
  • the radial flow path 23 a is provided on the output side in the axial direction of the shaft 11 relative to the output side bearing 9 b and the seal 10 b in front of the output side.
  • the radial flow path 23 a is provided on the non-output side of the seal 10 c on the rear side of the output side in the axial direction of the shaft 11 .
  • the seals 10a, 10b, and 10c may be either oil seals or mechanical seals as long as they can seal against rotational movement.
  • the refrigerant flows from the inlet 20 into the non-output side bracket inner channel 22 , flows through the non-output side bracket inner channel 22 , and then flows into the shaft inner channel 23 provided in the shaft 11 .
  • the coolant flows from one end (non-output side) of the shaft 11 to the other end (output side) and is supplied from the radial direction channel 23 a to the output side bracket inner channel 24 .
  • a cylindrical rotor 60 is fixed to the radially outer side of the shaft 11 inside the housing 2 .
  • the rotor 60 rotates integrally with the shaft 11 with the shaft 11 as a rotation axis.
  • the rotor 60 has a rotor core 6, a plurality of permanent magnets 7, a non-output side end plate 8a and an output side end plate 8b.
  • the rotor core 6 has a cylindrical shape and is formed by laminating thin steel sheets in the axial direction of the shaft 11 having excellent magnetic properties, that is, high magnetic permeability and small iron loss.
  • the non-output side end plate 8a and the output side end plate 8b fix the rotor core 6 by sandwiching the rotor core 6 therebetween.
  • the non-output side end plate 8a and the output side end plate 8b are disk-shaped and made of metal, but may be made of resin. If metal is used, the weight of the rotating machine is increased, but the material strength and heat resistance are high. On the other hand, if it is made of resin, its strength is inferior to that of metal, but in addition to being excellent in corrosion resistance, the weight of the rotating machine itself can be reduced.
  • a plurality of permanent magnets 7 are embedded in the rotor core 6 .
  • These permanent magnets 7 are rectangular parallelepipeds and are made of alnico, ferrite or neodymium.
  • a cylindrical stator 40 is provided on the radially outer side of the shaft 11 so as to face the rotor 60 .
  • the stator 40 has a stator core 4 and coils 5 .
  • the stator core 4 is formed by laminating thin steel plates having excellent magnetic properties in the axial direction of the shaft 11 .
  • the coil 5 is wound or inserted into the stator core 4 with the radial direction of the shaft 11 as an axis.
  • the wound or inserted conductor wire is made of copper having high electrical conductivity, and its cross-sectional shape is circular, but may be rectangular.
  • the stator core 4 is held by shrink fitting in a cylindrical holding frame 13 arranged radially outside the stator 40 .
  • the holding frame 13 is longer than the length of the stator core 4 in the axial direction, and the cross sections of both ends of the holding frame 13 in the axial direction are fixed to the inner end faces of the output side bracket 12 or the non-output side bracket 3 in the axial direction.
  • a partition wall 26 (see FIG. 2) extending in the axial direction is provided on the radially outer surface of the holding frame 13 .
  • the housing 2 of the rotary electric machine 1 is provided on the radially outer side of the holding frame 13 , and similarly to the holding frame 13 , the cross section in the axial direction is the inner end face in the axial direction of the output side bracket 12 or the non-output side bracket 3 . is fixed with
  • annular flow path 25 is formed by the radially outer surface of the holding frame 13 and the radially inner surface of the housing 2 .
  • a sealing member (not shown) is arranged between both end surfaces of the holding frame 13 and the housing 2 in the axial direction to suppress leakage of coolant from the annular flow path 25 into the inside of the rotating electric machine.
  • the sealing member may not be arranged.
  • the annular channel 25 communicates with the output-side in-bracket discharge hole 12 c , and the refrigerant flowing through the output-side in-bracket channel 24 is supplied into the annular channel 25 .
  • the supplied coolant circulates 360 degrees in the annular channel 25 and is discharged from the outlet 21 provided on the radially outer surface of the housing 2 for discharging the coolant.
  • the partition wall 26 functions so that the refrigerant supplied from the output-side bracket discharge hole 12c is not discharged from the outlet 21 immediately.
  • the partition 26 is located on the circumference of the annular channel 25 between the holding frame 13 and the housing 2 and has one end fixed to the holding frame 13 and the other end fixed to the housing 2 . Get close. (Actually, since a gap is required during assembly, the partition 26 is not fixed to the housing.) Moreover, the partition 26 is positioned between the housing 2 and the holding frame 13 in the depth direction of FIG. is a member extending from the output side to the non-output side of the As a result, the coolant that has flowed from the output-side bracket discharge hole 12 c (see FIG. 1 ) flows in one direction of the annular channel 25 and is not immediately discharged from the outlet 21 . Further, the annular channel 25 communicates with the output side bracket inner channel 24 via the output side bracket discharge hole 12c on the output side, but communicates with the non-output side bracket inner channel 22 on the non-output side. Not in direct communication.
  • the refrigerant discharged from the outlet 21 is sucked out by the external pump 100 and is heated to a predetermined temperature by the heat exchanger 101. After that, the refrigerant is cooled to a predetermined temperature by the heat exchanger 101. Refrigerant is supplied.
  • the cooling medium is indirectly cooled by passing the coolant through the shaft inner flow path 23 in which the permanent magnet 7 and the rotor core 6 as heat generating elements are provided in the axial direction at the center of the shaft 11. can do.
  • the shaft inner channel 23 has an inlet port on one end side, and an outlet port of the shaft inner channel 23 on the other end side different from the one end side.
  • the coolant can flow from one end of the shaft 11 to the other end.
  • the heating element can be cooled over the entire length of the shaft 11 in the axial direction, and the rotating electric machine 1 can be cooled without lowering the cooling effect.
  • the non-output side bearing 9a and the output side bearing 9b that support the rotation of the shaft 11 are attached to the end face of the shaft 11, the refrigerant flows through the shaft internal flow path 23, thereby preventing seizure due to friction during rotation. It can be suppressed by cooling.
  • the non-output side bracket inner channel 22 cools the non-output side bracket base 3a and the non-output side bracket cover 3b.
  • the output-side bracket inner channel 24 cools the output-side bracket base 12a and the output-side bracket cover 12b.
  • air flow is generated inside the electric rotating machine 1 when the rotor 60 composed of the stator core 4, the permanent magnet 7, the non-output side end plate 8a, and the output side end plate 8b rotates. Air circulates on the surfaces of the coil 5 and the shaft 11 from the non-output side end plate 8a and the output side end plate 8b. This air flow is called an internal circulation flow (see the dashed arrow in FIG. 1).
  • the permanent magnet 7, rotor core 6, coil 5, and stator core 4 that generate heat due to the internal circulation flow can be cooled through the air.
  • the internal circulation flow warmed by heat removal from the permanent magnet 7, the rotor core 6, the coil 5, and the stator core 4 is cooled in the non-output side bracket inner flow path 22 and the output side bracket base flow path 24. 3a and the output side bracket base 12a are in contact with the warmed internal circulating flow to cool the air.
  • a radial flow path 23a is provided on the output side so as to communicate with the shaft internal flow path 23 of the shaft 11 .
