WO2023145185A1 - Thermoelectric power generation device and steam system - Google Patents

Thermoelectric power generation device and steam system Download PDF

Info

Publication number
WO2023145185A1
WO2023145185A1 PCT/JP2022/040977 JP2022040977W WO2023145185A1 WO 2023145185 A1 WO2023145185 A1 WO 2023145185A1 JP 2022040977 W JP2022040977 W JP 2022040977W WO 2023145185 A1 WO2023145185 A1 WO 2023145185A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
steam
heat exchanger
pipe
thermoelectric
Prior art date
Application number
PCT/JP2022/040977
Other languages
French (fr)
Japanese (ja)
Inventor
杉江悠一
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to JP2023534368A priority Critical patent/JPWO2023145185A1/ja
Publication of WO2023145185A1 publication Critical patent/WO2023145185A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/02Arrangements of feed-water pumps
    • F22D11/06Arrangements of feed-water pumps for returning condensate to boiler
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • thermoelectric generator and a steam system including the same.
  • thermoelectric generators that generate thermoelectric power using thermoelectric conversion elements have been known.
  • a thermoelectric conversion element is provided between an inner cylinder through which exhaust gas flows and heat radiating fins.
  • the high temperature surface of the thermoelectric conversion element is heated by the exhaust gas, and the low temperature surface of the thermoelectric conversion element is cooled by the radiation fins.
  • a temperature difference is generated between the high temperature surface and the low temperature surface, and thermoelectric power generation is performed.
  • thermoelectric generator of Patent Document 1 has the problem that it is not possible to generate a large amount of power. That is, since the low-temperature surface of the thermoelectric conversion element is naturally cooled by the radiating fins, it is not possible to increase the temperature difference between the high-temperature surface and the low-temperature surface. Therefore, the power generation amount cannot be earned.
  • thermoelectric generator capable of increasing the amount of power generation and a steam system including the same.
  • the thermoelectric generator of the present disclosure includes a thermoelectric conversion module, a heating heat exchanger, and a cooling heat exchanger.
  • the thermoelectric conversion module has a lower first surface and an upper second surface facing each other in the vertical direction, and performs thermoelectric power generation according to the temperature difference between the first surface and the second surface.
  • the heating heat exchanger has a container-shaped heating main body provided in contact with the first surface below the first surface and supplied with steam, and the first surface is heated by the steam of the heating main body. to heat.
  • the cooling heat exchanger has a container-shaped cooling main body provided above the second surface in contact with the second surface and supplied with cooling liquid, and the cooling liquid of the cooling main body is used to cool the second surface. Cool two sides.
  • the steam system of the present disclosure is supplied with steam and includes a steam-using device that uses the supplied steam, and the thermoelectric generator. A portion of the steam supplied to the steam-using device is supplied to the heating main body.
  • thermoelectric generator it is possible to increase the amount of power generated.
  • thermoelectric generator According to the above steam system, it is possible to increase the amount of power generated by the thermoelectric generator.
  • FIG. 1 is a front view showing a schematic configuration of a power generation unit in which a plurality of thermoelectric power generators are assembled.
  • FIG. 2 is a front view showing a schematic configuration of the thermoelectric generator.
  • FIG. 3 is a rear view showing a schematic configuration of the thermoelectric generator.
  • FIG. 4 is a left side view showing a schematic configuration of the thermoelectric generator.
  • FIG. 5 is a right side view showing a schematic configuration of the thermoelectric generator.
  • FIG. 6 is an exploded perspective view showing the thermoelectric generator viewed from the front.
  • FIG. 7 is a piping system diagram showing a schematic configuration of a heat recovery system provided with a thermoelectric generator.
  • FIG. 8 is a schematic configuration diagram of a gas-liquid separator.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of a liquid pumping device.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a switching valve.
  • FIG. 11 is a view equivalent to FIG. 10 showing one state of the switching valve.
  • FIG. 1 is a front view showing a schematic configuration of a power generation unit U in which a plurality of thermoelectric power generators 8 are assembled.
  • the power generation unit U is formed by assembling a plurality of thermoelectric power generators 8 .
  • three thermoelectric generators 8 are assembled. Specifically, the three thermoelectric generators 8 are vertically stacked and integrally formed.
  • the top plate 88 of the thermoelectric power generator 8 also serves as the bottom plate 81 of the thermoelectric power generator 8 located directly above it.
  • FIG. 2 is a front view showing a schematic configuration of the thermoelectric generator 8.
  • FIG. 3 is a rear view showing a schematic configuration of the thermoelectric generator 8.
  • FIG. 4 is a left side view showing a schematic configuration of the thermoelectric generator 8.
  • FIG. 5 is a right side view showing a schematic configuration of the thermoelectric generator 8.
  • FIG. 6 is an exploded perspective view showing the thermoelectric generator 8 as viewed from the front.
  • the thermoelectric generator 8 of this embodiment uses the thermoelectric conversion module 84 to generate thermoelectric power.
  • Thermoelectric power generation is power generation that converts thermal energy into electrical energy.
  • the thermoelectric generator 8 includes a bottom plate 81, a heating heat exchanger 82, a thermoelectric conversion module 84, a cooling heat exchanger 85, a movable plate 86, a plate spring 87, and a top plate 88. ing.
  • the thermoelectric generator 8 is provided with a bottom plate 81, a heating heat exchanger 82, a thermoelectric conversion module 84, a cooling heat exchanger 85, a movable plate 86, a plate spring 87, and a top plate 24 in order from the bottom.
  • the vertical direction matches the vertical direction.
  • the left-right direction indicates the left-right direction in FIGS. 2 and 3
  • the front-rear direction indicates the left-right direction in FIGS.
  • the bottom plate 81 is formed in a plate shape extending horizontally.
  • the bottom plate 81 is rectangular in plan view.
  • the thermoelectric conversion module 84 has a lower first surface 84a and an upper second surface 84b that face each other in the vertical direction.
  • the thermoelectric conversion module 84 generates thermoelectric power according to the temperature difference between the first surface 84a and the second surface 84b. That is, the first surface 84a is the hot surface and the second surface 84b is the cold surface.
  • thermoelectric conversion module 84 is formed in a horizontally extending plate shape.
  • the thermoelectric conversion module 84 is formed by combining a large number of thermoelectric conversion elements in a plate shape.
  • a thermoelectric conversion element is a device that converts thermal energy into electrical energy, and is also called a Seebeck element.
  • one surface of a large number of thermoelectric conversion elements combined in a plate shape is formed as the first surface 84a, and the other surface is formed as the second surface 84b.
  • the first surface 84a and the second surface 84b are each formed as a horizontally extending plane.
