WO2023149561A1 - Material for three-dimensional modeling, and resin molded body using same - Google Patents

Material for three-dimensional modeling, and resin molded body using same Download PDF

Info

Publication number
WO2023149561A1
WO2023149561A1 PCT/JP2023/003680 JP2023003680W WO2023149561A1 WO 2023149561 A1 WO2023149561 A1 WO 2023149561A1 JP 2023003680 W JP2023003680 W JP 2023003680W WO 2023149561 A1 WO2023149561 A1 WO 2023149561A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional modeling
resin
polyester
acid
dicarboxylic acid
Prior art date
Application number
PCT/JP2023/003680
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 中野
亜希子 平野
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023149561A1 publication Critical patent/WO2023149561A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing

Definitions

  • the present invention relates to a three-dimensional modeling material and a resin molding using the same.
  • the modeling material is a thermoplastic resin
  • the filaments, pellets, powder, granules, etc. made of the material are inserted into the extrusion head and continuously extruded onto the XY plane substrate in the chamber from the nozzle portion provided in the extrusion head while being heated and melted.
  • the extruded resin deposits and fuses on the already deposited resin laminate, and solidifies together as it cools. Since the ME method is such a simple system, it has come to be widely used (Patent Document 1).
  • raw materials for material extrusion are generally acrylonitrile-butadiene-styrene resin (hereinafter sometimes referred to as “ABS resin”) and polylactic acid (hereinafter sometimes referred to as “PLA resin”).
  • ABS resin acrylonitrile-butadiene-styrene resin
  • PLA resin polylactic acid
  • Plastic resins have been favorably used from the viewpoint of moldability and fluidity (Patent Documents 2 to 4).
  • PETG Glycol-modified polyethylene terephthalate resin
  • ABS resin polyethylene terephthalate resin
  • PLA resin polyethylene terephthalate resin
  • a three-dimensional modeling material made of PETG can be modeled at a lower nozzle temperature than ABS resin, and has superior mechanical strength to PLA resin, but the nozzle temperature must be set higher than that of PLA resin.
  • An object of the present invention is to provide a three-dimensional modeling material for use in a material extrusion method.
  • a three-dimensional modeling material for use in a material extrusion method comprising a polyester-based resin composition, wherein the polyester-based resin composition comprises a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component. wherein the dicarboxylic acid component contains terephthalic acid, the diol component contains ethylene glycol, and the following (i) to (ii) are satisfied.
  • Tg glass transition temperature of 51° C. or higher and 75° C. or lower when measured at a heating rate of 10° C./min in differential scanning calorimetry.
  • Tm melting temperature
  • the gist of the present invention is as follows.
  • a three-dimensional modeling material for use in a material extrusion method including a polyester resin composition
  • the polyester-based resin composition has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component, the dicarboxylic acid component comprises terephthalic acid, the diol component comprises ethylene glycol, and
  • a three-dimensional modeling material characterized by satisfying the following (i) to (ii).
  • the diol component further includes one or more selected from the group consisting of 1,3-propanediol, 1,4-butanediol, and aliphatic diols having 5 or more carbon atoms. material.
  • ⁇ 3> For three-dimensional modeling according to ⁇ 2>, wherein the aliphatic diol having 5 or more carbon atoms contains one or more selected from the group consisting of 1,4-cyclohexanedimethanol, neopentyl glycol, and polytetramethylene glycol. material.
  • the dicarboxylic acid component further contains one or more selected from the group consisting of isophthalic acid, adipic acid, succinic acid, and sebacic acid. material.
  • ⁇ 5> The three-dimensional modeling material according to any one of ⁇ 1> to ⁇ 4>, wherein the proportion of ethylene glycol in all the diol components is 30 mol% or more.
  • ⁇ 6> The three-dimensional modeling material according to any one of ⁇ 1> to ⁇ 5>, wherein the proportion of terephthalic acid in all the dicarboxylic acid components is 50 mol% or more.
  • ⁇ 7> The three-dimensional modeling material according to any one of ⁇ 1> to ⁇ 6>, wherein the polyester resin composition contains a polyester resin (A) and another polyester resin (B).
  • the polyester-based resin (A) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component, The three-dimensional modeling material according to ⁇ 7>, wherein the diol component contains an aliphatic diol having 5 or more carbon atoms.
  • the polyester-based resin (B) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component, The three-dimensional modeling material according to ⁇ 7> or ⁇ 8>, wherein the diol component contains 1,4-butanediol.
  • the polyester-based resin (A) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component
  • the polyester-based resin (B) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component
  • the ratio of isophthalic acid in all the dicarboxylic acid components in the polyester resin (A) is 5 mol% or less
  • the three-dimensional modeling material according to ⁇ 7> wherein the ratio of isophthalic acid in all the dicarboxylic acid components in the polyester resin (B) is 10 mol% or more.
  • ⁇ 11> For three-dimensional modeling according to any one of ⁇ 1> to ⁇ 10>, wherein the heat of crystallization ( ⁇ Hc) when measured at a temperature drop rate of 10° C./min in differential scanning calorimetry is 10 J/g or less. material.
  • ⁇ 12> The three-dimensional modeling material according to any one of ⁇ 1> to ⁇ 11>, which has a melt index of 6 g/10 minutes or more measured at 210° C. and 2.16 kg.
  • ⁇ 13> Loss tangent (tan ⁇ ) measured in the range of ⁇ 100 to 150° C.
  • ⁇ 14> A filament for three-dimensional modeling obtained using the material for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 13>.
  • ⁇ 15> The filament for three-dimensional modeling according to ⁇ 14>, having a diameter of 1.0 mm or more and 5.0 mm or less.
  • ⁇ 16> A wound body obtained by winding the filament for three-dimensional modeling according to ⁇ 14> or ⁇ 15>.
  • ⁇ 17> A 3D printer cartridge comprising the filament for three-dimensional modeling according to ⁇ 14> or ⁇ 15>, or the winding body according to ⁇ 16>, which is stored in a storage container.
  • ADVANTAGE OF THE INVENTION According to the present invention, a highly convenient material for three-dimensional modeling, which has excellent molding properties even at low nozzle temperatures, table temperatures, etc., excellent mechanical strength, and a resin molded body using the same is provided. be.
  • FIG. 1 is a diagram showing the shape of a test piece used for evaluation of low-temperature formability in Examples and Comparative Examples.
  • the glass transition temperature (Tg) of the three-dimensional modeling material of the present invention when measured at a temperature increase rate of 10 ° C./min in differential scanning calorimetry is the shapeability with a home 3D printer and low warpage.
  • the temperature is 75° C. or lower, preferably 65° C. or lower, even more preferably 60° C. or lower, and most preferably 57° C. or lower.
  • the temperature is 51° C. or higher, more preferably 52° C. or higher, even more preferably 53° C. or higher, and most preferably 55° C. or higher.
  • the melting temperature (Tm) of the three-dimensional modeling material of the present invention when measured at a heating rate of 10 ° C./min in differential scanning calorimetry is, from the viewpoint of modeling at low temperatures, the melting temperature (Tm) None, or the melting temperature (Tm) is 210° C. or lower, preferably 200° C. or lower, even more preferably 190° C. or lower, and most preferably 180° C. or lower. In the absence of a melting temperature (Tm), molding properties at low temperatures can be improved by setting the glass transition temperature (Tg) within the preferred range described above.
  • the melting temperature (Tm) is preferably 100°C or higher, more preferably 120°C or higher, still more preferably 150°C or higher, and most preferably 170°C or higher.
  • the melting temperature (Tm) refers to the peak top temperature of a melting peak having a heat of crystal fusion ( ⁇ Hm) of 5 J/g or more.
  • the heat of crystallization ( ⁇ Hc) when the material for three-dimensional modeling of the present invention is measured at a temperature drop rate of 10° C./min in differential scanning calorimetry is not particularly limited, but from the viewpoint of low warpage, it is 10 J/g or less. is preferred, 5 J/g or less is more preferred, and 1 J/g or less is even more preferred.
  • the melt index (MI) value of the three-dimensional modeling material of the present invention measured at 210 ° C. and 2.16 kg is not particularly limited, but from the viewpoint of extrudability with a home 3D printer, it is 5 g / 10 minutes or more. Preferably, it is 6 g/10 minutes or more, more preferably 7 g/10 minutes or more, and most preferably 9.7 g/10 minutes or more. Also, from the viewpoint of suppressing defects such as stringiness and lumps during modeling, it is preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, and most preferably 20 g/10 minutes or less.
  • the temperature dispersion measurement of the dynamic viscoelasticity described in JIS K7244-4 shows that the three-dimensional modeling material of the present invention has a strain of 0.07%, a frequency of 10 Hz, and a temperature increase rate of 3°C/min in the range of -100 to 150°C.
  • the number of peaks of the loss tangent (tan ⁇ ) measured at is not particularly limited, it is preferable to show a single peak in the range of 0 to 100° C. from the viewpoint of interlayer adhesion of the shaped article.
  • tan ⁇ shows a single peak means that, for example, a blend of a polyester resin (A) and another polyester resin (B), which will be described later, is compatible with each other, and the interlaminar adhesion of the model is good. becomes.
  • the three-dimensional modeling material of the present invention is a three-dimensional modeling material for use in a material extrusion method, and contains a polyester-based resin composition, wherein the polyester-based resin composition has a repeating structure derived from a dicarboxylic acid component. It has units and repeating structural units derived from a diol component, the dicarboxylic acid component contains terephthalic acid, the diol component contains ethylene glycol, and satisfies (i) to (ii) below.
  • a glass transition temperature (Tg) of 51° C. or higher and 75° C. or lower when measured at a heating rate of 10° C./min in differential scanning calorimetry.
  • Tm melting temperature
  • Tm melting temperature
  • the content of the polyester-based resin composition in the three-dimensional modeling material is not particularly limited, but from the viewpoint of adjusting the physical properties of the three-dimensional modeling material to the preferred range of the present invention, it is preferably 50% by mass or more. , more preferably 70% by mass or more, more preferably 90% by mass or more. From the same viewpoint, the content is preferably 100% by mass or less, more preferably 99% by mass or less, and even more preferably 95% by mass or less.
  • the polyester-based resin composition has repeating structural units derived from a dicarboxylic acid component, and the dicarboxylic acid component contains terephthalic acid.
  • the above "dicarboxylic acid component” may consist of terephthalic acid, and may contain further dicarboxylic acid components in addition to terephthalic acid.
  • additional dicarboxylic acid components include isophthalic acid, naphthalenedicarboxylic acid, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, neopentylic acid, isophthalic acid, and naphthalenedicarboxylic acid. , diphenyl ether dicarboxylic acid, p-oxybenzoic acid, and the like. When the dicarboxylic acid component contains a plurality of components, the ratio of each dicarboxylic acid component can be appropriately selected.
  • isophthalic acid, adipic acid, succinic acid, and sebacic acid are used as the "additional dicarboxylic acid component".
  • isophthalic acid and adipic acid are more preferable.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • the Tm of polyethylene terephthalate (PET) can be lowered, and the material for three-dimensional modeling of the present invention can be used for the same purpose.
  • the polyester-based resin composition when the polyester-based resin composition has repeating structural units derived from two or more dicarboxylic acid components, the repeating structural units derived from two or more dicarboxylic acid components are single. It may be contained in the polyester-based resin, or repeating structural units derived from two or more dicarboxylic acid components may be contained in different polyester-based resins.
  • the proportion of terephthalic acid in all the dicarboxylic acid components used in the repeating structural units derived from the dicarboxylic acid component of the polyester-based resin composition in the three-dimensional modeling material of the present invention is 50 mol% or more. is preferably 70 mol % or more, more preferably 80 mol % or more, and particularly preferably 90 mol % or more.
  • the ratio of isophthalic acid in all the dicarboxylic acid components used in the repeating structural units derived from the dicarboxylic acid component of the polyester-based resin composition in the three-dimensional modeling material of the present invention is 1 mol%. It is preferably at least 3 mol %, more preferably at least 5 mol %, particularly preferably at least 8 mol %. From the viewpoint of heat resistance and rigidity, the content is preferably 30 mol% or less, more preferably 20 mol% or less, and even more preferably 10 mol% or less.
  • the polyester-based resin composition has repeating structural units derived from a diol component, and the diol component contains ethylene glycol.
  • the above “diol component” may consist of ethylene glycol, and may contain further diol components in addition to ethylene glycol.
  • additional diol components are diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol and 1,4-butanediol, and 1,5 -pentanediol, 3-methylpentanediol, 1,3-hexanediol, 1,6-hexanediol, hydrogenated bisphenol A, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol, dipropylene glycol, neopentyl and aliphatic diols having 5 or more carbon atoms such as glycol (NPG), polypropylene glycol and polytetramethylene glycol.
  • NPG glycol
  • NPG glycol
  • polypropylene glycol and polytetramethylene glycol polytetramethylene glycol
  • the ratio of each diol component can be appropriately selected.
  • the above-mentioned “additional diol component” includes 1,3-propanediol, 1,4-butanediol, and one or more selected from the group consisting of aliphatic diols having 5 or more carbon atoms are preferable, and 1,4-butanediol and aliphatic diols having 5 or more carbon atoms are more preferable.
  • the aliphatic diol having 5 or more carbon atoms is 1,4-cyclohexanedimethanol.
  • neopentyl glycol, and polytetramethylene glycol preferably one or more selected from the group consisting of polytetramethylene glycol, more preferably 1,4-cyclohexanedimethanol.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • the Tg of polyethylene terephthalate (PET) can be lowered, and the material for three-dimensional modeling of the present invention can be used for the same purpose.
  • Tm of terephthalate (PET) can be lowered, and the material for three-dimensional modeling of the present invention can be used for the same purpose.
  • the polyester-based resin composition when the polyester-based resin composition has repeating structural units derived from two or more diol components, the repeating structural units derived from two or more diol components are single polyester-based It may be contained in the resin, or repeating structural units derived from two or more diol components may be contained in different polyester-based resins.
  • the ratio of ethylene glycol in all the diol components used in the repeating structural units derived from the diol component of the polyester-based resin composition is 30 mol% or more. is preferably 40 mol % or more, and even more preferably 45 mol % or more.
  • polyester-based resin composition contained in the three-dimensional modeling material of the present invention preferably contains a polyester-based resin (A) and another polyester-based resin (B), which will be described later.
  • polyester resin (A) and other polyester resin (B) include resins obtained by condensation polymerization of a dicarboxylic acid component and a diol component.
  • One or both of the dicarboxylic acid component and the diol component may consist of a single compound or a mixture of two or more.
  • polyester resin (A) and the other polyester resin (B) may be a polyester resin composed of an oxyacid polymer or an oxyacid copolymer.
  • Typical oxyacids include lactic acid, ⁇ -caprolactone, p- ⁇ -hydroxyethoxybenzoic acid and the like.
  • Polyester-based resin (A) and other polyester-based resin (B) in order to improve physical properties such as adjustment of crystallinity, trifunctional or higher carboxylic acid components such as trimellitic acid and pyromellitic acid and / or trimethylolpropane A trifunctional or higher polyol component such as pentaerythritol may also be used.
  • the polyester-based resin (A) and other polyester-based resins (B) may contain recycled resins regenerated from plastic wastes and offcuts. Recycling methods include chemical recycling, in which the used resin is chemically converted and then regenerated, and used resin is sorted, impurities are removed, and then it is regenerated through processes such as pulverization, washing, and granulation. material recycling, etc. Further, the polyester resin (A) and the other polyester resin (B) may contain a mixture of recycled resin and virgin resin.
  • the polyester resin (A) and the other polyester resin (B) may be contained in the polyester-based resin composition as independent components.
  • a part of the polyester resin (A) and the other polyester resin (B) is transesterified to be included in the polyester resin composition as a copolymer containing each repeating structural unit. may be
  • the polyester-based resin (A) may be used to produce the polyester-based resin composition contained in the three-dimensional modeling material of the present invention.
  • the heat of crystallization ( ⁇ Hc) when the polyester resin (A) is measured at a temperature drop rate of 10° C./min in differential scanning calorimetry is not particularly limited, but in the present invention, It is preferably less than 60 J/g, more preferably 30 J/g or less, even more preferably 10 J/g or less, particularly preferably 5 J/g or less, and most preferably 0 J/g, from the viewpoint of suppressing warpage of the molded article.
  • the composition of the polyester-based resin (A) is not particularly limited, but examples thereof include condensation polymerization of a dicarboxylic acid component and a diol component. That is, the polyester-based resin (A) can have a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component. One or both of the dicarboxylic acid component and the diol component may consist of a single compound or a mixture of two or more.
  • Typical examples of the above “dicarboxylic acid component” include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, neopentylic acid, isophthalic acid, and naphthalene.
  • dicarboxylic acid, diphenyl ether dicarboxylic acid, p-oxybenzoic acid and the like When these are selected as the above-mentioned “dicarboxylic acid component", they may be one kind or a mixture of two or more kinds, and the amount when mixed can be appropriately selected.
  • an aromatic dicarboxylic acid component from the viewpoint of heat resistance and mechanical properties. Specifically, it is most preferable to have a structure derived from terephthalic acid, isophthalic acid, or naphthalenedicarboxylic acid.
  • Typical examples of the above “diol component” include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol and 1,4-butanediol.
  • aliphatic diols 4 or less aliphatic diols, and 1,5-pentanediol, 3-methylpentanediol, 1,3-hexanediol, 1,6-hexanediol, hydrogenated bisphenol A, 1,4-cyclohexanedimethanol, tri C5 or more aliphatic diols such as ethylene glycol, neopentyl glycol (NPG), polyethylene glycol, dipropylene glycol, polypropylene glycol and polytetramethylene glycol, and the like.
  • NPG neopentyl glycol
  • dipropylene glycol dipropylene glycol
  • polypropylene glycol and polytetramethylene glycol and the like.
  • Methylene glycol is particularly preferred, most preferably having structures derived from ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol. Moreover, from the viewpoint of low warpage, it is preferable that the above-mentioned "diol component" contains an aliphatic diol having 5 or more carbon atoms.
  • the polyester-based resin (A) may contain other copolymerizable acid components and diol components other than the dicarboxylic acid component and diol component selected from the above.
  • other acid components include isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, 4,4-stilbenedicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid.
  • Examples of other copolymerizable diol components include diethylene glycol, trans-tetramethyl-1,3-cyclobutanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-butane. at least one selected from the group consisting of diol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, spiroglycol, and polytetramethylene glycol; Preferably.
  • the content of other copolymerizable acid components and diol components is not particularly limited, but from the viewpoint of adjusting the heat of crystallization ( ⁇ Hc), It is 1 mol % or more, preferably 15 mol % or more, more preferably 25 mol % or more in the component, and the upper limit is 49 mol % or less, preferably 45 mol % or less.
  • polyester resin (A) examples include aromatic aromatics such as polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polyethylene isophthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin and polytrimethylene terephthalate resin.
  • aromatic aromatics such as polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polyethylene isophthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin and polytrimethylene terephthalate resin.
  • aliphatic polyester resins such as polyester resins, polyethylene succinate resins and polybutylene succinate resins, oxyacid polymers such as polylactic acid resins and polycaprolactone resins, and polyester elastomers.
  • Specific examples of the polyester-based resin (A) may be homopolymers or copolymers of any combination.
  • polyester-based resin (A) When these are selected as the polyester-based resin (A), they may be of one type or a mixture of two or more types, and the amount when mixed can be appropriately selected. More specifically, polyethylene terephthalate resin (PET), glycol-modified polyethylene terephthalate resin (PETG, 1,4-cyclohexanedimethanol copolymerized polyethylene terephthalate resin), isophthalic acid copolymerized polyethylene terephthalate resin (IPA-PET), and the like. However, it is preferable to use PETG from the viewpoint of versatility and impact resistance. As PETG, for example, 1,4-cyclohexanedimethanol copolymerized polyethylene terephthalate resin with a copolymerization ratio of about 30% or less can be used.
  • the melt index (MI) value of the polyester resin (A) measured at 210° C. and 2.16 kg is not particularly limited, but from the viewpoint of ejection stability, it is preferably 1 g/10 minutes or more, and 3 g/10 minutes or more. More preferably, 5 g/10 minutes or more is even more preferable, and 6 g/10 minutes or more is particularly preferable. Also, from the viewpoint of suppressing defects such as stringiness and lumps during modeling, it is preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, and most preferably 20 g/10 minutes or less.
  • the glass transition temperature (Tg) of the polyester resin (A) measured at a temperature increase rate of 10° C./min in differential scanning calorimetry is not particularly limited, but the molding table of the 3D printer of the above three-dimensional molding material
  • the temperature is preferably 100° C. or lower, more preferably 90° C. or lower, and even more preferably 80° C. or lower.
  • the temperature is preferably 30°C or higher, more preferably 40°C or higher, even more preferably 60°C or higher, and most preferably 65°C or higher.
  • the melting temperature (Tm) of the polyester-based resin (A) measured at a heating rate of 10°C/min in differential scanning calorimetry is not particularly limited, but the melting temperature (Tm ), or the melting temperature (Tm) is preferably 280° C. or lower, more preferably 250° C. or lower, still more preferably 210° C. or lower, and most preferably 180° C. or lower. From the viewpoint of heat resistance, Tm is preferably 100°C or higher, more preferably 120°C or higher, still more preferably 150°C or higher, and most preferably 170°C or higher.
  • the polyester-based resin (A) is mainly composed of a resin with low crystallinity or an amorphous resin, there is often no melting temperature (Tm). It is most preferable from the viewpoint of suppressing the warp of the modeled object.
  • the melting temperature (Tm) refers to the peak top temperature of a melting peak having a heat of crystal fusion ( ⁇ Hm) of 5 J/g or more.
  • polyester resin (A) examples include "SKYGREEN (registered trademark)” series manufactured by SK Chemicals, “Easter Copolyester (registered trademark)” series manufactured by Eastman Chemical Co., and “TRITAN (registered trademark)” series. , “ALTESTER (registered trademark)” series manufactured by Mitsubishi Gas Chemical Co., Inc., and the like.
  • the content of the polyester-based resin (A) in the three-dimensional modeling material is not particularly limited, but from the viewpoint of adjusting the physical properties of the three-dimensional modeling material to the preferred range of the present invention, it is preferably 50% by mass or more. It is preferably 60% by mass or more, more preferably 70% by mass or more. From the same viewpoint, the content is preferably 99% by mass or less, more preferably 95% by mass or less, and even more preferably 90% by mass or less.
  • the other polyester-based resin (B) is not particularly limited as long as it is a polyester-based resin other than the polyester-based resin (A), but is preferably compatible with the polyester-based resin (A).
  • compatibility is measured in an arbitrary temperature range at a strain of 0.07%, a frequency of 10 Hz, and a heating rate of 3 ° C./min by temperature dispersion measurement of dynamic viscoelasticity described in JIS K7244-4. It means that the peak indicating the glass transition of the loss tangent (tan ⁇ ) derived from the polyester-based resin (A) and the other polyester-based resin (B) is single.
  • the composition of the other polyester-based resin (B) is not particularly limited, but examples thereof include condensation polymerization of a dicarboxylic acid component and a diol component. That is, the polyester-based resin (B) can have a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component. One or both of the dicarboxylic acid component and the diol component may consist of a single compound or a mixture of two or more.
  • Typical examples of the above “dicarboxylic acid component” include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, neopentylic acid, isophthalic acid, and naphthalene.
  • dicarboxylic acid, diphenyl ether dicarboxylic acid, p-oxybenzoic acid and the like When these are selected as the above-mentioned “dicarboxylic acid component", they may be one kind or a mixture of two or more kinds, and the amount when mixed can be appropriately selected.
  • terephthalic acid isophthalic acid, naphthalene dicarboxylic acid, adipic acid, and sebacic acid.
  • it has a structure derived from an acid or adipic acid.
  • Typical examples of the above "diol component” include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 3-methylpentanediol, 1,3-hexanediol, 1,6-hexanediol, hydrogenated bisphenol A, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol and polytetramethylene glycol.
  • the above “diol component” is ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, It preferably contains 3-methylpentanediol, 1,3-hexanediol, 1,6-hexanediol, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol or polytetramethylene glycol, ethylene glycol, more preferably 1,4-butanediol, 1,6-hexanediol, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol or polytete
  • the other polyester resin (B) may contain other copolymerizable acid components and diol components other than the dicarboxylic acid component and diol component selected from the above.
  • other acid components include isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, 4,4-stilbenedicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid.
  • Examples of other copolymerizable diol components include diethylene glycol, trans-tetramethyl-1,3-cyclobutanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-butane. at least one selected from the group consisting of diol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, spiroglycol, and polytetramethylene glycol; Preferably.
  • a diol component having at least one alicyclic structure selected from the group consisting of -cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, spiroglycol, and polytetramethylene glycol is preferably used, From the viewpoints of economy and industrial availability, it is most preferable to have a structure derived from 1,4-butanediol and polytetramethylene glycol.
  • the content of the other copolymerizable acid component or diol component is not particularly limited, but is 1 mol % or more, preferably 15 mol, in the total acid component or total diol component of the other polyester resin (B). % or more, more preferably 25 mol % or more, and the upper limit is 49 mol % or less, preferably 45 mol % or less, more preferably 40 mol % or less, and still more preferably 35 mol % or less.
  • polyester-based resin (B) examples include polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polyethylene isophthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin and polytrimethylene terephthalate resin. , aliphatic polyester resins such as polyethylene succinate resin and polybutylene succinate resin, oxyacid polymers such as polylactic acid resin and polycaprolactone resin, and polyester elastomers.
  • polyester resin (B) from the viewpoint of adjusting the compatibility with the polyester resin (A) and the physical properties of the three-dimensional modeling material to the range in which the effects of the present invention are obtained, polyethylene terephthalate resin , polybutylene terephthalate resin, polytrimethylene terephthalate resin, and polyester elastomer are preferred, polybutylene terephthalate resin, polytrimethylene terephthalate resin, and polyester elastomer are more preferred, polybutylene terephthalate resin and polyester elastomer are more preferred, and polybutylene terephthalate resin is Most preferred.
  • polybutylene terephthalate resins containing a copolymer component are particularly preferred from the viewpoint of achieving a good balance between moldability and mechanical strength at low temperatures.
  • the copolymer component contained in the polybutylene terephthalate resin is not particularly limited, it should contain aromatic dicarboxylic acids such as isophthalic acid, aliphatic dicarboxylic acids such as adipic acid, or diols such as polytetramethylene glycol. is preferred, and isophthalic acid is more preferred.
  • the polyester elastomer may contain at least one of terephthalic acid and adipic acid as the acid component, and at least one of 1,4-butanediol and polytetramethylene glycol as the diol component. preferable.
  • Other polyester-based resins (B) may be used alone or in combination of two or more.
  • the other polyester resin (B) contains terephthalic acid as an acid component and 1,4-butanediol as a diol component, and the other polyester resin (B) is a copolymer other than 1,4-butanediol
  • the content of the copolymer component other than 1,4-butanediol is not particularly limited, but from the viewpoint of compatibility with the polyester resin (A), all the diols contained in the polyester resin (B)
  • the content of copolymerization components other than 1,4-butanediol in the components is preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more, and the upper limit is preferably 49 mol% or less, and more preferably 49 mol% or less. It is preferably 45 mol % or less, more preferably 35 mol % or less.
  • the other polyester resin (B) contains terephthalic acid as an acid component and 1,4-butanediol as a diol component
  • the other polyester resin (B) contains a copolymer component other than terephthalic acid is not particularly limited, but from the viewpoint of compatibility with the polyester resin (A)
  • the content of copolymer components other than terephthalic acid in the total acid components contained in the polyester resin (B) is 1 mol% or more. is preferably 15 mol% or more, still more preferably 25 mol% or more, and the upper limit is preferably 49 mol% or less, more preferably 45 mol% or less, still more preferably 40 mol% or less, and particularly preferably 35 mol% or less.
  • the polyester resin (A) may contain dicarboxylic acid. It has a repeating structural unit derived from an acid component and a repeating structural unit derived from a diol component, and the polyester resin (B) contains a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component.
  • the ratio of isophthalic acid in all dicarboxylic acid components in the polyester resin (A) is 5 mol% or less, and the ratio of isophthalic acid in all dicarboxylic acid components in the polyester resin (B) is 10 mol% or more is preferably
  • the melt index (MI) value of the other polyester resin (B) measured at 210 ° C. and 2.16 kg is not particularly limited, but from the viewpoint of the fluidity of the three-dimensional modeling material, the polyester resin ( It should be higher than the MI value of the resin selected as A). Specifically, it is preferably 6 g/10 minutes or more, more preferably 8 g/10 minutes or more, and even more preferably 10 g/10 minutes or more. In addition, from the viewpoint of suppressing defects such as stringiness and lumps during modeling, it is preferably 200 g/10 minutes or less, more preferably 100 g/10 minutes or less, and most preferably 80 g/10 minutes or less.
  • the amount of heat of crystallization ( ⁇ Hc) when the other polyester resin (B) is measured at a temperature drop rate of 10 ° C./min in differential scanning calorimetry is not particularly limited, but the phase with the polyester resin (A) From the viewpoint of solubility, it is preferably 100 J/g or less, more preferably 80 J/g or less, even more preferably 60 J/g or less, and most preferably 40 J/g or less.
  • the glass transition temperature (Tg) of the other polyester resin (B) is not particularly limited when measured at a temperature increase rate of 10 ° C./min in differential scanning calorimetry, but the Tg of the three-dimensional modeling material is From the viewpoint of adjusting to a preferred range in the invention, the temperature is preferably lower than the resin selected as the polyester resin (A), preferably 100° C. or lower, more preferably 50° C. or lower, and even more preferably 40° C. or lower. From the viewpoint of the heat resistance and rigidity at room temperature of the three-dimensional modeling material, the temperature is preferably ⁇ 50° C. or higher, more preferably ⁇ 30° C. or higher, further preferably ⁇ 10° C. or higher, and most preferably 0° C. or higher.
  • the melting temperature (Tm) of the other polyester resin (B) is not particularly limited when measured at a temperature increase rate of 10 ° C./min in differential scanning calorimetry, but from the viewpoint of moldability at low temperatures, 210 ° C. or less is preferable, 190° C. or less is more preferable, and 180° C. or less is even more preferable. From the viewpoint of heat resistance of the three-dimensional modeling material, the temperature is preferably 30° C. or higher, more preferably 50° C. or higher, even more preferably 100° C. or higher, and most preferably 120° C. or higher.
  • polyester resins (B) examples include “Novaduran (registered trademark)” series manufactured by Mitsubishi Engineering-Plastics Co., Ltd., “DURANEX (registered trademark)” series manufactured by Polyplastics Co., Ltd., and Toyobo Co., Ltd. Commercially available products include the “Byron (registered trademark)” series and the “Tefablock” series manufactured by Mitsubishi Chemical Corporation.
  • the content of the other polyester resin (B) in the three-dimensional modeling material is not particularly limited, but from the viewpoint of adjusting the physical properties of the three-dimensional modeling material to the preferred range of the present invention, it is 1% by mass or more. is preferably 10% by mass or more, more preferably 15% by mass or more, and most preferably 30% by mass or more. From the same viewpoint, the content is preferably 99% by mass or less, more preferably 95% by mass or less, and even more preferably 90% by mass or less.
  • the three-dimensional modeling material of the present invention may contain other resins, fillers (organic particles, inorganic particles, reinforcing materials, etc.) and other components to the extent that the effects of the present invention are not impaired.
  • Other resins include polyolefin-based resins, polystyrene-based resins, polyester-based resins other than the above polyester-based resin (A) or the above-described other polyester-based resins (B), various elastomers, and the like. These may be used alone or in combination of two or more.
  • the amount of other resins in the material for three-dimensional modeling of the present invention is not particularly limited, but is usually 50% by mass or less, preferably 30% by mass or less.
  • organic particles among fillers include acrylic resin particles and melamine resin particles.
  • inorganic particles among fillers include silica, alumina, kaolin, titanium dioxide, calcium carbonate, magnesium carbonate, zinc carbonate, calcium stearate, magnesium stearate, and zinc stearate.
  • fillers include inorganic fillers and inorganic fibers.
  • inorganic fillers include calcium carbonate, zinc carbonate, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, potassium titanate, glass balloons, glass flakes, glass powder, Silicon carbide, silicon nitride, boron nitride, gypsum, calcined kaolin, zinc oxide, antimony trioxide, zeolite, hydrotalcite, wollastonite, silica, talc, metal powder, alumina, graphite, carbon black, carbon nanotubes, etc. be done.
  • inorganic fibers include glass cut fibers, milled glass fibers, glass fibers, gypsum whiskers, metal fibers, metal whiskers, ceramic whiskers, carbon fibers, and cellulose nanofibers.
  • the content of the filler in the three-dimensional modeling material of the present invention when the three-dimensional modeling material of the present invention contains a filler is not particularly specified, but is usually 50% by mass or less, preferably 30% by mass. % by mass or less.
  • ingredients include heat-resistant agents, ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, sealability improvers, antifog agents, and release agents. agents, plasticizers, pigments, dyes, fragrances, flame retardants, biodegradation accelerators, transesterification accelerators, transesterification inhibitors, and the like. These may be used alone or in combination of two or more.
  • the three-dimensional modeling material of the present invention is roughly classified as a material for use in the material extrusion method. It may be used as either a modeling material or a supporting material, but is preferably used as a modeling material.
  • the modeling material is what becomes the body of the modeled object, and the support material is what supports the layered modeling material until it solidifies into a desired shape.
  • the three-dimensional modeling material of the present invention is produced using the polyester resin (A), the other polyester resin (B), and other components blended as necessary.
  • the mixing method for these is not particularly limited, but known methods such as methods using a melt-kneading apparatus such as a single-screw extruder, a multi-screw extruder, a Banbury mixer, and a kneader can be used.
  • the method for producing the material for three-dimensional modeling of the present invention is not particularly limited.
  • molding methods, etc. can be mentioned.
  • the three-dimensional modeling material of the present invention is obtained by extrusion molding, the conditions are appropriately adjusted depending on the fluidity and molding processability of the resin to be used. is.
  • the three-dimensional modeling material of the present invention may be used in a shape suitable for the embodiment.
  • the shape of the three-dimensional modeling material include pellets, powders, granules, and filaments. Among them, it is preferable to use it in a filament shape from the viewpoint that it can be easily used with a home 3D printer. That is, it is preferable that the filament for three-dimensional modeling be obtained using the material for three-dimensional modeling of the present invention.
  • the diameter of the filament for three-dimensional modeling obtained using the material for three-dimensional modeling of the present invention depends on the specifications of the system used for molding the resin molded body by the material extrusion method, but the lower limit is usually 1.0 mm or more. It is preferably 1.5 mm or more, more preferably 1.6 mm or more, and particularly preferably 1.7 mm or more, while the upper limit is usually 5.0 mm or less, preferably 4.0 mm or less, more preferably 3.5 mm or less. Especially preferably, it is 3.0 mm or less.
  • the diameter of the filament for three-dimensional modeling refers to the diameter of a cross section perpendicular to the long axis of the filament for three-dimensional modeling (hereinafter sometimes referred to as "cross section of the filament for three-dimensional modeling").
  • the accuracy of the diameter of the filament for three-dimensional modeling is preferably within ⁇ 5% with respect to any measurement point of the filament, from the viewpoint of the stability of raw material supply during modeling.
  • the standard deviation of the diameter of the filament for three-dimensional modeling is preferably 0.07 mm or less, particularly preferably 0.06 mm or less.
  • the roundness of the cross section of the filament for three-dimensional modeling is preferably 0.93 or more, particularly preferably 0.95 or more.
  • the upper limit of circularity is 1.0. In this way, if the standard deviation of the filament diameter is small and the roundness of the three-dimensional modeling material is high, the discharge unevenness during modeling is suppressed, and the resin molded body excellent in appearance and surface properties can be stably produced. can be manufactured by By using the three-dimensional modeling material of the present invention, it is possible to relatively easily produce a three-dimensional modeling filament that satisfies such standard deviation and roundness.
  • the material for three-dimensional modeling of the present invention can be a wound body obtained by winding the filament for three-dimensional modeling obtained by using the material, for example, a wound body wound around a bobbin.
  • the three-dimensional modeling filament obtained using the three-dimensional modeling material of the present invention may be packaged as a wound body wound on a bobbin, or the wound body may be stored in a cartridge.
  • it can be a cartridge for a 3D printer in which the filament for three-dimensional modeling or the wound body is stored in a storage container.
  • the cartridge examples include a wound body wound on a bobbin, and a structure in which a moisture-proof material or a moisture-absorbing material is used inside and at least the part other than the orifice through which the filament is delivered is sealed.
  • a winding body in which the three-dimensional modeling material is wound around a bobbin, or a cartridge containing the winding body is installed in or around the 3D printer, and the filament is always introduced into the 3D printer from the cartridge during molding.
  • a resin molded article is obtained by molding with a 3D printer using the three-dimensional modeling material of the present invention.
  • molding methods using a 3D printer include a material extrusion method (ME method), a powder sintering method, an inkjet method, and a stereolithography method (SLA method). It is particularly preferred to use
  • a method for manufacturing a resin molded body by a material extrusion method can include, for example, a step of three-dimensionally modeling a resin molded body by a material extrusion method using the three-dimensional modeling material of the present invention.
  • the material extrusion method will be described below as an example.
  • a 3D printer used for material extrusion generally has a chamber, in which a heatable base, an extrusion head installed in a gantry structure, a heat melter, a filament guide, a filament cartridge installation part, etc. of raw material supply unit.
  • Some 3D printers have an integrated extrusion head and heat melter.
  • the extrusion head is mounted on a gantry structure so that it can be moved arbitrarily on the XY plane of the substrate.
  • the substrate is a platform for constructing the desired three-dimensional object and support material, etc., and by heating and retaining heat, it gains adhesion to the laminate, and improves the dimensional stability of the resulting resin molded object as a desired three-dimensional object.
  • a sticky paste may be applied on the substrate, or a sheet or the like having good adhesiveness with the laminate may be pasted.
  • the sheet having good adhesion to the laminate include a sheet having fine unevenness on the surface, such as an inorganic fiber sheet, and a sheet made of the same type of resin as the laminate.
  • At least one of the extrusion head and the base is usually movable in the Z-axis direction perpendicular to the XY plane.
  • the number of extrusion heads is usually 1-2. With two extrusion heads, two different polymers can be melted and selectively printed in different heads.
  • one of the polymers can be a building material for building the 3D object and the other can be a support material, for example needed as a temporary fixture. This support material can then be removed, for example, by complete or partial dissolution in an aqueous system (eg, basic or acidic medium).
  • aqueous system eg, basic or acidic medium
  • the material for 3D modeling is fed from the raw material supply unit, sent to the extrusion head by a set of opposing rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle.
  • the extrusion head moves its position and feeds the raw material onto the substrate to deposit it in layers according to the signal transmitted. After this process is completed, the laminated deposit is taken out from the substrate, and if necessary, the supporting material or the like is peeled off, or the excess part is cut off, thereby obtaining a resin molded body as a desired three-dimensional object. .
  • Means for continuously supplying raw materials to the extrusion head include a method of supplying filaments or fibers, a method of supplying powder or liquid from a tank or the like through a fixed feeder, and a method of plasticizing pellets or granules with an extruder or the like.
  • a method of extruding and supplying the obtained material can be exemplified.
  • the most preferred method is the method of feeding the filaments, that is, the method of feeding the material for three-dimensional modeling of the present invention.
  • the temperature for obtaining suitable fluidity for extrusion from the tip nozzle is usually about 150 to 300°C, which is a temperature that can be set by a normal 3D printer.
  • the temperature of the heating extrusion head is usually 290° C. or less, preferably 160 to 260° C.
  • the table temperature is usually 100° C. or less, preferably 70° C. or less, stably.
  • a resin molding can be produced.
  • the temperature (discharge temperature) of the molten resin discharged from the extrusion head is preferably 160° C. or higher, more preferably 180° C. or higher, and is preferably 300° C. or lower, and 280° C. or lower. is more preferably 260° C. or lower.
  • the temperature of the molten resin is equal to or higher than the above lower limit, it is preferable for extruding a highly heat-resistant resin, and it is possible to discharge the molten resin at high speed, which tends to improve molding efficiency.
  • the temperature of the molten resin is equal to or lower than the above upper limit, it is easy to prevent problems such as thermal decomposition, burning, smoking, odor, and stickiness of the resin. It is also preferable from the viewpoint of preventing clumps of excess resin called clumps from adhering to the resin molding and deteriorating the appearance.
  • the molten resin extruded from the extrusion head is preferably in the form of strands with a diameter of 0.01 to 1.0 mm, more preferably 0.02 to 0.5 mm.
  • the reproducibility of the CAD model tends to be good, which is preferable.
  • High-speed modeling in three-dimensional modeling using the three-dimensional modeling material of the present invention means that the modeling speed is 1 mm/s or more. From the viewpoint of time required for modeling, the modeling speed is preferably 3 mm/s or higher, more preferably 5 mm/s or higher, still more preferably 7 mm/s or higher, and most preferably 10 mm/s or higher. Although the upper limit is not particularly limited, the faster the speed, the better.
  • the molding speed is preferably 100 mm / s or less, more preferably 80 mm / s or less, more preferably 60 mm / s or less, so that there is no problem in molding properties such as bending of the filament described above and deterioration of appearance described later. s or less is more preferable.
  • the resin molding of the present invention may be heat-treated to promote or complete crystallization depending on the intended use.
  • the support material may be shaped at the same time.
  • the type of support material is not particularly limited, but the composition of commercially available support material filaments includes ethylene-vinyl alcohol copolymer resin (EVOH), butenediol-vinyl alcohol copolymer resin (BVOH), polyvinyl alcohol (PVOH), high-impact polystyrene (HIPS), and the like.
  • a resin molded body obtained by a three-dimensional modeling method by a material extrusion method using the three-dimensional modeling material of the present invention can be obtained.
  • the resin molded article of the present invention is excellent in formability and heat resistance.
  • MI Melt index
  • the melting temperature (Tm) refers to the peak top temperature of a melting peak having a heat of crystal fusion ( ⁇ Hm) of 5 J/g or more.
  • the low-temperature formability in the present invention refers to the formability at a nozzle temperature of about 180°C to 230°C, and was evaluated by the following method.
  • the low-temperature formability of the three-dimensional modeling material of the present invention is evaluated using a 3D printer "MF-2200D" (manufactured by Mutoh Industries Co., Ltd.) with a modeling table temperature of 60 ° C., a nozzle temperature of 160 to 230 ° C., and a modeling speed of 50 mm / s. , and the model shown in FIG. At that time, the nozzle temperature was lowered from 230° C. in increments of 5° C. from the bottom of the model, and the temperature at which the material stopped being ejected from the nozzle was taken as the lowest ejection temperature. It was judged that the lower the minimum discharge temperature, the better the low-temperature moldability.
  • SKYGREEN PN100 manufactured by SK Chemicals, glycol-modified polyethylene terephthalate resin (1,4-cyclohexanedimethanol copolymerized polyethylene terephthalate resin), MI: 4.7 g/10 min, ⁇ Hc: 0 J/g, Tg : 79°C, Tm: none
  • B-1 DURANEX 400LP (manufactured by Polyplastics Co., Ltd., isophthalic acid copolymerized polybutylene terephthalate resin, MI: 21.2 g/10 min, ⁇ Hc: 28 J/g, Tg: 33°C, Tm: 176°C , isophthalic acid copolymerization ratio: 30 mol%)
  • B-2 DURANEX 600LP (manufactured by Polyplastics Co., Ltd., isophthalic acid copolymerized polybutylene terephthalate resin, MI: 8.6 g/10 min, ⁇ Hc: 6.1 J/g, Tg: 31° C., Tm: 172°C, isophthalic acid copolymerization ratio: 30 mol%)
  • B-3) DURANEX 500KP (manufactured by Polyplastics Co., Ltd., isophthalic acid copolymerized polybutylene
  • Example 1 A raw material dry-blended according to the formulation shown in Table 1 is extruded from a single-screw extruder with a screw diameter of ⁇ 25 mm at a set temperature of 240 ° C. through a nozzle with a diameter of 2.5 mm, passed through a water tank at 30 ° C., and then with a take-up device at 20 m / min. A filament-shaped material for three-dimensional modeling having a diameter of 1.75 mm ⁇ 0.05 mm was obtained. The filament-shaped three-dimensional modeling material thus produced was evaluated for physical properties, molding properties, and a resin molding. Table 1 shows the evaluation results.
  • the three-dimensional modeling materials of Examples 1 to 6 contain a predetermined polyester-based resin composition and have Tg and Tm within the ranges of the present invention. Further, from the results of Examples 1 to 4, by setting the copolymerization ratio of isophthalic acid in the isophthalic acid-copolymerized polybutylene terephthalate resin to be used to 20 to 30 mol%, the Tg of the three-dimensional modeling material is 55 to 60. ° C., the MI was 6 g/10 minutes or more, and it was found that the Tm could be adjusted to disappear. In contrast, the Tm of the three-dimensional modeling material of Comparative Example 1 is not within the scope of the present invention.
  • the three-dimensional modeling material of Comparative Example 2 has a Tg exceeding 75° C., various physical properties of the resin cannot be easily adjusted, resulting in poor low-temperature fabrication properties and low warpage properties. Since the three-dimensional modeling material of Comparative Example 3 does not contain ethylene glycol as a diol component of the contained polyester-based resin composition, Tg and various physical properties of the resin cannot be adjusted within preferable ranges.
  • the three-dimensional structure material of Example 3 has a Tg in a more preferable range than the three-dimensional structure structure material of Example 5, and is excellent in low warpage.
  • the three-dimensional modeling materials of Examples 1 and 2 have a ratio of isophthalic acid in all dicarboxylic acid components used in repeating structural units derived from the dicarboxylic acid component of the polyester resin composition. and 4, it is in a more preferable range, so it is excellent in low-temperature formability.
  • the Tg of the three-dimensional modeling materials of Examples 1 to 4 is in the most preferable range, compared to the three-dimensional modeling materials of Examples 4 and 5, the evaluation of moldability and resin molding is excellent.
  • the three-dimensional modeling material of Comparative Example 4 has a Tg of less than 51 ° C., which is inferior to the ejection stability during modeling, so compared with the three-dimensional modeling materials of Examples 1 to 6. and poor low-temperature formability.
  • the three-dimensional modeling material of the present invention is excellent in nozzle dischargeability and low warpage even when the nozzle temperature and table temperature of the 3D printer are relatively low, and obtains a resin molded body having good mechanical strength and modeling appearance.

