WO2023157261A1 - ロボット制御装置 - Google Patents

ロボット制御装置 Download PDF

Info

Publication number
WO2023157261A1
WO2023157261A1 PCT/JP2022/006768 JP2022006768W WO2023157261A1 WO 2023157261 A1 WO2023157261 A1 WO 2023157261A1 JP 2022006768 W JP2022006768 W JP 2022006768W WO 2023157261 A1 WO2023157261 A1 WO 2023157261A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
stop
stop control
signal
control device
Prior art date
Application number
PCT/JP2022/006768
Other languages
English (en)
French (fr)
Inventor
慎太郎 堀
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/006768 priority Critical patent/WO2023157261A1/ja
Priority to TW112102200A priority patent/TW202333926A/zh
Publication of WO2023157261A1 publication Critical patent/WO2023157261A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices

Definitions

  • the embodiment of the present invention relates to a robot control device.
  • Collaborative robots that share a workspace with humans without safety fences ensure safety by detecting contact with humans and stopping the robot.
  • Such robots generally have a function of detecting an external force, and stop the robot when the external force detected when a person touches the robot exceeds a predetermined threshold.
  • Patent Literature 1 states, "In this way, the optimum threshold value for an external force varies depending on the situation. Therefore, it is possible to change the threshold value while ensuring the safety of the human being after ascertaining the situation of the robot and the human being.”
  • the controller 20 is a digital computer, and the current position of the robot 10 detected by the position detector 11 is within a predetermined area. It includes an external force determination condition setting unit 21 that sets an in-area external force determination condition as an external force determination condition when the current position of the robot 10 is outside the predetermined area, and sets an out-of-area external force determination condition as an external force determination condition. ” (Paragraph 0023).
  • Patent Literature 2 relates to a human-collaborative robot system, and describes "a human-collaborative robot system in which a robot and a human share a working space, in which a physical quantity that changes according to the contact force that the robot receives when the robot comes into contact with the external environment is A detection unit that directly or indirectly detects a physical quantity detected by the detection unit, and a first threshold value and a second threshold value that is larger than the first threshold value. When the physical quantity is equal to or greater than the second threshold, the robot is stopped according to a predetermined stopping method when the physical quantity is equal to or greater than the second threshold, and the robot is stopped by the predetermined stopping method when the physical quantity is equal to or greater than the second threshold.
  • a human-collaborative robot system comprising a stop command unit that stops in a shorter time than the stop method.” (Claim 1).
  • Robots perform a variety of tasks, and robots are configured to operate in a variety of work environments.
  • work contents and working environments of workers who work in cooperation with robots there are various work contents and working environments of workers who work in cooperation with robots. Therefore, when the robot detects contact with a person or object and stops the robot, there are a wide range of considerations, from further ensuring safety based on risk assessment to protecting the workpiece that the robot is gripping. Over.
  • a robot control device that can achieve more appropriate stop control by dynamically switching stop control according to the situation when the robot is stopped upon detection of contact between the robot and a person or object. ing.
  • One aspect of the present disclosure is a robot control device that controls a robot, comprising: an external force detection unit that detects an external force acting on the robot; and a stop control unit that switches stop control for stopping the robot according to a signal indicating the state of the robot or the state of the surrounding environment of the robot.
  • FIG. 1 is a diagram showing the configuration of a robot system and functional blocks of a robot control device according to a first embodiment
  • FIG. It is a figure which shows the hardware structural example of a robot control apparatus. It is a figure which shows the equipment structure of a robot system and the functional block of a robot control apparatus which concern on 2nd Embodiment.
  • FIG. 11 is a diagram showing the configuration of a robot system and functional blocks of a robot control device according to a third embodiment
  • FIG. 11 is a diagram showing the configuration of a robot system and functional blocks of a robot control device according to a fourth embodiment
  • FIG. 11 is a diagram showing the configuration of a robot system and functional blocks of a robot control device according to a fifth embodiment
  • FIG. 11 is a diagram showing the configuration of a robot system and functional blocks of a robot control device according to a sixth embodiment
  • FIG. 13 is a diagram showing the configuration of a robot system and functional blocks of a robot control device according to a seventh embodiment;
  • a robot system including the robot controllers according to the first to seventh embodiments will be described below.
  • the robot control device detects a contact between the robot and the external environment (a person or an object in the work space) and stops the robot. By dynamically switching the control content of the stop control according to the situation, it is configured to realize more appropriate stop control according to the situation.
  • FIG. 1 is a diagram showing the configuration of a robot system 100 and functional blocks of a robot controller 50 according to a first embodiment.
  • the robot system 100 is configured as a collaborative robot system in which humans and robots share a working space.
  • the robot system 100 includes a robot 10 and a robot controller 50 that controls the robot 10 .
  • the robot 10 is, for example, a vertically articulated robot as shown, although other types of robots may be used.
  • a table 80 for placing a work is arranged in the working space of the robot system 100 .
  • the robot 10 cooperates with a person to perform a predetermined work on a work placed on the table 80 .
  • the base 11 of the robot 10 is fixed to the installation floor.
  • the robot 10 can operate to take a desired position and posture by a servomotor (not shown) provided on each joint axis.
  • the robot 10 is provided with a position detection sensor 21 for detecting the position (rotational position) of each joint axis (some of the position detection sensors are shown in FIG. 1).
  • the position detection sensor 21 is an encoder that detects the rotational position of the servomotor or an encoder that detects the rotational position of the joint shaft.
  • a signal from each position detection sensor 21 is input to the robot control device 50 and used to calculate the position/orientation and speed of the robot 10 (predetermined control portion of the robot 10).
  • the robot 10 can perform desired work with an end effector attached to the wrist at the tip of the arm.
  • An end effector is an external device that can be exchanged depending on the application, such as a hand, a welding gun, or a tool.
  • FIG. 1 shows an example in which a hand 30 is used as an example of an end effector.
  • a force sensor 71 is attached to the lower portion of the base 11 of the robot 10 .
  • the force sensor 71 is, for example, a 6-axis force sensor.
  • the robot control device 50 (external force detection unit 154 ) can detect an external force (contact force) acting on the robot 10 based on the detection value of the force sensor 71 . It is also possible to adopt a configuration in which the external force (contact force) acting on the robot 10 is detected using a torque sensor arranged on each joint axis (or at least one joint axis) of the robot 10 .
  • FIG. 2 shows an example of the hardware configuration of the robot control device 50.
  • the robot controller 50 provides a processor 51 with a memory 52 (ROM, RAM, non-volatile memory, etc.), an input/output interface 53, an operation unit 54 including various operation switches, etc. via a bus. It may have a configuration as a connected general computer. Note that the hardware configuration of the robot control device 50 is common to other embodiments described below.
  • the robot control device 50 controls the motion of the robot 10 according to commands from a control program or a teaching device (not shown).
  • the robot control device 50 generates a trajectory plan for a predetermined control portion (for example, TCP (tool center point)) of the robot 10 according to the control program, and generates commands for each axis of the robot 10 by kinematic calculations.
  • the robot control device 50 can move a predetermined control portion of the robot 10 according to the planned trajectory by executing servo control for each axis according to the command for each axis.
  • a specific area (hereinafter referred to as a set area 90) is set in the work space where the robot system 100 is installed.
  • This set area 90 is an area where the robot 10 performs work using a tool (hand 30), and is an area in which there is a particular risk of a person being caught between the robot 10 and another object in the work space.
  • Information (three-dimensional position information) of this setting area 90 may be stored in advance in the memory 52 (non-volatile memory) of the robot controller 50, for example, or may be stored in the teaching device connected to the robot controller 50 by the user. It may be possible to set via a setting screen (user interface) (not shown).
  • the robot control device 50 sets a stop control method to be applied when contact between the robot 10 and the external environment (a person or an object in the work space) is detected. It switches dynamically depending on whether it is within 90 or not. Thereby, the robot control device 50 can appropriately perform stop control according to the operation state of the robot 10 when contact is detected.
  • the robot controller 50 has a robot position calculator 151 , a stop controller 150 and an external force detector 154 .
  • the external force detection unit 154 subtracts the weight of the workpiece gripped by the robot 10 and the inertial force generated by the movement of the robot 10 from the detection value output by the force sensor 71, and determines the external force (contact force) acting on the robot 10. ) can be detected.
  • the external force detection unit 154 may be configured to determine that the robot 10 has come into contact with the external environment (person or object) when the detected contact force is greater than or equal to a predetermined threshold.
  • the robot position calculation unit 151 calculates the position of the robot 10 (predetermined movable part) based on the position information from the position detection sensors 21 arranged on each joint axis of the robot 10 .
  • the TCP (tool center point) position of the robot 10 or the tool (hand 30) position may be calculated as the position of the robot 10 .
  • This position information is calculated as a value in the world coordinate system set in the base 11 of the robot 10 .
  • the robot position calculation unit 151 further calculates whether or not the position of the robot 10 is within the set area 90, and sends a signal indicating whether or not the position of the robot 10 is within the set area 90 to the stop control unit 150. send. That is, the robot position calculator 151 sends a signal indicating the state of the robot 10 to the stop controller 150 .
  • the robot position calculation unit 151 compares the calculated position of the robot 10 (such as the position of the hand 30 ) with position information indicating the set area 90 to determine whether the robot 10 exists within the set area 90 . It may be determined whether or not Alternatively, the robot position calculation unit 151 virtually places a model of the robot 10 in the work space so as to assume the calculated position and posture of the robot 10, and calculates whether or not the model interferes with the setting area 90. By doing so, it may be determined whether the robot 10 exists within the set area 90 .
  • the stop control unit 150 performs stop control for stopping the robot 10 when the contact between the robot 10 and the external environment is detected by the external force detection unit 154 depending on whether the robot 10 is within the set area 90 or not. to switch.
  • the stop control unit 150 has a stop method determination unit 152 and a stop command unit 153 as a configuration for realizing such a function.
  • the stop method determination unit 152 determines the types and/or set values of control parameters used for stop control when the external force detection unit 154 detects contact between the robot 10 and the external environment, depending on whether the robot 10 is within the setting area 90. Switch between the case and the case where the robot 10 is outside the set area 90 .
  • Control parameters used for stop control can include at least one of stop time, acceleration, jerk, motor current, shaft torque, and reversal distance. Of these control parameters, acceleration, jerk, motor current (current applied to the motor of each axis), and shaft torque are all parameters related to force for decelerating the robot (each axis).
  • the stop command unit 153 issues a command to the robot 10 to stop the robot 10 according to the control parameters set by the stop method determination unit 152. send.
  • the stopping method determining unit 152 sets the stopping time T1 applied when the robot 10 is within the set area 90 to be shorter than the stopping time T2 applied when the robot 10 is outside the set area 90. set. That is, the stop method determination unit 152 sets the stop time so that T1 ⁇ T2. In this case, the stop command unit 153 obtains the acceleration (deceleration) for stopping the robot 10 from the current speed for the stop time T1 (or T2), and executes deceleration control.
  • the robot 10 will move when the contact between the robot 10 and the external environment is detected.
  • the robot 10 will move when the contact between the robot 10 and the external environment is detected.
  • the robot 10 will move when the contact between the robot 10 and the external environment is detected.
  • the robot 10 is outside the set area 90 when the contact between the robot 10 and the external environment is detected, and when the robot 10 is within the set area 90 when the contact between the robot 10 and the external environment is detected. It is possible to stop the robot 10 in a longer stop time, and to avoid applying an excessive load to the robot 10, a work, etc. when stopping the robot 10 outside the set area 90. ⁇
  • an operation of reversing the robot 10 by a predetermined distance after stopping at the stop time T1 may be added. This makes it possible to more reliably avoid a situation in which a person is caught between the robot 10 and another object.
