JP6942881B2 - 回転電機の冷却構造 - Google Patents

回転電機の冷却構造 Download PDF

Info

Publication number
JP6942881B2
JP6942881B2 JP2020508801A JP2020508801A JP6942881B2 JP 6942881 B2 JP6942881 B2 JP 6942881B2 JP 2020508801 A JP2020508801 A JP 2020508801A JP 2020508801 A JP2020508801 A JP 2020508801A JP 6942881 B2 JP6942881 B2 JP 6942881B2
Authority
JP
Japan
Prior art keywords
flow path
cooling
housing
cooling water
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020508801A
Other languages
English (en)
Other versions
JPWO2019187021A1 (ja
Inventor
和弥 渥美
和弥 渥美
藤久保 誠
誠 藤久保
良 久保田
良 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPWO2019187021A1 publication Critical patent/JPWO2019187021A1/ja
Application granted granted Critical
Publication of JP6942881B2 publication Critical patent/JP6942881B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

本発明は、回転電機の冷却構造に関する。
モータや発電機等の回転電機には、ステータおよびロータを冷却するための冷却構造が設けられる場合がある。ステータおよびロータを冷却する方法としては、オイル等の冷却媒体をステータおよびロータに接触させて熱交換する方法や、冷却水が内部を流通するウォータジャケットをステータに接触させる方法等がある。冷却媒体を用いた方法として、ステータおよびロータを収容する筐体内で冷却媒体をステータまたはロータに接触させ、高温になった冷却媒体を筐体の外部に設けられたオイルクーラーで冷却し、冷却された冷却媒体を再び筐体内に導入する方法がある。
例えば、特許文献1には、電動機と、電動機の外部に設置され、電動機の潤滑油を冷却水によって冷却する潤滑油冷却手段と、冷却水を冷却する冷却水冷却手段と電動機および潤滑油冷却手段との間で冷却水配管を介して冷却水を循環させる冷却水循環手段と、潤滑油冷却手段と電動機との間で潤滑油配管を介して潤滑油を循環させる潤滑油循環手段とを備えた車両用駆動装置が開示されている。
日本国特開2006−174562号公報
ところで、近年では回転電機の出力の大型化、および回転電機の外形の小型化が求められている。回転電機の出力を大型化する場合には、発熱量も大きくなるので、回転電機をより効率よく冷却する必要がある。また、回転電機の外形を小型化する場合には、回転電機の冷却構造も小型化されるので、冷却効率の向上を図る必要がある。
本発明は、優れた冷却効率を有する回転電機の冷却構造を提供する。
(1)本発明に係る一態様の回転電機の冷却構造は、ステータ(20)およびロータ(30)を備える回転電機(1)の冷却構造であって、前記ステータ(20)および前記ロータ(30)を収容する筐体(3)と、前記ステータ(20)および前記ロータ(30)のうち少なくともいずれか一方に接触して、前記一方を冷却する冷却媒体(9)と、冷却水(8)によって前記冷却媒体(9)を冷却する冷却手段(40)であって、前記筐体(3)に形成され前記冷却水(8)が流通する冷却水流路(45)が設けられた冷却水配管(41)を有し、前記冷却水配管(41)が前記ステータ(20)に隣接する冷却手段(40)と、前記冷却媒体(9)が流通する冷媒流路(82)が設けられ、前記冷却水配管(41)と同一部材に形成されるとともに前記冷却水配管(41)を挟んで前記ステータ(20)とは反対側で前記冷却水配管(41)に隣接する冷媒配管(81)と、前記冷媒配管(81)に前記冷却媒体を供給する冷媒供給手段(59)と、を備え、前記ステータ(20)は、前記冷却水配管(41)の上方に隣接し、前記冷媒配管(81)は、前記冷却水配管(41)の下方に隣接し、前記冷媒流路(82)は、前記ロータ(30)の回転軸線方向における前記冷媒配管(81)と前記冷却水配管(41)とが重なる範囲において、前記回転軸線方向の第1側から第2側に向かって延びる第1流路(83)と、前記第1流路(83)に連通し、前記回転軸線方向における前記冷媒配管(81)と前記冷却水配管(41)とが重なる範囲において、前記回転軸線方向の前記第2側から前記第1側に向かって延びる第2流路(84)と、を備える、ことを特徴とする。
上記構成によれば、冷却水配管によってステータを冷却することに加え、冷却水配管に隣接する冷媒配管において、回転電機を筐体の内部で冷却する冷却媒体も冷却水配管によって同時に冷却することができる。これにより、回転電機を冷却水配管および冷却媒体の両方によって冷却でき、さらに冷却媒体の冷却も回転電機の内部で冷却水配管との熱交換によって行うことができる。したがって、優れた冷却効率を有する回転電機の冷却構造を提供できる。
さらに、ステータに接触した冷却媒体を重力によって落下させて冷媒配管の冷媒流路に導くことができる。これにより、冷却媒体がステータを冷却した後に冷媒配管に向かう流れを容易に形成することができる。
また、ステータ、冷却水配管および冷媒配管が上下方向に並ぶので、回転電機の冷却構造が回転軸線方向に大型化することを抑制できる。
さらに、冷媒配管と冷却水配管とが重なる範囲で冷却媒体を冷媒流路に沿って回転軸線方向に往復するように蛇行させることができる。これにより、冷媒配管において冷却媒体の熱交換面積が増加するので、冷却媒体と冷却水配管との間でより大量の熱量を熱交換させることができる。したがって、冷却効率をより向上させることができる。
(2)上記(1)の態様の回転電機の冷却構造において、前記冷却水配管(41)よりも下方には、前記冷却媒体(9)を貯留する貯留空間(55)が形成されていてもよい。
上記のように構成することで、ステータに接触して温度が上昇した冷却媒体を、貯留空間に貯留される前に冷媒配管の冷媒流路に流通させることができる。これにより、ステータに接触して温度が上昇した冷却媒体は、貯留空間において残存する冷却媒体に混ざって温度が低下する前に、冷媒配管において冷却水配管と熱交換される。したがって、冷却効率をより向上させることができる。
(5)上記(4)の態様の回転電機の冷却構造において、前記第1流路(83)には、前記ステータ(20)および前記ロータ(30)のうち少なくともいずれか一方に接触した前記冷却媒体(9)が導入され、前記第1流路(83)は、前記ロータ(30)の回転軸線(O)回りの周方向に一対設けられ、前記第2流路(84)は、前記一対の第1流路(83)の間に設けられていてもよい。
上記のように構成することで、ステータが回転軸線方向から見て円環状に形成されていることにより、ステータに隣接する冷却水配管、および冷却水配管に隣接する冷媒配管も、回転軸線方向から見てステータと同心の円弧状に延びている。このため、冷却水配管の下方に配置された冷媒配管において、一対の第1流路の間に設けられた第2流路は、第1流路よりも下方に位置する。これにより、第1流路から第2流路に向けて冷却媒体を重力により流動させることができる。したがって、冷媒流路内で冷却媒体をスムーズに流動させることができる。
