WO2023160211A1 - 一种数控机床俯仰误差及偏摆误差辨识方法 - Google Patents

一种数控机床俯仰误差及偏摆误差辨识方法 Download PDF

Info

Publication number
WO2023160211A1
WO2023160211A1 PCT/CN2022/142202 CN2022142202W WO2023160211A1 WO 2023160211 A1 WO2023160211 A1 WO 2023160211A1 CN 2022142202 W CN2022142202 W CN 2022142202W WO 2023160211 A1 WO2023160211 A1 WO 2023160211A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
measurement
machine tool
pitch
axis
Prior art date
Application number
PCT/CN2022/142202
Other languages
English (en)
French (fr)
Inventor
刘焕牢
侯家林
王宇林
刘璨
张传景
周群龙
Original Assignee
广东海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东海洋大学 filed Critical 广东海洋大学
Priority to US18/309,422 priority Critical patent/US11886162B2/en
Publication of WO2023160211A1 publication Critical patent/WO2023160211A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31434Zone supervisor, collects error signals from, and diagnoses different zone

Definitions

  • the present invention relates to the technical field of CNC machine tool manufacturing and processing, in particular, to an identification technology for geometric error measurement and angle error of a machine tool; more specifically, to a pitch error and yaw error identification method of a CNC machine tool.
  • each geometric error item is parametrically constructed.
  • the error curve of each geometric error is obtained by using the orthogonal polynomial fitting method, and finally the entire identification process of the spatial geometric error is realized.
  • it is necessary to measure the positioning errors of three to four parallel lines in the same coordinate axis plane multiple times to identify the pitch error and yaw error, and it is also necessary to select a plane parallel to the coordinate system plane for measurement; therefore, the prior art There are many restrictions, but still have certain limitations.
  • the present invention proposes a pitch error and yaw error identification method of a numerically controlled machine tool.
  • the technical solution adopted in the present invention is:
  • a method for identifying a pitch error and a yaw error of a numerically controlled machine tool comprising the following steps:
  • each coordinate axis corresponds to three measurement tracks that are parallel to the coordinate axis and not on the same plane;
  • the present invention improves the trajectory measurement and error identification involved in the traditional method.
  • the solution is realized by three linear trajectories that are parallel or coincident with the coordinate axis of the machine tool and can directly measure the positioning error; it can be arbitrarily selected to be The motion trajectory in the measurement space, and only three trajectories are needed for the measurement in each direction, which greatly alleviates the redundant measurement; and the pitch error and yaw error can be identified at the same time, eliminating the need for separate calculation and identification Repetition is cumbersome.
  • the measurement track includes a case where it coincides with the coordinate axis.
  • the spatial angular geometric relationship is: respectively select measurement points located at the same distance on the three measurement trajectories in the step S3, and project the normal vectors of the error plane formed by connecting the measurement points on the On the two Cartesian coordinate planes where the motion axis in the step S3 is located, the angle formed by the unit vector of the motion axis and the projection vector of the normal vector on the Cartesian coordinate plane is used as the pitch and yaw error angle.
  • the sign of depends on The positive and negative sign.
  • the present invention also provides the following:
  • a pitch error and yaw error identification system for a numerically controlled machine tool comprising a coordinate system acquisition module, a measurement trajectory setting module, a positioning error data acquisition module, and an error angle acquisition module connected in sequence;
  • the coordinate system obtaining module is used to obtain the Cartesian coordinate system of the target machine tool
  • the measurement trajectory setting module is used to set the measurement trajectory with the coordinate axis of the Cartesian coordinate system as the movement axis for single-axis movement; each coordinate axis corresponds to three parallel to the coordinate axis and not on the same plane. measurement track;
  • the positioning error data acquisition module is used to select a motion axis, and obtain the positioning error between the actual running measurement point and the ideal running measurement point of the target machine tool when the target machine tool runs along the three measurement trajectories corresponding to the motion axis data;
  • the error angle obtaining module is used to obtain pitch and yaw error angles of the target machine tool according to the spatial angle geometric relationship and the positioning error data.
  • a storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the aforementioned method for identifying pitch error and yaw error of a numerically controlled machine tool are realized.
  • a computer device including a storage medium, a processor, and a computer program stored in the storage medium and executable by the processor, when the computer program is executed by the processor, the pitch error and yaw error of the aforementioned numerically controlled machine tool are realized Identify the steps of the method.
  • Fig. 1 is the schematic flow chart of pitch error and yaw error identification method of numerical control machine tool provided by the present invention
  • Fig. 2 is the schematic diagram of the principle of the numerical control machine tool pitch error and yaw error identification method provided by the present invention
  • Fig. 3 is a schematic diagram of the trajectory of the pitch error and yaw error identification method of the numerical control machine tool provided by the present invention under general conditions;
  • Fig. 4 is a schematic diagram of the implementation data of the pitch error and yaw error identification method of the numerical control machine tool provided by the present invention under general conditions;
  • Fig. 5 is a schematic diagram of the trajectory under special circumstances of the pitch error and yaw error identification method of the numerically controlled machine tool provided by the present invention
  • Fig. 6 is a schematic diagram of implementation data in special cases of the pitch error and yaw error identification method of the numerically controlled machine tool provided by the present invention
  • Fig. 7 is a schematic diagram of a pitch error and yaw error identification system of a numerically controlled machine tool provided by the present invention.