  • the stop control when contact between the robot and the external environment is detected and the robot is stopped, the stop control is switched dynamically according to the situation, and more appropriate stop control is performed. can be realized.
  • FIG. 3 shows an equipment configuration of a robot system 100B including a robot control device 50B according to a second embodiment, and functional blocks of the robot control device 50B.
  • the robot system 100B includes a robot 10 mounted on a carriage 81 and a robot controller 50B that controls the robot 10.
  • symbol is attached
  • a specific area is set in the work space where the robot system 100B is installed.
  • the set area 91 is a two-dimensional area set on the floor in the work space, and is an area close to objects such as pillars, peripheral devices, and structures. That is, the set area 91 is an area with a risk of the robot 10 (carriage 81) interfering with an object or a person being caught between the robot 10 and another object.
  • the setting area 91 may be preset in the robot control device 50B, or set by the user via a setting screen (user interface) of a teaching device (not shown) connected to the robot control device 50B. It may be possible.
  • the robot control device 50B determines whether the robot 10 mounted on the cart 81 is in a set area 91 set in the work space. is configured to dynamically switch stop control when is detected.
  • the functional blocks of the robot control device 50B shown in FIG. 3 focus on such a stop control function in the robot control device 50B.
  • the robot controller 50B has a robot position calculator 251 , a stop controller 250 and an external force detector 154 .
  • the external force detection unit 154 detects contact between the robot 10 and the external environment based on the detection value of the force sensor 71 .
  • the robot position calculator 251 detects the position of the truck 81 (for example, the center position of the truck 81) based on the signal from the position detection sensor 22 arranged on the truck 81, and converts the detected position of the truck 81 to the position of the robot 10.
  • the position detection sensor 22 arranged on the truck 81 is, for example, a sensor that outputs a vehicle speed pulse of the truck 81, an acceleration sensor, a gyro sensor, or the like for detecting the position.
  • the robot position calculator 251 registers the position of the robot 10 (carriage 81) on the work space map data, and uses the signal from the position detection sensor 22 to calculate the position of the robot 10 (carriage 81) on the map data. You may make it always monitor.
  • the robot position calculation unit 251 further calculates whether or not the position of the robot 10 is within the set area 91, and sends a signal indicating whether or not the position of the robot 10 is within the set area 91 to the stop control unit 250. send. That is, the robot position calculator 251 sends a signal indicating the state of the robot 10 to the stop controller 250 .
  • the robot position calculation unit 251 may determine whether the robot 10 exists within the set area 91 by comparing the position of the robot 10 and position information indicating the set area 91 .
  • the robot position calculation unit 251 may virtually place a model of the robot 10 (including the model of the carriage 81) at the position of the robot 10, and calculate whether or not the model exists within the setting area 91. It may be determined whether or not the robot 10 exists within the set area 91 by
  • the stop control unit 250 performs stop control for stopping the robot 10 when the contact between the robot 10 and the external environment is detected by the external force detection unit 154 depending on whether the robot 10 is within the set area 91 or not. to switch.
  • the stop control unit 250 has a stop method determination unit 252 and a stop command unit 153 as a configuration for realizing such a function.
  • the stop method determination unit 252 determines the types and/or set values of control parameters used for stop control when the external force detection unit 154 detects contact between the robot 10 and the external environment, depending on whether the robot 10 is within the setting area 91. The case and the case where the robot 10 is outside the setting area 91 are switched.
  • Control parameters used for stop control can include at least one of stop time, acceleration, jerk, motor current, shaft torque, and reversal distance.
  • the stop command unit 153 issues a command to the robot 10 to stop the robot 10 according to the control parameters set by the stop method determination unit 252. send.
  • the stop method determination unit 252 changes the stop time T21 applied when the robot 10 (carriage 81) is within the set area 91 to the stop time T21 applied when the robot 10 (carriage 81) is outside the set area 91. It is set to be shorter than the time T22. That is, the stop method determination unit 252 sets the stop time so that T21 ⁇ T22. In this case, the stop command unit 153 obtains the acceleration (deceleration) for stopping the robot 10 from the current speed for the stop time T21 (or T22), and executes deceleration control.
  • the robot 10 will move when the contact between the robot 10 and the external environment is detected.
  • the robot 10 will move when the contact between the robot 10 and the external environment is detected.
  • the robot 10 is outside the set area 91 when the contact between the robot 10 and the external environment is detected, and the robot 10 is inside the set area 91 when the contact between the robot 10 and the external environment is detected. It is possible to stop the robot 10 in a longer stop time, and to avoid applying an excessive load to the robot 10, a work, etc. when stopping the robot 10 outside the set area 91.
  • an operation of reversing the robot 10 may be added after stopping at the stop time T21. This makes it possible to more reliably avoid a situation in which a person is caught between the robot 10 and another object.
  • FIG. 4 shows the configuration of a robot system 100C including a robot control device 50C according to a third embodiment, and functional blocks of the robot control device 50C.
  • the robot system 100C includes a robot 10 and a robot controller 50C that controls the robot 10.
  • the robot 10 is fixed to the installation floor.
  • the robot control device 50C dynamically switches stop control when contact between the robot 10 and the external environment is detected according to the speed of the robot 10 (predetermined movable part). Configured.
  • the functional block of the robot control device 50C shown in FIG. 4 is expressed by focusing on such a stop control function in the robot control device 50C.
  • the robot controller 50 ⁇ /b>C has a speed calculator 351 , a stop controller 350 and an external force detector 154 .
  • the external force detection unit 154 detects contact between the robot 10 and the external environment based on the detection value of the force sensor 71 .
  • the speed calculation unit 351 calculates the speed of the robot 10 (the speed of a predetermined movable part of the robot 10) based on the position information from the position detection sensors 21 arranged on each joint axis of the robot 10. In this embodiment, the speed calculation unit 351 calculates the speed of the tool (hand 30) attached to the tip of the arm of the robot 10. FIG.
  • the speed calculator 351 determines whether the speed of the tool is greater than or equal to a predetermined speed value, and sends a signal indicating whether the speed of the tool is greater than or equal to the predetermined speed to the stop controller 350 . That is, the speed calculator 351 sends a signal indicating the state of the robot 10 to the stop controller 350 .
  • the stop control unit 350 performs stop control for stopping the robot 10 when the contact between the robot 10 and the external environment is detected by the external force detection unit 154 based on whether the speed of the tool is equal to or higher than a predetermined speed value. switch accordingly.
  • the stop control unit 350 has a stop method determination unit 352 and a stop command unit 153 as a configuration for realizing such a function.
  • the stopping method determination unit 352 determines the types and/or setting values of the control parameters used for stop control when the external force detection unit 154 detects contact between the robot 10 and the external environment so that the speed of the tool is equal to or higher than a predetermined speed value. and when the tool speed is less than a predetermined speed value.
  • Control parameters used for stop control can include at least one of stop time, acceleration, jerk, motor current, shaft torque, and reversal distance.
  • the stop command unit 153 issues a command to the robot 10 to stop the robot 10 according to the control parameters set by the stop method determination unit 352. send.
  • the stopping method determination unit 352 sets the stopping time T31 applied when the speed of the tool is equal to or higher than a predetermined speed value to be longer than the stopping time T32 applied when the speed of the tool is less than the predetermined speed value. set to be longer. That is, the stop method determination unit 352 sets the stop time so that T31>T32.
  • the stop command unit 153 obtains the acceleration (deceleration) for stopping the robot 10 from the current speed for the stop time T31 (or T32), and executes deceleration control.
  • the above-described predetermined speed value is determined by taking into account circumstances such as how much the load applied to the workpiece gripped by the hand 30 should be suppressed. For example, if there is a situation in which the load on the workpiece should be further suppressed, the predetermined speed value may be set to a lower value.
  • the robot 10 when the contact between the robot 10 and the external environment is detected and the speed of the tool is equal to or higher than the predetermined speed, the robot 10 can be slowly stopped, and the robot 10 or the robot 10 can be stopped at the time of stopping. It is possible to avoid applying an excessive load to the workpiece gripped by 10 .
  • FIG. 5 shows an equipment configuration of a robot system 100D including a robot control device 50D according to a fourth embodiment, and functional blocks of the robot control device 50D.
  • the robot system 100C includes a robot 10 and a robot controller 50C that controls the robot 10.
  • the robot 10 is fixed to the installation floor.
  • the contact detection sensor 401 is attached to a specific portion of the robot 10 so that the contact detection sensor 401 can be detected by a person or an object.
  • the robot control device 50 ⁇ /b>D dynamically switches stop control when contact between the robot 10 and the external environment is detected according to the detection signal from the contact detection sensor 401 .
  • the functional block of the robot control device 50D shown in FIG. 5 is expressed by focusing on such a stop control function in the robot control device 50D.
  • the robot control device 50 ⁇ /b>D includes a signal input section 451 , a stop control section 450 and an external force detection section 154 .
  • a signal from the contact detection sensor 401 is input to the signal input unit 451 .
  • the signal from the contact detection sensor 401 is, for example, a signal that turns on when contact is detected.
  • the contact detection sensor 401 is attached to, for example, a portion of the robot 10 that is not particularly desirable to be touched by a person. That is, in the present embodiment, a signal indicating the surrounding environment of the robot 10 is input to the stop control section 450 via the signal input section 451 .
  • the contact detection sensor 401 is attached near the tool (arm tip).
  • the contact detection sensor 401 may be a mechanical switch that turns on when pressed, a touch sensor, a sensor that detects pressing (pressure) by an object, or the like.
  • a plurality of contact detection sensors 401 may be arranged in order to detect contact more reliably.
  • the external force detection unit 154 detects contact between the robot 10 and the external environment based on the detection value of the force sensor 71 .
  • the stop control unit 450 performs stop control for stopping the robot 10 when the external force detection unit 154 detects the contact between the robot 10 and the external environment. switch depending on whether or not The stop control unit 450 has a stop method determination unit 452 and a stop command unit 153 as a configuration for realizing such a function.
  • the stop method determination unit 452 sends the contact detection sensor 401 the types and/or setting values of control parameters used for stop control when contact between the robot 10 and the external environment is detected by the external force detection unit 154 .
  • object is in contact with the contact detection sensor 401 and the contact detection sensor 401 is not touched by a person (or another object).
  • Control parameters used for stop control can include at least one of stop time, acceleration, jerk, motor current, shaft torque, and reversal distance.
  • the stop command unit 153 issues a command to the robot 10 to stop the robot 10 according to the control parameters set by the stop method determination unit 452. send.
  • the stop method determination unit 452 determines the stop time T41 to be applied when contact is detected by the contact detection sensor 401 (when the signal input to the signal input unit 451 is ON). It is set to be shorter than the stop time T42 applied when contact is not detected (when the signal input to the signal input unit 451 is off). That is, the stop method determination unit 452 sets the stop time so that T41 ⁇ T42. In this case, the stop command unit 153 obtains the acceleration (deceleration) for stopping the robot 10 from the current speed at the stop time T41 (or T42), and executes deceleration control.
  • the robot 10 can be stopped in a short time. By doing so, it is possible to realize stop control that further enhances safety for humans.
  • contact detection sensors are attached to a plurality of different positions on the robot 10, and signals from these contact detection sensors are input to the stop control section 450 (stop method determination section 452).
  • stop control section 450 stop method determination section 452
  • a first contact detection sensor is attached to the arm tip (flange) of the robot 10 and a second contact detection sensor is attached to another part of the arm.
  • the tip of the arm is the part that the user least wants to touch, and the other part of the arm is the next part that the user does not want to touch.
  • the stop method determination unit 452 determines the stop time T141 when the contact is detected by the first contact detection sensor, the stop time T142 when the contact is detected by the second contact detection sensor, Assuming that the stop time is T143 when neither the first contact detection sensor nor the second contact detection sensor detects contact, the stop time may be set so that T141 ⁇ T142 ⁇ T143. With this configuration, the stop time can be set in stages according to the degree of risk to the user.