  • the pressure of the coolant in the shaft inner channel 23 decreases due to the centrifugal force caused by the rotation of the rotor 60, and then the coolant is output from the radial direction channel 23a.
  • the pressure of the refrigerant rises as it flows toward the side bracket inner channel 24 .
  • the shaft 11 becomes a simple centrifugal pump because the radial flow path 23a functions as an impeller of the centrifugal pump. Since the centrifugal pump can draw the refrigerant into the shaft 11 from the upstream side, the power consumption of the external pump 100 can be suppressed, and the energy of the entire motor system can be saved.
  • the radial flow path 23 a is arranged at the same position as the output side bracket inner flow path 24 .
  • the coolant can efficiently flow from the radial flow path 23 a to the output side bracket internal flow path 24 .
  • the radial flow path 23a is provided on the output side in the axial direction of the shaft 11 relative to the output side bearing 9b and the seal 10b in front of the output side. As a result, it is possible to suppress coolant leakage into the rotating electrical machine 1, so that the constituent members of the rotating electrical machine 1 can be cooled without reducing the cooling efficiency.
  • the radial flow path 23 a is provided on the non-output side of the seal 10 c on the rear side of the output side in the axial direction of the shaft 11 . As a result, refrigerant leakage to the outside of the rotating electric machine 1 can be suppressed, so that the constituent members of the rotating electric machine 1 can be cooled without reducing the cooling efficiency.
  • Embodiment 2 Next, a rotating electric machine according to Embodiment 2 will be described with reference to FIG.
  • a rotor 60 that generates an output by rotation in the rotary electric machine 1 has the shaft 11 as its axis center and is composed of a rotor core 6 and permanent magnets 7 in its radial direction.
  • a shaft inner channel 23 is formed in the axial direction for passing the coolant that has flowed from the inlet 20 via the non-output side bracket inner channel 22.
  • a convex projection 14 extending toward the center of the shaft 11 is provided on the wall surface of the shaft inside channel 23 .
  • the protrusion 14 is formed to extend in the axial direction of the rotary electric machine 1 from the inlet of the shaft internal flow path 23 to the front of the radial flow path 23a.
  • the convex protrusion 14 increases the contact area with the coolant and also reduces the cross-sectional area of the channel, compared to the cylindrical shaft inner channel 23 shown in FIG. do. As a result, the heat generated by the rotor core 6 and the permanent magnets 7 can be efficiently cooled.
  • the pressure in the shaft inner flow path 23 decreases, and the pressure in the radial flow path 23a rises from the center of the shaft to the outermost diameter, producing a centrifugal pump effect.
  • the pressure loss increases in proportion to the flow velocity in the shaft inner channel 23, increasing the load on the external pump 100.
  • the centrifugal pump effect significantly increases the load on the external pump 100. The cooling effect can be improved without increasing it.
  • the rotation of the rotor 60 generates an internal circulation flow that flows inside the motor, and the permanent magnets 7 and the rotor core 6 that generate heat can be cooled.
  • the air heated by the heat generation can be continuously cooled by indirect heat exchange with the refrigerant flowing through the non-output side bracket inner channel 22 and the output side bracket inner channel 24 .
  • the projections 14 are rectangular and four projections are arranged in the shaft 11. There is no need to have one, and the same effect as described above can be obtained even with a round shape, a triangular shape, or a plurality of shapes.
  • FIG. 5 is a schematic cross-sectional view along the axial direction of the shaft.
  • 6 is a view of the rotating machine viewed from line VI-VI in FIG. 5
  • FIG. 7 is a view of the rotating machine viewed from line VII-VII in FIG. 5
  • FIG. is a diagram of the rotating machine viewed from the VIII-VIII line in FIG.
  • the rotor core 6 and the rotor core 6 laminated in the axial direction of the rotating electric machine are provided on the output side and non-output side end faces of the rotor 60 .
  • a non-output side end plate 8a and an output side end plate 8b are provided to prevent the axially inserted permanent magnet 7 from disassembling due to centrifugal force or external force.
  • FIG. 7 shows a cross section of the non-output side end plate 8a perpendicular to the axial direction
  • FIG. 8 shows a cross section of the output side end plate 8b perpendicular to the axial direction.
  • a semicircular non-output-side end plate internal flow path 32 is formed in the cross-section of the non-output-side end plate 8a. It communicates with a non-output-side radial flow channel 30 which is provided so as to divert the flow in the radial direction. That is, the shaft 11 has, on the non-output side, the non-output side radial flow path 30 that communicates the shaft internal flow path 23 and the non-output side end plate internal flow path 32 .
  • a semicircular output-side end plate internal flow path 33 is formed in the cross section of the output-side end plate 8b. It is configured to communicate with an output-side radial flow path 31 that is provided so as to divide the flow in the radial direction. That is, the shaft 11 has, on the output side, an output-side radial flow channel 31 that communicates the output-side end plate internal flow channel 33 and the shaft internal flow channel 23 .
  • FIG. 6 shows a vertical cross section at the center position of the rotating electrical machine 1 .
  • a cylindrical magnet flow path 34 extends in the axial direction of the rotating electrical machine 1 .
  • the magnet flow path 34 is configured such that the non-output side end plate inner flow path 32 and the output side end plate inner flow path 33 communicate with each other.
  • the coolant supplied from the inlet 20 is supplied to the shaft inner channel 23 via the non-output side bracket inner channel 22 .
  • a part of the coolant flowing through the in-shaft channel 23 flows into the non-output-side radial channel 30 and the rest flows through the in-shaft channel 23 toward the output side.
  • the coolant flowing through the non-output side radial flow passages 30 is supplied to the non-output side inner end plate flow passages 32 .
  • the accumulated coolant is sequentially supplied to a plurality of magnet flow paths 34 arranged in the rotor core 6 and reaches the output side end plate inner flow path 33 .
  • Refrigerant accumulates in the output-side end plate internal flow path 33 due to centrifugal force, is sequentially supplied to the output-side radial flow path 31 , and rejoins the refrigerant flowing through the shaft internal flow path 23 .
  • the non-output side end plate 8a has the non-output side end plate inner channel 32 provided over the entire circumference of the shaft 11, and the output side end plate 8b It has an output-side end plate inner channel 33 provided over the entire circumference.
  • the cooling medium can cool the permanent magnets 7 and the rotor core 6 that generate heat by flowing through the magnet flow path 34 .
  • the rotation of the rotor 60 generates an internal circulation flow that flows inside the motor, and the permanent magnets 7 and the rotor core 6 that generate heat can be cooled.
  • the air heated by the heat generation can be continuously cooled by indirect heat exchange with the refrigerant flowing through the non-output side bracket inner channel 22 and the output side bracket inner channel 24 .
  • the shape of the magnet flow path 34 is cylindrical as an example, but it is not limited to this, and may be rectangular or triangular.
  • the magnet flow path 34 may be arranged under, above, or on the side of the permanent magnet 7 .
  • cooling water such as LLC (Long Life Coolant) is used in the magnet flow path 34, the cooling water can be It is also possible to suppress electric leakage due to sealing and leakage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