Abstract

The present invention addresses the problem of providing a material for three-dimensional modeling for use in material extrusion, the material having exceptional nozzle ejection properties and low warpage even when the nozzle temperature and table temperature of a 3D printer are relatively low and being capable of yielding a resin molded body having excellent mechanical strength and modeling appearance. The present invention relates to a material for three-dimensional modeling for use in material extrusion, wherein the material for three-dimensional modeling is characterized by containing a polyester resin composition, and is moreover characterized in that: the polyester resin composition has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component, the dicarboxylic acid component contains terephthalic acid, and the diol component contains ethylene glycol and satisfies prescribed requirements.

Description

3次元造形用材料、及びそれを用いた樹脂成形体3D modeling material and resin molding using the same
 本発明は、3次元造形用材料及びそれを用いた樹脂成形体に関する。 The present invention relates to a three-dimensional modeling material and a resin molding using the same.
 今日、種々の付加製造方式(例えば結合剤噴射式、材料押出式、液槽光重合式等)の3Dプリンターが販売されている。これらの中で、材料押出(Material Extrusion)式(以下「材料押出法」と称することがある)による3Dプリンターシステム(例えば米国のストラタシス インコーポレイテッド社製のシステム)では、造形材料は、熱可塑性樹脂からなるフィラメントやペレット、粉体、顆粒などとして押出ヘッドへ挿入され、加熱溶融しながら押出ヘッドに備えたノズル部位からチャンバー内のX-Y平面基板上に連続的に押し出される。押し出された樹脂は既に堆積している樹脂積層体上に堆積すると共に融着し、これが冷却するにつれて一体となって固化する。ME法はこのような簡単なシステムであるため、広く用いられるようになってきている(特許文献1)。  Today, 3D printers with various additive manufacturing methods (eg, binder injection method, material extrusion method, liquid bath photopolymerization method, etc.) are on sale. Among these, in a 3D printer system (for example, a system manufactured by Stratasys, Inc. in the United States) using a material extrusion method (hereinafter sometimes referred to as "material extrusion method"), the modeling material is a thermoplastic resin The filaments, pellets, powder, granules, etc. made of the material are inserted into the extrusion head and continuously extruded onto the XY plane substrate in the chamber from the nozzle portion provided in the extrusion head while being heated and melted. The extruded resin deposits and fuses on the already deposited resin laminate, and solidifies together as it cools. Since the ME method is such a simple system, it has come to be widely used (Patent Document 1).
 従来、材料押出式の原料としては、一般的にアクリロニトリル-ブタジエン-スチレン系樹脂(以下「ABS樹脂」と称することがある)やポリ乳酸(以下「PLA樹脂」と称することがある)等の熱可塑性樹脂が、成形加工性や流動性の観点から好適に用いられてきた(特許文献2~4)。 Conventionally, raw materials for material extrusion are generally acrylonitrile-butadiene-styrene resin (hereinafter sometimes referred to as "ABS resin") and polylactic acid (hereinafter sometimes referred to as "PLA resin"). Plastic resins have been favorably used from the viewpoint of moldability and fluidity (Patent Documents 2 to 4).
日本国特表2003-502184号公報Japanese Patent Publication No. 2003-502184 日本国特表2010-521339号公報Japanese special table 2010-521339 日本国特開2008-194968号公報Japanese Patent Application Laid-Open No. 2008-194968 国際公開第2015/037574号WO2015/037574
 近年、3Dプリンターは、工業的な用途のみならず、個人消費者にも普及しつつあり、より簡便に使用することができる。そのため、造形精度のみならず、意匠性や耐久性等の面でも良好な樹脂成形体を製造することが求められており、それらの樹脂成形体を簡易に製造するための良好な造形性を有した3次元造形用材料も求められている。
 しかしながら、従来の一般的な3Dプリンターに用いられているABS樹脂よりなる3次元造形用材料は、良好な押出性を得るには、3Dプリンターで造形する際のノズル温度を240℃前後と高い温度に設定しなければならず、また造形テーブルへの接着性向上や造形物の反りを抑制するため、造形テーブル温度を100℃前後に設定する必要がある。さらには、加熱溶融時に臭気が発生する問題がある。これは、個人消費者による家庭用3Dプリンターでの使用を想定した場合、3Dプリンターの高温部分が危険であり、取り扱いやすさに欠ける。一方、PLA樹脂よりなる3次元造形用材料は、3Dプリンターのノズル温度が200℃前後で良好な押出性を有し、臭気も少ない特徴があるが、造形される樹脂成形体が脆く、機械的強度に劣るという問題点がある。
In recent years, 3D printers have become popular not only for industrial purposes but also for individual consumers, and can be used more easily. Therefore, it is required to manufacture resin moldings that are not only excellent in molding accuracy but also in terms of design and durability. There is also a demand for a material for three-dimensional modeling.
However, in order to obtain good extrudability, the three-dimensional modeling material made of ABS resin used in conventional general 3D printers requires a high nozzle temperature of around 240 ° C when modeling with a 3D printer. In addition, in order to improve adhesion to the modeling table and suppress warpage of the modeled object, it is necessary to set the modeling table temperature to around 100°C. Furthermore, there is a problem that an odor is generated during heating and melting. Assuming the use of home 3D printers by individual consumers, this means that the hot parts of the 3D printer are dangerous and lack ease of handling. On the other hand, three-dimensional modeling materials made of PLA resin have good extrudability when the nozzle temperature of the 3D printer is around 200 ° C. and are characterized by little odor, but the resin molded body to be shaped is fragile and mechanically difficult. There is a problem that it is inferior in strength.
 上記のABS樹脂やPLA樹脂よりなる3次元造形用材料の問題を解決し得るものとして、非晶性ポリエステル系樹脂であるグリコール変性ポリエチレンテレフタレート樹脂(以下「PETG」と称することがある)が近年用いられている。PETGよりなる3次元造形用材料は、ABS樹脂と比較して低いノズル温度で造形が可能であり、PLA樹脂より機械的強度に優れる特徴を有するものの、PLA樹脂よりノズル温度を高く設定しなければならず、良好な樹脂成形体を得るには、依然として3Dプリンターのノズル温度やテーブル温度を高く設定する必要がある。 Glycol-modified polyethylene terephthalate resin (hereinafter sometimes referred to as “PETG”), which is an amorphous polyester resin, has been used in recent years as a material that can solve the above-mentioned problems of three-dimensional modeling materials made of ABS resin and PLA resin. It is A three-dimensional modeling material made of PETG can be modeled at a lower nozzle temperature than ABS resin, and has superior mechanical strength to PLA resin, but the nozzle temperature must be set higher than that of PLA resin. However, in order to obtain a good resin molded product, it is still necessary to set the nozzle temperature and table temperature of the 3D printer high.
 本発明の目的は、3Dプリンターのノズル温度やテーブル温度が比較的低温においても、ノズル吐出性や低反り性に優れ、良好な機械的強度と造形外観を有する樹脂成形体を得ることができる、材料押出法に用いるための3次元造形用材料を提供することである。 It is an object of the present invention to obtain a resin molded body that has excellent nozzle dischargeability and low warpage, good mechanical strength and modeling appearance even when the nozzle temperature and table temperature of the 3D printer are relatively low. An object of the present invention is to provide a three-dimensional modeling material for use in a material extrusion method.
 本発明者らは、以下に記載した3次元造形用材料により、上記課題を解決できることを見出し、本発明を完成させた。材料押出法に用いるための3次元造形用材料であって、ポリエステル系樹脂組成物を含み、前記ポリエステル系樹脂組成物は、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、前記ジカルボン酸成分はテレフタル酸を含み、前記ジオール成分はエチレングリコールを含み、かつ、以下(i)~(ii)を満たすことを特徴とする、3次元造形用材料。(i)示差走査熱量測定において10℃/分の昇温速度で測定した際のガラス転移温度(Tg)が51℃以上75℃以下。(ii)示差走査熱量測定において10℃/分の昇温速度で測定した際の融解温度(Tm)が無い、又は融解温度(Tm)が210℃以下。
 本発明の要旨は以下のとおりである。
The present inventors have found that the above problems can be solved by the three-dimensional modeling material described below, and completed the present invention. A three-dimensional modeling material for use in a material extrusion method, comprising a polyester-based resin composition, wherein the polyester-based resin composition comprises a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component. wherein the dicarboxylic acid component contains terephthalic acid, the diol component contains ethylene glycol, and the following (i) to (ii) are satisfied. (i) A glass transition temperature (Tg) of 51° C. or higher and 75° C. or lower when measured at a heating rate of 10° C./min in differential scanning calorimetry. (ii) There is no melting temperature (Tm) when measured at a heating rate of 10°C/min in differential scanning calorimetry, or the melting temperature (Tm) is 210°C or less.
The gist of the present invention is as follows.
<1>
 材料押出法に用いるための3次元造形用材料であって、
 ポリエステル系樹脂組成物を含み、
 前記ポリエステル系樹脂組成物は、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
 前記ジカルボン酸成分はテレフタル酸を含み、前記ジオール成分はエチレングリコールを含み、かつ、
 以下(i)~(ii)を満たすことを特徴とする、3次元造形用材料。
(i)示差走査熱量測定において10℃/分の昇温速度で測定した際のガラス転移温度(Tg)が51℃以上75℃以下。
(ii)示差走査熱量測定において10℃/分の昇温速度で測定した際の融解温度(Tm)が無い、又は融解温度(Tm)が210℃以下。
<2>
 前記ジオール成分が、1,3-プロパンジオール、1,4-ブタンジオール、及び、炭素数5以上の脂肪族ジオールよりなる群から選ばれる1以上をさらに含む、<1>に記載の3次元造形用材料。
<3>
 前記炭素数5以上の脂肪族ジオールが、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、及び、ポリテトラメチレングリコールよりなる群から選ばれる1以上を含む、<2>に記載の3次元造形用材料。
<4>
 前記ジカルボン酸成分が、さらにイソフタル酸、アジピン酸、コハク酸、及び、セバシン酸よりなる群から選ばれる1以上を含む、<1>~<3>のいずれか1つに記載の3次元造形用材料。
<5>
 全ての前記ジオール成分中のエチレングリコールの割合が30mol%以上である、<1>~<4>のいずれか1つに記載の3次元造形用材料。
<6>
 全ての前記ジカルボン酸成分中のテレフタル酸の割合が50mol%以上である、<1>~<5>のいずれか1つに記載の3次元造形用材料。
<7>
 前記ポリエステル系樹脂組成物が、ポリエステル系樹脂(A)及びその他のポリエステル系樹脂(B)を含む、<1>~<6>のいずれか1つに記載の3次元造形用材料。
<8>
 前記ポリエステル系樹脂(A)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
 前記ジオール成分が、炭素数5以上の脂肪族ジオールを含む、<7>に記載の3次元造形用材料。
<9>
 前記ポリエステル系樹脂(B)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
 前記ジオール成分が、1,4-ブタンジオールを含む、<7>又は<8>に記載の3次元造形用材料。
<10>
 前記ポリエステル系樹脂(A)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
 前記ポリエステル系樹脂(B)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
 前記ポリエステル系樹脂(A)における全ての前記ジカルボン酸成分中のイソフタル酸の割合が5mol%以下であり、
 前記ポリエステル系樹脂(B)における全ての前記ジカルボン酸成分中のイソフタル酸の割合が10mol%以上である、<7>に記載の3次元造形用材料。
<11>
 示差走査熱量測定において10℃/分の降温速度で測定した際の結晶化熱量(ΔHc)が10J/g以下である、<1>~<10>のいずれか1つに記載の3次元造形用材料。
<12>
 210℃、2.16kgで測定したメルトインデックスが6g/10分以上である、<1>~<11>のいずれか1つに記載の3次元造形用材料。
<13>
 JIS K7244-4に記載の動的粘弾性の温度分散測定により、歪み0.07%、周波数10Hz、昇温速度3℃/分で-100~150℃の範囲にて測定した損失正接(tanδ)のピークの数が、0~100℃の範囲で単一である、<1>~<12>のいずれか1つに記載の3次元造形用材料。
<1>
A three-dimensional modeling material for use in a material extrusion method,
including a polyester resin composition,
The polyester-based resin composition has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
the dicarboxylic acid component comprises terephthalic acid, the diol component comprises ethylene glycol, and
A three-dimensional modeling material characterized by satisfying the following (i) to (ii).
(i) A glass transition temperature (Tg) of 51° C. or higher and 75° C. or lower when measured at a heating rate of 10° C./min in differential scanning calorimetry.
(ii) There is no melting temperature (Tm) when measured at a heating rate of 10°C/min in differential scanning calorimetry, or the melting temperature (Tm) is 210°C or less.
<2>
The three-dimensional modeling according to <1>, wherein the diol component further includes one or more selected from the group consisting of 1,3-propanediol, 1,4-butanediol, and aliphatic diols having 5 or more carbon atoms. material.
<3>
For three-dimensional modeling according to <2>, wherein the aliphatic diol having 5 or more carbon atoms contains one or more selected from the group consisting of 1,4-cyclohexanedimethanol, neopentyl glycol, and polytetramethylene glycol. material.
<4>
For three-dimensional modeling according to any one of <1> to <3>, wherein the dicarboxylic acid component further contains one or more selected from the group consisting of isophthalic acid, adipic acid, succinic acid, and sebacic acid. material.
<5>
The three-dimensional modeling material according to any one of <1> to <4>, wherein the proportion of ethylene glycol in all the diol components is 30 mol% or more.
<6>
The three-dimensional modeling material according to any one of <1> to <5>, wherein the proportion of terephthalic acid in all the dicarboxylic acid components is 50 mol% or more.
<7>
The three-dimensional modeling material according to any one of <1> to <6>, wherein the polyester resin composition contains a polyester resin (A) and another polyester resin (B).
<8>
The polyester-based resin (A) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
The three-dimensional modeling material according to <7>, wherein the diol component contains an aliphatic diol having 5 or more carbon atoms.
<9>
The polyester-based resin (B) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
The three-dimensional modeling material according to <7> or <8>, wherein the diol component contains 1,4-butanediol.
<10>
The polyester-based resin (A) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
The polyester-based resin (B) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
The ratio of isophthalic acid in all the dicarboxylic acid components in the polyester resin (A) is 5 mol% or less,
The three-dimensional modeling material according to <7>, wherein the ratio of isophthalic acid in all the dicarboxylic acid components in the polyester resin (B) is 10 mol% or more.
<11>
For three-dimensional modeling according to any one of <1> to <10>, wherein the heat of crystallization (ΔHc) when measured at a temperature drop rate of 10° C./min in differential scanning calorimetry is 10 J/g or less. material.
<12>
The three-dimensional modeling material according to any one of <1> to <11>, which has a melt index of 6 g/10 minutes or more measured at 210° C. and 2.16 kg.
<13>
Loss tangent (tan δ) measured in the range of −100 to 150° C. at a strain of 0.07%, a frequency of 10 Hz, and a heating rate of 3° C./min by temperature dispersion measurement of dynamic viscoelasticity described in JIS K7244-4. The three-dimensional modeling material according to any one of <1> to <12>, wherein the number of peaks of is single in the range of 0 to 100°C.
<14>
 <1>~<13>のいずれか1つに記載の3次元造形用材料を用いて得られる、3次元造形用フィラメント。
<15>
 直径が1.0mm以上5.0mm以下である、<14>に記載の3次元造形用フィラメント。
<16>
 <14>又は<15>に記載の3次元造形用フィラメントを巻回してなる、巻回体。
<17>
 <14>若しくは<15>に記載の3次元造形用フィラメント、又は<16>に記載の巻回体を収納容器に収納してなる、3Dプリンター用カートリッジ。
<18>
 <1>~<13>のいずれか1つに記載の3次元造形用材料を用いた材料押出法による3次元造形法により得られる、樹脂成形体。
<19>
 <1>~<13>のいずれか1つに記載の3次元造形用材料を用いて、材料押出法により樹脂成形体を3次元に造形する工程を含む、樹脂成形体の製造方法。
<14>
A filament for three-dimensional modeling obtained using the material for three-dimensional modeling according to any one of <1> to <13>.
<15>
The filament for three-dimensional modeling according to <14>, having a diameter of 1.0 mm or more and 5.0 mm or less.
<16>
A wound body obtained by winding the filament for three-dimensional modeling according to <14> or <15>.
<17>
A 3D printer cartridge comprising the filament for three-dimensional modeling according to <14> or <15>, or the winding body according to <16>, which is stored in a storage container.
<18>
A resin molded article obtained by a three-dimensional modeling method by a material extrusion method using the three-dimensional modeling material according to any one of <1> to <13>.
<19>
A method for producing a resin molded article, comprising a step of three-dimensionally modeling a resin molded article by a material extrusion method using the three-dimensional modeling material according to any one of <1> to <13>.
 本発明によれば、ノズル温度やテーブル温度等が低温においても造形性に優れ、機械的強度にも優れた、利便性の高い3次元造形用材料、及びそれを用いた樹脂成形体が提供される。 ADVANTAGE OF THE INVENTION According to the present invention, a highly convenient material for three-dimensional modeling, which has excellent molding properties even at low nozzle temperatures, table temperatures, etc., excellent mechanical strength, and a resin molded body using the same is provided. be.
図1は、実施例及び比較例の低温造形性評価に用いた試験片の形状を示す図である。FIG. 1 is a diagram showing the shape of a test piece used for evaluation of low-temperature formability in Examples and Comparative Examples.
 以下に本発明の実施の形態を詳細に説明する。本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。 The embodiments of the present invention will be described in detail below. The present invention is not limited to the following description, and can be arbitrarily modified without departing from the gist of the present invention. In this specification, when a numerical value or a physical property value is sandwiched before and after the "~", it is used to include the values before and after it.
 <3次元造形用材料>
 本発明の3次元造形用材料を、示差走査熱量測定において10℃/分の昇温速度で測定した際のガラス転移温度(Tg)は、家庭用3Dプリンターでの造形性、及び低反り性の観点から、75℃以下であり、65℃以下がより好ましく、60℃以下がさらに好ましく、57℃以下が最も好ましい。また、耐熱性や室温での剛性、連続造形性の観点から、51℃以上であり、52℃以上がより好ましく、53℃以上がさらに好ましく、55℃以上が最も好ましい。
<3D modeling material>
The glass transition temperature (Tg) of the three-dimensional modeling material of the present invention when measured at a temperature increase rate of 10 ° C./min in differential scanning calorimetry is the shapeability with a home 3D printer and low warpage. From the viewpoint, the temperature is 75° C. or lower, preferably 65° C. or lower, even more preferably 60° C. or lower, and most preferably 57° C. or lower. From the viewpoints of heat resistance, rigidity at room temperature, and continuous molding, the temperature is 51° C. or higher, more preferably 52° C. or higher, even more preferably 53° C. or higher, and most preferably 55° C. or higher.
 本発明の3次元造形用材料を、示差走査熱量測定において10℃/分の昇温速度で測定した際の融解温度(Tm)は、低温での造形性の観点から、融解温度(Tm)が無い、又は融解温度(Tm)が210℃以下であり、200℃以下がより好ましく、190℃以下がさらに好ましく、180℃以下が最も好ましい。なお、融解温度(Tm)が無い場合には、ガラス転移温度(Tg)を上述の好ましい範囲とすることにより、低温での造形性を良好なものとすることができる。
 また、耐熱性の観点から、融解温度(Tm)は100℃以上が好ましく、120℃以上がより好ましく、150℃以上がさらに好ましく、170℃以上が最も好ましい。特に、本発明の3次元造形用材料が結晶性の低い樹脂や非晶性の樹脂を主成分とする場合は、融解温度(Tm)が無いことが多いが、その場合、結晶化収縮に起因する造形物の反りを抑制する観点から最も好ましい。ここで、融解温度(Tm)とは、5J/g以上の結晶融解熱量(ΔHm)を有する融解ピークのピークトップの温度を指す。
The melting temperature (Tm) of the three-dimensional modeling material of the present invention when measured at a heating rate of 10 ° C./min in differential scanning calorimetry is, from the viewpoint of modeling at low temperatures, the melting temperature (Tm) None, or the melting temperature (Tm) is 210° C. or lower, preferably 200° C. or lower, even more preferably 190° C. or lower, and most preferably 180° C. or lower. In the absence of a melting temperature (Tm), molding properties at low temperatures can be improved by setting the glass transition temperature (Tg) within the preferred range described above.
From the viewpoint of heat resistance, the melting temperature (Tm) is preferably 100°C or higher, more preferably 120°C or higher, still more preferably 150°C or higher, and most preferably 170°C or higher. In particular, when the three-dimensional modeling material of the present invention is mainly composed of a resin with low crystallinity or an amorphous resin, there is often no melting temperature (Tm). It is most preferable from the viewpoint of suppressing the warp of the modeled object. Here, the melting temperature (Tm) refers to the peak top temperature of a melting peak having a heat of crystal fusion (ΔHm) of 5 J/g or more.
 本発明の3次元造形用材料を、示差走査熱量測定において10℃/分の降温速度で測定した際の結晶化熱量(ΔHc)は特に限定されないが、低反り性の観点から、10J/g以下が好ましく、5J/g以下がより好ましく、1J/g以下がさらに好ましい。 The heat of crystallization (ΔHc) when the material for three-dimensional modeling of the present invention is measured at a temperature drop rate of 10° C./min in differential scanning calorimetry is not particularly limited, but from the viewpoint of low warpage, it is 10 J/g or less. is preferred, 5 J/g or less is more preferred, and 1 J/g or less is even more preferred.
 本発明の3次元造形用材料を、210℃、2.16kgで測定したメルトインデックス(MI)の値は特に限定されないが、家庭用3Dプリンターでの押出性の観点から、5g/10分以上が好ましく、6g/10分以上がより好ましく、7g/10分以上がさらに好ましく、9.7g/10分以上が最も好ましい。また、造形時の糸引きやダマ等の不良抑制の観点から、50g/10分以下が好ましく、30g/10分以下がより好ましく、20g/10分以下が最も好ましい。 The melt index (MI) value of the three-dimensional modeling material of the present invention measured at 210 ° C. and 2.16 kg is not particularly limited, but from the viewpoint of extrudability with a home 3D printer, it is 5 g / 10 minutes or more. Preferably, it is 6 g/10 minutes or more, more preferably 7 g/10 minutes or more, and most preferably 9.7 g/10 minutes or more. Also, from the viewpoint of suppressing defects such as stringiness and lumps during modeling, it is preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, and most preferably 20 g/10 minutes or less.
 本発明の3次元造形用材料をJIS K7244-4に記載の動的粘弾性の温度分散測定により、歪み0.07%、周波数10Hz、昇温速度3℃/分で-100~150℃の範囲にて測定した損失正接(tanδ)のピークの数は特に限定されないが、造形物の層間接着性の観点から、0~100℃の範囲で単一のピークを示すことが好ましい。tanδが単一のピークを示すということは、例えば、後述のポリエステル系樹脂(A)及びその他のポリエステル系樹脂(B)のブレンドが相溶であると考えられ、造形物の層間接着性が良好となる。 The temperature dispersion measurement of the dynamic viscoelasticity described in JIS K7244-4 shows that the three-dimensional modeling material of the present invention has a strain of 0.07%, a frequency of 10 Hz, and a temperature increase rate of 3°C/min in the range of -100 to 150°C. Although the number of peaks of the loss tangent (tan δ) measured at is not particularly limited, it is preferable to show a single peak in the range of 0 to 100° C. from the viewpoint of interlayer adhesion of the shaped article. The fact that tan δ shows a single peak means that, for example, a blend of a polyester resin (A) and another polyester resin (B), which will be described later, is compatible with each other, and the interlaminar adhesion of the model is good. becomes.
<ポリエステル系樹脂組成物>
 本発明の3次元造形用材料は、材料押出法に用いるための3次元造形用材料であって、ポリエステル系樹脂組成物を含み、前記ポリエステル系樹脂組成物は、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、前記ジカルボン酸成分はテレフタル酸を含み、前記ジオール成分はエチレングリコールを含み、かつ、以下(i)~(ii)を満たす。
(i)示差走査熱量測定において10℃/分の昇温速度で測定した際のガラス転移温度(Tg)が51℃以上75℃以下。
(ii)示差走査熱量測定において10℃/分の昇温速度で測定した際の融解温度(Tm)が無い、又は融解温度(Tm)が210℃以下。
<Polyester resin composition>
The three-dimensional modeling material of the present invention is a three-dimensional modeling material for use in a material extrusion method, and contains a polyester-based resin composition, wherein the polyester-based resin composition has a repeating structure derived from a dicarboxylic acid component. It has units and repeating structural units derived from a diol component, the dicarboxylic acid component contains terephthalic acid, the diol component contains ethylene glycol, and satisfies (i) to (ii) below.
