WO2023149551A1 - Drive device - Google Patents

Drive device Download PDF

Info

Publication number
WO2023149551A1
WO2023149551A1 PCT/JP2023/003585 JP2023003585W WO2023149551A1 WO 2023149551 A1 WO2023149551 A1 WO 2023149551A1 JP 2023003585 W JP2023003585 W JP 2023003585W WO 2023149551 A1 WO2023149551 A1 WO 2023149551A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
stator
rotor
fluid
coil
Prior art date
Application number
PCT/JP2023/003585
Other languages
French (fr)
Japanese (ja)
Inventor
直大 和田
啓介 麻生
竜彦 水谷
祐輔 牧野
Original Assignee
ニデック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社 filed Critical ニデック株式会社
Publication of WO2023149551A1 publication Critical patent/WO2023149551A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a drive system used in electric vehicles and hybrid vehicles.
  • This application claims priority based on Japanese Patent Application No. 2022-015890 filed in Japan on February 3, 2022, the content of which is incorporated herein.
  • Patent Literature 1 discloses an electric motor that cools the stator by supplying a coolant to the stator from a coolant inlet located radially outside of the stator core.
  • An object of one aspect of the present invention is to provide a driving device that can efficiently cool the stator.
  • One aspect of the drive device of the present invention includes a motor having a rotor that rotates about a central axis and a stator that is positioned radially outward of the rotor, a housing provided with a housing space for housing the motor, a fluid the housing has a cylindrical portion that radially surrounds the stator, and the flow channel extends axially through a wall of the cylindrical portion. and a radial flow path extending radially inward from the axial flow path and opening toward the stator.
  • a driving device that can efficiently cool the stator.
  • FIG. 1 is a conceptual diagram of the driving device of the first embodiment.
  • FIG. 2 is a cross-sectional view of the motor of the first embodiment.
  • FIG. 3 is an enlarged cross-sectional view of the stator of the first embodiment.
  • FIG. 4 is a perspective view of the rotor of the first embodiment.
  • 5 is a rear view of the end plate of the first embodiment.
  • FIG. 6 is a conceptual diagram of the driving device of the second embodiment.
  • FIG. 7 is a conceptual diagram of the driving device of the third embodiment.
  • a driving device 1 according to a first embodiment of the present invention will be described below with reference to the drawings. It should be noted that the scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention.
  • the direction of gravity will be defined based on the positional relationship when the driving device 1 is mounted on a vehicle positioned on a horizontal road surface.
  • an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system.
  • the Z-axis direction indicates the vertical direction (that is, the vertical direction)
  • the +Z direction is the upper side (the side opposite to the direction of gravity)
  • the ⁇ Z direction is the lower side (the direction of gravity).
  • the X-axis direction is a direction perpendicular to the Z-axis direction and indicates the front-rear direction of the vehicle in which the driving device 1 is mounted.
  • the +X side is the front side of the vehicle, and the -X side is the rear side of the vehicle.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and indicates the width direction (horizontal direction) of the vehicle.
  • the +Y side is the left side of the vehicle and the -Y side is the right side of the vehicle.
  • the positional relationship in the longitudinal direction is not limited to the positional relationship of this embodiment, and the +X side may be the rear side of the vehicle and the ⁇ X side may be the front side of the vehicle. In this case, the +Y side is the right side of the vehicle and the -Y side is the left side of the vehicle.
  • the direction parallel to the central axis J2 of the motor 2 (Y-axis direction) is simply referred to as the "axial direction,” and the radial direction about the central axis J2 is simply referred to as the "radial direction.”
  • the circumferential direction centered on the central axis J2, that is, the circumference of the central axis J2 is simply called the "circumferential direction”.
  • extending along” a predetermined direction means extending in a strictly predetermined direction, as well as a It includes the case where it extends in the direction.
  • the driving device 1 according to the first embodiment will be described below.
  • the drive device 1 of the present embodiment is mounted on a vehicle using a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), and is used as the power source.
  • a motor such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), and is used as the power source.
  • HEV hybrid vehicle
  • EV electric vehicle
  • the driving device 1 includes a motor 2, a housing 6, a fluid O circulating in the housing 6, channels 90 and 100 through which the fluid O flows, a pump 96, a cooler 97, a tank 99, and a Prepare. Further, the driving device 1 has a gear portion (not shown).
  • the gear section has a plurality of gears connected to the shaft 21 of the motor 2 and driven by the motor 2 .
  • the gear section decelerates the output of the motor 2 and transmits it to the wheels of the vehicle.
  • the direction from the motor 2 to the gear portion is called the one axial direction side (+Y side), and the direction from the gear portion to the motor 2 is called the other axial direction side ( ⁇ Y side). .
  • a housing space 80 for housing the motor 2 is provided inside the housing 6 . That is, the motor 2 is accommodated in the accommodation space 80 .
  • the housing 6 holds the motor 2 in the accommodation space 80 .
  • the motor 2 may be fixed to the housing 6 with bolts (not shown) or the like, or may be fixed by shrink fitting, insertion, or the like.
  • a fluid reservoir P in which the fluid O is accumulated is provided in the lower region within the housing space 80 .
  • the fluid O accumulated in the lower region of the accommodation space 80 is moved from the fluid reservoir P to the tank 99 by the pump 96 described later.
  • the housing 6 has a tubular portion 61 , a second housing portion 62 and a third housing portion 63 .
  • the cylindrical portion 61 has a cylindrical shape centered on the central axis J2.
  • the cylindrical portion 61 surrounds the stator 30 of the motor 2 from the outside in the radial direction.
  • the second housing portion 62 covers the opening on one axial side (+Y side) of the cylindrical portion 61 .
  • the third housing portion 63 covers the opening of the cylindrical portion 61 on the other axial side ( ⁇ Y side).
  • the housing 6 has a plurality of ribs on its outer peripheral surface.
  • the housing 6 has a horizontal first rib parallel to the horizontally extending central axis J2 of the motor 2, which will be described later, and a second rib extending in the circumferential direction of the central axis J2. As a result, it is possible to suppress amplification of the vibration and sound caused by the rotation of the motor 2 by the housing 6 .
  • the motor 2 is housed in the housing space 80 of the housing 6 .
  • the motor 2 includes a rotor 20 that rotates about a central axis J2 extending in the horizontal direction, a stator 30 positioned radially outside the rotor 20, and a pair of bearings (first bearings 26) that rotatably support the rotor 20. and a second bearing 27).
  • the motor 2 of this embodiment is an inner rotor type motor.
  • the rotor 20 rotates when AC current is supplied to the stator 30 via a battery and an inverter unit (not shown).
  • the rotor 20 has a shaft 21 , a rotor core 24 , a plurality of rotor magnets 25 and a pair of end plates 28 .
  • Rotor 20 (that is, shaft 21, rotor core 24, and rotor magnet 25) rotates about a central axis J2 extending horizontally and in the width direction of the vehicle.
  • the shaft 21 extends axially around the central axis J2.
  • the shaft 21 rotates about the central axis J2.
  • the shaft 21 is a hollow shaft having a hollow portion 22 therein which is an axially extending cavity. That is, the hollow portion 22 is positioned within the shaft 21 and extends in the axial direction.
  • the hollow portion 22 is a so-called double cylinder.
  • the shaft 21 is rotatably supported by a pair of bearings (first bearing 26 and second bearing 27).
  • the first bearing 26 and the second bearing 27 are located in the accommodation space 80 .
  • a first bearing 26 and a second bearing 27 are rotatably supported on both axial sides of the shaft 21 with the rotor core 24 interposed therebetween.
  • a first bearing 26 and a second bearing 27 are held in the housing 6 . More specifically, the first bearing 26 is held in the second housing portion 62 and the second bearing 27 is held in the third housing portion 63 .
  • the rotor core 24 is constructed by laminating silicon steel plates.
  • the rotor core 24 is a substantially cylindrical body extending axially about the center axis J2. As shown in FIG. 2, the rotor core 24 is provided with a plurality of holding holes 24h in which the rotor magnets 25 are accommodated.
  • the rotor magnet 25 is fixed to the inner surface of the holding hole 24h. Thereby, the rotor magnet 25 is fixed to the rotor core 24 .
  • a plurality of rotor magnets 25 are arranged along the circumferential direction with magnetic poles alternated.
  • the pair of end plates 28 are arranged at both ends of the rotor core 24 in the axial direction. Each end plate covers the axial end face of the rotor core 24 .
  • the end plate 28 covers the holding hole 24h that opens in the end face of the rotor core 24. As shown in FIG. As a result, the end plate 28 prevents the rotor magnet 25 accommodated in the holding hole 24h from slipping out of the holding hole 24h.
  • each end plate 28 is a bowl shape having a curved portion that is convex on the side opposite to the end face in the axial direction of the rotor core 24 .
  • a through-hole 28 h is provided in substantially the center of the end plate 28 .
  • the shaft 21 is passed through the through hole 28h.
  • the end plate 28 has a flat surface near the opening of the through hole 28h on the surface facing away from the rotor core 24.
  • Both ends of the shaft 21 are provided with male threaded portions, and fixing members (nuts) 283 are screwed into the male threaded portions.
  • the end plate 28 is sandwiched and fixed between the fixing member 283 and the rotor core 24 .
  • the end plates 28 are screwed and fixed to both ends of the shaft 21 by fixing members 283 (nuts).
  • the fixing member 283 contacts the flat surface of the end plate 28 . Therefore, a large contact area can be secured between the fixing member 283 and the end plate 28, and the end plate 28 can be pressed against the rotor core 24 with a greater force.
  • the fixing member 283 is a nut has been described, but the fixing member 283 may be a ring-shaped collar member that is press-fitted onto the shaft 21 .
  • one end plate 28 covers the end face on one axial side (+Y side) of the rotor core 24 .
  • One end plate 28 has a first surface 28a facing one axial side (+Y side).
  • the first surface 28a inclines toward the other axial side (-Y) as it extends radially outward.
  • the first surface 28a is a curved surface that is convex toward one axial direction side (+Y side).
  • the first surface 28a has a constant shape over the entire circumference of the center axis J2. That is, the first surface 28a has the same shape in any cross section passing through the central axis J2.
  • One of the objects of the present embodiment is to provide a driving device in which the driving efficiency of the motor is improved by reducing the air resistance during rotation of the rotor.
  • the first surface 28a into a smoothly curved surface, it is possible to reduce the air resistance in the end plate 28 when the rotor 20 rotates at high speed. Thereby, the drive efficiency of the drive device 1 can be improved. Furthermore, when the rotor 20 rotates at a high speed, the rotor 20 can be stably rotated, so that the generation of wind noise and whirling of the rotor 20 can be suppressed, and the quietness of the drive device 1 can be improved.
  • the other end plate 28 positioned on the other side (-Y side) in the axial direction has a shape that is the opposite of the one end plate 28 in the axial direction.
  • the shape of the other end plate 28 located on the other side ( ⁇ Y side) in the axial direction is the same as the shape of the one end plate 28, but the arrangement direction is different. That is, the other end plate 28 covers the end surface of the rotor core 24 on the other axial side ( ⁇ Y side).
  • the other end plate 28 has a second surface 28f facing the other axial side (-Y side).
  • the second surface 28f inclines toward the axial one side (+Y) as it extends radially outward.
  • the second surface 28f is a curved surface that is convex toward the other axial direction side (-Y side).
  • the second surface 28f has a constant shape over the entire circumference of the center axis J2.
  • a first projecting portion 281 and a second projecting portion 282 projecting toward the rotor core 24 are provided on the surface of the end plate 28 facing the rotor core 24 side. That is, the end plate 28 has protruding portions 281 and 282 that protrude toward the rotor core 24 side from the surface facing the rotor core 24 side. As shown in FIG. 5, the first protrusion 281 and the second protrusion 282 each extend in the circumferential direction. Preferably, the first protrusion 281 and the second protrusion 282 are each substantially annular. The first projecting portion 281 is positioned radially outward of the second projecting portion 282 . The axial length of the first protrusion 281 is shorter than the axial length of the second protrusion 282 .
  • the inner peripheral surface (the surface facing radially inward) of the second projecting portion 282 continues to the through hole 28 h of the end plate 28 . At least part of the inner peripheral surface of the second projecting portion 282 contacts the outer surface (the surface facing radially outward) of the shaft 21 . Thereby, the end plate 28 is positioned with respect to the central axis J2. The tip of the second projecting portion 282 contacts the axially facing surface of the rotor core 24 . Thereby, the rotor core 24 can be stably fixed to the shaft 21 via the end plate 28 .
  • the rotor 20 of the present embodiment when the rotation balance of the rotor 20 is poor, by partially changing the protrusion height of the first protrusion 281 by cutting the first protrusion 281, A balance correction of the rotor 20 can be made. As a result, rotational vibration around the central axis J2 that occurs when the rotor 20 rotates can be suppressed. Further, according to the end plate 28 of this embodiment, the first projecting portion 281 is not exposed on the outer surface of the rotor 20 . Therefore, even if the shape of a part of the first projecting portion 281 in the circumferential direction differs from the shape of the other portion in the circumferential direction due to the balance correction, the air flow during the rotation of the rotor 20 does not change. An increase in resistance can be suppressed.
  • the stator 30 includes an annular stator core 32 centered on the central axis J2, coils 31 attached to the stator core 32, a cover member 324, and an insulator interposed between the stator core 32 and the coils 31. (not shown). Stator 30 is held in housing 6 .
  • the stator core 32 has an annular yoke and a plurality of magnetic pole teeth protruding radially inward from the inner peripheral surface of the yoke.
  • a slot 322 into which the coil 31 is inserted is located between the magnetic pole teeth.
  • the coil wire 31e inserted into the slot 322 is a so-called rectangular wire.
  • a resin member 323 is inserted inside the slot 322 in the radial direction of the coil wire 31e.
  • the resin member may be a separate member or may be made of varnish or the like.
  • the coil 31 has a first coil end 31a and a second coil end 31b.
  • the first coil end 31a protrudes to the other side of the stator core 32 in the axial direction.
  • the second coil end 31b protrudes to one side of the stator core 32 in the axial direction. That is, the coil 31 has coil ends 31a and 31b that protrude from the stator core 32 in the axial direction.
  • the coil ends 31a and 31b are ring-shaped around the central axis J2.
  • the cover member 324 is an annular member extending in the circumferential direction.
  • the cover members 324 are arranged on both the axial one side and the other axial side of the stator core 32 .
  • one cover member 324 covers the first coil end 31a
  • the other cover member 324 covers the second coil end 31b.
  • the cover member 324 is fixed to the axially facing surface of the stator core 32 by screwing, bonding, or the like. Thereby, the cover member 324 is attached to the stator core 32 .
  • the cover member 324 has an inner wall 324a, an outer wall 324c and a lid portion 324b.
  • the inner wall 324a is located radially inside the coil ends 31a and 31b.