非出力側ブラケット(3)は、外部から冷媒を流入させる入口(20)とシャフト内流路(23)の非出力側端部とを接続する非出力側ブラケット内流路(22)を有し、出力側ブラケット(12)は、円環状の流路(25)と径方向流路(23a)とを接続する出力側ブラケット内流路(24)を有し、ハウジング(2)は、円環状の流路(25)から冷媒を外部へ排出する出口を有する。

Description

回転電機
 本願は、冷却機構を備えた回転電機に関するものである。
 回転電機では、例えば車速に応じて増加するロータ鉄損あるいはコイルに流れる電流に依存する銅損による発熱がステータとロータで生じる。特に、ロータに設けられた磁石では許容温度を超えると不可逆減磁が生じ著しく性能が低下する。
 例えば特許文献1には、ロータの高効率な冷却として、ロータの中空シャフト内に冷媒を供給し、磁石を間接的に冷却する回転電機が開示されている。
特開2020-162338号公報
 しかしながら、従来の回転電機では、中空のシャフトへ供給する冷媒の出入口が同一端面に位置しているため、新たに入口から流入する冷媒がシャフトの他端に到達し難く、シャフトへ供給された冷媒がすぐさま出口から排出されやすい構造のため冷却効果が低下する課題がある。
 本願は、このような問題を解決するためになされたものであり、冷却効果を低下させることなく構成部材を冷却可能な回転電機を得ることを目的とする。
 本願に開示される回転電機は、シャフトを軸として回転するロータと、ロータの外周を覆い、コイルが巻き回されたステータコアと、ステータコアの外周側に設けられ、ステータコアを保持する保持フレームと、保持フレームの外周側に設けられたハウジングと、保持フレームとハウジングの軸方向の一端側に設けられた非出力側ブラケットと、保持フレームとハウジングの軸方向の他端側に設けられた出力側ブラケットと、を備え、保持フレームとハウジングとの間には、円環状の流路が設けられ、シャフトは、軸長方向に非出力側から出力側まで冷媒を流通させるシャフト内流路と、出力側に設けられ径方向に冷媒を排出する径方向流路とを有し、非出力側ブラケットは、外部から冷媒を流入させる入口と、入口とシャフト内流路の非出力側の端部とを接続する非出力側ブラケット内流路とを有し、出力側ブラケットは、円環状の流路と径方向流路とを接続する出力側ブラケット内流路を有し、ハウジングは、円環状の流路から冷媒を外部へ排出する出口を有するものである。
 本願の回転電機によれば、冷却効果を低下させることなく回転電機の構成部材を冷却することができる。
実施の形態1に係る回転電機の構成を示す側断面図である。 図1におけるII-II線から見た回転電機の断面図である。 図1におけるIII-III線から見た回転電機の断面図である。 実施の形態2に係る回転電機の構成を示す径方向断面図である。 実施の形態3に係る回転電機の構成を示す側断面図である。 図5におけるVI-VI線から見た回転電機の断面図である。 図5におけるVII-VII線から見た回転電機の断面図である。 図5におけるVIII-VIII線から見た回転電機の断面図である。
 以下、本願に開示される回転電機に実施の形態について図面を用いて説明するが、各実施の形態及び各図において、同一もしくは相当する部分は、同一符号を付している。なお、各実施の形態における回転電機は、永久磁石式回転電機である。
実施の形態1.
 図1は、実施の形態1の回転電機における、シャフトの軸長方向に沿った模式的な断面図である。また、図2は、図1におけるII-II線から回転電機を見た図であり、図3は、図1におけるIII-III線から回転電機を見た図である。実施の形態1における回転電機の基本構成を、図1、図2、図3を用いて説明する。
 回転電機1は、円筒状のハウジング2、円盤状の出力側ブラケット12、および円盤状の非出力側ブラケット3が組み合わされて形成されている。ハウジング2、出力側ブラケット12、および非出力側ブラケット3は、金属で成形されているが、樹脂で成形されていてもよい。金属であれば回転機の重量が重くなるが材料的強度、耐熱性が高い。一方で、樹脂製であれば強度面は金属製に劣るが、耐腐食性に優れていることに加えて回転機そのものを軽量化でき、回転機の据付先である機器の効率を向上させることができる。ハウジング2、出力側ブラケット12、および非出力側ブラケット3の中心には、金属製で円筒状のシャフト11が設けられている。
 非出力側ブラケット3は、非出力側ブラケットベース3aと非出力側ブラケットカバー3bから構成される。非出力側ブラケットベース3aはシャフト11が貫通できる様に中心に貫通孔があり、非出力側ブラケットカバー3bは、非出力側ブラケットベース3aを貫通したシャフト11の非出力側の端面を覆う様に配置されている。非出力側ブラケットベース3aと非出力側ブラケットカバー3bの間には、回転電機1の上部から中心まで伸びる非出力側ブラケット内流路22が形成され、非出力側ブラケットカバー3bには、非出力側ブラケット内流路22に冷媒を供給するための入口20が設けられる。図1に示されるように、入口20は、非出力側ブラケットカバー3bにおいてシャフト11よりも径方向外側に設けられる。非出力側ブラケットベース3aと非出力側ブラケットカバー3bの合わせ面は、非出力側ブラケット内流路22から冷媒が漏れ出ないようにOリングまたは溶接等によってシールされる構造である。
 出力側ブラケット12は、出力側ブラケットベース12aと出力側ブラケットカバー12bから構成される。出力側ブラケットベース12aと出力側ブラケットカバー12bは、シャフト11が貫通できる様に中心に貫通孔が設けられる。出力側ブラケットベース12aと出力側ブラケットカバー12bの間には、回転電機1の上部から中心まで伸びる出力側ブラケット内流路24が形成され、出力側ブラケットカバー12bには、出力側ブラケット内流路24を流れてきた冷媒を排出する出力側ブラケット内排出孔12cが設けられる。出力側ブラケットベース12aと出力側ブラケットカバー12bの合わせ面は、出力側ブラケット内流路24から冷媒が漏れ出ないようにOリングまたは溶接等によってシールされる構造である。