  • thermoelectric conversion modules 84 are provided, and more specifically, four thermoelectric conversion modules 84 are provided.
  • a plurality of thermoelectric conversion modules 84 are arranged in the horizontal direction.
  • the heating heat exchanger 82 has a container-like main body 821 provided in contact with the first surface 84a of the thermoelectric conversion module 84 below the first surface 84a and to which steam is supplied. Heat the surface 84a. That is, the heating heat exchanger 82 is a heat source for heating the first surface 84 a of the thermoelectric conversion module 84 .
  • the heating heat exchanger 82 has a main body 821 , an inlet 822 and an outlet 823 .
  • the main body 821 is formed in the shape of a horizontally extending semi-cylindrical container. More specifically, main body 821 extends in the left-right direction. The main body 821 is provided with an arc protruding downward.
  • the body 821 is an example of a heating body.
  • the inlet 822 is provided on the left side 821 a of the main body 821 and the outlet 823 is provided on the right side 821 b of the main body 821 .
  • An upper surface 821c of the main body 821 is formed into a horizontally extending plane.
  • the main body 821 is provided with an upper surface 821 c in contact with the first surfaces 84 a of the plurality of thermoelectric conversion modules 84 .
  • steam flows into the main body 821 from the inlet 822 .
  • the steam that has flowed into the main body 821 exchanges heat with the first surface 84a while circulating inside the main body 821 . More specifically, the steam inside the main body 821 dissipates heat to the first surface 84a through the upper surface 821c. This heats the first surface 84a.
  • the steam in the main body 821 exchanges heat with the first surface 84a to condense and become drain.
  • the drain inside the main body 821 flows out from the outlet 823 .
  • the condensed drain inside the main body 821 temporarily accumulates at the bottom inside the main body 821 . Therefore, the condensed drain does not hinder the heating of the first surface 84a. That is, since the heating heat exchanger 82 is provided below the first surface 84a, that is, below the thermoelectric conversion module 84, the drain can be collected at a position away from the upper surface 821c in contact with the first surface 84a. Thereby, the heating efficiency of the heating heat exchanger 82 is improved.
  • the heating heat exchanger 82 is supported by the bottom plate 81 via spacers 83a.
  • the spacer 83 a is shaped like a rod extending vertically and provided between the bottom plate 81 and the main body 821 of the heating heat exchanger 82 .
  • the spacers 83a are positioned at four corners of the bottom plate 81. As shown in FIG.
  • the cooling heat exchanger 85 has a container-like main body 851 that is provided in contact with the second surface 84b above the second surface 84b of the thermoelectric conversion module 84 and to which a cooling liquid is supplied. Cool the second surface 84b. That is, the cooling heat exchanger 85 is a cooling source for cooling the second surface 84 b of the thermoelectric conversion module 84 .
  • the cooling heat exchanger 85 has a main body 851 , an inlet 852 and an outlet 853 .
  • the main body 851 is formed in the shape of a rectangular parallelepiped container. More specifically, the main body 851 is provided in a state in which the longitudinal direction of the rectangular parallelepiped coincides with the horizontal direction and also coincides with the left-right direction.
  • the main body 851 is an example of a cooling main body.
  • the inlet 852 and the outlet 853 are provided on the front surface 851 a of the main body 851 . More specifically, the inlet 852 is provided at the left end of the front surface 851a, and the outlet 853 is provided at the right end of the front surface 851a.
  • An upper surface 851b and a lower surface 851c of the main body 851 are formed into flat surfaces extending horizontally.
  • the main body 851 is provided with a lower surface 851 c in contact with the second surfaces 84 b of the plurality of thermoelectric conversion modules 84 . Further, the main body 851 is provided with an upper surface 851b in contact with a movable plate 86, which will be described later.
  • the coolant flows into the main body 851 from the inlet 852.
  • the coolant that has flowed into the main body 851 exchanges heat with the second surface 84b while circulating inside the main body 851 . More specifically, the coolant in the main body 851 absorbs heat from the second surface 84b through the lower surface 851c. This cools the second surface 84b.
  • the coolant that has exchanged heat with the second surface 84 b in the main body 851 flows out from the outlet 853 .
  • thermoelectric conversion module 84 thermoelectric power generation is performed according to the temperature difference between the first surface 84a and the second surface 84b.
  • thermoelectric power generation is performed according to the temperature difference between the first surface 84a and the second surface 84b.
  • the first surface 84a is actively heated by the heating heat exchanger 82 and the second surface 84b is actively cooled by the cooling heat exchanger 85, the temperature difference between the first surface 84a and the second surface 84b is can earn Therefore, the amount of power generated by the thermoelectric conversion module 84 increases.
  • the heating efficiency of the heating heat exchanger 82 is improved as described above, the amount of power generated by the thermoelectric conversion module 84 is further increased.
  • At least one of the inside of the main body 821 of the heating heat exchanger 82 and the inside of the main body 851 of the cooling heat exchanger 85 is formed in a single space.
  • the interiors of both bodies 821, 851 are formed with a single space. Therefore, the temperature becomes uniform inside the main bodies 821 and 851 . Therefore, in the main body 821 of the heating heat exchanger 82, the first surfaces 84a of the plurality of thermoelectric conversion modules 84 are evenly heated. In the main body 851 of the cooling heat exchanger 85, the second surfaces 84b of the plurality of thermoelectric conversion modules 84 are evenly cooled. Thereby, the power generation efficiency in the thermoelectric conversion module 84 is improved.
  • thermoelectric conversion module 84 and the body 851 of the cooling heat exchanger 85 are vertically movable.
  • the main body 821 may expand due to the heat and pressure of steam.
  • the thermoelectric conversion module 84 and the body 851 of the cooling heat exchanger 85 are fixed, the thermoelectric conversion module 84 may be damaged if the body 821 of the heating heat exchanger 82 expands and deforms.
  • the thermoelectric conversion module 84 and the main body 851 of the cooling heat exchanger 85 are vertically movable. 851 is displaced upward. That is, the expansion deformation of the main body 821 of the heating heat exchanger 82 can be absorbed. Therefore, damage to the thermoelectric conversion module 84 due to expansion deformation of the main body 821 of the heating heat exchanger 82 is prevented.
  • the leaf spring 87 is an example of an elastic member that is provided above the main body 851 of the cooling heat exchanger 85 and biases the main body 851 downward.
  • the plate spring 87 is formed by bending a plate member into an asymmetric U-shape.
  • a plurality of leaf springs 87 are provided, more specifically, two leaf springs 87 are provided.
  • the two leaf springs 87 are arranged in the horizontal direction.