  • the inner wall 324a has a substantially cylindrical shape centered on the central axis J2.
  • the inner wall 324a covers the coil ends 31a and 31b from the inside in the radial direction.
  • the outer wall 324c is located radially outside the coil ends 31a and 31b.
  • the outer wall 324c has a substantially cylindrical shape centered on the central axis J2.
  • the outer wall 324c covers the coil ends 31a and 31b from the radial outside.
  • the outer wall 324c radially faces the inner wall 324a.
  • Coil ends 31a and 31b are arranged between the outer wall 324c and the inner wall 324a.
  • the lid portion 324b connects the inner wall 324a and the outer wall 324c.
  • the lid portion 324b has a substantially plate shape orthogonal to the axial direction.
  • the lid portion 324b axially covers the coil ends 31a and 31b.
  • the lid portion 324b is arranged to face the surface of the stator core 32 facing the axial direction.
  • a space surrounded by the cover member 324 and the stator core 32 constitutes a coil end accommodation space A that accommodates the coil ends 31a and 31b.
  • the coil end accommodation space A is surrounded by the inner wall 324a, the lid portion 324b, the outer wall 324c, and the surfaces of the stator core 32 facing the axial direction.
  • the coil end accommodation space A extends in a substantially annular shape in the circumferential direction around the center axis J2.
  • a pair of cover members 324 are provided on the stator 30 of the present embodiment. Therefore, the coil end accommodation spaces A are provided on one side and the other side of the stator core 32 in the axial direction.
  • a first coil end 31a is accommodated in one of the coil end accommodation spaces A located on one side in the axial direction of the pair of coil end accommodation spaces A, and the other coil end accommodation space A located on the other side in the axial direction. accommodates the second coil end 31b.
  • fluid O circulates through channels 90 and 100 .
  • the fluid O is used for lubricating the first bearing 26 and the second bearing 27 .
  • the fluid O is used for cooling the motor 2 .
  • Fluid O accumulates in tank 99 . Since the fluid O functions as a lubricating oil and a cooling oil, it is preferable to use a low-viscosity lubricating oil equivalent to automatic transmission fluid (ATF).
  • ATF automatic transmission fluid
  • the fluid O accumulates in a lower region, that is, a fluid pool P, inside the gear chamber 82, which will be described later.
  • the flow paths 90 and 100 are paths of the fluid O that supply the fluid O from the tank 99 to the motor 2 and lead it to the tank 99 again.
  • Channels 90 , 100 include an internal channel 90 provided in housing 6 and an external channel 100 provided outside housing 6 .
  • a part of the internal flow path 90 is provided inside the wall of the member that constitutes the housing 6 .
  • Another part of the internal flow path 90 is provided inside the accommodation space 80 .
  • the external channel 100 is provided outside the housing space 80 .
  • the external flow path 100 may be provided, for example, in a gear housing (not shown) that accommodates a gear portion (not shown), or may be a hose or pipe.
  • the term “flow path” is a concept that means the route of the fluid O. Therefore, the term “flow path” includes not only a “flow path” in which the fluid O flows steadily in one direction, but also a path for temporarily retaining the fluid O (for example, a reservoir) and a path through which the fluid O drips. It is a concept.
  • the internal flow path 90 has a first flow path 91 provided inside the wall of the housing 6 of the motor 2 and a second flow path 92 provided inside the housing space 80 .
  • the first flow path 91 and the second flow path 92 are connected in the order of the second flow path 92 and the first flow path 91 and configured as a flow path through which the fluid O flows within the motor 2 .
  • the fluid O cools the motor 2 internally and externally in the first flow path 91 and the second flow path 92 .
  • the second flow path 92 has a pair of coil end housing spaces A and a core through hole 321 provided in the stator core 32 . That is, the pair of coil end accommodation spaces A constitute a part of the second flow path 92 .
  • Core through hole 321 extends axially through stator core 32 .
  • the core through hole 321 connects a pair of coil end accommodation spaces A arranged on both sides in the axial direction with respect to the stator core.
  • the supply port 952 of the external channel 100 is connected to the lid portion 324b of the cover member 324 . That is, the coil end accommodation space A is connected to the supply port 952 .
  • the fluid O sucked out from the tank 99 of the external channel 100 by the pump 96 is discharged from the supply port 952 and supplied to one coil end accommodation space A of the second channel 92 .
  • the fluid O flowing through one coil end housing space A contacts the first coil end 31a and cools the first coil end 31a.
  • the fluid O that has cooled the first coil end 31a moves in the axial direction through the core through hole 321 that axially penetrates the stator core 32, reaches the coil end accommodation space A arranged on the opposite side in the axial direction, and reaches the first coil end. 2 coil end 31b is cooled. Further, the fluid O cools the stator core 32 when passing through the core through-holes 321 .
  • the fluid O that has cooled the second coil end 31b is supplied to the first flow path 91 formed in the housing 6 through the flow path provided in the axial direction.
  • the fluid O in the first flow path 91 branches into the +Z direction and the -Z direction, respectively.
  • the fluid O branched in the -Z direction is supplied to the second bearing 27 .
  • the fluid O branched in the +Z direction inside the wall of the housing 6 is further branched in the +Y direction and the -Y direction.
  • the fluid O branched in the -Y direction is supplied to the hollow portion 22 provided in the shaft 21 and can cool the shaft 21 and the rotor core 24 .
  • the fluid O that cools the shaft 21 and the rotor core 24 accumulates in the fluid reservoir P.
  • the fluid O branched in the +Y direction inside the wall of the housing 6 passes through the stator core 32 (that is, the motor 2 ) to cool the motor 2 .
  • a portion of the fluid O is also supplied to the first bearing 26 . That is, the fluid O flowing through the first flow path 91 cools the stator core 32 and lubricates the first bearing 26 and the second bearing 27 .
  • Fluid O accumulates in fluid pool P after flowing through stator core 32 , first bearing 26 , and second bearing 27 .
  • the driving device 1 includes the first flow path 91 through which the fluid O flows.
  • the first channel 91 has an axial channel portion 912 and a plurality of radial channel portions 911 .
  • the axial channel portion 912 extends axially inside the wall of the tubular portion 61 .
  • the radial channel portion 911 extends radially inside the wall of the cylindrical portion 61 .
  • the radial channel portion 911 extends radially inward from the axial channel portion 912 .
  • the radial flow path portion 911 opens toward the stator 30 .
  • the fluid O can flow from the radial flow path portion 911 to the portion of the stator 30 where the amount of heat generated is high. It is possible to inject directly. According to the present embodiment, it is possible to intensively cool a portion of the stator 30 that tends to become hot and requires cooling, so that the stator 30 can be efficiently cooled. Further, the radial flow path portion 911 of this embodiment extends radially outward from the axial flow path portion 912 .
  • the cylindrical portion 61 of the present embodiment is provided with a plurality of radial flow passage portions 911 aligned in the axial direction. Therefore, the fluid O can be supplied to a plurality of locations in the axial direction of the stator 30, and the stator 30 can be cooled more uniformly.
  • the radial flow path portion 911 of the present embodiment opens toward the outer peripheral surface of the stator core 32 .
  • the first flow path 91 can jet the fluid O from the radial flow path portion 911 to the stator core 32 to efficiently cool the stator core 32 .
  • the pump 96 is an electrically driven pump.
  • the fluid O accumulated in the fluid pool P is sucked up by the pump 96 and supplied to the tank 99 .
  • the pump 96 may be of another type, such as a mechanically driven type.
  • a cooling water pipe (not shown) for passing cooling water cooled by a radiator (not shown) is connected to the cooler 97 .
  • the fluid O passing through the cooler 97 is cooled by heat exchange with the cooling water passing through the cooling water pipe.
  • An inverter unit (not shown) is provided in the path of the cooling water pipe. Cooling water passing through the cooling water pipe cools an inverter unit (not shown).
  • the rotor 20 and the stator 30 can be efficiently cooled by the fluid O immediately after passing through the cooler 97, and the first bearing 26 and the second bearing 27 can be lubricated.
  • Cooler 97 , pump 96 and tank 99 may be fixed to housing 6 .
  • the drive device 110 of 2nd Embodiment has a speed reducer 3 in addition to the motor 2 .
  • the reduction gear 3 corresponds to the gear portion (not shown) of the first embodiment.
  • a gear chamber 82 is attached to the other axial side of the housing 6 via a partition wall.
  • the reduction gear 3 is housed inside the gear chamber 82 .
  • the shaft 21 is connected to the reduction gear 3 .
  • the driving device 110 of the present embodiment cools the motor 2 and lubricates the bearings by pumping up the fluid O in the gear chamber 82 housing the speed reduction device 3 .
  • a driving device 110B of 3rd Embodiment differs from that of the first embodiment in the configuration of an internal flow path 90B.
  • symbol is attached
  • the internal channel 90B of this embodiment has a channel 91B.
  • the channel 91B is a channel corresponding to the first channel 91 (see FIG. 1) of the first embodiment, and the fluid O flows therethrough.
  • the channel 91B has an axial channel portion 912 and a plurality of radial channel portions 911 and 911B.
  • the plurality of radial flow passage portions 911 and 911B of the present embodiment includes a plurality of first radial flow passage portions 911 and a plurality of second radial flow passage portions 911B.
  • the axial channel portion 912 extends axially inside the wall of the tubular portion 61 of the housing 6 .
  • the first radial flow path portion 911 and the second radial flow path portion 911B extend radially inside the wall of the cylindrical portion 61 .
  • the first radial flow path portion 911 and the second radial flow path portion 911B extend radially inward from the axial flow path portion 912 .
  • the first radial flow path portion 911 and the second radial flow path portion 911B open toward the stator 30 .
  • the plurality of first radial flow passage portions 911 are arranged side by side along the axial direction.
  • the plurality of first radial flow passage portions 911 open toward the outer peripheral surface of the stator core 32 .
  • the first radial flow path portion 911 jets the fluid O toward the outer peripheral surface of the stator core 32 .
  • the fluid O injected from the first radial flow path portion 911 cools the stator core 32 .
  • the second radial flow path portion 911B opens toward the coil ends 31a and 31b.
  • a pair of second radial flow path portions 911B are provided in the flow path 91B of the present embodiment.
  • One of the openings of the pair of second radial flow path portions 911B located on one axial side (+Y side) faces the first coil end 31a in the radial direction.
  • the other opening of the pair of second radial flow passage portions 911B located on the other axial side ( ⁇ Y side) faces the second coil end 31b in the radial direction.
  • the pair of second radial flow path portions 911B jet the fluid O toward the coil ends 31a and 31b.
  • the fluid O ejected from the second radial flow path portion 911B cools the coil ends 31a and 31b.
  • stator 30 coil 31 generates a large amount of heat compared to other parts of stator 30 .
  • stator 30 it is possible to directly inject the fluid O to the coil 31, which tends to reach a relatively high temperature, so that the stator 30 can be efficiently cooled.
  • the stator 30 of this embodiment has a cover member 324 as in the first embodiment.
  • Cover member 324 and stator core 32 surround coil end accommodation space A.
  • the outer wall 324c of the cover member 324 is provided with a through hole 324h that radially penetrates the outer wall 324c.
  • the second radial flow path portion 911B supplies the fluid O to the coil end accommodation space A via the through hole 324h.
  • the stator 30 has a cover member 324 that covers the coil ends 31a and 31b.
  • the cover member 324 prevents the fluid O, which is jetted from the second radial flow path portion 911B to the coil ends 31a and 31b and reflected by the coil ends 31a and 31b, from scattering and flowing out in all directions.
  • the cover member 324 keeps the fluid O, which is about to scatter and flow out, around the coil ends 31a and 31b.
  • the fluid O contacts the coil ends 31a and 31b again, and the contact time between the fluid O and the coil ends 31a and 31b can be lengthened.
  • the fluid O can take more heat from the coil 31, and the coil 31 can be efficiently cooled.
  • the cover member 324 has an inner wall 324a that covers the coil ends 31a and 31b from the inside in the radial direction, and a lid portion 324b that covers the coil ends 31a and 31b from the axial direction. According to the present embodiment, it is possible to prevent the fluid O jetted radially inward from the second radial flow path portion 911B from scattering radially inward and axially. Furthermore, according to the present embodiment, the surfaces of the inner wall 324a, the lid portion 324b, and the stator core 32 facing the axial direction are arranged in a gutter shape that opens radially outward.
  • the fluid O supplied from the second radial flow path portion 911B flows along the coil ends 31a and 31b. can flow in the circumferential direction.
  • the fluid O can be supplied to the entire coil ends 31a and 31b extending in the circumferential direction, and the coil ends 31a and 31b can be uniformly cooled along the circumferential direction.
  • the inner wall 324a of the present embodiment is arranged between the coil ends 31a, 31b and the rotor 20. Therefore, the inner wall 324a suppresses the rotor 20 from being supplied with the fluid O from the second radial flow path portion 911B toward the coil ends 31a and 31b.
  • the fluid O may act as resistance to the rotation of the rotor 20 .
  • the cover member 324 has an outer wall 324c that radially covers the coil ends 31a and 31b in addition to the inner wall 324a and the lid portion 324b.
  • the fluid O can fill the coil end accommodation space A surrounded by the cover member 324 and the stator core 32 .
  • the time during which the fluid O contacts the coil ends 31a and 31b can be made longer, and the coil 31 can be efficiently cooled.
  • a motor having a rotor that rotates around a central axis and a stator that is positioned radially outward of the rotor, a housing provided with a housing space that houses the motor, and a flow path through which a fluid flows.
  • the housing has a cylindrical portion that surrounds the stator from the outside in the radial direction, and the flow path includes an axial flow path portion that extends axially within a wall of the cylindrical portion, and the axial flow path portion. a radial passage portion extending radially inwardly from and opening toward the stator.
  • the stator has an annular stator core centered on the central axis and coils attached to the stator core, and the radial flow path portion opens toward the outer peripheral surface of the stator core.
  • the stator has an annular stator core centered on the central axis, and a coil attached to the stator core, the coil has a coil end projecting axially from the stator core, and the The driving device according to (1), wherein the radial flow path portion opens toward the coil end.
  • the stator has a cover member that covers the coil ends.
  • the coil end has an annular shape centered on the central axis
  • the cover member has an inner wall that radially inwardly covers the coil end, and a cover that axially covers the coil end.
  • (6) The driving device according to (5), wherein the cover member has an outer wall that covers the coil end from the radial outside.
  • a motor having a rotor that rotates about a central axis and a stator that is positioned radially outward of the rotor.
  • the rotor includes a cylindrical rotor core that extends axially about the central axis; and an end plate covering one end surface in the axial direction of the end plate, the surface of the end plate facing the one axial side is inclined toward the other axial side as it extends radially outward, and A driving device that is a curved surface that is convex toward one side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