(4)上記(3)の態様の回転電機の冷却構造において、前記冷却水配管(41)よりも下方には、前記冷却媒体(9)を貯留する貯留空間(55)が形成され、前記冷媒流路(82)は、前記貯留空間(55)に連通する第3流路(85)を備え、前記冷媒配管(81)は、前記回転軸線方向の前記第1側に向く第1側面(81a)を備え、前記第1側面(81a)には、前記冷却媒体(9)が導入される前記第1流路(83)の導入口(83a)と、前記第1流路(83)から前記第2流路(84)に流入した前記冷却媒体(9)が排出される前記第2流路(84)の排出口(84a)と、が設けられ、前記第3流路(85)は、前記第1側面(81a)に開口し、前記第2流路(84)から排出された前記冷却媒体(9)が流入する第1端開口(85a)と、前記貯留空間(55)に臨み、流入した前記冷却媒体(9)が排出される第2端開口(85b)と、を備えていてもよい。
上記のように構成することで、冷媒配管の第1側面に開口した第2流路の排出口から排出された冷却媒体が、第1端開口を通じて第3流路に流入し、冷媒配管の第2側面に開口した第2端開口から排出される。これにより、冷却媒体を冷媒流路に沿って回転軸線方向に、少なくとも1.5往復するように蛇行させることができる。よって、冷媒配管において冷却媒体の熱交換面積が増加するので、冷却媒体と冷却水配管との間でより大量の熱量を熱交換させることができる。したがって、冷却効率をより向上させることができる。
(5)上記(1)から(4)いずれかの態様の回転電機の冷却構造において、前記冷却水流路(45)は、前記ロータ(30)の回転軸線(O)回りの周方向に沿って延び、前記冷媒流路(82)の少なくとも一部は、前記ロータ(30)の回転軸線方向に沿って延びていてもよい。
上記のように構成することで、冷却水の流通方向と冷却媒体の流通方向とが交差するので、冷却水流路および冷媒流路が互いに平行に延びる構成と比較して、冷却水流路および冷媒流路を容易に形成することができる。
上記の回転電機の冷却構造によれば、優れた冷却効率を有する回転電機の冷却構造を提供することができる。
実施形態のモータの断面図である。 図1のII−II線に相当する断面を示す斜視図である。 図1のIII−III線に相当する部分の断面図である。 図3のIV−IV線に相当する部分の断面図である。 図1のV−V線に相当する部分の断面図である。 冷媒配管の内部構造を第2ハウジング側から見た斜視図である。 図1のVII−VII線に相当する部分の断面図である。
以下、本発明の実施形態を図面に基づいて説明する。なお以下の説明では、同一または類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。
本実施形態では、回転電機の冷却構造として、車両駆動用のモータの冷却構造について説明する。車両駆動用のモータ(以下、「モータ」という。)は、鞍乗り型の電動二輪車のような車両に搭載される走行用モータである。但し、本発明の構成は、走行用モータに限らず、発電用モータや、車両用以外の回転電機(発電機を含む)にも適用可能である。以下の説明では、モータの概略構成について説明した後、モータの冷却構造について説明する。
(モータの概略構成)
最初に、実施形態のモータ1の概略構成について説明する。
図1は、実施形態のモータの断面図である。
図1に示すように、モータ1は、ステータ20と、ロータ30と、ステータ20およびロータ30を収容するハウジング3(筐体)と、を主に備える。なお、以下の説明では、ロータ30の回転軸線Oに沿う方向を「軸方向」(回転軸線方向)といい、回転軸線O回りの周方向を「周方向」といい、ロータ30の径方向を「径方向」という。すなわち、軸方向はロータ30の回転軸線方向であり、径方向は軸方向に直交して回転軸線Oから放射状に延びる方向である。また、以下の説明で用いる上下方向は、モータ1を車両に搭載した状態における鉛直方向であって、軸方向に直交する一方向である。また、各図中において、矢印UPは上方を示している。
ハウジング3は、軸方向の中央部に配置された第1ハウジング11と、第1ハウジング11の軸方向第1側に配置された第2ハウジング12と、第1ハウジング11を挟んで第2ハウジング12とは反対側に配置された第3ハウジング13と、第3ハウジング13を挟んで第1ハウジング11とは反対側に配置された第4ハウジング14と、第2ハウジング12を挟んで第1ハウジング11とは反対側に配置された第5ハウジング15と、を備える。
第1ハウジング11は、回転軸線Oと同軸の円筒状に形成されている。第1ハウジング11は、軸方向の両側に開口している。第1ハウジング11は、ステータ20およびロータ30を径方向の外側から覆うように配置されている。
第2ハウジング12は、回転軸線Oと同軸の円筒状に形成されている。第2ハウジング12は、第1ハウジング11側に開口した有底円筒状に形成されている。第2ハウジング12は、一端部を閉塞するように径方向に直交する方向に延びる閉塞部12aを備える。閉塞部12aには、回転軸線Oと同軸の貫通孔12bが形成されている。また、閉塞部12aの上部には、閉塞部12aを貫通するブリーザ孔12cが形成されている(図2参照)。
第3ハウジング13は、回転軸線Oと同軸の円筒状に形成されている。第3ハウジング13は、軸方向の両側に開口している。
第4ハウジング14は、回転軸線Oと同軸の円筒状に形成されている。第4ハウジング14は、第3ハウジング13側に開口した有底円筒状に形成されている。第4ハウジング14は、一端部を閉塞するように径方向に直交する方向に延びる閉塞部14aを備える。閉塞部14aには、回転軸線Oと同軸の貫通孔14bが形成されている。
第5ハウジング15は、回転軸線Oと同軸の円筒状に形成されている。第5ハウジング15は、第2ハウジング12側に開口した有底円筒状に形成されている。第5ハウジング15は、一端部を閉塞するように径方向に直交する方向に延びる閉塞部15aを備える。閉塞部15aには、回転軸線Oと同軸の貫通孔15bが形成されている。
ハウジング3の内部には、第1ハウジング11、第2ハウジング12、第3ハウジング13および第4ハウジング14によって囲まれたモータ室5が形成されている。モータ室5には、ステータ20およびロータ30が収容される。また、ハウジング3の内部には、第2ハウジング12および第5ハウジング15によって囲まれたブリーザ室6が設けられている。モータ室5およびブリーザ室6は、第2ハウジング12の閉塞部12aによって互いに区画されている。ブリーザ室6は、モータ室5の内部の空気をハウジング3の外部に逃すように構成されている。
図2は、図1のII−II線に相当する断面を示す斜視図である。
図2に示すように、ブリーザ室6は、第2ハウジング12のブリーザ孔12cを介してモータ室5に連通している。ブリーザ室6には、ブリーザ室6とハウジング3の外部とを連通する上部連通路6aおよび下部連通路6bと、ブリーザ孔12cから上部連通路6aに至る空気の流路をラビリンス状とする複数(本実施形態では4個)のリブ7と、が設けられている。複数のリブ7は、上部連通路6aの下方、かつ軸方向から見て上部連通路6aとブリーザ孔12cとの間に設けられている。複数のリブ7は、上下方向に並んで設けられている。複数のリブ7は、軸線方向から見て、第5ハウジング15の周壁から交互に延びている。各リブ7は、水平方向で上部連通路6aと同じ位置よりも先まで延びている。図1に示すように、各リブ7は、第5ハウジング15の閉塞部15aから第2ハウジング12に向けて軸方向に延びている。各リブ7の先端は、第2ハウジング12の閉塞部12aに当接している。
