WO2023160670A1 - 天线组件和电子设备 - Google Patents

天线组件和电子设备 Download PDF

Info

Publication number
WO2023160670A1
WO2023160670A1 PCT/CN2023/078278 CN2023078278W WO2023160670A1 WO 2023160670 A1 WO2023160670 A1 WO 2023160670A1 CN 2023078278 W CN2023078278 W CN 2023078278W WO 2023160670 A1 WO2023160670 A1 WO 2023160670A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
electrical connector
absorbing
frame
antenna assembly
Prior art date
Application number
PCT/CN2023/078278
Other languages
English (en)
French (fr)
Inventor
王君翊
张溢强
屈丽娟
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023160670A1 publication Critical patent/WO2023160670A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/007Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption

Definitions

  • the present application belongs to the technical field of communication equipment, and in particular relates to an antenna assembly and electronic equipment.
  • the radio frequency signal strength of electronic devices is one of the important performances of electronic devices.
  • electrical connectors are usually used to form a grounding point connected between metal structural parts such as screens and frames.
  • the electrical connectors are oxidized or loose, it will lead to poor contact of the electrical connectors. , and then the antenna will generate passive intermodulation products at the connection position of the electrical connector during the signal transmission process, which will fall into the receiving frequency band of the antenna and have a serious adverse effect on the receiving sensitivity of the antenna.
  • the purpose of the embodiments of the present application is to provide an antenna component and electronic equipment to solve the current problem that the radio frequency band of the antenna falls into the natural frequency of the resonant cavity, which adversely affects the transceiver performance of the antenna.
  • the embodiment of the present application discloses an antenna assembly
  • the antenna assembly includes an antenna, an electrical connector, and a wave-absorbing structural member
  • the antenna is configured to be fixed on the outer periphery of the frame, and the antenna and the frame
  • the conductive part is electrically connected
  • the electrical connector is arranged between the display screen of the electronic device and the frame
  • the conductive part of the frame and the conductive part of the display screen are configured to be electrically connected through the electrical connector
  • the conductive part of the display screen, the conductive part of the frame and the electrical connector form a resonant cavity
  • the absorbing structure is arranged in the resonant cavity.
  • the embodiment of the present application discloses an electronic device, which includes a display screen, a frame, and the above-mentioned antenna assembly, the antenna is fixed on the outer periphery of the frame, and the antenna is electrically connected to the conductive part of the frame , the electrical connector is located between the frame and the display screen, and the conductive part of the display screen is electrically connected to the conductive part of the frame through the electrical connector.
  • the embodiment of the present application discloses an antenna assembly, which can be used in electronic equipment.
  • the antenna in the antenna assembly can be fixedly connected to the outer periphery of the frame of the electronic equipment, and the frame can be connected to the electronic equipment through the electrical connector in the antenna assembly.
  • the display screen forms an electrical connection relationship, and the conductive part of the frame, the conductive part of the display screen and the electrical connector can form a resonant cavity.
  • the antenna assembly in the embodiment of the present application also includes a wave-absorbing structure, and the wave-absorbing structure is arranged in the resonant cavity, so that the dielectric constant and/or magnetic permeability in the resonant cavity is changed by using the wave-absorbing structure, And use the absorbing structure to absorb at least part of the clutter, reduce the current coupled to the electrical connector, and then reduce the risk of passive intermodulation; at the same time, the absorbing structure can also change the natural frequency of the resonant cavity, so that The radio frequency band of the antenna is located outside the natural frequency of the resonant cavity, which ensures better receiving performance of the antenna.
  • FIG. 1 is a schematic structural diagram of an electronic device including an antenna assembly with poor performance
  • Fig. 2 is a structural schematic diagram of a technical solution to solve the poor performance of the antenna assembly
  • FIG. 3 is a schematic structural diagram of an electronic device disclosed in an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of the electronic device shown in FIG. 3 in another direction;
  • FIG. 5 is a schematic cross-sectional view of an electronic device with another structure disclosed in the embodiment of the present application.
  • Fig. 6 is a schematic diagram of an electronic device with another structure disclosed in the embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional view of the electronic device shown in FIG. 6 in another direction;
  • FIG. 8 is a schematic structural diagram of a display screen in an electronic device disclosed in an embodiment of the present application.
  • Fig. 9 is a comparison diagram of the return loss curve of Ant A whether the conductive structural member is set or not;
  • Figure 10 is a comparison diagram of the radiation efficiency of Ant A whether the conductive structural member is set or not;
  • Fig. 11 is a comparison diagram of the current value of the first electrical connector when the conductive structural member is set or not to stimulate Ant A;
  • Fig. 12 is a comparison diagram of the current value of the second electrical connector when the conductive structure is set or not when the Ant A is excited;
  • Figure 13 is a comparison chart of the return loss curve of Ant B whether the conductive structural member is set or not;
  • Figure 14 is a comparison diagram of the radiation efficiency of Ant B whether the conductive structure is set or not;
  • Fig. 15 is a comparison diagram of the current value of the first electrical connector when the conductive structure is set or not when the Ant B is excited;
  • Fig. 16 is a comparison diagram of the current value of the second electrical connector when the conductive structure is set or not when the Ant B is excited;
  • Fig. 17 is a current comparison diagram when Ant A and Ant B are respectively excited when the antenna assembly is provided with a conductive structure
  • Figure 18 is a comparison diagram of the return loss curves of Ant A under different conditions
  • Figure 19 is a comparison diagram of the radiation efficiency of Ant A under different conditions.
  • Fig. 20 is a comparison diagram of the current value passing through the first electrical connector when Ant A is excited under different conditions
  • Fig. 21 is a comparison diagram of the current value passing through the second electrical connector when Ant A is excited under different conditions
  • Figure 22 is a comparison diagram of the return loss curves of Ant B under different conditions
  • Figure 23 is a comparison diagram of the radiation efficiency of Ant B under different conditions.
  • Fig. 24 is a comparison diagram of the current value passing through the first electrical connector when Ant B is excited under different conditions
  • Fig. 25 is a comparison diagram of the current value passing through the second electrical connector when Ant B is excited under different conditions.
  • 201-electrical connector 210-first electrical connector, 220-second electrical connector,
  • the embodiment of the present application discloses an antenna assembly, which can be applied in an electronic device, and the electronic device can specifically include a frame 400 and a display screen 500, at least a part of the frame 400 and the display screen 500 Layered arrangement, of course, in order to ensure that the display screen 500 and the frame 400 have the ability to be electrically connected to each other, the display screen 500 needs to be provided with a conductive part with electrical conductivity, specifically a metal bracket 530, and correspondingly, the frame 400 also includes The conductive part capable of conducting electricity can specifically be a part stacked with the display screen 500 , while the outer periphery of the frame 400 can be a metal structure, or a structure formed of non-conductive materials such as plastic.
  • the electronic device may also include components such as a casing, a processor, and a camera module, and considering the brevity of the text, they will not be introduced here one by one.
  • the antenna assembly includes an antenna 110 and an electrical connector 201 .
  • the antenna 110 can be fixedly connected to the frame 400 , and by electrically connecting the antenna 110 to the conductive part of the frame 400 , a good electrical connection relationship can be formed between the antenna 110 and the frame 400 .
  • the specific structure and form of the antenna 110 can be determined according to actual requirements, and are not limited here.
  • the antenna 110 can be integrally formed together with the frame 400, and a usable antenna form can be formed by etching a groove structure at the outer peripheral edge of the frame 400.
  • This antenna 110 is actually a metal frame antenna, and the frame 400 The connecting ribs are equivalent to the grounding part of the antenna 110 .
  • the antenna 110 can also be an FPC antenna.
  • the outer periphery of the frame 400 can be a plastic structural member, and this antenna 110 can form an electrical connection with the conductive part of the frame 400 through a conductive member, so that the antenna 110 can also be The purpose of grounding can be achieved through the frame 400 .
  • the metal frame antenna is used as an example for description below.
  • the antenna 110 may include multiple antennas of different frequency bands, and the antennas 110 may be separated from each other by a fracture 120 , and each antenna 110 is provided with a feed point 130 .
  • the electrical connector 201 is a device capable of conducting electricity, which can be made of materials such as metal, and has various structural forms, which are not limited here.
  • the electrical connector 201 may be a structure such as a screw or a shrapnel.
  • the electrical connector 201 may be conductive foam, so as to prevent the electrical connector 201 sandwiched between the frame 400 and the display screen 500 from exerting a large extrusion force on the display screen 500 , resulting in water ripples on the display screen 500, thereby ensuring that the display screen 500 has a strong display effect and a long service life.
  • current will also be generated at the electrical connector 201.
  • the electrical connector 201 can be improved by plating gold on the electrical connector 201. conductivity.
  • the electrical connectors 201 can be arranged close to the edge of the frame 400, and the electrical connectors 201 are all close to the return position of the antenna 110, more specifically, the electrical connections can be made.
  • the distance between the component 201 and the outer edge of the antenna 110 disposed on the outer periphery of the frame 400 is less than L1, specifically, L1 may be 20 millimeters (mm), which further improves the overall performance of the antenna 110 .
  • the electrical connector 201 is disposed between the display screen 500 and the frame 400 of the electronic device, and electrically connects the frame 400 and the display screen 500 through the electrical connector 201 , thereby using the electrical connector 201 as a grounding point of the antenna 110 .
  • the frame 400, the display screen 500 and the electrical connector 201 will form a harmonic Due to the resonant cavity, the radio frequency band of the antenna 110 may coincide with the natural frequency of the resonant cavity, which will adversely affect the performance of the antenna 110 .
  • the structure of the resonant cavity can be changed by adding a conductive structural member 10 to the antenna assembly and placing the conductive structural member 10 in the electric field strength region of the resonant cavity, so as to utilize the conductive structure
  • the component 10 is used to suppress the resonant cavity effect, and then change the natural frequency of the resonant cavity, so that the radio frequency band of the antenna 110 is outside the natural frequency of the resonant cavity, thereby enhancing the overall performance of the antenna 110 .
  • the antenna assembly can also include a wave-absorbing structure 300, which is made of wave-absorbing material and has the ability to absorb electromagnetic waves, and, as shown in Figure 3, the wave-absorbing structural member 300 is arranged in the resonant cavity, so that the medium in the resonant cavity changes, thereby changing the dielectric properties and The distribution of the magnetic field causes the natural frequency of the resonant cavity to change.
  • the wave-absorbing structure 300 can reduce the natural frequency of the resonant cavity, so that the radio frequency band of the antenna 110 is located outside the natural frequency of the resonant cavity.
  • An additional gold-plated conductive structure 10 is provided in the electric field strength area of the cavity, which can also ensure that the resonant cavity will not adversely affect the performance of the antenna 110, so that the overall performance of the antenna 110 is better.
  • the wave-absorbing structure 300 can absorb at least part of the clutter, thereby reducing the current coupled to the electrical connector 201 , thereby reducing the risk of passive intermodulation.
  • the embodiment of the present application discloses an antenna assembly, which can be applied in electronic equipment.
  • the antenna 110 in the antenna assembly can be fixedly connected to the outer periphery of the frame 400 of the electronic equipment, and the frame 400 can pass through the electrical connector in the antenna assembly.
  • 201 forms an electrical connection relationship with the display screen 500 of the electronic device, and the conductive part of the frame 400, the conductive part of the display screen and the electrical connector 201 can form a resonant cavity.