  • the plate spring 87 is provided so as to have elasticity in the vertical direction. Specifically, the leaf spring 87 is fixed to a top plate 88 provided above the leaf spring 87 . The leaf spring 87 is fixed by fastening the longer linear portion of the two asymmetric linear portions to the top plate 88 with a bolt 87a. In other words, the leaf spring 87 has a free end at the shorter linear portion of the two asymmetric linear portions.
  • the top plate 88 is formed in a plate shape extending horizontally. Like the bottom plate 81, the top plate 88 is rectangular in plan view. The top plate 88 is supported on the upper surface 821c of the main body 821 of the heating heat exchanger 82 via spacers 83b.
  • the spacer 83b is formed in a bar shape extending in the vertical direction, and is provided between the top plate 88 and the upper surface 821c. In this example, the spacers 83b are positioned at four corners of the top plate 88. As shown in FIG.
  • the movable plate 86 is formed in a plate shape perpendicular to the vertical direction, and is vertically movable between the main body 851 of the cooling heat exchanger 85 and the plate spring 87, and transmits the biasing force of the plate spring 87 to the main body 851. do.
  • the movable plate 86 is formed in a plate shape extending horizontally.
  • the movable plate 86 is provided with its lower surface in contact with the upper surface 851 b of the main body 851 of the cooling heat exchanger 85 .
  • the movable plate 86 is provided with its upper surface in contact with the plate spring 87 . More specifically, the upper surface of the movable plate 86 is in contact with the shorter linear portion of the two linear portions of the leaf spring 87 .
  • the movable plate 86 is sized to cover the upper surface 851b of the main body 851 of the cooling heat exchanger 85 in plan view.
  • the movable plate 86 transmits the biasing force of the plate spring 87 to the upper surface 851b of the main body 851. As shown in FIG. That is, the plate spring 87 urges the main body 851 of the cooling heat exchanger 85 downward via the movable plate 86 .
  • the leaf spring 87 urges the main body 851 of the cooling heat exchanger 85 downward, thereby increasing the adhesion between the second surface 84b of the thermoelectric conversion module 84 and the main body 851 and the first surface 84a of the thermoelectric conversion module 84. and the degree of close contact with the main body 821 is increased. Therefore, the efficiency of heat exchange between the thermoelectric conversion module 84 and the heating heat exchanger 82 and the cooling heat exchanger 85 is improved. Therefore, it is possible to increase the temperature difference between the first surface 84a and the second surface 84b.
  • the leaf spring 87 urges the main body 851 of the cooling heat exchanger 85 downward via the movable plate 86 , the urging force of the leaf spring 87 evenly acts on the entire main body 851 . Therefore, the degree of adhesion between the second surface 84b and the main body 851 and the degree of adhesion between the first surface 84a and the main body 821 can be evenly increased.
  • thermoelectric conversion module 84 when the main body 821 of the heating heat exchanger 82 expands and deforms, the thermoelectric conversion module 84, the main body 851 of the cooling heat exchanger 85 and the movable plate 86 are displaced upward against the biasing force of the plate spring 87. do. That is, the expansion deformation of the main body 821 of the heating heat exchanger 82 can be absorbed.
  • the plate spring 87 By providing the plate spring 87 in this way, damage to the thermoelectric conversion module 84 due to expansion deformation of the main body 821 of the heating heat exchanger 82 can be prevented, and the degree of adhesion between the thermoelectric conversion module 84 and the main bodies 821 and 851 can be improved. can increase
  • thermoelectric generator 8 further includes guide rods 89a and 89b.
  • the guide rod 89 a is an example of a guide portion that guides the vertical movement of the movable plate 86 .
  • the guide rod 89a extends vertically.
  • a guide rod 89 a is provided between the bottom plate 81 and the top plate 88 .
  • a plurality of guide rods 89a are provided, and more specifically, four guide rods 89a are provided.
  • a through hole 86a through which a guide rod 89a passes is formed in the movable plate 86.
  • the movable plate 86 moves up and down along the guide rod 89a.
  • Notches 86b are provided at four corners of the movable plate 86 to avoid contact with the spacers 83b.
  • the guide rod 89b is an example of a guide portion that guides the vertical movement of the main body 851 of the cooling heat exchanger 85.
  • the guide rod 89b extends vertically.
  • the guide rod 89 a is provided by fixing its upper end to the movable plate 86 . That is, the guide rod 89b extends downward from the movable plate 86. As shown in FIG.
  • the guide rod 89b moves up and down together with the movable plate 86.
  • a plurality of guide rods 89b are provided, and more specifically, four guide rods 89b are provided.
  • the guide rod 89b is positioned outside the main body 851 of the cooling heat exchanger 85. As shown in FIG. With this configuration, the main body 851 moves up and down along the guide rod 89b. Therefore, the main body 851 moves up and down without shifting with respect to the thermoelectric conversion module 84 and the movable plate 86 .
  • FIG. 7 is a piping system diagram showing a schematic configuration of a heat recovery system 100 provided with the thermoelectric generator 8. As shown in FIG. Note that FIG. 7 schematically shows one thermoelectric generator 8 for convenience of explanation.
  • the heat recovery system 100 recovers drain generated by condensation of steam in steam-using equipment provided outside the heat recovery system 100 and flush steam (such as steam) from the drain. That is, the heat recovery system 100 recovers the heat of the hot drain and the heat of the flash steam.
  • Heat recovery system 100 is an example of a steam system.
  • the heat recovery system 100 includes a gas-liquid separation section 1, a header tank 2, a heat exchanger 4, a liquid pumping device 5, a path switching section 6, and a power generation unit U.
  • the gas-liquid separation unit 1 separates the drain sent from the steam-using equipment (not shown) and its flash steam.
  • the gas-liquid separation section 1 has a recovery pipe 10 , a liquid pipe 11 and a gas pipe 12 .
  • the liquid pipe 11 and the gas pipe 12 are branch pipes obtained by branching the recovery pipe 10 into two. Of the drain and flash steam that have flowed into the recovery pipe 10 , the drain flows into the liquid pipe 11 and the flash steam flows into the gas pipe 12 .
  • the gas pipe 12 is a straight pipe extending vertically upward from the end of the recovery pipe 10 .
  • the gas pipe 12 is connected to the heat exchanger 4 and supplies flash steam to the heat exchanger 4 .
  • the liquid tube 11 extends downward from the end of the recovery tube 10 .
  • the liquid pipe 11 is connected to the header tank 2 and allows drain to flow into the header tank 2 .
  • the liquid tube 11 is a so-called U-shaped tube that bends in a U-shape.
  • the liquid tube 11 has a first tube 11a, a second tube 11b, a third tube 11c and a fourth tube 11d.