A drive device according to one aspect of the present invention comprises a motor having a rotor that rotates about a central axis and a stator located on the radially outer side of the rotor, a housing having an accommodation space for accommodating the motor, and a flow path through which fluid passes. The housing has a tubular portion surrounding the radially outer side of the stator, and the flow path has an axial flow path portion extending through the inside of the wall of the tubular portion in the axial direction and a radial flow path portion extending from the axial flow path portion toward the radially inner side and opening toward the stator.

Description

駆動装置drive
 本発明は、電気自動車やハイブリッド自動車に使用される駆動装置に関する。
 本願は、2022年2月3日に、日本に出願された特願2022-015890号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a drive system used in electric vehicles and hybrid vehicles.
This application claims priority based on Japanese Patent Application No. 2022-015890 filed in Japan on February 3, 2022, the content of which is incorporated herein.
 モータは、駆動時に発熱するため、従来から冷却構造を備える駆動装置が周知である。特許文献1には、ステータコアの径方向外側に位置する冷媒流入口からステータに冷媒を供給してステータを冷却する電動機が開示されている。 Since the motor generates heat when it is driven, a drive device with a cooling structure has been well known. Patent Literature 1 discloses an electric motor that cools the stator by supplying a coolant to the stator from a coolant inlet located radially outside of the stator core.
特開2016-73163号公報JP 2016-73163 A
 特許文献1の電動機では、オイルはステータコアの表面を伝ってステータの各部に供給される。このため、従来技術の電動機では、ステータ各部の発熱量に応じたオイルの供給ができず、ステータが局所的に高温になる虞がある。 In the electric motor of Patent Document 1, oil is supplied to each part of the stator along the surface of the stator core. For this reason, in the conventional electric motor, the oil cannot be supplied in accordance with the amount of heat generated in each part of the stator, and there is a possibility that the temperature of the stator may become locally high.
 本発明の一つの態様は、ステータを効率的に冷却できる駆動装置の提供を目的の一つとする。 An object of one aspect of the present invention is to provide a driving device that can efficiently cool the stator.
 本発明の駆動装置の一つの態様は、中心軸線を中心として回転するロータ、および前記ロータの径方向外側に位置するステータを有するモータと、前記モータを収容する収容空間が設けられるハウジングと、流体が流れる流路と、を備え、前記ハウジングは、前記ステータを径方向外側から囲む筒状部を有し、前記流路は、前記筒状部の壁内部を軸方向に延びる軸方向流路部と、前記軸方向流路部から径方向内側に延びて前記ステータに向けて開口する径方向流路部と、を有する。 One aspect of the drive device of the present invention includes a motor having a rotor that rotates about a central axis and a stator that is positioned radially outward of the rotor, a housing provided with a housing space for housing the motor, a fluid the housing has a cylindrical portion that radially surrounds the stator, and the flow channel extends axially through a wall of the cylindrical portion. and a radial flow path extending radially inward from the axial flow path and opening toward the stator.
 本発明の一つの態様によれば、ステータを効率的に冷却できる駆動装置が提供される。 According to one aspect of the present invention, a driving device is provided that can efficiently cool the stator.
図1は、第1実施形態の駆動装置の概念図である。FIG. 1 is a conceptual diagram of the driving device of the first embodiment. 図2は、第1実施形態のモータの断面図である。FIG. 2 is a cross-sectional view of the motor of the first embodiment. 図3は、第1実施形態のステータの拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the stator of the first embodiment. 図4は、第1実施形態のロータの斜視図である。FIG. 4 is a perspective view of the rotor of the first embodiment. 図5は、第1実施形態のエンドプレートの背面図である。5 is a rear view of the end plate of the first embodiment. FIG. 図6は、第2実施形態の駆動装置の概念図である。FIG. 6 is a conceptual diagram of the driving device of the second embodiment. 図7は、第3実施形態の駆動装置の概念図である。FIG. 7 is a conceptual diagram of the driving device of the third embodiment.
<第1実施形態>
 以下、図面を参照しながら、本発明の第1実施形態に係る駆動装置1について説明する。なお、本発明の範囲は、以下の実施の形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。
<First embodiment>
A driving device 1 according to a first embodiment of the present invention will be described below with reference to the drawings. It should be noted that the scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention.
 以下の説明では、駆動装置1が水平な路面上に位置する車両に搭載された場合の位置関係を基に、重力方向を規定して説明する。また、図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向(すなわち上下方向)を示し、+Z方向が上側(重力方向の反対側)であり、-Z方向が下側(重力方向)である。また、X軸方向は、Z軸方向と直交する方向であって駆動装置1が搭載される車両の前後方向を示す。本実施形態において、+X側は、車両の前側であり、-X側は、車両の後側である。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の幅方向(左右方向)を示す。本実施形態において、+Y側は、車両の左側であり、-Y側は、車両の右側である。なお、前後方向の位置関係は、本実施形態の位置関係に限られず、+X側が車両の後側であり、-X側が車両の前側であってもよい。この場合には、+Y側は、車両の右側であり、-Y側は、車両の左側である。 In the following description, the direction of gravity will be defined based on the positional relationship when the driving device 1 is mounted on a vehicle positioned on a horizontal road surface. Also, in the drawings, an XYZ coordinate system is appropriately shown as a three-dimensional orthogonal coordinate system. In the XYZ coordinate system, the Z-axis direction indicates the vertical direction (that is, the vertical direction), the +Z direction is the upper side (the side opposite to the direction of gravity), and the −Z direction is the lower side (the direction of gravity). Further, the X-axis direction is a direction perpendicular to the Z-axis direction and indicates the front-rear direction of the vehicle in which the driving device 1 is mounted. In this embodiment, the +X side is the front side of the vehicle, and the -X side is the rear side of the vehicle. The Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and indicates the width direction (horizontal direction) of the vehicle. In this embodiment, the +Y side is the left side of the vehicle and the -Y side is the right side of the vehicle. The positional relationship in the longitudinal direction is not limited to the positional relationship of this embodiment, and the +X side may be the rear side of the vehicle and the −X side may be the front side of the vehicle. In this case, the +Y side is the right side of the vehicle and the -Y side is the left side of the vehicle.
 以下の説明において特に断りのない限り、モータ2の中心軸線J2に平行な方向(Y軸方向)を単に「軸方向」と呼び、中心軸線J2を中心とする径方向を単に「径方向」と呼び、中心軸線J2を中心とする周方向、すなわち、中心軸線J2の軸周りを単に「周方向」と呼ぶ。 In the following description, unless otherwise specified, the direction parallel to the central axis J2 of the motor 2 (Y-axis direction) is simply referred to as the "axial direction," and the radial direction about the central axis J2 is simply referred to as the "radial direction." The circumferential direction centered on the central axis J2, that is, the circumference of the central axis J2 is simply called the "circumferential direction".
 また、本明細書において、所定の方向(又は平面)に「沿って延びる」とは、厳密に所定の方向に延びる場合に加えて、厳密な方向に対して、45°未満の範囲で傾いた方向に延びる場合も含む。 In addition, in this specification, “extending along” a predetermined direction (or plane) means extending in a strictly predetermined direction, as well as a It includes the case where it extends in the direction.
<第1実施形態>
 以下、第1実施形態に係る駆動装置1について説明する。本実施形態の駆動装置1は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等、モータを動力源とする車両に搭載され、その動力源として使用される。
<First embodiment>
The driving device 1 according to the first embodiment will be described below. The drive device 1 of the present embodiment is mounted on a vehicle using a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), and is used as the power source.
 図1に示すように、駆動装置1は、モータ2と、ハウジング6と、ハウジング6内を循環する流体Oと、流体Oが流れる流路90、100と、ポンプ96と、クーラー97、タンク99を備える。また、駆動装置1は、図示しないギヤ部を有する。ギヤ部は、モータ2のシャフト21に接続され、モータ2によって駆動させられる複数のギヤを有する。ギヤ部は、モータ2の出力を減速して車両の車輪に伝える。本実施形態では、軸方向のうち、モータ2からギヤ部へ向かう方向を軸方向一方側(+Y側)と呼び、ギヤ部からモータ2へ向かう方向を軸方向他方側(-Y側)と呼ぶ。 As shown in FIG. 1, the driving device 1 includes a motor 2, a housing 6, a fluid O circulating in the housing 6, channels 90 and 100 through which the fluid O flows, a pump 96, a cooler 97, a tank 99, and a Prepare. Further, the driving device 1 has a gear portion (not shown). The gear section has a plurality of gears connected to the shaft 21 of the motor 2 and driven by the motor 2 . The gear section decelerates the output of the motor 2 and transmits it to the wheels of the vehicle. In this embodiment, of the axial directions, the direction from the motor 2 to the gear portion is called the one axial direction side (+Y side), and the direction from the gear portion to the motor 2 is called the other axial direction side (−Y side). .
 <ハウジング>
 ハウジング6の内部には、モータ2を収容する収容空間80が設けられる。つまり収容空間80には、モータ2が収容される。ハウジング6は、収容空間80においてモータ2を保持する。モータ2は、ハウジング6に対し、図示略のボルト等で固定されていてもよく、焼き嵌めや挿入等で固定されていてもよい。
<Housing>
A housing space 80 for housing the motor 2 is provided inside the housing 6 . That is, the motor 2 is accommodated in the accommodation space 80 . The housing 6 holds the motor 2 in the accommodation space 80 . The motor 2 may be fixed to the housing 6 with bolts (not shown) or the like, or may be fixed by shrink fitting, insertion, or the like.
 収容空間80内の下部領域には、流体Oが溜る流体溜りPが設けられる。収容空間80の下部領域に溜った流体Oは、後述するポンプ96により流体溜りPから流体Oをタンク99に移動させる。 A fluid reservoir P in which the fluid O is accumulated is provided in the lower region within the housing space 80 . The fluid O accumulated in the lower region of the accommodation space 80 is moved from the fluid reservoir P to the tank 99 by the pump 96 described later.
 ハウジング6は、筒状部61と、第2ハウジング部62と、第3ハウジング部63と、を有する。筒状部61は、中心軸線J2を中心とする筒状である。筒状部61は、モータ2のステータ30を径方向外側から囲む。第2ハウジング部62は、筒状部61の軸方向一方側(+Y側)の開口を覆う。第3ハウジング部63は、筒状部61の軸方向他方側(-Y側)の開口を覆う。 The housing 6 has a tubular portion 61 , a second housing portion 62 and a third housing portion 63 . The cylindrical portion 61 has a cylindrical shape centered on the central axis J2. The cylindrical portion 61 surrounds the stator 30 of the motor 2 from the outside in the radial direction. The second housing portion 62 covers the opening on one axial side (+Y side) of the cylindrical portion 61 . The third housing portion 63 covers the opening of the cylindrical portion 61 on the other axial side (−Y side).
 ハウジング6は、外周面に複数のリブを有している。ハウジング6は、後述するモータ2の水平方向に延びる中心軸線J2と平行な、つまり水平の第1のリブと、中心軸線J2の周方向に延びる第2のリブを有している。これにより、モータ2の回転により生じる振動と音がハウジング6により増幅することを抑制することができる。 The housing 6 has a plurality of ribs on its outer peripheral surface. The housing 6 has a horizontal first rib parallel to the horizontally extending central axis J2 of the motor 2, which will be described later, and a second rib extending in the circumferential direction of the central axis J2. As a result, it is possible to suppress amplification of the vibration and sound caused by the rotation of the motor 2 by the housing 6 .
 <モータ>
 モータ2は、ハウジング6の収容空間80に収容される。モータ2は、水平方向に延びる中心軸線J2を中心として回転するロータ20と、ロータ20の径方向外側に位置するステータ30と、ロータ20を回転可能に支持する一対のベアリング(第1のベアリング26および第2のベアリング27)と、を備える。本実施形態のモータ2は、インナーロータ型モータである。
<Motor>
The motor 2 is housed in the housing space 80 of the housing 6 . The motor 2 includes a rotor 20 that rotates about a central axis J2 extending in the horizontal direction, a stator 30 positioned radially outside the rotor 20, and a pair of bearings (first bearings 26) that rotatably support the rotor 20. and a second bearing 27). The motor 2 of this embodiment is an inner rotor type motor.