 シャフト11は、出力側の出力側ブラケット12から突出している。出力側ブラケット12の側において、回転電機1の出力が取り出される。回転電機1において、その内蔵部は、ハウジング2、出力側ブラケット12、および非出力側ブラケット3で覆われることによって収容され、保護されている。
 シャフト11は、出力側ブラケット12において、出力側ベアリング9bによって、回転自在に支持されている。また、シャフト11は、非出力側ブラケット3において、非出力側ベアリング9aによって、回転自在に支持されている。出力側ベアリング9bおよび非出力側ベアリング9aは、金属製であり、ドーナツ状である。出力側ベアリング9bおよび非出力側ベアリング9aは、シャフト11を、正確かつ円滑に回転させる。
 シャフト11は、非出力側から出力側に向けて延びる中空状のシャフト内流路23を有し、非出力側の軸端面において非出力側ブラケット内流路22と連通している。すなわち、シャフト11の非出力側の軸端面がシャフト内流路23の流入路となる。非出力側のシャフト端面において静態する非出力側ブラケット内流路22から回転するシャフト内流路23へ冷媒が流れ込む際に、回転電機内部へ冷媒が侵入することを抑制する非出力側のシール10aが非出力側ベアリング9aと同軸上となる様にシャフト11の端面および非出力側ブラケットベース3aの中心に配置される。また、シャフトの出力側のシャフト端面は、シャフト内流路23からロータの径方向外側に延びる径方向流路23aが形成される。径方向流路23aは、出力側ブラケット内流路24と連通している。すなわち、シャフト11の出力側がシャフト内流路23の流出口となる。径方向流路23aは、シャフト11の軸長方向において、出力側ブラケット内流路24と同じ位置に配置される。回転するシャフト内流路23から静態する出力側ブラケット内流路24に冷媒が移動する際に、回転電機内部への冷媒侵入を抑制する出力側手前のシール10bが非出力側ベアリング9aと同軸上となるようにシャフト11の端面と出力側ブラケットベース12aの中心に配置される。また、出力側ブラケット内流路24から回転電機1の外へ冷媒が流出するのを抑制する出力側奥のシール10cが非出力側ベアリング9aと同軸上となるようにシャフト11の端面と出力側ブラケットベース12aの中心に配置される。
 径方向流路23aは、シャフト11の軸方向において、出力側ベアリング9bおよび出力側手前のシール10bよりも出力側に設けられている。また、径方向流路23aは、シャフト11の軸方向において、出力側奥のシール10cよりも非出力側に設けられている。なお、シール10a、10b、10cは、回転動作に対してシールできればオイルシールであってもメカニカルシールであってもいずれのシール部材でも良い。
 冷媒は、入口20から非出力側ブラケット内流路22に流入し、非出力側ブラケット内流路22を流れた後、シャフト11に設けられたシャフト内流路23に流入する。シャフト内流路23において、冷媒はシャフト11の一端(非出力側)から他端(出力側)まで流れ、径方向流路23aから出力側ブラケット内流路24へと供給される。
 ハウジング2の内部において、シャフト11の径方向外側には、円筒形のロータ60が固定されている。ロータ60は、シャフト11を回転軸として、シャフト11と一体となって回転する。ロータ60は、ロータコア6、複数の永久磁石7、非出力側端板8aおよび出力側端板8bを有している。ロータコア6は、円筒形であり、優れた磁気特性、すなわち、高い透磁率および小さな鉄損を有する薄い鋼板が、シャフト11の軸長方向に積層されることによって、形成されている。
 非出力側端板8aおよび出力側端板8bは、ロータコア6を挟み込むことによって、ロータコア6を固定している。非出力側端板8aおよび出力側端板8bは、円盤状で、金属で形成されているが、樹脂で形成されていてもよい。金属であれば回転機の重量が重くなるが材料的強度、耐熱性が高い。一方で、樹脂製であれば強度面は金属製に劣るが、耐腐食性に優れていることに加えて回転機そのものを軽量化できる。
 永久磁石7は、ロータコア6に複数個埋め込まれている。これらの永久磁石7は、直方体であり、アルニコ、フェライト、またはネオジムによって形成されている。
 ロータ60に対向して、シャフト11の径方向外側には、円筒形のステータ40が設けられている。ステータ40は、ステータコア4およびコイル5を有している。ステータコア4は、優れた磁気特性を有する薄い鋼板が、シャフト11の軸長方向に積層されることによって、形成されている。コイル5は、ステータコア4にシャフト11の径方向を軸として、巻回または挿入されて構成されている。巻回または挿入されている導線は、高い電気伝導率を有する銅製であり、その断面形状は、円形であるが、平角形状であってもよい。ステータコア4は、ステータ40の径方向外側に配置された円筒型の保持フレーム13に焼嵌によって保持されている。保持フレーム13はステータコア4の軸長方向の長さよりも長く、保持フレーム13の軸長方向の両端の断面が出力側ブラケット12または非出力側ブラケット3の軸長方向の内側端面とで固定されている。保持フレーム13の径方向外側表面には、軸長方向に延びる隔壁26(図2参照)が設けられる。
 保持フレーム13の径方向外側には、回転電機1のハウジング2が設けられ、保持フレーム13と同様に軸長方向の断面が出力側ブラケット12または非出力側ブラケット3の軸長方向の内側端面とで固定されている。
 図2に示す通り、保持フレーム13の径方向外側の表面とハウジング2の径方向内側の表面とで円環状の流路25が形成される。保持フレーム13とハウジング2の軸長方向の両端面間には、円環状の流路25から回転電機内部への冷媒の漏れを抑制するためのシール部材(図示せず)が配置されている。ただし、固定方法が溶接である場合には冷媒漏れの可能性が小さくシール部材を配置しないこともある。
