WO2023160360A1 - 一种快出结果的发光检测***及其方法 - Google Patents

一种快出结果的发光检测***及其方法 Download PDF

Info

Publication number
WO2023160360A1
WO2023160360A1 PCT/CN2023/074500 CN2023074500W WO2023160360A1 WO 2023160360 A1 WO2023160360 A1 WO 2023160360A1 CN 2023074500 W CN2023074500 W CN 2023074500W WO 2023160360 A1 WO2023160360 A1 WO 2023160360A1
Authority
WO
WIPO (PCT)
Prior art keywords
incubation
cuvette
needle
detection system
area
Prior art date
Application number
PCT/CN2023/074500
Other languages
English (en)
French (fr)
Inventor
鲍学锋
Original Assignee
南京诺尔曼生物技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京诺尔曼生物技术股份有限公司 filed Critical 南京诺尔曼生物技术股份有限公司
Publication of WO2023160360A1 publication Critical patent/WO2023160360A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00356Holding samples at elevated temperature (incubation)

Definitions

  • the invention belongs to the technical field of medical detection devices, and in particular relates to a luminescent detection system and a method thereof which can produce results quickly.
  • chemiluminescent detection technology uses chemiluminescent reagents to directly label antigens and antibodies in samples for analysis. During the detection process, it is necessary to control the addition of samples, reagents and incubation time.
  • the present invention provides a luminescence detection system and a method thereof that can produce results quickly.
  • a luminescent detection system that produces results quickly, including:
  • a dispatching vehicle has a heating function; the dispatching vehicle is configured to transfer the cuvette from the input end to the output end;
  • the reagent mixing mechanism is located at the output end of the dispatching vehicle;
  • the sampling mechanism includes: a sampling part, and a moving part connected to the sampling part by transmission; the sampling part transfers the sample in the reagent mixing mechanism to the cuvette driven by the moving part;
  • the luminescence detection mechanism is located on one side of the reagent mixing mechanism; the luminescence detection mechanism includes: an incubation area, a magnetic separation area, a detection area and a waste liquid treatment area;
  • the luminescence detection mechanism also includes:
  • the two-dimensional transfer jaws are arranged above the incubation area, the magnetic separation area and the dispatching vehicle; the two-dimensional transfer jaws are used to transfer the cuvettes between the dispatching vehicle, the incubation area, and the magnetic separation area .
  • the dispatch vehicle includes:
  • the body one of the sides is provided with a reciprocating mechanism along the transverse direction;
  • the base is connected to the reciprocating mechanism by transmission; the upper surface of the base is recessed from top to bottom Several grooves are formed in depth, and the grooves are used to place cuvettes;
  • a heating element arranged at the bottom of the base
  • the guide piece is arranged between the base and the vehicle body; one side of the guide piece is fixed to the vehicle body, and the other side is in drive connection with the base.
  • the reagent mixing mechanism includes:
  • the rotating mechanism is arranged on one side of the dispatching vehicle
  • the turntable is transmission connected to the rotation mechanism
  • a plurality of reagent boxes are positioned in the placement slot through snap-fitting.
  • the kit also includes:
  • the magnetic bead bottle is inserted into the hollow column; the bottom of the hollow column extends to the outside of the hollow column and is connected with a rotating gear; the rotating gear is in transmission connection with the rotating mechanism.
  • the incubation zone comprises:
  • the incubation plate is rotatably arranged in the cavity; the top of the incubation plate is recessed to a predetermined depth from top to bottom to form several incubation slots; the incubation slots are set to place reaction cups;
  • the first rotation source is connected to the incubating plate by transmission; the first rotating source drives the incubating plate to rotate;
  • the heating element is arranged on the lower surface of the incubation plate.
  • the magnetic separation zone includes:
  • the lifting mechanism is fixed on the outer wall of the cavity
  • the mounting part is transmission connected to the lifting mechanism
  • the adsorption component is arranged between the cavity and the incubation plate; the cleaning component is compatible with the adsorption component to complete multi-stage cleaning and magnetic separation of the sample.
  • the waste liquid treatment area includes: a waste liquid needle for sucking up the waste liquid after detection.
  • the cleaning assembly includes:
  • At least two groups of needle assemblies are installed at the edge of the mounting part according to a predetermined interval
  • the needle assembly includes: a liquid injection needle, the inside of which is a hollow structure; the top of the liquid injection needle has a liquid injection part connected thereto;
  • a liquid suction needle axially penetrates the inside of the liquid injection needle; both the top and the bottom of the liquid suction needle are exposed to the liquid injection needle; and the top of the liquid injection needle and the outer wall of the liquid suction needle The connection is sealed.
  • a luminescent detection method with fast results comprising the following steps:
  • Step 1 Equipment initialization: place a corresponding number of empty cuvettes on the base in the dispatching vehicle according to the number of tanks, and start the heating element to preheat the empty cuvettes;
  • the reagent mixing mechanism maintains continuous mixing of the reagents inside the kit
  • Step 2 The reciprocating mechanism drives the base to transfer the empty cuvette from the input end to the output end, and then the sampling mechanism injects the reagents of the kit into the empty cuvette according to the detection requirements; record the time from step 1 to step 2 as t1 ;
  • Step 3 The reciprocating mechanism drives the base to move the reaction cup containing the reagent to the position of the two-dimensional transfer gripper.
  • the two-dimensional transfer gripper puts the reaction cup containing the reagent into the magnetic bead bottle of the kit to realize Mix the reagents again, and record the time for performing step 3 as t2;
  • Step 4 The two-dimensional transfer gripper dispatches the well-mixed cuvette to the incubation area, and the sample enters the incubation cycle. Record the time for performing step 4 as t3;
  • Step 5 the two-dimensional transfer gripper dispatches the cuvette to the magnetic separation area for a multi-stage cleaning and separation cycle, and records the time for performing step 5 as t4;
  • Step 6 Inject acid solution and lye solution in sequence. After the injection is completed, collect photons for 3 seconds to obtain the luminescence value. Take the waste liquid and record the time for performing step 6 as t5.
  • the entrance and exit of the incubation zone, the entrance of the magnetic separation zone, and the cuvette clamping points corresponding to the reagent mixing mechanism are located on the same baseline, and the baseline and the lateral movement of the two-dimensional transfer jaws same direction.
  • Beneficial effects of the present invention Utilize the cup scheduling vehicle with heating function in structure, set the temperature of the scheduling vehicle to 37°C, place the cuvettes on the scheduling vehicle for preheating in advance, start adding samples and control the synchronization of the reagent needle and the sample needle on the structure Aspirate the liquid and hit the cuvette one by one to ensure that the sample will be incubated when it enters the cuvette, saving the detection time from the time dimension; the compact incubation area and the magnetic separation cleaning area are integrated into a whole, two The regional temperature is set to 37°C to ensure that the incubation area and the magnetic separation cleaning area are in a constant temperature state, and it also saves a certain amount of time in terms of space operation.
  • the time of the whole detection process is controlled within 10 minutes.
  • Fig. 1 is a structural schematic diagram 1 of a luminescence detection system with fast results.
  • Fig. 2 is a structural schematic diagram 2 of a luminescence detection system with fast results.
  • Figure 3 is a schematic diagram of the structure of the dispatching vehicle.
  • Fig. 4 is a structural schematic diagram of a reagent mixing mechanism.
  • Fig. 5 is a structural schematic diagram of a light-emitting detection mechanism.
  • Fig. 6 is a cross-sectional view of a light emission detection mechanism.
  • Figure 7 is a partial cross-sectional view of the needle assembly.
  • Each label in Fig. 1 to Fig. 7 is: dispatching vehicle 1, reagent mixing mechanism 2, sampling mechanism 3, light-emitting detection mechanism 4, two-dimensional transfer gripper 5, cuvette 6, body 101, reciprocating mechanism 102, base 103, guide 104, rotating mechanism 201, turntable 202, placement tank 203, test kit 204, magnetic bead bottle 205, rotating gear 206, fixed gear 207, cavity 4011, incubation plate 4012, incubation tank 4013, first rotation source 4014, heating element 4015, lifting mechanism 4021, mounting part 4022, cleaning component 4023, adsorption component 4024, waste liquid needle 4025, liquid injection needle 4026, heater 4027, liquid injection part 4028, liquid absorption needle 4029, first liquid injection Needle 4030, second liquid injection needle 4031, third liquid injection needle 4032.