このようなブリーザ室6によれば、ブリーザ孔12c(図2参照)を通じてブリーザ室6に進入した空気は、ラビリンス状のリブ7の間を通って、上部連通路6aからハウジング3の外部に放出される。また、ブリーザ室6に進入した冷媒は、ラビリンス状のリブ7の間を通過できず、ブリーザ室6の下部に落下して、下部連通路6bからハウジング3の外部に放出される。
ステータ20およびロータ30は、インナーロータ型のIPMモータ(埋込磁石同期モータ)を構成している。
図3は、図1のIII−III線に相当する部分の断面図である。
図3に示すように、ステータ20は、ステータコア21と、ステータコア21に装着されたコイル22と、を備える。ステータコア21は、円筒状に形成されている。ステータコア21は、外周面を第1ハウジング11の内周面に密着させた状態で、第1ハウジング11に対して圧入等により固定されている。ステータコア21の外周面は、軸方向の全体で第1ハウジング11の内周面に接触している。
ステータコア21は、複数の分割コア23が周方向に配列されて構成されている。分割コア23は、電磁鋼板からなる磁性板材が軸方向に積層されたものである。分割コア23は、バックヨーク24と、ティース25と、を備えている。バックヨーク24は、周方向に隣接する分割コア23が互いに連結されることにより、ステータコア21の径方向外側に円環状の部分を構成する。ティース25は、バックヨーク24から径方向内側に突設されている。隣接する分割コア23のティース25間には、溝状のコイルスロット26が構成されている。すなわち、ステータコア21には、ティース25およびコイルスロット26が周方向に交互に配置されている。コイルスロット26は、軸方向両側に開口している。
コイル22は、集中巻によって各ティース25にインシュレータ28を介して巻装されている。インシュレータ28は、分割コア23のティース25を囲む。インシュレータ28は、樹脂等の電気絶縁材料により形成されている。インシュレータ28は、コイル22とティース25との間、および径方向の両側からコイル22に対向するように配置されている。コイル22は、ステータコア21から突出したコイルエンド22aを軸方向両端部に備えている(図1参照)。
図1に示すように、ロータ30は、ステータ20の内側に所定間隔をあけて配置されている。ロータ30は、ハウジング3に回転可能に支持されたシャフト31と、シャフト31に外挿されたロータコア32と、ロータコア32に装着された磁石33と、ロータコア32の端面に対向配置された第1端面板34Aおよび第2端面板34Bと、を備えている。
シャフト31は、回転軸線Oを中心軸線として軸方向に延びている。シャフト31は、第2ハウジング12の貫通孔12b、第4ハウジング14の貫通孔14bおよび第5ハウジング15の貫通孔15bに挿通されている。シャフト31は、ハウジング3から軸方向両側に突出している。シャフト31は、軸受101を介して第2ハウジング12に回転可能に支持されている。シャフト31は、軸受102を介して第4ハウジング14に回転可能に支持されている。シャフト31は、軸受103を介して第5ハウジング15に回転可能に支持されている。
図3に示すように、ロータコア32は、シャフト31と同心の円筒状に形成されている、ロータコア32は、ステータコア21の内周面に所定間隔をあけて対向配置されている。ロータコア32は、例えば電磁鋼板を軸方向に複数枚積層することにより形成されている。ロータコア32は、シャフト31に固定されている。これにより、ロータコア32は、シャフト31と一体となって、ハウジング3およびステータ20に対して回転軸線O回りに回転可能になっている。
ロータコア32には、所定の周角度領域のそれぞれに、磁石33が装着されるスロット群36と、肉抜き孔37と、が形成されている。スロット群36は、ロータコア32の外周部に形成されている。スロット群36は、一対の磁石スロット38を備えている。磁石スロット38には、それぞれ1つの磁石33が配置されている。各スロット群36において、一対の磁石スロット38は、周方向に間隔をあけて形成されている。磁石スロット38は、ロータコア32を軸方向に貫通している。一対の磁石スロット38は、軸方向から見て、回転軸線Oからスロット群36における周方向の中央部に向かって延びる半直線について互いに線対称に形成されている。肉抜き孔37は、ロータコア32を軸方向に貫通している。肉抜き孔37は、軸方向から見て三角形状に形成されている。肉抜き孔37は、径方向内側から外側に向かうに従い、周方向の幅が漸次狭まるように形成されている。
磁石33は、希土類磁石である。希土類磁石としては、例えばネオジム磁石やサマリウムコバルト磁石、プラセオジム磁石等が挙げられる。磁石33は、軸方向から見て矩形状に形成され、軸方向に沿って一様に延在している。磁石33の軸方向における寸法は、ロータコア32の軸方向における寸法と略一致している。磁石33は、径方向に磁化方向が配向されている。
図1に示すように、第1端面板34Aおよび第2端面板34Bは、それぞれアルミニウム等の非磁性材料により、ロータコア32の外径と略同径の円板状に形成されている。第1端面板34Aおよび第2端面板34Bの中心には、それぞれ厚さ方向(軸方向)に貫通する圧入孔が形成されている。
第1端面板34Aは、ロータコア32における第2ハウジング12側を向く第1端面に対向配置されている。第1端面板34Aは、シャフト31に外挿されて固定されている。第1端面板34Aは、ロータコア32の第1端面に密接している。これにより、第1端面板34Aは、磁石スロット38に配置された磁石33が第2ハウジング12側に脱落することを規制している。第1端面板34Aには、ロータコア32の肉抜き孔37の内部とモータ室5とを連通する貫通孔が形成されている。
第2端面板34Bは、ロータコア32における第3ハウジング13側を向く第2端面に対向配置されている。第2端面板34Bは、シャフト31に外挿されて固定されている。第2端面板34Bは、ロータコア32の第2端面に密接している。これにより、第2端面板34Bは、磁石スロット38に配置された磁石33が第3ハウジング13側に脱落することを規制している。第2端面板34Bには、ロータコア32の肉抜き孔37の内部とモータ室5とを連通する貫通孔が形成されている。
(モータの冷却構造)
続いて、実施形態のモータ1の冷却構造について説明する。本実施形態のモータ1の冷却構造は、水冷手段40(冷却手段)と、油冷手段50と、を備える。
(水冷手段)
水冷手段40は、ステータ20および後述する冷却油9(冷却媒体)を冷却水8によって冷却する。水冷手段40は、ウォータジャケット41(冷却水配管)と、図示しないウォータポンプおよびラジエータと、を備える。ラジエータは、モータ1の外部に設けられている。水冷手段40は、ウォータジャケット41とラジエータとの間に設けられたウォータポンプによって、冷却水8をウォータジャケット41とラジエータとの間で循環させる。
ウォータジャケット41は、第1ハウジング11の内周部に形成されている。すなわち、ウォータジャケット41は、ステータコア21の外周面に密着している。ウォータジャケット41には、ウォータポンプから圧送された冷却水8が流通する冷却水流路45が設けられている。
図3に示すように、冷却水流路45は、周方向に沿って円弧状に延びている。冷却水流路45は、軸方向から見て回転軸線Oに直交して上下方向に延びる直線について線対称に設けられている。冷却水流路45は、一対の冷却水流入口46と、一対の冷却水流出口47と、を備える。一対の冷却水流入口46は、冷却水流路45の両端部に設けられている。一対の冷却水流入口46は、第1ハウジング11の上部に設けられている。一対の冷却水流入口46は、第1ハウジング11の外面において、上方に向かって開口している。なお、以下の説明において、モータ1の特定箇所が軸方向から見て回転軸線Oに直交して上下方向に延びる直線について線対称に設けられている構成について、軸方向から見て左右対称であるという。