  • plural means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • each coordinate axis corresponds to three measurement tracks that are parallel to the coordinate axis and not on the same plane;
  • the present invention improves the trajectory measurement and error identification involved in the traditional method.
  • the solution is realized by three linear trajectories that are parallel or coincident with the coordinate axis of the machine tool and can directly measure the positioning error; it can be arbitrarily selected to be The motion trajectory in the measurement space, and only three trajectories are needed for the measurement in each direction, which greatly alleviates the redundant measurement; and the pitch error and yaw error can be identified at the same time, eliminating the need for separate calculation and identification Repetition is cumbersome.
  • the measurement track includes the coincidence with the coordinate axis.
  • the positioning error data is detected and judged using the following international standard ISO230-2:
  • the one-way average position deviation is the average deviation calculated by measuring n times at a certain point, that is and
  • the two-way average position deviation (description point) is the average value of the positive average position deviation and the negative average position deviation of a certain point, namely
  • the backlash is the difference between the positive average position deviation and the negative average position deviation of a certain position, namely
  • the average backlash is the average value of m backlashes at a certain point, that is
  • the spatial angle geometric relationship is: respectively select measurement points located at the same distance on the three measurement trajectories in the step S3, and project the normal vectors of the error plane formed by connecting the measurement points respectively On the two Cartesian coordinate planes where the motion axis in the step S3 is located, the clip formed by the unit vector of the motion axis and the projection vectors n 1 and n 2 of the normal vector on the Cartesian coordinate plane angle as the pitch and yaw error angle.
  • the positioning error data of three measurement trajectories can be obtained by using a laser interferometer, and the same distance measurement point is selected on the three measurement trajectories respectively, and the three points are connected to form an error plane.
  • the normal vector n of the error plane is respectively projected onto two Cartesian coordinate planes where the Y axis is located, namely the XOY plane and the YOZ plane, and the corresponding projection vectors are n 1 and n 2 respectively.
  • the unit vector i of the Y-axis forms an included angle with n 1 and n 2 as ⁇ zy and ⁇ xy , respectively, and the two included angles correspond to the yaw error and pitch error of the Y-axis respectively.
  • Fig. 3 or Fig. 5 take the geometric space of the CNC machine tool of 1000mm * 500mm * 500mm as the measurement object, set the lower left corner of the front end of the three-axis CNC machine tool table as the absolute coordinate origin, and use this The origin establishes a Cartesian coordinate system.
  • the sign of depends on The positive and negative sign.
  • a Cartesian coordinate system is established with A as the origin in combination with the actual measurement situation.
  • the negative direction of the Y axis is used as the measured motion direction to obtain the positioning error data of the three trajectories 4, 5, and 6.
  • the identified deflection and The pitch error data curve is compared with the actual measured yaw and pitch error data curves, as shown in Figure 4, the solid line is the actual measured value, the dotted line is the identification value obtained through the identification model, and the one marked with £ is the yaw error , and those marked with ⁇ are pitch errors.
  • the maximum difference between the measured value and the identification value is 0.007 ⁇ m/mm
  • the pitch error the maximum difference between the measurement value and the identification value is 0.022 ⁇ m/mm.
  • a Cartesian coordinate system is established with A as the origin in combination with the actual measurement situation.
  • the negative direction of the Y axis is used as the measured motion direction to obtain the positioning error data of the three trajectories 4, 5, and 6.
  • the identified deflection and The pitch error data curve is compared with the actual measured yaw and pitch error data curve, please refer to Figure 6, the solid line is the actual measured value, the dotted line is the identification value obtained through the identification model, and the one marked with £ is the yaw error, The ones marked with ⁇ are pitch errors.
  • the maximum difference between the measured value and the identified value is 0.005 ⁇ m/mm
  • the pitch error the maximum difference between the measured value and the identified value is 0.016 ⁇ m/mm.
  • a numerically controlled machine tool pitch error and yaw error identification system please refer to Figure 7, including a coordinate system acquisition module 1 connected in sequence, a measurement trajectory setting module 2, a positioning error data acquisition module 3 and an error angle acquisition module 4; wherein:
  • the coordinate system acquiring module 1 is used to acquire the Cartesian coordinate system of the target machine tool
  • the measurement trajectory setting module 2 is used to set the measurement trajectory with the coordinate axis of the Cartesian coordinate system as the axis of motion for uniaxial movement; each coordinate axis corresponds to three parallel to the coordinate axis and not on the same plane the measurement track;
  • the positioning error data acquisition module 3 is used to select the motion axis, and obtain the positioning between the actual running measurement point and the ideal running measurement point of the target machine tool when the target machine tool is running along the three measurement trajectories corresponding to the motion axis error data;
  • the error angle obtaining module 4 is used to obtain pitch and yaw error angles of the target machine tool according to the spatial angle geometric relationship and the positioning error data.
  • a storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for identifying pitch error and yaw error of a numerically controlled machine tool in Embodiment 1 are realized.
  • a computer device comprising a storage medium, a processor, and a computer program stored in the storage medium and executable by the processor, when the computer program is executed by the processor, the pitch error of the numerically controlled machine tool in Embodiment 1 is realized And the steps of the yaw error identification method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