  • the antenna assembly in the embodiment of the present application further includes a wave-absorbing structure 300, and
  • the wave-absorbing structure 300 is arranged in the resonant cavity, thereby using the wave-absorbing structure 300 to change the dielectric constant and/or magnetic permeability in the resonant cavity, and using the wave-absorbing structure 300 to absorb at least part of the clutter, reducing coupling to The current on the electrical connector 201 can further reduce the risk of passive intermodulation; at the same time, the absorbing structure 300 can also change the natural frequency of the resonant cavity, so that the radio frequency band of the antenna 110 is located outside the natural frequency of the resonant cavity , to ensure that the receiving performance of the antenna 110 is better.
  • the antenna component includes a plurality of electrical connectors 201 .
  • the plurality of electrical connectors 201 can also need to have strong electrical conductivity, so that the plurality of electrical connectors 201 can also be It may be necessary to use methods such as gold plating to improve their respective conductive properties.
  • the distance between at least one of the plurality of electrical connectors 201 and the absorbing structure 300 can be made smaller than L2, and L2 can be specifically 20 mm.
  • the absorbing structure 300 can be used to change the magnetic field around itself. Specifically, the magnetic field around the absorbing structure 300 can be reduced. Based on the magnetic field loop integration theory, the absorbing structure The electric field intensity around the component 300 is reduced, so that the current close to the absorbing structural component 300 is further reduced.
  • the distance between the electrical connector 201 and the absorbing structure 300 can be made less than 20mm, and the absorbing structure 300 can be used to further reduce the current on the electrical connector 201, so that the electrical connector
  • the lower limit of the requirement for the electrical conductivity of the 201 is lowered, so that the electric connector 201 does not need to be gold-plated to improve its electrical conductivity, so as to reduce the cost and reduce the difficulty of processing and assembling.
  • any electrical connector 201 can be spaced from the absorbing structural member 300, that is, any electrical connecting member 201 and the absorbing structural member 300 have a distance greater than zero. Gap, so there is an assembly tolerance between the parts, which reduces the difficulty of assembling the parts. More specifically, the distance between any electrical connector 201 and the absorbing structure 300 may be greater than 3 mm.
  • the specific shape of the absorbing structural member 300 can be selected according to actual requirements, and is not limited here.
  • the absorbing structural member 300 can be triangular, circular, oval, or polygonal.
  • the wave-absorbing structural member 300 may be a closed ring-shaped structural member, or a ring-shaped structural member with an opening.
  • the wave-absorbing structure 300 can be a rectangular structure, which can reduce the processing difficulty of the wave-absorbing structure 300, and can improve the adaptability of the wave-absorbing structure 300 and expand its application scenarios.
  • the absorbing structural member 300 may be a single-layer structural member, that is, the absorbing structural member 300 is an integrated structural member formed of the same material, and the absorbing structural member 300 Both processing difficulty and assembly difficulty are relatively low.
  • the absorbing structure 300 may include multiple absorbing structure layers 310, and the multiple absorbing structure layers 310 are stacked along the stacking direction of the display screen 500 and the frame 400. , and the electrical parameters of each absorbing structure layer 310 are different.
  • the lamination direction of the display screen 500 and the frame 400 can also be regarded as the thickness direction of the antenna 110 , that is, the direction Y in FIG. 4 .
  • the electrical parameters of each absorbing structure layer 310 are different.
  • the materials of each absorbing structure layer 310 can be selected separately, which expands the size of the absorbing structure layer 310.
  • each absorbing structure layer 310 The range of type selection, so that the respective dielectric constant and/or magnetic permeability of each absorbing structure layer 310, as well as the size of each absorbing structure layer 310 can be flexibly selected according to actual needs, so that multiple absorbing structures can be used
  • the overall structure of the absorbing structure 300 formed by the layer 310 provides an offset effect for the frequency of the resonant cavity and improves the performance of the antenna 110 .
  • the absorbing structural member 300 can be a single-layer structural member formed of the same material, and the dielectric constant and magnetic permeability of the absorbing structural member 300 are fixed values. .
  • the modulus value of the dielectric constant and/or magnetic permeability of the wave-absorbing structural member 300 can be greater than 10, to ensure that the wave-absorbing structural member 300 has a relative dielectric constant and/or magnetic permeability in the resonant cavity. The change is more considerable, further improving the ability of the wave-absorbing structure 300 to shift the natural frequency of the resonant cavity, and ensuring that the resonant cavity will not adversely affect the performance of the antenna 110 .
  • the absorbing structural member 300 may be a multi-layer structural absorbing structural member 300 formed by stacking multiple materials, and the dielectric constant and magnetic permeability of the absorbing structural member 300 may be equivalent to a certain value.
  • the modulus value of the equivalent permittivity and/or equivalent magnetic permeability of the absorbing structure 300 can be greater than 10, to ensure that the absorbing structure 300 has a relatively high relative to the permittivity and/or permeability in the resonant cavity. or change in permeability More impressively, the ability of the wave-absorbing structure 300 to shift the natural frequency of the resonant cavity is further improved to ensure that the resonant cavity will not adversely affect the performance of the antenna 110 .
  • the absorbing structural member 300 is a single-layer structural member or a multi-layer structural member formed by a plurality of absorbing structural layers 310, the number of the absorbing structural member 300 can be one, and the absorbing structural member 300 is set in the resonant cavity to shift the frequency of the resonant cavity. Moreover, by making the wave-absorbing structure 300 close to at least one of the plurality of electrical connectors 201 , the current on the electrical connector 201 with a relatively small distance from the wave-absorbing structure 300 can be relatively small.
  • the number of the absorbing structural member 300 when the number of the absorbing structural member 300 is one, the installation position of the absorbing structural member 300 will always be subject to certain restrictions. Based on this, in the case of a plurality of electrical connectors 201, as shown in FIG. 6, the number of absorbing structural members 300 can be multiple, and each absorbing structural member 300 is arranged in the resonant cavity, and in the process of assembling the antenna assembly, each absorbing structural member 300 can be arranged in multiple between each electrical connector 201, and make the distance between any electrical connector 201 and at least one wave-absorbing structure 300 less than 20mm. More specifically, the distance between a certain electrical connector 201 and a certain wave-absorbing structural component 300 may be L3, and L3 may be 4mm.
  • a plurality of absorbing structures 300 can be used to lower the surrounding area respectively.
  • one or more wave-absorbing structural members 300 of specific shapes can also be designed specifically for the specific positions of the multiple electrical connectors 201, so that the multiple electrical connectors 201 The distances to the one or more absorbing structures 300 are relatively smaller. Adopting this technical solution can further ensure that the currents on the multiple electrical connectors 201 are relatively small, but relatively speaking, the difficulty of processing and assembling this type of absorbing structure 300 is relatively high, and this The applicability of the wave-absorbing structural member 300 is relatively limited. During the implementation of this application, those skilled in the art can select different technical solutions in a targeted manner according to actual needs.
  • the area of the projection of the absorbing structural member 300 on the stacking direction of the frame 400 and the display screen 500 can be compared with the resonant cavity in the aforementioned The ratio of the projected area in the stacking direction is greater than one-fifth.
  • the wave-absorbing structure 300 can usually be a regular columnar structure, and then the top or bottom surface of the wave-absorbing structure 300, that is, the area of the surface shown by the wave-absorbing structure 300 in Figure 3 is the wave-absorbing structure
  • the projected area of the resonant cavity in the aforementioned stacking direction can also be simplified as the area surrounded by a pattern formed by the connection lines between the plurality of electrical connectors 201 .
  • the aforementioned definition of the area of the resonant cavity is not the real area of the resonant cavity. Affected by the formation conditions of the resonant cavity, the calculation method of the area of the resonant cavity is relatively complicated. There may be a certain difference between the areas, but the aforementioned difference is relatively small in magnitude compared with the area of the resonant cavity. Therefore, in order to express this technical solution more intuitively, the area calculated by the above calculation method is used as the resonance The theoretical area of the cavity.
  • the area of the absorbing structural member 300 can be further increased if conditions permit, so as to ensure that the ratio of the area of the absorbing structural member 300 to the real area of the resonant cavity is greater than one-fifth, thereby ensuring
  • the absorbing structure 300 has a good ability to shift the frequency of the resonant cavity. More specifically, the ratio between the area of the wave-absorbing structure 300 and the area of the resonant cavity can be greater than 1/2. In this case, the offset effect of the wave-absorbing structure 300 on the resonant cavity is more considerable, The performance of the antenna 110 can be greatly improved.
  • the distance between the absorbing structural member 300 and the antenna 110 is greater than 10 mm.
  • the assembly of the absorbing structural member 300 is difficult. It is relatively small, and the setting range of the respective positions of the plurality of electrical connectors 201 is relatively large, so as to reduce the difficulty of assembling the entire antenna assembly.
  • the antenna 110 includes a Global Positioning System (Global Positioning System, GPS) antenna, a WIFI antenna, a second generation mobile communication technology ( 2nd Generation, 2G) antenna, a third generation mobile At least one of a communication technology (3 rd Generation, 3G) antenna, a fourth generation mobile communication technology (4 th Generation, 4G) antenna, a fifth generation mobile communication technology (5 th Generation, 5G) antenna, and a millimeter wave antenna. More specifically, the antenna The antenna 110 may include any one of the above-mentioned different types of antennas 110 , so as to expand the radio frequency band of the antenna 110 and improve the application range of the antenna 110 .
  • Ant (antenna, antenna) A and Ant B can be included in the antenna 110, Ant A and Ant B are located at opposite ends of the antenna 110 respectively, wherein Ant A is located in the cavity of the resonant cavity On the side where the bottom is located, Ant B is located on the side where the mouth of the resonant cavity is located, both Ant A and Ant B can work in the 1850MHz to 1990MHz frequency band.
  • the plurality of electrical connectors 201 in the antenna assembly may include a first electrical connector 210 and a second electrical connector 220, the first electrical connector 210 is located at the cavity bottom of the resonant cavity, and the second electrical connector 220 is located At the mouth of the resonant cavity.
  • the conductive structural member 10 and each electrical connector 201 can be conductive foam, and further, the conductive structural member 10, the first electrical connector 210 and the second electrical connector 220 can be called foam respectively. a, foam b and foam c.
  • Figure 9 and Figure 10 are comparisons of the return loss curve and radiation efficiency curve of Ant A whether or not the conductive structural member 10 is provided in the antenna assembly.
  • the triangular solid line corresponds to the return loss curve and the radiation efficiency curve of Ant A when the antenna assembly shown in FIG. 2 is provided with the conductive structural member 10.
  • the dotted circle line corresponds to the return loss curve and radiation efficiency curve of Ant A when the antenna assembly in FIG. 1 is not provided with the conductive structural member 10.
  • Fig. 11 and Fig. 12 are comparisons of the current values on the first electrical connector 210 and the second electrical connector 220 when the antenna assembly is provided with the conductive structural member 10 to excite Ant A.
  • the triangular solid line corresponds to the current value curves on the first electrical connector 210 and the second electrical connector 220 when the Ant A is excited when the conductive structural member 10 is provided in the antenna assembly.
  • the dotted circle line corresponds to the current value curves on the first electrical connector 210 and the second electrical connector 220 when the Ant A is excited when the conductive structural member 10 is not provided in the antenna assembly.
  • Fig. 9 and Fig. 10 Although the return loss and radiation efficiency of Ant A in the antenna assembly are not affected whether or not to set the conductive structure 10, the setting of the conductive structure 10 will slightly reduce the coupling to the first electric current when the Ant A is excited.