一対の冷却水流出口47は、冷却水流路45の中間部に設けられている。一対の冷却水流出口47は、軸方向から見て回転軸線Oよりも下方であって、冷却水流路45の最下部よりも上方に設けられている。一対の冷却水流出口47は、第1ハウジング11の外面において、斜め下方に向かって開口している。
図4は、図3のIV−IV線に相当する部分の断面図である。
図4に示すように、冷却水流路45は、軸方向を幅方向として、一定の幅で延びている。冷却水流路45の内面には、局所的に流路断面積を狭くする複数の突出部49が設けられている。突出部49は、冷却水流路45における軸方向両側の内面から交互に突出している。各突出部49は、冷却水流路45における径方向両側の内面に連なっている。各突出部49は、先端が冷却水流路45における幅方向の中心線C上に位置するように、または先端が中心線Cを跨ぐように延びている。本実施形態では、各突出部49の先端は、中心線C上に位置している。
図3に示すように、複数の突出部49のうち少なくとも一部の突出部49は、周方向における分割コア23のティース25と同じ位置に設けられている。すなわち、冷却水流路45の流路断面積は、周方向におけるティース25と同じ位置において局所的に小さくなっている。
このような水冷手段40によれば、ラジエータによって冷却された冷却水8が、ウォータポンプによって冷却水流路45に圧送される。冷却水流路45に流入した冷却水8は、冷却水流路45を流通する過程で、ウォータジャケット41に密着するステータコア21を冷却する。冷却水流路45を流通して温度が上昇した冷却水8は、再度ラジエータに輸送されて冷却される。
(油冷手段)
図1に示すように、油冷手段50は、ステータ20およびロータ30を冷却油9によって冷却する。油冷手段50は、冷媒導入部51と、ロータ油冷部60と、ステータ油冷部70と、冷媒冷却部80と、貯留部54と、排出部57と、冷媒案内部90と、オイルポンプ59(冷媒供給手段)と、を備える。
冷媒導入部51は、オイルポンプ59から圧送された冷却油9を受け取り、ハウジング3内に導入する。冷媒導入部51は、第4ハウジング14の閉塞部14aに設けられた導入流路52を備える。導入流路52は、上下方向に延在している。導入流路52の下端部は、ハウジング3の外面に開口している。導入流路52の上端部は、第4ハウジング14の貫通孔14bの内周面に開口している。
ロータ油冷部60は、冷却油9によってロータ30を冷却する。ロータ油冷部60は、ロータ30のシャフト31に形成されたシャフト流路61と、シャフト流路61とロータコア32の肉抜き孔37とを連通する連通部62と、ロータコア32の肉抜き孔37と、を備える。
シャフト流路61は、シャフト31の内部において軸方向に沿って延びている。シャフト流路61は、流入口63と、流出口64と、を備える。流入口63は、第4ハウジング14の貫通孔14bの内周面と径方向に対向する位置に設けられている。流入口63は、軸方向における導入流路52の上端部と同じ位置に形成されている。流入口63は、シャフト31の周壁を貫通するように形成されている。流出口64は、ロータコア32の内周面と径方向に対向する位置に設けられている。流出口64は、軸方向におけるロータコア32の中心と同じ位置に形成されている。流出口64は、シャフト31の周壁を貫通するように形成されている。
連通部62は、ロータコア32に形成されている。連通部62は、周方向におけるロータコア32の肉抜き孔37と同じ位置に形成されている。連通部62は、軸方向におけるロータコア32の中心と同じ位置に形成されている。連通部62は、ロータコア32の内周面と肉抜き孔37の内面との間を貫通している。連通部62は、ロータコア32の内周面において、シャフト流路61の流出口64を臨む位置に開口している。これにより、連通部62は、シャフト流路61と肉抜き孔37とを連通している。
このようなロータ油冷部60によれば、シャフト31の回転に伴う遠心力によって、シャフト流路61内の冷却油9をロータコア32の肉抜き孔37に流出させる。肉抜き孔37に流入した冷媒は、軸方向両側に向かって分流し、第1端面板34Aおよび第2端面板34Bの貫通孔を通じてモータ室5内に排出される。これにより、ロータコア32が冷却油9と熱交換し、冷却される。
ステータ油冷部70は、冷却油9によってステータ20を冷却する。ステータ油冷部70は、ノズル部材71を備える。ノズル部材71は、冷媒導入部51から輸送された冷却油9をステータ20に向けて吐出する。ノズル部材71は、ステータ20と第4ハウジング14の閉塞部14aとの間に設けられている。ノズル部材71は、第4ハウジング14の閉塞部14aに対向して密接する基部72と、基部72からステータ20に向かって延びるノズル73と、を備える。基部72には、第4ハウジング14の閉塞部14aとの間に冷却油9の流路を形成する溝部74が形成されている。溝部74は、周方向に沿って環状に延びている。溝部74内は、図示しない流路を通じて導入流路52に連通している。ノズル73は、ステータコア21のコイルスロット26(図3参照)と同数設けられている。ノズル73は、軸方向に延びている。ノズル73の基端部は、溝部74の壁面に開口している。ノズル73の先端部は、ステータコア21のコイルスロット26に対向する位置に配置されている(図7参照)。
このようなステータ油冷部70によれば、導入流路52を介してオイルポンプ59から溝部74内に圧送された冷却油9がノズル73の先端部から吐出される。ノズル73から吐出された冷却油9の一部は、ステータコア21のコイルスロット26を通り、軸方向に沿って流動する。具体的に、冷却油9は、隣り合う分割コア23のティース25に巻装された一対のコイル22の間を通って軸方向に流通する。これにより、コイル22が冷却油9と熱交換し、冷却される。一対のコイル22の間を通った冷却油9は、モータ室5内のうちステータ20と第2ハウジング12との間の空間に流出する。ノズル73から吐出された冷却油9の残りは、ステータコア21のコイルスロット26に流入せず、モータ室5内におけるステータ20と第4ハウジング14との間の空間に流出する。ステータ20と第4ハウジング14との間の空間に流出した冷却油9は、落下して後述する貯留空間55に貯留される。
冷媒冷却部80は、ロータ油冷部60およびステータ油冷部70によってステータ20およびロータ30と熱交換をして温度が上昇した冷却油9の一部を冷却する。冷媒冷却部80は、冷媒配管81を備える。
冷媒配管81は、第1ハウジング11に形成されている。冷媒配管81には、冷却油9が流通する冷媒流路82が設けられている。すなわち、冷媒配管81は、第1ハウジング11における冷媒流路82が設けられた部分である。冷媒配管81は、ウォータジャケット41よりも径方向の外側かつ下方に設けられている。具体的に、冷媒配管81は、ウォータジャケット41の最下部の下方に設けられている。
図3に示すように、冷媒流路82は、第1流路83と、第2流路84と、第3流路85と、を備える、第1流路83、第2流路84および第3流路85は、それぞれ第1ハウジング11を軸方向に貫通している。
図5は、図1のV−V線に相当する部分の断面図である。
図5に示すように、第1流路83は、周方向に一対設けられている。一対の第1流路83は、周方向に間隔をあけて設けられている。一対の第1流路83は、軸方向から見て左右対称に設けられている。第1流路83の下面は、軸方向における第2ハウジング12側から第3ハウジング13側に向かうに従い下方に向かって傾斜して延びている。第1流路83は、導入口83aを備える。導入口83aは、冷媒配管81における軸方向の第2ハウジング12側に向く第1側面81aに開口している。導入口83aは、長軸が周方向に沿う長円形状に形成されている。
