WO2023160747A1 - Nasslaufendes kegelraddifferential für einen elektrisch betreibbaren achsantriebsstrang - Google Patents

Nasslaufendes kegelraddifferential für einen elektrisch betreibbaren achsantriebsstrang Download PDF

Info

Publication number
WO2023160747A1
WO2023160747A1 PCT/DE2023/100098 DE2023100098W WO2023160747A1 WO 2023160747 A1 WO2023160747 A1 WO 2023160747A1 DE 2023100098 W DE2023100098 W DE 2023100098W WO 2023160747 A1 WO2023160747 A1 WO 2023160747A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential
bevel gear
oil
oil guide
guide cap
Prior art date
Application number
PCT/DE2023/100098
Other languages
English (en)
French (fr)
Inventor
Jochen Loeffelmann
Andreas Rosenwald
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2023160747A1 publication Critical patent/WO2023160747A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/06Differential gearings with gears having orbital motion
    • F16H48/08Differential gearings with gears having orbital motion comprising bevel gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/40Constructional details characterised by features of the rotating cases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0427Guidance of lubricant on rotary parts, e.g. using baffles for collecting lubricant by centrifugal force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0427Guidance of lubricant on rotary parts, e.g. using baffles for collecting lubricant by centrifugal force
    • F16H57/0428Grooves with pumping effect for supplying lubricants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion
    • F16H57/0483Axle or inter-axle differentials