  • Connector 210 and second electrical connector 220 transmit current in the frequency range from 1850MHz to 1990MHz, and the specific difference in current is about 20-60mA. Therefore, as mentioned above, The conductive structural member 10 can be provided to effectively reduce the current on the first electrical connector 210 and the second electrical connector 220, thereby helping to reduce passive intermodulation (Passive Inter-Modulation, PIM) and radiation spurious (Radiated Spurious Emission, RSE) risk purpose.
  • PIM Passive Inter-Modulation
  • RSE Radiated Spurious Emission
  • Fig. 13 to Fig. 16 show the situation that Ant B works in the 1850MHz-1990MHz frequency band.
  • Fig. 13 and Fig. 14 are comparisons of the return loss curve and the radiation efficiency curve of Ant B whether or not the conductive structural member 10 is provided in the antenna assembly.
  • the solid circle line corresponds to the return loss curve and the radiation efficiency curve of Ant B when the antenna assembly in FIG. 2 is provided with the conductive structural member 10.
  • the rhombus dotted line corresponds to the return loss curve and radiation efficiency curve of Ant B when the antenna assembly in FIG. 1 is not provided with the conductive structural member 10.
  • Ant B has a resonance near 1850 megahertz (Mega Hertz, MHz), which is actually caused by the frame 400, the display screen 500 and a plurality of electrical connectors 201
  • the natural frequency of the formed resonant cavity falls in the transmitting frequency band of 1850MHz-1990MHz, which causes efficiency loss.
  • the resonant frequency of the resonant cavity is moved out of band, generally to the position of 2200 MHz, so that the frequency of the resonant cavity is located in an undesired frequency band.
  • the radiation efficiency of the antenna 110 is increased by 1.2 decibels (dB).
  • Figure 15 and Figure 16 are comparisons of the current values passing through the first electrical connector 210 and the second electrical connector 220 when the antenna assembly is provided with the conductive structural member 10 for exciting Ant B.
  • the solid circle line corresponds to the current value curve passing through the first electrical connector 210 and the second electrical connector 220 when the Ant B is excited when the conductive structural member 10 is arranged in the antenna assembly in FIG. 2 .
  • the diamond-shaped dotted line corresponds to the current value curve passing through the first electrical connector 210 and the second electrical connector 220 when the Ant B is excited when the conductive structural member 10 is not provided in the antenna assembly in FIG. 1 .
  • the method of adding conductive structural parts 10 can be adopted, and because the current on the conductive structural parts 10 is relatively large, as shown in Figure 17 , the solid line corresponds to the situation of stimulating Ant A, and the dotted line corresponds to the situation of stimulating Ant B.
  • the current of the conductive structural member 10 is greater than 50Ma around 1850MHz, so it is necessary to enhance the conductivity of the conductive structural member 10 by plating the conductive structural member 10 with gold, etc. Performance, thereby greatly increasing the cost of the antenna assembly, and making the connection relationship between the components in the antenna assembly more complicated, and the failure risk of the antenna assembly is higher.
  • this application adds a wave-absorbing structure 300 to the antenna assembly.
  • the wave-absorbing structure 300 can make the performance of the antenna 110 relatively low. It is better, and because there is no more precise connection relationship such as electrical connection between the absorbing structural member 300 and other structural members in the antenna assembly, the risk of failure of the antenna assembly is relatively low, and the cost of the absorbing structural member 300 itself is also low. Relatively low, so that the overall cost of the antenna assembly will not increase too much.
  • Figures 18 to 21 show the situation that the antenna 110Ant A works in the 1850MHz-1990MHz frequency band, wherein Figures 18 and 19 show whether the antenna assembly is provided with a wave-absorbing structure 300, and the set wave-absorbing structure 300
  • the return loss curves and radiation efficiency curves of Ant A corresponding to different structural forms are compared, and the conductive structural member 10 is not provided in the antenna assemblies shown in FIG. 18 and FIG. 19 .
  • the solid triangle line corresponds to the return loss curve and radiation efficiency curve of Ant A when the double absorbing structure 300 in FIG. 6 is close to the first electrical connector 210 and the second electrical connector 220 .
  • the square dotted line corresponds to the single absorbing structural member 300 in FIG.
  • the dotted line corresponds to the antenna assembly shown in Figure 2 without a wave-absorbing junction
  • the return loss curve and radiation efficiency curve of Ant A are used as a benchmark for comparison.
  • FIG. 18 and FIG. 19 for Ant A, whether the absorbing structure 300 is provided in the antenna component has almost no influence on its return loss and radiation efficiency.
  • Fig. 20 and Fig. 21 are whether to be provided with absorbing structural member 300 in the antenna assembly, and the situation that the structural form of the provided absorbing structural member 300 is different, when corresponding to exciting Ant A, pass through the first electric connecting member 210 and the second Comparison of current values of the electrical connector 220 .
  • the triangular solid line corresponds to the double absorbing structure 300 in FIG. 6 and is close to the first electrical connector 210 and the second electrical connector 220, Ant A passes through the first electrical connector 210 and the second electrical connector when excited.
  • the current value comparison of component 220 The square dotted line corresponds to the single absorbing structural member 300 in FIG.
  • the current values passing through the first electrical connector 210 and the second electrical connector 220 are compared when the Ant A is excited.
  • the dotted line corresponds to the comparison of the current values passing through the first electrical connector 210 and the second electrical connector 220 when the Ant A is excited when the antenna assembly in FIG. 2 is not provided with the absorbing structure 300, as a benchmark for comparison.
  • the double absorbing structure 300 when the Ant A is excited, the current value of the first electrical connector 210 and the second electrical connector 220 is already far less than 50mA around 1850MHz, and the risk of PIM and RSE of the antenna assembly is greatly increased. reduce.
  • Figure 22 to Figure 25 show the situation of Ant B working in the 1850MHz-1990MHz frequency band
  • Figure 22 and Figure 23 are whether the wave-absorbing structure 300 is set in the antenna assembly, and the structure of the wave-absorbing structure 300 is different
  • the return loss curve and radiation efficiency curve of Ant B corresponding to the case of , and the conductive structure 10 is not provided in the antenna assembly shown in FIG. 22 and FIG. 23 .
  • the triangular solid line corresponds to the antenna assembly shown in FIG.
  • the electrical connector 210 and the second electrical connector 220 the return loss curve and the radiation efficiency curve of Ant B.
  • the square dotted line corresponds to the antenna assembly shown in FIG. 3 provided with a monolithic absorbing structure 300, and compared with the absorbing structure 300 in FIG.
  • FIG. 3 In the case where the absorbing structural member 300 is further away from the first electrical connector 210 and the second electrical connector 220 , the return loss curve and radiation efficiency curve of Ant B.
  • the dotted line corresponds to the return loss curve and radiation efficiency curve of Ant B when the antenna assembly shown in FIG. 2 is not provided with the absorbing structure 300 , and serves as a benchmark for comparison.
  • the absorbing structure 300 can effectively suppress the resonant cavity effect near 1850MHz, and can increase the radiation efficiency of the antenna component by 0.9dB.
  • Figure 24 and Figure 25 are whether the antenna assembly is provided with a wave-absorbing structure 300, and the structure of the set wave-absorbing structure 300 is different, when the Ant B is excited, it passes through the first electrical connector 210 and the second electrical connector 210.
  • the current value comparison of the electrical connector 220 wherein, the triangular solid line corresponds to the antenna assembly shown in FIG. 6 provided with a double absorbing structure 300 and close to the first electrical connector 210 and the second electrical connector 220, when the Ant B is excited, it passes through the first electrical connector 210 and the current value of the second electrical connector 220 are compared.
  • the square dotted line corresponds to the antenna assembly shown in FIG. 3 provided with a monolithic absorbing structure 300, and compared with the absorbing structure 300 in FIG.
  • FIG. 3 In the case where the absorbing structure 300 is farther away from the first electrical connector 210 and the second electrical connector 220, the comparison of the current values passing through the first electrical connector 210 and the second electrical connector 220 when Ant B is excited .
  • the dotted line corresponds to the comparison of the current values passing through the first electrical connector 210 and the second electrical connector 220 when the Ant B is excited when the antenna assembly shown in FIG. 2 is not provided with the absorbing structure 300, as a benchmark for comparison .
  • the current of the first electrical connecting member 210 can be A drop of about 190mA makes the current of the second electrical connection part 220 drop by 70mA.
  • the current of the first electrical connector 210 can be reduced 280mA, and the current of the second electrical connection part 220 is reduced by 70mA.
  • the absorbing structure 300 can effectively suppress the resonant cavity effect, so that The current drop of the first electrical connector 210 is larger, and the larger the area of the absorbing structural member 300 and the closer it is to the first electrical connector 210 , the better the suppression effect on the current on the first electrical connector 210 . Since the original current on the first electrical connecting member 210 is relatively large, usually nearly 330mA, a gold-plated sheet must be added.
  • the current of the first electrical connecting member 210 can be greatly reduced, so that only conventional conductive
  • the electrical connector 201 is sufficient, and there is no need to add a gold-plated sheet or perform a gold-plated operation for the first electrical connector 210 , thereby saving the use of one gold-plated sheet.
  • the current coupled to the second electrical connector 220 when Ant B is excited can be mainly divided into two parts, one part is the second electrical connector 220 As the radio frequency return point of Ant B, some current passes through, which conforms to the current mode characteristics of the antenna 110 body. The other part is that the second electrical connector 220 as a part of the resonant cavity will couple the energy of Ant B, and this part of the current can be suppressed by the absorbing structure 300 to reduce the magnitude of this part of the current.
  • the main function of the second electrical connector 220 is as a radio frequency return point, and the current generated by the resonant cavity effect is much lower than that of the first electrical connector 210, so the absorbing structural members 300 with different areas The current suppression effect on the second electrical connection member 220 is similar. But for the case of exciting Ant A, the current of the second electrical connection 220 is mainly resonant Cavity effect coupling occurs. In this case, the closer the wave-absorbing structure 300 is to the second electrical connection 220 , the larger the current drop of the second electrical connection 220 is.
  • the present application also discloses an electronic device, the electronic device includes a display screen 500, a frame 400 and the antenna assembly disclosed in any of the above embodiments, of course, the electronic device may also include a casing, a processor and a camera
  • the text is concise and will not be introduced in detail here.
  • the antenna 110 in the antenna assembly is connected to the periphery of the frame 400, the antenna 110 is electrically connected to the conductive part of the frame 400, the electrical connector 201 in the antenna assembly is located between the frame 400 and the display screen 500, and the display screen 500 is connected to the display screen 500.
  • the frame 400 is electrically connected through the electrical connector 201 , so that the antenna 110 is grounded through the electrical connector 201 .
  • the display screen 500 may include a touch panel 510 , a touch module 520 and a metal frame 530 , and the touch module 520 may include substrate glass, polarizers, control electrodes and liquid crystals.
  • the touch panel 510 is arranged on one side of the touch module 520
  • the metal bracket 530 is arranged on the other side of the touch module 520.
  • the metal bracket 530 can be made of copper foil or stainless steel, and the metal bracket 530 can reduce the Mutual interference between the entire display screen 500 and the antenna assembly can reduce the loss of the efficiency of the antenna assembly.
  • the electrical connector 201 is specifically connected between the frame 400 and the metal bracket 530 of the display screen 500 .
  • the thickness of the wave-absorbing structure 300 can be made equal to the distance between the metal bracket 530 and the frame 400 .
  • the absorbing structure 300 can be installed on the frame 400, and the absorbing structure 300 and the display screen 500 can be spaced apart, that is, the thickness of the absorbing structure 300 is smaller than that of the frame 400 and the distance between the metal bracket 530, so that the absorbing structure 300 and the metal bracket 530 are separated from each other, thereby reducing the difficulty of assembling the antenna assembly, and preventing the absorbing structure 300 from being squeezed due to factors such as component tolerances or assembly errors.
  • the display screen 500 ensures that the display effect of the display screen 500 is better, and ensures that the service life of the display screen 500 is relatively high.