  • the dispatching vehicle 1 includes an input end and an output end, and is configured to transfer the cuvette 6 from the input end to the output end.
  • the reagent mixing mechanism 2 is located at the output end of the dispatching vehicle 1 .
  • the sampling mechanism 3 includes: a sampling part, and a moving part connected to the sampling part by transmission; the sampling part transfers the sample in the reagent mixing mechanism 2 to the cuvette 6 under the drive of the moving part.
  • the sampling part adopts the sampling needle of the prior art
  • the moving part adopts the two-dimensional transmission mechanism in the prior art, which is specifically shown as a certain horizontal movement and vertical lifting, and can adopt rack and pinion transmission, threaded screw Transmission and other mechanisms, so I will not repeat them here.
  • the luminescence detection mechanism 4 is arranged on one side of the reagent mixing mechanism 2; the luminescence detection mechanism 4 includes: an incubation area, a magnetic separation area, a detection area and a waste liquid treatment area; it also includes:
  • the two-dimensional transfer jaw 5 is located above the incubation area, the magnetic separation area and the dispatching vehicle 1; the two-dimensional transfer The gripper 5 is used to realize the transfer of the cuvette 6 among the scheduling vehicle 1, the incubation area, and the magnetic separation area.
  • the dispatching vehicle 1 includes: a vehicle body 101, one side of the vehicle body 101 is provided with a transverse reciprocating mechanism 102 along its length direction, and the reciprocating mechanism 102 is driven and connected with a base 103 , the upper surface of the base 103 is recessed from top to bottom to a predetermined depth to form several grooves, and the grooves are used for placing the cuvettes 6 .
  • the reciprocating mechanism 102 can be conveyed by a conveyor belt, so details will not be described here.
  • the bottom of the base 103 is also provided with a heating element, and the heating sheet in the prior art is selected to achieve heating, and the temperature monitoring feedback and monitoring of the temperature are realized through the temperature sensor. Control, through the over-temperature protection switch (SEKI-ST-22) to achieve over-temperature protection, so do not repeat them here.
  • SEKI-ST-22 over-temperature protection switch
  • a guide is also provided between the base 103 and the vehicle body 101 104, in this embodiment, the guide 104 is a guide rail arranged along the length direction of the base 103, the guide rail is fixed on the vehicle body 101, and a slidable fixed block is arranged on the guide rail, and the fixed block is fixed on the base 103
  • the transmission connection between the vehicle body 101 and the base 103 is realized through the concave-convex cooperation between the guide rail and the fixed block.
  • the reagent mixing mechanism 2 includes: a rotating mechanism 201 provided on one side of the scheduling vehicle 1 .
  • the rotating mechanism 201 in this embodiment is: a mounting frame for supporting, a column perpendicular to the mounting frame, a rotatable rotating shaft runs through the interior of the column, and the top end of the rotating shaft is fixedly connected to the turntable 202 .
  • It also includes: a rotating motor installed on the bottom of the installation frame, a driving wheel connected to the rotating motor in transmission, and a driven wheel fixed at the bottom of the rotating shaft, and the driven wheel and the driving wheel mesh with each other.
  • the rotation of the turntable 202 is controlled by a driving motor.
  • the kit 204 further includes: a hollow column fixed to the kit 204; a magnetic bead bottle 205 inserted through the hollow column; The bottom of the hollow column extends to the outside of the hollow column and is connected with a rotating gear 206 ; the rotating gear 206 is in transmission connection with the rotating mechanism 201 .
  • the rotating mechanism 201 further includes a fixed gear 207 fixed on the top of the stand, and the fixed gear 207 meshes with the rotating gear 206 .
  • the working principle of this embodiment is as follows: when the turntable 202 rotates under the action of the driving motor, since the fixed gear 207 is fixed on the stand, the rotating gear 206 rotates relative to the fixed gear 207 while also rotating, thereby driving the magnetic bead bottle 205 rotations, that is, to the mixing effect.
  • the incubation area includes: a cavity 4011; an incubation plate 4012 is provided inside the cavity 4011, and its top is recessed to a predetermined depth from top to bottom to form several incubation tanks 302; the incubation tanks 302 are Set to place cuvette 6.
  • a first rotation source 4014 which is connected to the incubating plate 4012 by transmission; the first rotating source 4014 drives the incubating plate 4012 to rotate; that is, the cuvette 6 inside is rotated to the position specified by the transfer jaw through the rotating incubating plate 4012. In the transverse direction, combined with the transfer jaws, the grasping of the cuvettes 6 at each angle on the incubation plate 4012 is completed.
  • the first rotation source 4014 includes: a first motor, the bottom of the output shaft of which is drive-connected with a first pulley. It also includes: the first rotating shaft, the top of which is fixedly connected with the bottom surface of the incubation tray 4012 .
  • a second pulley is fixed on the first rotating shaft, and the second pulley is connected to the first pulley through a transmission belt. It is driven by a first motor, and the first pulley, the second pulley, the first transmission belt and the first rotating shaft realize the autorotation of incubation.
  • this embodiment is realized by the heating element 4015 arranged on the lower surface of the incubating plate 4012.
  • the heating element 4015 is selected from the existing technology.
  • the heating plate realizes heating, the temperature monitoring feedback and control are realized through the temperature sensor, and the over-temperature protection is realized through the over-temperature protection switch (SEKI-ST-22), so the details will not be described here.
  • the magnetic separation area includes: a lifting mechanism 4021, and a mounting part 4022 connected to the lifting mechanism 4021 by transmission.
  • the lifting mechanism 4021 is driven by a motor in the prior art, and combined with guide rails to achieve lifting in a fixed direction. So I won't go into details here.
  • the mounting part 4022 is preferably a mounting plate, and the outer edge of the mounting plate has a certain curvature.
  • a cleaning component 4023 is provided at the edge of the mounting part 4022, and an adsorption component 4024 is provided between the cavity 4011 and the incubation plate 4012. The cleaning component 4023 and the adsorption component 4024 are adapted to complete multi-stage cleaning and magnetic separation of samples.
  • the cleaning assembly 4023 includes: at least two sets of needle assemblies, and in this embodiment, four sets are taken as an example.
  • Four groups of needle assemblies are installed at the edge of the mounting part 4022 at predetermined intervals, in other words, the distance between the needle assemblies of two adjacent groups is equal, which is defined as L.
  • Four-stage magnetic separation cleaning is realized through four sets of needle assemblies arranged continuously.
  • each group of needle assemblies is the same, specifically including: a liquid injection needle 4026 with a hollow structure inside, and a liquid injection part 4028 connected to it on the top of the liquid injection needle 4026, wherein the liquid injection part 4028 is connected to the cleaning liquid tank through a pipeline An electric pump is arranged on the pipeline, and the cleaning solution is sucked from the cleaning solution tank into the injection needle 4026 by the electric pump, and the cleaning solution is injected into the cuvette 6 located in the adsorption mechanism by the injection needle 4026.
  • a liquid suction needle 4029 axially penetrating inside the liquid injection needle 4026, the top and bottom of the liquid suction needle 4029 are exposed to the liquid injection needle 4026, the purpose of this design is: because when injecting liquid , allowing the liquid to flow from a high place to a low place due to gravity, but when sucking liquid, it is necessary to suck up the liquid at a lower place as much as possible, so the bottom end of the liquid suction needle 4029 is lower than the bottom end of the liquid injection needle 4026.
  • the top of the liquid injection needle 4026 is in a sealed connection with the outer wall of the liquid absorption needle 4029 . And the top of the liquid injection tank passes through the pipeline and the waste liquid tank, and an electric pump is installed on the pipeline.
  • the cleaning mechanism further includes: a first liquid injection needle 4030, which is arranged between the lifting mechanism 4021 and the needle assembly; Part of the cleaning solution is injected in advance; for increasing the cleaning time, as a pre-cleaning, the second liquid injection needle 4031 is located between the needle assembly and the photon collection device; the second liquid injection needle 4031 is used to inject Inject enhancement solution A; in this embodiment, the enhancement solution A provides the reagent environment required for detection to the substance to be detected.