  • the first pipe 11a is a straight pipe extending vertically downward from the end of the recovery pipe 10 .
  • the second pipe 11b is a straight pipe extending horizontally from the lower end of the first pipe 11a, and corresponds to the bottom of the U shape.
  • the third pipe 11c is a straight pipe extending vertically upward from the end of the second pipe 11b. That is, the first pipe 11a and the third pipe 11c extend parallel to each other in the vertical direction.
  • the fourth pipe 11d is a straight pipe extending horizontally from the upper end of the third pipe 11c.
  • the fourth pipe 11d is connected to the side of the header tank 2 (more precisely, the tank main body 21).
  • drain stays in the first pipe 11a, the second pipe 11b, and the third pipe 11c, and is water-sealed by the staying drain. More specifically, in the third pipe 11c, the drain stays up to the upper end, while in the first pipe 11a, the drain head is lower than that of the third pipe 11c. That is, a drain head difference H is generated between the first pipe 11a and the third pipe 11c.
  • This head difference H is caused by pressure loss in the heat exchanger 4 .
  • the pressure loss in the heat exchanger 4 is offset by the water head difference H thus generated.
  • the first pipe 11 a and the third pipe 11 c are set to have a height sufficient to ensure a water head difference H corresponding to the pressure loss of the heat exchanger 4 . Therefore, the pressure loss of the heat exchanger 4 can be reliably offset. As a result, the flash steam can easily flow into the heat exchanger 4 from the gas pipe 12 .
  • the header tank 2 is a water-sealed header tank into which drain generated by steam-using equipment flows and is stored. Specifically, the header tank 2 has a container-like tank body 21 and an overflow pipe 24 .
  • the internal space of the tank body 21 is divided into a liquid phase portion 22 of drain and a gas phase portion 23 of steam.
  • the tank main body 21 is connected to the liquid pipe 11 (fourth pipe 11d), the outflow pipe 13 and the inflow pipe 16a.
  • the liquid pipe 11 opens to the gas phase portion 23 .
  • the outflow pipe 13 is connected to the top of the tank body 21 and opens to the gas phase portion 23 .
  • the inflow pipe 16 a opens to the liquid phase portion 22 .
  • Drain flows from the liquid pipe 11 and is stored in the tank body 21 .
  • the drain from the heat exchanger 4 flows through the outflow pipe 13 and is stored.
  • the drain of the liquid phase portion 22 flows into the liquid pumping device 5 through the inflow pipe 16a.
  • One end of the overflow pipe 24, which is an inflow end opens to the liquid phase portion 22, and the other end, which is an outflow end, penetrates the upper side wall of the tank body 21 and opens to the atmosphere.
  • the internal space of the tank body 21 is sealed by the water seal of the water seal trap 3 .
  • the water seal trap 3 is connected to the tank body 21 by a connection pipe 15a and an outflow pipe 15b.
  • the connection pipe 15 a has one end, which is an inflow end, opened to the gas phase portion 23 of the tank body 21 , and the other end, which is an outflow end, is opened to the sealing water of the water seal trap 3 . That is, the other end of the connection pipe 15a is water sealed.
  • the outflow pipe 15 b has one inflow end connected to the water seal trap 3 and the other outflow end opening to the liquid phase portion 22 of the tank body 21 .
  • the water seal trap 3 normally prevents the steam from leaking out of the tank body 21 by means of a water seal. escape to the atmosphere. Further, in the water seal trap 3, excess drain generated by condensation of steam flows into the tank main body 21 through the outflow pipe 15b and is stored therein.
  • the heat exchanger 4 has a first channel 41 and a second channel 42 which are internal channels.
  • the first flow path 41 allows the flush steam of the drain flowing into the header tank 2 from the steam-using equipment to flow into the second flow path 42 to exchange heat with an object (for example, water). More specifically, the gas pipe 12 is connected to the inflow end of the first flow path 41 , and the outflow pipe 13 is connected to the outflow end of the first flow path 41 .
  • the second flow path 42 is connected to an inflow pipe 14 a for supplying water and an outflow pipe 14 b for outflowing water from the second flow path 42 .
  • the flash steam in the first flow path 41 exchanges heat with the water in the second flow path 42 to heat the water.
  • the flash steam condenses to become drain and flows into the header tank 2 through the outflow pipe 13 . The heat of the flash steam is thus recovered.
  • the liquid pumping device 5 has a casing 50 in which a drain storage chamber 51 and a steam exhaust port 55 are formed.
  • An inflow operation for causing the drain No. 2 to flow into the storage chamber 51 and store it, and a pumping operation for pumping the drain in the storage chamber 51 by introducing steam into the storage chamber 51 are performed.
  • the liquid pumping device 5 alternately performs an inflow operation and a pumping operation.
  • the steam introduced into the storage chamber 51 is the working gas and is high-temperature and high-pressure steam.
  • the liquid pumping device 5 includes a casing 50 that is a closed container, an air supply valve 56 and an exhaust valve 57, and a valve operating mechanism 58.
  • the liquid pumping device 5 is an example of steam-using equipment included in the heat recovery system 100 .
  • the casing 50 has a body portion 50a and a lid portion 50b that are joined by bolts, and a drain storage chamber 51 is formed inside.
  • the lid portion 50b is provided with an inflow port 52 for drain inflow, a pumping port 53 for pumping the drain, an air supply port 54 for supplying the working gas, and an exhaust port 55 for discharging the working gas. ing.
  • These inflow ports 52 and the like are all provided in the lid portion 50b and communicate with the storage chamber 51.
  • the inflow port 52 is connected to the inflow pipe 16a
  • the pressure feed port 53 is connected to the pressure feed pipe 16b
  • the air supply port 54 is connected to the air supply pipe 16c
  • the exhaust port 55 is connected to the exhaust pipe 16d.
  • the air supply pipe 16c supplies high-pressure steam generated by, for example, a boiler in the steam system to the air supply port 54 .
  • the pressure-feeding pipe 16b supplies the drain from the pressure-feeding port 53 to a predetermined utilization point. Thereby, the heat of the hot drain is recovered.
  • the air supply valve 56 is provided in the air supply port 54 and opens and closes the air supply port 54 .
  • the exhaust valve 57 is provided at the exhaust port 55 and opens and closes the exhaust port 55 .
  • a valve operating rod 57 a is connected to the lower portion of the exhaust valve 57 .
  • a connecting plate 57b extending to a region below the air supply valve 56 is attached to the valve operating rod 57a.
  • the valve operating mechanism 58 is provided inside the casing 50 and operates the intake valve 56 and the exhaust valve 57 by moving the valve operating rod 57a up and down.
  • the valve actuation mechanism 58 has a float 581 and a snap mechanism 59 .