Definitions

  • the present invention relates to a wet-running bevel gear differential, in particular for an electrically operable axle drive train of a motor vehicle, oil being conveyed between the differential carrier of the bevel gear differential and another component.
  • Electric motors are increasingly being used to drive motor vehicles in order to create alternatives to internal combustion engines that require fossil fuels.
  • Significant efforts have already been made to improve the suitability for everyday use of electric drives and also to be able to offer users the driving comfort they are accustomed to.
  • This article describes a drive unit for an axle of a vehicle, which includes an electric motor that is arranged concentrically and coaxially with a bevel gear differential, with a switchable 2-speed planetary gear set being arranged in the power train between the electric motor and the bevel gear differential, which is also is positioned coaxially to the electric motor or the bevel gear differential or spur gear differential.
  • the drive unit is very compact and allows a good compromise between climbing ability, acceleration and energy consumption due to the switchable 2-speed planetary gear set.
  • Such drive units are also referred to as e-axles or electrically operable drive trains.
  • DE 10 2010 048 837 A1 discloses such a drive device with at least one electric motor and at least one planetary differential that can be driven by a rotor of the electric motor, the planetary differential having at least one planetary carrier that is connected to a rotor of the Electric motor is operatively connected, first planetary gears and second planetary gears, which are rotatably mounted on the planet carrier, and a first sun gear and a second sun gear, each of which is operatively connected to an output shaft of the planetary differential, having.
  • the first planetary gears mesh with the first sun gear and each of the second planetary gears meshes with the second sun gear and with one of the first planetary gears.
  • the sun gears are arranged coaxially with an axis of rotation of the rotor.
  • a bevel gear differential is also known from publication EP 1 472 475 B1, which can also be used in electric axles, for example.
  • the bevel gear differential comprises a differential housing, which can be driven via a ring gear fixed to the housing, as well as differential gears, which are rotatably mounted in the differential housing, and additionally two planetary gears, which are also rotatably mounted in the differential housing, with which the differential gears mesh and on in this way form the outputs of the bevel gear differential.
  • a wet-running bevel gear differential in particular for an electrically operable final drive train of a motor vehicle, with a first differential carrier, which is non-rotatably connected to a second differential carrier via a connecting area, and the two are connected to one another
  • Differential cages house two aligned output gears, both of which mesh with at least one compensating gear, the two interconnected differential cages being able to be driven together, so that they rotate about the axis of rotation of the aligned output gears, solved in that at least one of the two differential cages of surrounded by an axially open and bell-shaped oil guide cap on both sides, which has channels formed on the inner lateral surface facing the differential carrier and which can conduct oil in the axial direction within the oil guide cap and thus in the space between the oil guide cap and the corresponding differential carrier.
  • the bevel gear differential Since the interior of the bevel gear differential is supplied with oil, the bevel gear differential is a wet running bevel gear differential which, during operation, swirls the oil within the differential baskets in such a way that the differential and output gears are adequately lubricated during operation.
  • a bevel gear differential which is suitable and/or designed for use in a vehicle.
  • the bevel gear differential can be designed as a longitudinal differential, with which a drive torque can be distributed to two axles of the vehicle, or as a transverse differential or axle differential, with a drive torque being distributed to two output shafts of one and the same axle.
  • the bevel gear differential according to the invention can be used in particular in an electrically operable axle drive train of a motor vehicle.
  • An electric final drive train of a motor vehicle includes an electric machine and a transmission arrangement.
  • the transmission arrangement includes the bevel gear differential according to the invention.
  • the electric machine and the transmission arrangement are arranged in a common drive train housing.
  • the electrical machine it would also be possible for the electrical machine to have a motor housing and the transmission to have a transmission housing, in which case the structural unit can then be effected by fixing the transmission arrangement in relation to the electrical machine.
  • This structural unit is also referred to as an e-axle or as an electrically operable axle drive train.
  • the gear arrangement of the electric axle drive train can be coupled in particular to the electric machine, which is designed to generate a drive torque for the motor vehicle.
  • the drive torque is a main drive torque, so that the motor vehicle is driven exclusively by the drive torque of the electric machine.
  • the at least one differential carrier of the bevel gear differential is advantageously designed in the shape of a bell.
  • Both differential cages can have the same bell shape, with both differential cages also being able to be identical.
  • the advantageous effect of this bell-shaped design is based on the fact that the differential carrier has particularly good structural stability, which means that the fluid can be guided through the channels in combination with the bell-shaped oil guide cap placed on the differential carrier in a particularly controlled manner.
  • the bell-shaped design of the oil-conducting cap is advantageously congruent with the bell-shaped differential carrier, with the oil-conducting cap having a central opening at its two axial ends, with which the oil-conducting cap can be pushed onto the differential carrier and on the other hand the differential carrier is not axially closed off by the oil-conducting cap .
  • oil entering from one end of the oil-conducting cap can be conducted via channel openings formed there by the oil-conducting cap into the differential carrier encompassed by the oil-conducting cap.
  • the differential carrier which carries the oil-conducting cap, also has channels on its outer peripheral surface that extend in the axial direction, the respective channel openings of which face the tapered roller bearing.
  • a further embodiment of the invention provides that the at least one differential carrier is rotatably mounted at one end via a tapered roller bearing relative to a connection structure of the transmission housing, with the pumping effect generated by the rotation of the tapered roller bearing conveying the oil in the axial direction into the channel openings during rotary operation of the bevel gear differential entered into the oil guide cap.
  • the channel openings are located circumferentially on the pitch circle diameter.
  • this pitch circle diameter can be positioned with the pitch circle diameter of the tapered rollers of the tapered roller bearing, as a result of which a particularly good oil feed from the bearing into the oil-conducting cap can be achieved.
  • the oil guide cap is non-rotatably connected to the differential carrier at a connection area with the differential carrier encompassed by the oil guide cap.
  • connection area also includes the non-rotatable connection of the two differential cages to one another.
  • the non-rotatable connection of the two differential cages to one another is advantageous in that the gear wheels arranged within the bevel gear differential are preassembled before the connection is formed can and then the two differential baskets are non-rotatably connected to each other.
  • the differential carrier For connection into the connection area, the differential carrier has a cylindrical ring-like connection section which extends coaxially to the axis of rotation of the differential carrier.
  • the oil-conducting cap is designed as a plastic injection molded part. In this way, the oil-conducting structures of the channels and channel openings can be produced simply and consequently economically.
  • the channel openings widen the channels in a funnel shape in the circumferential direction. This allows oil to be efficiently trapped in the passages as the oil guide cap rotates during operation.
  • the channels of the oil-conducting cap are designed like channels and thus form two axially extending walls opposite one another on the circumferential side, with the channels also having an inner lateral surface pointing towards the axis of rotation for conducting the oil. Due to the centrifugal force that acts on the oil during operation, the oil is placed on the inner surface, slides to the end of the oil guide cap with the larger diameter due to the bell-shaped design and, thanks to the channel-like design, reaches the entry points of the differential carrier more quickly and precisely, through which the oil gets to the gears, promoted.
  • One embodiment provides that the channels are delimited by the outer lateral surface of the differential carrier encompassed by the oil-conducting cap.
  • an electrically operable axle drive train of a motor vehicle comprising an electric machine and the bevel gear differential according to the invention coupled to the electric machine.
  • FIG. 1 shows an electrically operable axle drive train in a schematic axial section
  • Figure 2 shows a drive wheel with your differential carrier in a cut-out perspective view
  • Figure 3 shows an isolated differential carrier in a perspective view
  • FIG. 4 shows a motor vehicle with an electrically operable axle drive train in a schematic block circuit view.
  • FIG. 1 shows a wet-running bevel gear differential 1 within an electrically operable final drive train 20 of a motor vehicle 21, as is also outlined in FIG.
  • the bevel gear differential 1 has a drive wheel 2 and a first and a second differential carrier 3 and 30, the differential carrier 3 being non-rotatably connected to the drive wheel 2 and to the differential carrier 30 via a connecting area 4 (dotted line).
  • the known and meshing differential gears 33 (exactly one can be seen in this exemplary embodiment) and output gears 6a, 6b are arranged.
  • the differential carrier 3 is rotatably mounted on an end 7 facing away from the drive wheel 2 via a tapered roller bearing 8 with respect to a connection structure 9 of the transmission housing 14 .
  • the oil guide cap 34 sits on the outside of the differential carrier 3 and is connected to the differential carrier 3 in a rotationally fixed manner. There is a space between the oil guide cap 34 and the differential carrier 3, which allows oil to enter can conduct axial direction. If the bevel gear differential 1 rotates during operation, the oil is conveyed in the axial direction, starting from the tapered roller bearing 8, through the remaining space between the differential carrier 3 and the oil guide cap 34 by the conveying effect generated when the tapered roller bearing 8 rotates, which is indicated by the dashed arrows .
  • the oil-conducting intermediate space between the oil-conducting cap 34 and the differential carrier 3 is designed by channels 11 and channel openings 12, which is better visible in the following figures.
  • the first oil guide cap 34 which is bell-shaped and axially open on both sides, has channels 11 extending through it in the axial direction, with each channel 11 having a channel opening 12 that widens in a funnel shape and faces the tapered roller bearing 8 .
  • the channel openings 12 are positioned approximately on the pitch circle diameter of the tapered rollers 13 of the tapered roller bearing 8 .
  • the channels 11 open into openings of the differential carrier 3 on the differential carrier side, so that the oil can get into the interior of the bevel gear differential 1 . Therefore, the bevel gear differential 1 is a wet running bevel gear differential.
  • the oil guide cap 34 engages in receptacles 5 of the differential carrier 3, which in a further embodiment are advantageously such that the oil is conducted from outside the differential carrier 3 through these receptacles 5 into the interior of the differential carrier 3 and thus into the interior of the bevel gear differential 1.
  • the receptacles 5 can be used solely for fastening the oil guide cap 34 on the differential carrier 3, with other openings for the introduction of the oil through the oil guide cap 34 on the differential carrier 3 being able to be provided for the introduction of the oil.
  • FIG. 3 reveals the view into the interior of the oil guide cap 34—from the perspective of the differential carrier 3.
  • the channels 11 extending in the axial direction, which are arranged in a regularly patterned distribution over the circumference, are clearly visible.
  • the differential carrier 3, which is not shown here, has, at the point indicated by reference numeral 11, the receptacles 5 required to accommodate the oil-conducting cap 34, which are present in the same number and order as the channels 11.
  • FIG. 3 also shows the annular face of the oil guide cap 34 on the end face, which enters the connection area 4 in order to ensure a defined axial contact of the oil guide cap 34 with the differential carrier 3 .
  • the differential carrier 3 has a cylindrical ring-like connection section 16 extending coaxially to the axis of rotation 15 of the differential carrier 3 for the non-rotatable connection of the inner ring 17 of the tapered roller bearing 8, so that the tapered roller bearing 8 and the differential carrier 3 can form a structural unit.
  • the bevel gear differential 1 is accommodated in a transmission housing 14 that is sealed off from its surroundings in an oil-tight manner, so that the oil can be guided through the transmission housing 14 or the bevel gear differential 1 .
  • the bevel gear differential 1 shown also has a second differential carrier 30 which is mounted on an end 31 facing away from the drive wheel 2 via a second tapered roller bearing 32 such that it can rotate with respect to the connection structure 9 of the transmission housing 14 .
  • FIG. 4 shows a preferred application of the wet-running bevel gear differential 1 in an electrically operable final drive train 20 of a motor vehicle 21, comprising an electric machine 22 and the bevel gear differential 1 coupled to the electric machine 22.
  • Reference character list