 ロータ20は、図示略のバッテリおよびインバータユニットを介してステータ30に交流電流が供給されることで回転する。ロータ20は、シャフト21と、ロータコア24と、複数のロータマグネット25と、一対のエンドプレート28と、を有する。ロータ20(すなわち、シャフト21、ロータコア24およびロータマグネット25)は、水平方向かつ車両の幅方向に延びる中心軸線J2を中心として回転する。 The rotor 20 rotates when AC current is supplied to the stator 30 via a battery and an inverter unit (not shown). The rotor 20 has a shaft 21 , a rotor core 24 , a plurality of rotor magnets 25 and a pair of end plates 28 . Rotor 20 (that is, shaft 21, rotor core 24, and rotor magnet 25) rotates about a central axis J2 extending horizontally and in the width direction of the vehicle.
 シャフト21は、中心軸線J2を中心として軸方向に延びる。シャフト21は、中心軸線J2を中心として回転する。シャフト21は、内部に軸方向に延びる空洞である中空部22を有する中空シャフトである。つまり中空部22は、シャフト21内に位置し軸方向に延びる。中空部22はいわゆる二重円筒になっている。 The shaft 21 extends axially around the central axis J2. The shaft 21 rotates about the central axis J2. The shaft 21 is a hollow shaft having a hollow portion 22 therein which is an axially extending cavity. That is, the hollow portion 22 is positioned within the shaft 21 and extends in the axial direction. The hollow portion 22 is a so-called double cylinder.
 シャフト21の一方の端部、つまり軸方向一方側の端部は、ハウジング6外部に突出し、図示しないギヤ部に連結される。 One end of the shaft 21, that is, one end in the axial direction, protrudes outside the housing 6 and is connected to a gear (not shown).
 シャフト21は、一対のベアリング(第1のベアリング26および第2のベアリング27)により回転可能に支持される。第1のベアリング26および第2のベアリング27は、収容空間80に位置する。また、第1のベアリング26および第2のベアリング27は、ロータコア24を挟んでシャフト21の軸方向両側にそれぞれ回転可能に支持する。第1のベアリング26および第2のベアリング27は、ハウジング6に保持される。より具体的には、第1のベアリング26は第2ハウジング部62に保持され、第2のベアリング27は第3ハウジング部63に保持される。 The shaft 21 is rotatably supported by a pair of bearings (first bearing 26 and second bearing 27). The first bearing 26 and the second bearing 27 are located in the accommodation space 80 . A first bearing 26 and a second bearing 27 are rotatably supported on both axial sides of the shaft 21 with the rotor core 24 interposed therebetween. A first bearing 26 and a second bearing 27 are held in the housing 6 . More specifically, the first bearing 26 is held in the second housing portion 62 and the second bearing 27 is held in the third housing portion 63 .
 ロータコア24は、珪素鋼板を積層して構成される。ロータコア24は、中心軸線J2を中心として軸方向に延びる略円柱体である。図2に示すように、ロータコア24には、ロータマグネット25が収容される複数の保持孔24hが設けられる。ロータマグネット25は、保持孔24hの内側面に固定される。これにより、ロータマグネット25は、ロータコア24に固定される。複数のロータマグネット25は、磁極を交互にして周方向に沿って並ぶ。 The rotor core 24 is constructed by laminating silicon steel plates. The rotor core 24 is a substantially cylindrical body extending axially about the center axis J2. As shown in FIG. 2, the rotor core 24 is provided with a plurality of holding holes 24h in which the rotor magnets 25 are accommodated. The rotor magnet 25 is fixed to the inner surface of the holding hole 24h. Thereby, the rotor magnet 25 is fixed to the rotor core 24 . A plurality of rotor magnets 25 are arranged along the circumferential direction with magnetic poles alternated.
 図1に示すように、一対のエンドプレート28は、それぞれロータコア24の軸方向両端に配置される。各エンドプレートは、ロータコア24の軸方向端面を覆う。エンドプレート28は、ロータコア24の端面に開口する保持孔24hを覆う。これにより、エンドプレート28は、保持孔24h内に収容されるロータマグネット25が保持孔24hから抜け出ることを抑制する。 As shown in FIG. 1, the pair of end plates 28 are arranged at both ends of the rotor core 24 in the axial direction. Each end plate covers the axial end face of the rotor core 24 . The end plate 28 covers the holding hole 24h that opens in the end face of the rotor core 24. As shown in FIG. As a result, the end plate 28 prevents the rotor magnet 25 accommodated in the holding hole 24h from slipping out of the holding hole 24h.
 各エンドプレート28の形状は、ロータコア24の軸方向端面とは反対側に凸となる湾曲部を有するお椀形状である。また、エンドプレート28の略中央には貫通孔28hが設けられる。貫通孔28hには、シャフト21が通される。エンドプレート28は、ロータコア24の反対側を向く面の貫通孔28hの開口部の近傍に平らな面を有する。シャフト21の両端部にはオネジ部が設けられており、当該オネジ部には固定部材(ナット)283が締め込まれる。エンドプレート28は、固定部材283とロータコア24との間に挟み込まれて固定される。すなわち、エンドプレート28は固定部材283(ナット)により、シャフト21の両端にねじ止め固定される。固定部材283は、エンドプレート28の上述の平らな面と接する。そのため、固定部材283とエンドプレート28との接触面積を広く確保することができ、エンドプレート28を、ロータコア24に対して、より大きな力で押圧することができる。なお、本実施形態では、固定部材283がナットである場合について説明したが、固定部材283は、シャフト21に圧入されるリング状のカラー部材であってもよい。 The shape of each end plate 28 is a bowl shape having a curved portion that is convex on the side opposite to the end face in the axial direction of the rotor core 24 . A through-hole 28 h is provided in substantially the center of the end plate 28 . The shaft 21 is passed through the through hole 28h. The end plate 28 has a flat surface near the opening of the through hole 28h on the surface facing away from the rotor core 24. As shown in FIG. Both ends of the shaft 21 are provided with male threaded portions, and fixing members (nuts) 283 are screwed into the male threaded portions. The end plate 28 is sandwiched and fixed between the fixing member 283 and the rotor core 24 . That is, the end plates 28 are screwed and fixed to both ends of the shaft 21 by fixing members 283 (nuts). The fixing member 283 contacts the flat surface of the end plate 28 . Therefore, a large contact area can be secured between the fixing member 283 and the end plate 28, and the end plate 28 can be pressed against the rotor core 24 with a greater force. In this embodiment, the case where the fixing member 283 is a nut has been described, but the fixing member 283 may be a ring-shaped collar member that is press-fitted onto the shaft 21 .
 ここで、一対のエンドプレート28のうち軸方向一方側(+Y側)に位置する一方に着目してエンドプレート28の形状をより具体的に説明する。図4に示すように、一方のエンドプレート28は、ロータコア24の軸方向一方側(+Y側)の端面を覆う。一方のエンドプレート28は、軸方向一方側(+Y側)を向く第1面28aを有する。第1面28aは、径方向外側に向かうに従い軸方向他方側(-Y)に位置する方向に傾斜する。また、第1面28aは、軸方向一方側(+Y側)に向けて凸となる湾曲面である。また、第1面28aは、中心軸線J2の全周に亘って一定の形状である。すなわち、第1面28aは、中心軸線J2を通過する任意の何れの断面においても同一の形状を有する。 Here, the shape of the end plate 28 will be described more specifically, focusing on one of the pair of end plates 28 located on one side (+Y side) in the axial direction. As shown in FIG. 4 , one end plate 28 covers the end face on one axial side (+Y side) of the rotor core 24 . One end plate 28 has a first surface 28a facing one axial side (+Y side). The first surface 28a inclines toward the other axial side (-Y) as it extends radially outward. Further, the first surface 28a is a curved surface that is convex toward one axial direction side (+Y side). Further, the first surface 28a has a constant shape over the entire circumference of the center axis J2. That is, the first surface 28a has the same shape in any cross section passing through the central axis J2.
 近年、車両用の駆動装置において、ロータの高速回転を可能とするモータの開発が進んでいる。ロータが高速回転する場合、ロータの空気抵抗がモータの駆動効率の低下を招く。本実施形態では、ロータの回転時の空気抵抗を低減することでモータの駆動効率を高めた駆動装置を提供することを目的の一つとしている。 In recent years, the development of motors that enable high-speed rotation of rotors in vehicle drive units is progressing. When the rotor rotates at high speed, the air resistance of the rotor causes a decrease in driving efficiency of the motor. One of the objects of the present embodiment is to provide a driving device in which the driving efficiency of the motor is improved by reducing the air resistance during rotation of the rotor.
 本実施形態によれば、第1面28aを滑らかな湾曲面とすることで、ロータ20が高速回転した際に、エンドプレート28における空気抵抗を低減させることができる。これにより、駆動装置1の駆動効率を高めることができる。さらに、ロータ20が高速回転した際に、ロータ20が安定して回転することができるため、風切り音を発生させることやロータ20の振れ回りを抑制でき、駆動装置1の静音性を向上できる。 According to this embodiment, by forming the first surface 28a into a smoothly curved surface, it is possible to reduce the air resistance in the end plate 28 when the rotor 20 rotates at high speed. Thereby, the drive efficiency of the drive device 1 can be improved. Furthermore, when the rotor 20 rotates at a high speed, the rotor 20 can be stably rotated, so that the generation of wind noise and whirling of the rotor 20 can be suppressed, and the quietness of the drive device 1 can be improved.
 なお、ロータにおいて、一対のエンドプレート28のうち軸方向他方側(-Y側)に位置する他方のエンドプレート28は、一方のエンドプレート28と軸方向に反転した形状を有する。言い換えると、軸方向他方側(-Y側)に位置する他方のエンドプレート28の形状は、一方のエンドプレート28の形状と同じであるが、配置される向きが異なる。すなわち、他方のエンドプレート28は、ロータコア24の軸方向他方側(-Y側)の端面を覆う。他方のエンドプレート28は、軸方向他方側(-Y側)を向く第2面28fを有する。第2面28fは、径方向外側に向かうに従い軸方向一方側(+Y)に位置する方向に傾斜する。また、第2面28fは、軸方向他方側(-Y側)に向けて凸となる湾曲面である。さらに、第2面28fは、中心軸線J2の全周に亘って一定の形状である。 In the rotor, of the pair of end plates 28, the other end plate 28 positioned on the other side (-Y side) in the axial direction has a shape that is the opposite of the one end plate 28 in the axial direction. In other words, the shape of the other end plate 28 located on the other side (−Y side) in the axial direction is the same as the shape of the one end plate 28, but the arrangement direction is different. That is, the other end plate 28 covers the end surface of the rotor core 24 on the other axial side (−Y side). The other end plate 28 has a second surface 28f facing the other axial side (-Y side). The second surface 28f inclines toward the axial one side (+Y) as it extends radially outward. Further, the second surface 28f is a curved surface that is convex toward the other axial direction side (-Y side). Furthermore, the second surface 28f has a constant shape over the entire circumference of the center axis J2.
 エンドプレート28のロータコア24側を向く面には、ロータコア24に向かって突出す第1突出部281、および第2突出部282が設けられる。すなわち、エンドプレート28は、ロータコア24側を向く面からロータコア24側に向かって突出する突出部281、282を有する。図5に示すように、第1突出部281および第2突出部282は、それぞれ、周方向に延びる。好ましくは、第1突出部281および第2突出部282は、それぞれ、略環状である。第1突出部281は、第2突出部282よりも径方向外側に位置する。第1突出部281の軸方向の長さは、第2突出部282の軸方向の長さよりも、短い。 A first projecting portion 281 and a second projecting portion 282 projecting toward the rotor core 24 are provided on the surface of the end plate 28 facing the rotor core 24 side. That is, the end plate 28 has protruding portions 281 and 282 that protrude toward the rotor core 24 side from the surface facing the rotor core 24 side. As shown in FIG. 5, the first protrusion 281 and the second protrusion 282 each extend in the circumferential direction. Preferably, the first protrusion 281 and the second protrusion 282 are each substantially annular. The first projecting portion 281 is positioned radially outward of the second projecting portion 282 . The axial length of the first protrusion 281 is shorter than the axial length of the second protrusion 282 .
 図1に示すように、第2突出部282の内周面(径方向内側を向く面)は、エンドプレート28の貫通孔28hに連なる。第2突出部282の内周面の少なくとも一部は、シャフト21の外側面(径方向外側を向く面)と接触する。これにより、エンドプレート28は、中心軸線J2に対して位置決めされる。第2突出部282の先端は、ロータコア24の軸方向を向く面と接触する。これにより、エンドプレート28を介して、安定的にロータコア24をシャフト21に固定することができる。 As shown in FIG. 1 , the inner peripheral surface (the surface facing radially inward) of the second projecting portion 282 continues to the through hole 28 h of the end plate 28 . At least part of the inner peripheral surface of the second projecting portion 282 contacts the outer surface (the surface facing radially outward) of the shaft 21 . Thereby, the end plate 28 is positioned with respect to the central axis J2. The tip of the second projecting portion 282 contacts the axially facing surface of the rotor core 24 . Thereby, the rotor core 24 can be stably fixed to the shaft 21 via the end plate 28 .