 円環状の流路25は、出力側ブラケット内排出孔12cと連通しており、出力側ブラケット内流路24を流れてきた冷媒が円環状の流路25内へ供給される。供給された冷媒は、円環状の流路25内を360度周回し、ハウジング2の径方向外側表面に設けられた冷媒を排出するための出口21から排出される。なお、出力側ブラケット内排出孔12cから供給された冷媒がすぐさま出口21から排出されないように隔壁26が機能する。
 図2に示すように、隔壁26は、保持フレーム13とハウジング2との間にある円環状の流路25の円周上であって、一端が保持フレーム13に固定され他端がハウジング2に近接する。(実際には組付け時に隙間が必要なので、ハウジングには固定されていない。)また、隔壁26は、図2の紙面奥行き方向、つまり、シャフト11の軸長方向において、ハウジング2および保持フレーム13の出力側から非出力側まで延びた部材である。これにより、出力側ブラケット内排出孔12c(図1参照)から流れてきた冷媒が円環状の流路25の一方向に流れるようになり、すぐさま出口21から排出されないようになる。また、円環状の流路25は、出力側では出力側ブラケット内排出孔12c介して出力側ブラケット内流路24と連通しているが、非出力側では非出力側ブラケット内流路22とは直接連通していない。
 出口21から排出される冷媒は、外部ポンプ100により吸い出され回転電機1の発熱により温度上昇した冷媒を熱交換器101で所定の温度に冷却した後に、再度、入口20から回転電機1内部へ冷媒が供給される。
 このように、実施の形態1における回転電機では、発熱体である永久磁石7、ロータコア6をシャフト11の中心に軸方向に設けたシャフト内流路23を冷媒が通過することで間接的に冷却することができる。
 また、シャフト内流路23は、シャフト11の軸方向において、一端側にシャフト内流路23の流入口を設け、一端側とは異なる他端側に、シャフト内流路23の流出口を設けたことにより、冷媒はシャフト11の一端側から他端側まで流通することが可能となった。これにより、シャフト11の軸方向の全長において発熱体を冷却することが可能となり、冷却効果を低下させることなく回転電機1を冷却できる。
 また、シャフト11の回転を支持する非出力側ベアリング9a及び出力側ベアリング9bは、シャフト11の端面に取り付けられているため、シャフト内流路23を冷媒が流れる事で回転時の摩擦による焼き付きを冷却により抑制する事ができる。
 また、非出力側ブラケット内流路22は非出力側ブラケットベース3aと非出力側ブラケットカバー3bを冷却する。出力側ブラケット内流路24は、出力側ブラケットベース12aと出力側ブラケットカバー12bを冷却する。回転電機1では、ステータコア4、永久磁石7、非出力側端板8a、出力側端板8bから成るロータ60が回転すると、回転電機1の内部に空気の流れが発生する。空気は、非出力側端板8a、出力側端板8bからコイル5、シャフト11の表面を循環する。この空気の流れを内部循環流れ(図1の破線矢印参照)と呼ぶこととする。内部循環流れにより発熱する永久磁石7、ロータコア6、コイル5、ステータコア4を空気を介して冷却することができる。
 永久磁石7、ロータコア6、コイル5、ステータコア4からの抜熱により温められた内部循環流れは、非出力側ブラケット内流路22および出力側ブラケット内流路24で冷却された非出力側ブラケットベース3aと出力側ブラケットベース12aが暖められた内部循環流れと接触することで、空気を冷却することができるため、ロータ60の回転により連続した冷却が可能となる。
 また、図3に示すように、シャフト11のシャフト内流路23に連通するように出力側に径方向流路23aが設けられている。ロータ60の回転時にシャフト内流路23内に冷媒が流れ込むと、ロータ60の回転による遠心力により冷媒は、シャフト内流路23で圧力が低下し、その後、冷媒が径方向流路23aから出力側ブラケット内流路24に向けて流れる際に冷媒の圧力が上昇する。径方向流路23aが遠心ポンプの羽根車の役割を果たす事でシャフト11が簡易的な遠心ポンプとなる。この遠心ポンプにより冷媒を上流側からシャフト11内部へ引き込むことができるため、外部ポンプ100の動力の消費を抑えることができ、モータシステム全体での省エネが図れる。
 また、シャフト11の軸方向において、径方向流路23aは、出力側ブラケット内流路24と同じ位置に配置される。これにより、冷媒を径方向流路23aから出力側ブラケット内流路24に効率よく流すことができる。
 径方向流路23aは、シャフト11の軸方向において、出力側ベアリング9bおよび出力側手前のシール10bよりも出力側に設けられている。これにより回転電機1内部への冷媒漏れを抑制することができるため、冷却効率を低下させることなく、回転電機1の構成部材を冷却することができる。また、径方向流路23aは、シャフト11の軸方向において、出力側奥のシール10cよりも非出力側に設けられている。これにより回転電機1外部への冷媒漏れを抑制することができるため、冷却効率を低下させることなく、回転電機1の構成部材を冷却することができる。
実施の形態2.
 次に実施の形態2における回転電機について、図4を用いて説明する。
 回転電機1おいて回転により出力を生み出すロータ60は、シャフト11を軸中心とし、その径方向にロータコア6と永久磁石7から構成される。
 シャフト11内には、入口20から非出力側ブラケット内流路22を経由して流れてきた冷媒を通過させるためのシャフト内流路23が軸長方向に形成されている。シャフト11内の構造において、シャフト内流路23の壁面にシャフト11の中心に向けて延びる凸状の突起14が設けられている。突起14は、回転電機1の軸長方向において、シャフト内流路23の流入口から径方向流路23aの手前まで延びて形成されている。凸状の突起14は、図2に示した円筒のシャフト内流路23に比べて、冷媒との接触面積を増加させる事に加えて、流路断面積が小さくなるため、冷媒の流速が増加する。これにより、発熱するロータコア6、永久磁石7からの熱を効率的に冷却することができる。