  • FIG. 6 is a diagram showing the configuration of a robot system 100E including a robot control device 50E and functional blocks of the robot control device 50E according to a fifth embodiment.
  • the robot system 100E includes a robot 10 and a robot controller 50E that controls the robot 10.
  • the robot 10 is fixed to the installation floor.
  • a human detection sensor 501 is placed at a predetermined position in the work space (for example, the base 11 of the robot 10) to detect whether or not the person OP is approaching the robot 10.
  • the robot control device 50E is configured to dynamically switch stop control when contact between the robot 10 and the external environment is detected, depending on whether or not the person OP is approaching the robot 10. be done.
  • the functional block of the robot control device 50E shown in FIG. 6 is expressed by focusing on such a stop control function in the robot control device 50E.
  • the robot control device 50E has a signal input section 551, a stop control section 550, and an external force detection section 154.
  • a signal from the human detection sensor 501 that can detect the approach of the person OP is input to the signal input unit 551 .
  • the signal from the human detection sensor 501 is, for example, a signal that turns on when the approach of the human OP to the robot 10 is detected. That is, in this embodiment, a signal indicating the state of the surrounding environment of the robot 10 is input to the stop control section 550 via the signal input section 551 .
  • the human detection sensor 501 may output an ON signal when the human OP comes within a predetermined distance from the robot 10 .
  • the human detection sensor 501 is a laser ranging sensor or a laser scanner that measures the distance to an approaching object by emitting or scanning laser light.
  • a laser ranging sensor or laser scanner may be arranged at the base 11 of the robot 10, or may be installed at a predetermined position within the working space.
  • a sheet-like sensor that outputs a signal when stepped on by a person may be employed.
  • a sensor consisting of a camera installed in the work space acquiring an image around the robot 10, and detecting the approach of a person to the robot 10 by image processing may be adopted.
  • the external force detection unit 154 detects contact between the robot 10 and the external environment based on the detection value of the force sensor 71 .
  • the stop control unit 550 performs stop control for stopping the robot 10 when the external force detection unit 154 detects contact between the robot 10 and the external environment, and the human detection sensor 501 detects the approach of a person to the robot 10 . switch depending on whether or not
  • the stop control unit 550 has a stop method determination unit 552 and a stop command unit 153 as a configuration for realizing such a function.
  • the stop method determination unit 552 determines the types and/or setting values of the control parameters used for stop control when the external force detection unit 154 detects contact between the robot 10 and the external environment. is detected, and the human detection sensor 501 does not detect the approach of a person to the robot 10.
  • Control parameters used for stop control can include at least one of stop time, acceleration, jerk, motor current, shaft torque, and reversal distance.
  • the stop command unit 153 issues a command to the robot 10 to stop the robot 10 according to the control parameters set by the stop method determination unit 552. send.
  • the stop method determination unit 552 sets the stop time T51 to be applied when the human sensor 501 detects the approach of the human OP to the robot 10, and the human sensor 501 detects the approach of the human OP to the robot 10. It is set to be shorter than the stop time T52 applied when it is not stopped. That is, the stop method determination unit 552 sets the stop time so that T51 ⁇ T52. In this case, the stop command unit 153 obtains the acceleration (deceleration) for stopping the robot 10 from the current speed at the stop time T51 (or T52), and executes deceleration control.
  • FIG. 7 is a diagram showing the configuration of a robot system 100F including a robot control device 50F and functional blocks of the robot control device 50F according to a sixth embodiment.
  • the robot system 100F includes a robot 10 and a robot controller 50F that controls the robot 10.
  • the robot 10 is fixed to the installation floor.
  • the robot control device 50F based on a signal indicating the operation state (open/closed state) of the hand 30 as an end effector mounted on the robot 10, detects the contact between the robot 10 and the external environment. Configured to dynamically switch stop control.
  • the functional block of the robot control device 50F shown in FIG. 7 is expressed by focusing on such a stop control function in the robot control device 50F.
  • the robot control device 50 ⁇ /b>F has a signal input section 651 , a stop control section 650 and an external force detection section 154 .
  • a signal indicating the operating state from the hand 30 is input to the signal input unit 651 .
  • the signal from the hand 30 is a signal that turns on when the hand is operating and closed (when the hand 30 is gripping the workpiece W). That is, in the present embodiment, a signal indicating the state of the robot 10 is input to the stop control section 650 via the signal input section 651 .
  • the external force detection unit 154 detects contact between the robot 10 and the external environment based on the detection value of the force sensor 71 .
  • the stop control unit 650 performs stop control for stopping the robot 10 when the external force detection unit 154 detects the contact between the robot 10 and the external environment. is gripped).
  • the stop control unit 650 has a stop method determination unit 652 and a stop command unit 153 as a configuration for realizing such a function.
  • the stop method determination unit 652 determines the types and/or setting values of the control parameters used for stop control when the external force detection unit 154 detects contact between the robot 10 and the external environment.
  • Control parameters used for stop control can include at least one of stop time, acceleration, jerk, motor current, shaft torque, and reversal distance.
  • the stop command unit 153 issues a command to the robot 10 to stop the robot 10 according to the control parameters set by the stop method determination unit 652. send.
  • the stopping method determination unit 652 determines the acceleration (deceleration) applied to stop control when the hand 30 is gripping the workpiece W (when the signal input to the signal input unit 651 is ON).
  • the acceleration (deceleration) is set to a value smaller than the acceleration (deceleration) applied to the stop control.
  • an excessive load is applied to the work W and the robot 10 as stop control when contact between the robot 10 and the external environment is detected. It is desirable to be able to avoid situations from occurring. Therefore, in the present embodiment, acceleration is used as a control parameter applied to the stop control, and control is realized so that the robot 10 can be gently stopped when the hand 30 is gripping the workpiece W.
  • the stop method determination unit 652 determines the stop time T61 to be applied to stop control when the hand 30 is gripping the work W, and the stop time T61 to be applied to stop control when the hand 30 is not gripping the work W. It may be set to be longer than T62. Also in this case, when the hand 30 is gripping the workpiece W, the robot 10 can be gently stopped.
  • the fourth and fifth embodiments dynamically switch stop control to be executed when contact between the robot 10 and the external environment is detected according to a signal indicating the state of the surrounding environment of the robot 10. It can be positioned as a composition.
  • An embodiment may be possible in which the functions described in the first to sixth embodiments are integrated. A robot control device having a function that integrates the functions of the robot control devices according to the first to sixth embodiments will be described below.
  • FIG. 8 is a functional block diagram of a robot system 100G including a robot control device 50G according to the seventh embodiment.
  • the equipment configuration of the robot system 100G is, for example, equivalent to the configuration shown in FIG. 1, and various sensors (for example, the human detection sensor 501) are arranged as illustrated in the corresponding embodiment. shall be
  • the robot system 100G includes a robot 10 and a robot control device 50G that controls the robot 10.
  • a teaching device 40 may be connected to the robot control device 50G.
  • the robot control device 50G is configured to have a plurality of input/output interfaces 53 (FIG. 2) capable of inputting signals from various sensors. Therefore, as shown in FIG. 8, the robot controller 50G receives the signal from the position detection sensor 21 of the robot 10 and the signal from the position detection sensor 21 of the robot 10 in accordance with the actual device configuration of the robot system 100G.
  • a signal from the position detection sensor 22 arranged on the cart 81, a signal from the contact detection sensor 401 attached to the robot 10, a signal from the human detection sensor 501, and a signal from the hand 30 mounted on the robot 10 are input. It can be configured to
  • the teaching device 40 is used to teach the robot 10 or to make various settings related to teaching.
  • the teaching device 40 has a configuration as a general computer in which memory (ROM, RAM, non-volatile memory, etc.), a display unit, an operation unit, an input/output interface, etc. are connected to the processor via a bus. You may have
  • the robot control device 50G includes signal input units 451, 551 and 651, a robot position calculation unit 151, a robot position calculation unit 251, a speed calculation unit 351, a stop control unit 750, and an external force detection unit 154.
  • Stop control unit 750 includes stop method determination unit 752 and stop command unit 153 .
  • a signal from the position detection sensor 21 is input to the robot position calculation unit 151 and the speed calculation unit 351 .
  • a signal from the position detection sensor 22 is input to the robot position calculator 251 .
  • a signal from the contact detection sensor 401 is input to the stop method determination section 752 via the signal input section 451 .
  • a signal from the human detection sensor 501 is input to the stop method determination section 752 via the signal input section 551 .
  • a signal from the hand 30 is input to the stopping method determination section 752 via the signal input section 651 .
  • the stopping method determination unit 752 (1) A signal indicating that the robot 10 is within the set area 90, which is input from the robot position calculation unit 151; (2) a signal indicating that the robot 10 is within the set area 91, which is input from the robot position calculation unit 251; (3) a signal indicating that the speed of a predetermined movable part of the robot 10 input from the speed calculation unit 351 is equal to or higher than the predetermined speed; (4) a signal input from the signal input unit 451, indicating that a human contact has been detected by the contact detection sensor 401; (5) a signal input from the signal input unit 551, indicating that the human sensor 501 has detected the approach of a person; (6) a signal input from the signal input unit 651 indicating that the hand 30 is closed and gripping the workpiece W; Stop control can be switched based on any of
  • the stop method determination unit 752 executes switching of stop control according to the operation details described in the first embodiment.
  • the stop method determination unit 752 executes switching of stop control according to the operation details described in the second embodiment.
  • the stop method determination unit 752 executes switching of stop control according to the operation details described in the third embodiment.
  • the stop method determination unit 752 executes switching of stop control according to the operation details described in the fourth embodiment.
  • the stop method determination unit 752 executes switching of stop control according to the operation details described in the fifth embodiment.
  • the stop method determination unit 752 executes switching of stop control according to the operation details described in the sixth embodiment.
  • the user determines the stopping method through a setting screen displayed on the display unit (touch panel, etc.) of the teaching device 40, for example. It may be configured so that it can be set for the unit 752 . In this case, the user can select any one of the operations (1) to (6) to operate the robot controller 50G according to the actual operating environment of the robot system 100G.
  • the stop command unit 153 generates a command to stop the robot 10 when the external force detection unit 154 detects contact between the robot 10 and the external environment according to the control parameters set by the stop method determination unit 752. Send to robot 10.
  • the user operates with any function of the robot control devices 50, 50B, 50C, 50D, 50E, and 50F according to the first to sixth embodiments.
  • the robot controller 50G can be set to do so.
  • Each of the robot control devices is a "robot control device for controlling a robot, in which an external force detection unit detects an external force acting on the robot, and an external force exceeding a predetermined value is detected by the external force detection unit. and a stop control unit that switches stop control for stopping the robot when detected, in accordance with a signal indicating the state of the robot or the state of the environment surrounding the robot. can be done.
  • the stop control when contact between the robot and the external environment is detected and the robot is stopped, the stop control is dynamically switched according to the situation, thereby performing more appropriate stop control. Realization is possible.
  • Signals indicating the state of the robot may include various signals indicating the state of the robot and tools mounted on the robot, in addition to the signals exemplified in the above-described embodiments. Further, the signal indicating the surrounding environment of the robot may include various signals indicating the state of the environment surrounding the robot in addition to the signals exemplified in the above-described embodiments.
  • the functional blocks in the functional block diagrams of the robot control device shown in each of the above-described embodiments may be implemented by the processor of the robot control device executing various software stored in a storage device, or may be realized by an ASIC ( Application Specific Integrated Circuit) may be realized by a configuration mainly composed of hardware.
  • ASIC Application Specific Integrated Circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