针对现有技术的局限性,提出了一种数控机床俯仰误差及偏摆误差辨识方法,针对传统方法中涉及的轨迹测量及误差辨识进行了改良,方案由三条平行或者重合与机床坐标轴线的可直接测量其定位误差的直线轨迹实现;可以任意选择被测空间中的运动轨迹,并且每个方向上的测量只需要用到三条轨迹,很大程度上缓解了冗余测量;且可以同时辨识出俯仰误差和偏摆误差,省去了分开计算辨识的重复繁琐。

Description

一种数控机床俯仰误差及偏摆误差辨识方法 技术领域
本发明涉及数控机床制造加工技术领域,具体地,涉及面向机床几何误差测量及角度误差的辨识技术;更具体的,涉及一种数控机床俯仰误差及偏摆误差辨识方法。
背景技术
目前用于机床几何误差测量及辨识的方法种类繁多,有些为减少误差测量点的选择,舍弃了对定位误差的辨识;有些为了获得更多的几何误差辨识数据,针对定位误差和角度误差做了冗余测量及辨识;还有些借助于实际测量距离的线性拟合来获得实际距离与理想距离之间的误差;上述的这些误差测量及辨识方法都是以俯仰误差和偏摆误差的辨识方法为基础建立起来的,但是针对几何误差辨识方法中俯仰及偏摆误差的辨识却一直沿用本世纪初提出的辨识方法,也称为俯仰及偏摆误差的传统辨识方法(下面简称传统方法)。传统方法相对于如今的几何误差测量及辨识已有不少的限制。
如公开日为2018.03.16的中国发明专利:基于平面光栅的三面五线机床空间几何误差测量辨识方法所示,其先在XOY、XOZ、YOZ三个测量平面内,分别在平面光栅的测量范围内设计规划测量路径;然后依次对XOY、XOZ、YOZ平面的各项误差进行辨识,先辨识得到测量平面上两轴间的垂直度误差,消除垂直度误差影响后利用不同轨迹间关系辨识得到俯仰和偏摆角度误差,消除角度误差影响后辨识得到定位误差与直线度误差,最后结合三个平面辨识得到的已有误差代入模型辨识得到滚转角度误差;对每项几何误差项进行参数化建模,采用正交多项式拟合的方法得到每项几何误差的误差曲线,最终实现空间几何误差的全部辨识过程。传统方法中需要多次测量三条到四条的 同一坐标轴平面内的平行线定位误差进行俯仰误差和偏摆误差辨识,还需要选择与坐标系平面相平行的平面进行测量;因此,现有技术的限制比较多,仍具有一定的局限性。
发明内容
针对现有技术的局限,本发明提出一种数控机床俯仰误差及偏摆误差辨识方法,本发明采用的技术方案是:
一种数控机床俯仰误差及偏摆误差辨识方法,包括以下步骤:
S1,获取目标机床的笛卡尔坐标系;
S2,设置以所述笛卡尔坐标系的坐标轴作为运动轴向进行单轴运动的测量轨迹;各坐标轴分别对应三条相互平行于该坐标轴、且不在同一平面上的测量轨迹;
S3,选择运动轴向,获取目标机床沿着所述运动轴向对应的三条测量轨迹上运行时,目标机床的实际运行测量点与理想运行测量点之间的定位误差数据;
S4,根据空间角几何关系以及所述定位误差数据,获得目标机床的俯仰及偏摆误差角度。
相较于现有技术,本发明针对传统方法中涉及的轨迹测量及误差辨识进行了改良,方案由三条平行或者重合与机床坐标轴线的可直接测量其定位误差的直线轨迹实现;可以任意选择被测空间中的运动轨迹,并且每个方向上的测量只需要用到三条轨迹,很大程度上缓解了冗余测量;且可以同时辨识出俯仰误差和偏摆误差,省去了分开计算辨识的重复繁琐。
作为一种优选方案,所述测量轨迹包括与坐标轴重合的情况。
作为一种优选方案,所述空间角几何关系在于:在所述步骤S3中的三条测量轨迹上分别选择位于同一距离的测量点,将所述测量点连接构成的误差平面的法向量分别投影在所述步骤S3中的运动轴所在的两个笛卡尔坐标平面上,以该运动轴的单位向量与所述法向量在所述笛卡尔坐标平面上的投影向量形成的夹角作为俯仰及偏摆误差角度。
进一步的,对于理想运行测量点
Figure PCTCN2022142202-appb-000001
实际运行测量点
Figure PCTCN2022142202-appb-000002
Figure PCTCN2022142202-appb-000003
俯仰及偏摆误差角度按以下公式表示:
Figure PCTCN2022142202-appb-000004
其中,
Figure PCTCN2022142202-appb-000005
表示理想运行距离,
Figure PCTCN2022142202-appb-000006