  • the third liquid injection needle 4032 is arranged between the second liquid injection needle 4031 and the photon collection device; the third liquid injection needle 4032 is used for injecting the enhancement liquid B into the cuvette 6 .
  • the enhancement solution B is to promote luminescence and facilitate detection.
  • the cleaning assembly 4023 further includes: a waste liquid needle 4025 disposed at the edge of the mounting part 4022 and opposite to the needle assembly; the waste liquid needle 4025 is used to absorb the waste liquid after detection.
  • the adsorption assembly 4024 includes: an adsorption rotor, which has a certain thickness in the radial direction to form a bearing surface; the bearing surface is recessed from top to bottom to a preset depth to form several adsorption grooves; Arranged at predetermined intervals.
  • the predetermined distance between adjacent suction grooves is equal to the distance between the needle assemblies of the above two adjacent groups, both of which are L. That is, the setting of the installation groove is compatible with the needle assembly, so as to realize high-precision injection and suction.
  • the adsorption member is a magnet, which is used to adsorb the magnetic beads in the sample.
  • a process of transport and transfer is required. Therefore, it also includes: a second power source connected to the adsorption rotor, the second rotation source drives the adsorption rotor to complete intermittent rotation according to a predetermined time interval, and the adsorption rotor is turned from the position of the lifting mechanism 4021 to the photon detection through the cleaning mechanism 4
  • the location of the device that is, according to the first-order separation, second-order separation Separation, ..., four-stage separation, adding enhancement solution A, and adding enhancement solution B to complete the pre-detection work.
  • the second rotation source includes: a second motor fixed on the frame 1; a third pulley is installed on the output shaft of the second motor for transmission. And the second rotating shaft, the second rotating shaft is sleeved on the outside of the first rotating shaft, and has no contact with the first rotating shaft.
  • the top end of the second rotating shaft is fixedly connected to the adsorption rotor, and the bottom end is rotatably installed on the frame.
  • the outer wall of the second rotating shaft is fixed with a fourth pulley, and the fourth pulley and the third pulley are driven by a transmission belt, thereby realizing the rotation of the adsorption rotor. And by inputting a predetermined algorithm to the second motor, the equidistant intermittent rotation is completed according to the distance and time interval.
  • a heater 4027 for heating the adsorption rotor is provided below the adsorption rotor.
  • the heater 4027 also uses the heating sheet in the prior art to achieve heating, and the temperature sensor is used to monitor and feedback the temperature. Control, through the over-temperature protection switch (SEKI-ST-22) to achieve over-temperature protection, so do not repeat them here.
  • the photon detection device can adopt the prior art, but it needs to be explained that the photon detection device scans the object to be detected inside the cuvette 6, so in order not to affect the normal operation of the photon detection device, the adsorption
  • the outer surface of the bottom of the groove is a hollow structure, that is, the photon detection device detects the object to be detected in the cuvette 6 through the hollow structure.
  • a luminescent detection method with fast results comprising the following steps:
  • Step 1 Equipment initialization: place a corresponding number of empty cuvettes on the base in the dispatching vehicle according to the number of tanks, and start the heating element to preheat the empty cuvettes;
  • the reagent mixing mechanism maintains continuous mixing of the reagents inside the kit
  • Step 2 The reciprocating mechanism drives the base to transfer the empty cuvette from the input end to the output end, and then the sampling mechanism injects the reagents of the kit into the empty cuvette according to the detection requirements; record the time from step 1 to step 2 as t1 ;t1 is controlled at 15 seconds;
  • Step 3 The reciprocating mechanism drives the base to move the reaction cup containing the reagent to the position of the two-dimensional transfer gripper.
  • the two-dimensional transfer gripper puts the reaction cup containing the reagent into the magnetic bead bottle of the kit to realize Mix the reagents again, and record the time for performing step 3 as t2; t2 is controlled within 7 seconds;
  • Step 4 The two-dimensional transfer gripper dispatches the well-mixed cuvette to the incubation area, and the sample enters the incubation cycle. Record the time for performing step 4 as t3; t3 is controlled within 3 minutes, which includes the incubation time;
  • Step 5 After the incubation, the two-dimensional transfer gripper dispatches the cuvette to the magnetic separation area for multi-stage cleaning Separation cycle, record the time for executing step five as t4; t4 is controlled at 4 seconds;
  • Step 6 Inject acid solution and lye solution in sequence. After the injection is completed, collect photons for 3 seconds to obtain the luminescence value. Take the waste liquid and record the time for performing step 6 as t5. t5 is controlled within 30s.
  • the entrance and exit of the incubation area, the entrance of the magnetic separation area, and the cuvette gripping points corresponding to the reagent mixing mechanism are located on the same baseline, and the baseline is on the same baseline as the two-dimensional transfer grippers The direction of lateral movement is the same.
  • Steps 4 to 6 specifically include the following procedures:
  • Step 101 put human antigens, antibodies and specified reagents into the cuvette, place the cuvette in the incubation tank in the incubating plate, and incubate at the specified temperature for a predetermined time; through the heating element arranged under the incubating plate to realize Insulate the cuvettes in the incubation tray and the contents inside the cuvettes.
  • the temperature can be controlled to 37°C.
  • Step 102 the first rotation source drives the incubation plate to rotate, cooperates with the moving jaws to transfer the incubated cuvette to the adsorption slot of the adsorption rotor, and controls the current cuvette and the corresponding adsorption slot to be located at the first liquid injection needle;
  • Step 103 the first liquid injection needle injects part of the cleaning solution into the reaction cup; at this time, the magnet matched with the first liquid injection needle starts to absorb the magnetic beads in the reaction cup, and the solid-liquid separate.
  • Step 104 the second rotation source drives the adsorption rotor to rotate a predetermined distance, so that the current cuvette passes through N needle assemblies sequentially, and each set of needle assemblies sequentially injects and absorbs liquid for the current cuvette during each stop; Take one of the stays as an example.
  • the current cuvette is transferred to the position of the second set of needle assemblies.
  • the liquid aspiration needle of the assembly takes out the liquid in the cuvette at this time to the waste liquid tank.
  • the cleaning liquid has a certain fluidity in the cuvette, and at the same time, the magnetic beads are always adsorbed by the adsorbent. The combination of the two increases the mixing intensity and achieves a more thorough solid-liquid separation.
  • Step 105 the second rotation source continues to drive the adsorption rotor to rotate a predetermined distance, and respectively injects enhancement solution A and enhancement solution B into the current cuvette through the second injection needle and the third injection needle; the second injection needle
  • the third and third liquid injection needles are respectively connected to the containers of the enhancement liquid A and the enhancement liquid B through pipelines, and are respectively equipped with electric pumps to provide a certain external force.
  • Step 106 the photon detection device completes the detection through the hollow structure of the adsorption slot
  • Step 107 the second rotation source continues to drive the adsorption rotor to rotate a predetermined distance, and the waste liquid needle absorbs the waste liquid in the detected cuvette.
  • the lifting of the needle cleaning area integrates the liquid injection needle, liquid suction needle and solid-liquid separation needle, and completes the injection and extraction of the cleaning liquid and the solid-liquid separation of the waste liquid after the reaction in one action, which also reduces the load on the motor and the optocoupler. Using it increases the synchronization of actions and is more conducive to the realization of control.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种快出结果的发光检测***及其方法,检测***包括:调度车(1),具有加热功能,将反应杯(6)从输入端转移至输出端;试剂混匀机构(2),设于调度车(1)的输出端;取样机构(3),包括取样部及传动连接于取样部的移动部,取样部在移动部的驱动下将试剂混匀机构(2)内的样品转移至反应杯(6)内;发光检测机构(4),设于试剂混匀机构(2)的一侧,包括:温育区、磁分离区、检测区和废液处理区。通过空间与时间上的改进,将检测过程的时间控制在10分钟以内。