  • the float 581 is spherical and has a lever 582 attached.
  • Lever 582 is rotatably supported by shaft 583 provided on bracket 584 .
  • a shaft 585 is provided at the end of the lever 582 opposite to the float 581 side.
  • the snap mechanism 59 has a float arm 591, a sub arm 592, a coil spring 593, and two receiving members 594a, 594b.
  • One end of the float arm 591 is rotatably supported by a shaft 596 provided on a bracket 597 .
  • a groove 591a is formed in the other end of the float arm 591, and the shaft 585 of the lever 582 is fitted in the groove 591a. With this configuration, the float arm 591 swings around the shaft 596 as the float 581 rises and falls.
  • the float arm 591 is provided with a shaft 595a.
  • the secondary arm 592 has an upper end rotatably supported by a shaft 596 and a lower end provided with a shaft 595b.
  • the receiving member 594a is rotatably supported by the shaft 595a of the float arm 591, and the receiving member 594b is rotatably supported by the shaft 595b of the sub arm 592.
  • a compressed coil spring 593 is attached between the receiving members 594a and 594b.
  • the sub arm 592 is provided with a shaft 598 to which the lower end of the valve operating rod 57a is connected.
  • the float 581 is positioned at the bottom of the storage chamber 51 when no drain is accumulated in the storage chamber 51.
  • the valve operating rod 57a is lowered, the intake valve 56 is closed, and the exhaust valve 57 is open.
  • the float 581 rises.
  • steam is discharged from the exhaust port 55 as the drain accumulates.
  • the inflow operation is performed. That is, the inlet operation replaces drain with steam.
  • the snap mechanism 59 raises the valve operating rod 57a.
  • the air supply valve 56 is opened and the exhaust valve 57 is closed.
  • the path switching unit 6 selects a first path for supplying the steam discharged from the exhaust port 55 to the header tank 2 and a second path for supplying the steam to the first flow path 41 of the heat exchanger 4 different from the header tank 2 .
  • the first path and the second path are selectively switched according to the exhaust pressure, which is the pressure of the steam discharged from the exhaust port 55.
  • the path switching unit 6 switches the path of the vapor discharged from the exhaust port 55 during the inflow operation of the liquid pumping device 5 .
  • the path switching unit 6 switches to the first path when the exhaust pressure is less than a predetermined value, and switches to the second path when the exhaust pressure is equal to or higher than the predetermined value. .
  • the path switching section 6 has a switching valve 60 , a communication pipe 71 , an atmosphere release pipe 74 and a check valve 75 .
  • the switching valve 60 is connected to the exhaust pipe 16d.
  • the communication pipe 71 is connected to the switching valve 60 and the header tank 2 . More specifically, the communication pipe 71 communicates with the first outflow path 64 of the switching valve 60 at one end, which is the inflow end, and communicates with the gas layer 23 of the header tank 2 at the other end, which is the outflow end.
  • One end of the air release pipe 74 which is an inflow end, communicates with the second outflow path 65 of the switching valve 60, and the other end, which is an outflow end, is open to the atmosphere.
  • the first path is formed by the communication pipe 71 and the second path is formed by the atmosphere release pipe 74 .
  • the check valve 75 is provided on the atmosphere release pipe 74 . The check valve 75 only allows steam to flow from the switching valve 60 to the atmosphere.
  • the switching valve 60 selectively switches between the first path and the second path according to the exhaust pressure.
  • the switching valve 60 switches the supply location of the steam between the header tank 2 and the atmosphere by causing the incoming steam to flow out to the communication pipe 71 or the atmosphere release pipe 74 according to the exhaust pressure.
  • the switching valve 60 includes an inflow path 62 into which the steam discharged from the exhaust port 55 flows, a first outflow path 64 connected to the first path, and a second path connected to the second path. It has a second outflow passage 65, a valve body 671 that opens and closes the first outflow passage 64, and a spring 676 that biases the valve body 671 in the valve opening direction. Body 671 closes the valve against the biasing force of spring 676 .
  • Spring 676 is an example of a biasing member.
  • the switching valve 60 has a casing 61 , a screen 66 and a valve mechanism 67 .
  • a fluid flow path is formed in the casing 61 .
  • the flow path is formed by an inflow channel 62, a capture channel 63 and two outflow channels 64, 65 (ie, a first outflow channel 64 and a second outflow channel 65).
  • the flow path has a first flow path for causing the inflowing steam to flow out to the header tank 2 side and a second flow path for causing the inflowing steam to flow out to the heat exchanger 4 side.
  • a first flow path is formed by an inflow channel 62 , a capture channel 63 and a first outflow channel 64 .
  • a second flow path is formed by an inflow channel 62 , a capture channel 63 and a second outflow channel 65 .
  • An exhaust pipe 16 d is connected to the inflow path 62 . That is, the inflow path 62 is a flow path into which steam flows from the exhaust pipe 16d.
  • the first outflow channel 64 is a channel through which steam flows out to the communication pipe 71
  • the second outflow channel 65 is a channel through which steam flows out to the atmosphere open pipe 74 .
  • the inflow path 62 and the second outflow path 65 face each other and have a common axis X1 extending horizontally.
  • the capture channel 63 is a channel connected to the inflow channel 62 and the second outflow channel 65 and provided with a screen 66 .
  • the inflow path 62 and the second outflow path 65 communicate with each other through the trapping path 63 .
  • the catching path 63 extends obliquely downward from the inflow path 62 , and the side portion of the catching path 63 is connected to the second outflow path 65 . That is, the axis X2 of the catching passage 63 is inclined downward with respect to the axis X1 toward the second outflow passage 65 side.
  • the first outflow path 64 is located below the capture path 63 and communicates with the capture path 63 .
  • the first outflow passage 64 also constitutes the valve chamber of the valve mechanism 67 . More specifically, the first outflow path 64 extends vertically. That is, the first outflow channel 64 extends in a direction perpendicular to the inflow channel 62 and the second outflow channel 65 and extends in an oblique direction to the capture channel 63 .
  • the casing 61 is provided with a partition wall 641 that partitions the capture path 63 and the first outflow path 64 .
  • the partition wall 641 is provided with a communication hole 642 that allows the capture channel 63 and the first outflow channel 64 to communicate with each other. Steam flows from the capture passage 63 through the communication hole 642 into the first outflow passage 64 configured in this way.
  • the screen 66 captures foreign matter in steam flowing from the inflow path 62 to the first outflow path 64 and the second outflow path 65 .
  • the screen 66 is formed in a cylindrical shape extending coaxially with the axis X2 of the catching path 63 .
  • One end of the screen 66 opens toward the inflow channel 62 .