表示实际运行距离;公式字符右上角的角标k表示测量轨迹;公式字符右下角的角标中第一个字母u,v,w表示误差方向,取值为x,y,z;公式字符右下角的角标中第二个字母v i表示运动方向,i表示测量轨迹k上第i个测量点,v取值为x,y,z,i取值1,2,...。
更进一步的,在测量轨迹的通用情况中,各组测量轨迹的初始点的距离在所用坐标系中表示为
Figure PCTCN2022142202-appb-000007
所述俯仰及偏摆误差角度的简化模型按以下公式表示:
Figure PCTCN2022142202-appb-000008
更进一步的,对于由以下空间坐标的点:A(0,0,0)、B(0,L Y,0)、C(-L X,L Y,0)、D(-L X,0,0)、E(0,0,L Z)、F(0,L Y,L Z)、G(-L X,L Y,L Z)、H(-L X,0,L Z)构成的几何空 间,在以所述几何空间的各棱边作为测量轨迹的情况中,所述俯仰及偏摆误差角度的简化模型按以下公式表示:
Figure PCTCN2022142202-appb-000009
进一步的,
Figure PCTCN2022142202-appb-000010
的正负号取决于
Figure PCTCN2022142202-appb-000011
的正负号。
本发明还提供以下内容:
一种数控机床俯仰误差及偏摆误差辨识***,包括依序连接的坐标系获取模块、测量轨迹设置模块、定位误差数据获取模块以及误差角度获取模块;其中:
所述坐标系获取模块用于获取目标机床的笛卡尔坐标系;
所述测量轨迹设置模块用于设置以所述笛卡尔坐标系的坐标轴作为运动轴向进行单轴运动的测量轨迹;各坐标轴分别对应三条相互平行于该坐标轴、且不在同一平面上的测量轨迹;
所述定位误差数据获取模块用于选择运动轴向,获取目标机床沿着所述运动轴向对应的三条测量轨迹上运行时,目标机床的实际运行测量点与理想运行测量点之间的定位误差数据;
所述误差角度获取模块用于根据空间角几何关系以及所述定位误差数据,获得目标机床的俯仰及偏摆误差角度。
一种存储介质,其上储存有计算机程序,所述计算机程序被处理器执行时实现前述的数控机床俯仰误差及偏摆误差辨识方法的步骤。
一种计算机设备,包括存储介质、处理器以及储存在所述存储介质中并可被所述处理器执行的计算机程序,所述计算机程序被处理器执行时实现前述数控机床俯仰误差及偏摆误差辨识方法的步骤。
附图说明
图1为本发明提供的数控机床俯仰误差及偏摆误差辨识方法的流程示意图;
图2为本发明提供的数控机床俯仰误差及偏摆误差辨识方法的原理示意图;
图3为本发明提供的数控机床俯仰误差及偏摆误差辨识方法的在通用情况下的轨迹示意图;
图4为本发明提供的数控机床俯仰误差及偏摆误差辨识方法的在通用情况下的实施数据示意图;
图5为本发明提供的数控机床俯仰误差及偏摆误差辨识方法的在特殊情况下的轨迹示意图;
图6为本发明提供的数控机床俯仰误差及偏摆误差辨识方法的在特殊情况下的实施数据示意图;
图7为本发明提供的数控机床俯仰误差及偏摆误差辨识***的示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
应当明确,所描述的实施例仅仅是本申请实施例一部分实施例,而不是 全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请实施例保护的范围。
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。在本申请的描述中,需要理解的是,术语“第一”、“第二”、“第三”等仅用于区别类似的对象,而不必用于描述特定的顺序或先后次序,也不能理解为指示或暗示相对重要性。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
此外,在本申请的描述中,除非另有说明,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。以下结合附图和实施例对本发明做进一步的阐述。
为了解决现有技术的局限性,本实施例提供了一种技术方案,下面结合 附图和实施例对本发明的技术方案做进一步的说明。
实施例1