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

Die Erfindung betrifft ein nasslaufendes Kegelraddifferential (1 ), insbesondere für einen elektrisch betreibbaren Achsantriebsstrang (20) eines Kraftfahrzeugs (21 ), mit einem ersten Differentialkorb (3), der über einen Verbindungsbereich (4a, b) mit einem zweiten Differentialkorb (30) drehfest verbunden ist, und die beiden miteinander verbundenen Differentialkörbe (3, 30) zwei zueinander fluchtende Abtriebszahnräder (6a, 6b) beherbergen, die beide mit zumindest einem Ausgleichszahnrad (33) im Zahneingriff stehen, wobei die beiden miteinander verbundenen Differentialkörbe (3, 30) gemeinsam antreibbar sind, so dass sich diese um die Drehachse (15) der zueinander fluchtenden Abtriebszahnräder (6a, 6b) drehen, dadurch gekennzeichnet, dass zumindest einer der Differentialkörbe (3, 30) von einer beidseitig axial offenen und glockenförmigen Ölleitkappe (34) umgriffen ist, die auf der dem Differentialkorb (3, 30) zugewandten inneren Mantelfläche von dieser ausgebildeten Kanäle (11 ) aufweist, die Öl (10) in axialer Richtung innerhalb der Ölleitkappe (34) und damit in dem Zwischenraum zwischen der Ölleitkappe (34) und dem entsprechenden Differentialkorb (3, 30) leiten kann.