  • steam from the inflow passage 62 flows into the screen 66 , passes through the peripheral wall of the screen 66 and flows into the first outflow passage 64 or the second outflow passage 65 . As the steam thus passes through the screen 66, foreign matter in the steam is captured.
  • the valve mechanism 67 is provided in the first outflow path 64 and opens and closes the first outflow path 64 (that is, the first flow path). Specifically, the valve mechanism 67 causes the steam to flow out to the communication pipe 71 by opening the first outflow path 64 . Also, the valve mechanism 67 causes the steam to flow out from the second outflow path 65 to the atmosphere open pipe 74 by closing the first outflow path 64 .
  • the valve mechanism 67 has a valve body 671 , a valve seat 673 , a spring 676 and a baffle plate 677 .
  • a valve hole 675 is provided in the first outflow passage 64 .
  • the valve body 671 is formed in a disc shape.
  • the valve body 671 is accommodated in the first outflow passage 64 with its axis extending in the vertical direction.
  • the valve body 671 is vertically movable.
  • the valve body 671 is arranged above the valve hole 675 and opens and closes the valve hole 675 by moving up and down.
  • the valve seat 673 is provided below the first outflow passage 64 .
  • a valve hole 675 is formed in the valve seat 673 .
  • the valve hole 675 opens vertically in the first outflow passage 64 .
  • the valve hole 675 allows the first outflow passage 64 and the communicating pipe 71 to communicate with each other.
  • the spring 676 is composed of a coil spring that biases the valve body 671 in the valve opening direction.
  • a spring 676 is provided below the valve body 671 in the first outflow passage 64 and biases the valve body 671 upward. That is, the spring 676 is provided between the valve body 671 and the valve seat 673 .
  • One end of the spring 676 is connected to the lower surface of the valve body 671 to support the valve body 671 . More specifically, one end of the spring 676 is fitted and connected to an annular recess 672 formed in the lower surface of the valve body 671 . The other end of spring 676 is supported by valve seat 673 . More specifically, the other end of the spring 676 is fitted into an annular recess 674 formed around the valve hole 675 in the upstream end face of the valve seat 673 .
  • the baffle plate 677 prevents the steam flowing from the capture passage 63 into the first outflow passage 64 from hitting the upper surface of the valve body 671 .
  • the baffle plate 677 is provided above the valve body 671 in the first outflow passage 64 .
  • the baffle plate 677 is formed in a substantially conical surface shape, and is provided with the apex of the conical surface located on the upper side. The valve body 671 is pressed against the baffle plate 677 by the biasing force of the spring 676 when the valve is opened.
  • valve mechanism 67 when the pressure of the first outflow passage 64 (that is, the exhaust pressure) becomes less than a predetermined value, the biasing force of the spring 676 lifts the valve body 671 away from the valve seat 673, and the valve hole is closed. 675 is opened (state shown in FIG. 10).
  • the pressure of the first outflow passage 64 that is, the exhaust pressure
  • the pressure causes the valve body 671 to move downward against the biasing force of the spring 676 and seat on the valve seat 673. (state shown in FIG. 11). This closes the valve hole 675 .
  • opening and closing the valve hole 675 in this way, the first outflow passage 64 is opened and closed.
  • the pressure of the first outflow path 64 described above corresponds to the pressure of the steam that has flowed into the inflow path 62 and the first outflow path 64 .
  • the aforementioned predetermined value is set to an exhaust pressure value at which the water seal of the water seal trap 3 is broken during the inflow operation of the liquid pumping device 5 .
  • the path switching unit 6 configured as described above, when the pressure of the steam discharged from the exhaust port 55 and flowing into the switching valve 66 (that is, the exhaust pressure) is equal to or higher than a predetermined value during the inflow operation of the liquid pumping device 5, , the first outflow passage 64 is closed in the switching valve 60 . Therefore, the communication pipe 71 (that is, the first path) is blocked, so that the steam that has flowed into the switching valve 60 from the exhaust pipe 16d is released to the atmosphere from the second outflow path 65 through the atmosphere release pipe 74. In other words, the path switching unit 6 prevents steam having a pressure higher than a predetermined value from being supplied to the header tank 2, and releases the heat of the steam to the atmosphere.
  • the switching valve At 60 the first outlet channel 64 is opened. Therefore, the communication pipe 71 (that is, the first path) is opened, and the steam that has flowed into the switching valve 60 from the exhaust pipe 16 d flows into the header tank 2 from the first outflow passage 64 via the communication pipe 71 .
  • the tank main body 21 and the storage chamber 51 are pressure-equalized, and gas-liquid replacement (that is, replacement of drain with steam) is performed between them. Therefore, the inflow of drain from the header tank 2 to the liquid pumping device 5 is performed smoothly.
  • the power generation unit U (thermoelectric generator 8) is connected to the inflow pipes 17a, 18a and the outflow pipes 17b, 18b.
  • the inflow pipe 17a has one end that is the inflow end connected to the middle of the air supply pipe 16c, and the other end that is the outflow end is connected to the thermoelectric generator 8 .
  • the inflow pipe 17 a is connected to the inflow port 822 of the heating heat exchanger 82 .
  • part of the steam flowing through the air supply pipe 16c is supplied to the main body 821 of the heating heat exchanger 82 via the inflow pipe 17a.
  • the outflow pipe 17 b has one inflow end connected to the thermoelectric generator 8 and the other outflow end connected to the middle of the gas pipe 12 .
  • the outflow pipe 17 b is connected to the outflow port 823 of the heating heat exchanger 82 .
  • the drain in the main body 821 of the heating heat exchanger 82 flows out to the gas pipe 12 through the outflow pipe 17b.
  • the other end of the outflow pipe 17b may be connected to the recovery pipe 10 or the liquid pipe 11 instead of the gas pipe 12 .
  • the inflow pipe 18a has one inflow end connected to the middle of the inflow pipe 14a and the other outflow end connected to the thermoelectric generator 8 .
  • the inflow pipe 18 a is connected to the inflow port 852 of the cooling heat exchanger 85 .
  • water flowing through the inflow pipe 14a is supplied to the main body 851 of the cooling heat exchanger 85 through the inflow pipe 18a. That is, in the main body 851 of the cooling heat exchanger 85, water is supplied as cooling liquid.
  • the outflow pipe 18b has one inflow end connected to the thermoelectric generator 8 and the other outflow end connected to the inflow pipe 14a downstream of the inflow pipe 18a.
  • the outflow pipe 18 b is connected to the outflow port 853 of the cooling heat exchanger 85 .
  • the water in the main body 851 of the cooling heat exchanger 85 flows out to the inflow pipe 14a through the outflow pipe 18b.