 本実施形態のロータ20によれば、ロータ20の回転バランスが悪い場合に、第1突出部281に切削加工を施すなどして第1突出部281の突出高さを部分的に変えることで、ロータ20のバランス修正を行うことが可能である。これにより、ロータ20の回転時に生じる中心軸線J2周りの回転振れを抑制することができる。また、本実施形態のエンドプレート28によれば、第1突出部281が、ロータ20の外表面に露出していない。このため、バランス修正を行ったことで第1突出部281の周方向の一部の形状が、周方向の他の部位と異なる形状になった場合であっても、ロータ20の回転時の空気抵抗が増大することを抑制できる。 According to the rotor 20 of the present embodiment, when the rotation balance of the rotor 20 is poor, by partially changing the protrusion height of the first protrusion 281 by cutting the first protrusion 281, A balance correction of the rotor 20 can be made. As a result, rotational vibration around the central axis J2 that occurs when the rotor 20 rotates can be suppressed. Further, according to the end plate 28 of this embodiment, the first projecting portion 281 is not exposed on the outer surface of the rotor 20 . Therefore, even if the shape of a part of the first projecting portion 281 in the circumferential direction differs from the shape of the other portion in the circumferential direction due to the balance correction, the air flow during the rotation of the rotor 20 does not change. An increase in resistance can be suppressed.
 図1に示すように、ステータ30は、中心軸線J2を中心とする環状のステータコア32と、ステータコア32に取り付けられるコイル31と、カバー部材324と、ステータコア32とコイル31との間に介在するインシュレータ(図示略)とを有する。ステータ30は、ハウジング6に保持される。 As shown in FIG. 1, the stator 30 includes an annular stator core 32 centered on the central axis J2, coils 31 attached to the stator core 32, a cover member 324, and an insulator interposed between the stator core 32 and the coils 31. (not shown). Stator 30 is held in housing 6 .
 図2に示すように、ステータコア32は、円環状のヨークと、ヨークの内周面から径方向内方に突出する複数の磁極歯を有する。磁極歯間には、コイル31が挿入されるスロット322が位置する。スロット322に挿入されたコイル線31eはいわゆる平角線である。 As shown in FIG. 2, the stator core 32 has an annular yoke and a plurality of magnetic pole teeth protruding radially inward from the inner peripheral surface of the yoke. A slot 322 into which the coil 31 is inserted is located between the magnetic pole teeth. The coil wire 31e inserted into the slot 322 is a so-called rectangular wire.
 図3に示すように、スロット322のコイル線31eの径方向内側には、樹脂部材323が挿入される。樹脂部材は、別部材でもよいし、ワニス等で構成してもよい。樹脂部材323がスロット322内に挿入されることにより、スロット322におけるコイル線31e同士の間の隙間を小さくすることができるとともに、隣り合うティース同士の間を隙間が樹脂部材323の少なくとも一部によって埋められる。これにより、ロータ20とステータ30との間の隙間凹凸を小さくすることができる。その結果、ロータ20とステータ30との間において、ロータ20の回転時における空気抵抗を低減させることができる。 As shown in FIG. 3, a resin member 323 is inserted inside the slot 322 in the radial direction of the coil wire 31e. The resin member may be a separate member or may be made of varnish or the like. By inserting the resin member 323 into the slot 322, the gap between the coil wires 31e in the slot 322 can be reduced, and at least a part of the resin member 323 closes the gap between the adjacent teeth. be buried. Thereby, the unevenness of the gap between the rotor 20 and the stator 30 can be reduced. As a result, air resistance can be reduced between the rotor 20 and the stator 30 when the rotor 20 rotates.
 図1に示すように、コイル31は、第1のコイルエンド31aと、第2のコイルエンド31bと、を有する。第1のコイルエンド31aは、ステータコア32の軸方向他方側に突出する。第2のコイルエンド31bは、ステータコア32の軸方向一方側に突出する。すなわち、コイル31は、ステータコア32から軸方向に突出するコイルエンド31a、31bを有する。コイルエンド31a、31bは、中心軸線J2を中心とする環状である。 As shown in FIG. 1, the coil 31 has a first coil end 31a and a second coil end 31b. The first coil end 31a protrudes to the other side of the stator core 32 in the axial direction. The second coil end 31b protrudes to one side of the stator core 32 in the axial direction. That is, the coil 31 has coil ends 31a and 31b that protrude from the stator core 32 in the axial direction. The coil ends 31a and 31b are ring-shaped around the central axis J2.
 カバー部材324は、周方向に延びる環状の部材である。カバー部材324は、ステータコア32の軸方向一方側および他方側の両方に、それぞれ配置される。一対のカバー部材324のうち、一方のカバー部材324は第1のコイルエンド31aを覆い、他方のカバー部材324は第2のコイルエンド31bを覆う。カバー部材324は、ステータコア32の軸方向を向く面に、ねじ止めや接着等によって固定される。これにより、カバー部材324は、ステータコア32に装着される。カバー部材324は、内壁324aと外壁324cと蓋部324bとを有する。 The cover member 324 is an annular member extending in the circumferential direction. The cover members 324 are arranged on both the axial one side and the other axial side of the stator core 32 . Of the pair of cover members 324, one cover member 324 covers the first coil end 31a, and the other cover member 324 covers the second coil end 31b. The cover member 324 is fixed to the axially facing surface of the stator core 32 by screwing, bonding, or the like. Thereby, the cover member 324 is attached to the stator core 32 . The cover member 324 has an inner wall 324a, an outer wall 324c and a lid portion 324b.
 内壁324aは、コイルエンド31a、31bの径方向内側に位置する。内壁324aは、中心軸線J2を中心とする略円筒状である。内壁324aは、コイルエンド31a、31bを径方向内側から覆う。 The inner wall 324a is located radially inside the coil ends 31a and 31b. The inner wall 324a has a substantially cylindrical shape centered on the central axis J2. The inner wall 324a covers the coil ends 31a and 31b from the inside in the radial direction.
 外壁324cは、コイルエンド31a、31bの径方向外側に位置する。外壁324cは、中心軸線J2を中心とする略円筒状である。外壁324cは、コイルエンド31a、31bを径方向外側から覆う。外壁324cは、径方向において内壁324aと対向する。外壁324cと内壁324aとの間には、コイルエンド31a、31bが配置される。 The outer wall 324c is located radially outside the coil ends 31a and 31b. The outer wall 324c has a substantially cylindrical shape centered on the central axis J2. The outer wall 324c covers the coil ends 31a and 31b from the radial outside. The outer wall 324c radially faces the inner wall 324a. Coil ends 31a and 31b are arranged between the outer wall 324c and the inner wall 324a.
 蓋部324bは、内壁324aと外壁324cとを繋ぐ。蓋部324bは、軸方向と直交する略板状である。蓋部324bは、コイルエンド31a、31bを軸方向から覆う。蓋部324bは、ステータコア32の軸方向を向く面と対向して配置される。 The lid portion 324b connects the inner wall 324a and the outer wall 324c. The lid portion 324b has a substantially plate shape orthogonal to the axial direction. The lid portion 324b axially covers the coil ends 31a and 31b. The lid portion 324b is arranged to face the surface of the stator core 32 facing the axial direction.
 カバー部材324とステータコア32とによって囲まれる空間は、コイルエンド31a、31bを収容するコイルエンド収容空間Aを構成する。コイルエンド収容空間Aは、内壁324a、蓋部324b、外壁324c、およびステータコア32の軸方向を向く面によって囲まれる。コイルエンド収容空間Aは、中心軸線J2を中心として周方向に略円環状に延びる。 A space surrounded by the cover member 324 and the stator core 32 constitutes a coil end accommodation space A that accommodates the coil ends 31a and 31b. The coil end accommodation space A is surrounded by the inner wall 324a, the lid portion 324b, the outer wall 324c, and the surfaces of the stator core 32 facing the axial direction. The coil end accommodation space A extends in a substantially annular shape in the circumferential direction around the center axis J2.
 本実施形態のステータ30には、一対のカバー部材324が設けられる。このため、コイルエンド収容空間Aは、ステータコア32の軸方向一方側、および他方側にそれぞれ設けられる。一対のコイルエンド収容空間Aのうち、軸方向一方側に位置する一方のコイルエンド収容空間Aには第1のコイルエンド31aが収容され、軸方向他方側に位置する他方のコイルエンド収容空間Aには第2のコイルエンド31bが収容される。 A pair of cover members 324 are provided on the stator 30 of the present embodiment. Therefore, the coil end accommodation spaces A are provided on one side and the other side of the stator core 32 in the axial direction. A first coil end 31a is accommodated in one of the coil end accommodation spaces A located on one side in the axial direction of the pair of coil end accommodation spaces A, and the other coil end accommodation space A located on the other side in the axial direction. accommodates the second coil end 31b.
 <流体>
 図1に示すように、流体Oは、流路90、100を循環する。流体Oは、第1のベアリング26および第2のベアリング27の潤滑用として使用される。また、流体Oは、モータ2の冷却用として使用される。流体Oは、タンク99に溜る。流体Oは、潤滑油および冷却油の機能を奏するため、粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のものを用いることが好ましい。なお、後述する第2実施形態においては、流体Oは、後述するギヤ室82内の下部領域、すなわち流体溜りPに溜る。
<Fluid>
As shown in FIG. 1, fluid O circulates through channels 90 and 100 . The fluid O is used for lubricating the first bearing 26 and the second bearing 27 . Also, the fluid O is used for cooling the motor 2 . Fluid O accumulates in tank 99 . Since the fluid O functions as a lubricating oil and a cooling oil, it is preferable to use a low-viscosity lubricating oil equivalent to automatic transmission fluid (ATF). In the second embodiment, which will be described later, the fluid O accumulates in a lower region, that is, a fluid pool P, inside the gear chamber 82, which will be described later.
 <流路>
 図1に示すように、流路90、100は、流体Oをタンク99からモータ2に供給し、さらに再びタンク99に導く流体Oの経路である。流路90、100は、ハウジング6に設けられた内部流路90内と、ハウジング6の外部に設けられた外部流路100と、を含む。内部流路90の一部は、ハウジング6を構成する部材の壁内部に設けられる。また、内部流路90の他の一部は、収容空間80内に設けられる。外部流路100は収容空間80の外部に設けられる。外部流路100は、例えば、ギヤ部(図示略)を収容するギヤハウジング(図示略)内に設けられていてもよいし、ホース、又は配管であってもよい。
<Flow path>
As shown in FIG. 1, the flow paths 90 and 100 are paths of the fluid O that supply the fluid O from the tank 99 to the motor 2 and lead it to the tank 99 again. Channels 90 , 100 include an internal channel 90 provided in housing 6 and an external channel 100 provided outside housing 6 . A part of the internal flow path 90 is provided inside the wall of the member that constitutes the housing 6 . Another part of the internal flow path 90 is provided inside the accommodation space 80 . The external channel 100 is provided outside the housing space 80 . The external flow path 100 may be provided, for example, in a gear housing (not shown) that accommodates a gear portion (not shown), or may be a hose or pipe.
 なお、本明細書において、「流路」とは、流体Oの経路を意味する概念である。したがって、「流路」とは、定常的に一方向に向かう流体Oが流れる「流路」のみならず、流体Oを一時的に滞留させる経路(例えばリザーバ)および流体O滴り落ちる経路をも含む概念である。 In this specification, the term "flow path" is a concept that means the route of the fluid O. Therefore, the term "flow path" includes not only a "flow path" in which the fluid O flows steadily in one direction, but also a path for temporarily retaining the fluid O (for example, a reservoir) and a path through which the fluid O drips. It is a concept.
 内部流路90は、モータ2のハウジング6の壁内部に設けられた第1の流路91と、収容空間80内に設けられた第2の流路92と、を有する。第1の流路91および第2の流路92は、第2の流路92、第1の流路91の順で接続されモータ2内で流体Oが流通する流路として構成される。流体Oは、第1の流路91および第2の流路92において、モータ2を内部および外部から冷却する。 The internal flow path 90 has a first flow path 91 provided inside the wall of the housing 6 of the motor 2 and a second flow path 92 provided inside the housing space 80 . The first flow path 91 and the second flow path 92 are connected in the order of the second flow path 92 and the first flow path 91 and configured as a flow path through which the fluid O flows within the motor 2 . The fluid O cools the motor 2 internally and externally in the first flow path 91 and the second flow path 92 .
 第2の流路92は、一対のコイルエンド収容空間Aと、ステータコア32に設けられるコア貫通孔321と、を有する。すなわち、一対のコイルエンド収容空間Aは、第2の流路92の一部を構成する。コア貫通孔321は、ステータコア32を軸方向に延びる。コア貫通孔321は、ステータコアに対し軸方向両側に配置される一対のコイルエンド収容空間A同士を繋ぐ。また、カバー部材324の蓋部324bには、外部流路100の供給口952が接続される。すなわち、コイルエンド収容空間Aには、供給口952が繋がっている。 The second flow path 92 has a pair of coil end housing spaces A and a core through hole 321 provided in the stator core 32 . That is, the pair of coil end accommodation spaces A constitute a part of the second flow path 92 . Core through hole 321 extends axially through stator core 32 . The core through hole 321 connects a pair of coil end accommodation spaces A arranged on both sides in the axial direction with respect to the stator core. Also, the supply port 952 of the external channel 100 is connected to the lid portion 324b of the cover member 324 . That is, the coil end accommodation space A is connected to the supply port 952 .