Description

Nasslaufendes Keqelraddifferential für einen elektrisch betreibbaren Achsantriebsstranq
Die vorliegende Erfindung betrifft ein nasslaufendes Kegelraddifferential, insbesondere für einen elektrisch betreibbaren Achsantriebsstrang eines Kraftfahrzeugs, wobei eine Ölförderung zwischen dem Differentialkorb des Kegelraddifferentials und einem weiteren Bauteil realisiert ist.
Bei Kraftfahrzeugen werden für den Antrieb verstärkt Elektromotoren eingesetzt, um Alternativen zu Verbrennungsmotoren zu schaffen, die fossile Brennstoffe benötigen. Um die Alltagstauglichkeit der Elektroantriebe zu verbessern und zudem den Benutzern den gewohnten Fahrkomfort bieten zu können, sind bereits erhebliche Anstrengungen unternommen worden.
Eine ausführliche Darstellung zu einem Elektroantrieb ergibt sich aus einem Artikel der Zeitschrift ATZ 113. Jahrgang, 05/2011 , Seiten 360-365 von Erik Schneider, Frank Fickl, Bernd Cebulski und Jens Liebold mit dem Titel: Hochintegrativ und Flexibel Elektrische Antriebseinheit für E-Fahrzeuge, der wohl den nächstkommenden Stand der Technik bildet. In diesem Artikel wird eine Antriebseinheit für eine Achse eines Fahrzeugs beschrieben, welche einen E-Motor umfasst, der konzentrisch und koaxial zu einem Kegelraddifferenzial angeordnet ist, wobei in dem Leistungsstrang zwischen Elektromotor und Kegelraddifferenzial ein schaltbarer 2-Gang-Planetenradsatz angeordnet ist, der ebenfalls koaxial zu dem E-Motor bzw. dem Kegelraddifferenzial oder Stirnraddifferential positioniert ist. Die Antriebseinheit ist sehr kompakt aufgebaut und erlaubt aufgrund des schaltbaren 2- Gang-Planetenradsatzes einen guten Kompromiss zwischen Steigfähigkeit, Beschleunigung und Energieverbrauch. Derartige Antriebseinheiten werden auch als E-Achsen oder elektrisch betreibarer Antriebsstrang bezeichnet.
Aus der DE 10 2010 048 837 A1 ist eine derartige Antriebsvorrichtung mit wenigstens einem Elektromotor und mindestens einem mit einem Rotor des Elektromotors antreibbaren Planetendifferenzial bekannt, wobei das Planetendifferenzial wenigstens einen Planententräger, der mit einem Rotor des Elektromotors wirkverbunden ist, erste Planetenräder und zweite Planetenräder, die drehbar an dem Planetenträger gelagert sind, sowie ein erstes Sonnenrad und ein zweites Sonnenrad, von denen jedes jeweils mit einer Abtriebswelle des Planetendifferenzials wirkverbunden ist, aufweist. Dabei stehen die ersten Planetenräder mit dem ersten Sonnenrad im Zahneingriff und steht jedes der zweiten Planetenräder mit dem zweiten Sonnenrad sowie mit einem der ersten Planetenräder im Zahneingriff. Ferner sind die Sonnenräder koaxial einer Rotationsachse des Rotors angeordnet.
Aus der Druckschrift EP 1 472 475 B1 ist ferner ein Kegelraddifferential bekannt, wie es beispielsweise auch bei E-Achsen zum Einsatz kommen kann. Das Kegelraddifferential umfasst ein Differenzialgehäuse, das über einen mit dem Gehäuse fest verbundenen Zahnkranz angetrieben werden kann, sowie Ausgleichsräder, die in dem Differenzialgehäuse drehbar gelagert sind, und ergänzend zwei Planetenräder, die ebenfalls im Differenzialgehäuse drehbar gelagert sind, mit denen die Ausgleichsräder kämmen und auf diese Weise die Abtriebe des Kegelraddifferentials bilden.
Bei der Entwicklung der für E-Achsen vorgesehenen elektrischen Maschinen und Getrieben besteht ein anhaltendes Bedürfnis daran, deren Leistungsdichten zu steigern, so dass der hierzu notwendigen Kühlung insbesondere der elektrischen Maschinen und der Getriebe wachsende Bedeutung zukommt. Aufgrund der notwenigen Kühlleistungen haben sich in den meisten Konzepten Hydraulikflüssigkeiten, wie Kühlöle, zum Abtransport von Wärme aus den thermisch beaufschlagten Bereichen einer elektrischen Maschine und/oder einem Getriebe durchgesetzt.
Es ist die Aufgabe der Erfindung ein verbessertes nasslaufendes Kegelraddifferential bereitzustellen.
Diese Aufgabe wird in einem nasslaufenden Kegelraddifferential, insbesondere für einen elektrisch betreibbaren Achsantriebsstrang eines Kraftfahrzeugs, mit einem ersten Differentialkorb, der über einen Verbindungsbereich mit einem zweiten Differentialkorb drehfest verbunden ist, und die beiden miteinander verbundenen Differentialkörbe zwei zueinander fluchtende Abtriebszahnräder beherbergen, die beide mit zumindest einem Ausgleichszahnrad im Zahneingriff stehen, wobei die beiden miteinander verbundenen Differentialkörbe gemeinsam antreibbar sind, so dass sich diese um die Drehachse der zueinander fluchtenden Abtriebszahnräder drehen, dadurch gelöst, dass zumindest einer der beiden Differentialkörbe von einer beidseitig axial offenen und glockenförmigen Ölleitkappe umgriffen ist, die auf der dem Differentialkorb zugewandten inneren Mantelfläche von dieser ausgebildeten Kanäle aufweist, die Öl in axialer Richtung innerhalb der Ölleitkappe und damit in dem Zwischenraum zwischen der Ölleitkappe und dem entsprechenden Differentialkorb leiten kann.
Das Öl aus dem Zwischenraum der Ölleitkappe und dem Differentialkorb dringt an einer dafür vorgesehenen Stelle in das Innere des Differentialkorbes ein. Bis an diese Stelle oder Stellen leitet die Ölleitkappe das Öl ausgehend von bspw. einem Kegelrollenlager, welches den Differentialkorb zum Getriebegehäuse lagert.
Hierdurch wird der Vorteil erzielt, dass das Kegelraddifferential und deren beherbergte Zahnräder zuverlässig mit Öl versorgt wird beziehungsweise werden. Folglich kann eine verbesserte Schmierung beziehungsweise Kühlung des Kegelraddifferentials erfolgen, selbst wenn der der Differenzial korb nahezu geschlossen ist und keine großen Öffnungen am Differentialkorb aufweist, um diesen besonders formstabil auszubilden. Ferner wird das Kegelraddifferential gegen mechanische äußere Einflüsse und Verschmutzungen geschützt.
Da das Innere des Kegelraddifferentials mit Öl versorgt wird, ist das Kegelraddifferential ein nasslaufendes Kegelraddifferential, welches im Betrieb das Öl innerhalb der Differentialkörbe derart verwirbelt, dass die Ausgleichs- und Abtriebszahnräder während des Betriebs ausreichend geschmiert werden.