第2流路84は、周方向に一対設けられている。一対の第2流路84は、一対の第1流路83の間に設けられている。一対の第2流路84は、周方向に間隔をあけて設けられている。一対の第2流路84は、軸方向から見て左右対称に設けられている。第2流路84の下面は、軸方向における第3ハウジング13側から第2ハウジング12側に向かうに従い下方に向かって傾斜して延びている。第2流路84は、冷媒配管81の第1側面81aに開口する排出口84aを備える。排出口84aは、長軸が周方向に沿う長円形状に形成されている。排出口84aの下縁は、第1流路83の導入口83aの下縁よりも下方に設けられている。
図6は、冷媒配管の内部構造を第2ハウジング側から見た斜視図である。
図6に示すように、第2流路84は、周方向で隣り合う第1流路83の第3ハウジング13側の端部に、周方向で連なっている。これにより、周方向で互いに隣り合う第1流路83および第2流路84の第3ハウジング13側の開口は、互いに連なっている。第1流路83および第2流路84のそれぞれの下面は、第3ハウジング13側の端部において互いに滑らかに連なっている。
図7は、図1のVII−VII線に相当する部分の断面図である。
図7に示すように第1流路83および第2流路84の第3ハウジング13側の開口は、上端部のみを僅かに開口させた状態で、第3ハウジング13によって閉塞されている。これにより、第1流路83および第2流路84内で過多となった冷却油9を第3ハウジング13側に流出させることができる。
図5に示すように、第3流路85は、周方向に一対設けられている。一対の第3流路85は、第1流路83および第2流路84の下方に設けられている。一対の第3流路85は、周方向に間隔をあけて設けられている。一対の第3流路85は、軸方向から見て左右対称に設けられている。第3流路85の下面は、軸方向における第2ハウジング12側から第3ハウジング13側に向かうに従い下方に向かって傾斜して延びている。
図5および図7に示すように、第3流路85は、冷媒配管81の第1側面81aに開口した第1端開口85aと、冷媒配管81の第2側面81bに開口した第2端開口85bと、を備える。第1端開口85aは、第2流路84の排出口84aの下方に設けられている。第1端開口85aの下縁は、第2ハウジング12の内面の最下部に連なっている。
図1に示すように、貯留部54は、第3ハウジング13および第4ハウジング14に跨って形成されている。貯留部54には、ハウジング3内に導入された冷却油9を最終的に貯留する貯留空間55が形成されている。すなわち、貯留部54は、第3ハウジング13および第4ハウジング14における貯留空間55が設けられた部分である。貯留空間55は、ウォータジャケット41の最下部よりも下方に形成されている。貯留空間55は、上方に開口してモータ室5内に連通している。また、貯留空間55には、第3流路85の第2端開口85bが臨み、第3流路85が連通している(図7参照)。
排出部57は、貯留空間55に貯留された冷却油9をハウジング3の外部に排出する。排出部57は、貯留部54の下部を上下方向に貫通している。本実施形態では、排出部57は、第4ハウジング14の下部を貫通している。排出部57の上端部は、貯留空間55の下面に開口している。排出部57の下端部は、ハウジング3の外面に開口している。
冷媒案内部90は、ステータ20と第2ハウジング12との間の空間に流出した冷却油9を所定位置に誘導する。冷媒案内部90は、落下防止壁91と、飛散防止壁92と、導入壁94と、を備える。
図1および図5に示すように、落下防止壁91は、隣り合うコイル22同士の間を通ってステータ20と第2ハウジング12との間の空間に流出した冷却油9がロータ30に落下することを抑制する。落下防止壁91は、第2ハウジング12の閉塞部12aの内面からステータ20に向かって軸方向に延びている。落下防止壁91は、軸方向から見てロータ30を上方から覆うように設けられている。落下防止壁91は、軸方向から見て回転軸線Oを中心とする円弧状に延びている。落下防止壁91の上面は、ステータコア21のコイルスロット26(図3参照)の径方向内側の端部と同じ位置において、周方向に延びている。落下防止壁91の先端は、ステータ20における軸方向の第2ハウジング12側の端部(図示の例ではインシュレータ28の端部)に近接して対向している。これにより、隣り合うコイル22同士の間を通って流出した冷却油9は、落下防止壁91の外周面を伝って、軸方向から見てロータ30よりも水平方向の外側に案内される。
飛散防止壁92は、隣り合うコイル22同士の間を通ってステータ20と第2ハウジング12との間の空間に流出した冷却油9が径方向の外側に飛散することを抑制する。飛散防止壁92は、第2ハウジング12の閉塞部12aの内面から第1ハウジング11に向かって軸方向に延びている。飛散防止壁92は、軸方向から見てステータ20を上方から覆うように設けられている。飛散防止壁92は、軸方向から見て回転軸線Oを中心とする円弧状に延びている。飛散防止壁92は、第2ハウジング12のブリーザ孔12cとステータ20との間と同じ位置において、周方向に延びている。飛散防止壁92の先端は、第1ハウジング11に近接して対向している。これにより、ステータコア21のコイルスロット26を通って流出した冷却油9は、径方向外側かつ上方に飛散してブリーザ孔12cに入り込むことを抑制される。
図1および図5に示すように、導入壁94は、ステータ20と第2ハウジング12との間の空間に流出した冷却油9を、冷媒配管81の第1流路83の導入口83aに案内する。導入口83aは、第2ハウジング12の閉塞部12aの内面から第1ハウジング11に向かって軸方向に延びている。導入壁94の先端縁は、冷媒配管81の第1側面81aに当接している。導入壁94は、第1ハウジング11における一対の第3流路85の第1端開口85aの間から延びる支持部材95によって、下方から支持されている。
図5に示すように、導入壁94は、ステータ20の下方に設けられている。導入壁94は、軸方向から見てステータ20よりも水平方向に幅広に延びている。導入壁94は、軸方向から見て一対の第2流路84の排出口84aをまとめて上方および側方から覆う中間部94aと、軸方向から見て中間部94aの両端部から第1流路83の導入口83aの下方を通って延びる一対の側部94bと、を備える。中間部94aは、軸方向から見て回転軸線Oに直交する直線から水平方向に離れるに従って下方に向かって傾斜して延びている。側部94bは、中間部94aの端部から水平方向に離れるに従って上方に向かって傾斜して延びている。側部94bの上面は、中間部94aと側部94bとの接続部近傍において、第1流路83の導入口83aの下縁に沿って延びている。
このような導入壁94によれば、落下防止壁91の上面を伝った後に落下防止壁91から落下した冷却油9を、一対の側部94bにおいて受け止める。導入壁94の側部94bに落下した冷却油9は、側部94bの傾斜に従って流動し、第1流路83の導入口83aに案内される。また、導入壁94は、ロータコア32の肉抜き孔37から第2ハウジング12側へ落下した冷却油9を中間部94aにおいて受け止める。導入壁94の中間部94aに落下した冷却油9は、中間部94aの傾斜に従って流動し、第1流路83の導入口83aに案内される。