ロボット(10)を制御するロボット制御装置(50)であって、ロボットに作用する外力を検出する外力検出部(154)と、外力検出部により所定値以上の外力が検出された場合にロボットを停止させるための停止制御を、ロボットの状態又は該ロボットの周囲環境の状態を示す信号に応じて切り替える停止制御部(150)と、を備えるロボット制御装置(50)である。

Description

ロボット制御装置
 本発明の実施形態は、ロボット制御装置に関する。
 安全柵無しで人間と作業空間を共にする協働ロボットでは、人間との接触をロボットが検知してロボットが停止することで安全を確保している。このようなロボットは、一般に、外力を検出す機能を備え、人がロボットに接触したときに検出される外力が所定の閾値以上となるとロボットを停止させる。
 特許文献1は、「このように、外力のために最適な閾値は状況に応じて異なる。従って、ロボットおよび人間の状況を見極めた上で、人間の安全を確保しつつ閾値を変更することが望まれる。」と記載し(段落0012)、また、ロボットの制御装置の構成として「制御装置20はデジタルコンピュータであり、位置検出部11により検出されたロボット10の現在位置が所定領域内にあるときには外力判定条件として領域内外力判定条件を設定すると共に、ロボット10の現在位置が所定領域外にあるときには外力判定条件として領域外外力判定条件を設定する外力判定条件設定部21を含んでいる。」ことを記載する(段落0023)。
 特許文献2は、人間協調ロボットシステムに関し、「ロボット及び人間が作業空間を共有する人間協調ロボットシステムであって、ロボットが外部環境と接触した際にロボットが受ける接触力に応じて変化する物理量を直接的又は間接的に検出する検出部と、前記検出部により検出された物理量を、第1の閾値及び第1の閾値よりも大きい第2の閾値とそれぞれ比較し、前記物理量が前記第1の閾値であって、かつ前記第2の閾値未満であるときに、前記ロボットを所定の停止方法にしたがって停止させると共に、前記物理量が前記第2の閾値以上であるときは、前記ロボットを前記所定の停止方法よりも短時間で停止させる停止指令部と、を備える、人間協調ロボットシステム。」を記載する(請求項1)。
特開2017-077608号公報 特開2016-064474号公報
 ここで、外力を検出する機能によりロボットと人や物体との接触が検出され、ロボットを停止させる局面について考える。ロボットが実行する作業内容は様々であり、また、ロボットは様々な作業環境内で動作するように構成される。また、ロボットと協働して作業する作業者の作業内容・作業環境も様々である。したがって、ロボットと人や物体との接触が検出されてロボットを停止させる際に、リスクアセスメントに基づく安全性の更なる確保から、ロボットが把持するワークの保護に至るまで配慮に入れるべき事項は多岐にわたる。ロボットと人や物体との接触が検出されてロボットを停止させる場合において、状況に応じて動的に停止制御を切り替えることでよりいっそう適切な停止制御を実現することのできるロボット制御装置が求められている。
 本開示の一態様は、ロボットを制御するロボット制御装置であって、前記ロボットに作用する外力を検出する外力検出部と、前記外力検出部により所定値以上の外力が検出された場合に前記ロボットを停止させるための停止制御を、前記ロボットの状態又は該ロボットの周囲環境の状態を示す信号に応じて切り替える停止制御部と、を備えるロボット制御装置である。
 上記構成によれば、ロボットと外部環境との接触が検出されてロボットを停止させる場合において、状況に応じて停止制御を動的に切り替えることでよりいっそう適切な停止制御を実現することが可能となる。
 添付図面に示される本発明の典型的な実施形態の詳細な説明から、本発明のこれらの目的、特徴および利点ならびに他の目的、特徴および利点がさらに明確になるであろう。
第1実施形態に係るロボットシステムの機器構成及びロボット制御装置の機能ブロックを示す図である。 ロボット制御装置のハードウェア構成例を示す図である。 第2実施形態に係るロボットシステムの機器構成及びロボット制御装置の機能ブロックを示す図である。 第3実施形態に係るロボットシステムの機器構成及びロボット制御装置の機能ブロックを示す図である。 第4実施形態に係るロボットシステムの機器構成及びロボット制御装置の機能ブロックを示す図である。 第5実施形態に係るロボットシステムの機器構成及びロボット制御装置の機能ブロックを示す図である。 第6実施形態に係るロボットシステムの機器構成及びロボット制御装置の機能ブロックを示す図である。 第7実施形態に係るロボットシステムの機器構成及びロボット制御装置の機能ブロックを示す図である。
 次に、本開示の実施形態について図面を参照して説明する。参照する図面において、同様の構成部分または機能部分には同様の参照符号が付けられている。理解を容易にするために、これらの図面は縮尺を適宜変更している。また、図面に示される形態は本発明を実施するための一つの例であり、本発明は図示された形態に限定されるものではない。
 以下、第1実施形態から第7実施形態に係るロボット制御装置を含むロボットシステムについて説明する。各実施形態に係るロボット制御装置は、ロボットと外部環境(人や作業空間内の物体)との接触が検出されロボットを停止させる場合において、ロボットの状態やロボットを取り巻く周囲環境の状態を示す信号に応じて停止制御の制御内容を動的に切り替えることで、状況に応じたより適切な停止制御を実現するように構成される。
 第1実施形態
 図1は第1実施形態に係るロボットシステム100の機器構成及びロボット制御装置50の機能ブロックを示す図である。ロボットシステム100は、人とロボットが作業空間を共有する協働ロボットシステムとして構成されている。図1に示すように、ロボットシステム100は、ロボット10と、ロボット10を制御するロボット制御装置50とを備える。ロボット10は、例えば図示されるような垂直多関節ロボットであるが、他の種類のロボットが用いられても良い。ロボットシステム100の作業空間内には、ワークを載置するためのテーブル80が配置されている。ロボット10は、人と協働してテーブル80に配置されたワークに対して所定の作業を実行する。
 ロボット10は、基部11が設置フロアに固定されている。ロボット10は、各関節軸に設けられたサーボモータ(不図示)によって、所望の位置及び姿勢を取るように動作することができる。また、ロボット10には、各関節軸の位置(回転位置)を検出するための位置検出センサ21が設けられている(図1には、一部の位置検出センサを示す)。位置検出センサ21は、サーボモータの回転位置を検出するエンコーダ、或いは、関節軸の回転位置を検出するエンコーダである。各位置検出センサ21からの信号はロボット制御装置50に入力され、ロボット10(ロボット10の所定の制御部位)の位置・姿勢や速度の計算に用いられる。
 ロボット10は、アーム先端の手首部に取り付けられたエンドエフェクタによって所望の作業を実行することができる。エンドエフェクタは、用途に応じて交換可能な外部装置であり、例えば、ハンド、溶接ガン、工具等である。図1では、エンドエフェクタの一例としてのハンド30が用いられている例を示す。
 ロボット10の基部11の下側の部分には、力センサ71が取り付けられている。力センサ71は、例えば、6軸力センサである。ロボット制御装置50(外力検出部154)は、力センサ71の検出値に基づきロボット10に作用する外力(接触力)を検出することができる。なお、ロボット10に作用する外力(接触力)を、ロボット10の各関節軸(或いは、少なくとも一つの関節軸)に配置したトルクセンサを用いて検出する構成とすることもできる。
 図2に、ロボット制御装置50のハードウェア構成例を示す。図2に示すように、ロボット制御装置50は、プロセッサ51に対してメモリ52(ROM、RAM、不揮発性メモリ等)、入出力インタフェース53、各種操作スイッチを含む操作部54等がバスを介して接続された、一般的なコンピュータとしての構成を有していても良い。なお、ロボット制御装置50のハードウェア構成は、以下で説明する他の実施形態でも共通であるものとする。
 ロボット制御装置50は、制御プログラム或いは教示装置(不図示)からの指令にしたがってロボット10の動作を制御する。ロボット制御装置50は、制御プログラムにしたがって、ロボット10の所定の制御部位(例えばTCP(ツールセンターポイント))の軌道計画を生成すると共に運動学的な計算によりロボット10の各軸の指令を生成する。そして、ロボット制御装置50は、各軸の指令にしたがって各軸に対するサーボ制御を実行することで、ロボット10の所定の制御部位を計画された軌道に従って移動させることができる。
 ロボットシステム100が設置される作業空間内には、特定の領域(以下、設定領域90)が設定されている。この設定領域90は、ロボット10がツール(ハンド30)を用いて作業を行う領域であり、作業空間の中でも特に人がロボット10と他の物体との間に挟み込まれるリスクを伴う領域である。この設定領域90の情報(3次元位置情報)は、例えばロボット制御装置50のメモリ52(不揮発性メモリ)に予め記憶されていても良いし、ユーザが、ロボット制御装置50に接続された教示装置(不図示)の設定画面(ユーザインタフェース)を介して設定可能であっても良い。
 以下で説明するように、ロボット制御装置50は、ロボット10と外部環境(人や作業空間内の物体)との接触が検出された際に適用する停止制御方法を、ロボット10の位置が設定領域90内であるか否かに応じて動的に切り替える。これにより、ロボット制御装置50は、接触が検出されたときの停止制御をロボット10の動作状態に応じた適切なものとすることができる。
 図1に示したロボット制御装置50の機能ブロックは、ロボット制御装置50におけるこのような停止制御の機能に着目して表したものである。図1に示すように、ロボット制御装置50は、ロボット位置計算部151と、停止制御部150と、外力検出部154とを有する。
 外力検出部154は、力センサ71が出力する検出値から、ロボット10が把持するワークの重量、及びロボット10が動作することにより生じる慣性力を減算して、ロボット10に作用する外力(接触力)を検出することができる。例えば、外力検出部154は、検出された接触力が所定の閾値以上である場合に、ロボット10が外部環境(人或いは物体)と接触したと判断するように構成されていても良い。
 ロボット位置計算部151は、ロボット10の各関節軸に配置された位置検出センサ21からの位置情報に基づいてロボット10(所定の可動部位)の位置を算出する。例えば、ロボット10のTCP(ツールセンターポイント)位置、或いは、ツール(ハンド30)位置が、ロボット10の位置として算出されても良い。この位置情報は、ロボット10の基部11に設定されたワールド座標系での値として算出される。ロボット位置計算部151は、更に、ロボット10の位置が設定領域90内であるか否かを計算し、ロボット10の位置が設定領域90内であるか否かを示す信号を停止制御部150に送る。すなわち、ロボット位置計算部151は、ロボット10の状態を示す信号を停止制御部150に送る。
 例えば、ロボット位置計算部151は、算出されたロボット10の位置(ハンド30の位置等)と、設定領域90を示す位置情報とを対比することで、ロボット10が設定領域90内に存在するか否かを判定しても良い。或いは、ロボット位置計算部151は、算出されたロボット10の位置及び姿勢をとるようにロボット10のモデルを仮想的に作業空間に配置し、当該モデルが設定領域90と干渉するか否かを計算することにより、ロボット10が設定領域90内に存在するか否かを判定しても良い。