请参考图1,一种数控机床俯仰误差及偏摆误差辨识方法,包括以下步骤:
S1,获取目标机床的笛卡尔坐标系;
S2,设置以所述笛卡尔坐标系的坐标轴作为运动轴向进行单轴运动的测量轨迹;各坐标轴分别对应三条相互平行于该坐标轴、且不在同一平面上的测量轨迹;
S3,选择运动轴向,获取目标机床沿着所述运动轴向对应的三条测量轨迹上运行时,目标机床的实际运行测量点与理想运行测量点之间的定位误差数据;
S4,根据空间角几何关系以及所述定位误差数据,获得目标机床的俯仰及偏摆误差角度。
相较于现有技术,本发明针对传统方法中涉及的轨迹测量及误差辨识进行了改良,方案由三条平行或者重合与机床坐标轴线的可直接测量其定位误差的直线轨迹实现;可以任意选择被测空间中的运动轨迹,并且每个方向上的测量只需要用到三条轨迹,很大程度上缓解了冗余测量;且可以同时辨识出俯仰误差和偏摆误差,省去了分开计算辨识的重复繁琐。
作为一种优选实施例,所述测量轨迹包括与坐标轴重合的情况。
具体的,所述定位误差数据利用以下国际标准ISO230-2进行检测评判:
1、位置偏差为测量仪器所测定位误差等于实际位置P ij与目标位置P i之差,即x ij=P ij-P i
2、单向平均位置偏差为在某一点测量n次所计算出的平均偏差,即
Figure PCTCN2022142202-appb-000012
Figure PCTCN2022142202-appb-000013
3、双向平均位置偏差(描述点)为某一点正向平均位置偏差和负向平均位置偏差的平均值,即
Figure PCTCN2022142202-appb-000014
4、反向间隙为某一位置的正向平均位置偏差与负向平均位置偏差之差,即
Figure PCTCN2022142202-appb-000015
5、平均反向间隙为某一点m次反向间隙的平均值,即
Figure PCTCN2022142202-appb-000016
6、单向重复精度评估值为某一点处位置偏差的标准差,即
Figure PCTCN2022142202-appb-000017
和R i↓=4S i↓(负向)。
7、单向位置重复精度(描述点)为某一点处单向重复精度评估值的4倍,即R i↑=4S i↑(正向)和R i↓=4S i↓(负向)。
8、双向位置重复精度(描述点)R i=max[2S i↑+2S i↓+|B i|;R i↑;R i↓]
9、双向位置重复精度(描述轴)R=max[R i]
10、双向定位***偏差
Figure PCTCN2022142202-appb-000018
11、双向平均位置偏差(描述轴)
Figure PCTCN2022142202-appb-000019
12、双向定位精度(描述轴):
Figure PCTCN2022142202-appb-000020
作为一种优选实施例,所述空间角几何关系在于:在所述步骤S3中的三条测量轨迹上分别选择位于同一距离的测量点,将所述测量点连接构成的误 差平面的法向量分别投影在所述步骤S3中的运动轴所在的两个笛卡尔坐标平面上,以该运动轴的单位向量与所述法向量在所述笛卡尔坐标平面上的投影向量n 1、n 2形成的夹角作为俯仰及偏摆误差角度。
在图2的一种示例中,可以利用激光干涉仪获得3条测量轨迹的定位误差数据,并分别在3条测量轨迹上选择同一距离测量点,将三点连接够成误差平面。将误差平面的法向量n分别投影至Y轴所在的两个笛卡尔坐标平面上,分别是XOY平面和YOZ平面,其对应的投影向量分别为n 1和n 2。Y轴的单位向量i与n 1和n 2形成夹角分别为θ zy和θ xy,则两夹角分别对应Y轴的偏摆误差和俯仰误差。
请参阅图3或图5,作为一种可选实施例,以1000mm×500mm×500mm的数控机床几何空间为测量对象,将三轴数控机床工作台前端左下角设置为绝对坐标原点,并以该原点建立笛卡尔坐标系。设置以所述笛卡尔坐标系的坐标轴:X轴、Y轴和Z轴作为运动轴向进行单轴运动的测量轨迹,得到轨迹①、轨迹②、轨迹③、轨迹④、轨迹⑤、轨迹⑥、轨迹⑦、轨迹⑧和轨迹⑨;其中轨迹①、轨迹②和轨迹③为一组,对应X轴;轨迹④、轨迹⑤和轨迹⑥为一组,对应Y轴;轨迹⑦、轨迹⑧和轨迹⑨为一组,对应Z轴;每组三条轨迹相互平行或重合于各自的运动轴,并且运动轨迹可以在被测几何空间中任意选择。