(i) A glass transition temperature (Tg) of 51° C. or higher and 75° C. or lower when measured at a heating rate of 10° C./min in differential scanning calorimetry.
(ii) There is no melting temperature (Tm) when measured at a heating rate of 10°C/min in differential scanning calorimetry, or the melting temperature (Tm) is 210°C or less.
 上記3次元造形用材料中のポリエステル系樹脂組成物の含有量は特に限定されないが、3次元造形用材料の物性を本発明の好ましい範囲に調整する観点から、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。また、同様の観点から、100質量%以下であることが好ましく、99質量%以下であることがより好ましく、95質量%以下であることがさらに好ましい。 The content of the polyester-based resin composition in the three-dimensional modeling material is not particularly limited, but from the viewpoint of adjusting the physical properties of the three-dimensional modeling material to the preferred range of the present invention, it is preferably 50% by mass or more. , more preferably 70% by mass or more, more preferably 90% by mass or more. From the same viewpoint, the content is preferably 100% by mass or less, more preferably 99% by mass or less, and even more preferably 95% by mass or less.
(ジカルボン酸成分)
 本発明の3次元造形用材料において、ポリエステル系樹脂組成物はジカルボン酸成分に由来する繰り返し構成単位を有し、ジカルボン酸成分はテレフタル酸を含む。
 上記の「ジカルボン酸成分」はテレフタル酸からなるものであってもよく、テレフタル酸に加えてさらなるジカルボン酸成分を含んでいてもよい。上記の「さらなるジカルボン酸成分」の代表的なものとしては、イソフタル酸、ナフタレンジカルボン酸、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ネオペンチル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、p-オキシ安息香酸等が挙げられる。ジカルボン酸成分が複数の成分を含む場合は、各ジカルボン酸成分の割合を適宜選択することができる。ポリエステル系樹脂組成物のガラス転移温度(Tg)及び融解温度(Tm)を好ましい範囲に調整する観点から、上記の「さらなるジカルボン酸成分」として、イソフタル酸、アジピン酸、コハク酸、及び、セバシン酸よりなる群から選ばれる1以上が好ましく、イソフタル酸、及び、アジピン酸がより好ましい。
 例えば、(i)ポリエチレンテレフタレート(PET)に対して、イソフタル酸に由来する繰り返し構成単位を有する樹脂をブレンドすることにより、又は、(ii)ポリエチレンテレフタレート(PET)を、イソフタル酸に由来する繰り返し構成単位をさらに有する共重合体とすることにより、ポリエチレンテレフタレート(PET)のTmを低下させることができ、本発明の3次元造形用材料においても同様の目的のために用いることができる。
(Dicarboxylic acid component)
In the three-dimensional modeling material of the present invention, the polyester-based resin composition has repeating structural units derived from a dicarboxylic acid component, and the dicarboxylic acid component contains terephthalic acid.
The above "dicarboxylic acid component" may consist of terephthalic acid, and may contain further dicarboxylic acid components in addition to terephthalic acid. Typical examples of the above "additional dicarboxylic acid components" include isophthalic acid, naphthalenedicarboxylic acid, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, neopentylic acid, isophthalic acid, and naphthalenedicarboxylic acid. , diphenyl ether dicarboxylic acid, p-oxybenzoic acid, and the like. When the dicarboxylic acid component contains a plurality of components, the ratio of each dicarboxylic acid component can be appropriately selected. From the viewpoint of adjusting the glass transition temperature (Tg) and melting temperature (Tm) of the polyester-based resin composition to a preferable range, isophthalic acid, adipic acid, succinic acid, and sebacic acid are used as the "additional dicarboxylic acid component". One or more selected from the group consisting of is preferable, and isophthalic acid and adipic acid are more preferable.
For example, (i) polyethylene terephthalate (PET) is blended with a resin having a repeating structural unit derived from isophthalic acid, or (ii) polyethylene terephthalate (PET) is blended with a repeating structure derived from isophthalic acid. By using a copolymer having further units, the Tm of polyethylene terephthalate (PET) can be lowered, and the material for three-dimensional modeling of the present invention can be used for the same purpose.
 本発明の3次元造形用材料において、ポリエステル系樹脂組成物が二種以上のジカルボン酸成分に由来する繰り返し構成単位を有する場合、二種以上のジカルボン酸成分に由来する繰り返し構成単位が単一のポリエステル系樹脂に含まれていてもよく、又は、二種以上のジカルボン酸成分に由来する繰り返し構成単位がそれぞれ別のポリエステル系樹脂に含まれていてもよい。 In the three-dimensional modeling material of the present invention, when the polyester-based resin composition has repeating structural units derived from two or more dicarboxylic acid components, the repeating structural units derived from two or more dicarboxylic acid components are single. It may be contained in the polyester-based resin, or repeating structural units derived from two or more dicarboxylic acid components may be contained in different polyester-based resins.
 耐熱性の観点から、本発明の3次元造形用材料において、ポリエステル系樹脂組成物が有するジカルボン酸成分に由来する繰り返し構成単位に用いられる全てのジカルボン酸成分中のテレフタル酸の割合は50mol%以上であることが好ましく、70mol%以上であることがより好ましく、80mol%以上であることがさらに好ましく、90mol%以上であることが特に好ましい。 From the viewpoint of heat resistance, the proportion of terephthalic acid in all the dicarboxylic acid components used in the repeating structural units derived from the dicarboxylic acid component of the polyester-based resin composition in the three-dimensional modeling material of the present invention is 50 mol% or more. is preferably 70 mol % or more, more preferably 80 mol % or more, and particularly preferably 90 mol % or more.
 低温造形性の観点から、本発明の3次元造形用材料において、ポリエステル系樹脂組成物が有するジカルボン酸成分に由来する繰り返し構成単位に用いられる全てのジカルボン酸成分中のイソフタル酸の割合は1mol%以上であることが好ましく、3mol%以上であることがより好ましく、5mol%以上であることがさらに好ましく、8mol%以上であることが特に好ましい。また、耐熱性及び剛性の観点から、30mol%以下であることが好ましく、20mol%以下であることがより好ましく、10mol%以下であることがさらに好ましい。 From the viewpoint of low-temperature formability, the ratio of isophthalic acid in all the dicarboxylic acid components used in the repeating structural units derived from the dicarboxylic acid component of the polyester-based resin composition in the three-dimensional modeling material of the present invention is 1 mol%. It is preferably at least 3 mol %, more preferably at least 5 mol %, particularly preferably at least 8 mol %. From the viewpoint of heat resistance and rigidity, the content is preferably 30 mol% or less, more preferably 20 mol% or less, and even more preferably 10 mol% or less.
(ジオール成分)
 本発明の3次元造形用材料において、ポリエステル系樹脂組成物はジオール成分に由来する繰り返し構成単位を有し、ジオール成分はエチレングリコールを含む。
 上記の「ジオール成分」はエチレングリコールからなるものであってもよく、エチレングリコールに加えてさらなるジオール成分を含んでいてもよい。上記の「さらなるジオール成分」の代表的なものとしては、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール及び1,4-ブタンジオール、並びに、1,5-ペンタンジオール、3-メチルペンタンジオール、1,3-ヘキサンジオール、1,6-ヘキサンジオール、水添ビスフェノールA、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール(NPG)、ポリプロピレングリコール及びポリテトラメチレングリコールなどの炭素数5以上の脂肪族ジオール、などが挙げられる。ジオール成分が複数の成分を含む場合は、各ジオール成分の割合を適宜選択することができる。ポリエステル系樹脂組成物のガラス転移温度(Tg)及び融解温度(Tm)を好ましい範囲に調整する観点から、上記の「さらなるジオール成分」として、1,3-プロパンジオール、1,4-ブタンジオール、及び、炭素数5以上の脂肪族ジオールよりなる群から選ばれる1以上が好ましく、1,4-ブタンジオール及び、炭素数5以上の脂肪族ジオールがより好ましい。また、ポリエステル系樹脂組成物のガラス転移温度(Tg)及び融解温度(Tm)をより効果的に好ましい範囲に調整する観点から、炭素数5以上の脂肪族ジオールは、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、及び、ポリテトラメチレングリコールよりなる群から選ばれる1以上を含むことが好ましく、1,4-シクロヘキサンジメタノールがより好ましい。
 例えば、(i)ポリエチレンテレフタレート(PET)に対して、1,3-プロパンジオール又は1,4-ブタンジオール、好ましくは1,4-ブタンジオール、に由来する繰り返し構成単位を有する樹脂をブレンドすることにより、又は、(ii)ポリエチレンテレフタレート(PET)を、1,3-プロパンジオール又は1,4-ブタンジオール、好ましくは1,4-ブタンジオール、に由来する繰り返し構成単位をさらに有する共重合体とすることにより、ポリエチレンテレフタレート(PET)のTgを低下させることができ、本発明の3次元造形用材料においても同様の目的のために用いることができる。さらに、例えば、(i)ポリエチレンテレフタレート(PET)に対して、1,4-シクロヘキサンジメタノール又はネオペンチルグリコール(NPG)、好ましくは1,4-シクロヘキサンジメタノール、に由来する繰り返し構成単位を有する樹脂をブレンドすることにより、又は、(ii)ポリエチレンテレフタレート(PET)を、1,4-シクロヘキサンジメタノール又はネオペンチルグリコール(NPG)に由来する繰り返し構成単位をさらに有する共重合体とすることにより、ポリエチレンテレフタレート(PET)のTmを低下させることができ、本発明の3次元造形用材料においても同様の目的のために用いることができる。
(Diol component)
In the three-dimensional modeling material of the present invention, the polyester-based resin composition has repeating structural units derived from a diol component, and the diol component contains ethylene glycol.
The above "diol component" may consist of ethylene glycol, and may contain further diol components in addition to ethylene glycol. Representative of the above "additional diol components" are diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol and 1,4-butanediol, and 1,5 -pentanediol, 3-methylpentanediol, 1,3-hexanediol, 1,6-hexanediol, hydrogenated bisphenol A, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol, dipropylene glycol, neopentyl and aliphatic diols having 5 or more carbon atoms such as glycol (NPG), polypropylene glycol and polytetramethylene glycol. When the diol component contains a plurality of components, the ratio of each diol component can be appropriately selected. From the viewpoint of adjusting the glass transition temperature (Tg) and melting temperature (Tm) of the polyester-based resin composition to a preferable range, the above-mentioned "additional diol component" includes 1,3-propanediol, 1,4-butanediol, and one or more selected from the group consisting of aliphatic diols having 5 or more carbon atoms are preferable, and 1,4-butanediol and aliphatic diols having 5 or more carbon atoms are more preferable. In addition, from the viewpoint of more effectively adjusting the glass transition temperature (Tg) and melting temperature (Tm) of the polyester-based resin composition to preferred ranges, the aliphatic diol having 5 or more carbon atoms is 1,4-cyclohexanedimethanol. , neopentyl glycol, and polytetramethylene glycol, preferably one or more selected from the group consisting of polytetramethylene glycol, more preferably 1,4-cyclohexanedimethanol.
For example, (i) blending polyethylene terephthalate (PET) with a resin having repeating units derived from 1,3-propanediol or 1,4-butanediol, preferably 1,4-butanediol. or (ii) polyethylene terephthalate (PET) with a copolymer further having a repeating structural unit derived from 1,3-propanediol or 1,4-butanediol, preferably 1,4-butanediol By doing so, the Tg of polyethylene terephthalate (PET) can be lowered, and the material for three-dimensional modeling of the present invention can be used for the same purpose. Furthermore, for example, (i) a resin having a repeating structural unit derived from 1,4-cyclohexanedimethanol or neopentyl glycol (NPG), preferably 1,4-cyclohexanedimethanol, for polyethylene terephthalate (PET) or (ii) polyethylene terephthalate (PET) as a copolymer further having repeating units derived from 1,4-cyclohexanedimethanol or neopentyl glycol (NPG), polyethylene The Tm of terephthalate (PET) can be lowered, and the material for three-dimensional modeling of the present invention can be used for the same purpose.
 本発明の3次元造形用材料において、ポリエステル系樹脂組成物が二種以上のジオール成分に由来する繰り返し構成単位を有する場合、二種以上のジオール成分に由来する繰り返し構成単位が単一のポリエステル系樹脂に含まれていてもよく、又は、二種以上のジオール成分に由来する繰り返し構成単位がそれぞれ別のポリエステル系樹脂に含まれていてもよい。 In the three-dimensional modeling material of the present invention, when the polyester-based resin composition has repeating structural units derived from two or more diol components, the repeating structural units derived from two or more diol components are single polyester-based It may be contained in the resin, or repeating structural units derived from two or more diol components may be contained in different polyester-based resins.
 耐熱性及び剛性の観点から、本発明の3次元造形用材料において、ポリエステル系樹脂組成物が有するジオール成分に由来する繰り返し構成単位に用いられる全てのジオール成分中のエチレングリコールの割合は30mol%以上であることが好ましく、40mol%以上であることがより好ましく、45mol%以上であることがさらに好ましい。 From the viewpoint of heat resistance and rigidity, in the three-dimensional modeling material of the present invention, the ratio of ethylene glycol in all the diol components used in the repeating structural units derived from the diol component of the polyester-based resin composition is 30 mol% or more. is preferably 40 mol % or more, and even more preferably 45 mol % or more.
(好ましいポリエステル系樹脂)
 本発明の3次元造形用材料に含まれるポリエステル系樹脂組成物は、後述するポリエステル系樹脂(A)及びその他のポリエステル系樹脂(B)を含むことが好ましい。
 ポリエステル系樹脂(A)やその他のポリエステル系樹脂(B)としては、ジカルボン酸成分とジオール成分との縮合重合からなる樹脂が挙げられる。ジカルボン酸成分およびジオール成分のうち、片方の成分もしくは両方の成分は、単一の化合物からなるものであってもよく、二種以上の混合物であってもよい。
(Preferred polyester resin)
The polyester-based resin composition contained in the three-dimensional modeling material of the present invention preferably contains a polyester-based resin (A) and another polyester-based resin (B), which will be described later.
Examples of polyester resin (A) and other polyester resin (B) include resins obtained by condensation polymerization of a dicarboxylic acid component and a diol component. One or both of the dicarboxylic acid component and the diol component may consist of a single compound or a mixture of two or more.
 また、ポリエステル系樹脂(A)やその他のポリエステル系樹脂(B)は、オキシ酸の重合体、あるいはオキシ酸の共重合体からなるポリエステル系樹脂であってもよい。オキシ酸の代表的なものとしては、乳酸、εカプロラクトン、p-β―ヒドロキシエトキシ安息香酸などが挙げられる。
 ポリエステル系樹脂(A)やその他のポリエステル系樹脂(B)は、結晶性の調整など物性を改良するために、トリメリット酸、ピロメリット酸など三官能以上のカルボン酸成分及び/又はトリメチロールプロパンペンタエリスリトールなど三官能以上のポリオール成分などが微量共重合されたものを用いてもよい。
Further, the polyester resin (A) and the other polyester resin (B) may be a polyester resin composed of an oxyacid polymer or an oxyacid copolymer. Typical oxyacids include lactic acid, ε-caprolactone, p-β-hydroxyethoxybenzoic acid and the like.
Polyester-based resin (A) and other polyester-based resin (B), in order to improve physical properties such as adjustment of crystallinity, trifunctional or higher carboxylic acid components such as trimellitic acid and pyromellitic acid and / or trimethylolpropane A trifunctional or higher polyol component such as pentaerythritol may also be used.
 ポリエステル系樹脂(A)やその他のポリエステル系樹脂(B)は、プラスチック廃棄物や端材などから再生されたリサイクル樹脂を含んでもよい。その際のリサイクル手法としては、使用済み樹脂を化学的に組成変換したのち再生されるケミカルリサイクルや、使用済み樹脂の選別、不純物除去ののちに粉砕・洗浄及び造粒等の工程を経て再生されるマテリアルリサイクル等があげられる。また、ポリエステル系樹脂(A)やその他のポリエステル系樹脂(B)は、リサイクル樹脂とバージン樹脂を混合して含んでもよい。 The polyester-based resin (A) and other polyester-based resins (B) may contain recycled resins regenerated from plastic wastes and offcuts. Recycling methods include chemical recycling, in which the used resin is chemically converted and then regenerated, and used resin is sorted, impurities are removed, and then it is regenerated through processes such as pulverization, washing, and granulation. material recycling, etc. Further, the polyester resin (A) and the other polyester resin (B) may contain a mixture of recycled resin and virgin resin.
 本発明の3次元造形用材料に含まれるポリエステル系樹脂組成物がポリエステル系樹脂(A)及びその他のポリエステル系樹脂(B)を含む場合、前記ポリエステル系樹脂(A)及び前記その他のポリエステル系樹脂(B)は、それぞれ独立した成分としてポリエステル系樹脂組成物中に含まれていてもよい。または、前記ポリエステル系樹脂(A)及び前記その他のポリエステル系樹脂(B)の一部がエステル交換反応することにより、それぞれの繰り返し構成単位を含む共重合体としてポリエステル系樹脂組成物中に含まれていてもよい。 When the polyester resin composition contained in the three-dimensional modeling material of the present invention contains a polyester resin (A) and another polyester resin (B), the polyester resin (A) and the other polyester resin (B) may be contained in the polyester-based resin composition as independent components. Alternatively, a part of the polyester resin (A) and the other polyester resin (B) is transesterified to be included in the polyester resin composition as a copolymer containing each repeating structural unit. may be
 <ポリエステル系樹脂(A)>
 本発明の3次元造形用材料に含まれるポリエステル系樹脂組成物を製造するために、ポリエステル系樹脂(A)を用いてもよい。
 ここで、ポリエステル系樹脂(A)を、示差走査熱量測定において10℃/分の降温速度で測定した際の結晶化熱量(ΔHc)は特に限定されないが、本発明においては、結晶化収縮に起因する造形物の反りを抑制する観点から60J/g未満が好ましく、30J/g以下がより好ましく、10J/g以下がさらに好ましく、5J/g以下が特に好ましく、0J/gのものが最も好ましい。
<Polyester resin (A)>
The polyester-based resin (A) may be used to produce the polyester-based resin composition contained in the three-dimensional modeling material of the present invention.
Here, the heat of crystallization (ΔHc) when the polyester resin (A) is measured at a temperature drop rate of 10° C./min in differential scanning calorimetry is not particularly limited, but in the present invention, It is preferably less than 60 J/g, more preferably 30 J/g or less, even more preferably 10 J/g or less, particularly preferably 5 J/g or less, and most preferably 0 J/g, from the viewpoint of suppressing warpage of the molded article.
 ポリエステル系樹脂(A)の組成としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分との縮合重合からなるものが挙げられる。すなわち、ポリエステル系樹脂(A)は、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有することができる。ジカルボン酸成分およびジオール成分のうち、片方の成分もしくは両方の成分は、単一の化合物からなるものであってもよく、二種以上の混合物であってもよい。
 上記の「ジカルボン酸成分」の代表的なものとしては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ネオペンチル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、p-オキシ安息香酸等が挙げられる。これらは、上記の「ジカルボン酸成分」として選択される際、一種でも二種以上の混合物であってもよく、混合される際の量も適宜選択することができる。これらの中でも、耐熱性や機械特性の観点から芳香族ジカルボン酸成分を用いることが好ましく、具体的には、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸に由来する構造を有することが最も好ましい。
The composition of the polyester-based resin (A) is not particularly limited, but examples thereof include condensation polymerization of a dicarboxylic acid component and a diol component. That is, the polyester-based resin (A) can have a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component. One or both of the dicarboxylic acid component and the diol component may consist of a single compound or a mixture of two or more.
Typical examples of the above "dicarboxylic acid component" include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, neopentylic acid, isophthalic acid, and naphthalene. dicarboxylic acid, diphenyl ether dicarboxylic acid, p-oxybenzoic acid and the like. When these are selected as the above-mentioned "dicarboxylic acid component", they may be one kind or a mixture of two or more kinds, and the amount when mixed can be appropriately selected. Among these, it is preferable to use an aromatic dicarboxylic acid component from the viewpoint of heat resistance and mechanical properties. Specifically, it is most preferable to have a structure derived from terephthalic acid, isophthalic acid, or naphthalenedicarboxylic acid.
 上記の「ジオール成分」の代表的なものとしては、エチレングリコール、ジエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール及び1,4-ブタンジオールなどの炭素数4以下の脂肪族ジオール、並びに、1,5-ペンタンジオール、3-メチルペンタンジオール、1,3-ヘキサンジオール、1,6-ヘキサンジオール、水添ビスフェノールA、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ネオペンチルグリコール(NPG)、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールなどの炭素数5以上の脂肪族ジオール、などが挙げられる。これらは、上記の「ジオール成分」として選択される際、一種でも二種以上の混合物であってもよく、混合される際の量も適宜選択することができる。これらの中でも、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチルペンタンジオール、1,3-ヘキサンジオール、1,6-ヘキサンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコールが好ましく、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール、ポリテトラメチレングリコールがさらに好ましく、エチレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、ポリテトラメチレングリコールが特に好ましく、エチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノールに由来する構造を有することが最も好ましい。また、低反り性の観点から、上記の「ジオール成分」が、炭素数5以上の脂肪族ジオールを含むことが好ましい。 Typical examples of the above "diol component" include ethylene glycol, diethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol and 1,4-butanediol. 4 or less aliphatic diols, and 1,5-pentanediol, 3-methylpentanediol, 1,3-hexanediol, 1,6-hexanediol, hydrogenated bisphenol A, 1,4-cyclohexanedimethanol, tri C5 or more aliphatic diols such as ethylene glycol, neopentyl glycol (NPG), polyethylene glycol, dipropylene glycol, polypropylene glycol and polytetramethylene glycol, and the like. When these are selected as the above-mentioned "diol component", they may be one kind or a mixture of two or more kinds, and the amount when mixed can be appropriately selected. Among these, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 3-methylpentanediol, 1, 3-hexanediol, 1,6-hexanediol, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol, polytetramethylene glycol are preferred, and ethylene glycol, 1,4-butanediol, 1,6- Hexanediol, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol and polytetramethylene glycol are more preferable, and ethylene glycol, 1,4-butanediol, diethylene glycol, 1,4-cyclohexanedimethanol and polytetramethylene glycol are more preferable. Methylene glycol is particularly preferred, most preferably having structures derived from ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol. Moreover, from the viewpoint of low warpage, it is preferable that the above-mentioned "diol component" contains an aliphatic diol having 5 or more carbon atoms.
 ポリエステル系樹脂(A)は、上記から選択されたジカルボン酸成分およびジオール成分以外の共重合可能なその他の酸成分やジオール成分を含有していてもよい。その他の酸成分の例としては、イソフタル酸、2-クロロテレフタル酸、2,5-ジクロロテレフタル酸、2-メチルテレフタル酸、4,4-スチルベンジカルボン酸、4,4-ビフェニルジカルボン酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビス安息香酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4-ジフェニルエーテルジカルボン酸、4,4-ジフェノキシエタンジカルボン酸、5-Naスルホイソフタル酸、エチレン-ビス-p-安息香酸等から誘導される芳香族ジカルボン酸成分や、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等から誘導される脂肪族ジカルボン酸成分が挙げられる。なかでもイソフタル酸、2,6-ナフタレンジカルボン酸をはじめとする芳香族ジカルボン酸成分が好ましい。 The polyester-based resin (A) may contain other copolymerizable acid components and diol components other than the dicarboxylic acid component and diol component selected from the above. Examples of other acid components include isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, 4,4-stilbenedicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid. , 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, bisbenzoic acid, bis(p-carboxyphenyl)methane, anthracenedicarboxylic acid, 4,4-diphenyletherdicarboxylic acid, 4,4-diphenoxyethanedicarboxylic acid Aromatic dicarboxylic acid components derived from acids, 5-Na sulfoisophthalic acid, ethylene-bis-p-benzoic acid, etc., adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxylic acid, Examples include aliphatic dicarboxylic acid components derived from 1,4-cyclohexanedicarboxylic acid and the like. Among them, aromatic dicarboxylic acid components such as isophthalic acid and 2,6-naphthalenedicarboxylic acid are preferred.