Landscapes

  • Details Of Aerials (AREA)

Abstract

本申请公开一种天线组件和电子设备,属于通信设备领域,所述天线组件包括天线、电连接件和吸波结构件,所述天线配置为固定在框架的外周,且所述天线与所述框架的导电部分电性连接,所述电连接件设置于电子设备的显示屏和所述框架之间,所述框架的导电部分和所述显示屏的导电部分配置为通过所述电连接件电性连接,且所述显示屏的导电部分、所述框架的导电部分和所述电连接件形成谐振腔,所述吸波结构件设置于所述谐振腔内。

Description

天线组件和电子设备
交叉引用
本发明要求在2022年02月25日提交中国专利局、申请号为202210181457.1、发明名称为“天线组件和电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于通信设备技术领域,具体涉及一种天线组件和电子设备。
背景技术
随着智能手机等电子设备的功能不断完善,电子设备的射频信号强度属于电子设备的重要性能之一。目前的天线中,通常利用电连接件形成接地点连接在如屏幕和框架等金属结构件之间,但是,电连接件如果发生氧化或松动等情况,就会导致电连接件出现接触不良的现象,进而天线在发射信号的过程中,会在电连接件的连接位置处产生无源交调产物,落入天线接收频带内,对天线的接收灵敏度产生严重的不利影响。
发明内容
本申请实施例的目的是提供一种天线组件和电子设备,以解决目前因天线的射频频带落入谐振腔的固有频率中,对天线的收发性能产生不利影响的问题。
第一方面,本申请实施例公开一种天线组件,所述天线组件包括天线、电连接件和吸波结构件,所述天线配置为固定在框架的外周,且所述天线与所述框架的导电部分电性连接,所述电连接件设置于电子设备的显示屏和所述框架之间,所述框架的导电部分和所述显示屏的导电部分配置为通过所述电连接件电性连接,且所述显示屏的导电部分、所述框架的导电部分和所述电连接件形成谐振腔,所述吸波结构件设置于所述谐振腔内。
第二方面,本申请实施例公开一种电子设备,其包括显示屏、框架和上述天线组件,所述天线固定于所述框架的外周,且所述天线与所述框架的导电部分电性连接,所述电连接件位于所述框架和所述显示屏之间,且所述显示屏的导电部分与所述框架的导电部分通过所述电连接件电性连接。
本申请实施例公开一种天线组件,该天线组件可以应用在电子设备中,天线组件中的天线可以固定连接在电子设备的框架的外周,且框架可以通过天线组件中的电连接件与电子设备的显示屏形成电性连接关系,且框架的导电部分、显示屏的导电部分和电连接件能够形成谐振腔。并且,本申请实施例中的天线组件还包括吸波结构件,且使吸波结构件设置在谐振腔内,从而利用吸波结构件改变谐振腔内的介电常数和/或磁导率,且利用吸波结构件吸收至少一部分杂波,降低耦合至电连接件上的电流,进而可以降低无源交调带来的风险;同时,吸波结构件还可以改变谐振腔的固有频率,使天线的射频频带位于谐振腔的固有频率之外,保证天线的接收性能较好。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是包括性能不佳的天线组件的电子设备的结构示意图;
图2是一种解决天线组件性能不佳的技术方案的结构示意图;
图3是本申请实施例公开的电子设备的结构示意图;
图4是图3示出的电子设备在另一方向上的剖面示意图;
图5是本申请实施例公开的另一种结构的电子设备的剖面示意图;
图6是本申请实施例公开的再一种结构的电子设备的示意图;
图7是图6示出的电子设备在另一方向上的剖面示意图;
图8是本申请实施例公开的电子设备中显示屏的结构示意图;
图9是导电结构件设置与否对Ant A的回波损耗曲线的对比图;
图10是导电结构件设置与否对Ant A的辐射效率的对比图;
图11是导电结构件设置与否对激励Ant A时经过第一电连接件的电流值的对比图;
图12是导电结构件设置与否对激励Ant A时经过第二电连接件的电流值的对比图;
图13是导电结构件设置与否对Ant B的回波损耗曲线的对比图;
图14是导电结构件设置与否对Ant B的辐射效率的对比图;
图15是导电结构件设置与否对激励Ant B时经过第一电连接件的电流值的对比图;
图16是导电结构件设置与否对激励Ant B时经过第二电连接件的电流值的对比图;
图17是天线组件设置有导电结构件的情况下分别激励Ant A和Ant B时的电流对比图;
图18是不同情况下Ant A的回波损耗曲线的对比图;
图19是不同情况下Ant A的辐射效率的对比图;
图20是不同情况下激励Ant A时经过第一电连接件的电流值的对比图;
图21是不同情况下激励Ant A时经过第二电连接件的电流值的对比图;
图22是不同情况下Ant B的回波损耗曲线的对比图;
图23是不同情况下Ant B的辐射效率的对比图;
图24是不同情况下激励Ant B时经过第一电连接件的电流值的对比图;
图25是不同情况下激励Ant B时经过第二电连接件的电流值的对比图。
附图标记说明:
10-导电结构件、
110-天线、120-断缝、130-馈点、
201-电连接件、210-第一电连接件、220-第二电连接件、
300-吸波结构件、310-吸波结构层、
400-框架、
500-显示屏、510-触控面板、520-触控模组、530-金属支架。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的折叠机构及电子设备进行详细地说明。
如图1至图8所示,本申请实施例公开一种天线组件,该天线组件可以应用在电子设备中,电子设备具体可以包括框架400和显示屏500,框架400的至少一部分与显示屏500层叠设置,当然,为了保证显示屏500和框架400之间具备相互电连接的能力,显示屏500中需要设置具备导电能力的导电部分,具体可以为金属支架530,对应地,框架400中亦包括具备导电能力的导电部分,具体可以为与显示屏500层叠设置的部分,而框架400的外周则可以为金属结构,也可以为塑料等非导电材料形成的结构。另外,电子设备还可以包括如壳体、处理器和摄像模组等器件,考虑文本简洁,此处不再一一介绍。
在电子设备的天线组件中,如图1所示,天线组件包括天线110和电连接件201。在组装天线组件的过程中,可以使天线110固定连接在框架400 的外周,且通过使天线110与框架400的导电部分电性连接,以使天线110与框架400之间能够形成良好的电连接关系。天线110的具体结构和形式可以根据实际需求确定,此处不作限定。另外,天线110可以采用一体成型的方式随框架400一并形成,且通过在框架400的外周边缘处刻蚀槽结构,形成可用的天线形式,这种天线110实际上是金属边框天线,框架400的连筋处相当于天线110的接地部分。或者,天线110还可以是FPC天线,在这种情况下,框架400的外周可以为塑料结构件,且这种天线110可以通过导电件与框架400的导电部分形成电连接关系,使得天线110亦可以通过框架400实现接地的目的。为了便于描述,下文均以金属边框天线为例进行说明。另外,如图1所示,天线110可以包括多支不同频段的天线,且天线110之间可以通过断缝120相互隔开,每一天线110上均设有馈点130。
电连接件201为具备导电能力的器件,其具体可以采用金属等材料制成,其结构形式有多种,此处不作限定。在本申请的具体实施例中,电连接件201可以为螺钉或弹片等结构。在本申请的另一实施例中,电连接件201可以为导电泡棉,从而防止夹设于框架400和显示屏500之间的电连接件201对显示屏500产生较大的挤压作用力,造成显示屏500出现水波纹,进而保证显示屏500具有较强的显示效果和较长的使用寿命。另外,在天线组件的工作过程中,电连接件201处亦会产生电流,为了保证电连接件201具备较强的导电性能,可以通过在电连接件201上镀金的方式,提升电连接件201的导电能力。另外,在布设电连接件201的过程中,可以使电连接件201设置在靠近框架400的边缘位置,且使电连接件201均靠近天线110的回地位置,更具体地,可以使电连接件201与设置在框架400的外周的天线110的外边缘的距离小于L1,L1具体可以为20毫米(millimeter,mm),进一步提升天线110的整体性能。
电连接件201设置在电子设备的显示屏500和框架400之间,且使框架400和显示屏500通过电连接件201电性连接,从而利用电连接件201作为天线110的接地点。同时,框架400、显示屏500和电连接件201会形成谐 振腔,导致天线110的射频带可能会与谐振腔的固有频率重合,而对天线110的性能产生不利影响。
基于此,如图2所示,可以通过在天线组件中增设导电结构件10,且使导电结构件10设置在谐振腔中的电场强区的方式,来改变谐振腔的结构,以利用导电结构件10来抑制谐振腔效应,进而改变谐振腔的固有频率,使天线110的射频频带位于谐振腔的固有频率之外,增强天线110的整体性能。
但是,在上述方案中,首先需要增设导电结构件10,并且需要使导电结构件10的电连接性能良好,这可能需要采用为导电结构件10镀金等方式增强导电结构件10的导电性能,一方面会造成电子设备的成本上升,另一方面还会增大电子设备的组装难度,且由于电子设备中相互连接的部件增多,导致电子设备中部件失效的风险增大。
基于此,在本申请实施例中,如图3所示,除了上述天线110和电连接件201之外,天线组件还可以包括吸波结构件300,吸波结构件300为采用吸波材料制成的结构件,且具备吸收电磁波的能力,并且,如图3所示,吸波结构件300设置在谐振腔内,使得谐振腔内的介质发生变化,进而改变谐振腔内的介电性能和磁场分布情况,使得谐振腔的固有频率发生变化,确切地说,吸波结构件300能够降低谐振腔的固有频率,以使天线110的射频频带位于谐振腔的固有频率之外,从而无需在谐振腔中电场强区额外设置需要镀金的导电结构件10,亦可以保证谐振腔不会对天线110的性能产生不利影响,使天线110的整体性能较好。同时,吸波结构件300能够吸收至少一部分杂波,从而降低耦合在电连接件201上的电流,进而降低无源交调带来的风险。
本申请实施例公开一种天线组件,该天线组件可以应用在电子设备中,天线组件中的天线110可以固定连接在电子设备的框架400的外周,且框架400可以通过天线组件中的电连接件201与电子设备的显示屏500形成电性连接关系,且框架400的导电部分、显示屏的导电部分和电连接件201能够形成谐振腔。并且,本申请实施例中的天线组件还包括吸波结构件300,且 使吸波结构件300设置在谐振腔内,从而利用吸波结构件300改变谐振腔内的介电常数和/或磁导率,且利用吸波结构件300吸收至少一部分杂波,降低耦合至电连接件201上的电流,进而可以降低无源交调带来的风险;同时,吸波结构件300还可以改变谐振腔的固有频率,使天线110的射频频带位于谐振腔的固有频率之外,保证天线110的接收性能较好。
为了进一步保证天线110具有较好的射频回流效果,且更好地抑制谐振腔杂波,可选地,天线组件中包括多个电连接件201。如上所述,在上述天线组件的工作过程中,电连接件201上仍可能会产生电流,这使得多个电连接件201亦需要具备较强的导电性能,从而使得多个电连接件201亦可能需要采用镀金等方式提升各自的导电性能。基于此,在本实施例中,如图3所示,可以使多个电连接件201中的至少一者与吸波结构件300之间的间距小于L2,L2具体可以取20mm。