 停止制御部150は、外力検出部154によりロボット10と外部環境との接触が検出された際にロボット10を停止させるための停止制御を、ロボット10が設定領域90内にあるか否かに応じて切り替える。このような機能を実現するための構成として、停止制御部150は、停止方法決定部152と、停止指令部153とを有する。
 停止方法決定部152は、外力検出部154によりロボット10と外部環境との接触が検出された際の停止制御に用いる制御パラメータの種類及び/又は設定値を、ロボット10が設定領域90内にある場合とロボット10が設定領域90外にある場合とで切り替える。停止制御に用いる制御パラメータには、停止時間、加速度、ジャーク、モータ電流、軸トルク、反転距離の少なくとも一つ含まれ得る。なお、これらの制御パラメータのうち、加速度、ジャーク、モータ電流(各軸のモータに印加する電流)、軸トルクは、いずれもロボット(各軸)を減速させるための力に係わるパラメータである。
 停止指令部153は、外力検出部154によりロボット10と外部環境との接触が検出されることに応じて、停止方法決定部152により設定された制御パラメータに従ってロボット10を停止させる指令をロボット10に送る。
 例示として、停止方法決定部152は、ロボット10が設定領域90内にある場合に適用する停止時間T1を、ロボット10が設定領域90外にある場合に適用する停止時間T2よりも短くなるように設定する。すなわち、停止方法決定部152は、T1<T2であるように停止時間を設定する。この場合、停止指令部153は、ロボット10を現在速度から停止時間T1(又はT2)で停止させるための加速度(減速度)を求めて減速制御を実行する。
 以上のような構成によれば、ロボット10と外部環境との接触が検出されたときロボット10が設定領域90内にある場合に、ロボット10と外部環境との接触が検出されたときロボット10が設定領域90外である場合よりも短い停止時間でロボット10を停止させることができ、設定領域90内において人がロボット10と他の物体との間に挟み込まれる事態が生じることを確実に回避することが可能となる。他方、ロボット10と外部環境との接触が検出されたときロボット10が設定領域90外である場合に、ロボット10と外部環境との接触が検出されたときロボット10が設定領域90内である場合よりも長い停止時間でロボット10を停止させることができ、設定領域90外でロボット10を停止させる場合にロボット10やワーク等への過度の負荷が掛かることを回避することが可能となる。
 また、ロボット10が設定領域90内にある場合には、上記停止時間T1での停止後にロボット10を所定距離反転させる動作を加えても良い。これにより、人がロボット10と他の物体との間に挟み込まれる事態となることを、よりいっそう確実に回避することが可能となる。
 以上説明したように、第1実施形態によれば、ロボットと外部環境との接触が検出されてロボットを停止させる場合において、状況に応じて動的に停止制御を切り替え、よりいっそう適切な停止制御を実現することが可能となる。
 第2実施形態
 図3は、第2実施形態に係るロボット制御装置50Bを含むロボットシステム100Bの機器構成、及び、ロボット制御装置50Bの機能ブロックを示している。図3に示すように、ロボットシステム100Bは、台車81に搭載されたロボット10と、ロボット10を制御するロボット制御装置50Bとを含む。なお、図2において、第1実施形態に係る機能要素と同じ構成要素には同じ符号を付している。
 ロボットシステム100Bが設置される作業空間には、特定の領域(設定領域91)が設定されている。本例では、設定領域91は、作業空間内の床面に設定された2次元的な領域であり、柱、周辺装置、構造物等の各物体に近い領域であるとする。すなわち、設定領域91は、ロボット10(台車81)が物体と干渉する、或いは、人がロボット10と他の物体との間に挟み込まれる事態が生じるリスクを伴う領域である。なお、設定領域91は、ロボット制御装置50Bに予め設定されていても良く、或いは、ユーザが、ロボット制御装置50Bに接続された教示装置(不図示)の設定画面(ユーザインタフェース)を介して設定可能であっても良い。
 以下で説明するように、ロボット制御装置50Bは、台車81に搭載されたロボット10が作業空間内に設定された設定領域91に入っているか否かに応じて、ロボット10と外部環境との接触が検出された際の停止制御を動的に切り替えるように構成される。
 図3に示したロボット制御装置50Bの機能ブロックは、ロボット制御装置50Bにおけるこのような停止制御の機能に着目して表したものである。ロボット制御装置50Bは、ロボット位置計算部251と、停止制御部250と、外力検出部154とを有する。
 外力検出部154は、力センサ71の検出値に基づき、ロボット10と外部環境との接触を検出する。
 ロボット位置計算部251は、台車81に配置された位置検出センサ22からの信号に基づき台車81の位置(例えば、台車81の中心位置)を検出し、検出した台車81の位置をロボット10の位置として用いる。台車81に配置された位置検出センサ22は、例えば、台車81の車速パルスを出力するセンサ、或いは、位置を検出するための加速度センサ、ジャイロセンサ等である。ロボット位置計算部251は、作業空間のマップデータ上にロボット10(台車81)の位置を登録して、位置検出センサ22からの信号を用いてマップデータ上でロボット10(台車81)の位置を常時監視するようにしても良い。ロボット位置計算部251は、更に、ロボット10の位置が設定領域91内であるか否かを計算し、ロボット10の位置が設定領域91内であるか否かを示す信号を停止制御部250に送る。すなわち、ロボット位置計算部251は、ロボット10の状態を示す信号を停止制御部250に送る。
 例えば、ロボット位置計算部251は、ロボット10の位置と、設定領域91を示す位置情報とを対比することで、ロボット10が設定領域91内に存在するか否かを判定しても良い。或いは、ロボット位置計算部251は、ロボット10の位置にロボット10のモデル(台車81のモデルを含む)を仮想的に配置し、当該モデルが設定領域91内に存在するか否かを計算することにより、ロボット10が設定領域91内に存在するか否かを判定しても良い。
 停止制御部250は、外力検出部154によりロボット10と外部環境との接触が検出された際にロボット10を停止させるための停止制御を、ロボット10が設定領域91内にあるか否かに応じて切り替える。このような機能を実現するための構成として、停止制御部250は、停止方法決定部252と、停止指令部153とを有する。
 停止方法決定部252は、外力検出部154によりロボット10と外部環境との接触が検出された際の停止制御に用いる制御パラメータの種類及び/又は設定値を、ロボット10が設定領域91内にある場合とロボット10が設定領域91外にある場合とで切り替える。停止制御に用いる制御パラメータには、停止時間、加速度、ジャーク、モータ電流、軸トルク、反転距離の少なくとも一つ含まれ得る。
 停止指令部153は、外力検出部154によりロボット10と外部環境との接触が検出されることに応じて、停止方法決定部252により設定された制御パラメータに従ってロボット10を停止させる指令をロボット10に送る。
 例示として、停止方法決定部252は、ロボット10(台車81)が設定領域91内にある場合に適用する停止時間T21を、ロボット10(台車81)が設定領域91外にある場合に適用する停止時間T22よりも短くなるように設定する。すなわち、停止方法決定部252は、T21<T22であるように停止時間を設定する。この場合、停止指令部153は、ロボット10を現在速度から停止時間T21(又はT22)で停止させるための加速度(減速度)を求めて減速制御を実行する。
 以上のような構成によれば、ロボット10と外部環境との接触が検出されたときロボット10が設定領域91内にある場合に、ロボット10と外部環境との接触が検出されたときロボット10が設定領域91外である場合よりも短い停止時間でロボット10を停止させることができ、設定領域91内において人がロボット10と他の物体との間に挟み込まれる事態が生じることを確実に回避することが可能となる。他方、ロボット10と外部環境との接触が検出されたときロボット10が設定領域91外である場合に、ロボット10と外部環境との接触が検出されたときロボット10が設定領域91内である場合よりも長い停止時間でロボット10を停止させることができ、設定領域91外でロボット10を停止させる場合にロボット10やワーク等への過度の負荷が掛かることを回避することが可能となる。
 また、ロボット10が設定領域91内にある場合には、上記停止時間T21での停止後にロボット10を反転させる動作を加えても良い。これにより、人がロボット10と他の物体との間に挟み込まれる事態となることを、よりいっそう確実に回避できることとなる。
 第3実施形態
 図4は、第3実施形態に係るロボット制御装置50Cを含むロボットシステム100Cの機器構成、及び、ロボット制御装置50Cの機能ブロックを示している。図4に示すように、ロボットシステム100Cは、ロボット10と、ロボット10を制御するロボット制御装置50Cとを含む。ロボット10は、設置フロアに固定されている。
 以下で説明するように、ロボット制御装置50Cは、ロボット10(所定の可動部位)の速度に応じて、ロボット10と外部環境との接触が検出された際の停止制御を動的に切り替えるように構成される。
 図4に示したロボット制御装置50Cの機能ブロックは、ロボット制御装置50Cにおけるこのような停止制御の機能に着目して表したものである。ロボット制御装置50Cは、速度計算部351と、停止制御部350と、外力検出部154とを有する。
 外力検出部154は、力センサ71の検出値に基づき、ロボット10と外部環境との接触を検出する。
 速度計算部351は、ロボット10の各関節軸に配置された位置検出センサ21からの位置情報に基づいてロボット10の速度(ロボット10の所定の可動部位の速度)を算出する。本実施形態では、速度計算部351は、ロボット10のアーム先端部位に取り付けられたツール(ハンド30)の速度を算出するものとする。速度計算部351は、ツールの速度が所定の速度値以上であるか否かを判定し、ツールの速度が所定の速度以値上であるか否かを示す信号を停止制御部350に送る。すなわち、速度計算部351は、ロボット10の状態を示す信号を停止制御部350に送る。
 停止制御部350は、外力検出部154によりロボット10と外部環境との接触が検出された際にロボット10を停止させるための停止制御を、ツールの速度が所定の速度値以上であるか否かに応じて切り替える。このような機能を実現するための構成として、停止制御部350は、停止方法決定部352と、停止指令部153とを有する。
 停止方法決定部352は、外力検出部154によりロボット10と外部環境との接触が検出された際の停止制御に用いる制御パラメータの種類及び/又は設定値を、ツールの速度が所定の速度値以上である場合とツールの速度が所定の速度値未満である場合とで切り替える。停止制御に用いる制御パラメータには、停止時間、加速度、ジャーク、モータ電流、軸トルク、反転距離の少なくとも一つ含まれ得る。
 停止指令部153は、外力検出部154によりロボット10と外部環境との接触が検出されることに応じて、停止方法決定部352により設定された制御パラメータに従ってロボット10を停止させる指令をロボット10に送る。