进一步的,对于理想运行测量点
Figure PCTCN2022142202-appb-000021
实际运行测量点
Figure PCTCN2022142202-appb-000022
Figure PCTCN2022142202-appb-000023
俯仰及偏摆误差角度按以下公式表示:
Figure PCTCN2022142202-appb-000024
其中,
Figure PCTCN2022142202-appb-000025
表示理想运行距离,
Figure PCTCN2022142202-appb-000026
表示实际运行距离;公式字符右上角的角标k表示测量轨迹;公式字符右下角的角标中第一个字母u,v,w表示误差方向,取值为x,y,z;公式字符右下角的角标中第二个字母v i表示运动方向,i表示测量轨迹k上第i个测量点,v取值为x,y,z,i取值1,2,...。
更进一步的,
Figure PCTCN2022142202-appb-000027
的正负号取决于
Figure PCTCN2022142202-appb-000028
的正负号。
更进一步的,在测量轨迹的通用情况中,请参阅图3,各组测量轨迹的初始点的距离在所用坐标系中表示为
Figure PCTCN2022142202-appb-000029
所述俯仰及偏摆误差角度的简化模型按以下公式表示:
Figure PCTCN2022142202-appb-000030
具体的,结合实际测量情况以A为原点建立笛卡尔坐标系,在一种示例中,以Y轴负向为被测运动方向,获得④⑤⑥三条轨迹的定位误差数据,将辨识出的偏摆及俯仰误差数据曲线与实际测量出的偏摆及俯仰误差数据曲线进行对照,如图4所示,实线为实际测量值,虚线为通过辨识模型获得的辨识值,带£标记的为偏摆误差,带○标记的为俯仰误差。在偏摆误差上,测量值和辨识值最大差值为0.007μm/mm,在俯仰误差上,测量值和辨识值最大差值为0.022μm/mm。
更进一步的,请参阅图5,对于由以下空间坐标的点:A(0,0,0)、B(0,L Y,0)、C(-L X,L Y,0)、D(-L X,0,0)、E(0,0,L Z)、F(0,L Y,L Z)、G(-L X,L Y,L Z)、H(-L X,0,L Z) 构成的几何空间,在以所述几何空间的各棱边作为测量轨迹的情况中,所述俯仰及偏摆误差角度的简化模型按以下公式表示:
Figure PCTCN2022142202-appb-000031
具体的,结合实际测量情况以A为原点建立笛卡尔坐标系,在一种示例中,以Y轴负向为被测运动方向,获得④⑤⑥三条轨迹的定位误差数据,将辨识出的偏摆及俯仰误差数据曲线与实际测量出的偏摆及俯仰误差数据曲线进行对照,请参阅图6,实线为实际测量值,虚线为通过辨识模型获得的辨识值,带£标记的为偏摆误差,带○标记的为俯仰误差。在偏摆误差上,测量值和辨识值最大差值为0.005μm/mm,在俯仰误差上,测量值和辨识值最大差值为0.016μm/mm。
实施例2
一种数控机床俯仰误差及偏摆误差辨识***,请参阅图7,包括依序连接的坐标系获取模块1、测量轨迹设置模块2、定位误差数据获取模块3以及误差角度获取模块4;其中:
所述坐标系获取模块1用于获取目标机床的笛卡尔坐标系;
所述测量轨迹设置模块2用于设置以所述笛卡尔坐标系的坐标轴作为运动轴向进行单轴运动的测量轨迹;各坐标轴分别对应三条相互平行于该坐标轴、且不在同一平面上的测量轨迹;
所述定位误差数据获取模块3用于选择运动轴向,获取目标机床沿着所述运动轴向对应的三条测量轨迹上运行时,目标机床的实际运行测量点与理想运行测量点之间的定位误差数据;
所述误差角度获取模块4用于根据空间角几何关系以及所述定位误差数据,获得目标机床的俯仰及偏摆误差角度。
实施例3
一种存储介质,其上储存有计算机程序,所述计算机程序被处理器执行时实现实施例1中的数控机床俯仰误差及偏摆误差辨识方法的步骤。
实施例4
一种计算机设备,包括存储介质、处理器以及储存在所述存储介质中并可被所述处理器执行的计算机程序,所述计算机程序被处理器执行时实现实施例1中的数控机床俯仰误差及偏摆误差辨识方法的步骤。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