So wird erfindungsgemäß ein Kegelraddifferential vorgeschlagen, welches für den Einsatz in einem Fahrzeug geeignet und/oder ausgebildet ist. Das Kegelraddifferential kann zum einen als ein Längsdifferenzial ausgebildet sein, mit dem ein Antriebsdrehmoment auf zwei Achsen des Fahrzeugs verteilt werden kann oder als ein Querdifferenzial beziehungsweise Achsdifferenzial ausgebildet sein, wobei ein Antriebsdrehmoment auf zwei Abtriebswellen der ein und derselben Achse verteilt wird. Das erfindungsgemäße Kegelraddifferential kann insbesondere bei einem elektrisch betreibbaren Achsantriebsstrang eines Kraftfahrzeugs zum Einsatz kommen. Ein elektrischer Achsantriebsstrang eines Kraftfahrzeugs umfasst eine elektrische Maschine und eine Getriebeanordnung. Die Getriebeanordnung umfasst das erfindungsgemäße Kegelraddifferential.
Es kann insbesondere vorgesehen sein, dass die elektrische Maschine und die Getriebeanordnung in einem gemeinsamen Antriebsstranggehäuse angeordnet sind. Alternativ wäre es auch möglich, dass die elektrische Maschine ein Motorgehäuse und das Getriebe ein Getriebegehäuse besitzt, wobei die bauliche Einheit dann über eine Fixierung der Getriebeanordnung gegenüber der elektrischen Maschine bewirkbar ist. Diese bauliche Einheit wird auch als E-Achse oder als elektrisch betreibbarer Achsantriebsstrang bezeichnet.
Die Getriebeanordnung des elektrischen Achsantriebsstrangs ist insbesondere mit der elektrischen Maschine koppelbar, welche zur Erzeugung eines Antriebsdrehmoments für das Kraftfahrzeug ausgebildet ist. Bei dem Antriebsdrehmoment handelt es sich um ein Hauptantriebsdrehmoment, sodass das Kraftfahrzeug ausschließlich durch das Antriebsdrehmoment der elektrischen Maschine angetrieben wird.
Der zumindest eine Differentialkorb des Kegelraddifferentials ist vorteilhafterweise glockenförmig ausgebildet. Es können beide Differentialkörbe die gleiche Glockenform aufweisen, wobei beide Differentialkörbe auch identisch sein können. Die vorteilhafte Wirkung dieser glockenförmigen Gestalt ist darin begründet, dass der Differentialkorb hierdurch eine besonders gute strukturelle Stabilität aufweist, wodurch auch die Fluidführung durch die Kanäle in Kombination mit der auf den Differentialkorb aufgesetzten glockenförmigen Ölleitkappe besonders kontrolliert erfolgen kann. Die Ölleitkappe ist vorteilhafterweise in seiner glockenförmigen Gestalt konkruent zum glockenförmigen Differentialkorb ausgebildet, wobei die Ölleitkappe an seinen beiden axialen Enden eine zentrale Öffnung hat, mit der zum Einen die Ölleitkappe auf den Differentialkorb aufgesteckt werden kann und andererseits der Differentialkorb von der Ölleitkappe nicht axial abgeschlossen wird. Gemäß einer Ausgestaltung der Erfindung ist von einem Ende der Ölleitkappe über dort von der Ölleitkappe ausgebildete Kanalöffnungen eintretendes Öl mit Hilfe der Kanäle in den von der Ölleitkappe umgriffenen Differentialkorb hinein leitbar.
Alternativ oder zusätzlich dazu kann vorgesehen sein, dass der Differentialkorb, welcher die Ölleitkappe trägt, ebenfalls sich in axialer Richtung erstreckende Kanäle an seiner Außenumfangsfläche aufweist, deren jeweils Kanalöffnungen dem Kegelrollenlager zugewandt sind.
Eine weitere Ausführung der Erfindung sieht vor, dass der zumindest eine Differentialkorb an dem einem Ende über ein Kegelrollenlager drehbar gegenüber einer Anschlussstruktur des Getriebegehäuses gelagert ist, wobei im drehenden Betrieb des Kegelraddifferentials durch die Rotation des Kegelrollenlagers erzeugte Förderwirkung das Öl in axialer Richtung in die Kanalöffnungen der Ölleitkappe eingetragen wird.
Es ist vorteilhaft, dass die Kanalöffnungen (von der Ölleitkappe und/oder des Differentialkorbes) umfangsseitig auf dem Teilkreisdurchmesser liegen. Insbesondere kann dieser Teilkreisdurchmesser mit dem Teilkreisdurchmesser der Kegelrollen des Kegelrollenlagers positioniert sein, wodurch eine besonders gute Ölzuleitung vom Lager in die Ölleitkappe erreicht werden kann.
Des Weiteren kann es gemäß einer ebenfalls vorteilhaften Ausgestaltung der Erfindung vorgesehen sein, dass die Ölleitkappe an einem Verbindungsbereich mit dem von der Ölleitkappe umgriffenen Differentialkorb mit dem Differentialkorb drehfest verbunden ist. Somit entsteht keine Relativdrehzahl zwischen dem Differentialkorb und der vom ihm getragenen Ölleitkappe.
Gemäß einer weiteren Ausführungsform der Erfindung ist es vorgesehen, dass der Verbindungsbereich auch die drehfeste Verbindung der beiden Differentialkörbe zueinander umfasst. Die drehfeste Verbindung der beiden Differentialkörbe miteinander ist insofern vorteilhaft, dass von der Ausbildung der Verbindung die innerhalb des Kegelraddifferentials angeordneten Zahnräder vormontiert werden können und anschließend die beiden Differentialkörbe miteinander drehfest verbunden werden.
Zu Verbindung in den Verbindungsbereich hinein, weist der Differentialkorb einen sich koaxial zur Drehachse des Differentialkorbes erstreckenden, zylinderringartigen Anbindungsabschnitt auf. in einer Weiterbildung der Erfindung ist die Ölleitkappe als Kunststoffspritzgussteil ausgebildet. So lassen sich einfach und folglich wirtschaftlich die ölleitenden Strukturen der Kanäle und Kanalöffnungen herstellen.
In einer Ausgestaltung weiten sich die Kanalöffnungen die Kanäle in Umfangsrichtung trichterförmig auf. So kann effizient Öl in die Kanäle eingefangen werden, wenn sich die Ölleitkappe im Betrieb dreht.
In einer Ausführung der Erfindung sind die Kanäle der Ölleitkappe rinnenartig ausgebildet und bilden somit zwei sich axial erstreckende und sich umfangsseitig gegenüberliegende Wandungen, wobei die Kanäle auch eine zur Drehachse weisende Innenmantelfläche zum Leiten des Öls aufweisen. Durch die Zentrifugalkraft, welche im Betrieb auf das Öl einwirkt, wird das Öl an der Innenmantelfläche platziert, gleitet aufgrund der glockenförmigen Ausbildung zum durchmessergrößeren Ende der Ölleitkappe und wird durch die rinnenartig ausgebildeten Kanäle zügiger und genauer zu den Eintrittsstellen des Differentialkorbes, durch die das Öl zu den Zahnrädern gelangt, gefördert.
Eine Ausführungsform sieht vor, dass die Kanäle von der Außenmantelfläche des von der Ölleitkappe umgriffenen Differentialkorbes begrenzt sind.