 例示として、停止方法決定部352は、ツールの速度が所定の速度値以上である場合に適用する停止時間T31を、ツールの速度が所定の速度値未満である場合に適用する停止時間T32よりも長くなるように設定する。すなわち、停止方法決定部352は、T31>T32となるように停止時間を設定する。この場合、停止指令部153は、ロボット10を現在速度から停止時間T31(又はT32)で停止させるための加速度(減速度)を求めて減速制御を実行する。
 なお、上記所定の速度値は、ハンド30で把持するワークに掛かる負荷をどの程度に抑制すべきか等の事情を考慮して決定するようにする。例えば、ワークに掛かる負荷をよりいっそう抑制すべき事情がある場合には、所定の速度値をいっそう低い値に設定しても良い。
 以上のような構成によれば、ロボット10と外部環境との接触が検出されたときツールの速度が所定速度以上である場合にロボット10をゆっくりと止めることが可能となり、停止時にロボット10或いはロボット10が把持するワークに過度な負荷がかかることを回避することが可能となる。
 第4実施形態
 図5は、第4実施形態に係るロボット制御装置50Dを含むロボットシステム100Dの機器構成、及び、ロボット制御装置50Dの機能ブロックを示している。図4に示すように、ロボットシステム100Cは、ロボット10と、ロボット10を制御するロボット制御装置50Cとを含む。ロボット10は、設置フロアに固定されている。
 ロボットシステム100Dでは、ロボット10の特定部位に接触検出センサ401を取り付け、接触検出センサ401への人や物体の接触を検出するようにする。ロボット制御装置50Dは、この接触検出センサ401からの検出信号に応じて、ロボット10と外部環境との接触が検出された際の停止制御を動的に切り替えるようにする。
 図5に示したロボット制御装置50Dの機能ブロックは、ロボット制御装置50Dにおけるこのような停止制御の機能に着目して表したものである。ロボット制御装置50Dは、信号入力部451と、停止制御部450と外力検出部154とを備える。
 信号入力部451には、接触検出センサ401からの信号が入力される。接触検出センサ401からの信号は、一例として、接触が検出された際にオンとなるような信号である。接触検出センサ401は、例えば、ロボット10における、特に人が触れるのが好ましくない箇所に取り付けられる。すなわち、本実施形態において、停止制御部450には、信号入力部451を介してロボット10の周囲環境を示す信号が入力される。
 本例では、接触検出センサ401は、ツールの近辺(アーム先端部)に取り付けられている。接触検出センサ401は、押下されるとオンする機械的なスイッチ、タッチセンサ、物体による押下(圧力)を検出するセンサ等であっても良い。より確実に接触を検出できるようにするために、接触検出センサ401は、複数個配置されていても良い。
 外力検出部154は、力センサ71の検出値に基づき、ロボット10と外部環境との接触を検出する。
 停止制御部450は、外力検出部154によりロボット10と外部環境との接触が検出された際にロボット10を停止させるための停止制御を、接触検出センサ401に人(或いは他の物体)が触れているか否かに応じて切り替える。このような機能を実現するための構成として、停止制御部450は、停止方法決定部452と、停止指令部153とを有する。
 停止方法決定部452は、外力検出部154によりロボット10と外部環境との接触が検出された際の停止制御に用いる制御パラメータの種類及び/又は設定値を、接触検出センサ401に人(或いは他の物体)が触れている場合と、接触検出センサ401に人(或いは他の物体)が触れていない場合とで切り替える。停止制御に用いる制御パラメータには、停止時間、加速度、ジャーク、モータ電流、軸トルク、反転距離の少なくとも一つ含まれ得る。
 停止指令部153は、外力検出部154によりロボット10と外部環境との接触が検出されることに応じて、停止方法決定部452により設定された制御パラメータに従ってロボット10を停止させる指令をロボット10に送る。
 例示として、停止方法決定部452は、接触検出センサ401により接触が検出されているとき(信号入力部451に入力される信号がオンのとき)に適用する停止時間T41を、接触検出センサ401により接触が検出されていないとき(信号入力部451に入力される信号がオフのとき)に適用される停止時間T42よりも短くなるように設定する。すなわち、停止方法決定部452は、T41<T42となるように停止時間を設定する。この場合、停止指令部153は、ロボット10を現在速度から停止時間T41(又はT42)で停止させるための加速度(減速度)を求めて減速制御を実行する。
 上記のように停止制御における停止時間を設定することにより、例えば、人がロボット10上の触れてほしくない箇所(ツールに近いアーム先端部等)に触れた場合にはロボット10を短い時間で停止させることで、人に対する安全性をよりいっそう高める停止制御を実現することが可能となる。
 なお、第4実施形態に関しては次のような変形例も有り得る。本変形例では、ロボット10上の異なる複数の位置にそれぞれ接触検出センサを取り付け、これら接触検出センサの信号を停止制御部450(停止方法決定部452)に入力する構成とする。例示として、ロボット10のアーム先端部(フランジ部)に第1の接触検出センサを取り付け、アームの他の箇所に第2の接触検出センサを取り付ける場合を想定する。アーム先端部がユーザに最も触れられたくない箇所であり、アームの他の部分はその次にユーザに触れられたくない箇所であるとする。この場合、停止方法決定部452は、第1の接触検出センサにより接触が検出されているときの停止時間をT141、第2の接触検出センサにより接触が検出されているときの停止時間をT142、第1の接触検出センサ及び第2の接触検出センサのいずれでも接触が検出されていないときの停止時間をT143とするとき、T141<T142<T143となるように停止時間を設定しても良い。この構成により、ユーザに対するリスクの度合いに応じて停止時間を段階的に設定することができる。
 第5実施形態
 図6は、第5実施形態に係るロボット制御装置50Eを含むロボットシステム100Eの機器構成、及び、ロボット制御装置50Eの機能ブロックを示す図である。図5に示すように、ロボットシステム100Eは、ロボット10と、ロボット10を制御するロボット制御装置50Eとを含む。ロボット10は、設置フロアに固定されている。
 本実施形態では、作業空間の所定の位置(例えば、ロボット10の基部11)に人感知センサ501を配置し、人OPがロボット10に接近している状況であるか否かが検出される。ロボット制御装置50Eは、人OPがロボット10に接近している状況であるか否かに応じて、ロボット10と外部環境との接触が検出された場合における停止制御を動的に切り替えるように構成される。
 図6に示したロボット制御装置50Eの機能ブロックは、ロボット制御装置50Eにおけるこのような停止制御の機能に着目して表したものである。ロボット制御装置50Eは、信号入力部551と、停止制御部550と、外力検出部154とを有する。
 信号入力部551には、人OPの接近を検知し得る人感知センサ501からの信号が入力される。人感知センサ501からの信号は、一例として、ロボット10に対する人OPの接近が検知されたときにオンとなるような信号である。すなわち、本実施形態において、停止制御部550には、信号入力部551を介してロボット10の周囲環境の状態を示す信号が入力される。
 例示として、人感知センサ501は、人OPがロボット10から所定距離内に入ってきた場合にオン信号を出力するものであっても良い。例えば、人感知センサ501は、レーザ光を照射或いは走査して接近する物体までの距離を計測するレーザ測距センサ或いはレーザスキャナである。このような、レーザ測距センサ或いはレーザスキャナは、ロボット10の基部11に配置しても良いし、或いは、作業空間内の所定の位置に設置しても良い。或いは、人感知センサ501として、人が踏むことによって信号を出力するシート状のセンサを採用しても良い。或いは、人感知センサ501として、作業空間内に設置され、ロボット10周辺の画像を取得し画像処理によりロボット10に対する人の接近を検出するカメラからなるセンサを採用しても良い。
 外力検出部154は、力センサ71の検出値に基づき、ロボット10と外部環境との接触を検出する。
 停止制御部550は、外力検出部154によりロボット10と外部環境との接触が検出された際にロボット10を停止させるための停止制御を、人感知センサ501によりロボット10に対する人の接近が検知されているか否かに応じて切り替える。このような機能を実現するための構成として、停止制御部550は、停止方法決定部552と、停止指令部153とを有する。
 停止方法決定部552は、外力検出部154によりロボット10と外部環境との接触が検出された際の停止制御に用いる制御パラメータの種類及び/又は設定値を、人感知センサ501によりロボット10に対する人の接近が検知されている場合と、人感知センサ501によりロボット10に対する人の接近が検知されていない場合とで切り替える。停止制御に用いる制御パラメータには、停止時間、加速度、ジャーク、モータ電流、軸トルク、反転距離の少なくとも一つ含まれ得る。
 停止指令部153は、外力検出部154によりロボット10と外部環境との接触が検出されることに応じて、停止方法決定部552により設定された制御パラメータに従ってロボット10を停止させる指令をロボット10に送る。
 例示として、停止方法決定部552は、人感知センサ501によりロボット10に対する人OPの接近が検知されているときに適用する停止時間T51を、人感知センサ501によりロボット10に対する人OPの接近が検知されていないときに適用する停止時間T52よりも短くなるように設定する。すなわち、停止方法決定部552は、T51<T52となるように停止時間を設定する。この場合、停止指令部153は、ロボット10を現在速度から停止時間T51(又はT52)で停止させるための加速度(減速度)を求めて減速制御を実行する。
 人がロボット10に近づいているような状況では、ロボット10の手先のみでなくロボット10のアーム本体部分等の危険を伴う場所に人が振れるリスクが高くなる。この点、上記停止制御を行うことにより、人がロボット10に近づいているような状況において、ロボット10を短い時間で停止させ、人に対する安全性をよりいっそう高めることが可能となる。
 第6実施形態
 図7は、第6実施形態に係るロボット制御装置50Fを含むロボットシステム100Fの機器構成、及び、ロボット制御装置50Fの機能ブロックを示す図である。図7に示すように、ロボットシステム100Fは、ロボット10と、ロボット10を制御するロボット制御装置50Fとを含む。ロボット10は、設置フロアに固定されている。
 本実施形態では、ロボット制御装置50Fは、ロボット10に搭載されたエンドエフェクタとしてのハンド30の作動状態(開閉状態)を示す信号に基づき、ロボット10と外部環境との接触が検出された場合における停止制御を動的に切り替えるように構成される。
 図7に示したロボット制御装置50Fの機能ブロックは、ロボット制御装置50Fにおけるこのような停止制御の機能に着目して表したものである。ロボット制御装置50Fは、信号入力部651と、停止制御部650と、外力検出部154とを有する。