 外部流路100のタンク99からポンプ96により吸い出された流体Oは、供給口952から吐出され、第2の流路92の一方のコイルエンド収容空間Aに供給される。一方のコイルエンド収容空間Aを流れる流体Oは、第1のコイルエンド31aに接触し第1のコイルエンド31aを冷却する。第1のコイルエンド31aを冷却した流体Oは、ステータコア32を軸方向に貫通するコア貫通孔321を軸方向に移動し、軸方向において逆側に配置されるコイルエンド収容空間Aに達して第2のコイルエンド31bを冷却する。また、流体Oは、コア貫通孔321を通る際に、ステータコア32を冷却する。第2のコイルエンド31bを冷却した流体Oは、軸方向に設けられた流路を通り、ハウジング6に構成されている第1の流路91に供給される。 The fluid O sucked out from the tank 99 of the external channel 100 by the pump 96 is discharged from the supply port 952 and supplied to one coil end accommodation space A of the second channel 92 . The fluid O flowing through one coil end housing space A contacts the first coil end 31a and cools the first coil end 31a. The fluid O that has cooled the first coil end 31a moves in the axial direction through the core through hole 321 that axially penetrates the stator core 32, reaches the coil end accommodation space A arranged on the opposite side in the axial direction, and reaches the first coil end. 2 coil end 31b is cooled. Further, the fluid O cools the stator core 32 when passing through the core through-holes 321 . The fluid O that has cooled the second coil end 31b is supplied to the first flow path 91 formed in the housing 6 through the flow path provided in the axial direction.
 第1の流路91の流体Oは、ハウジング6の壁内部で、+Z方向と-Z方向にそれぞれ分岐する。-Z方向に分岐した流体Oは、第2のベアリング27に供給される。ハウジング6の壁内部において+Z方向に分岐された流体Oは、更に+Y方向と-Y方向に、それぞれ分岐する。 Inside the wall of the housing 6, the fluid O in the first flow path 91 branches into the +Z direction and the -Z direction, respectively. The fluid O branched in the -Z direction is supplied to the second bearing 27 . The fluid O branched in the +Z direction inside the wall of the housing 6 is further branched in the +Y direction and the -Y direction.
 ハウジング6の壁内部で、-Y方向に分岐した流体Oは、シャフト21に設けられた中空部22に供給され、シャフト21とロータコア24を冷却することができる。シャフト21とロータコア24を冷却した流体Oは、流体溜りPに溜まる。 Inside the wall of the housing 6 , the fluid O branched in the -Y direction is supplied to the hollow portion 22 provided in the shaft 21 and can cool the shaft 21 and the rotor core 24 . The fluid O that cools the shaft 21 and the rotor core 24 accumulates in the fluid reservoir P.
 ハウジング6の壁内部において+Y方向に分岐した流体Oは、ハウジング6の壁内部に設けられた軸方向流路部912、および複数の径方向流路部911を介してステータコア32(すなわち、モータ2)に供給され、モータ2を冷却する。また、流体Oの一部は、第1のベアリング26にも供給される。すなわち、第1の流路91を流れる流体Oは、ステータコア32を冷却しつつ、第1のベアリング26と第2のベアリング27とを潤滑する。流体Oは、ステータコア32、第1のベアリング26、および第2のベアリング27を流れた後、流体溜りPに溜まる。 The fluid O branched in the +Y direction inside the wall of the housing 6 passes through the stator core 32 (that is, the motor 2 ) to cool the motor 2 . A portion of the fluid O is also supplied to the first bearing 26 . That is, the fluid O flowing through the first flow path 91 cools the stator core 32 and lubricates the first bearing 26 and the second bearing 27 . Fluid O accumulates in fluid pool P after flowing through stator core 32 , first bearing 26 , and second bearing 27 .
 本実施形態によれば、駆動装置1は、流体Oが流れる第1の流路91を備える。第1の流路91は、軸方向流路部912と、複数の径方向流路部911と、を有する。軸方向流路部912は、筒状部61の壁内部を軸方向に延びる。径方向流路部911は、筒状部61の壁内部を径方向に延びる。径方向流路部911は、軸方向流路部912から径方向内側に延びる。また、径方向流路部911は、ステータ30に向けて開口する。 According to this embodiment, the driving device 1 includes the first flow path 91 through which the fluid O flows. The first channel 91 has an axial channel portion 912 and a plurality of radial channel portions 911 . The axial channel portion 912 extends axially inside the wall of the tubular portion 61 . The radial channel portion 911 extends radially inside the wall of the cylindrical portion 61 . The radial channel portion 911 extends radially inward from the axial channel portion 912 . Moreover, the radial flow path portion 911 opens toward the stator 30 .
 本実施形態の第1の流路91によれば、径方向流路部911の開口位置を適切に配置することで、径方向流路部911からステータ30の発熱量が高い箇所に流体Oを直接的に噴射することが可能となる。本実施形態によれば、ステータ30の温度が高くなりやすく冷却を必要とする箇所を集中的に冷却することが可能となり、ステータ30を効率的に冷却できる。また、本実施形態の径方向流路部911は、軸方向流路部912から径方向外側に延びる。このため、軸方向流路部912の延びる軸方向の何れの位置においても径方向流路部911を配置しやすく、ステータ30に対し所望の位置から流体Oを噴射し易い。さらに、本実施形態の筒状部61には、軸方向に並ぶ複数の径方向流路部911が設けられる。このため、ステータ30に対し軸方向の複数個所に対し流体Oを供給することが可能となり、ステータ30をより均一に冷却できる。 According to the first flow path 91 of the present embodiment, by appropriately arranging the opening position of the radial flow path portion 911, the fluid O can flow from the radial flow path portion 911 to the portion of the stator 30 where the amount of heat generated is high. It is possible to inject directly. According to the present embodiment, it is possible to intensively cool a portion of the stator 30 that tends to become hot and requires cooling, so that the stator 30 can be efficiently cooled. Further, the radial flow path portion 911 of this embodiment extends radially outward from the axial flow path portion 912 . Therefore, it is easy to dispose the radial flow path portion 911 at any position in the axial direction in which the axial flow path portion 912 extends, and it is easy to jet the fluid O to the stator 30 from a desired position. Furthermore, the cylindrical portion 61 of the present embodiment is provided with a plurality of radial flow passage portions 911 aligned in the axial direction. Therefore, the fluid O can be supplied to a plurality of locations in the axial direction of the stator 30, and the stator 30 can be cooled more uniformly.
 また、本実施形態の径方向流路部911は、ステータコア32の外周面に向けて開口する。第1の流路91は、径方向流路部911からステータコア32に流体Oを噴射しステータコア32を効率的に冷却できる。 Also, the radial flow path portion 911 of the present embodiment opens toward the outer peripheral surface of the stator core 32 . The first flow path 91 can jet the fluid O from the radial flow path portion 911 to the stator core 32 to efficiently cool the stator core 32 .
 本実施形態において、ポンプ96は、電気により駆動する電動ポンプである。流体溜りPに溜まった流体Oは、ポンプ96により吸い上げられて、タンク99に流体Oを供給する。なお、ポンプ96は、機械式で駆動するタイプなど、他の種類のポンプであってもよい。 In this embodiment, the pump 96 is an electrically driven pump. The fluid O accumulated in the fluid pool P is sucked up by the pump 96 and supplied to the tank 99 . It should be noted that the pump 96 may be of another type, such as a mechanically driven type.
 クーラー97には、ラジエーター(図示略)で冷却された冷却水を通過させる冷却水用配管(図示略)が接続される。クーラー97の内部を通過する流体Oは、冷却水用配管を通過する冷却水との間で熱交換されて、冷却される。なお、冷却水用配管の経路中には、図示しないインバータユニットが設けられる。冷却水用配管を通過する冷却水は、図示しないインバータユニットを冷却する。 A cooling water pipe (not shown) for passing cooling water cooled by a radiator (not shown) is connected to the cooler 97 . The fluid O passing through the cooler 97 is cooled by heat exchange with the cooling water passing through the cooling water pipe. An inverter unit (not shown) is provided in the path of the cooling water pipe. Cooling water passing through the cooling water pipe cools an inverter unit (not shown).
 本実施形態によれば、クーラー97を通過した直後の流体Oでロータ20とステータ30を効率的に冷却しつつ、第1のベアリング26と第2のベアリング27を潤滑することができる。なお、クーラー97、ポンプ96、およびタンク99は、ハウジング6に固定されてもよい。 According to this embodiment, the rotor 20 and the stator 30 can be efficiently cooled by the fluid O immediately after passing through the cooler 97, and the first bearing 26 and the second bearing 27 can be lubricated. Cooler 97 , pump 96 and tank 99 may be fixed to housing 6 .
<第2実施形態>
 次に、第2実施形態の駆動装置110について説明する。
 図5に示すように、本実施形態の駆動装置110は、モータ2に加えて減速装置3を有する。減速装置3は、第1実施形態のギヤ部(図示略)に相当する。ハウジング6の軸方向他方側には、隔壁を介してギヤ室82が取り付けられる。ギヤ室82の内部には、減速装置3が収容される。シャフト21は、減速装置3に接続される。本実施形態の駆動装置110は、減速装置3を収容するギヤ室82にある流体Oをポンプにより吸い上げる事で、モータ2の冷却とベアリングの潤滑を行う。
<Second embodiment>
Next, the drive device 110 of 2nd Embodiment is demonstrated.
As shown in FIG. 5 , the drive device 110 of this embodiment has a speed reducer 3 in addition to the motor 2 . The reduction gear 3 corresponds to the gear portion (not shown) of the first embodiment. A gear chamber 82 is attached to the other axial side of the housing 6 via a partition wall. The reduction gear 3 is housed inside the gear chamber 82 . The shaft 21 is connected to the reduction gear 3 . The driving device 110 of the present embodiment cools the motor 2 and lubricates the bearings by pumping up the fluid O in the gear chamber 82 housing the speed reduction device 3 .
<第3実施形態>
 次に、第3実施形態の駆動装置110Bについて説明する。
 本実施形態の駆動装置110Bは、第1実施形態と比較して、内部流路90Bの構成が異なる。なお、上述の実施形態と同一態様の構成要素については、同一符号を付し、その説明を省略する。
<Third Embodiment>
Next, the drive device 110B of 3rd Embodiment is demonstrated.
A driving device 110B of the present embodiment differs from that of the first embodiment in the configuration of an internal flow path 90B. In addition, the same code|symbol is attached|subjected about the component of the same aspect as the above-mentioned embodiment, and the description is abbreviate|omitted.
 本実施形態の内部流路90Bは、流路91Bを有する。流路91Bは、第1実施形態の第1の流路91(図1参照)に相当する流路であり、流体Oが流れる。流路91Bは、軸方向流路部912と、複数の径方向流路部911、911Bを有する。本実施形態の複数の径方向流路部911、911Bには、複数の第1径方向流路部911と、複数の第2径方向流路部911Bと、が含まれる。 The internal channel 90B of this embodiment has a channel 91B. The channel 91B is a channel corresponding to the first channel 91 (see FIG. 1) of the first embodiment, and the fluid O flows therethrough. The channel 91B has an axial channel portion 912 and a plurality of radial channel portions 911 and 911B. The plurality of radial flow passage portions 911 and 911B of the present embodiment includes a plurality of first radial flow passage portions 911 and a plurality of second radial flow passage portions 911B.
 軸方向流路部912は、ハウジング6の筒状部61の壁内部を軸方向に延びる。第1径方向流路部911、および第2径方向流路部911Bは、筒状部61の壁内部を径方向に延びる。第1径方向流路部911、および第2径方向流路部911Bは、軸方向流路部912から径方向内側に延びる。また、第1径方向流路部911、および第2径方向流路部911Bは、ステータ30に向けて開口する。 The axial channel portion 912 extends axially inside the wall of the tubular portion 61 of the housing 6 . The first radial flow path portion 911 and the second radial flow path portion 911B extend radially inside the wall of the cylindrical portion 61 . The first radial flow path portion 911 and the second radial flow path portion 911B extend radially inward from the axial flow path portion 912 . Also, the first radial flow path portion 911 and the second radial flow path portion 911B open toward the stator 30 .
 複数の第1径方向流路部911は、軸方向に沿って並んで配置される。複数の第1径方向流路部911は、ステータコア32の外周面に向けて開口する。第1径方向流路部911は、ステータコア32の外周面に向けて流体Oを噴射する。第1径方向流路部911から噴射された流体Oは、ステータコア32を冷却する。 The plurality of first radial flow passage portions 911 are arranged side by side along the axial direction. The plurality of first radial flow passage portions 911 open toward the outer peripheral surface of the stator core 32 . The first radial flow path portion 911 jets the fluid O toward the outer peripheral surface of the stator core 32 . The fluid O injected from the first radial flow path portion 911 cools the stator core 32 .
 第2径方向流路部911Bは、コイルエンド31a、31bに向けて開口する。本実施形態の流路91Bには、一対の第2径方向流路部911Bが設けられる。一対の第2径方向流路部911Bのうち軸方向一方側(+Y側)に位置する一方の開口は、径方向において第1のコイルエンド31aと対向する。また、一対の第2径方向流路部911Bのうち、軸方向他方側(-Y側)に位置する他方の開口は、径方向において第2のコイルエンド31bと対向する。一対の第2径方向流路部911Bは、コイルエンド31a、31bに向けて流体Oを噴射する。第2径方向流路部911Bから噴射された流体Oは、コイルエンド31a、31bを冷却する。ステータ30では、ステータ30の他の部位と比較すると、コイル31の発熱量が大きい。本実施形態によれば、ステータ30において、比較的、高温となり易いコイル31に流体Oを直接的に噴射することが可能となり、ステータ30を効率的に冷却できる。 The second radial flow path portion 911B opens toward the coil ends 31a and 31b. A pair of second radial flow path portions 911B are provided in the flow path 91B of the present embodiment. One of the openings of the pair of second radial flow path portions 911B located on one axial side (+Y side) faces the first coil end 31a in the radial direction. The other opening of the pair of second radial flow passage portions 911B located on the other axial side (−Y side) faces the second coil end 31b in the radial direction. The pair of second radial flow path portions 911B jet the fluid O toward the coil ends 31a and 31b. The fluid O ejected from the second radial flow path portion 911B cools the coil ends 31a and 31b. In stator 30 , coil 31 generates a large amount of heat compared to other parts of stator 30 . According to this embodiment, in the stator 30, it is possible to directly inject the fluid O to the coil 31, which tends to reach a relatively high temperature, so that the stator 30 can be efficiently cooled.