導入口83aから第1流路83に導入された冷却油9は、第1流路83および第2流路84を経て第2流路84の排出口84aから排出される。この際、冷却油9は、径方向から見てウォータジャケット41と重なる領域で蛇行しながら流通する。第2流路84の排出口84aから排出された冷却油9は、モータ室5の下部に落下して、第3流路85の第1端開口85aから第3流路85に流入する。第3流路85に流入した冷却油9は、第3流路85の下面の傾斜に従って流動し、第2端開口85bから排出される。第3流路85の第2端開口85bから排出された冷却油9は、貯留部54の貯留空間55に貯留され、排出部57から適宜排出される。
以上説明したように、本実施形態のモータ1の冷却構造は、ハウジング3と、ステータ20およびロータ30に接触して冷却する冷却油9と、冷却水8によって冷却油9を冷却する水冷手段40であって、ハウジング3に形成され冷却水8が流通する冷却水流路45が設けられたウォータジャケット41を有し、ウォータジャケット41がステータ20に隣接する水冷手段40と、冷却油9が流通する冷媒流路82が設けられ、ウォータジャケット41を挟んでステータ20とは反対側でウォータジャケット41に隣接する冷媒配管81と、冷媒配管81に冷却油9を供給するオイルポンプ59と、を備える。
この構成によれば、ウォータジャケット41によってステータ20を冷却することに加え、ウォータジャケット41に隣接する冷媒配管81において、モータ1をハウジング3の内部で冷却する冷却油9もウォータジャケット41によって同時に冷却することができる。これにより、モータ1をウォータジャケット41および冷却油9の両方によって冷却でき、さらに冷却油9の冷却もモータ1の内部でウォータジャケット41との熱交換によって行うことができる。したがって、優れた冷却効率を有するモータの冷却構造を提供できる。
さらに、従来技術にように、モータの外部に設置されたオイルクーラーを用いて冷却油を冷却する構成では、オイルクーラーにおける冷却効率の向上を図る場合に、熱交換面積を増加させるためにオイルクーラーの内部に流通する冷却油の量が増加する。すると、モータの内部と外部との間で循環させる冷却油の量が増加するので、冷却構造が複雑化するおそれがある。本実施形態によれば、冷却油9の冷却もモータ1の内部でウォータジャケット41との熱交換によって行うことができるので、モータの冷却構造を簡素に構成できる。
また、ステータ20はウォータジャケット41の上方に隣接し、冷媒配管81はウォータジャケット41の下方に隣接している。
この構成によれば、ステータ20に接触した冷却油9を重力によって落下させて冷媒配管81の冷媒流路82に導くことができる。これにより、冷却油9がステータ20を冷却した後に冷媒配管81に向かう流れを容易に形成することができる。
また、ステータ20、ウォータジャケット41および冷媒配管81が上下方向に並ぶので、モータの冷却構造が軸方向に大型化することを抑制できる。
また、ウォータジャケット41の下方には、冷却油9を貯留する貯留空間55が形成されている。
この構成によれば、ステータ20に接触して温度が上昇した冷却油9を、貯留空間55に貯留される前に冷媒配管81の冷媒流路82に流通させることができる。これにより、ステータ20に接触して温度が上昇した冷却油9は、貯留空間55において残存する冷却油9に混ざって温度が低下する前に、冷媒配管81においてウォータジャケット41と熱交換される。したがって、冷却効率をより向上させることができる。
また、冷媒流路82は、軸方向における冷媒配管81とウォータジャケット41とが重なる範囲において、軸方向の第2ハウジング12側から第3ハウジング13側に向かって延びる第1流路83と、軸方向における冷媒配管81とウォータジャケット41とが重なる範囲において、軸方向の第3ハウジング13側から第2ハウジング12側に向かって延びる第2流路84と、を備える。
この構成によれば、冷媒配管81とウォータジャケット41とが重なる範囲で冷却油9を冷媒流路82に沿って軸方向に往復するように蛇行させることができる。これにより、冷媒配管81において冷却油9の熱交換面積が増加するので、冷却油9とウォータジャケット41との間でより大量の熱量を熱交換させることができる。したがって、冷却効率をより向上させることができる。
また、第1流路83は周方向に一対設けられ、第2流路84は一対の第1流路83の間に設けられている。この構成によれば、ステータ20が軸方向から見て円環状に形成されていることにより、ステータ20に隣接するウォータジャケット41、およびウォータジャケット41に隣接する冷媒配管81も、軸方向から見てステータ20と同心の円弧状に延びている。このため、ウォータジャケット41の下方に配置された冷媒配管81において、一対の第1流路83の間に設けられた第2流路84は、第1流路83よりも下方に位置する。これにより、第1流路83から第2流路84に向けて冷却油9を重力により流動させることができる。したがって、冷媒流路82内で冷却油9をスムーズに流動させることができる。
また、冷媒配管81の第1側面81aには、冷却油9が導入される第1流路83の導入口83aと、第1流路83から第2流路84に流入した冷却油9が排出される第2流路84の排出口84aと、が設けられている。冷媒流路82は、貯留空間55に連通する第3流路85を備え、第3流路85は、冷媒配管81の第1側面81aに開口し第2流路84から排出された冷却油9が流入する第1端開口85aと、貯留空間55に臨み、流入した冷却油9が排出される第2端開口85bと、を備える。
この構成によれば、冷媒配管81の第1側面81aに開口した第2流路84の排出口84aから排出された冷却油9が、第1端開口85aを通じて第3流路85に流入し、冷媒配管81の第2側面81bに開口した第2端開口85bから排出される。これにより、冷却油9を冷媒流路82に沿って軸方向に少なくとも1.5往復するように蛇行させることができる。よって、冷媒配管81において冷却油9の熱交換面積が増加するので、冷却油9とウォータジャケット41との間でより大量の熱量を熱交換させることができる。したがって、冷却効率をより向上させることができる。
また、ウォータジャケット41は周方向に沿って延び、冷媒流路82の少なくとも一部は軸方向に沿って延びている。
この構成によれば、冷却水8の流通方向と冷却油9の流通方向とが交差するので、冷却水流路45および冷媒流路82が互いに平行に延びる構成と比較して、冷却水流路45および冷媒流路82を容易に形成することができる。
また、冷却水流路45は、内面に設けられた突出部49によって、周方向におけるティース25と同じ位置において流路断面積が局所的に小さくなるように形成されている。
この構成によれば、周方向におけるティース25と同じ位置において冷却水8の流速が速くなるので、ウォータジャケット41の冷却効率を周方向におけるティース25と同じ位置において向上させることができる。したがって、発熱部位であるコイル22が巻装されたティース25をウォータジャケット41によって効率よく冷却できる。
なお、本発明は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
例えば、上記実施形態では、ロータコア32の肉抜き孔37が周方向における各スロット群36と同じ位置に設けられているが、周方向におけるスロット群36の間に設けられていてもよい。
その他、本発明の趣旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能である。
1…モータ(回転電機)
3…ハウジング(筐体)
8…冷却水
9…冷却油(冷却媒体)
20…ステータ
30…ロータ
40…水冷手段(冷却手段)
41…ウォータジャケット(冷却水配管)
45…冷却水流路
55…貯留空間
59…オイルポンプ(冷媒供給手段)
81…冷媒配管
81a…第1側面
82…冷媒流路
83…第1流路
83a…導入口
84…第2流路
84a…排出口
85…第3流路
85a…第1端開口
85b…第2端開口
O…回転軸線