Schließlich kann die Aufgabe durch einen elektrisch betreibbaren Achsantriebsstrang eines Kraftfahrzeugs, umfassend eine elektrische Maschine und dem mit der elektrischen Maschine gekoppelten erfindungsgemäßen Kegelraddifferential gelöst sein. Nachfolgend wird die Erfindung anhand von Figuren ohne Beschränkung des allgemeinen Erfindungsgedankens näher erläutert werden.
Es zeigt:
Figur 1 einen elektrisch betreibbaren Achsantriebsstrang in einer schematischen Axialschnittdarstellung,
Figur 2 ein Antriebsrad mit deinem Differentialkorb in einer freigestellten perspektivischen Ansicht,
Figur 3 einen freigestellten Differentialkorb in einer perspektivischen Darstellung, und
Figur 4 ein Kraftfahrzeug mit einem elektrisch betreibbaren Achsantriebsstrang in einer schematischen Blockschaltansicht.
Die Figur 1 zeigt ein nasslaufendes Kegelraddifferential 1 innerhalb eines elektrisch betreibbaren Achsantriebsstrangs 20 eines Kraftfahrzeugs 21 , wie es auch in der Figur 4 skizziert ist.
Das Kegelraddifferential 1 verfügt über ein Antriebsrad 2 und einen ersten und einen zweiten Differentialkorb 3 und 30, wobei der Differentialkorb 3 über einen Verbindungsbereich 4 (gepunktete Linie) mit dem Antriebsrad 2 und mit dem Differentialkorb 30 drehfest verbunden ist. Innerhalb des Kegelraddifferentials 1 sind die bekannten und in Zahneingriff stehenden Ausgleichsräder 33 (in diesem Ausführungsbeispiel sichtbar genau eins) und Abtriebsräder 6a, 6b angeordnet.
Der Differentialkorb 3 ist an einem dem Antriebsrad 2 abgewandten Ende 7 über ein Kegelrollenlager 8 drehbar gegenüber einer Anschlussstruktur 9 des Getriebegehäuses 14 gelagert. Außen auf dem Differentialkorb 3 sitzt die Ölleitkappe 34 auf und ist drehfest mit dem Differentialkorb 3 verbunden. Zwischen der Ölleitkappe 34 und dem Differentialkorb 3 ist ein Zwischenraum, welche Öl in axialer Richtung leiten kann. Dreht sich das Kegelraddifferential 1 im Betrieb, so wird das Öl durch die bei Rotation des Kegelrollenlagers 8 erzeugte Förderwirkung in axialer Richtung ausgehend vom Kegelrollenlager 8 durch den verbliebenen Zwischenraum zwischen den Differentialkorb 3 und der Ölleitkappe 34 hindurch gefördert, was durch die gestrichelten Pfeile angedeutet ist. Der ölleitende Zwischenraum zwischen der Ölleitkappe 34 und dem Differentialkorb 3 ist durch Kanäle 11 und Kanalöffnungen 12 ausgestaltet, was in den folgenden Figuren besser sichtbar ist.
Die Abbildungen der Figuren 1 bis 3 zeigen eine erfindungsgemäße Ausführungsform der Ölleitkappe 34.
Aus der Zusammenschau der Figuren 1 bis 3 ist ersichtlich, dass der erste glockenförmig und beidseitig axial offene Ölleitkappe 34 in axialer Richtung sich durch ihn erstreckende Kanäle 11 aufweist, wobei jeder Kanal 11 eine sich trichterförmig aufweitende Kanalöffnung 12 hat, welche dem Kegelrollenlager 8 zugewandt ist. Die Kanalöffnungen 12 sind in etwa auf dem Teilkreisdurchmesser wie der der Kegelrollen 13 des Kegelrollenlagers 8 positioniert. Die Kanäle 11 münden differentialkorbseitig in Öffnungen des Differentialkorbes 3, damit das Öl in das Innere des Kegelraddifferentials 1 gelangen kann. Daher ist das Kegelraddifferential 1 ein nasslaufendes Kegelraddifferential.
Die Ölleitkappe 34 greift in Aufnahmen 5 des Differentialkorbes 3 ein, welche vorteilhafterweise in einer weiteren Ausführung dergestalt sind, dass das Öl von außerhalb des Differentialkorbes 3 durch diese Aufnahmen 5 in das Innere des Differentialkorbes 3 und somit in das Innere des Kegelraddifferentials 1 geleitet wird. Die Aufnahmen 5 können alternativ alleinig zur Befestigung des Ölleitkappe 34 auf dem Differentialkorb 3 dienen, wobei zur Einleitung des Öls anderweitige Öffnungen zur erfindungsgemäßen Einleitung des Öls durch die Ölleitkappe 34 am Differentialkorb 3 vorgesehen sein können.
Die Abbildung der Figur 2 zeigt den Blick auf die Ölleitkappe 34, welche auf dem Differentialkorb 3 aufsitzt. Ebenso gut sichtbar sind die Kanalöffnungen 12, welche sich am Umfang verteilt anordnen und ein aus dem Kegelrollenlager 8 austretendes Öl in die sich an die Kanalöffnungen 12 anschließenden Kanäle 11 einleiten können.
Die Abbildung der Figur 3 offenbart den Blick in das Innere der Ölleitkappe 34 - aus der Perspektive des Differentialkorbes 3. Gut erkennbar sind die sich in axialer Richtung erstreckenden Kanäle 11 , welche über den Umfang regelmäßig gemustert verteilt angeordnet sind. Der hier nicht dargestellt Differentialkorb 3 besitzt an der Stelle, auf die das Bezugszeichen 11 zeigt, die zur Aufnahme der Ölleitkappe 34 nötigen Aufnahmen 5, welche in selber Zahl und Ordnung wie die Kanäle 11 vorliegen.
Auch zeigt die Abbildung der Figur 3 die stirnseitige Ringfläche der Ölleitkappe 34, welche in den Verbindungsbereich 4 eintritt, um eine definierte axial Anlage der Ölleitkappe 34 zum Differentialkorb 3 sicherzustellen.
Der Differentialkorb 3 besitzt einen sich koaxial zur Drehachse 15 des Differentialkorbes 3 erstreckenden, zylinderringartigen Anbindungsabschnitt 16 zur drehfesten Verbindung des Innenrings 17 des Kegelrollenlagers 8, so dass das Kegelrollenlager 8 und der Differentialkorb 3 eine bauliche Einheit bilden können.
Das Kegelraddifferential 1 ist in einem Getriebegehäuse 14 aufgenommen, dass öldicht gegenüber seiner Umgebung abgedichtet ist, so dass das Öl durch das Getriebegehäuse 14 bzw. das Kegelraddifferential 1 geführt werden kann.
Das gezeigte Kegelraddifferential 1 besitzt ferner einen zweiten Differentialkorb 30, der an einem dem Antriebsrad 2 abgewandten Ende 31 über ein zweites Kegelrollenlager 32 drehbar gegenüber der Anschlussstruktur 9 des Getriebegehäuses 14 gelagert ist.
Die Figur 4 zeigt einen bevorzugten Anwendungsfall des nasslaufenden Kegelraddifferentials 1 in einem elektrisch betreibbaren Achsantriebsstrang 20 eines Kraftfahrzeugs 21 , umfassend eine elektrische Maschine 22 und das mit der elektrischen Maschine 22 gekoppelte Kegelraddifferential 1 . Bezuqszeichenliste
1 Kegelraddifferential
2 Antriebsrad
3 Differentialkorb
4 Verbindungsbereich
5 Aufnahme
6a, 6b Abtriebszahnrad
7 Ende
8 Kegelrollenlager
9 Anschlussstruktur
10 Öl
11 Kanäle
12 Kanalöffnung
13 Kegelrollen
14 Getriebegehäuse
15 Drehachse
16 Anbindungsabschnitt
17 Innenring
18 Außenring
20 Achsantriebsstrang
21 Kraftfahrzeug
22 elektrische Maschine
30 Differentialkorb
31 Ende
32 Kegelrollenlager
33 Ausgleichszahnrad
34 Ölleitkappe