 また、径方向流路23aは回転することによりシャフト内流路23の圧力が低下し、径方向流路23a内の圧力が軸中心から最外径部にかけて上昇するため遠心ポンプ効果が生じる。凸状の突起14を設けた事でシャフト内流路23での流速に比例して圧力損失が増加し、外部ポンプ100の負荷が増大させるが、遠心ポンプ効果により外部ポンプ100の負荷を大幅に増大させる事なく、冷却効果を向上させることができる。
 また、実施の形態1同様にロータ60が回転することでモータ内を流れる内部循環流れが発生し、発熱する永久磁石7とロータコア6を冷却することができる。発熱により加熱された空気は、非出力側ブラケット内流路22と出力側ブラケット内流路24を流れる冷媒との間接的な熱交換により連続した冷却が可能となる。
 本実施の形態では、凸状の突起14を矩形状とした上でシャフト11内に4本を配置する図を記載しているが、凸状の突起14は必ずしも矩形状、かつ、4本である必要はなく、丸状、三角状あるいは複数本であっても上記と同様の効果が得られる。
実施の形態3.
 次に実施の形態3における回転電機を説明する。図5はシャフトの軸長方向に沿った模式的な断面図である。また、図6は、図5におけるVI-VI線から回転機を見た図であり、図7は、図5におけるVII-VII線から回転機を見た図であり、図8は、図5におけるVIII-VIII線から回転機を見た図である。
 シャフト11の径方向側にロータコア6、永久磁石7が位置するロータ60において、ロータ60の出力側、非出力側の端面には、回転電機の軸長方向に積層されたロータコア6およびロータコア6の軸方向に挿入された永久磁石7が遠心力あるいは外力によって分解するのを抑制する非出力側端板8aと出力側端板8bが設けられている。
 図7は非出力側端板8aを軸長方向に垂直な断面を示しており、図8は出力側端板8bを軸長方向に垂直な断面を示している。
 図7より非出力側端板8aの断面内は、半円状の非出力側端板内流路32が形成され、非出力側端板内流路32は、シャフト11においてシャフト内流路23から径方向に分流する様に設けられた非出力側径方向流路30と連通する構成となっている。すなわち、シャフト11は、非出力側において、シャフト内流路23と非出力側端板内流路32とを連通する非出力側径方向流路30を有している。
 また、図8より出力側端板8bの断面内は、半円状の出力側端板内流路33が形成され、出力側端板内流路33は、シャフト11においてシャフト内流路23から径方向に分流する様に設けられた出力側径方向流路31と連通する構成となっている。すなわち、シャフト11は、出力側において、出力側端板内流路33とシャフト内流路23とを連通する出力側径方向流路31を有している。
 図6は回転電機1の中心位置における垂直方向の断面を示しており、ロータコア6に挿入された永久磁石7の径方向内側には、円筒形状の磁石流路34が回転電機1の軸長方向に形成されており、磁石流路34は、非出力側端板内流路32と出力側端板内流路33とが連通する構成となる。
 入口20から供給された冷媒は、非出力側ブラケット内流路22を経由して、シャフト内流路23に供給される。シャフト内流路23を流れる冷媒は、そのうちの一部が非出力側径方向流路30に流れ、残りは出力側に向かってシャフト内流路23を流れる。非出力側径方向流路30を流れる冷媒は、非出力側端板内流路32に供給される。ロータ60が回転すると非出力側端板内流路32では、冷媒が遠心力により非出力側端板内流路32の最外径部に液膜状となり溜流される。溜流した冷媒は、順次、ロータコア6内に複数配置された磁石流路34に供給され、出力側端板内流路33に至る。出力側端板内流路33内は、遠心力により冷媒が溜流し、順次、出力側径方向流路31に供給されて、シャフト内流路23を流れる冷媒と再び合流する。このように、非出力側端板8aは、シャフト11の外周側の全周にわたって設けられた非出力側端板内流路32を有し、出力側端板8bは、シャフト11の外周側の全周にわたって設けられた出力側端板内流路33を有している。
 冷媒が磁石流路34を流れることで発熱する永久磁石7とロータコア6を冷却することができる。
 また、実施の形態1同様にロータ60が回転することでモータ内を流れる内部循環流れが発生し、発熱する永久磁石7とロータコア6を冷却することができる。発熱により加熱された空気は、非出力側ブラケット内流路22と出力側ブラケット内流路24を流れる冷媒との間接的な熱交換により連続した冷却が可能となる。
 実施の形態3では、一例として磁石流路34の形状を円筒としたが、これに限定されるものではなく、矩形、三角の形状であっても良い。磁石流路34の配置は、永久磁石7の下部、上部、側面のいずれであっても良い。また、磁石流路34にLLC(Long Life Coolant)等の冷却水を使用する場合は、磁石流路34の内径側に樹脂製等の絶縁性の流路パイプを形成することで、冷却水をシールし漏れによる漏電を抑制することもできる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 回転電機、2 ハウジング、3 非出力側ブラケット、3a 非出力側ブラケットベース、3b 非出力側ブラケットカバー、4 ステータコア、5 コイル、6 ロータコア、7 永久磁石、8a 非出力側端板、8b 出力側端板、9a 非出力側ベアリング、9b 出力側ベアリング、10a,10b,10c シール、11 シャフト、12 出力側ブラケット、12a 出力側ブラケットベース、12b 出力側ブラケットカバー、12c 出力側ブラケット内排出孔、13 保持フレーム、14 突起、20 入口、21 出口、22 非出力側ブラケット内流路、23 シャフト内流路、23a 径方向流路、24 出力側ブラケット内流路、25 円環状の流路、26 隔壁、30 非出力側径方向流路、31 出力側径方向流路、32 非出力側端板内流路、33 出力側端板内流路、34 磁石流路、60 ロータ、101 熱交換器