在采用上述技术方案的情况下,可以利用吸波结构件300改变其自身周围的磁场,具体来说,可以减小吸波结构件300周围的磁场,基于磁场环路积分理论,使得吸波结构件300周围的电场强度降低,从而使临近于吸波结构件300上的电流进一步减小,基于此,通过使多个电连接件201中的至少一者与吸波结构件300之间距离相对较小,具体可以使电连接件201与吸波结构件300之间的间距小于20mm的方式,利用吸波结构件300进一步减小该电连接件201上的电流大小,从而使得该电连接件201对于导电能力的需求下限降低,进而可以使该电连接件201无需再采用镀金的方式提升其导电能力,达到降低成本和减小加工和组装难度的作用。
另外,考虑到部件的装配过程,可以使任一电连接件201均与吸波结构件300相互间隔,也即,使任一电连接件201均与吸波结构件300之间具有大于零的间隙,从而是部件间存在组装公差,降低部件的组装难度。更具体地,任一电连接件201与吸波结构件300之间的间距均可以大于3mm。
进一步地,吸波结构件300的具体形状可以根据实际需求选定,此处不作限定,例如,吸波结构件300可以为三角形、圆形、椭圆形或多边形等。 并且,吸波结构件300可以为闭合环状结构件,还可以为具有开口的环状结构件。在本申请的一个具体实施例中,吸波结构件300可以为矩形结构件,这可以降低吸波结构件300的加工难度,且可以提升吸波结构件300的适应性,扩大其应用场景。
可选地,如图4所示,吸波结构件300可以为单层结构件,也即,吸波结构件300为采用同种材料形成的一体式结构件,这种吸波结构件300的加工难度和组装难度均相对较低。
在本申请的另一实施例中,如图5所示,吸波结构件300可以包括多个吸波结构层310,多个吸波结构层310沿显示屏500和框架400的层叠方向层叠设置,并且,各吸波结构层310的电参数均相异。其中,显示屏500和框架400的层叠方向也可以被认为是天线110的厚度方向,即图4中的方向Y。并且,在本实施例中,各吸波结构层310的电参数均相异,在采用这种技术方案的情况下,各吸波结构层310的材质可以分别选择,扩大了吸波结构层310的选型范围,从而可以根据实际需求灵活地选定各吸波结构层310各自的介电常数和/或磁导率,以及各吸波结构层310的尺寸等,从而利用多个吸波结构层310形成的吸波结构件300这一整体结构件为谐振腔的频率提供偏移作用,提升天线110的性能。
如上所述,在设置吸波结构件300的过程中,吸波结构件300可以为同种材料形成的单层结构件,这种吸波结构件300的介电常数和磁导率为固定值。在这种情况下,可以使吸波结构件300的介电常数和/或磁导率的模值大于10,以保证吸波结构件300对于谐振腔内的介电常数和/或磁导率的改变更为可观,进一步提升吸波结构件300对谐振腔的固有频率的偏移能力,保证谐振腔不会对天线110的性能产生不利影响。
或者,吸波结构件300可以为多种材料层叠形成的多层结构式的吸波结构件300,这种吸波结构件300的介电常数和磁导率可以等效为某一值。在这种情况下,可以使吸波结构件300的等效介电常数和/或等效磁导率的模值大于10,以保证吸波结构件300对于谐振腔内的介电常数和/或磁导率的改变 更为可观,进一步提升吸波结构件300对谐振腔的固有频率的偏移能力,保证谐振腔不会对天线110的性能产生不利影响。
在上述实施例中,无论吸波结构件300为单层结构件还是由多个吸波结构层310形成的多层结构件,吸波结构件300的数量均可以为一个,该吸波结构件300设置在谐振腔内,以使谐振腔的频率发生偏移。并且,通过使该吸波结构件300靠近多个电连接件201中的至少一者,能够使与吸波结构件300之间间距相对较小的电连接件201上的电流相对较小。
但是,在吸波结构件300的数量为一个的情况下,吸波结构件300的设置位置总归会受到一定的限制,基于此,在电连接件201的数量为多个的情况下,如图6所示,吸波结构件300的数量可以为多个,且各吸波结构件300均设置在谐振腔内,在组装天线组件的过程中,可以使各个吸波结构件300均设置于多个电连接件201之间,且使任一电连接件201与至少一个吸波结构件300之间的间距均小于20mm。更具体地,可以使某一电连接件201与某一吸波结构件300之间的间距为L3,且使L3为4mm。
也即,在本实施例中,可以通过增加吸波结构件300的数量,且使吸波结构件300与电连接件201相互配合布置的方式,利用多个吸波结构件300分别降低各自周围的磁场强度,从而使围绕多个吸波结构件300设置的多个电连接件201上的电流均得到减小;并且,在吸波结构件300的数量为多个的情况下,可以使任一吸波结构件300的形状相对规则,从而保证任一吸波结构件300的加工和组装难度均相对较小。
当然,在本申请的另一实施例中,亦可以针对多个电连接件201的具***置,针对性地设计一个或多个特定形状的吸波结构件300,从而使多个电连接件201与该一个或多个吸波结构件300之间的间距均相对更小。采用这种技术方案,可以进一步保证多个电连接件201上的电流均相对较小,但是,相对而言,这类吸波结构件300的加工难度和组装难度相对较大,并且,这种吸波结构件300的适用局限性相对较大,在本申请的实施过程中,本领域技术人员可以根据实际需求,有针对性地选择不同的技术方案。
为了进一步确保吸波结构件300具备较好的偏移谐振腔频率的能力,进一步地,可以使吸波结构件300在框架400和显示屏500的层叠方向上的投影的面积与谐振腔在前述层叠方向上的投影的面积的比值大于五分之一。其中,吸波结构件300通常可以为规则的柱状结构件,进而吸波结构件300的顶面或底面,也即,图3中吸波结构件300展示的面的面积即为吸波结构件300在层叠方向上的投影的面积。谐振腔的在前述层叠方向上的投影的面积亦可以被简化为多个电连接件201之间的连线围成图形的面积。
需要说明的是,前述对于谐振腔的面积的定义并非为真正意义上谐振腔的面积,受谐振腔的形成条件的影响,谐振腔的面积的计算方式较为复杂,前述替代方式与谐振腔真正的面积之间可能会存在一定的差异,但是前述差异相较于谐振腔的面积而言数量级相对较小,因而,为了更为直观地表述本技术方案,利用上述计算方式所计算得到的面积作为谐振腔的理论面积。
进而,在实际应用中,可以在条件允许的情况下进一步增大吸波结构件300的面积,以保证吸波结构件300的面积与谐振腔的真实面积的比值大于五分之一,进而保证吸波结构件300具备良好的偏移谐振腔的频率的能力。更具体地,可以使吸波结构件300的面积与谐振腔的面积之间的比值大于二分之一,在这种情况下,吸波结构件300对谐振腔的偏移效果更为可观,能够大幅改善天线110的性能。
进一步地,可以使吸波结构件300与天线110之间具有间隔,且使吸波结构件300与天线110之间的间距大于10mm,在这种情况下,使得吸波结构件300的组装难度相对较小,且使得多个电连接件201各自的位置的设置范围相对较大,以降低整个天线组件的组装难度。
进一步地,本申请实施例公开的天线组件中,天线110包括全球定位***(Global Positioning System,GPS)天线、WIFI天线、第二代移动通信技术(2nd Generation,2G)天线、第三代移动通信技术(3rd Generation,3G)天线、***移动通信技术(4th Generation,4G)天线、第五代移动通信技术(5th Generation,5G)天线和毫米波天线中的至少一者。更具体地,天线 110可以包括上述不同类型的天线110中的任一者,从而扩大天线110的射频频段,提升天线110的适用范围。
如图1至图3所示,天线110中均可以包括Ant(antenna,天线)A和Ant B,Ant A和Ant B分别位于天线110的相背两端,其中,Ant A位于谐振腔的腔底所在一侧,Ant B位于谐振腔的腔口所在一侧,Ant A和Ant B均可以工作在1850MHz至1990MHz频段。并且,天线组件中的多个电连接件201可以包括第一电连接件210和第二电连接件220,第一电连接件210位于谐振腔的腔底所在处,第二电连接件220设置在谐振腔的腔口所在处。另外,如上所述,导电结构件10和各电连接件201均可以为导电泡棉,进而,导电结构件10、第一电连接件210和第二电连接件220可以分别被称为泡棉a、泡棉b和泡棉c。
图9和图10是天线组件中是否设置有导电结构件10对Ant A的回波损耗曲线和辐射效率曲线对比。其中,三角实线对应图2示出的天线组件设置有导电结构件10的情况下,Ant A的回波损耗曲线和辐射效率曲线。圆虚线对应图1中天线组件未设置有导电结构件10的情况下,Ant A的回波损耗曲线和辐射效率曲线。如图可知,是否在天线组件中设置导电结构件10,对于天线110Ant A的回波损耗和辐射效率几乎无影响。
图11和图12是天线组件中是否设置有导电结构件10对激励Ant A时,第一电连接件210和第二电连接件220上的电流值对比。其中,三角实线对应天线组件中设有导电结构件10的情况下,激励Ant A时,第一电连接件210和第二电连接件220上的电流值曲线。圆虚线对应天线组件中未设有导电结构件10的情况下,激励Ant A时第一电连接件210和第二电连接件220上的电流值曲线。
结合图9和图10的结果,是否设置导电结构件10对天线组件中Ant A的回波损耗和辐射效率虽然没有影响,但设置导电结构件10会略微降低激励Ant A时耦合到第一电连接件210和第二电连接件220在1850MHz至1990MHz发射频段的电流,电流的具体差值约为20-60mA,因此,如上所述, 可以通过设置导电结构件10,以有效降低第一电连接件210和第二电连接件220上的电流,进而有助于实现降低无源交调(Passive Inter-Modulatio,PIM)和辐射杂散(Radiated Spurious Emission,RSE)风险的目的。
进一步地,图13至图16示出了Ant B工作在1850MHz-1990MHz频段的情况。图13和图14是天线组件中是否设置导电结构件10对Ant B的回波损耗曲线和辐射效率曲线对比。其中,圆实线对应图2中天线组件设置有导电结构件10的情况下,Ant B的回波损耗曲线和辐射效率曲线。菱形虚线对应图1中天线组件未设置有导电结构件10的情况下,Ant B的回波损耗曲线和辐射效率曲线。
基于图示可知,在天线组件未设置导电结构件10的情况下,Ant B在1850兆赫(Mega Hertz,MHz)附近有一个谐振,实际是由框架400、显示屏500和多个电连接件201构成的谐振腔的固有频率,落在了1850MHz-1990MHz这一发射频段中,且造成了效率损耗。而在天线组件设置有导电结构件10的情况下,上述谐振腔的谐振频率被移到带外,大体上移动到了2200MHz的位置,从而使谐振腔的频率位于非需求频段。并且,在1850MHz附近的工作发射频段,天线110的辐射效率提高了1.2分贝(decibel,dB)。