  • thermoelectric power generation is performed in the thermoelectric generator 8 .
  • the thermoelectric generator 8 of the embodiment includes the thermoelectric conversion module 84, the heating heat exchanger 82, and the cooling heat exchanger 85.
  • the thermoelectric conversion module 84 has a lower first surface 84a and an upper second surface 84b that face each other in the vertical direction, and performs thermoelectric power generation according to the temperature difference between the first surface 84a and the second surface 84b.
  • the heating heat exchanger 82 has a container-like main body 821 provided in contact with the first surface 84a below the first surface 84a and to which steam is supplied, and the first surface 84a is heated by the steam of the main body 821.
  • the cooling heat exchanger 85 has a container-like main body 851 provided above the second surface 84b in contact with the second surface 84b and supplied with cooling liquid. Cooling.
  • the heat recovery system 100 of the embodiment is supplied with steam and includes a liquid pumping device 5 that uses the supplied steam, and a thermoelectric generator 8 .
  • the main body 821 is supplied with a portion of the vapor supplied to the liquid pumping device 5 .
  • the first surface 84a is actively heated by the heating heat exchanger 82 and the second surface 84b is actively cooled by the cooling heat exchanger 85.
  • the temperature difference of the surface 84b can be earned. Therefore, the amount of power generated by the thermoelectric conversion module 84 can be increased.
  • the heating heat exchanger 82 is provided below the first surface 84a, that is, below the thermoelectric conversion module 84, the drain generated by condensation of steam in the main body 821 is transferred to the portion that contacts the first surface 84a. (ie, the upper surface 821c). Therefore, the condensed drain does not hinder the heating of the first surface 84a. Thereby, the heating efficiency of the heating heat exchanger 82 is improved. Therefore, the amount of power generated by the thermoelectric conversion module 84 is further increased.
  • thermoelectric conversion module 84 and the body 851 of the cooling heat exchanger 85 are vertically movable.
  • thermoelectric conversion module 84 and the main body 851 of the cooling heat exchanger 85 move upward along with the expansion deformation. Displace. That is, the expansion deformation of the main body 821 of the heating heat exchanger 82 can be absorbed. Therefore, damage to the thermoelectric conversion module 84 due to expansion deformation of the main body 821 of the heating heat exchanger 82 can be prevented.
  • thermoelectric generator 8 of the embodiment further includes a plate spring 87 provided above the main body 851 and biasing the main body 851 downward.
  • the plate spring 87 urges the main body 851 of the cooling heat exchanger 85 downward, thereby increasing the degree of adhesion between the second surface 84b of the thermoelectric conversion module 84 and the main body 851 and the degree of adhesion of the thermoelectric conversion module 84.
  • the degree of close contact between the first surface 84a and the main body 821 increases. Therefore, the efficiency of heat exchange between the thermoelectric conversion module 84 and the heating heat exchanger 82 and the cooling heat exchanger 85 is improved. Therefore, it is possible to increase the temperature difference between the first surface 84a and the second surface 84b.
  • thermoelectric conversion module 84 and the main body 851 of the cooling heat exchanger 85 are displaced upward against the biasing force of the plate spring 87 . That is, the expansion deformation of the main body 821 of the heating heat exchanger 82 can be absorbed.
  • the plate spring 87 By providing the plate spring 87 in this way, damage to the thermoelectric conversion module 84 due to expansion deformation of the main body 821 of the heating heat exchanger 82 can be prevented, and the degree of adhesion between the thermoelectric conversion module 84 and the main bodies 821 and 851 can be improved. can increase
  • thermoelectric generator 8 of the above embodiment is formed in a plate shape perpendicular to the vertical direction, and is provided vertically movable between the main body 851 and the plate spring 87, and the biasing force of the plate spring 87 is applied to the main body 851. It further comprises a movable plate 86 for transmission.
  • the leaf spring 87 urges the main body 851 of the cooling heat exchanger 85 downward through the movable plate 86 , so that the urging force of the leaf spring 87 evenly acts on the entire main body 851 . Therefore, the degree of adhesion between the second surface 84b and the main body 851 and the degree of adhesion between the first surface 84a and the main body 821 can be evenly increased.
  • thermoelectric generator 8 of the embodiment further includes a guide rod 89a that guides the vertical movement of the movable plate 86.
  • the movable plate 86 moves up and down along the guide rod 89a. Therefore, it is possible to prevent the movable plate 86 from being displaced from the leaf spring 87 and the main body 851 of the cooling heat exchanger 85 .
  • thermoelectric generator 8 of the embodiment both the interior of the main body 821 and the interior of the main body 851 are formed as a single space.
  • the temperature inside the main bodies 821 and 851 can be made uniform. Therefore, in the main body 821 of the heating heat exchanger 82, the first surface 84a of the thermoelectric conversion module 84 is evenly heated. In the main body 851 of the cooling heat exchanger 85, the second surface 84b of the thermoelectric conversion module 84 is evenly cooled. Thereby, the power generation efficiency in the thermoelectric conversion module 84 is improved.
  • the shapes of the main body 821 of the heating heat exchanger 82 and the main body 851 of the cooling heat exchanger 85 are not limited to the shapes described above, and are shapes that can appropriately perform heat exchange with the first surface 84a and the second surface 84b. It can be anything as long as it is.
  • the movable plate 86 may be omitted. That is, the leaf spring 87 may be in direct contact with the main body 851 of the cooling heat exchanger 85 and bias the main body 851 downward.
  • Either the body 821 of the heating heat exchanger 82 or the body 851 of the cooling heat exchanger 85 may be formed in a single space.
  • neither the main body 821 of the heating heat exchanger 82 nor the main body 851 of the cooling heat exchanger 85 may be formed in a single space.
  • the body 821, 851 may have steam or coolant passages formed therein.
  • liquid other than water may be supplied to the main body 851 of the cooling heat exchanger 85 as the coolant.
  • the elastic member instead of the plate spring 87, for example, a coil spring may be used. Also in this case, the coil spring is provided so as to have elasticity in the vertical direction.
  • thermoelectric generator 8 may be provided in a steam system other than the heat recovery system 100.
  • thermoelectric generators and steam systems As described above, the technology of the present disclosure is useful for thermoelectric generators and steam systems.