 共重合可能なその他のジオール成分の例としては、ジエチレングリコール、トランス-テトラメチル-1,3-シクロブタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、スピログリコール、及びポリテトラメチレングリコールからなる群から選ばれる少なくとも1種であることが好ましい。特に、トランス-テトラメチル-1,3-シクロブタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、スピログリコール、及びポリテトラメチレングリコールからなる群から選ばれる少なくとも1種の脂環構造を有するジオール成分が好適に用いられ、経済性、工業的な入手し易さなどの観点から、特に1,4-シクロヘキサンジメタノール、スピログリコール、及びポリテトラメチレングリコールが好ましい。 Examples of other copolymerizable diol components include diethylene glycol, trans-tetramethyl-1,3-cyclobutanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-butane. at least one selected from the group consisting of diol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, spiroglycol, and polytetramethylene glycol; Preferably. In particular, trans-tetramethyl-1,3-cyclobutanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1, A diol component having at least one alicyclic structure selected from the group consisting of 4-cyclohexanediol, 1,3-cyclohexanediol, spiroglycol, and polytetramethylene glycol is preferably used, and is economical and industrially available. 1,4-cyclohexanedimethanol, spiroglycol, and polytetramethylene glycol are particularly preferred from the viewpoint of ease of use.
 ここで、共重合可能なその他の酸成分やジオール成分の含有率は、特に限定されないが、結晶化熱量(ΔHc)を調整する観点から、ポリエステル系樹脂(A)の全酸成分中又は全ジオール成分中に1mol%以上、好ましくは15mol%以上、さらに好ましくは25mol%以上であり、上限は49mol%以下、好ましくは45mol%以下であることが望ましい。 Here, the content of other copolymerizable acid components and diol components is not particularly limited, but from the viewpoint of adjusting the heat of crystallization (ΔHc), It is 1 mol % or more, preferably 15 mol % or more, more preferably 25 mol % or more in the component, and the upper limit is 49 mol % or less, preferably 45 mol % or less.
 ポリエステル系樹脂(A)の具体例としては、ポリエチレンテレフタレート樹脂、ポリプロピレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンイソフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂及びポリトリメチレンテレフタレート樹脂などの芳香族ポリエステル樹脂、ポリエチレンサクシネート樹脂、ポリブチレンサクシネート樹脂、などの脂肪族ポリエステル樹脂や、ポリ乳酸樹脂、ポリカプロラクトン樹脂のようなオキシ酸の重合体、あるいはポリエステルエラストマーなどが挙げられる。上記ポリエステル系樹脂(A)の具体例として挙げたものは単独重合体であってもよく、また任意の組み合わせからなる共重合体であってもよい。これらは、上記ポリエステル系樹脂(A)として選択される際、一種でも二種以上の混合物であってもよく、混合される際の量も適宜選択することができる。より具体的には、ポリエチレンテレフタレート樹脂(PET)、グリコール変性ポリエチレンテレフタレート樹脂(PETG、1,4-シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂)やイソフタル酸共重合ポリエチレンテレフタレート樹脂(IPA-PET)等が挙げられるが、汎用性や耐衝撃性の観点からPETGを用いることが好ましい。PETGとしては、例えば、共重合比率が30%程度以下の1,4-シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂を用いることができる。 Specific examples of the polyester resin (A) include aromatic aromatics such as polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polyethylene isophthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin and polytrimethylene terephthalate resin. Examples include aliphatic polyester resins such as polyester resins, polyethylene succinate resins and polybutylene succinate resins, oxyacid polymers such as polylactic acid resins and polycaprolactone resins, and polyester elastomers. Specific examples of the polyester-based resin (A) may be homopolymers or copolymers of any combination. When these are selected as the polyester-based resin (A), they may be of one type or a mixture of two or more types, and the amount when mixed can be appropriately selected. More specifically, polyethylene terephthalate resin (PET), glycol-modified polyethylene terephthalate resin (PETG, 1,4-cyclohexanedimethanol copolymerized polyethylene terephthalate resin), isophthalic acid copolymerized polyethylene terephthalate resin (IPA-PET), and the like. However, it is preferable to use PETG from the viewpoint of versatility and impact resistance. As PETG, for example, 1,4-cyclohexanedimethanol copolymerized polyethylene terephthalate resin with a copolymerization ratio of about 30% or less can be used.
 ポリエステル系樹脂(A)を、210℃、2.16kgで測定したメルトインデックス(MI)の値は特に限定されないが、吐出安定性の観点から1g/10分以上が好ましく、3g/10分以上がより好ましく、5g/10分以上がさらに好ましく、6g/10分以上が特に好ましい。また、造形時の糸引きやダマ等の不良抑制の観点から、50g/10分以下が好ましく、30g/10分以下がより好ましく、20g/10分以下がもっとも好ましい。 The melt index (MI) value of the polyester resin (A) measured at 210° C. and 2.16 kg is not particularly limited, but from the viewpoint of ejection stability, it is preferably 1 g/10 minutes or more, and 3 g/10 minutes or more. More preferably, 5 g/10 minutes or more is even more preferable, and 6 g/10 minutes or more is particularly preferable. Also, from the viewpoint of suppressing defects such as stringiness and lumps during modeling, it is preferably 50 g/10 minutes or less, more preferably 30 g/10 minutes or less, and most preferably 20 g/10 minutes or less.
 ポリエステル系樹脂(A)を、示差走査熱量測定において10℃/分の昇温速度で測定した際のガラス転移温度(Tg)は特に限定されないが、上記3次元造形用材料の3Dプリンターの造形テーブルへの定着性の観点から、100℃以下が好ましく、90℃以下がより好ましく、80℃以下がさらに好ましい。また、耐熱性や室温での剛性の観点から、30℃以上が好ましく、40℃以上がより好ましく、60℃以上がさらに好ましく、65℃以上が最も好ましい。 The glass transition temperature (Tg) of the polyester resin (A) measured at a temperature increase rate of 10° C./min in differential scanning calorimetry is not particularly limited, but the molding table of the 3D printer of the above three-dimensional molding material From the viewpoint of fixability to the toner, the temperature is preferably 100° C. or lower, more preferably 90° C. or lower, and even more preferably 80° C. or lower. From the viewpoint of heat resistance and rigidity at room temperature, the temperature is preferably 30°C or higher, more preferably 40°C or higher, even more preferably 60°C or higher, and most preferably 65°C or higher.
 ポリエステル系樹脂(A)を、示差走査熱量測定において10℃/分の昇温速度で測定した際の融解温度(Tm)は特に限定されないが、低温での造形性の観点から、融解温度(Tm)が無い、又は融解温度(Tm)は280℃以下が好ましく、250℃以下がより好ましく、210℃以下がさらに好ましく、180℃以下が最も好ましい。また、耐熱性の観点から、Tmは100℃以上が好ましく、120℃以上がより好ましく、150℃以上がさらに好ましく、170℃以上が最も好ましい。特に、上記ポリエステル系樹脂(A)が結晶性の低い樹脂や非晶性の樹脂を主成分とする場合は、融解温度(Tm)が無いことが多いが、その場合、結晶化収縮に起因する造形物の反りを抑制する観点から最も好ましい。ここで、融解温度(Tm)とは、5J/g以上の結晶融解熱量(ΔHm)を有する融解ピークのピークトップの温度を指す。 The melting temperature (Tm) of the polyester-based resin (A) measured at a heating rate of 10°C/min in differential scanning calorimetry is not particularly limited, but the melting temperature (Tm ), or the melting temperature (Tm) is preferably 280° C. or lower, more preferably 250° C. or lower, still more preferably 210° C. or lower, and most preferably 180° C. or lower. From the viewpoint of heat resistance, Tm is preferably 100°C or higher, more preferably 120°C or higher, still more preferably 150°C or higher, and most preferably 170°C or higher. In particular, when the polyester-based resin (A) is mainly composed of a resin with low crystallinity or an amorphous resin, there is often no melting temperature (Tm). It is most preferable from the viewpoint of suppressing the warp of the modeled object. Here, the melting temperature (Tm) refers to the peak top temperature of a melting peak having a heat of crystal fusion (ΔHm) of 5 J/g or more.
 ポリエステル系樹脂(A)の市販品としては、例えば、SKケミカル社製「SKYGREEN(登録商標)」シリーズ、イーストマンケミカル社製「Eastar Copolyester(登録商標)」シリーズ、「TRITAN(登録商標)」シリーズ、三菱ガス化学株式会社製「ALTESTER(登録商標)」シリーズなどが挙げられる。
 上記3次元造形用材料中のポリエステル系樹脂(A)の含有量は特に限定されないが、3次元造形用材料の物性を本発明の好ましい範囲に調整する観点から、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。また、同様の観点から、99質量%以下であることが好ましく、95質量%以下であることがより好ましく、90質量%以下であることがさらに好ましい。
Examples of commercial products of the polyester resin (A) include "SKYGREEN (registered trademark)" series manufactured by SK Chemicals, "Easter Copolyester (registered trademark)" series manufactured by Eastman Chemical Co., and "TRITAN (registered trademark)" series. , "ALTESTER (registered trademark)" series manufactured by Mitsubishi Gas Chemical Co., Inc., and the like.
The content of the polyester-based resin (A) in the three-dimensional modeling material is not particularly limited, but from the viewpoint of adjusting the physical properties of the three-dimensional modeling material to the preferred range of the present invention, it is preferably 50% by mass or more. It is preferably 60% by mass or more, more preferably 70% by mass or more. From the same viewpoint, the content is preferably 99% by mass or less, more preferably 95% by mass or less, and even more preferably 90% by mass or less.
 <その他のポリエステル系樹脂(B)>
 その他のポリエステル系樹脂(B)としては、上記ポリエステル系樹脂(A)以外のポリエステル系樹脂であれば特に限定されないが、上記ポリエステル系樹脂(A)と相溶するものが好ましい。ここで、相溶するとは、JIS K7244-4に記載の動的粘弾性の温度分散測定により、歪み0.07%、周波数10Hz、昇温速度3℃/分で任意の温度範囲にて測定した際の、ポリエステル系樹脂(A)及びその他のポリエステル系樹脂(B)に由来する損失正接(tanδ)のガラス転移を示すピークが単一であることを指す。
<Other polyester resin (B)>
The other polyester-based resin (B) is not particularly limited as long as it is a polyester-based resin other than the polyester-based resin (A), but is preferably compatible with the polyester-based resin (A). Here, compatibility is measured in an arbitrary temperature range at a strain of 0.07%, a frequency of 10 Hz, and a heating rate of 3 ° C./min by temperature dispersion measurement of dynamic viscoelasticity described in JIS K7244-4. It means that the peak indicating the glass transition of the loss tangent (tan δ) derived from the polyester-based resin (A) and the other polyester-based resin (B) is single.
 その他のポリエステル系樹脂(B)の組成としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分との縮合重合からなるものが挙げられる。すなわち、ポリエステル系樹脂(B)は、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有することができる。ジカルボン酸成分およびジオール成分のうち、片方の成分もしくは両方の成分は、単一の化合物からなるものであってもよく、二種以上の混合物であってもよい。
 上記の「ジカルボン酸成分」の代表的なものとしては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、シュウ酸、マロン酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ネオペンチル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、p-オキシ安息香酸等が挙げられる。これらは、上記の「ジカルボン酸成分」として選択される際、一種でも二種以上の混合物であってもよく、混合される際の量も適宜選択することができる。これらの中でも、3次元造形用材料を本発明の好ましい範囲に調整する観点から、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸に由来する構造を有することが好ましく、テレフタル酸、イソフタル酸、アジピン酸に由来する構造を有することが最も好ましい。
The composition of the other polyester-based resin (B) is not particularly limited, but examples thereof include condensation polymerization of a dicarboxylic acid component and a diol component. That is, the polyester-based resin (B) can have a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component. One or both of the dicarboxylic acid component and the diol component may consist of a single compound or a mixture of two or more.
Typical examples of the above "dicarboxylic acid component" include terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, oxalic acid, malonic acid, succinic acid, adipic acid, azelaic acid, sebacic acid, neopentylic acid, isophthalic acid, and naphthalene. dicarboxylic acid, diphenyl ether dicarboxylic acid, p-oxybenzoic acid and the like. When these are selected as the above-mentioned "dicarboxylic acid component", they may be one kind or a mixture of two or more kinds, and the amount when mixed can be appropriately selected. Among these, from the viewpoint of adjusting the three-dimensional modeling material to the preferable range of the present invention, it is preferable to have a structure derived from terephthalic acid, isophthalic acid, naphthalene dicarboxylic acid, adipic acid, and sebacic acid. Most preferably, it has a structure derived from an acid or adipic acid.
 上記の「ジオール成分」の代表的なものとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチルペンタンジオール、1,3-ヘキサンジオール、1,6-ヘキサンジオール、水添ビスフェノールA、ジエチレングリコール、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコールなどが挙げられる。これらは、上記の「ジオール成分」として選択される際、一種でも二種以上の混合物であってもよく、混合される際の量も適宜選択することができる。これらの中でも、上記の「ジオール成分」が、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチルペンタンジオール、1,3-ヘキサンジオール、1,6-ヘキサンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール又はポリテトラメチレングリコールを含むことが好ましく、エチレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール又はポリテトラメチレングリコールを含むことがより好ましく、エチレングリコール、1,4-ブタンジオール、ジエチレングリコール、1,4-シクロヘキサンジメタノール又はポリテトラメチレングリコールを含むことがさらに好ましく、1,4-ブタンジオール又はポリテトラメチレングリコールを含むことが特に好ましく、1,4-ブタンジオールを含むことが最も好ましい。 Typical examples of the above "diol component" include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 3-methylpentanediol, 1,3-hexanediol, 1,6-hexanediol, hydrogenated bisphenol A, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol and polytetramethylene glycol. When these are selected as the above-mentioned "diol component", they may be one kind or a mixture of two or more kinds, and the amount when mixed can be appropriately selected. Among these, the above "diol component" is ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, It preferably contains 3-methylpentanediol, 1,3-hexanediol, 1,6-hexanediol, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol or polytetramethylene glycol, ethylene glycol, more preferably 1,4-butanediol, 1,6-hexanediol, diethylene glycol, 1,4-cyclohexanedimethanol, triethylene glycol, polyethylene glycol or polytetramethylene glycol, ethylene glycol, 1,4-butane Diol, diethylene glycol, 1,4-cyclohexanedimethanol or polytetramethylene glycol is more preferred, 1,4-butanediol or polytetramethylene glycol is particularly preferred, and 1,4-butanediol is included. is most preferred.
 その他のポリエステル系樹脂(B)は、上記から選択されたジカルボン酸成分およびジオール成分以外の共重合可能なその他の酸成分やジオール成分を含有していてもよい。その他の酸成分の例としては、イソフタル酸、2-クロロテレフタル酸、2,5-ジクロロテレフタル酸、2-メチルテレフタル酸、4,4-スチルベンジカルボン酸、4,4-ビフェニルジカルボン酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビス安息香酸、ビス(p-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4-ジフェニルエーテルジカルボン酸、4,4-ジフェノキシエタンジカルボン酸、5-Naスルホイソフタル酸、エチレン-ビス-p-安息香酸等から誘導される芳香族ジカルボン酸成分や、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等から誘導される脂肪族ジカルボン酸成分が挙げられる。なかでもイソフタル酸、アジピン酸に由来する構造を有することが最も好ましい。 The other polyester resin (B) may contain other copolymerizable acid components and diol components other than the dicarboxylic acid component and diol component selected from the above. Examples of other acid components include isophthalic acid, 2-chloroterephthalic acid, 2,5-dichloroterephthalic acid, 2-methylterephthalic acid, 4,4-stilbenedicarboxylic acid, 4,4-biphenyldicarboxylic acid, orthophthalic acid. , 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, bisbenzoic acid, bis(p-carboxyphenyl)methane, anthracenedicarboxylic acid, 4,4-diphenyletherdicarboxylic acid, 4,4-diphenoxyethanedicarboxylic acid Aromatic dicarboxylic acid components derived from acids, 5-Na sulfoisophthalic acid, ethylene-bis-p-benzoic acid, etc., adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 1,3-cyclohexanedicarboxylic acid, Examples include aliphatic dicarboxylic acid components derived from 1,4-cyclohexanedicarboxylic acid and the like. Among them, it is most preferable to have a structure derived from isophthalic acid or adipic acid.
 共重合可能なその他のジオール成分の例としては、ジエチレングリコール、トランス-テトラメチル-1,3-シクロブタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、スピログリコール、及びポリテトラメチレングリコールからなる群から選ばれる少なくとも1種であることが好ましい。特に、トランス-テトラメチル-1,3-シクロブタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,3-シクロヘキサンジオール、スピログリコール、及びポリテトラメチレングリコールからなる群から選ばれる少なくとも1種の脂環構造を有するジオール成分が好適に用いられ、経済性、工業的な入手し易さなどの観点から、特に1,4-ブタンジオール、ポリテトラメチレングリコールに由来する構造を有することが最も好ましい。 Examples of other copolymerizable diol components include diethylene glycol, trans-tetramethyl-1,3-cyclobutanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-butane. at least one selected from the group consisting of diol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, spiroglycol, and polytetramethylene glycol; Preferably. In particular trans-tetramethyl-1,3-cyclobutanediol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,3 A diol component having at least one alicyclic structure selected from the group consisting of -cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclohexanediol, spiroglycol, and polytetramethylene glycol is preferably used, From the viewpoints of economy and industrial availability, it is most preferable to have a structure derived from 1,4-butanediol and polytetramethylene glycol.
 ここで、共重合可能なその他の酸成分やジオール成分の含有率は、特に限定されないが、その他のポリエステル系樹脂(B)の全酸成分中又は全ジオール成分中に1mol%以上、好ましくは15mol%以上、さらに好ましくは25mol%以上であり、上限は49mol%以下、好ましくは45mol%以下、より好ましくは40mol%以下、さらに好ましくは35mol%以下であることが望ましい。 Here, the content of the other copolymerizable acid component or diol component is not particularly limited, but is 1 mol % or more, preferably 15 mol, in the total acid component or total diol component of the other polyester resin (B). % or more, more preferably 25 mol % or more, and the upper limit is 49 mol % or less, preferably 45 mol % or less, more preferably 40 mol % or less, and still more preferably 35 mol % or less.
 その他のポリエステル系樹脂(B)に含まれる共重合可能なその他の酸成分やジオール成分の種類や含有率が上記の好ましい範囲であれば、ポリエステル系樹脂(A)との良好な相溶性が期待できる。
 上記その他のポリエステル系樹脂(B)の具体例としては、ポリエチレンテレフタレート樹脂、ポリプロピレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンイソフタレート樹脂、ポリエチレンナフタレート樹脂、ポリブチレンナフタレート樹脂及びポリトリメチレンテレフタレート樹脂などの芳香族ポリエステル樹脂や、ポリエチレンサクシネート樹脂、ポリブチレンサクシネート樹脂、などの脂肪族ポリエステル樹脂や、ポリ乳酸樹脂、ポリカプロラクトン樹脂のようなオキシ酸の重合体、あるいはポリエステルエラストマーなどが挙げられる。
If the type and content of other copolymerizable acid components and diol components contained in the other polyester-based resin (B) are within the above preferred ranges, good compatibility with the polyester-based resin (A) is expected. can.
Specific examples of the other polyester resin (B) include polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polyethylene isophthalate resin, polyethylene naphthalate resin, polybutylene naphthalate resin and polytrimethylene terephthalate resin. , aliphatic polyester resins such as polyethylene succinate resin and polybutylene succinate resin, oxyacid polymers such as polylactic acid resin and polycaprolactone resin, and polyester elastomers.
 上記その他のポリエステル系樹脂(B)の具体例の中でも、ポリエステル系樹脂(A)との相溶性や3次元造形用材料の物性を本発明の効果を得る範囲に調整する観点から、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリエステルエラストマーが好ましく、ポリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリエステルエラストマーがより好ましく、ポリブチレンテレフタレート樹脂やポリエステルエラストマーがさらに好ましく、ポリブチレンテレフタレート樹脂が最も好ましい。また、低温での造形性と機械的強度のバランスが良好となる観点から、ポリブチレンテレフタレート樹脂の中でも共重合成分を有したものが特に好ましい。ポリブチレンテレフタレート樹脂に含まれる共重合成分としては特に限定されないが、イソフタル酸等の芳香族ジカルボン酸やアジピン酸等の脂肪族ジカルボン酸、あるいは、ポリテトラメチレングリコール等のジオールが含まれていることが好ましく、なかでもイソフタル酸が含まれていることがより好ましい。また、上記ポリエステルエラストマーとしては酸成分にテレフタル酸、アジピン酸のうち少なくとも一つ以上の成分、ジオール成分に1,4-ブタンジオール、ポリテトラメチレングリコールのうち少なくとも一つ以上の成分を含むことが好ましい。その他のポリエステル系樹脂(B)は1種のみを単独で用いてもよく、2種以上を併用してもよい。 Among the specific examples of the other polyester resin (B), from the viewpoint of adjusting the compatibility with the polyester resin (A) and the physical properties of the three-dimensional modeling material to the range in which the effects of the present invention are obtained, polyethylene terephthalate resin , polybutylene terephthalate resin, polytrimethylene terephthalate resin, and polyester elastomer are preferred, polybutylene terephthalate resin, polytrimethylene terephthalate resin, and polyester elastomer are more preferred, polybutylene terephthalate resin and polyester elastomer are more preferred, and polybutylene terephthalate resin is Most preferred. Among polybutylene terephthalate resins, polybutylene terephthalate resins containing a copolymer component are particularly preferred from the viewpoint of achieving a good balance between moldability and mechanical strength at low temperatures. Although the copolymer component contained in the polybutylene terephthalate resin is not particularly limited, it should contain aromatic dicarboxylic acids such as isophthalic acid, aliphatic dicarboxylic acids such as adipic acid, or diols such as polytetramethylene glycol. is preferred, and isophthalic acid is more preferred. The polyester elastomer may contain at least one of terephthalic acid and adipic acid as the acid component, and at least one of 1,4-butanediol and polytetramethylene glycol as the diol component. preferable. Other polyester-based resins (B) may be used alone or in combination of two or more.
 その他のポリエステル系樹脂(B)が、酸成分としてテレフタル酸、ジオール成分として1,4-ブタンジオール、を含む場合で、その他のポリエステル系樹脂(B)が1,4-ブタンジオール以外の共重合成分を含む場合、1,4-ブタンジオール以外の共重合成分の含有量は特に限定されないが、ポリエステル系樹脂(A)との相溶性の観点から、ポリエステル系樹脂(B)に含まれる全ジオール成分中の、1,4-ブタンジオール以外の共重合成分の含有量は1mol%以上が好ましく、より好ましくは10mol%以上、さらに好ましくは20mol%以上であり、上限は49mol%以下が好ましく、より好ましくは45mol%以下、さらに好ましくは35mol%以下である。 When the other polyester resin (B) contains terephthalic acid as an acid component and 1,4-butanediol as a diol component, and the other polyester resin (B) is a copolymer other than 1,4-butanediol When the component is included, the content of the copolymer component other than 1,4-butanediol is not particularly limited, but from the viewpoint of compatibility with the polyester resin (A), all the diols contained in the polyester resin (B) The content of copolymerization components other than 1,4-butanediol in the components is preferably 1 mol% or more, more preferably 10 mol% or more, still more preferably 20 mol% or more, and the upper limit is preferably 49 mol% or less, and more preferably 49 mol% or less. It is preferably 45 mol % or less, more preferably 35 mol % or less.
 その他のポリエステル系樹脂(B)が、酸成分としてテレフタル酸、ジオール成分として1,4-ブタンジオール、を含む場合で、その他のポリエステル系樹脂(B)がテレフタル酸以外の共重合成分を含む場合は、特に限定されないが、ポリエステル系樹脂(A)との相溶性の観点から、ポリエステル系樹脂(B)に含まれる全酸成分中のテレフタル酸以外の共重合成分の含有量は、1mol%以上が好ましく、より好ましくは15mol%以上、さらに好ましくは25mol%以上であり、上限は49mol%以下が好ましく、より好ましくは45mol%以下、さらに好ましくは40mol%以下、特に好ましくは35mol%以下である。 When the other polyester resin (B) contains terephthalic acid as an acid component and 1,4-butanediol as a diol component, and when the other polyester resin (B) contains a copolymer component other than terephthalic acid is not particularly limited, but from the viewpoint of compatibility with the polyester resin (A), the content of copolymer components other than terephthalic acid in the total acid components contained in the polyester resin (B) is 1 mol% or more. is preferably 15 mol% or more, still more preferably 25 mol% or more, and the upper limit is preferably 49 mol% or less, more preferably 45 mol% or less, still more preferably 40 mol% or less, and particularly preferably 35 mol% or less.