 信号入力部651には、ハンド30からの作動状態を示す信号が入力される。例示として、ハンド30からの信号は、ハンドが作動し閉じているとき(ハンド30がワークWを把持しているとき)オンする信号である。すなわち、本実施形態において、停止制御部650には、信号入力部651うぃ介してロボット10の状態を示す信号が入力される。
 外力検出部154は、力センサ71の検出値に基づき、ロボット10と外部環境との接触を検出する。
 停止制御部650は、外力検出部154によりロボット10と外部環境との接触が検出された際にロボット10を停止させるための停止制御を、ハンド30が閉じているか否か(ハンド30がワークWを把持しているか否か)に応じて切り替える。このような機能を実現するための構成として、停止制御部650は、停止方法決定部652と、停止指令部153とを有する。
 停止方法決定部652は、外力検出部154によりロボット10と外部環境との接触が検出された際の停止制御に用いる制御パラメータの種類及び/又は設定値を、ハンド30がワークWを把持している場合と、ハンド30がワークWを把持していない場合とで切り替える。停止制御に用いる制御パラメータには、停止時間、加速度、ジャーク、モータ電流、軸トルク、反転距離の少なくとも一つ含まれ得る。
 停止指令部153は、外力検出部154によりロボット10と外部環境との接触が検出されることに応じて、停止方法決定部652により設定された制御パラメータに従ってロボット10を停止させる指令をロボット10に送る。
 例示として、停止方法決定部652は、ハンド30がワークWを把持しているとき(信号入力部651に入力される信号がオンのとき)に停止制御に適用する加速度(減速度)を、ハンド30がワークWを把持していないとき(信号入力部651に入力される信号がオフのとき)に停止制御に適用する加速度(減速度)よりも小さな値に設定する。これにより、ロボット10がワークWを把持しているときには、ロボット10は穏やかに停止することになる。
 ロボット10がワークWを把持して作業を行っているような状況では、ロボット10と外部環境の接触が検出された場合の停止制御として、ワークWやロボット10に過度の負荷(衝撃)がかかる事態が生じることを回避できるようにすることが望ましい。そのため、本実施形態では、停止制御に適用する制御パラメータとして加速度を用いて、ハンド30がワークWを把持している場合にロボット10が穏やかに停止できるような制御を実現している。
 なお、停止方法決定部652は、ハンド30がワークWを把持しているときに停止制御に適用する停止時間T61を、ハンド30がワークWを把持していないときに停止制御に適用する停止時間T62よりも長くなるように設定しても良い。この場合にも、ハンド30がワークWを把持している場合に、ロボット10を穏やかに停止させることができる。
 第7実施形態
 以上述べた第1実施形態から第3実施形態、及び、第6実施形態は、ロボット10の状態を示す信号に応じて、ロボット10と外部環境との接触が検出された場合に行う停止制御を動的に切り替える構成と位置付けることができる。また、第4実施形態及び第5実施形態は、ロボット10の周囲環境の状態を示す信号に応じて、ロボット10と外部環境との接触が検出された場合に実行する停止制御を動的に切り替える構成と位置付けることができる。これら第1実施形態から第6実施形態で説明した機能を統合した内容の実施形態も有り得る。以下では、第1実施形態から第6実施形態に係るロボット制御装置の機能を統合した機能を有するロボット制御装置について説明する。
 図8は、第7実施形態に係るロボット制御装置50Gを含むロボットシステム100Gの機能ブロック図である。図8において、第1から第6実施形態と同等の構成要素には同等の符号を付している。なお、ロボットシステム100Gの機器構成は、例えば、図1で示したような構成と同等であり、各種センサ(例えば人感知センサ501)は、対応する実施形態においた図示したように配置されているものとする。
 図8に示すように、ロボットシステム100Gは、ロボット10と、ロボット10を制御するロボット制御装置50Gとを備える。ロボット制御装置50Gには、教示装置40が接続されていても良い。ロボット制御装置50Gは、各種センサからの信号を入力可能な入出力インタフェース53(図2)を複数有するように構成されている。したがって、図8に示すように、ロボット制御装置50Gには、ロボットシステム100Gの実際に機器構成に応じて、ロボット10の位置検出センサ21からの信号、ロボット10が台車81に搭載されている場合においては台車81に配置した位置検出センサ22からの信号、ロボット10に取り付けた接触検出センサ401からの信号、人感知センサ501からの信号、ロボット10に搭載されたハンド30からの信号をそれぞれ入力する構成とすることができる。
 教示装置40は、ロボット10の教示或いは教示に係わる各種設定を行うために用いられる。なお、教示装置40は、プロセッサに対してメモリ(ROM、RAM、不揮発性メモリ等)、表示部、操作部、入出力インタフェース等がバスを介して接続された、一般的なコンピュータとしての構成を有していても良い。
 ロボット制御装置50Gは、信号入力部451、551及び651と、ロボット位置計算部151と、ロボット位置計算部251と、速度計算部351と、停止制御部750と、外力検出部154とを備える。停止制御部750は、停止方法決定部752と、停止指令部153とを備える。
 位置検出センサ21からの信号は、ロボット位置計算部151及び速度計算部351に入力される。位置検出センサ22からの信号は、ロボット位置計算部251に入力される。接触検出センサ401からの信号は、信号入力部451を介して停止方法決定部752に入力される。人感知センサ501からの信号は、信号入力部551を介して停止方法決定部752に入力される。ハンド30からの信号は、信号入力部651を介して停止方法決定部752に入力される。
 停止方法決定部752は、外力検出部154によりロボット10と外部環境との接触が検出された場合に、
(1)ロボット位置計算部151から入力されるロボット10が設定領域90内にあることを示す信号、
(2)ロボット位置計算部251から入力されるロボット10が設定領域91内にあることを示す信号、
(3)速度計算部351から入力されるロボット10の所定の可動部位の速度が所定速度以上であることを示す信号、
(4)信号入力部451から入力される、接触検出センサ401により人の接触が検出されたことを示す信号、
(5)信号入力部551から入力される、人感知センサ501が人の接近を検出したことを示す信号、
(6)信号入力部651から入力される、ハンド30が閉じてワークWを把持していることを示す信号、
のいずれかに基づいて停止制御を切り替えることができる。
 上記(1)で動作する場合には、停止方法決定部752は、第1実施形態で説明した動作内容で停止制御の切り替えを実行する。上記(2)で動作する場合には、停止方法決定部752は、第2実施形態で説明した動作内容で停止制御の切り替えを実行する。上記(3)で動作する場合には、停止方法決定部752は、第3実施形態で説明した動作内容で停止制御の切り替えを実行する。上記(4)で動作する場合には、停止方法決定部752は、第4実施形態で説明した動作内容で停止制御の切り替えを実行する。上記(5)で動作する場合には、停止方法決定部752は、第5実施形態で説明した動作内容で停止制御の切り替えを実行する。上記(6)で動作する場合には、停止方法決定部752は、第6実施形態で説明した動作内容で停止制御の切り替えを実行する。
 停止方法決定部752が上記動作(1)から(6)のいずれで動作するかについては、ユーザが、例えば教示装置40の表示部(タッチパネル等)に表示された設定画面を介して停止方法決定部752に対して設定できるように構成されていても良い。この場合、ユーザは、ロボットシステム100Gの実際の動作環境に応じて上記動作(1)から(6)のいずれでロボット制御装置50Gを動作させるかを選択することができる。
 停止指令部153は、停止方法決定部752により設定される制御パラメータにしたがって、外力検出部154によりロボット10と外部環境との接触が検出された場合にロボット10を停止させるための指令を生成しロボット10に送る。
 以上の説明したロボットシステム100Gの構成によれば、ユーザは、上述の第1実施形態から第6実施形態に係るロボット制御装置50、50B、50C、50D、50E、50Fのいずれかの機能で動作するようにロボット制御装置50Gを設定することができる。
 上述の各実施形態に係るロボット制御装置は、いずれも、「ロボットを制御するロボット制御装置であって、ロボットに作用する外力を検出する外力検出部と、外力検出部により所定値以上の外力が検出された場合に前記ロボットを停止させるための停止制御を、前記ロボットの状態又は該ロボットの周囲環境の状態を示す信号に応じて切り替える停止制御部と、を備えるロボット制御装置」と表現することができる。
 以上説明した各実施形態の構成によれば、ロボットと外部環境との接触が検出されてロボットを停止させる場合において、状況に応じて停止制御を動的に切り替えることでよりいっそう適切な停止制御を実現することが可能となる。
 以上、典型的な実施形態を用いて本発明を説明したが、当業者であれば、本発明の範囲から逸脱することなしに、上述の各実施形態に変更及び種々の他の変更、省略、追加を行うことができるのを理解できるであろう。
 ロボットの状態を示す信号には、上述の実施形態で例示したもの以外にも、ロボットやロボットに搭載されるツール等の状態を示す各種信号が含まれ得る。また、ロボットの周囲環境を示す信号には、上述の実施形態で例示したもの以外にも、ロボットを取り巻く環境の状態を示す各種信号が含まれ得る。
 上述の各実施形態のロボットは主として協働ロボットであることを想定しているが、協働ロボット以外の通常のロボットが使用される場合においても上記各実施形態の構成を適用することは可能である。
 上述の各実施形態において示したロボット制御装置の機能ブロック図における機能ブロックは、ロボット制御装置のプロセッサが、記憶装置に格納された各種ソフトウェアを実行することで実現されても良く、或いは、ASIC(Application Specific Integrated Circuit)等のハードウェアを主体とした構成により実現されても良い。
 10  ロボット
 11  基部
 21、22  位置検出センサ
 30  ハンド
 40  教示装置
 50、50B、50C、50D、50E、50F、50G  ロボット制御装置
 51  プロセッサ
 52  メモリ
 53  入出力インタフェース
 54  操作部
 71  力センサ
 80  テーブル
 81  台車
 90、91  設定領域
 100、100B、100C、100D、100E、100F、100G  ロボットシステム
 150  停止制御部
 151  ロボット位置計算部
 152  停止方法決定部
 153  停止指令部
 154  外力検出部
 250  停止制御部
 251  ロボット位置計算部
 252  停止方法決定部
 350  停止制御部
 351  速度計算部
 352  停止方法決定部
 401  接触検出センサ
 450  停止制御部
 451  信号入力部
 452  停止方法決定部
 501  人感知センサ
 550  停止制御部
 551  信号入力部
 552  停止方法決定部
 650  停止制御部
 651  信号入力部
 652  停止方法決定部
 750  停止制御部
 752  停止方法決定部