Description

一种快出结果的发光检测***及其方法 技术领域
本发明属于医疗检测装置的技术领域,特别是涉及一种快出结果的发光检测***及其方法。
背景技术
化学发光检测技术的主要原理是利用化学发光试剂直接标记样本中的抗原和抗体进行分析,在检测过程中需要对加样本、加试剂和温育时长进行控制。
现有的检测方法出结果检测报告需要18分钟,尤其对于胸痛中心和门急诊患者来说应确保能在抽血后20分钟获得检测结果,18分钟出结果主要的原因是样本在温育区温育时间决定的,因为抗原抗体反应必须在适宜的温度中进行,一般为37℃需要时间充分反应。因此病人等待结果的时间较长,反而增加了病人的焦虑。
发明内容
本发明为解决上述背景技术中存在的技术问题,提供了一种快出结果的发光检测***及其方法。
本发明采用以下技术方案:一种快出结果的发光检测***,包括:
调度车,具有加热功能;所述调度车被设置为将反应杯从输入端转移至输出端;
试剂混匀机构,设于所述调度车的输出端;
取样机构,包括:取样部,及传动连接于取样部的移动部;所述取样部在移动部的驱动下将试剂混匀机构内的样品转移至反应杯内;
发光检测机构,设于所述试剂混匀机构的一侧;所述发光检测机构包括:温育区、磁分离区、检测区和废液处理区;
所述发光检测机构还包括:
二维转移夹爪,设于温育区、磁分离区和调度车的上方;所述二维转移夹爪用于实现反应杯在调度车、温育区、及磁分离区相互之间的转移。
在进一步的实施例中,所述调度车包括:
车身,其中一个侧面沿横向设置有往返机构;
基座,传动连接于所述往返机构;所述基座的上表面由上至下向下凹陷预定 深度形成若干个槽体,所述槽体用于放置反应杯;
加热元件,设于所述基座的底部;
导向件,设于基座与车身之间;所述导向件的一侧面固定于所述车身,另一侧面与基座传动连接。
在进一步的实施例中,所述试剂混匀机构包括:
转动机构,设于所述调度车的一侧;
转盘,传动连接于所述转动机构;
若干个放置槽,以转盘的轴线为中心环形阵列分布于所述转盘上;
多个试剂盒,通过卡接定位于放置槽内。
在进一步的实施例中,所述试剂盒还包括:
空心柱,固定于所述试剂盒;
磁珠瓶,穿插于所述空心柱;所述空心柱的底部延伸至空心柱外部并连接有转动齿轮;所述转动齿轮与所述转动机构传动连接。
在进一步的实施例中,所述温育区包括:
腔体;
温育盘,可转动的设于所述腔体内;所述温育盘的顶部自上而下凹陷预定深度,形成若干个温育槽;所述温育槽被设置为放置反应杯;
第一转动源,传动连接于所述温育盘;所述第一转动源驱动温育盘自转;
加热件,设于所述温育盘下表面。
在进一步的实施例中,所述磁分离区包括:
升降机构,固定于所述腔体的外壁;
安装件,传动连接于所述升降机构;
清洗组件,安装于所述安装件的边缘处;
吸附组件,设于腔体与温育盘之间;所述清洗组件与吸附组件相适配,对样品完成多阶清洗与磁分离。
在进一步的实施例中,所述废液处理区包括:废液针,用于吸取检测完的废液。
在进一步的实施例中,所述清洗组件包括:
至少两组针组件,按照预定间隔安装于所述安装件的边缘处;
其中,所述针组件包括:打液针,其内部为中空结构;所述打液针的顶部具有与之相连通的打液部;
吸液针,沿轴向贯穿于所述打液针的内部;所述吸液针的顶部和底部均暴露于所述打液针;且所述打液针的顶端与吸液针的外壁之间为密封连接。
一种快出结果的发光检测方法,包括以下步骤:
步骤一、设备初始化:向调度车内的基座上按照槽体的数量放置对应数量的空的反应杯,并启动加热元件对空的反应杯预热;
与此同时,试剂混匀机构对试剂盒内部的试剂保持持续性混合;
步骤二、往返机构驱动基座将空的反应杯从输入端转移至输出端,随后取样机构将试剂盒的试剂按照检测需求注入至空的反应杯内;记录执行步骤一至步骤二的时间为t1;
步骤三、往返机构驱动基座将盛有试剂的反应杯移动至二维转移夹爪所在位置处,二维转移夹爪将盛有试剂的反应杯放入至试剂盒的磁珠瓶内,实现试剂的再次混匀,记录执行步骤三的时间为t2;
步骤四、二维转移夹爪将混匀好的反应杯调度至温育区内,样本进入温育周期,记录执行步骤四的时间为t3;
步骤五、温育结束后,二维转移夹爪将反应杯调度至磁分离区进行多阶清洗分离周期,记录执行步骤五的时间为t4;
步骤六、依次注射酸液和碱液,注射完成开始采集3秒光子数得到发光值,取废液,记录执行步骤六的时间为t5。
在进一步的实施例中,温育区的入口与出口、磁分离区的入口、以及试剂混匀机构对应的反应杯夹取点位于同一基线上,所述基线与二维转移夹爪的横向移动方向相一致。
本发明的有益效果:利用结构上带有加热功能的杯调度车,调度车温度设为37℃,提前把反应杯放置在调度车上预热,开始加样控制结构上试剂针和样本针同步吸液,依次打到反应杯,保证了样本进入反应杯就有了温育的效果,从时间的维度上节约了检测的时间;结构紧凑温育区和磁分离清洗区合成一个整体,2个区域温度都设置为37℃,保证温育区和磁分离清洗区处于一个恒温状态,从空间运行上也节省一定的时间。
通过空间与时间上的改进,将检测整个过程的时间控制在10分钟以内。
附图说明
图1为一种快出结果的发光检测***的结构示意图一。
图2为一种快出结果的发光检测***的结构示意图二。
图3为调度车的结构示意图。
图4为试剂混匀机构的结构示意图。
图5为发光检测机构的结构示意图。
图6为发光检测机构的剖视图。
图7为针组件的局部剖视图。
图1至图7中的各标注为:调度车1、试剂混匀机构2、取样机构3、发光检测机构4、二维转移夹爪5、反应杯6、车身101、往返机构102、基座103、导向件104、转动机构201、转盘202、放置槽203、试剂盒204、磁珠瓶205、转动齿轮206、固定齿轮207、腔体4011、温育盘4012、温育槽4013、第一转动源4014、加热件4015、升降机构4021、安装件4022、清洗组件4023、吸附组件4024、废液针4025、打液针4026、加热器4027、打液部4028、吸液针4029、第一注液针4030、第二注液针4031、第三注液针4032。
具体实施方式
下面结合说明书附图和实施例对本发明做进一步的描述。