 ポリエステル系樹脂(A)とポリエステル系樹脂(B)が有する繰り返し単位には特に制限がないが、Tm、Tg等の種々物性を好ましい範囲に調整する観点から、ポリエステル系樹脂(A)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、ポリエステル系樹脂(B)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、ポリエステル系樹脂(A)における全てのジカルボン酸成分中のイソフタル酸の割合が5mol%以下であり、ポリエステル系樹脂(B)における全てのジカルボン酸成分中のイソフタル酸の割合が10mol%以上であることが好ましい。 Although there is no particular limitation on the repeating units possessed by the polyester resin (A) and the polyester resin (B), from the viewpoint of adjusting various physical properties such as Tm and Tg within a preferable range, the polyester resin (A) may contain dicarboxylic acid. It has a repeating structural unit derived from an acid component and a repeating structural unit derived from a diol component, and the polyester resin (B) contains a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component. The ratio of isophthalic acid in all dicarboxylic acid components in the polyester resin (A) is 5 mol% or less, and the ratio of isophthalic acid in all dicarboxylic acid components in the polyester resin (B) is 10 mol% or more is preferably
 上記その他のポリエステル系樹脂(B)を、210℃、2.16kgで測定したメルトインデックス(MI)の値は特に限定されないが、3次元造形用材料の流動性の観点から、上記ポリエステル系樹脂(A)として選択された樹脂のMI値よりも高いことが望ましい。具体的には、6g/10分以上が好ましく、8g/10分以上がより好ましく、10g/10分以上がさらに好ましい。また、造形時の糸引きやダマ等の不良抑制の観点から、200g/10分以下が好ましく、100g/10分以下がより好ましく、80g/10分以下がもっとも好ましい。 The melt index (MI) value of the other polyester resin (B) measured at 210 ° C. and 2.16 kg is not particularly limited, but from the viewpoint of the fluidity of the three-dimensional modeling material, the polyester resin ( It should be higher than the MI value of the resin selected as A). Specifically, it is preferably 6 g/10 minutes or more, more preferably 8 g/10 minutes or more, and even more preferably 10 g/10 minutes or more. In addition, from the viewpoint of suppressing defects such as stringiness and lumps during modeling, it is preferably 200 g/10 minutes or less, more preferably 100 g/10 minutes or less, and most preferably 80 g/10 minutes or less.
 上記その他のポリエステル系樹脂(B)を、示差走査熱量測定において10℃/分の降温速度で測定した際の結晶化熱量(ΔHc)は特に限定されないが、上記ポリエステル系樹脂(A)との相溶性の観点から、100J/g以下が好ましく、80J/g以下がより好ましく、60J/g以下がさらに好ましく、40J/g以下が最も好ましい。
 上記その他のポリエステル系樹脂(B)を、示差走査熱量測定において10℃/分の昇温速度で測定した際のガラス転移温度(Tg)は特に限定されないが、3次元造形用材料のTgを本発明において好ましい範囲に調整する観点から、上記ポリエステル系樹脂(A)として選択される樹脂よりも低いことが望ましく、100℃以下が好ましく、50℃以下がより好ましく、40℃以下がさらに好ましい。また、3次元造形用材料の耐熱性や室温での剛性の観点から、-50℃以上が好ましく、-30℃以上がより好ましく、-10℃以上がさらに好ましく、0℃以上が最も好ましい。
The amount of heat of crystallization (ΔHc) when the other polyester resin (B) is measured at a temperature drop rate of 10 ° C./min in differential scanning calorimetry is not particularly limited, but the phase with the polyester resin (A) From the viewpoint of solubility, it is preferably 100 J/g or less, more preferably 80 J/g or less, even more preferably 60 J/g or less, and most preferably 40 J/g or less.
The glass transition temperature (Tg) of the other polyester resin (B) is not particularly limited when measured at a temperature increase rate of 10 ° C./min in differential scanning calorimetry, but the Tg of the three-dimensional modeling material is From the viewpoint of adjusting to a preferred range in the invention, the temperature is preferably lower than the resin selected as the polyester resin (A), preferably 100° C. or lower, more preferably 50° C. or lower, and even more preferably 40° C. or lower. From the viewpoint of the heat resistance and rigidity at room temperature of the three-dimensional modeling material, the temperature is preferably −50° C. or higher, more preferably −30° C. or higher, further preferably −10° C. or higher, and most preferably 0° C. or higher.
 上記その他のポリエステル系樹脂(B)を、示差走査熱量測定において10℃/分の昇温速度で測定した際の融解温度(Tm)は特に限定されないが、低温での造形性の観点から、210℃以下が好ましく、190℃以下がより好ましく、180℃以下がさらに好ましい。また、3次元造形用材料の耐熱性の観点から、30℃以上が好ましく、50℃以上がより好ましく、100℃以上がさらに好ましく、120℃以上が最も好ましい。 The melting temperature (Tm) of the other polyester resin (B) is not particularly limited when measured at a temperature increase rate of 10 ° C./min in differential scanning calorimetry, but from the viewpoint of moldability at low temperatures, 210 ° C. or less is preferable, 190° C. or less is more preferable, and 180° C. or less is even more preferable. From the viewpoint of heat resistance of the three-dimensional modeling material, the temperature is preferably 30° C. or higher, more preferably 50° C. or higher, even more preferably 100° C. or higher, and most preferably 120° C. or higher.
 上記その他のポリエステル系樹脂(B)としては、例えば、三菱エンジニアリングプラスチックス株式会社製「ノバデュラン(登録商標)」シリーズ、ポリプラスチックス株式会社製「ジュラネックス(登録商標)」シリーズ、東洋紡株式会社製「バイロン(登録商標)」シリーズ、三菱ケミカル株式会社製「テファブロック」シリーズが商業的に入手できるものとして挙げられる。 Examples of the other polyester resins (B) include "Novaduran (registered trademark)" series manufactured by Mitsubishi Engineering-Plastics Co., Ltd., "DURANEX (registered trademark)" series manufactured by Polyplastics Co., Ltd., and Toyobo Co., Ltd. Commercially available products include the "Byron (registered trademark)" series and the "Tefablock" series manufactured by Mitsubishi Chemical Corporation.
 上記3次元造形用材料中のその他のポリエステル系樹脂(B)の含有量は特に限定されないが、3次元造形用材料の物性を本発明の好ましい範囲に調整する観点から、1質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましく、30質量%以上であることが最も好ましい。また、同様の観点から、99質量%以下であることが好ましく、95質量%以下であることがより好ましく、90質量%以下であることがさらに好ましい。 The content of the other polyester resin (B) in the three-dimensional modeling material is not particularly limited, but from the viewpoint of adjusting the physical properties of the three-dimensional modeling material to the preferred range of the present invention, it is 1% by mass or more. is preferably 10% by mass or more, more preferably 15% by mass or more, and most preferably 30% by mass or more. From the same viewpoint, the content is preferably 99% by mass or less, more preferably 95% by mass or less, and even more preferably 90% by mass or less.
 <その他の成分>
 本発明の3次元造形用材料は、本発明の効果を損なわない程度にその他の樹脂やフィラー(有機系粒子、無機系粒子および補強材など)、その他の成分を含んでもよい。
 その他の樹脂としてはポリオレフィン系樹脂やポリスチレン系樹脂、上記ポリエステル系樹脂(A)又は上記その他のポリエステル系樹脂(B)以外のポリエステル系樹脂や各種エラストマー等が挙げられる。これらは1種のみで用いても2種以上を組み合わせて用いてもよい。本発明の3次元造形用材料中のその他の樹脂の配合量は、特に限定されないが、通常50質量%以下であり、好ましくは30質量%以下である。
<Other ingredients>
The three-dimensional modeling material of the present invention may contain other resins, fillers (organic particles, inorganic particles, reinforcing materials, etc.) and other components to the extent that the effects of the present invention are not impaired.
Other resins include polyolefin-based resins, polystyrene-based resins, polyester-based resins other than the above polyester-based resin (A) or the above-described other polyester-based resins (B), various elastomers, and the like. These may be used alone or in combination of two or more. The amount of other resins in the material for three-dimensional modeling of the present invention is not particularly limited, but is usually 50% by mass or less, preferably 30% by mass or less.
 フィラーのうち有機系粒子の具体例としては、アクリル系樹脂粒子、メラミン系樹脂粒子などが挙げられる。
 フィラーのうち無機系粒子の具体例としては、シリカ、アルミナ、カオリン、二酸化チタン、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛などが挙げられる。
Specific examples of organic particles among fillers include acrylic resin particles and melamine resin particles.
Specific examples of inorganic particles among fillers include silica, alumina, kaolin, titanium dioxide, calcium carbonate, magnesium carbonate, zinc carbonate, calcium stearate, magnesium stearate, and zinc stearate.
 フィラーのうち補強材の具体例としては、無機充填材や無機繊維が挙げられる。
 無機充填材の具体例としては、炭酸カルシウム、炭酸亜鉛、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、チタン酸カリウム、ガラスバルーン、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、窒化ホウ素、石膏、焼成カオリン、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、ワラストナイト、シリカ、タルク、金属粉、アルミナ、グラファイト、カーボンブラック、カーボンナノチューブなどが挙げられる。
Specific examples of reinforcing materials among fillers include inorganic fillers and inorganic fibers.
Specific examples of inorganic fillers include calcium carbonate, zinc carbonate, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, potassium titanate, glass balloons, glass flakes, glass powder, Silicon carbide, silicon nitride, boron nitride, gypsum, calcined kaolin, zinc oxide, antimony trioxide, zeolite, hydrotalcite, wollastonite, silica, talc, metal powder, alumina, graphite, carbon black, carbon nanotubes, etc. be done.
 無機繊維の具体例としては、ガラスカットファイバー、ガラスミルドファイバー、ガラスファイバー、石膏ウィスカー、金属繊維、金属ウィスカー、セラミックウィスカー、炭素繊維、セルロースナノファイバーなどが挙げられる。
 ここで、本発明の3次元造形用材料がフィラーを含有する際の本発明の3次元造形用材料中のフィラーの含有量は、特に規定されないが、通常50質量%以下であり、好ましくは30質量%以下である。
Specific examples of inorganic fibers include glass cut fibers, milled glass fibers, glass fibers, gypsum whiskers, metal fibers, metal whiskers, ceramic whiskers, carbon fibers, and cellulose nanofibers.
Here, the content of the filler in the three-dimensional modeling material of the present invention when the three-dimensional modeling material of the present invention contains a filler is not particularly specified, but is usually 50% by mass or less, preferably 30% by mass. % by mass or less.
 その他の成分としては、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、スリップ剤、結晶核剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、可塑剤、顔料、染料、香料、難燃剤、生分解促進剤、エステル交換促進剤、エステル交換阻害剤などが挙げられる。これらは1種のみで用いても2種以上を組み合わせて用いてもよい。 Other ingredients include heat-resistant agents, ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, sealability improvers, antifog agents, and release agents. agents, plasticizers, pigments, dyes, fragrances, flame retardants, biodegradation accelerators, transesterification accelerators, transesterification inhibitors, and the like. These may be used alone or in combination of two or more.
 <3次元造形用材料の用途>
 本発明の3次元造形用材料は、材料押出法に用いるための材料として大別される。造形材料と支持材料のどちらに用いても構わないが、造形材料として用いることが好ましい。造形物本体となるものが造形材料であり、積層された造形材料が所望の形に固まるまで支えるものが支持材料である。
<Application of 3D modeling material>
The three-dimensional modeling material of the present invention is roughly classified as a material for use in the material extrusion method. It may be used as either a modeling material or a supporting material, but is preferably used as a modeling material. The modeling material is what becomes the body of the modeled object, and the support material is what supports the layered modeling material until it solidifies into a desired shape.
 <3次元造形用材料の製造方法>
 本発明の3次元造形用材料は、上記ポリエステル系樹脂(A)、上記その他のポリエステル系樹脂(B)及び必要に応じて配合されるその他の成分を用いて製造される。これらの混合方法としては特に制限されるものではないが、公知の方法、例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダーなどの溶融混練装置を用いる等方法を挙げることができる。
<Method for producing three-dimensional printing material>
The three-dimensional modeling material of the present invention is produced using the polyester resin (A), the other polyester resin (B), and other components blended as necessary. The mixing method for these is not particularly limited, but known methods such as methods using a melt-kneading apparatus such as a single-screw extruder, a multi-screw extruder, a Banbury mixer, and a kneader can be used.
 本発明の3次元造形用材料の製造方法は特に制限されるものではないが、上記ポリエステル系樹脂(A)、上記その他のポリエステル系樹脂(B)及び必要に応じてその他の成分を、押出成形等の公知の成形方法により成形する方法等を挙げることができる。例えば、本発明の3次元造形用材料を押出成形により得る場合、その条件は、用いる樹脂の流動性や成形加工性等によって適宜調整されるが、通常80~300℃、好ましくは100~280℃である。 The method for producing the material for three-dimensional modeling of the present invention is not particularly limited. The method of shape|molding by well-known shaping|molding methods, etc. can be mentioned. For example, when the three-dimensional modeling material of the present invention is obtained by extrusion molding, the conditions are appropriately adjusted depending on the fluidity and molding processability of the resin to be used. is.
 <3次元造形用材料の形態>
 本発明の3次元造形用材料は、実施の形態に合わせた形状で用いて構わない。3次元造形用材料の形状は、例えば、ペレット、粉体、顆粒、フィラメント等が挙げられる。中でも、家庭用3Dプリンターで容易に利用できる観点から、フィラメント形状で用いることが好ましい。すなわち、本発明の3次元造形用材料を用いて得られる3次元造形用フィラメントとすることが好ましい。
<Form of 3D printing material>
The three-dimensional modeling material of the present invention may be used in a shape suitable for the embodiment. Examples of the shape of the three-dimensional modeling material include pellets, powders, granules, and filaments. Among them, it is preferable to use it in a filament shape from the viewpoint that it can be easily used with a home 3D printer. That is, it is preferable that the filament for three-dimensional modeling be obtained using the material for three-dimensional modeling of the present invention.
 <3次元造形用材料の構造>
 本発明の3次元造形用材料を用いて得られる3次元造形用フィラメントの直径は、材料押出法による樹脂成形体の成形に使用するシステムの仕様に依存するが、下限は通常1.0mm以上、好ましくは1.5mm以上、より好ましくは1.6mm以上、特に好ましくは1.7mm以上であり、一方、上限は通常5.0mm以下、好ましくは4.0mm以下、より好ましくは3.5mm以下、特に好ましくは3.0mm以下である。
 なお、ここでいう3次元造形用フィラメントの直径とは、3次元造形用フィラメントの長軸に垂直な断面(以下、「3次元造形用フィラメントの断面」と称することがある)の直径を指す。
<Structure of 3D printing material>
The diameter of the filament for three-dimensional modeling obtained using the material for three-dimensional modeling of the present invention depends on the specifications of the system used for molding the resin molded body by the material extrusion method, but the lower limit is usually 1.0 mm or more. It is preferably 1.5 mm or more, more preferably 1.6 mm or more, and particularly preferably 1.7 mm or more, while the upper limit is usually 5.0 mm or less, preferably 4.0 mm or less, more preferably 3.5 mm or less. Especially preferably, it is 3.0 mm or less.
Here, the diameter of the filament for three-dimensional modeling refers to the diameter of a cross section perpendicular to the long axis of the filament for three-dimensional modeling (hereinafter sometimes referred to as "cross section of the filament for three-dimensional modeling").
 更に、3次元造形用フィラメントの直径の精度はフィラメントの任意の測定点に対して±5%以内の誤差に収めることが、造形時の原料供給の安定性の観点から好ましい。特に、3次元造形用フィラメントは、直径の標準偏差が0.07mm以下であることが好ましく、0.06mm以下であることが特に好ましい。
 また、3次元造形用フィラメントの断面は、真円度が0.93以上であることが好ましく、0.95以上であることが特に好ましい。真円度の上限は1.0である。このように、フィラメントの直径の標準偏差が小さく、真円度が高い3次元造形用材料であれば、造形時の吐出ムラが抑制され、外観や表面性状等に優れた樹脂成形体を安定して製造することができる。そして、本発明の3次元造形用材料を用いることで、このような標準偏差及び真円度を満たす3次元造形用フィラメントを比較的容易に製造することができる。
Furthermore, the accuracy of the diameter of the filament for three-dimensional modeling is preferably within ±5% with respect to any measurement point of the filament, from the viewpoint of the stability of raw material supply during modeling. In particular, the standard deviation of the diameter of the filament for three-dimensional modeling is preferably 0.07 mm or less, particularly preferably 0.06 mm or less.
In addition, the roundness of the cross section of the filament for three-dimensional modeling is preferably 0.93 or more, particularly preferably 0.95 or more. The upper limit of circularity is 1.0. In this way, if the standard deviation of the filament diameter is small and the roundness of the three-dimensional modeling material is high, the discharge unevenness during modeling is suppressed, and the resin molded body excellent in appearance and surface properties can be stably produced. can be manufactured by By using the three-dimensional modeling material of the present invention, it is possible to relatively easily produce a three-dimensional modeling filament that satisfies such standard deviation and roundness.
 <3次元造形用材料の巻回体及びカートリッジ>
 本発明の3次元造形用材料を用いて3Dプリンターにより樹脂成形体を製造するにあたり、3次元造形用材料を安定に保存すること、及び、3Dプリンターに3次元造形用材料を安定供給することが求められる。そのために、本発明の3次元造形用材料は、これを用いて得られる3次元造形用フィラメントを巻回してなる巻回体、例えばボビンに巻きとった巻回体、とすることができる。また、本発明の3次元造形用材料を用いて得られる3次元造形用フィラメントは、ボビンに巻きとった巻回体として包装されている、又は、巻回体がカートリッジに収納されていることが、長期保存、安定した繰り出し、紫外線等の環境要因からの保護、捩れ防止等の観点から好ましい。
 例えば、前記の3次元造形用フィラメント、又は前記の巻回体を収納容器に収納してなる、3Dプリンター用カートリッジとすることができる。
<Wound Body and Cartridge of 3D Modeling Material>
In producing a resin molded body with a 3D printer using the three-dimensional modeling material of the present invention, it is necessary to stably store the three-dimensional modeling material and to stably supply the three-dimensional modeling material to the 3D printer. Desired. Therefore, the material for three-dimensional modeling of the present invention can be a wound body obtained by winding the filament for three-dimensional modeling obtained by using the material, for example, a wound body wound around a bobbin. Further, the three-dimensional modeling filament obtained using the three-dimensional modeling material of the present invention may be packaged as a wound body wound on a bobbin, or the wound body may be stored in a cartridge. , long-term storage, stable delivery, protection from environmental factors such as ultraviolet rays, prevention of twisting, and the like.
For example, it can be a cartridge for a 3D printer in which the filament for three-dimensional modeling or the wound body is stored in a storage container.
 カートリッジとしては、ボビンに巻き取った巻回体の他、内部に防湿材または吸湿材を使用し、少なくともフィラメントを繰り出すオリフィス部以外が密閉されている構造のものが挙げられる。
 通常、3次元造形用材料をボビンに巻きとった巻回体、又は、巻回体を含むカートリッジは3Dプリンター内又は周囲に設置され、成形中は常にカートリッジからフィラメントが3Dプリンターに導入され続ける。
Examples of the cartridge include a wound body wound on a bobbin, and a structure in which a moisture-proof material or a moisture-absorbing material is used inside and at least the part other than the orifice through which the filament is delivered is sealed.
Normally, a winding body in which the three-dimensional modeling material is wound around a bobbin, or a cartridge containing the winding body is installed in or around the 3D printer, and the filament is always introduced into the 3D printer from the cartridge during molding.
 <樹脂成形体の製造方法>
 本発明の樹脂成形体の製造方法においては、本発明の3次元造形用材料を用い、3Dプリンターにより成形することにより樹脂成形体を得る。3Dプリンターによる成形方法としては材料押出法(ME法)、粉末焼結方式、インクジェット方式、光造形方式(SLA法)などが挙げられるが、本発明の3次元造形用材料は、材料押出法に用いることが特に好ましい。材料押出法による樹脂成形体の製造方法としては、例えば、本発明の3次元造形用材料を用いて、材料押出法により樹脂成形体を3次元に造形する工程を含むことができる。
 以下、材料押出法の場合を例示して説明する。
<Method for manufacturing resin molding>
In the method for producing a resin molded article of the present invention, a resin molded article is obtained by molding with a 3D printer using the three-dimensional modeling material of the present invention. Examples of molding methods using a 3D printer include a material extrusion method (ME method), a powder sintering method, an inkjet method, and a stereolithography method (SLA method). It is particularly preferred to use A method for manufacturing a resin molded body by a material extrusion method can include, for example, a step of three-dimensionally modeling a resin molded body by a material extrusion method using the three-dimensional modeling material of the present invention.
The material extrusion method will be described below as an example.
 材料押出法に用いられる3Dプリンターは一般に、チャンバーを有しており、該チャンバー内に、加熱可能な基盤、ガントリー構造に設置された押出ヘッド、加熱溶融器、フィラメントのガイド、フィラメントカートリッジ設置部等の原料供給部を備えている。3Dプリンターの中には押出ヘッドと加熱溶融器とが一体化されているものもある。
 押出ヘッドはガントリー構造に設置されることにより、基盤のX-Y平面上に任意に移動させることができる。基盤は目的の3次元物体や支持材等を構築するプラットフォームであり、加熱保温することで積層物との接着性を得たり、得られる樹脂成形体を所望の3次元物体として寸法安定性を改善したりできる仕様であることが好ましい。また、積層物との接着性を向上させるため、基盤上に粘着性のある糊を塗布したり、積層物との接着性が良好なシート等を貼りつけたりしてもよい。ここで積層物との接着性が良好なシートとしては、無機繊維のシートなど表面に細かな凹凸を有するシートや、積層物と同種の樹脂からなるシートなどが挙げられる。なお、押出ヘッドと基盤とは、通常、少なくとも一方がX-Y平面に垂直なZ軸方向に可動となっている。
A 3D printer used for material extrusion generally has a chamber, in which a heatable base, an extrusion head installed in a gantry structure, a heat melter, a filament guide, a filament cartridge installation part, etc. of raw material supply unit. Some 3D printers have an integrated extrusion head and heat melter.
The extrusion head is mounted on a gantry structure so that it can be moved arbitrarily on the XY plane of the substrate. The substrate is a platform for constructing the desired three-dimensional object and support material, etc., and by heating and retaining heat, it gains adhesion to the laminate, and improves the dimensional stability of the resulting resin molded object as a desired three-dimensional object. It is preferable to have a specification that allows Moreover, in order to improve the adhesiveness with the laminate, a sticky paste may be applied on the substrate, or a sheet or the like having good adhesiveness with the laminate may be pasted. Examples of the sheet having good adhesion to the laminate include a sheet having fine unevenness on the surface, such as an inorganic fiber sheet, and a sheet made of the same type of resin as the laminate. At least one of the extrusion head and the base is usually movable in the Z-axis direction perpendicular to the XY plane.
 押出ヘッドの数は、通常1~2つである。押出ヘッドが2つあれば、2つの異なるポリマーをそれぞれ異なるヘッド内で溶融し、選択的に印刷することができる。この場合、ポリマーの1つは3D対象物を造形する造形材料であり、もう一方は、例えば一時的な機材として必要とされる支持材料とすることができる。この支持材料は、例えば、水性系(例えば、塩基性又は酸性媒体)における完全な又は部分的な溶解によって、その後除去することができる。 The number of extrusion heads is usually 1-2. With two extrusion heads, two different polymers can be melted and selectively printed in different heads. In this case, one of the polymers can be a building material for building the 3D object and the other can be a support material, for example needed as a temporary fixture. This support material can then be removed, for example, by complete or partial dissolution in an aqueous system (eg, basic or acidic medium).