Claims (5)

  1. ステータ(20)およびロータ(30)を備える回転電機(1)の冷却構造であって、
    前記ステータ(20)および前記ロータ(30)を収容する筐体(3)と、
    前記ステータ(20)および前記ロータ(30)のうち少なくともいずれか一方に接触して、前記一方を冷却する冷却媒体(9)と、
    冷却水(8)によって前記冷却媒体(9)を冷却する冷却手段(40)であって、前記筐体(3)に形成され前記冷却水(8)が流通する冷却水流路(45)が設けられた冷却水配管(41)を有し、前記冷却水配管(41)が前記ステータ(20)に隣接する冷却手段(40)と、
    前記冷却媒体(9)が流通する冷媒流路(82)が設けられ、前記冷却水配管(41)と同一部材に形成されるとともに前記冷却水配管(41)を挟んで前記ステータ(20)とは反対側で前記冷却水配管(41)に隣接する冷媒配管(81)と、
    前記冷媒配管(81)に前記冷却媒体(9)を供給する冷媒供給手段(59)と、
    を備え、
    前記ステータ(20)は、前記冷却水配管(41)の上方に隣接し、
    前記冷媒配管(81)は、前記冷却水配管(41)の下方に隣接し、
    前記冷媒流路(82)は、
    前記ロータ(30)の回転軸線方向における前記冷媒配管(81)と前記冷却水配管(41)とが重なる範囲において、前記回転軸線方向の第1側から第2側に向かって延びる第1流路(83)と、
    前記第1流路(83)に連通し、前記回転軸線方向における前記冷媒配管(81)と前記冷却水配管(41)とが重なる範囲において、前記回転軸線方向の前記第2側から前記第1側に向かって延びる第2流路(84)と、
    を備える、
    回転電機の冷却構造。
  2. 前記冷却水配管(41)よりも下方には、前記冷却媒体(9)を貯留する貯留空間(55)が形成されている、
    請求項1に記載の回転電機の冷却構造。
  3. 前記第1流路(83)には、前記ステータ(20)および前記ロータ(30)のうち少なくともいずれか一方に接触した前記冷却媒体(9)が導入され、
    前記第1流路(83)は、前記ロータ(30)の回転軸線(O)回りの周方向に一対設けられ、
    前記第2流路(84)は、前記一対の第1流路(83)の間に設けられている、
    請求項1または請求項3に記載の回転電機の冷却構造。
  4. 前記冷却水配管(41)よりも下方には、前記冷却媒体(9)を貯留する貯留空間(55)が形成され、
    前記冷媒流路(82)は、前記貯留空間(55)に連通する第3流路(85)を備え、
    前記冷媒配管(81)は、前記回転軸線方向の前記第1側に向く第1側面(81a)を備え、
    前記第1側面(81a)には、
    前記冷却媒体(9)が導入される前記第1流路(83)の導入口(83a)と、
    前記第1流路(83)から前記第2流路(84)に流入した前記冷却媒体(9)が排出される前記第2流路(84)の排出口(84a)と、
    が設けられ、
    前記第3流路(85)は、
    前記第1側面(81a)に開口し、前記第2流路(84)から排出された前記冷却媒体(9)が流入する第1端開口(85a)と、
    前記貯留空間(55)に臨み、流入した前記冷却媒体(9)が排出される第2端開口(85b)と、
    を備える、
    請求項5に記載の回転電機の冷却構造。
  5. 前記冷却水流路(45)は、前記ロータ(30)の回転軸線(O)回りの周方向に沿って延び、
    前記冷媒流路(82)の少なくとも一部は、前記ロータ(30)の回転軸線方向に沿って延びている、
    請求項1、請求項3、請求項5および請求項6のいずれか1項に記載の回転電機の冷却構造。
JP2020508801A 2018-03-30 2018-03-30 回転電機の冷却構造 Active JP6942881B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/013664 WO2019187021A1 (ja) 2018-03-30 2018-03-30 回転電機の冷却構造