本实施例为了缩短检测结果的周期,公开了一种快出结果的发光检测***,如图1所示,包括:调度车1、试剂混匀机构2、取样机构3和发光检测机构4。其中调度车1包括输入端和输出端,被设置为将反应杯6从输入端转移至输出端。试剂混匀机构2则位于调度车1的输出端。取样机构3包括:取样部,及传动连接于取样部的移动部;所述取样部在移动部的驱动下将试剂混匀机构2内的样品转移至反应杯6内,在本实施例中,所述取样部采用现有技术的取样针,移动部采用现有技术中的具有二维传动机构,具体表现为某一横向上的移动和竖向上的升降,可以采用齿轮齿条传动、螺纹螺杆传动等机构,故在此不做赘述。
发光检测机构4,设于所述试剂混匀机构2的一侧;所述发光检测机构4包括:温育区、磁分离区、检测区和废液处理区;还包括:
二维转移夹爪5,设于温育区、磁分离区和调度车1的上方;所述二维转移 夹爪5用于实现反应杯6在调度车1、温育区、及磁分离区相互之间的转移。
在进一步的实施例中,如图3所示,调度车1包括:车身101,所述车身101的一侧面沿其长度方向设置有横向的往返机构102,往返机构102上传动连接有基座103,基座103的上表面由上至下向下凹陷预定深度形成若干个槽体,所述槽体用于放置反应杯6。在本实施例中,往返机构102采用输送带的传方式即可,故不做赘述。为了有着对反应杯6提前预热的效果,在本实施例中,基座103的底部还设置有加热元件,选用现有技术中的加热片实现加热,通过温度传感器实现对温度的监控反馈和控制,通过过温保护开关(SEKI-ST-22)实现过温保护,故在此不做赘述。
在另一个实施例中,尤于采用的是输送带,故在输送时会存在一定的晃动,因此为了保证基座103移动过程中的稳定性,基座103与车身101之间还设置有导向件104,在本实施例中,所述导向件104为沿基座103长度方向设置的导轨,导轨固定在车身101上,同时导轨上设置有可滑动的固定块,固定块固定在基座103上,通过导轨与固定块的凹凸配合实现车身101与基座103的传动连接。
在进一步的实施例中,试剂混匀机构2包括:设于所述调度车1的一侧的转动机构201。举例,本实施例中的转动机构201为:起着支撑作用的安装架,垂直于安装架的立柱,所述立柱的内部贯穿有可转动的旋转轴,旋转轴的顶端固定连接转盘202。还包括:转动电机,安装与所述安装架的底部,传动连接于转动电机的主动轮,固定于旋转轴底端的从动轮,所述从动轮与主动轮相互啮合。通过驱动电机控制转盘202转动。
同时,转盘202上以转盘202的轴线为中心环形阵列分布有若干个放置槽203,所述放置槽203内卡接有试剂盒204。为了高效混合,尤其是针对反应杯6中的样品,在另一个实施例中,试剂盒204还包括:空心柱,固定于所述试剂盒204;磁珠瓶205,穿插于所述空心柱;所述空心柱的底部延伸至空心柱外部并连接有转动齿轮206;所述转动齿轮206与所述转动机构201传动连接。
基于上述描述,所述转动机构201还包括固定在立架顶端的固定齿轮207,所述固定齿轮207与转动齿轮206相啮合。本实施例的工作原理如下:当转盘202在驱动电机的作用下转动时,由于固定齿轮207固定在立架上,故转动齿轮206相对固定齿轮207转动的同时还发生自转,从而带动磁珠瓶205自转,即达 到混匀的效果。
如图5至6,温育区包括:腔体4011;腔体4011的内部设置有温育盘4012,其顶部自上而下凹陷预定深度,形成若干个温育槽302;所述温育槽302被设置为放置反应杯6。
还设置有:第一转动源4014,传动连接于所述温育盘4012;所述第一转动源4014驱动温育盘4012自转;即通过自转的温育盘4012将其内部的反应杯6转动到转移夹爪指定的横向上,再结合转移夹爪完成温育盘4012上的每个角度的反应杯6的抓取。在本实施例中,所述第一转动源4014包括:第一电机,其输出轴的底部传动连接有第一带轮。还包括:第一转轴,其顶部与温育盘4012的底面固定连接。所述第一转轴上固定有第二带轮,所述第二带轮与第一带轮通过传动带传动连接。其通过第一电机驱动及第一带轮、第二带轮、第一传动带和第一转轴实现温育的自转。
同时为了营造出预定的环境温度,好比是37℃的保温环境,本实施例通过设置在温育盘4012下表面处的加热件4015实现,在本实施例中,所述加热件4015选用现有技术中的加热片实现加热,通过温度传感器实现对温度的监控反馈和控制,通过过温保护开关(SEKI-ST-22)实现过温保护,故在此不做赘述。
磁分离区包括:升降机构4021,传动连接于升降机构4021的安装件4022,在本实施例中,所述升降机构4021为现有技术的电机传动,并结合导轨实现在固定方向上的升降,故在此不做赘述。且安装件4022优先为安装板,安装板的外边缘具有一定的弧度。安装件4022的边缘处设置有清洗组件4023,腔体4011与温育盘4012之间设置有吸附组件4024,所述清洗组件4023与吸附组件4024相适配,对样品完成多阶清洗与磁分离。
具体的,清洗组件4023包括:至少两组针组件,在本实施例中,以四组为例。四组针组件按照预定间隔安装在所述安装件4022的边缘处,换言之,相邻两组的针组件的之间距离相等,定义为L。通过四组连续设置的针组件,实现四阶磁分离清洗。每组针组件的结构相同,具体包括:内部为中空结构的打液针4026,打液针4026的顶部具有与之相连通的打液部4028,其中打液部4028通过管路与清洗液箱,管路上设置有电动泵,通过电动泵将清洗液由清洗液箱吸取到打液针4026内,并由打液针4026将清洗液打入位于吸附机构的反应杯6内。 还包括:沿轴向贯穿于所述打液针4026内部的吸液针4029,吸液针4029的顶部和底部均暴露于所述打液针4026,这样设计的目的是:因为在打液时,可以让液体从高处受重力流向低处,但是在吸液时,需要尽可能的将位于低处的液体同样吸取,因此吸液针4029的底端低于打液针4026的底端。于此同时,为了在吸液时液体能够顺利的回流到废液箱内,因此打液针4026的顶端与吸液针4029的外壁之间为密封连接。且打液箱的顶部通过管路与废液箱相通过,管路上安装有电动泵。