  1. 一种数控机床俯仰误差及偏摆误差辨识方法,其特征在于,包括以下步骤:
    S1,获取目标机床的笛卡尔坐标系;
    S2,设置以所述笛卡尔坐标系的坐标轴作为运动轴向进行单轴运动的测量轨迹;各坐标轴分别对应三条相互平行于该坐标轴、且不在同一平面上的测量轨迹;
    S3,选择运动轴向,获取目标机床沿着所述运动轴向对应的三条测量轨迹上运行时,目标机床的实际运行测量点与理想运行测量点之间的定位误差数据;
    S4,根据空间角几何关系以及所述定位误差数据,获得目标机床的俯仰及偏摆误差角度;
    所述空间角几何关系在于:在所述步骤S3中的三条测量轨迹上分别选择位于同一距离的测量点,将所述测量点连接构成的误差平面的法向量分别投影在所述步骤S3中的运动轴所在的两个笛卡尔坐标平面上,以该运动轴的单位向量与所述法向量在所述笛卡尔坐标平面上的投影向量形成的夹角作为俯仰及偏摆误差角度;
    对于理想运行测量点
    Figure PCTCN2022142202-appb-100001
    实际运行测量点
    Figure PCTCN2022142202-appb-100002
    俯仰及偏摆误差角度按以下公式表示:
    Figure PCTCN2022142202-appb-100003
    其中,
    Figure PCTCN2022142202-appb-100004
    表示理想运行距离,
    Figure PCTCN2022142202-appb-100005
    表示实际运行距离;公式字符右上角的角标k表示测量轨迹;公式字符右下角的角标中第一个字母u,v,w表示误差方 向,取值为x,y,z;公式字符右下角的角标中第二个字母vi表示运动方向,i表示测量轨迹k上第i个测量点,v取值为x,y,z,i取值1,2,...。
  2. 根据权利要求1所述的数控机床俯仰误差及偏摆误差辨识方法,其特征在于,所述测量轨迹包括与坐标轴重合的情况。
  3. 根据权利要求1所述的数控机床俯仰误差及偏摆误差辨识方法,其特征在于,在测量轨迹的通用情况中,各组测量轨迹的初始点的距离在所用坐标系中表示为
    Figure PCTCN2022142202-appb-100006
    所述俯仰及偏摆误差角度的简化模型按以下公式表示:
    Figure PCTCN2022142202-appb-100007
  4. 根据权利要求1所述的数控机床俯仰误差及偏摆误差辨识方法,其特征在于,对于由以下空间坐标的点:A(0,0,0)、B(0,L Y,0)、C(-L X,L Y,0)、D(-L X,0,0)、E(0,0,L Z)、F(0,L Y,L Z)、G(-L X,L Y,L Z)、H(-L X,0,L Z)构成的几何空间,在以所述几何空间的各棱边作为测量轨迹的情况中,所述俯仰及偏摆误差角度的简化模型按以下公式表示:
    Figure PCTCN2022142202-appb-100008
  5. 根据权利要求1所述的数控机床俯仰误差及偏摆误差辨识方法,其特征在于,
    Figure PCTCN2022142202-appb-100009
    的正负号取决于
    Figure PCTCN2022142202-appb-100010
    的正负号。
  6. 一种数控机床俯仰误差及偏摆误差辨识***,其特征在于,包括依序连接的坐标系获取模块(1)、测量轨迹设置模块(2)、定位误差数据获取模块(3)以及误差角度获取模块(4);其中:
    所述坐标系获取模块(1)用于获取目标机床的笛卡尔坐标系;
    所述测量轨迹设置模块(2)用于设置以所述笛卡尔坐标系的坐标轴作为运动轴向进行单轴运动的测量轨迹;各坐标轴分别对应三条相互平行于该坐标轴、且不在同一平面上的测量轨迹;
    所述定位误差数据获取模块(3)用于选择运动轴向,获取目标机床沿着所述运动轴向对应的三条测量轨迹上运行时,目标机床的实际运行测量点与理想运行测量点之间的定位误差数据;
    所述误差角度获取模块(4)用于根据空间角几何关系以及所述定位误差数据,获得目标机床的俯仰及偏摆误差角度;
    所述空间角几何关系在于:在所述定位误差数据获取模块(3)中的三条测量轨迹上分别选择位于同一距离的测量点,将所述测量点连接构成的误差平面的法向量分别投影在所述定位误差数据获取模块(3)中的运动轴所在的两个笛卡尔坐标平面上,以该运动轴的单位向量与所述法向量在所述笛卡尔坐标平面上的投影向量形成的夹角作为俯仰及偏摆误差角度;
    对于理想运行测量点
    Figure PCTCN2022142202-appb-100011
    实际运行测量点
    Figure PCTCN2022142202-appb-100012
    俯仰及偏摆误差角度按以下公式表示:
    Figure PCTCN2022142202-appb-100013
    其中,
    Figure PCTCN2022142202-appb-100014
    表示理想运行距离,
    Figure PCTCN2022142202-appb-100015
    表示实际运行距离;公式字符右上角的角标k表示测量轨迹;公式字符右下角的角标中第一个字母u,v,w表示误差方 向,取值为x,y,z;公式字符右下角的角标中第二个字母v i表示运动方向,i表示测量轨迹k上第i个测量点,v取值为x,y,z,i取值1,2,...。
  7. 一种存储介质,其上储存有计算机程序,其特征在于:所述计算机程序被处理器执行时实现如权利要求1至5任一项所述的数控机床俯仰误差及偏摆误差辨识方法的步骤。
  8. 一种计算机设备,其特征在于:包括存储介质、处理器以及储存在所述存储介质中并可被所述处理器执行的计算机程序,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述的数控机床俯仰误差及偏摆误差辨识方法的步骤。
PCT/CN2022/142202 2022-02-23 2022-12-27 一种数控机床俯仰误差及偏摆误差辨识方法 WO2023160211A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/309,422 US11886162B2 (en) 2022-02-23 2023-04-28 Method for identifying pitch error and yaw error of numerically-controlled (NC) machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210171025.2A CN114578754B (zh) 2022-02-23 2022-02-23 一种数控机床俯仰误差及偏摆误差辨识方法
CN202210171025.2 2022-02-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/309,422 Continuation US11886162B2 (en) 2022-02-23 2023-04-28 Method for identifying pitch error and yaw error of numerically-controlled (NC) machine tool