 3次元造形用材料は原料供給部から繰り出され、対向する1組のローラー又はギアーにより押出ヘッドへ送り込まれ、押出ヘッドにて加熱溶融され、先端ノズルより押し出される。CADモデルを基にして発信される信号により、押出ヘッドはその位置を移動しながら原料を基盤上に供給して積層堆積させていく。この工程が完了した後、基盤から積層堆積物を取り出し、必要に応じて支持材等を剥離したり、余分な部分を切除したりして所望の3次元物体として樹脂成形体を得ることができる。 The material for 3D modeling is fed from the raw material supply unit, sent to the extrusion head by a set of opposing rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle. Based on the CAD model, the extrusion head moves its position and feeds the raw material onto the substrate to deposit it in layers according to the signal transmitted. After this process is completed, the laminated deposit is taken out from the substrate, and if necessary, the supporting material or the like is peeled off, or the excess part is cut off, thereby obtaining a resin molded body as a desired three-dimensional object. .
 押出ヘッドへ連続的に原料を供給する手段は、フィラメント又はファイバーを繰り出して供給する方法、粉体又は液体をタンク等から定量フィーダを介して供給する方法、ペレット又は顆粒を押出機等で可塑化したものを押し出して供給する方法等が例示できる。工程の簡便さと供給安定性の観点から、フィラメントを繰り出して供給する方法、即ち、前述の本発明の3次元造形用材料を繰り出して供給する方法が最も好ましい。 Means for continuously supplying raw materials to the extrusion head include a method of supplying filaments or fibers, a method of supplying powder or liquid from a tank or the like through a fixed feeder, and a method of plasticizing pellets or granules with an extruder or the like. For example, a method of extruding and supplying the obtained material can be exemplified. From the viewpoint of simplicity of the process and supply stability, the most preferred method is the method of feeding the filaments, that is, the method of feeding the material for three-dimensional modeling of the present invention.
 3Dプリンターにフィラメントを供給する場合、ニップロールやギアロール等の駆動ロールにフィラメントを係合させて、引き取りながら押出ヘッドへ供給することが一般的である。ここでフィラメントと駆動ロールとの係合による把持をより強固にすることで原料供給を安定化させるために、フィラメントの表面に微小凹凸形状を転写させておいたり、係合部との摩擦抵抗を大きくするための無機添加剤、展着剤、粘着剤、ゴム等を配合したりすることも好ましい。フィラメントの太さにムラがある場合、フィラメントと駆動ロールとの係合による把持が行えず、駆動ロールが空転しフィラメントを押出ヘッドに供給出来なくなる場合がある。 When supplying filament to a 3D printer, it is common to engage the filament with a drive roll such as a nip roll or gear roll, and feed it to the extrusion head while taking it off. Here, in order to stabilize the raw material supply by making the gripping by the engagement between the filament and the driving roll stronger, the fine uneven shape is transferred to the surface of the filament, or the frictional resistance with the engaging part is reduced. It is also preferable to add an inorganic additive, a spreading agent, an adhesive, rubber, or the like to increase the size. If the thickness of the filament is uneven, it may not be possible to grip the filament by engagement with the drive roll, and the drive roll may idle, making it impossible to supply the filament to the extrusion head.
 本発明で用いる3次元造形用材料は、先端ノズルからの押出に適当な流動性を得るための温度が、通常150~300℃程度と、通常の3Dプリンターが設定可能な温度である。本発明の樹脂成形体の製造方法においては、加熱押出ヘッドの温度を通常290℃以下、好ましくは160~260℃とし、また、テーブル温度を通常100℃以下、好ましくは70℃以下として安定的に樹脂成形体を製造することができる。本発明の3次元造形用材料を用いることで上記製造方法にて良好に造形が可能となる。 For the three-dimensional modeling material used in the present invention, the temperature for obtaining suitable fluidity for extrusion from the tip nozzle is usually about 150 to 300°C, which is a temperature that can be set by a normal 3D printer. In the method for producing a resin molded product of the present invention, the temperature of the heating extrusion head is usually 290° C. or less, preferably 160 to 260° C., and the table temperature is usually 100° C. or less, preferably 70° C. or less, stably. A resin molding can be produced. By using the three-dimensional modeling material of the present invention, excellent modeling becomes possible by the above-described manufacturing method.
 押出ヘッドから吐出される溶融樹脂の温度(吐出温度)は160℃以上であることが好ましく、180℃以上であることがより好ましく、一方、300℃以下であることが好ましく、280℃以下であることがより好ましく、260℃以下であることが更に好ましい。溶融樹脂の温度が上記下限値以上であると、耐熱性の高い樹脂を押し出す上で好ましく、また、高速で吐出することが可能となり、造形効率が向上する傾向にあるため好ましい。一方、溶融樹脂の温度が上記上限値以下であると、樹脂の熱分解や焼け、発煙、臭い、べたつきといった不具合の発生を防ぎやすく、また一般に、糸引きと呼ばれる溶融樹脂が細く伸ばされた破片や、ダマと呼ばれる余分な樹脂が塊状になったものが樹脂成形体に付着し、外観を悪化させることを防ぐ観点からも好ましい。 The temperature (discharge temperature) of the molten resin discharged from the extrusion head is preferably 160° C. or higher, more preferably 180° C. or higher, and is preferably 300° C. or lower, and 280° C. or lower. is more preferably 260° C. or lower. When the temperature of the molten resin is equal to or higher than the above lower limit, it is preferable for extruding a highly heat-resistant resin, and it is possible to discharge the molten resin at high speed, which tends to improve molding efficiency. On the other hand, when the temperature of the molten resin is equal to or lower than the above upper limit, it is easy to prevent problems such as thermal decomposition, burning, smoking, odor, and stickiness of the resin. It is also preferable from the viewpoint of preventing clumps of excess resin called clumps from adhering to the resin molding and deteriorating the appearance.
 押出ヘッドから吐出される溶融樹脂は、好ましくは直径0.01~1.0mm、より好ましくは直径0.02~0.5mmのストランド状で吐出される。溶融樹脂がこのような形状で吐出されると、CADモデルの再現性が良好となる傾向にあるために好ましい。
 本発明の3次元造形用材料を用いる3次元造形における高速造形とは、造形速度が1mm/s以上であることを表す。造形に要する時間の観点から、造形速度は3mm/s以上が好ましく、5mm/s以上がより好ましく、7mm/s以上がさらに好ましく、10mm/s以上が最も好ましい。上限は特に限定されないが、速ければ速いほど好ましい。ただし、前述のフィラメントの屈曲や、後述の外観の悪化等、造形性に問題のない速度であるためには、造形速度は、100mm/s以下が好ましく、80mm/s以下がより好ましく、60mm/s以下がさらに好ましい。
The molten resin extruded from the extrusion head is preferably in the form of strands with a diameter of 0.01 to 1.0 mm, more preferably 0.02 to 0.5 mm. When the molten resin is discharged in such a shape, the reproducibility of the CAD model tends to be good, which is preferable.
High-speed modeling in three-dimensional modeling using the three-dimensional modeling material of the present invention means that the modeling speed is 1 mm/s or more. From the viewpoint of time required for modeling, the modeling speed is preferably 3 mm/s or higher, more preferably 5 mm/s or higher, still more preferably 7 mm/s or higher, and most preferably 10 mm/s or higher. Although the upper limit is not particularly limited, the faster the speed, the better. However, the molding speed is preferably 100 mm / s or less, more preferably 80 mm / s or less, more preferably 60 mm / s or less, so that there is no problem in molding properties such as bending of the filament described above and deterioration of appearance described later. s or less is more preferable.
 本発明の樹脂成形体は、使用する用途などに応じて、造形後、熱処理により結晶化を促進あるいは完了させてもよい。
 本発明の樹脂成形体を製造するにあたり、支持材料を同時に造形してもよい。支持材料の種類は特に限定されるものではないが、市販されている支持材料フィラメントの組成としては、エチレン-ビニルアルコール共重合樹脂(EVOH)、ブテンジオール-ビニルアルコール共重合樹脂(BVOH)、ポリビニルアルコール(PVOH)、耐衝撃性ポリスチレン(HIPS)などが挙げられる。
After molding, the resin molding of the present invention may be heat-treated to promote or complete crystallization depending on the intended use.
In manufacturing the resin molding of the present invention, the support material may be shaped at the same time. The type of support material is not particularly limited, but the composition of commercially available support material filaments includes ethylene-vinyl alcohol copolymer resin (EVOH), butenediol-vinyl alcohol copolymer resin (BVOH), polyvinyl alcohol (PVOH), high-impact polystyrene (HIPS), and the like.
 上述の製造方法により、本発明の3次元造形用材料を用いた材料押出法による3次元造形法により得られる樹脂成形体とすることができる。 By the above-described manufacturing method, a resin molded body obtained by a three-dimensional modeling method by a material extrusion method using the three-dimensional modeling material of the present invention can be obtained.
 <樹脂成形体の用途>
 本発明の樹脂成形体は、造形性や耐熱性に優れたものである。用途については特に制限されるものではないが、文房具;玩具;携帯電話やスマートフォン等のカバー;グリップ等の部品;学校教材;家電製品、OA機器、自動車、オートバイ、自転車等の部品;電機・電子機器用資材;農業用資材;園芸用資材;漁業用資材;土木・建築用資材;医療用品;試作部品等の用途に好適に用いることができる。
<Application of resin molding>
The resin molded article of the present invention is excellent in formability and heat resistance. There are no particular restrictions on the use, but stationery; toys; covers for mobile phones, smartphones, etc.; parts such as grips; school teaching materials; Equipment materials; agricultural materials; gardening materials; fishery materials; civil engineering and construction materials; medical supplies;
 以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨に反しない限り以下の実施例に限定されるものではない。なお、本明細書中に表示される種々の測定値および評価は次のようにして行った。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. It is not limited to the examples. Various measured values and evaluations shown in this specification were performed as follows.
 (1)メルトインデックス(MI)
 メルトインデクサ(株式会社東洋精機製作所製)を用いて、JIS K7210に準じて、210℃、2.16kgにてMI(g/10min)を測定した。
(1) Melt index (MI)
Using a melt indexer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), MI (g/10 min) was measured at 210° C. and 2.16 kg according to JIS K7210.
 (2)結晶化熱量(ΔHc)
 示差走査熱量計「Pyris1 DSC」(パーキンエルマー社製)を用いて、JIS K7122に準じて、試料約10mgを加熱速度10℃/分で0℃から250℃まで昇温し、該温度で1分間保持した。その後、冷却速度10℃/分で0℃まで降温した時に測定されたサーモグラムから結晶化熱量(ΔHc)(降温過程)を求めた。
(2) Heat of crystallization (ΔHc)
Using a differential scanning calorimeter "Pyris1 DSC" (manufactured by PerkinElmer), according to JIS K7122, about 10 mg of the sample was heated from 0 ° C. to 250 ° C. at a heating rate of 10 ° C./min, and heated at this temperature for 1 minute. held. Thereafter, the heat of crystallization (ΔHc) (temperature drop process) was obtained from the thermogram measured when the temperature was lowered to 0° C. at a cooling rate of 10° C./min.
 (3)融解温度(Tm)、結晶融解熱量(ΔHm)、ガラス転移温度(Tg)
 示差走査熱量計「Pyris1 DSC」(パーキンエルマー社製)を用いて、JIS K7121に準じて、試料約10mgを加熱速度10℃/分で0℃から250℃まで昇温し、該温度で1分間保持した。その後、冷却速度10℃/分で0℃まで降温し、再度、加熱速度10℃/分で250℃まで昇温した時に測定された各サーモグラムから融解温度(Tm)(℃)(再昇温過程)、結晶融解熱量(ΔHm)(J/g)(再昇温過程)、およびガラス転移温度(Tg)(℃)(再昇温過程)を求めた。ここで、融解温度(Tm)とは、5J/g以上の結晶融解熱量(ΔHm)を有する融解ピークのピークトップの温度を指す。
(3) Melting temperature (Tm), heat of crystal fusion (ΔHm), glass transition temperature (Tg)
Using a differential scanning calorimeter "Pyris1 DSC" (manufactured by PerkinElmer), according to JIS K7121, about 10 mg of the sample was heated from 0 ° C. to 250 ° C. at a heating rate of 10 ° C./min, and heated at this temperature for 1 minute. held. After that, the temperature was lowered to 0 ° C. at a cooling rate of 10 ° C./min, and the temperature was again raised to 250 ° C. at a heating rate of 10 ° C./min. process), heat of crystal fusion (ΔHm) (J/g) (reheating process), and glass transition temperature (Tg) (°C) (reheating process) were determined. Here, the melting temperature (Tm) refers to the peak top temperature of a melting peak having a heat of crystal fusion (ΔHm) of 5 J/g or more.
 (4)tanδのピーク数、及びピーク温度
 粘弾性スペクトロメーター「DVA-200」(アイティー計測制御株式会社製)を用いて歪み0.07%、周波数10Hz、昇温速度3℃/分で-100~150℃の温度範囲にて動的粘弾性の温度分散測定(JIS K7244-4法の動的粘弾性測定)を行い、0~100℃の範囲での損失正接(tanδ)のピークの数、及びピークの温度を求めた。
(4) Number of tan δ peaks and peak temperature Using a viscoelastic spectrometer "DVA-200" (manufactured by IT Keisoku Co., Ltd.) with a strain of 0.07%, a frequency of 10 Hz, and a heating rate of 3 ° C./min- Temperature dispersion measurement of dynamic viscoelasticity (JIS K7244-4 dynamic viscoelasticity measurement) is performed in the temperature range of 100 to 150 ° C., and the number of peaks of loss tangent (tan δ) in the range of 0 to 100 ° C. , and peak temperatures were obtained.
 (5)低温造形性
 本発明における低温造形性とは、ノズル温度がおおよそ180℃~230℃前後での造形性を指し、以下の手法にて評価した。本発明の3次元造形用材料の低温造形性は、3Dプリンター「MF-2200D」(武藤工業株式会社製)を用いて、造形テーブル温度60℃、ノズル温度160~230℃、造形速度50mm/s、外壁数1層にて図1に示すモデルを造形して評価した。その際、モデル下部より230℃から5℃刻みでノズル温度を下げていき、ノズルから材料が吐出されなくなった温度を最低吐出温度とした。最低吐出温度が低いほど、低温造形性が良いと判断し、最低吐出温度が170℃以下を「AA」、175℃を「A」、180℃を「B」とした。
(5) Low-temperature formability The low-temperature formability in the present invention refers to the formability at a nozzle temperature of about 180°C to 230°C, and was evaluated by the following method. The low-temperature formability of the three-dimensional modeling material of the present invention is evaluated using a 3D printer "MF-2200D" (manufactured by Mutoh Industries Co., Ltd.) with a modeling table temperature of 60 ° C., a nozzle temperature of 160 to 230 ° C., and a modeling speed of 50 mm / s. , and the model shown in FIG. At that time, the nozzle temperature was lowered from 230° C. in increments of 5° C. from the bottom of the model, and the temperature at which the material stopped being ejected from the nozzle was taken as the lowest ejection temperature. It was judged that the lower the minimum discharge temperature, the better the low-temperature moldability.
 (6)低反り性
 本発明の3次元造形用材料により得られる樹脂成形体の低反り性は、3Dプリンター「MF-2200D」(武藤工業株式会社製)を用いて、造形テーブル温度60℃、ノズル温度210℃、造形速度50mm/s、内部充填率100%にてダンベル試験片を長軸方向が造形テーブルと平行となる方向で造形したサンプルを用いて評価した。得られた試験片の端部に反りが全く見られない場合を「AA」、若干の反りがみられるが造形外観に顕著な影響を及ぼさない場合を「A」、反りが大きく造形外観へ影響を及ぼす場合を「B」とした。
 実施例、比較例で用いた原料は以下のとおりである。
(6) Low warp property The low warp property of the resin molded body obtained from the three-dimensional modeling material of the present invention is evaluated using a 3D printer "MF-2200D" (manufactured by Mutoh Industries Co., Ltd.) at a modeling table temperature of 60 ° C. A dumbbell test piece was formed at a nozzle temperature of 210° C., a forming speed of 50 mm/s, and an internal filling rate of 100%, and the longitudinal direction was parallel to the forming table. "AA" when no warpage is seen at the end of the obtained test piece, "A" when some warpage is seen but does not significantly affect the appearance of the model, and the warpage greatly affects the appearance of the model. "B"
Raw materials used in Examples and Comparative Examples are as follows.
 <ポリエステル系樹脂(A)>
(A-1):SKYGREEN PN100(SKケミカル社製、グリコール変性ポリエチレンテレフタレート樹脂(1,4-シクロヘキサンジメタノール共重合ポリエチレンテレフタレート樹脂)、MI:4.7g/10分、ΔHc:0J/g、Tg:79℃、Tm:なし)
<Polyester resin (A)>
(A-1): SKYGREEN PN100 (manufactured by SK Chemicals, glycol-modified polyethylene terephthalate resin (1,4-cyclohexanedimethanol copolymerized polyethylene terephthalate resin), MI: 4.7 g/10 min, ΔHc: 0 J/g, Tg : 79°C, Tm: none)
 <その他のポリエステル系樹脂(B)>
(B-1):ジュラネックス 400LP(ポリプラスチックス株式会社製、イソフタル酸共重合ポリブチレンテレフタレート樹脂、MI:21.2g/10分、ΔHc:28J/g、Tg:33℃、Tm:176℃、イソフタル酸共重合比率:30mol%)
(B-2):ジュラネックス 600LP(ポリプラスチックス株式会社製、イソフタル酸共重合ポリブチレンテレフタレート樹脂、MI:8.6g/10分、ΔHc:6.1J/g、Tg:31℃、Tm:172℃、イソフタル酸共重合比率:30mol%)
(B-3):ジュラネックス 500KP(ポリプラスチックス株式会社製、イソフタル酸共重合ポリブチレンテレフタレート樹脂、MI:12g/10分、ΔHc:30J/g、Tg:34℃、Tm:182℃、イソフタル酸共重合比率:24mol%)
(B-4):ノバデュラン 5010N(三菱エンジニアリングプラスチックス株式会社製、イソフタル酸共重合ポリブチレンテレフタレート樹脂、MI:3.0g/10分(*200℃で測定)、ΔHc:39J/g、Tg:34℃、Tm:194℃、イソフタル酸共重合比率:20mol%)
(B-5):ノバデュラン 5510S(三菱エンジニアリングプラスチックス株式会社製、ポリテトラメチレンテレフタレート共重合ポリブチレンテレフタレート樹脂、MI:35g/10分(*250℃で測定)、ΔHc:39J/g、tanδのピーク温度:12℃、Tm:217℃、イソフタル酸共重合比率:0mol%)
(B-6):バイロン GA-1300(東洋紡株式会社製、共重合ポリエステル樹脂(ジカルボン酸成分=テレフタル酸66mol%、イソフタル酸10mol%、アジピン酸24mol%、ジオール成分=1,4-ブタンジオール100mol%)、MI:1.04g/10分(*180℃で測定)、ΔHc:31J/g、Tg:-6℃、Tm:166℃、イソフタル酸共重合比率:10mol%)
<Other polyester resin (B)>
(B-1): DURANEX 400LP (manufactured by Polyplastics Co., Ltd., isophthalic acid copolymerized polybutylene terephthalate resin, MI: 21.2 g/10 min, ΔHc: 28 J/g, Tg: 33°C, Tm: 176°C , isophthalic acid copolymerization ratio: 30 mol%)
(B-2): DURANEX 600LP (manufactured by Polyplastics Co., Ltd., isophthalic acid copolymerized polybutylene terephthalate resin, MI: 8.6 g/10 min, ΔHc: 6.1 J/g, Tg: 31° C., Tm: 172°C, isophthalic acid copolymerization ratio: 30 mol%)
(B-3): DURANEX 500KP (manufactured by Polyplastics Co., Ltd., isophthalic acid copolymerized polybutylene terephthalate resin, MI: 12 g/10 min, ΔHc: 30 J/g, Tg: 34°C, Tm: 182°C, isophthalic Acid copolymerization ratio: 24 mol%)
(B-4): NOVADURAN 5010N (Mitsubishi Engineering-Plastics Co., Ltd., isophthalic acid copolymerized polybutylene terephthalate resin, MI: 3.0 g/10 min (*measured at 200°C), ΔHc: 39 J/g, Tg: 34°C, Tm: 194°C, isophthalic acid copolymerization ratio: 20 mol%)
(B-5): NOVADURAN 5510S (manufactured by Mitsubishi Engineering-Plastics Co., Ltd., polytetramethylene terephthalate copolymerized polybutylene terephthalate resin, MI: 35 g/10 min (*measured at 250°C), ΔHc: 39 J/g, tan δ Peak temperature: 12°C, Tm: 217°C, isophthalic acid copolymerization ratio: 0 mol%)
(B-6): Vylon GA-1300 (manufactured by Toyobo Co., Ltd., copolymer polyester resin (dicarboxylic acid component = 66 mol% terephthalic acid, 10 mol% isophthalic acid, 24 mol% adipic acid, diol component = 100 mol of 1,4-butanediol %), MI: 1.04 g/10 min (*measured at 180°C), ΔHc: 31 J/g, Tg: -6°C, Tm: 166°C, isophthalic acid copolymerization ratio: 10 mol%)
 (実施例1~6)
 表1に示す配合でドライブレンドした原料を、スクリュー径φ25mmの単軸押出機にて、設定温度240℃で口径2.5mmのノズルから押出し、30℃の水槽を経て引取装置で20m/minで引取り、直径1.75mm±0.05mmのフィラメント形状の3次元造形用材料を得た。製造したフィラメント形状の3次元造形用材料で、物性、造形性及び樹脂成形体の評価を実施した。評価結果を表1に示す。
(Examples 1 to 6)
A raw material dry-blended according to the formulation shown in Table 1 is extruded from a single-screw extruder with a screw diameter of φ25 mm at a set temperature of 240 ° C. through a nozzle with a diameter of 2.5 mm, passed through a water tank at 30 ° C., and then with a take-up device at 20 m / min. A filament-shaped material for three-dimensional modeling having a diameter of 1.75 mm±0.05 mm was obtained. The filament-shaped three-dimensional modeling material thus produced was evaluated for physical properties, molding properties, and a resin molding. Table 1 shows the evaluation results.
 (比較例1~4)
 表1に示す配合でドライブレンドした原料もしくは単一の原料を用いて、実施例1~6と同様にしてフィラメントを製造し、評価を実施した。評価結果を表1に示す。
(Comparative Examples 1 to 4)
Using raw materials dry-blended according to the formulation shown in Table 1 or a single raw material, filaments were produced and evaluated in the same manner as in Examples 1 to 6. Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~6の3次元造形用材料は所定のポリエステル系樹脂組成物を含み、Tg及びTmが本発明の範囲内であるため、低温造形性、低反り性に優れる。また、実施例1~4の結果から、使用するイソフタル酸共重合ポリブチレンテレフタレート樹脂におけるイソフタル酸が共重合する割合を20~30mol%とすることにより、3次元造形用材料のTgが55~60℃となり、MIが6g/10分以上となり、Tmがなくなるように調節できることが分かった。
 これに対して、比較例1の3次元造形用材料はTmが本発明の範囲にない。また、比較例2の3次元造形用材料は75℃を超えるTgを有しているため、樹脂の諸物性を容易に調整することができず、結果として低温造形性、低反り性に劣る。比較例3の3次元造形用材料は、含まれるポリエステル系樹脂組成物のジオール成分としてエチレングリコールを含まないため、Tg及び樹脂の諸物性を好ましい範囲に調整することができない。
From Table 1, the three-dimensional modeling materials of Examples 1 to 6 contain a predetermined polyester-based resin composition and have Tg and Tm within the ranges of the present invention. Further, from the results of Examples 1 to 4, by setting the copolymerization ratio of isophthalic acid in the isophthalic acid-copolymerized polybutylene terephthalate resin to be used to 20 to 30 mol%, the Tg of the three-dimensional modeling material is 55 to 60. ° C., the MI was 6 g/10 minutes or more, and it was found that the Tm could be adjusted to disappear.
In contrast, the Tm of the three-dimensional modeling material of Comparative Example 1 is not within the scope of the present invention. In addition, since the three-dimensional modeling material of Comparative Example 2 has a Tg exceeding 75° C., various physical properties of the resin cannot be easily adjusted, resulting in poor low-temperature fabrication properties and low warpage properties. Since the three-dimensional modeling material of Comparative Example 3 does not contain ethylene glycol as a diol component of the contained polyester-based resin composition, Tg and various physical properties of the resin cannot be adjusted within preferable ranges.
 表1より、実施例3の3次元造形用材料はTgが実施例5の3次元造形用材料と比較してより好ましい範囲にあるため、低反り性に優れる。
 表1より、実施例1及び2の3次元造形用材料はポリエステル系樹脂組成物が有するジカルボン酸成分に由来する繰り返し構成単位に用いられる全てのジカルボン酸成分中のイソフタル酸の割合が実施例3及び4の3次元造形用材料と比較してより好ましい範囲にあるため、低温造形性に優れる。
As can be seen from Table 1, the three-dimensional structure material of Example 3 has a Tg in a more preferable range than the three-dimensional structure structure material of Example 5, and is excellent in low warpage.
From Table 1, the three-dimensional modeling materials of Examples 1 and 2 have a ratio of isophthalic acid in all dicarboxylic acid components used in repeating structural units derived from the dicarboxylic acid component of the polyester resin composition. and 4, it is in a more preferable range, so it is excellent in low-temperature formability.
 表1より、実施例1~4の3次元造形用材料はTgが最も好ましい範囲にあるため、実施例4及び5の3次元造形用材料と比較して造形性及び樹脂成形体の評価において優れる。
 表1より、比較例4の3次元造形用材料は51℃未満のTgを有しており、これにより造形時の吐出安定性に劣るため、実施例1~6の3次元造形用材料と比較して低温造形性に劣る。
From Table 1, since the Tg of the three-dimensional modeling materials of Examples 1 to 4 is in the most preferable range, compared to the three-dimensional modeling materials of Examples 4 and 5, the evaluation of moldability and resin molding is excellent. .
From Table 1, the three-dimensional modeling material of Comparative Example 4 has a Tg of less than 51 ° C., which is inferior to the ejection stability during modeling, so compared with the three-dimensional modeling materials of Examples 1 to 6. and poor low-temperature formability.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the spirit of the invention.
 なお、本出願は、2022年2月7日出願の日本特許出願(特願2022-017282)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2022-017282) filed on February 7, 2022, the content of which is incorporated herein by reference.
 本発明の3次元造形用材料は、3Dプリンターのノズル温度やテーブル温度が比較的低温においても、ノズル吐出性や低反り性に優れ、良好な機械的強度と造形外観を有する樹脂成形体を得ることができるため、文房具;玩具;携帯電話やスマートフォン等のカバー;グリップ等の部品;学校教材;家電製品、OA機器、自動車、オートバイ、自転車等の部品;電機・電子機器用資材;農業用資材;園芸用資材;漁業用資材;土木・建築用資材;医療用品;試作部品等の用途に利用可能である。 The three-dimensional modeling material of the present invention is excellent in nozzle dischargeability and low warpage even when the nozzle temperature and table temperature of the 3D printer are relatively low, and obtains a resin molded body having good mechanical strength and modeling appearance. Stationery; Toys; Covers for mobile phones and smartphones; Parts such as grips; School teaching materials; horticultural materials; fishery materials; civil engineering and construction materials; medical supplies;