Publications (2)

Publication Number Publication Date
JPWO2019187021A1 JPWO2019187021A1 (ja) 2021-02-12
JP6942881B2 true JP6942881B2 (ja) 2021-09-29

Family

ID=68061252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020508801A Active JP6942881B2 (ja) 2018-03-30 2018-03-30 回転電機の冷却構造

Country Status (3)

Country Link
JP (1) JP6942881B2 (ja)
CN (1) CN111869058B (ja)
WO (1) WO2019187021A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12009723B2 (en) * 2021-09-21 2024-06-11 Dana Automotive Systems Group, Llc Electric motor with water jacket and oil-cooled stator and method for operation of the electric motor
FR3134258A1 (fr) * 2022-03-31 2023-10-06 Renault S.A.S Dispositif de récupération de fluide de refroidissement pour machine électrique

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951657A (ja) * 1995-06-02 1997-02-18 Toyo Electric Mfg Co Ltd 液冷式回転電気機械
JP3815399B2 (ja) * 2002-08-08 2006-08-30 日産自動車株式会社 複軸多層モータのステータ冷却構造
JP3794392B2 (ja) * 2003-02-25 2006-07-05 日産自動車株式会社 電気自動車の駆動ユニット
JP4501667B2 (ja) * 2004-12-14 2010-07-14 三菱電機株式会社 車両駆動装置
DE102005044327B4 (de) * 2005-09-16 2008-04-17 Siemens Ag Elektrische Maschine mit Permanentmagneten
JP2010239734A (ja) * 2009-03-31 2010-10-21 Aisin Aw Co Ltd 回転電機
JP5349281B2 (ja) * 2009-12-24 2013-11-20 株式会社日本自動車部品総合研究所 回転電機
WO2011101222A1 (de) * 2010-02-19 2011-08-25 Magna Powertrain Ag & Co Kg Elektrische antriebseinheit
CN102820752B (zh) * 2011-06-08 2016-07-06 福建福安闽东亚南电机有限公司 混合动力车用水冷异步电机
JP2013169029A (ja) * 2012-02-14 2013-08-29 Kobe Steel Ltd 発電装置
JP6181592B2 (ja) * 2014-04-11 2017-08-16 トヨタ自動車株式会社 回転電機冷却装置
US10404139B2 (en) * 2014-05-27 2019-09-03 Mitsubishi Electric Corporation Rotary electric machine
JP2017048768A (ja) * 2015-09-04 2017-03-09 株式会社荏原製作所 キャンドモータポンプ
JP6395328B2 (ja) * 2016-06-22 2018-09-26 本田技研工業株式会社 回転電機
CN106357053B (zh) * 2016-11-28 2019-05-07 山东理工大学 一种采用喷淋和风冷混合冷却方式的轮毂电机驱动***

Also Published As

Publication number Publication date
WO2019187021A1 (ja) 2019-10-03
CN111869058A (zh) 2020-10-30
JPWO2019187021A1 (ja) 2021-02-12
CN111869058B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
JP6017067B2 (ja) 永久磁石埋込型回転電機
US6234767B1 (en) Rotor having permanent magnet and mechanism for cooling the same
US8269382B2 (en) Cooling structure of stator
JP6297216B2 (ja) 回転電機
EP3672035B1 (en) Motor
US8232691B2 (en) Stator
KR20180027556A (ko) 회전 전기 기기 냉각 구조
JP2013009508A (ja) 回転電機の冷却構造
JP2009027837A (ja) 回転電機
JPWO2011132784A1 (ja) 回転機
JP6942881B2 (ja) 回転電機の冷却構造
JP5955437B1 (ja) 回転電機
JP5772415B2 (ja) 回転電機のロータ構造
JP5408011B2 (ja) 回転電機用冷却装置
JP2011101461A (ja) 電動機
JP2022107337A (ja) モータのコイル冷却構造
JP5892091B2 (ja) マルチギャップ型回転電機
JP2016158365A (ja) モータ
JP2011223803A (ja) 回転電機用ロータ
WO2016079806A1 (ja) 回転電機
JP2004159402A (ja) 電動機及び電動発電機
JP2017204903A (ja) 回転電機
JP2014117087A (ja) 回転電機
JP2010206870A (ja) 回転電機
JP2019134573A (ja) 回転電機のステータ

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20200720

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210908

R150 Certificate of patent or registration of utility model

Ref document number: 6942881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714