 本実施形態のステータ30は、第1実施形態と同様に、カバー部材324を有する。カバー部材324とステータコア32とは、コイルエンド収容空間Aを囲む。カバー部材324の外壁324cには、外壁324cを径方向に貫通する貫通孔324hが設けられる。第2径方向流路部911Bは、貫通孔324hを介して、コイルエンド収容空間Aに流体Oを供給する。 The stator 30 of this embodiment has a cover member 324 as in the first embodiment. Cover member 324 and stator core 32 surround coil end accommodation space A. As shown in FIG. The outer wall 324c of the cover member 324 is provided with a through hole 324h that radially penetrates the outer wall 324c. The second radial flow path portion 911B supplies the fluid O to the coil end accommodation space A via the through hole 324h.
 本実施形態によれば、ステータ30は、コイルエンド31a、31bを覆うカバー部材324を有する。カバー部材324は、第2径方向流路部911Bからコイルエンド31a、31bに噴射されコイルエンド31a、31bに当たって反射する流体Oが、四方に飛散、および流出することを抑制する。結果的に、カバー部材324は、四方に飛散、および流出しようとする流体Oをコイルエンド31a、31bの周囲に留める。これにより、流体Oがコイルエンド31a、31bに再び接触するなどして、流体Oとコイルエンド31a、31bと接触する時間を長くすることができる。本実施形態によれば、流体Oがコイル31から、より多くの熱を奪うことが可能となり、コイル31を効率的に冷却できる。なお、このような効果は、カバー部材324がコイルエンド31a、31bを何れの方向から覆う場合であっても、一定程度得ることができる。すなわち、このような効果は、カバー部材324が、内壁324a、蓋部324b、および外壁324cの何れか一つのみを有する場合であっても得ることができる。 According to this embodiment, the stator 30 has a cover member 324 that covers the coil ends 31a and 31b. The cover member 324 prevents the fluid O, which is jetted from the second radial flow path portion 911B to the coil ends 31a and 31b and reflected by the coil ends 31a and 31b, from scattering and flowing out in all directions. As a result, the cover member 324 keeps the fluid O, which is about to scatter and flow out, around the coil ends 31a and 31b. As a result, the fluid O contacts the coil ends 31a and 31b again, and the contact time between the fluid O and the coil ends 31a and 31b can be lengthened. According to this embodiment, the fluid O can take more heat from the coil 31, and the coil 31 can be efficiently cooled. Such an effect can be obtained to some extent regardless of which direction the cover member 324 covers the coil ends 31a and 31b. That is, such an effect can be obtained even when the cover member 324 has only one of the inner wall 324a, the lid portion 324b, and the outer wall 324c.
 本実施形態によれば、カバー部材324は、コイルエンド31a、31bを径方向内側から覆う内壁324aと、コイルエンド31a、31bを軸方向から覆う蓋部324bと、を有する。本実施形態によれば、第2径方向流路部911Bから径方向内側に向けて噴射される流体Oが、径方向内側、および軸方向に飛散することを抑制できる。さらに、本実施形態によれば、内壁324a、蓋部324b、およびステータコア32の軸方向を向く面が、径方向外側に開口する樋状に配置される。したがって、第2径方向流路部911Bの開口が、コイルエンド31a、31bの上側に位置する場合に、第2径方向流路部911Bから供給された流体Oを、コイルエンド31a、31bに沿って周方向に流すことができる。これにより、周方向に延びるコイルエンド31a、31bの全体に流体Oを供給することが可能となり、コイルエンド31a、31bを周方向に沿って均一に冷却できる。 According to this embodiment, the cover member 324 has an inner wall 324a that covers the coil ends 31a and 31b from the inside in the radial direction, and a lid portion 324b that covers the coil ends 31a and 31b from the axial direction. According to the present embodiment, it is possible to prevent the fluid O jetted radially inward from the second radial flow path portion 911B from scattering radially inward and axially. Furthermore, according to the present embodiment, the surfaces of the inner wall 324a, the lid portion 324b, and the stator core 32 facing the axial direction are arranged in a gutter shape that opens radially outward. Therefore, when the openings of the second radial flow path portion 911B are positioned above the coil ends 31a and 31b, the fluid O supplied from the second radial flow path portion 911B flows along the coil ends 31a and 31b. can flow in the circumferential direction. As a result, the fluid O can be supplied to the entire coil ends 31a and 31b extending in the circumferential direction, and the coil ends 31a and 31b can be uniformly cooled along the circumferential direction.
 さらに、本実施形態の内壁324aは、コイルエンド31a、31bと、ロータ20との間に配置される。このため、内壁324aは、第2径方向流路部911Bからコイルエンド31a、31bに向けて供給される流体Oがロータ20にかかることを抑制する。ロータ20が高速回転する場合、ロータ20に流体Oがかかると、この流体Oがロータ20の回転の抵抗になる虞がある。本実施形態によれば、第2径方向流路部911Bから噴射される流体Oがロータ20の回転の抵抗になることを抑制でき、ロータ20を効率よく回転させることができる。 Furthermore, the inner wall 324a of the present embodiment is arranged between the coil ends 31a, 31b and the rotor 20. Therefore, the inner wall 324a suppresses the rotor 20 from being supplied with the fluid O from the second radial flow path portion 911B toward the coil ends 31a and 31b. When the rotor 20 rotates at a high speed, if the fluid O is applied to the rotor 20 , the fluid O may act as resistance to the rotation of the rotor 20 . According to the present embodiment, it is possible to prevent the fluid O jetted from the second radial flow path portion 911B from acting as resistance to the rotation of the rotor 20, so that the rotor 20 can be efficiently rotated.
 本実施形態によれば、カバー部材324は、内壁324a、および蓋部324bに加えて、コイルエンド31a、31bを径方向外側から覆う外壁324cを有する。本実施形態によれば、カバー部材324とステータコア32とによって囲まれるコイルエンド収容空間Aを流体Oで満たすことができる。結果的に、流体Oがコイルエンド31a、31bに接触する時間をさらに長い時間とすることができ、コイル31を効率的に冷却できる。 According to this embodiment, the cover member 324 has an outer wall 324c that radially covers the coil ends 31a and 31b in addition to the inner wall 324a and the lid portion 324b. According to this embodiment, the fluid O can fill the coil end accommodation space A surrounded by the cover member 324 and the stator core 32 . As a result, the time during which the fluid O contacts the coil ends 31a and 31b can be made longer, and the coil 31 can be efficiently cooled.
 以上に、本発明の様々な実施形態を説明したが、各実施形態における各構成およびそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換およびその他の変更が可能である。また、本発明は実施形態によって限定されることはない。 Various embodiments of the present invention have been described above, but each configuration and combination thereof in each embodiment are examples, and addition, omission, replacement, and Other changes are possible. Moreover, the present invention is not limited by the embodiments.
 なお、本技術は以下のような構成をとることが可能である。
(1) 中心軸線を中心として回転するロータ、および前記ロータの径方向外側に位置するステータを有するモータと、前記モータを収容する収容空間が設けられるハウジングと、流体が流れる流路と、を備え、前記ハウジングは、前記ステータを径方向外側から囲む筒状部を有し、前記流路は、前記筒状部の壁内部を軸方向に延びる軸方向流路部と、前記軸方向流路部から径方向内側に延びて前記ステータに向けて開口する径方向流路部と、を有する、駆動装置。
(2) 前記ステータは、前記中心軸線を中心とする環状のステータコアと、前記ステータコアに取り付けられるコイルと、を有し、前記径方向流路部は、前記ステータコアの外周面に向けて開口する、(1)に記載の駆動装置。
(3) 前記ステータは、前記中心軸線を中心とする環状のステータコアと、前記ステータコアに取り付けられるコイルと、を有し、前記コイルは、前記ステータコアから軸方向に突出するコイルエンドを有し、前記径方向流路部は、前記コイルエンドに向けて開口する、(1)に記載の駆動装置。
(4) 前記ステータは、前記コイルエンドを覆うカバー部材を有する、(3)に記載の駆動装置。
(5) 前記コイルエンドは、前記中心軸線を中心とする環状であり、前記カバー部材は、前記コイルエンドを径方向内側から覆う内壁と、前記コイルエンドを軸方向から覆う蓋部と、を有する、(4)に記載の駆動装置。
(6) 前記カバー部材は、前記コイルエンドを径方向外側から覆う外壁を有する、(5)に記載の駆動装置。
Note that the present technology can be configured as follows.
(1) A motor having a rotor that rotates around a central axis and a stator that is positioned radially outward of the rotor, a housing provided with a housing space that houses the motor, and a flow path through which a fluid flows. The housing has a cylindrical portion that surrounds the stator from the outside in the radial direction, and the flow path includes an axial flow path portion that extends axially within a wall of the cylindrical portion, and the axial flow path portion. a radial passage portion extending radially inwardly from and opening toward the stator.
(2) The stator has an annular stator core centered on the central axis and coils attached to the stator core, and the radial flow path portion opens toward the outer peripheral surface of the stator core. (1) The driving device according to the above.
(3) The stator has an annular stator core centered on the central axis, and a coil attached to the stator core, the coil has a coil end projecting axially from the stator core, and the The driving device according to (1), wherein the radial flow path portion opens toward the coil end.
(4) The driving device according to (3), wherein the stator has a cover member that covers the coil ends.
(5) The coil end has an annular shape centered on the central axis, and the cover member has an inner wall that radially inwardly covers the coil end, and a cover that axially covers the coil end. , (4).
(6) The driving device according to (5), wherein the cover member has an outer wall that covers the coil end from the radial outside.
 また、上述の実施形態には以下のような技術が含まれる。
(1) 中心軸線を中心として回転するロータ、および前記ロータの径方向外側に位置するステータを有するモータを備え、前記ロータは、中心軸線を中心として軸方向に延びる円柱状のロータコアと、前記ロータコアの軸方向一方側の端面を覆うエンドプレートと、を有し、前記エンドプレートの軸方向一方側を向く面は、径方向外側に向かうに従い軸方向他方側に位置する方向に傾斜し、軸方向一方側に向けて凸となる湾曲面である、駆動装置。
(2) 前記エンドプレートの軸方向一方側を向く面は、中心軸線周りの全周に亘って一定の形状である、(1)に記載の駆動装置。
(3) 前記エンドプレートは、前記ロータコア側を向く面から前記ロータコア側に向かって突出し周方向に延びる突出部を有する、(1)又は(2)に記載の駆動装置。
(4) 前記突出部の先端は、前記ロータコアの軸方向を向く面に接触する、(3)に記載の駆動装置。
(5) 前記ロータは、中心軸線を中心として軸方向に延びるシャフトを有し、前記エンドプレートは、前記突出部として、第1突出部および第2突出部を有し、前記第1突出部は、前記第2突出部よりも径方向外側に位置する、(3)又は(4)に記載の駆動装置。
(6) 前記第2突出部の内周面の少なくとも一部は、前記シャフトの外側面と接触する、(5)に記載の駆動装置。
In addition, the above-described embodiments include the following techniques.
(1) A motor having a rotor that rotates about a central axis and a stator that is positioned radially outward of the rotor. The rotor includes a cylindrical rotor core that extends axially about the central axis; and an end plate covering one end surface in the axial direction of the end plate, the surface of the end plate facing the one axial side is inclined toward the other axial side as it extends radially outward, and A driving device that is a curved surface that is convex toward one side.
(2) The driving device according to (1), wherein the surface of the end plate facing one side in the axial direction has a constant shape over the entire circumference around the central axis.
(3) The drive device according to (1) or (2), wherein the end plate has a protrusion that protrudes toward the rotor core from a surface facing the rotor core and extends in the circumferential direction.
(4) The driving device according to (3), wherein the tip of the protrusion contacts the axially facing surface of the rotor core.
(5) The rotor has a shaft extending axially about a central axis, the end plate has a first protrusion and a second protrusion as the protrusions, and the first protrusion is , the driving device according to (3) or (4), which is positioned radially outward of the second protrusion.
(6) The driving device according to (5), wherein at least a portion of the inner peripheral surface of the second protrusion contacts the outer surface of the shaft.
1,110,110B…駆動装置、2…モータ、6…ハウジング、20…ロータ、21…シャフト、24…ロータコア、28…エンドプレート、30…ステータ、31…コイル、31a,31b…コイルエンド、32…ステータコア、61…筒状部、80…収容空間、91,91B…流路、281…第1突出部(突出部)、282…第2突出部(突出部)、324…カバー部材、324a…内壁、324b…蓋部、324c…外壁、911、911B…径方向流路部、912…軸方向流路部、J2…中心軸線、O…流体