Claims (19)

  1.  材料押出法に用いるための3次元造形用材料であって、
     ポリエステル系樹脂組成物を含み、
     前記ポリエステル系樹脂組成物は、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
     前記ジカルボン酸成分はテレフタル酸を含み、前記ジオール成分はエチレングリコールを含み、かつ、
     以下(i)~(ii)を満たすことを特徴とする、3次元造形用材料。
    (i)示差走査熱量測定において10℃/分の昇温速度で測定した際のガラス転移温度(Tg)が51℃以上75℃以下。
    (ii)示差走査熱量測定において10℃/分の昇温速度で測定した際の融解温度(Tm)が無い、又は融解温度(Tm)が210℃以下。
    A three-dimensional modeling material for use in a material extrusion method,
    including a polyester resin composition,
    The polyester-based resin composition has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
    the dicarboxylic acid component comprises terephthalic acid, the diol component comprises ethylene glycol, and
    A three-dimensional modeling material characterized by satisfying the following (i) to (ii).
    (i) A glass transition temperature (Tg) of 51° C. or higher and 75° C. or lower when measured at a heating rate of 10° C./min in differential scanning calorimetry.
    (ii) There is no melting temperature (Tm) when measured at a heating rate of 10°C/min in differential scanning calorimetry, or the melting temperature (Tm) is 210°C or less.
  2.  前記ジオール成分が、1,3-プロパンジオール、1,4-ブタンジオール、及び、炭素数5以上の脂肪族ジオールよりなる群から選ばれる1以上をさらに含む、請求項1に記載の3次元造形用材料。 The three-dimensional modeling according to claim 1, wherein the diol component further includes one or more selected from the group consisting of 1,3-propanediol, 1,4-butanediol, and aliphatic diols having 5 or more carbon atoms. material.
  3.  前記炭素数5以上の脂肪族ジオールが、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、及び、ポリテトラメチレングリコールよりなる群から選ばれる1以上を含む、請求項2に記載の3次元造形用材料。 The three-dimensional modeling according to claim 2, wherein the aliphatic diol having 5 or more carbon atoms contains one or more selected from the group consisting of 1,4-cyclohexanedimethanol, neopentyl glycol, and polytetramethylene glycol. material.
  4.  前記ジカルボン酸成分が、さらにイソフタル酸、アジピン酸、コハク酸、及び、セバシン酸よりなる群から選ばれる1以上を含む、請求項1~3のいずれか1項に記載の3次元造形用材料。 The three-dimensional modeling material according to any one of claims 1 to 3, wherein the dicarboxylic acid component further contains one or more selected from the group consisting of isophthalic acid, adipic acid, succinic acid, and sebacic acid.
  5.  全ての前記ジオール成分中のエチレングリコールの割合が30mol%以上である、請求項1~4のいずれか1項に記載の3次元造形用材料。 The three-dimensional modeling material according to any one of claims 1 to 4, wherein the proportion of ethylene glycol in all the diol components is 30 mol% or more.
  6.  全ての前記ジカルボン酸成分中のテレフタル酸の割合が50mol%以上である、請求項1~5のいずれか1項に記載の3次元造形用材料。 The three-dimensional modeling material according to any one of claims 1 to 5, wherein the proportion of terephthalic acid in all the dicarboxylic acid components is 50 mol% or more.
  7.  前記ポリエステル系樹脂組成物が、ポリエステル系樹脂(A)及びその他のポリエステル系樹脂(B)を含む、請求項1~6のいずれか1項に記載の3次元造形用材料。 The three-dimensional modeling material according to any one of claims 1 to 6, wherein the polyester resin composition contains a polyester resin (A) and another polyester resin (B).
  8.  前記ポリエステル系樹脂(A)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
     前記ジオール成分が、炭素数5以上の脂肪族ジオールを含む、請求項7に記載の3次元造形用材料。
    The polyester-based resin (A) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
    The three-dimensional modeling material according to claim 7, wherein the diol component contains an aliphatic diol having 5 or more carbon atoms.
  9.  前記ポリエステル系樹脂(B)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
     前記ジオール成分が、1,4-ブタンジオールを含む、請求項7又は8に記載の3次元造形用材料。
    The polyester-based resin (B) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
    The three-dimensional modeling material according to claim 7 or 8, wherein the diol component contains 1,4-butanediol.
  10.  前記ポリエステル系樹脂(A)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
     前記ポリエステル系樹脂(B)が、ジカルボン酸成分に由来する繰り返し構成単位とジオール成分に由来する繰り返し構成単位とを有し、
     前記ポリエステル系樹脂(A)における全ての前記ジカルボン酸成分中のイソフタル酸の割合が5mol%以下であり、
     前記ポリエステル系樹脂(B)における全ての前記ジカルボン酸成分中のイソフタル酸の割合が10mol%以上である、請求項7に記載の3次元造形用材料。
    The polyester-based resin (A) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
    The polyester-based resin (B) has a repeating structural unit derived from a dicarboxylic acid component and a repeating structural unit derived from a diol component,
    The ratio of isophthalic acid in all the dicarboxylic acid components in the polyester resin (A) is 5 mol% or less,
    8. The three-dimensional modeling material according to claim 7, wherein the proportion of isophthalic acid in all dicarboxylic acid components in said polyester resin (B) is 10 mol % or more.
  11.  示差走査熱量測定において10℃/分の降温速度で測定した際の結晶化熱量(ΔHc)が10J/g以下である、請求項1~10のいずれか1項に記載の3次元造形用材料。 The material for three-dimensional modeling according to any one of claims 1 to 10, wherein the heat of crystallization (ΔHc) when measured at a temperature drop rate of 10°C/min in differential scanning calorimetry is 10 J/g or less.
  12.  210℃、2.16kgで測定したメルトインデックスが6g/10分以上である、請求項1~11のいずれか1項に記載の3次元造形用材料。 The three-dimensional modeling material according to any one of claims 1 to 11, wherein the melt index measured at 210°C and 2.16 kg is 6 g/10 minutes or more.
  13.  JIS K7244-4に記載の動的粘弾性の温度分散測定により、歪み0.07%、周波数10Hz、昇温速度3℃/分で-100~150℃の範囲にて測定した損失正接(tanδ)のピークの数が、0~100℃の範囲で単一である、請求項1~12のいずれか1項に記載の3次元造形用材料。 Loss tangent (tan δ) measured in the range of -100 to 150°C at a strain of 0.07%, a frequency of 10 Hz, and a heating rate of 3°C/min by temperature dispersion measurement of dynamic viscoelasticity described in JIS K7244-4 The three-dimensional modeling material according to any one of claims 1 to 12, wherein the number of peaks of is single in the range of 0 to 100°C.
  14.  請求項1~13のいずれか1項に記載の3次元造形用材料を用いて得られる、3次元造形用フィラメント。 A filament for three-dimensional modeling obtained using the material for three-dimensional modeling according to any one of claims 1 to 13.
  15.  直径が1.0mm以上5.0mm以下である、請求項14に記載の3次元造形用フィラメント。 The filament for three-dimensional modeling according to claim 14, having a diameter of 1.0 mm or more and 5.0 mm or less.
  16.  請求項14又は15に記載の3次元造形用フィラメントを巻回してなる、巻回体。 A wound body obtained by winding the filament for three-dimensional modeling according to claim 14 or 15.
  17.  請求項14若しくは15に記載の3次元造形用フィラメント、又は請求項16に記載の巻回体を収納容器に収納してなる、3Dプリンター用カートリッジ。 A 3D printer cartridge comprising the three-dimensional modeling filament according to claim 14 or 15 or the winding body according to claim 16, which is stored in a storage container.
  18.  請求項1~13のいずれか1項に記載の3次元造形用材料を用いた材料押出法による3次元造形法により得られる、樹脂成形体。 A resin molded article obtained by a three-dimensional modeling method by a material extrusion method using the three-dimensional modeling material according to any one of claims 1 to 13.
  19.  請求項1~13のいずれか1項に記載の3次元造形用材料を用いて、材料押出法により樹脂成形体を3次元に造形する工程を含む、樹脂成形体の製造方法。 A method for manufacturing a resin molded body, comprising a step of three-dimensionally molding a resin molded body by a material extrusion method using the three-dimensional molding material according to any one of claims 1 to 13.
PCT/JP2023/003680 2022-02-07 2023-02-03 Material for three-dimensional modeling, and resin molded body using same WO2023149561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-017282 2022-02-07
JP2022017282 2022-02-07