Claims (5)

  1.  シャフトを軸として回転するロータと、
    前記ロータの外周を覆い、コイルが巻き回されたステータコアと、
    前記ステータコアの外周側に設けられ、前記ステータコアを保持する保持フレームと、
    前記保持フレームの外周側に設けられたハウジングと、
    前記保持フレームと前記ハウジングの軸方向の一端側に設けられた非出力側ブラケットと、
    前記保持フレームと前記ハウジングの前記軸方向の他端側に設けられた出力側ブラケットと、を備え、
    前記保持フレームと前記ハウジングとの間には、円環状の流路が設けられ、
    前記シャフトは、軸長方向に非出力側から出力側まで冷媒を流通させるシャフト内流路と、前記出力側に設けられ径方向に冷媒を排出する径方向流路とを有し、
    前記非出力側ブラケットは、外部から冷媒を流入させる入口と、前記入口と前記シャフト内流路の前記非出力側の端部とを接続する非出力側ブラケット内流路とを有し、
    前記出力側ブラケットは、前記円環状の流路と前記径方向流路とを接続する出力側ブラケット内流路を有し、
    前記ハウジングは、前記円環状の流路から冷媒を外部へ排出する出口を有することを特徴とする回転電機。
  2.  前記シャフト内流路は、前記非出力側に前記シャフト内流路の流入口と、
    前記出力側に前記シャフト内流路の流出口と、
    を備えたことを特徴とする請求項1に記載の回転電機。
  3.  前記径方向流路は、前記シャフトの軸方向において、前記出力側ブラケットと前記シャフトとの間に配置されるシールよりも前記出力側に設けられたことを特徴とする請求項1または請求項2に記載の回転電機。
  4.  前記シャフト内流路の壁面に前記シャフトの中心に向かって延びる突起を備えたことを特徴とする請求項1から請求項3のいずれか1項に記載の回転電機。
  5.  前記ロータは、永久磁石が埋め込まれたロータコアと、前記ロータコアを挟み込む非出力側端板及び出力側端板とを備え、
     前記非出力側端板は、前記シャフトの外周側の全周にわたって設けられた非出力側端板内流路を有し、
     前記出力側端板は、前記シャフトの外周側の全周にわたって設けられた出力側端板内流路を有し、
     前記ロータコアは、前記軸方向に沿って前記非出力側から前記出力側まで配置された前記永久磁石を冷却する磁石流路を有し、
     前記シャフトは、前記非出力側において、前記シャフト内流路と前記非出力側端板内流路とを連通する非出力側径方向流路、及び、前記出力側において、前記出力側端板内流路と前記シャフト内流路とを連通する出力側径方向流路を有し、
    前記磁石流路は、前記非出力側端板内流路と前記非出力側端板内流路とを連通することを特徴とする請求項1から請求項4のいずれか1項に記載の回転電機。
PCT/JP2022/007635 2022-02-24 2022-02-24 回転電機 WO2023162096A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007635 WO2023162096A1 (ja) 2022-02-24 2022-02-24 回転電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007635 WO2023162096A1 (ja) 2022-02-24 2022-02-24 回転電機