Claims

Ansprüche Nasslaufendes Kegelraddifferential (1 ), insbesondere für einen elektrisch betreibbaren Achsantriebsstrang (20) eines Kraftfahrzeugs (21 ),
• mit einem ersten Differentialkorb (3), der über einen Verbindungsbereich (4a, b) mit einem zweiten Differentialkorb (30) drehfest verbunden ist,
• und die beiden miteinander verbundenen Differentialkörbe (3, 30) zwei zueinander fluchtende Abtriebszahnräder (6a, 6b) beherbergen, die beide mit zumindest einem Ausgleichszahnrad (33) im Zahneingriff stehen, wobei
• die beiden miteinander verbundenen Differentialkörbe (3, 30) gemeinsam antreibbar sind, so dass sich diese um die Drehachse (15) der zueinander fluchtenden Abtriebszahnräder (6a, 6b) drehen, dadurch gekennzeichnet, dass zumindest einer der Differentialkörbe (3, 30) von einer beidseitig axial offenen und glockenförmigen Ölleitkappe (34) umgriffen ist, die auf der dem Differentialkorb (3, 30) zugewandten inneren Mantelfläche von dieser ausgebildeten Kanäle (11 ) aufweist, die Öl (10) in axialer Richtung innerhalb der Ölleitkappe (34) und damit in dem Zwischenraum zwischen der Ölleitkappe (34) und dem entsprechenden Differentialkorb (3, 30) leiten kann. Kegelraddifferential (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass von einem Ende (7) der Ölleitkappe (34) über dort von der Ölleitkappe (34) ausgebildete Kanalöffnungen (12) eintretendes Öl (10) mit Hilfe der Kanäle (11 ) in den von der Ölleitkappe (34) umgriffenen Differentialkorb (3, 30) hinein leitbar ist. Kegelraddifferential(1)nacheinem dervorherigenAnsprüche, dadurchgekennzeichnet,dass derzumindesteine Differentialkorb(3,30)andem einem Ende (7)überein Kegelrollenlager(8)drehbargegenübereinerAnschlussstruktur(9)des Getriebegehäuses(14)gelagertist,wobeiim drehenden Betriebdes Kegelraddifferentials(1)durchdie RotationdesKegelrollenlagers(8)erzeugte Förderwirkung dasÖl(10)inaxialerRichtung indie Kanalöffnungen(12)der Ölleitkappe (34)eingetragenwird. Kegelraddifferential(1)nacheinem dervorherigenAnsprüche, dadurchgekennzeichnet,dass die Ölleitkappe (34)aneinem Verbindungsbereich (4)mitdem vonder Ölleitkappe (34)umgriffenen Differentialkorb(3,30)mitdem Differentialkorb (3, 30)drehfestverbunden ist. Kegelraddifferential(1)nacheinem dervorherigenAnsprüche, dadurchgekennzeichnet,dass derVerbindungsbereich (4)auchdie drehfesteVerbindung derbeiden Differentialkörbe (3,30)zueinanderumfasst. Kegelraddifferential(1)nacheinem dervorherigenAnsprüche, dadurchgekennzeichnet,dass die Ölleitkappe (34)alsKunststoffspritzgussteilausgebildetist. Kegelraddifferential(1)nacheinem dervorherigenAnsprüche, dadurchgekennzeichnet,dass die Kanalöffnungen(12)die Kanäle (11)in Umfangsrichtungtrichterförmig aufweiten. Kegelraddifferential (1 ) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Kanäle (11 ) der Ölleitkappe (34) rinnenartig ausgebildet sind und sich somit zwei axial erstreckende und sich umfangsseitig gegenüberliegende Wandungen sowie eine zur Drehachse (15) weisende Innenmantelfläche zum Leiten des Öls (10) aufweisen. Kegelraddifferential (1 ) nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Kanäle (11 ) von der Außenmantelfläche des von der Ölleitkappe (34) umgriffenen Differentialkorbes (3, 30) begrenzt sind. Elektrisch betreibbarer Achsantriebsstrang (20) eines Kraftfahrzeugs (21 ), umfassend eine elektrische Maschine (22) und ein mit der elektrischen Maschine (22) gekoppeltes Kegelraddifferential (1) nach einem der vorhergehenden Ansprüche.
PCT/DE2023/100098 2022-02-25 2023-02-08 Nasslaufendes kegelraddifferential für einen elektrisch betreibbaren achsantriebsstrang WO2023160747A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022104518.8 2022-02-25
DE102022104518 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023160747A1 true WO2023160747A1 (de) 2023-08-31