Publications (1)

Publication Number Publication Date
WO2023149561A1 true WO2023149561A1 (en) 2023-08-10

Family

ID=87552614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003680 WO2023149561A1 (en) 2022-02-07 2023-02-03 Material for three-dimensional modeling, and resin molded body using same

Country Status (1)

Country Link
WO (1) WO2023149561A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502852A (en) * 2013-11-27 2017-01-26 ストラタシス,インコーポレイテッド Printing method of 3D parts with controlled crystallization speed
WO2021095769A1 (en) * 2019-11-12 2021-05-20 三菱ケミカル株式会社 3d printing filament

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502852A (en) * 2013-11-27 2017-01-26 ストラタシス,インコーポレイテッド Printing method of 3D parts with controlled crystallization speed
WO2021095769A1 (en) * 2019-11-12 2021-05-20 三菱ケミカル株式会社 3d printing filament

Similar Documents

Publication Publication Date Title
JP7400809B2 (en) Filament for 3D modeling, wound bodies, and cartridges for 3D printers
JP6647749B2 (en) Method for producing filament for molding three-dimensional printer and molded article of crystalline soft resin
JP6481496B2 (en) Resin for filament for material extrusion type 3D printer
US20090123756A1 (en) Matte multilayer polyester film
JP7184079B2 (en) Materials for polyamide-based 3D printers
JP6446707B2 (en) Filament for three-dimensional printer molding and method for producing resin molded body
JP2007254522A (en) Polylactic acid-based resin foamed sheet, and method for producing container made of the sheet
JP2021134348A (en) Foam, foam sheet, product, and method for producing foam sheet
US20210086492A1 (en) 3d printer material
US20220267593A1 (en) Filament for three-dimensional printing
WO2023149561A1 (en) Material for three-dimensional modeling, and resin molded body using same
WO2022138954A1 (en) Filament for three-dimensional shaping
JP2008143024A (en) Matted laminated polyester film and wall paper
JP2023053430A (en) Three-dimensional molding material, and resin molding using the same
JP5058473B2 (en) Heat-shrinkable polyester resin foam film
JP4318570B2 (en) Method for producing polyethylene terephthalate resin molded product
JP4202470B2 (en) Blow molded product with par gloss
WO2021025161A1 (en) Filament for material extrusion (me) 3-d printer, resin molded body, wound body, and cartridge for mounting on 3-d printer
JP4283651B2 (en) Polylactic acid matte antistatic biaxially stretched film
WO2021066102A1 (en) Filament for three-dimensional printing
JP2008001859A (en) Resin composition and merchandise housing tray using the same
JP3967007B2 (en) Resin molded product with par gloss
JPH02127437A (en) Sheet comprising polyester resin composition and hot-molded material thereof
JP2024043226A (en) Modeling materials for 3D printers, 3D printed products, and manufacturing methods thereof
JP6175831B2 (en) Polylactic acid resin sheet and molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749877

Country of ref document: EP

Kind code of ref document: A1