图15和图16是天线组件中是否设置有导电结构件10对于激励Ant B时,经过第一电连接件210和第二电连接件220的电流值对比。圆实线对应图2中天线组件中设置有导电结构件10的情况下,激励Ant B时经过第一电连接件210和第二电连接件220的电流值曲线。菱形虚线对应图1中天线组件中未设置有导电结构件10的情况下,激励Ant B时经过第一电连接件210和第二电连接件220的电流值曲线。
结合图13和图14的结果,在天线组件中设置有导电结构件10的情况下,Ant B辐射效率得到提高,且第一电连接件210和第二电连接件220上耦合的电流发生大幅下降。其中,第一电连接件210的电流下降了220mA,第二电连接件220的电流下降了110mA,从而可以大幅降低PIM和RSE风险。 而天线组件中未设置导电结构件10的情况下,虽然第一电连接件210与Ant B的距离较大,但受谐振腔效应的影响,第一电连接件210仍然耦合到了极大的电流,电流峰值和谐振腔谐振频率基本对齐,导致天线组件的PIM和RSE风险很高。
综上,为了抑制谐振腔现象,保证天线110效率较高,降低EMC的工作风险,可以采用增加导电结构件10的方式,且由于导电结构件10上的电流相对较大,如图17所示,实线对应激励Ant A的情况,虚线对应激励Ant B的情况,显然,在1850MHz附近导电结构件10的电流大于50Ma,从而需要通过为导电结构件10镀金等方式增强导电结构件10的导电性能,从而大幅增加天线组件的成本,且使得天线组件中部件间的连接关系更为复杂,天线组件的失效风险更高。
综上,为了保证天线110的性能,且保证天线组件的成本和失效风险仍均相对较低,本申请在天线组件中增设吸波结构件300,吸波结构件300可以使天线110的性能相对较好,且由于吸波结构件300与天线组件中的其他结构件不存在电性连接等较为精密的连接关系,使得天线组件的失效风险相对较低,且吸波结构件300自身的成本亦相对较低,从而不会导致天线组件的整体成本上升过多。
图18至图21示出了天线110Ant A工作在1850MHz-1990MHz频段的情况,其中,图18和图19是天线组件中是否设置有吸波结构件300,以及所设置的吸波结构件300的结构形式不同的情况所对应的Ant A的回波损耗曲线和辐射效率曲线对比,并且,图18和图19示出的天线组件中均未设置导电结构件10。其中,三角实线对应图6中双吸波结构件300且靠近第一电连接件210和第二电连接件220的情况下,Ant A的回波损耗曲线和辐射效率曲线。正方形虚线对应图3中单个吸波结构件300,且相较于图6中的吸波结构件300与第一电连接件210和第二电连接件220,图3中的吸波结构件300与第一电连接件210和第二电连接件220相更远的情况下,Ant A的回波损耗曲线和辐射效率曲线。圆点线对应图2示出的天线组件中未设置吸波结 构件300的情况下,Ant A的回波损耗曲线和辐射效率曲线,作为对比的基准。显然,基于图18和图19可知,对于Ant A而言,天线组件中是否设置吸波结构件300对其回波损耗和辐射效率几乎无影响。
图20和图21是天线组件中是否设置有吸波结构件300,以及所设置的吸波结构件300的结构形式不同的情况,对应于激励Ant A时经过第一电连接件210和第二电连接件220的电流值对比。其中,三角实线对应图6中双吸波结构件300且靠近第一电连接件210和第二电连接件220的情况下,Ant A激励时经过第一电连接件210和第二电连接件220的电流值对比。正方形虚线对应图3中单个吸波结构件300,且相较于图6中的吸波结构件300与第一电连接件210和第二电连接件220,图3中的吸波结构件300与第一电连接件210和第二电连接件220相更远的情况下,激励Ant A时经过第一电连接件210和第二电连接件220的电流值对比。圆点线对应图2中天线组件中未设置有吸波结构件300的情况下,激励Ant A时经过第一电连接件210和第二电连接件220的电流值对比,作为对比的基准。
结合图18和图19的结果,天线组件中是否设置吸波结构件300对于Ant A的回波损耗和辐射效率虽然没有影响,但是在天线组件中设置有吸波结构件300的情况下,能够较大幅度地降低激励Ant A时耦合到第一电连接件210和第二电连接件220在1850MHz-1990MHz发射频段的电流,并且,吸波结构件300的面积越大,以及越靠近对应的电连接件201,该电连接件201的电流降幅越大。如图6所示的双吸波结构件300,在激励Ant A时,第一电连接件210和第二电连接件220在1850MHz附近电流值已经远小于50mA,天线组件的PIM和RSE风险大大降低。
图22至图25示出了Ant B工作在1850MHz-1990MHz频段的情况,图22和图23是天线组件中是否设置有吸波结构件300,以及所设置的吸波结构件300的结构形式不同的情况所对应的Ant B的回波损耗曲线和辐射效率曲线对比,并且,图22和图23示出的天线组件中均未设置导电结构件10。其中,三角实线对应图6示出的天线组件设置有双吸波结构件300且靠近第一 电连接件210和第二电连接件220的情况下,Ant B的回波损耗曲线和辐射效率曲线。正方形虚线对应图3示出的天线组件设置有单片吸波结构件300,且相较于图6中的吸波结构件300与第一电连接件210和第二电连接件220,图3中的吸波结构件300与第一电连接件210和第二电连接件220相更远的情况下,Ant B的回波损耗曲线和辐射效率曲线。圆点线对应图2示出的天线组件未设置有吸波结构件300的情况下,Ant B的回波损耗曲线和辐射效率曲线,作为对比的基准。
基于图22和图23示出的情况可知,对于Ant B来说,吸波结构件300能够有效地抑制在1850MHz附近的谐振腔效应,且可以使天线组件的辐射效率提高0.9dB。
综上所述,相比于上述利用导电结构件10抑制谐振腔效应的技术方案,虽然本申请上述增设吸波结构件300的方式对于天线组件的辐射效率的提升差值只有0.3dB,但是,在整体设计上,却可以减少增设一需要镀金的导电结构件10大幅降低了物料成本,而且也不存在因导电结构件10连接稳定性带来的EMC方面的风险。
图24和图25是是天线组件中是否设置有吸波结构件300,以及所设置的吸波结构件300的结构形式不同的情况下,激励Ant B时经过第一电连接件210和第二电连接件220的电流值对比。其中,三角实线对应图6示出的天线组件设置有双吸波结构件300且靠近第一电连接件210和第二电连接件220的情况下,激励Ant B时经过第一电连接件210和第二电连接件220的电流值对比。正方形虚线对应图3示出的天线组件设置有单片吸波结构件300,且相较于图6中的吸波结构件300与第一电连接件210和第二电连接件220,图3中的吸波结构件300与第一电连接件210和第二电连接件220相更远的情况下,激励Ant B时经过第一电连接件210和第二电连接件220的电流值对比。圆点线对应图2示出的天线组件未设置有吸波结构件300的情况下,激励Ant B时经过第一电连接件210和第二电连接件220的电流值对比,作为对比的基准。
结合图22和图23的结果,在天线组件中设置有吸波结构件300的情况下,不仅可以提高Ant B的辐射效率,而且可以使第一电连接件210和第二电连接件220上耦合的电流大幅下降。
并且,在吸波结构件300为单层结构件,且该吸波结构件300距离第一电连接件210和第二电连接件220距离较远时,可以使第一电连接件210的电流下降190mA左右,使第二电连接件220的电流下降70mA。在吸波结构件300的数量为两个,且两个吸波结构件300分别距离第一电连接件210和第二电连接件220较近时,可以使第一电连接件210的电流下降280mA左右,且使第二电连接件220的电流下降70mA。
其中,对于第一电连接件210而言,激励Ant B时主要通过谐振腔效应,耦合能量到远端的第一电连接件210,吸波结构件300可以有效的抑制谐振腔效应,从而使第一电连接件210电流降幅较大,且吸波结构件300面积越大,越靠近第一电连接件210,对第一电连接件210上的电流的抑制效果越好。由于第一电连接件210上原本的电流相对较大,通常将近330mA,从而必须增加镀金片。而采用本申请实施例提供的技术方案之后,也即,在天线组件中增设吸波结构件300之后,可以使第一电连接件210的电流大幅下降,从而仅需使用常规的具备导电能力的电连接件201即可,而无需再为第一电连接件210增设镀金片或进行镀金操作,从而节省一处镀金片的使用。
对于第二电连接件220,由于其距离Ant B较近,激励Ant B时耦合到第二电连接件220上的电流,主要可以被拆分为两个部分,一部分是第二电连接件220作为Ant B的射频回流点,有一些电流通过,符合天线110本体的电流模式特征。另一部分是第二电连接件220作为谐振腔的一部分会耦合Ant B的能量,这一部分电流是可以通过吸波结构件300进行抑制,达到降低该部分电流的大小的目的。对于Ant B来说,第二电连接件220主要的作用是作为射频回流点,谐振腔效应产生的电流相较于第一电连接件210的电流低很多,因此面积不同的吸波结构件300对第二电连接件220的电流抑制效果相差不大。但对于激励Ant A的情况,第二电连接件220的电流主要是谐振 腔效应耦合产生,在这种情况下,吸波结构件300越靠近第二电连接件220,第二电连接件220的电流降幅就更大。
基于上述任一实施例,本申请还公开一种电子设备,电子设备包括显示屏500、框架400和上述任一实施例公开的天线组件,当然,电子设备还可以包括壳体、处理器和摄像模组等其他器件,考虑文本简洁,此处不再详细介绍。
其中,天线组件中的天线110连接在框架400的外周,天线110与框架400的导电部分电性连接,天线组件中的电连接件201位于框架400和显示屏500之间,且显示屏500与框架400通过电连接件201电性连接,从而使天线110通过电连接件201接地。
更具体地,如图8所示,显示屏500可以包括触控面板510、触控模组520和金属支架530,触控模组520可以包括基板玻璃、偏光片、控制电极和液晶等部分。触控面板510设置在触控模组520的一侧,金属支架530设置在触控模组520的另一侧,金属支架530可以采用铜箔或不锈钢等材料制成,利用金属支架530可以降低整个显示屏500和天线组件之间的相互干扰,且可以降低对天线组件的效率的损耗。在连接显示屏500和框架400的过程中,电连接件201具体连接在框架400和显示屏500的金属支架530之间。
更具体地,在设计吸波结构件300的过程中,可以使吸波结构件300的厚度等于金属支架530和框架400之间的间距。在本申请的另一实施例中,可以使吸波结构件300安装在框架400上,且使吸波结构件300与显示屏500间隔设置,也即,吸波结构件300的厚度小于框架400和与金属支架530之间的间距,从而使吸波结构件300与金属支架530相互间隔,进而降低天线组件的组装难度,防止因部件的公差或组装误差等因素造成吸波结构件300挤压显示屏500,保证显示屏500的显示效果较好,且保证显示屏500的使用寿命相对较高。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者 装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (10)