Family

ID=85283558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2023/100098 WO2023160747A1 (de) 2022-02-25 2023-02-08 Nasslaufendes kegelraddifferential für einen elektrisch betreibbaren achsantriebsstrang

Country Status (2)

Country Link
DE (1) DE102023102993A1 (de)
WO (1) WO2023160747A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1472475B1 (de) 2002-02-08 2005-10-05 Peugeot Citroen Automobiles SA Differential für fahrzeuge
US7229376B1 (en) * 2004-11-24 2007-06-12 Torque-Traction Technologies, Llc. Adjustable drain-back baffle
DE102010048837A1 (de) 2010-10-18 2012-04-19 Schaeffler Technologies Gmbh & Co. Kg Antriebsvorrichtung
EP3309429A1 (de) * 2016-10-14 2018-04-18 Toyota Jidosha Kabushiki Kaisha Öldurchgangsstruktur für kraftübertragungsvorrichtung
CN110529578A (zh) * 2019-08-13 2019-12-03 一汽解放汽车有限公司 一种差速器总成

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1472475B1 (de) 2002-02-08 2005-10-05 Peugeot Citroen Automobiles SA Differential für fahrzeuge
US7229376B1 (en) * 2004-11-24 2007-06-12 Torque-Traction Technologies, Llc. Adjustable drain-back baffle
DE102010048837A1 (de) 2010-10-18 2012-04-19 Schaeffler Technologies Gmbh & Co. Kg Antriebsvorrichtung
EP3309429A1 (de) * 2016-10-14 2018-04-18 Toyota Jidosha Kabushiki Kaisha Öldurchgangsstruktur für kraftübertragungsvorrichtung
CN110529578A (zh) * 2019-08-13 2019-12-03 一汽解放汽车有限公司 一种差速器总成

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERIK SCHNEIDERFRANK FICKLBERND CEBULSKIJENS LIEBOLD: "Hochintegrativ und Flexibel Elektrische Antriebseinheit für E-Fahrzeuge, der wohl den nächstkommenden Stand der Technik bildet", ZEITSCHRIFT ATZ 113, May 2011 (2011-05-01), pages 360 - 365

Also Published As

Publication number Publication date
DE102023102993A1 (de) 2023-08-31

Similar Documents

Publication Publication Date Title
AT503359B1 (de) Getriebemodul zur variablen drehmomentverteilung
DE102005063390B4 (de) Getriebeanordnung zur variablen Drehmomentverteilung
EP2490911A2 (de) Elektrische maschine für eine elektrische achse eines kraftfahrzeuges
DE102015103584A1 (de) Getriebeanordnung und Elektroantrieb mit einer solchen Getriebeanordnung
WO2021151568A1 (de) Elektrische antriebsvorrichtung für ein kraftfahrzeug
WO2021144079A1 (de) Antriebsvorrichtung zum elektrischen antreiben eines kraftwagens, insbesondere eines personenkraftwagens
DE102020200123A1 (de) Stirnraddifferential und Antriebssystem
WO2020114827A1 (de) Elektrischer achsantrieb für ein nutzfahrzeug
WO2023160747A1 (de) Nasslaufendes kegelraddifferential für einen elektrisch betreibbaren achsantriebsstrang
AT524089B1 (de) Radantriebsmodul mit einem in dem Radantriebsmodul aufgenommenen Rad
DE10354998B4 (de) Kompakte Differentialanordnung
WO2023160751A1 (de) Nasslaufendes kegelraddifferential für einen elektrisch betreibbaren achsantriebsstrang
DE102020123172A1 (de) Getriebeanordnung und elektrisch betreibbarer Antriebsstrang eines Kraftfahrzeugs
DE3731668C2 (de)
DE102022112932B3 (de) Nasslaufendes Planetengetriebe
DE102022001679B3 (de) Elektrische Antriebsvorrichtung für ein Kraftfahrzeug mit zwei Elektromotoren und Torque-Vectoring- Funktion
DE102022213256B4 (de) Getriebe für ein Fahrzeug sowie Antriebsstrang mit einem solchen Getriebe
DE102021131340B3 (de) Triebwellenanordnung mit einem innenverzahnten Träger; Getriebe und Antriebseinheit
DE102022132675B3 (de) Nasslaufendes Kegelraddifferential und elektrisch betreibbarer Achsantriebsstrang
DE102022213926A1 (de) Getriebe für ein Fahrzeug sowie Antriebsstrang mit einem solchen Getriebe
DE102022202914A1 (de) Getriebe für eine Antriebsvorrichtung
EP0867640B1 (de) Vorrichtung zur Umwandlung einer Dreh- in eine Axialbewegung
DE102022113056A1 (de) Nasslaufendes Planetengetriebe
DE102022213923A1 (de) Getriebe für ein Fahrzeug sowie Antriebsstrang mit einem solchen Getriebe
WO2023094191A1 (de) Anordnung zur erdung einer welle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23705943

Country of ref document: EP

Kind code of ref document: A1