为了增加清洗的强度,在另一个实施例中,清洗机构还包括:第一注液针4030,设于升降机构4021与针组件之间;所述第一注液针4030用于向反应杯6中提前注入部分清洗液;用于增加清洗的时间,作为预清理,第二注液针4031,设于针组件和光子采集装置之间;所述第二注液针4031用于向反应杯6中注入增强液A;在本实施例中,所述增强液A时给待检测物提供了检测所需的试剂环境。
以及,第三注液针4032,设于第二注液针4031与光子采集装置之间;所述第三注液针4032用于向反应杯6中注入增强液B。在本实施例中,所述增强液B则是为了促进发光便于检测。
在进一步的实施例中,清洗组件4023还包括:废液针4025,设于安装件4022的边缘处且位于针组件的对立面;所述废液针4025用于吸取检测完的废液。
基于上述描述,吸附组件4024包括:吸附转子,沿径向具有一定的厚度形成承载面;所述承载面自上而下向下凹陷预设深度形成若干个吸附槽;相邻吸附槽之间按照预定间隔进行排列。需要说明的是,相邻吸附槽之间按照预定间隔与上文的相邻两组的针组件的之间距离相等,均为L。即安装槽的设置是与针组件相适配的,实现高精度的打液与吸液。
还包括数量和位置与针组件相对应的吸附件,换言之,相邻每组吸附件之间的距离为L。在本实施例中,所述吸附件为磁铁,用于吸附样本里的磁珠。
为了将同一吸附槽内的反应杯6实现四阶磁分离,因此需要有一个输送转移的过程。因此还包括:与吸附转子传动连接的第二动力源,所述第二转动源驱动吸附转子按照预定时间间隔完成间歇式自转,所述吸附转子由升降机构4021所在位置经过清洗机构4转向光子检测装置所在位置(即按照一阶分离、二阶分 离、…、四阶分离、加入增强液A、加入增强液B的顺序完成检测的前的工作。)
在进一步的实施例中,所述第二转动源包括:第二电机,固定在所述机架1上;所述第二电机的输出轴上传动安装有第三带轮。以及第二转轴,所述第二转轴套接在第一转轴外,且与第一转轴之间无接触。第二转轴的顶端固定连接于吸附转子,底端可转动的安装在机架上。第二转轴的外侧壁固定有第四带轮,所述第四带轮与第三带轮通过传动带进行传动,进而实现吸附转子的转动。并通过对第二电机输入预定的算法,按照距离和时间间隔完成等距离的间歇式转动。
在进一步的实施例中,为了不影响检测结果,在检测之前待检测物需要一直保持在温育装置内的状态,即环境不能有太高的温差。故在吸附转子的下方设置有用于给吸附转子提供加热的加热器4027,在本实施例中,加热器4027同样选用现有技术中的加热片实现加热,通过温度传感器实现对温度的监控反馈和控制,通过过温保护开关(SEKI-ST-22)实现过温保护,故在此不做赘述。
在进一步的实施例中,光子检测装置采用现有技术即可,但是需要说明的时光子检测装置是对反应杯6内部的待检测物进行扫描,因此为了不影响光子检测装置的正常工作,吸附槽的底部外侧面为镂空结构,即光子检测装置透过镂空结构完成对反应杯6内的待检测物的检测。
一种快出结果的发光检测方法,包括以下步骤:
步骤一、设备初始化:向调度车内的基座上按照槽体的数量放置对应数量的空的反应杯,并启动加热元件对空的反应杯预热;
与此同时,试剂混匀机构对试剂盒内部的试剂保持持续性混合;
步骤二、往返机构驱动基座将空的反应杯从输入端转移至输出端,随后取样机构将试剂盒的试剂按照检测需求注入至空的反应杯内;记录执行步骤一至步骤二的时间为t1;t1控制在15秒;
步骤三、往返机构驱动基座将盛有试剂的反应杯移动至二维转移夹爪所在位置处,二维转移夹爪将盛有试剂的反应杯放入至试剂盒的磁珠瓶内,实现试剂的再次混匀,记录执行步骤三的时间为t2;t2控制在7秒内;
步骤四、二维转移夹爪将混匀好的反应杯调度至温育区内,样本进入温育周期,记录执行步骤四的时间为t3;t3控制3分钟内,即包含了温育时间;
步骤五、温育结束后,二维转移夹爪将反应杯调度至磁分离区进行多阶清洗 分离周期,记录执行步骤五的时间为t4;t4控制在4秒;
步骤六、依次注射酸液和碱液,注射完成开始采集3秒光子数得到发光值,取废液,记录执行步骤六的时间为t5。t5控制在30s内。
与二维转移夹爪相适配:温育区的入口与出口、磁分离区的入口、以及试剂混匀机构对应的反应杯夹取点位于同一基线上,所述基线与二维转移夹爪的横向移动方向相一致。
步骤四至步骤六具体包括以下流程:
步骤101、将人体抗原、抗体和指定试剂放入反应杯内,并将所述反应杯置于温育盘中的温育槽内,于指定温度下孵育预定时间;通过设置在温育盘下方的加热件实现对温育盘内的反应杯,以及反应杯内部的物质做保温处理。可以控制温度为37℃。
步骤102、第一转动源驱动温育盘转动,配合移动夹爪将孵育完成的反应杯转移至吸附转子的吸附槽内,并控制当前的反应杯以及对应的吸附槽位于第一注液针处;
步骤103、第一注液针向反应杯内打入部分清洗液;此时与第一注液针相适配的磁铁开始吸附反应杯里面的磁珠,对反应杯内部的物质开始实现固液分离。
步骤104、第二转动源驱动吸附转子转动预定距离,使当前的反应杯依次经停N个针组件,每次停留时,每组针组件对当前的反应杯依次进行打液、吸液;以其中一次停留为例,当前反应杯转移到第二组针组件所在位置处,先通过针组件的打液针将清洗液箱中的清洗液打入至反应杯,待预定时间后,再通过针组件的吸液针将此时反应杯内的液体取出至废液箱。在此过程中,清洗液在反应杯内有一定的流动性,同时吸附件一直吸附磁珠,两个结合增加了混合的强度,实现更彻底的固液分离。
步骤105、第二转动源继续驱动吸附转子转动预定距离,并通过第二注液针、第三注液针分别向当前的反应杯中打入增强液A和增强液B;第二注液针、第三注液针均通过管路分别连通于增强液A和增强液B的容器内,并分别设置有电泵,提供一定的外力。
步骤106、光子检测装置透过吸附槽的镂空结构完成检测;
步骤107、第二转动源继续驱动吸附转子转动预定距离,废液针将检测过的反应杯中的废液吸取。
针清洗区域的升降集成了打液针、吸液针和固液分离针,在一个动作下完成清洗液的注入和抽离以及反应完毕的废液的固液分离,同样减少了电机和光耦的使用,增加了动作的同步性,更有利于控制的实现。