Publications (1)

Publication Number Publication Date
WO2023160211A1 true WO2023160211A1 (zh) 2023-08-31

Family

ID=81774994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142202 WO2023160211A1 (zh) 2022-02-23 2022-12-27 一种数控机床俯仰误差及偏摆误差辨识方法

Country Status (2)

Country Link
CN (1) CN114578754B (zh)
WO (1) WO2023160211A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11886162B2 (en) 2022-02-23 2024-01-30 Guangdong Ocean University Method for identifying pitch error and yaw error of numerically-controlled (NC) machine tool
CN114578754B (zh) * 2022-02-23 2022-12-20 广东海洋大学 一种数控机床俯仰误差及偏摆误差辨识方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130282328A1 (en) * 2011-01-24 2013-10-24 Mitsubishi Electric Corporation Error measurment device and error measurement method
CN103447884A (zh) * 2013-08-02 2013-12-18 西安交通大学 数控机床平动轴几何误差的测量装置及测量与辨识方法
WO2017055637A1 (de) * 2015-10-02 2017-04-06 Deckel Maho Seebach Gmbh Verfahren und vorrichtung zur vermessung einer numerisch gesteuerten werkzeugmaschine
CN107806825A (zh) * 2017-09-29 2018-03-16 西安交通大学 基于平面光栅的三面五线机床空间几何误差测量辨识方法
CN113093649A (zh) * 2021-04-02 2021-07-09 广东海洋大学 一种用于机床几何误差测量的13步测量方法
CN114578754A (zh) * 2022-02-23 2022-06-03 广东海洋大学 一种数控机床俯仰误差及偏摆误差辨识方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103745098A (zh) * 2013-12-24 2014-04-23 西安交通大学 一种数控机床单轴几何角运动误差分离方法
CN103737426B (zh) * 2013-12-24 2015-10-21 西安交通大学 一种数控机床旋转轴几何误差三线测量法
JP6466777B2 (ja) * 2015-05-20 2019-02-06 オークマ株式会社 工作機械における幾何誤差パラメータ同定方法、工作機械の制御方法及び制御装置
CN105538038B (zh) * 2016-01-27 2018-01-16 清华大学 机床平动轴几何误差辨识方法
KR102034928B1 (ko) * 2017-09-27 2019-11-08 신치성 볼스크류의 피치 측정장치
CN112008492B (zh) * 2020-07-29 2022-04-08 成都飞机工业(集团)有限责任公司 一种龙门数控机床平动轴垂直度误差辨识方法
CN113211185B (zh) * 2021-05-26 2022-03-25 上海理工大学 一种基于球杆仪的数控机床直线轴线性误差的检测方法
CN113910001B (zh) * 2021-11-22 2024-03-26 广西成电智能制造产业技术有限责任公司 一种数控机床空间误差辨识方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130282328A1 (en) * 2011-01-24 2013-10-24 Mitsubishi Electric Corporation Error measurment device and error measurement method
CN103447884A (zh) * 2013-08-02 2013-12-18 西安交通大学 数控机床平动轴几何误差的测量装置及测量与辨识方法
WO2017055637A1 (de) * 2015-10-02 2017-04-06 Deckel Maho Seebach Gmbh Verfahren und vorrichtung zur vermessung einer numerisch gesteuerten werkzeugmaschine
CN107806825A (zh) * 2017-09-29 2018-03-16 西安交通大学 基于平面光栅的三面五线机床空间几何误差测量辨识方法
CN113093649A (zh) * 2021-04-02 2021-07-09 广东海洋大学 一种用于机床几何误差测量的13步测量方法
CN114578754A (zh) * 2022-02-23 2022-06-03 广东海洋大学 一种数控机床俯仰误差及偏摆误差辨识方法

Also Published As

Publication number Publication date
CN114578754A (zh) 2022-06-03
CN114578754B (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2023160211A1 (zh) 一种数控机床俯仰误差及偏摆误差辨识方法
US11543234B2 (en) Measurement method for geometric errors of numerical control turntable based on four-station laser tracer system
CN110500978B (zh) 点激光传感器的光束方向矢量和零点位置在线标定方法
CN107042528B (zh) 一种工业机器人的运动学标定***及方法
CN106737855B (zh) 一种综合位姿误差模型与刚度补偿的机器人精度补偿方法
CN103292732B (zh) 一种可伸缩式的大型自由曲面在机测量装置
CN107806825B (zh) 基于平面光栅的三面五线机床空间几何误差测量辨识方法
CN108827264B (zh) 作业台车及其机械臂光学标靶定位装置和定位方法
US20110178782A1 (en) Method for Estimating Geometric Error Between Linear Axis and Rotary Axis in a Multi-Axis Machine Tool
JP2004508954A (ja) 位置決め装置およびシステム
CN107234487B (zh) 基于组合面型基准件的运动部件多参数检测方法
CN107289865A (zh) 一种基于曲面基准件的二维位移测量方法
CN104819707A (zh) 一种多面体主动光标靶
CN105509671A (zh) 一种利用平面标定板的机器人工具中心点标定方法
CN105538038A (zh) 机床平动轴几何误差辨识方法
CN109732402A (zh) 基于激光干涉仪的多线机床空间几何误差测量辨识方法
Liu et al. Binocular-vision-based error detection system and identification method for PIGEs of rotary axis in five-axis machine tool
CN113510708B (zh) 一种基于双目视觉的接触式工业机器人自动标定***
CN106989670B (zh) 一种机器人协同的非接触式高精度大型工件跟踪测量方法
CN109318059A (zh) 数控机床平动轴几何误差的检定装置和方法
CN112958960B (zh) 一种基于光学靶标的机器人手眼标定装置
TW201816531A (zh) 具有空間位置誤差補償的數值控制工具機
CN110211175B (zh) 准直激光器光束空间位姿标定方法
US11886162B2 (en) Method for identifying pitch error and yaw error of numerically-controlled (NC) machine tool
US20160077516A1 (en) Data compensation device, data compensation method, and machining apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928451

Country of ref document: EP

Kind code of ref document: A1