Claims (15)

  1.  ロボットを制御するロボット制御装置であって、
     前記ロボットに作用する外力を検出する外力検出部と、
     前記外力検出部により所定値以上の外力が検出された場合に前記ロボットを停止させるための停止制御を、前記ロボットの状態又は該ロボットの周囲環境の状態を示す信号に応じて切り替える停止制御部と、
    を備えるロボット制御装置。
  2.  前記ロボットに設けられた位置検出センサからの出力に基づいて前記ロボットの位置を計算し、計算された前記ロボットの位置が、予め設定された第1設定領域内であるか否かを示す第1信号を、前記ロボットの状態を示す信号として出力するロボット位置計算部を更に備え、
     前記停止制御部は、前記第1信号に応じて前記停止制御を切り替える、請求項1に記載のロボット制御装置。
  3.  前記停止制御部は、前記所定値以上の外力が検出されて前記ロボットを停止させる場合において、前記ロボットの位置が前記第1設定領域内であるときに前記ロボットを停止させるための停止時間を、前記ロボットの位置が前記第1設定領域外であるときに前記ロボットを停止させるための停止時間よりも短くなるように設定する、請求項2に記載のロボット制御装置。
  4.  前記ロボットは移動可能な台車に搭載され、
     前記台車の位置を検出するための位置検出センサからの出力に基づいて前記台車と共に移動可能な前記ロボットの位置を計算し、計算された前記ロボットの位置が予め設定された第2設定領域内であるか否かを示す第2信号を、前記ロボットの状態を示す信号として出力するロボット位置計算部を更に備え、
     前記停止制御部は、前記第2信号に応じて前記停止制御を切り替える、請求項1に記載のロボット制御装置。
  5.  前記停止制御部は、前記所定値以上の外力が検出されて前記ロボットを停止させる場合において、前記ロボットの位置が前記第2設定領域内であるときに前記ロボットを停止させるための停止時間を、前記ロボットの位置が前記第2設定領域外であるときに前記ロボットを停止させるための停止時間よりも短くなるように設定する、請求項4に記載のロボット制御装置。
  6.  前記停止制御部は、前記ロボットを、前記停止制御により停止させた後、所定の反転距離だけ反転させる、請求項2から5のいずれか一項に記載のロボット制御装置。
  7.  前記ロボットに設けられたセンサからの出力に基づいて前記ロボットの所定の可動部位の速度を計算し、計算された前記所定の可動部位の速度が所定の速度値以上であるか否かを示す第3信号を、前記ロボットの状態を示す信号として出力する速度計算部を更に備え、
     前記停止制御部は、前記第3信号に応じて前記停止制御を切り替える、請求項1に記載のロボット制御装置。
  8.  前記停止制御部は、前記所定値以上の外力が検出されて前記ロボットを停止させる場合において、前記ロボットの速度が前記所定の速度値以上であるときに前記ロボットを停止させるための停止時間を、前記ロボットの速度が前記所定の速度値未満であるときに前記ロボットを停止させるための停止時間よりも長くなるように設定する、請求項7に記載のロボット制御装置。
  9.  前記ロボットの特定部位に取り付けられた接触検出センサからの第4信号が入力される第1の信号入力部を更に備え、
     前記停止制御部には、前記第1の信号入力部を介して前記第4信号が入力され、
     前記停止制御部は、前記第4信号として示される前記ロボットの周囲環境の状態に応じて前記停止制御を切り替える、請求項1に記載のロボット制御装置。
  10.  前記停止制御部は、前記所定値以上の外力が検出されて前記ロボットを停止させる場合において、前記接触検出センサにより前記特定部位への接触が検出されているときに前記ロボットを停止させるための停止時間を、前記接触検出センサにより前記特定部位への接触が検出されていないときに前記ロボットを停止させるための停止時間よりも短くなるように設定する、請求項9に記載のロボット制御装置。
  11.  前記ロボットが存在する作業空間に配置された人感知センサからの第5信号が入力される第2の信号入力部を更に備え、
     前記停止制御部には、前記第2の信号入力部を介して前記第5信号が入力され、
     前記停止制御部は、前記第5信号として示される前記ロボットの周囲環境の状態に応じて前記停止制御を切り替える、請求項1に記載のロボット制御装置。
  12.  前記停止制御部は、前記所定値以上の外力が検出されて前記ロボットを停止させる場合において、前記人感知センサにより前記ロボットに対する人の接近が検知されているときに前記ロボットを停止させるための停止時間を、前記人感知センサにより前記ロボットに対する人の接近が検知されていないときに前記ロボットを停止させるための停止時間よりも短くなるように設定する、請求項11に記載のロボット制御装置。
  13.  前記ロボットに搭載したハンドの作動状態を示す第6信号が入力される第3の信号入力部を更に備え、
     前記停止制御部には、前記第3の信号入力部を介して前記第6信号が入力され、
     前記停止制御部は、前記第6信号として示される前記ロボットの状態に応じて前記停止制御を切り替える、請求項1に記載のロボット制御装置。
  14.  前記停止制御部は、前記所定値以上の外力が検出されて前記ロボットを停止させる場合において、前記第6信号により前記ハンドが閉じていることが示されているときに前記ロボットを停止させるための減速度を、前記第6信号により前記ハンドが開いていることが示されているときに前記ロボットを停止させるための減速度よりも小さい値に設定する、請求項13に記載のロボット制御装置。
  15.  前記停止制御部は、停止時間、加速度、ジャーク、モータ電流、軸トルク、反転距離の少なくとも一つ以上を含む制御パラメータの種類及び/又は設定値を変更することにより前記停止制御を切り替える、請求項1から14のいずれか一項に記載のロボット制御装置。
PCT/JP2022/006768 2022-02-18 2022-02-18 ロボット制御装置 WO2023157261A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/006768 WO2023157261A1 (ja) 2022-02-18 2022-02-18 ロボット制御装置
TW112102200A TW202333926A (zh) 2022-02-18 2023-01-18 機器人控制裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006768 WO2023157261A1 (ja) 2022-02-18 2022-02-18 ロボット制御装置

Publications (1)

Publication Number Publication Date
WO2023157261A1 true WO2023157261A1 (ja) 2023-08-24

Family

ID=87578066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006768 WO2023157261A1 (ja) 2022-02-18 2022-02-18 ロボット制御装置

Country Status (2)

Country Link
TW (1) TW202333926A (ja)
WO (1) WO2023157261A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208834A (ja) * 2014-04-30 2015-11-24 ファナック株式会社 ワークを把持して搬送するロボットの安全監視装置
JP2016032858A (ja) * 2014-07-31 2016-03-10 ファナック株式会社 移動式人協調型ロボット
JP2016064474A (ja) * 2014-09-25 2016-04-28 ファナック株式会社 人間協調ロボットシステム
JP2017077608A (ja) * 2015-10-21 2017-04-27 ファナック株式会社 ロボットの安全監視装置
WO2017094240A1 (ja) * 2015-12-01 2017-06-08 川崎重工業株式会社 ロボットシステムの監視装置
JP2020032488A (ja) * 2018-08-30 2020-03-05 ファナック株式会社 人間協調ロボットシステム
WO2020200387A1 (en) * 2019-04-02 2020-10-08 Universal Robots A/S Robot arm safety system with runtime adaptable safety limits

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208834A (ja) * 2014-04-30 2015-11-24 ファナック株式会社 ワークを把持して搬送するロボットの安全監視装置
JP2016032858A (ja) * 2014-07-31 2016-03-10 ファナック株式会社 移動式人協調型ロボット
JP2016064474A (ja) * 2014-09-25 2016-04-28 ファナック株式会社 人間協調ロボットシステム
JP2017077608A (ja) * 2015-10-21 2017-04-27 ファナック株式会社 ロボットの安全監視装置
WO2017094240A1 (ja) * 2015-12-01 2017-06-08 川崎重工業株式会社 ロボットシステムの監視装置
JP2020032488A (ja) * 2018-08-30 2020-03-05 ファナック株式会社 人間協調ロボットシステム
WO2020200387A1 (en) * 2019-04-02 2020-10-08 Universal Robots A/S Robot arm safety system with runtime adaptable safety limits

Also Published As

Publication number Publication date
TW202333926A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US11548153B2 (en) Robot comprising safety system ensuring stopping time and distance
US9393687B2 (en) Method for programming an industrial robot and industrial robot
US10870199B2 (en) Robot system and robot teaching method
US9579798B2 (en) Human collaborative robot system
US10751874B2 (en) Method of teaching robot and robotic arm control device
JP4550849B2 (ja) アーム搭載移動ロボット
US20190283259A1 (en) Robot control method
US10166673B2 (en) Portable apparatus for controlling robot and method thereof
JP6659629B2 (ja) 多関節ロボットの制御装置
US11478919B2 (en) Robot system and method of controlling the robot system
JP2019098410A (ja) ロボットの速度を制限する制御装置
Shirwalkar et al. Telemanipulation of an industrial robotic arm using gesture recognition with Kinect
KR20190079322A (ko) 로봇 제어 시스템
Shu et al. Human-robot collaboration: Task sharing through virtual reality
JP2021030364A (ja) ロボット制御装置
KR101740898B1 (ko) 로봇 교시 장치
JP2018202588A (ja) 制御装置、ロボットおよびロボットシステム
Petruck et al. Human-robot cooperation in manual assembly–interaction concepts for the future workplace
WO2023157261A1 (ja) ロボット制御装置
US20220379468A1 (en) Robot arm with adaptive three-dimensional boundary in free-drive
US20220379463A1 (en) Safe activation of free-drive mode of robot arm
JP7493816B2 (ja) ロボット、システム、方法及びプログラム
KR101968751B1 (ko) 충돌 감지 장치, 그를 갖는 엔드 이펙터, 로봇 및 그를 이용한 충돌 감지 방법
Geibel et al. Human-Robot cooperation in manual assembly-interaction concepts for the future workplace
CN112975948B (zh) 控制方法以及机器人***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024500883

Country of ref document: JP

Kind code of ref document: A