Claims (10)

  1. 一种快出结果的发光检测***,其特征在于,包括:
    调度车,具有加热功能;所述调度车被设置为将反应杯从输入端转移至输出端;
    试剂混匀机构,设于所述调度车的输出端;
    取样机构,包括:取样部,及传动连接于取样部的移动部;所述取样部在移动部的驱动下将试剂混匀机构内的样品转移至反应杯内;
    发光检测机构,设于所述试剂混匀机构的一侧;所述发光检测机构包括:温育区、磁分离区、检测区和废液处理区;
    所述发光检测机构还包括:
    二维转移夹爪,设于温育区、磁分离区和调度车的上方;所述二维转移夹爪用于实现反应杯在调度车、温育区、及磁分离区相互之间的转移。
  2. 根据权利要求1所述的一种快出结果的发光检测***,其特征在于,所述调度车包括:
    车身,其中一个侧面沿横向设置有往返机构;
    基座,传动连接于所述往返机构;所述基座的上表面由上至下向下凹陷预定深度形成若干个槽体,所述槽体用于放置反应杯;
    加热元件,设于所述基座的底部;
    导向件,设于基座与车身之间;所述导向件的一侧面固定于所述车身,另一侧面与基座传动连接。
  3. 根据权利要求1所述的一种快出结果的发光检测***,其特征在于,所述试剂混匀机构包括:
    转动机构,设于所述调度车的一侧;
    转盘,传动连接于所述转动机构;
    若干个放置槽,以转盘的轴线为中心环形阵列分布于所述转盘上;
    多个试剂盒,通过卡接定位于放置槽内。
  4. 根据权利要求3所述的一种快出结果的发光检测***,其特征在于,所述试剂盒还包括:
    空心柱,固定于所述试剂盒;
    磁珠瓶,穿插于所述空心柱;所述空心柱的底部延伸至空心柱外部并连接有 转动齿轮;所述转动齿轮与所述转动机构传动连接。
  5. 根据权利要求1所述的一种快出结果的发光检测***,其特征在于,所述温育区包括:
    腔体;
    温育盘,可转动的设于所述腔体内;所述温育盘的顶部自上而下凹陷预定深度,形成若干个温育槽;所述温育槽被设置为放置反应杯;
    第一转动源,传动连接于所述温育盘;所述第一转动源驱动温育盘自转;
    加热件,设于所述温育盘下表面。
  6. 根据权利要求5所述的一种快出结果的发光检测***,其特征在于,所述磁分离区包括:
    升降机构,固定于所述腔体的外壁;
    安装件,传动连接于所述升降机构;
    清洗组件,安装于所述安装件的边缘处;
    吸附组件,设于腔体与温育盘之间;所述清洗组件与吸附组件相适配,对样品完成多阶清洗与磁分离。
  7. 根据权利要求1所述的一种快出结果的发光检测***,其特征在于,所述废液处理区包括:废液针,用于吸取检测完的废液。
  8. 根据权利要求6所述的一种快出结果的发光检测***,其特征在于,所述清洗组件包括:
    至少两组针组件,按照预定间隔安装于所述安装件的边缘处;
    其中,所述针组件包括:打液针,其内部为中空结构;所述打液针的顶部具有与之相连通的打液部;
    吸液针,沿轴向贯穿于所述打液针的内部;所述吸液针的顶部和底部均暴露于所述打液针;且所述打液针的顶端与吸液针的外壁之间为密封连接。
  9. 一种快出结果的发光检测方法,其特征在于,包括以下步骤:
    步骤一、设备初始化:向调度车内的基座上按照槽体的数量放置对应数量的空的反应杯,并启动加热元件对空的反应杯预热;
    与此同时,试剂混匀机构对试剂盒内部的试剂保持持续性混合;
    步骤二、往返机构驱动基座将空的反应杯从输入端转移至输出端,随后取样 机构将试剂盒的试剂按照检测需求注入至空的反应杯内;记录执行步骤一至步骤二的时间为t1;
    步骤三、往返机构驱动基座将盛有试剂的反应杯移动至二维转移夹爪所在位置处,二维转移夹爪将盛有试剂的反应杯放入至试剂盒的磁珠瓶内,实现试剂的再次混匀,记录执行步骤三的时间为t2;
    步骤四、二维转移夹爪将混匀好的反应杯调度至温育区内,样本进入温育周期,记录执行步骤四的时间为t3;
    步骤五、温育结束后,二维转移夹爪将反应杯调度至磁分离区进行多阶清洗分离周期,记录执行步骤五的时间为t4;
    步骤六、依次注射酸液和碱液,注射完成开始采集3秒光子数得到发光值,取废液,记录执行步骤六的时间为t5。
  10. 根据权利要求9所述的一种快出结果的发光检测方法,其特征在于,
    温育区的入口与出口、磁分离区的入口、以及试剂混匀机构对应的反应杯夹取点位于同一基线上,所述基线与二维转移夹爪的横向移动方向相一致。
PCT/CN2023/074500 2022-02-28 2023-02-06 一种快出结果的发光检测***及其方法 WO2023160360A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210187968.4 2022-02-28
CN202210187968.4A CN114636692A (zh) 2022-02-28 2022-02-28 一种快出结果的发光检测***及其方法