Publications (1)

Publication Number Publication Date
WO2023162096A1 true WO2023162096A1 (ja) 2023-08-31

Family

ID=87765028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007635 WO2023162096A1 (ja) 2022-02-24 2022-02-24 回転電機

Country Status (1)

Country Link
WO (1) WO2023162096A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094350A1 (ja) * 2006-02-16 2007-08-23 Mitsubishi Electric Corporation 回転電機の冷却構造
JP2015104214A (ja) * 2013-11-25 2015-06-04 株式会社安川電機 回転電機
JP2016111918A (ja) * 2014-12-04 2016-06-20 アティエヴァ、インコーポレイテッド モータ冷却システム
JP2018019572A (ja) * 2016-07-29 2018-02-01 本田技研工業株式会社 回転電機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094350A1 (ja) * 2006-02-16 2007-08-23 Mitsubishi Electric Corporation 回転電機の冷却構造
JP2015104214A (ja) * 2013-11-25 2015-06-04 株式会社安川電機 回転電機
JP2016111918A (ja) * 2014-12-04 2016-06-20 アティエヴァ、インコーポレイテッド モータ冷却システム
JP2018019572A (ja) * 2016-07-29 2018-02-01 本田技研工業株式会社 回転電機

Similar Documents

Publication Publication Date Title
EP3379701B1 (en) Motor rotor support frame and motor
JP5445675B2 (ja) 回転機
JP5482376B2 (ja) 密閉型回転電機
EP2632026A2 (en) Cooling jacket for axial flux machine
JP6056518B2 (ja) 回転電機用回転構造
CN111600419B (zh) 旋转电机
CN111614207A (zh) 离心式流体冷却轴向磁通电机
CN110707843A (zh) 电机冷却结构及电动汽车用永磁同步电机
JP2006014564A (ja) ディスク型回転電機のステータ冷却構造
JP2007205246A (ja) ウォータポンプおよびハイブリッド車両
JP5392012B2 (ja) 電動機
JP5772415B2 (ja) 回転電機のロータ構造
JP6942881B2 (ja) 回転電機の冷却構造
JP2007336646A (ja) 回転電機
JP2013021811A (ja) 回転電機のロータ
JP2005143268A (ja) 回転電機
WO2023162096A1 (ja) 回転電機
CN113394937A (zh) 包括使冷却剂循环通过气隙的***的轴向磁通电机
JP2006050752A (ja) ディスク型回転電機のステータ冷却構造
JP6151668B2 (ja) 回転電機用ロータ
JP2004159402A (ja) 電動機及び電動発電機
US20230012821A1 (en) Electric motor provided with a cooling circuit
CN209994251U (zh) 双定子轴向磁通开关磁链永磁电机
JP2012016240A (ja) 回転電機及び回転電機冷却システム
JP2012060843A (ja) 回転電機用ロータ及び回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928623

Country of ref document: EP

Kind code of ref document: A1