 
DESCRIPTION OF SYMBOLS 1, 110, 110B... drive device, 2... motor, 6... housing, 20... rotor, 21... shaft, 24... rotor core, 28... end plate, 30... stator, 31... coil, 31a, 31b... coil end, 32 Stator core 61 Cylindrical portion 80 Accommodating space 91, 91B Flow path 281 First projecting portion (projecting portion) 282 Second projecting portion (projecting portion) 324 Cover member 324a Inner wall 324b Lid portion 324c Outer wall 911, 911B Radial channel portion 912 Axial channel portion J2 Central axis O Fluid

Claims (6)

  1.  中心軸線を中心として回転するロータ、および前記ロータの径方向外側に位置するステータを有するモータと、
     前記モータを収容する収容空間が設けられるハウジングと、
     流体が流れる流路と、を備え、
     前記ハウジングは、前記ステータを径方向外側から囲む筒状部を有し、
     前記流路は、
      前記筒状部の壁内部を軸方向に延びる軸方向流路部と、
      前記軸方向流路部から径方向内側に延びて前記ステータに向けて開口する径方向流路部と、を有する、
    駆動装置。
    a motor having a rotor rotating about a central axis and a stator positioned radially outward of the rotor;
    a housing provided with a housing space for housing the motor;
    a channel through which the fluid flows,
    The housing has a cylindrical portion surrounding the stator from the radial outside,
    The flow path is
    an axial flow path portion extending axially within the wall of the tubular portion;
    a radial flow path extending radially inward from the axial flow path and opening toward the stator;
    drive.
  2.  前記ステータは、
      前記中心軸線を中心とする環状のステータコアと、
      前記ステータコアに取り付けられるコイルと、を有し、
     前記径方向流路部は、前記ステータコアの外周面に向けて開口する、
    請求項1に記載の駆動装置。
    The stator is
    an annular stator core centered on the central axis;
    a coil attached to the stator core;
    The radial flow path portion opens toward the outer peripheral surface of the stator core,
    2. The driving device according to claim 1.
  3.  前記ステータは、
      前記中心軸線を中心とする環状のステータコアと、
      前記ステータコアに取り付けられるコイルと、を有し、
     前記コイルは、前記ステータコアから軸方向に突出するコイルエンドを有し、
     前記径方向流路部は、前記コイルエンドに向けて開口する、
    請求項1に記載の駆動装置。
    The stator is
    an annular stator core centered on the central axis;
    a coil attached to the stator core;
    the coil has a coil end projecting axially from the stator core,
    The radial flow path portion opens toward the coil end,
    2. The driving device according to claim 1.
  4.  前記ステータは、前記コイルエンドを覆うカバー部材を有する、
    請求項3に記載の駆動装置。
    The stator has a cover member that covers the coil end,
    4. The driving device according to claim 3.
  5.  前記コイルエンドは、前記中心軸線を中心とする環状であり、
     前記カバー部材は、
      前記コイルエンドを径方向内側から覆う内壁と、
      前記コイルエンドを軸方向から覆う蓋部と、を有する、
    請求項4に記載の駆動装置。
    The coil end has an annular shape centered on the central axis,
    The cover member is
    an inner wall that covers the coil end from the radially inner side;
    a lid portion that axially covers the coil end;
    5. The driving device according to claim 4.
  6.  前記カバー部材は、前記コイルエンドを径方向外側から覆う外壁を有する、
    請求項5に記載の駆動装置。

     
    The cover member has an outer wall that covers the coil end from the radial outside,
    6. A driving device according to claim 5.

PCT/JP2023/003585 2022-02-03 2023-02-03 Drive device WO2023149551A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022015890 2022-02-03
JP2022-015890 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023149551A1 true WO2023149551A1 (en) 2023-08-10

Family

ID=87552613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003585 WO2023149551A1 (en) 2022-02-03 2023-02-03 Drive device

Country Status (1)

Country Link
WO (1) WO2023149551A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107905A (en) * 2012-11-26 2014-06-09 Mitsubishi Motors Corp Rotary electric machine
JP2015033299A (en) * 2013-08-06 2015-02-16 日産自動車株式会社 Cooling structure of stator coil and manufacturing method of the same
JP2015095908A (en) * 2013-11-08 2015-05-18 株式会社ジェイテクト Electric motor
JP2019154146A (en) * 2018-03-02 2019-09-12 本田技研工業株式会社 Rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107905A (en) * 2012-11-26 2014-06-09 Mitsubishi Motors Corp Rotary electric machine
JP2015033299A (en) * 2013-08-06 2015-02-16 日産自動車株式会社 Cooling structure of stator coil and manufacturing method of the same
JP2015095908A (en) * 2013-11-08 2015-05-18 株式会社ジェイテクト Electric motor
JP2019154146A (en) * 2018-03-02 2019-09-12 本田技研工業株式会社 Rotary electric machine

Similar Documents

Publication Publication Date Title
US9729027B2 (en) Cooling structure of rotary electric machine
JP5202143B2 (en) Outer rotor type vehicle generator
JP5625565B2 (en) Rotating machine and vehicle
US6617716B2 (en) Rotary electric machine having stator coolant passage means
CN111585394B (en) Motor unit
JP5075874B2 (en) Electric motor
JP5075872B2 (en) Electric motor
US20220196135A1 (en) Power transmission device, motor unit, and vehicle
JP2022136505A (en) Drive device
US20230137134A1 (en) Rotating electrical machine and drive device
WO2019208081A1 (en) Motor unit and vehicle drive device
JP2022136835A (en) Rotary electric machine and driving device
JP2022136508A (en) Driving device
JP2023006087A (en) Drive device and vehicle
WO2023149551A1 (en) Drive device
US20230132520A1 (en) Rotating electrical machine and drive device
US20220393546A1 (en) Motor unit and method for manufacturing motor unit
US20230007761A1 (en) Drive device and vehicle
CN114678998A (en) Rotating electric machine and drive device
JP2023042978A (en) Driving device
JP2022136836A (en) Rotary electric machine, and drive unit
JP7363154B2 (en) Motor unit and motor unit manufacturing method
JP2022136504A (en) Drive device
JP2008289245A (en) Cooling structure of rotary electric machine
JP3758565B2 (en) Rotating electric machine for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749867

Country of ref document: EP

Kind code of ref document: A1