Publications (1)

Publication Number Publication Date
WO2023160360A1 true WO2023160360A1 (zh) 2023-08-31

Family

ID=81948403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074500 WO2023160360A1 (zh) 2022-02-28 2023-02-06 一种快出结果的发光检测***及其方法

Country Status (2)

Country Link
CN (1) CN114636692A (zh)
WO (1) WO2023160360A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117168800A (zh) * 2023-11-02 2023-12-05 西安合力汽车配件有限公司 一种阀门检测装置及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636692A (zh) * 2022-02-28 2022-06-17 南京诺尔曼生物技术股份有限公司 一种快出结果的发光检测***及其方法
CN116818686A (zh) * 2022-12-16 2023-09-29 广东牧玛生命科技有限公司 一种poct生化分析仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998473A (zh) * 2012-12-19 2013-03-27 北京利德曼生化股份有限公司 全自动化学发光免疫分析仪
CN106918714A (zh) * 2017-04-27 2017-07-04 南京诺尔曼生物技术有限公司 一种化学发光诊断的样本循环利用测量***及方法
CN109856390A (zh) * 2019-02-20 2019-06-07 重庆科斯迈生物科技有限公司 微型高效化学发光免疫分析仪
US20190204233A1 (en) * 2017-12-28 2019-07-04 Shenzhen New Industries Biomedical Engineering Co., Ltd. Chemiluminescence Detector and Detection Method Thereof
CN209590044U (zh) * 2019-02-20 2019-11-05 重庆科斯迈生物科技有限公司 高效化学发光免疫分析仪
CN113834945A (zh) * 2020-06-23 2021-12-24 深圳迈瑞生物医疗电子股份有限公司 分杯装置、样本分析仪及样本分析方法
CN114636692A (zh) * 2022-02-28 2022-06-17 南京诺尔曼生物技术股份有限公司 一种快出结果的发光检测***及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998473A (zh) * 2012-12-19 2013-03-27 北京利德曼生化股份有限公司 全自动化学发光免疫分析仪
CN106918714A (zh) * 2017-04-27 2017-07-04 南京诺尔曼生物技术有限公司 一种化学发光诊断的样本循环利用测量***及方法
US20190204233A1 (en) * 2017-12-28 2019-07-04 Shenzhen New Industries Biomedical Engineering Co., Ltd. Chemiluminescence Detector and Detection Method Thereof
CN109856390A (zh) * 2019-02-20 2019-06-07 重庆科斯迈生物科技有限公司 微型高效化学发光免疫分析仪
CN209590044U (zh) * 2019-02-20 2019-11-05 重庆科斯迈生物科技有限公司 高效化学发光免疫分析仪
CN113834945A (zh) * 2020-06-23 2021-12-24 深圳迈瑞生物医疗电子股份有限公司 分杯装置、样本分析仪及样本分析方法
CN114636692A (zh) * 2022-02-28 2022-06-17 南京诺尔曼生物技术股份有限公司 一种快出结果的发光检测***及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117168800A (zh) * 2023-11-02 2023-12-05 西安合力汽车配件有限公司 一种阀门检测装置及方法
CN117168800B (zh) * 2023-11-02 2024-02-23 西安合力汽车配件有限公司 一种阀门检测装置及方法

Also Published As

Publication number Publication date
CN114636692A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2023160360A1 (zh) 一种快出结果的发光检测***及其方法
WO2020062947A1 (zh) 化学发光检测仪
CN108593949B (zh) 一种化学发光免疫分析仪
CN109061210B (zh) 一种全自动发光化学免疫分析仪
AU686774B2 (en) Automated analyzer
US20190204233A1 (en) Chemiluminescence Detector and Detection Method Thereof
CN112119312A (zh) 全自动化学发光免疫分析仪
WO2019033312A1 (zh) 血液分析仪及其控制方法
CN113504380A (zh) 一种全自动化学发光免疫分析仪
CN105388314A (zh) 一种全自动加样仪
CN104436354A (zh) 用于配制静脉注射液的自动配液***以及自动配液机
CN109975562B (zh) 化学发光检测仪及其检测方法
CN110672832A (zh) 一种化学发光免疫分析仪
CN208178045U (zh) 一种自动清洗孵育混匀检测***
CN109662893B (zh) 药物注射装置及配药设备
CN208721691U (zh) 一种发光化学免疫分析仪
CN111766232A (zh) 具有辅助加样位的内外圈温育盘装置及温育方法
CN204275145U (zh) 用于配制静脉注射液的自动配液***以及自动配液机
CN112098666B (zh) 一种用于全自动化学发光免疫分析仪的清洗***
CN109580596B (zh) 化学发光检测仪、温育装置及其温育方法
CN211426514U (zh) 一种化学发光免疫分析仪
WO2019127016A1 (zh) 自动清洗分离装置
CN208833787U (zh) 化学发光检测仪
CN110823669A (zh) 磁分离清洗方法
CN209866889U (zh) 一种吸废液装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758985

Country of ref document: EP

Kind code of ref document: A1