  1. 一种天线组件,所述天线组件包括天线、电连接件和吸波结构件,所述天线配置为固定在框架的外周,且所述天线与所述框架的导电部分电性连接,所述电连接件设置于电子设备的显示屏和所述框架之间,所述框架的导电部分和所述显示屏的导电部分配置为通过所述电连接件电性连接,且所述显示屏的导电部分、所述框架的导电部分和所述电连接件形成谐振腔,所述吸波结构件设置于所述谐振腔内。
  2. 根据权利要求1所述的天线组件,其中,所述电连接件的数量为多个,多个所述电连接件中的至少一者与所述吸波结构件之间的间距小于20mm。
  3. 根据权利要求1所述的天线组件,其中,所述吸波结构件为单层结构件;
    所述吸波结构件的介电常数和/或磁导率的模值大于10。
  4. 根据权利要求1所述的天线组件,其中,所述吸波结构件包括多个吸波结构层,多个所述吸波结构层沿所述显示屏和所述框架的层叠方向层叠设置,且各所述吸波结构层的电参数均相异;
    所述吸波结构件的等效介电常数和/或等效磁导率的模值大于10。
  5. 根据权利要求1所述的天线组件,其中,所述吸波结构件和所述电连接件的数量均为多个,各所述吸波结构件均设置于所述谐振腔内,各所述吸波结构件均设置于多个所述电连接件之间,且任一所述电连接件与至少一个所述吸波结构件之间的间距均小于20mm。
  6. 根据权利要求1所述的天线组件,其中,所述吸波结构件在所述框架和所述显示屏的层叠方向上的投影的面积与所述谐振腔在所述层叠方向上的投影的面积的比值大于五分之一。
  7. 根据权利要求1所述的天线组件,其中,所述吸波结构件与所述天线之间的间距大于10mm。
  8. 根据权利要求1所述的天线组件,其中,所述天线包括GPS天线、WIFI天线、2G天线、3G天线、4G天线、5G天线和毫米波天线中的至少一 者。
  9. 一种电子设备,包括显示屏、框架和权利要求1-8任意一项所述的天线组件,所述天线固定于所述框架的外周,且所述天线与所述框架的导电部分电性连接,所述电连接件位于所述框架和所述显示屏之间,且所述显示屏的导电部分与所述框架的导电部分通过所述电连接件电性连接。
  10. 根据权利要求9所述的电子设备,其中,所述吸波结构件与所述显示屏间隔设置。
PCT/CN2023/078278 2022-02-25 2023-02-24 天线组件和电子设备 WO2023160670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210181457.1A CN114447568A (zh) 2022-02-25 2022-02-25 天线组件和电子设备
CN202210181457.1 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023160670A1 true WO2023160670A1 (zh) 2023-08-31

Family

ID=81372818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078278 WO2023160670A1 (zh) 2022-02-25 2023-02-24 天线组件和电子设备

Country Status (2)

Country Link
CN (1) CN114447568A (zh)
WO (1) WO2023160670A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447568A (zh) * 2022-02-25 2022-05-06 维沃移动通信有限公司 天线组件和电子设备
TWI827121B (zh) * 2022-07-04 2023-12-21 和碩聯合科技股份有限公司 電子裝置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204130702U (zh) * 2014-05-23 2015-01-28 西安中兴新软件有限责任公司 连接agps模块和主板的部件及无线接入终端
CN207410338U (zh) * 2016-01-29 2018-05-25 苹果公司 电子设备
US20190296431A1 (en) * 2018-03-23 2019-09-26 Pegatron Corporation Electronic device and antenna assembly thereof
CN111446550A (zh) * 2020-02-27 2020-07-24 Oppo广东移动通信有限公司 吸波结构、天线组件及电子设备
CN113410643A (zh) * 2021-05-19 2021-09-17 荣耀终端有限公司 具有噪声抑制结构的终端设备
CN114447568A (zh) * 2022-02-25 2022-05-06 维沃移动通信有限公司 天线组件和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204130702U (zh) * 2014-05-23 2015-01-28 西安中兴新软件有限责任公司 连接agps模块和主板的部件及无线接入终端
CN207410338U (zh) * 2016-01-29 2018-05-25 苹果公司 电子设备
US20190296431A1 (en) * 2018-03-23 2019-09-26 Pegatron Corporation Electronic device and antenna assembly thereof
CN111446550A (zh) * 2020-02-27 2020-07-24 Oppo广东移动通信有限公司 吸波结构、天线组件及电子设备
CN113410643A (zh) * 2021-05-19 2021-09-17 荣耀终端有限公司 具有噪声抑制结构的终端设备
CN114447568A (zh) * 2022-02-25 2022-05-06 维沃移动通信有限公司 天线组件和电子设备

Also Published As

Publication number Publication date
CN114447568A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023160670A1 (zh) 天线组件和电子设备
WO2022206237A1 (zh) 天线组件及电子设备
KR102455333B1 (ko) 안테나 시스템 및 단말 기기
KR100414635B1 (ko) 안테나 시스템 및 그를 사용한 무선 유닛
EP3373390A1 (en) Multi-frequency communication antenna and base station
TWI672860B (zh) 電子裝置
TWI540790B (zh) 天線裝置及應用其之通訊裝置
CN109378586B (zh) 多馈入天线
US20220320714A1 (en) Antenna assembly and electronic device
US11005162B2 (en) Antenna structure of wireless communication device
US11522296B2 (en) Antenna and mobile terminal
US11637361B2 (en) Antenna structure and wireless communication device
JPWO2011027770A1 (ja) 通信伝達装置、通信カプラ及びインピーダンス調整シート
WO2021203939A1 (zh) 一种电子设备
EP4113746A1 (en) Antenna and terminal
US20220085493A1 (en) Housing assembly, antenna device, and electronic device
WO2022116290A1 (zh) 天线模组及移动终端
JP2019106690A (ja) 無線通信機器
CN103579746A (zh) 天线装置及应用其的通讯装置
CN107331950B (zh) 一种圆形4g lte mimo车载天线
US20230291102A1 (en) Antenna and mobile terminal
EP3859881A1 (en) Antenna component
CN215645014U (zh) 天线组件和具有该天线组件的电子设备
CN220492197U (zh) 一种天线模组和终端设备
TWI833422B (zh) 多頻天線及電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759292

Country of ref document: EP

Kind code of ref document: A1