  • thermoelectric generator heating heat exchanger 821 main body (heating main body) 84 Thermoelectric conversion module 84a First surface 84b Second surface 85 Cooling heat exchanger 851 Main body (main body for cooling) 86 Movable plate 87 Leaf spring (elastic member) 89a guide rod (guide portion)

Abstract

A thermoelectric power generation device 8 comprises: a thermoelectric conversion module 84 that has a lower-side first surface 84a and an upper-side second surface 84b which face each other in a vertical direction and performs thermoelectric power generation in accordance with the temperature difference between the first surface 84a and the second surface 84b; a heating heat exchanger 82 that is provided under the first surface 84a in contact with the first surface 84a, has a body 821 having a container shape to which steam is supplied, and heats the first surface 84a by the steam in the body 821; and a cooling heat exchanger 85 that is provided above the second surface 84b in contact with the second surface 84b, has a body 851 having a container shape to which a coolant is supplied, and cools the second surface 84b by the coolant in the body 851.

Description

熱電発電装置および蒸気システムThermoelectric generator and steam system
 本開示の技術は、熱電発電装置およびそれを備えた蒸気システムに関する。 The technology of the present disclosure relates to a thermoelectric generator and a steam system including the same.
 従来より、熱電変換素子を用いて熱電発電を行う熱電発電装置が知られている。例えば特許文献1に開示されている熱電発電装置では、排ガスが流通する内筒と、放熱フィンとの間に熱電変換素子が設けられている。この熱電発電装置では、熱電変換素子の高温面が排ガスによって加熱され、熱電変換素子の低温面が放熱フィンによって冷却される。これにより、高温面と低温面との間に温度差が生じて熱電発電が行われる。 Conventionally, thermoelectric generators that generate thermoelectric power using thermoelectric conversion elements have been known. For example, in the thermoelectric generator disclosed in Patent Literature 1, a thermoelectric conversion element is provided between an inner cylinder through which exhaust gas flows and heat radiating fins. In this thermoelectric generator, the high temperature surface of the thermoelectric conversion element is heated by the exhaust gas, and the low temperature surface of the thermoelectric conversion element is cooled by the radiation fins. As a result, a temperature difference is generated between the high temperature surface and the low temperature surface, and thermoelectric power generation is performed.
特開平10-234194号公報JP-A-10-234194
 しかしながら、前述した特許文献1の熱電発電装置では、発電量をそれ程稼ぐことができないという問題がある。即ち、熱電変換素子の低温面は放熱フィンによって自然冷却されるため、高温面と低温面との温度差をそれ程稼ぐことができない。そのため、発電量を稼ぐことができない。 However, the thermoelectric generator of Patent Document 1 mentioned above has the problem that it is not possible to generate a large amount of power. That is, since the low-temperature surface of the thermoelectric conversion element is naturally cooled by the radiating fins, it is not possible to increase the temperature difference between the high-temperature surface and the low-temperature surface. Therefore, the power generation amount cannot be earned.
 本開示の技術は、かかる事情に鑑みてなされたものであり、その目的は、発電量を増大させることができる熱電発電装置およびそれを備えた蒸気システムを提供することにある。 The technology of the present disclosure has been made in view of such circumstances, and its purpose is to provide a thermoelectric generator capable of increasing the amount of power generation and a steam system including the same.
 本開示の熱電発電装置は、熱電変換モジュールと、加熱熱交換器と、冷却熱交換器とを備えている。前記熱電変換モジュールは、互いに上下方向に対向する下側の第1面および上側の第2面を有し、前記第1面と前記第2面との温度差に応じて熱電発電を行う。前記加熱熱交換器は、前記第1面の下方において前記第1面と接して設けられ且つ蒸気が供給される容器状の加熱用本体を有し、前記加熱用本体の蒸気によって前記第1面を加熱する。前記冷却熱交換器は、前記第2面の上方において前記第2面と接して設けられ且つ冷却液が供給される容器状の冷却用本体を有し、前記冷却用本体の冷却液によって前記第2面を冷却する。 The thermoelectric generator of the present disclosure includes a thermoelectric conversion module, a heating heat exchanger, and a cooling heat exchanger. The thermoelectric conversion module has a lower first surface and an upper second surface facing each other in the vertical direction, and performs thermoelectric power generation according to the temperature difference between the first surface and the second surface. The heating heat exchanger has a container-shaped heating main body provided in contact with the first surface below the first surface and supplied with steam, and the first surface is heated by the steam of the heating main body. to heat. The cooling heat exchanger has a container-shaped cooling main body provided above the second surface in contact with the second surface and supplied with cooling liquid, and the cooling liquid of the cooling main body is used to cool the second surface. Cool two sides.
 また、本開示の蒸気システムは、蒸気が供給され、前記供給された蒸気を使用する蒸気使用機器と、前記の熱電発電装置とを備えている。前記加熱用本体には、前記蒸気使用機器に供給される蒸気の一部が供給される。 In addition, the steam system of the present disclosure is supplied with steam and includes a steam-using device that uses the supplied steam, and the thermoelectric generator. A portion of the steam supplied to the steam-using device is supplied to the heating main body.
 前記の熱電発電装置によれば、発電量を増大させることができる。 According to the above thermoelectric generator, it is possible to increase the amount of power generated.
 前記の蒸気システムによれば、熱電発電装置による発電量を増大させることができる。 According to the above steam system, it is possible to increase the amount of power generated by the thermoelectric generator.
図1は、複数の熱電発電装置が組まれた発電ユニットの概略構成を示す正面図である。FIG. 1 is a front view showing a schematic configuration of a power generation unit in which a plurality of thermoelectric power generators are assembled. 図2は、熱電発電装置の概略構成を示す正面図である。FIG. 2 is a front view showing a schematic configuration of the thermoelectric generator. 図3は、熱電発電装置の概略構成を示す背面図である。FIG. 3 is a rear view showing a schematic configuration of the thermoelectric generator. 図4は、熱電発電装置の概略構成を示す左側面図である。FIG. 4 is a left side view showing a schematic configuration of the thermoelectric generator. 図5は、熱電発電装置の概略構成を示す右側面図である。FIG. 5 is a right side view showing a schematic configuration of the thermoelectric generator. 図6は、熱電発電装置を前方から視て示す分解斜視図である。FIG. 6 is an exploded perspective view showing the thermoelectric generator viewed from the front. 図7は、熱電発電装置が設けられた熱回収システムの概略構成を示す配管系統図である。FIG. 7 is a piping system diagram showing a schematic configuration of a heat recovery system provided with a thermoelectric generator. 図8は、気液分離部の概略構成図である。FIG. 8 is a schematic configuration diagram of a gas-liquid separator. 図9は、液体圧送装置の概略構成を示す断面図である。FIG. 9 is a cross-sectional view showing a schematic configuration of a liquid pumping device. 図10は、切換弁の概略構成を示す断面図である。FIG. 10 is a cross-sectional view showing a schematic configuration of a switching valve. 図11は、切換弁の一状態を示す図10相当図である。FIG. 11 is a view equivalent to FIG. 10 showing one state of the switching valve.
 以下、例示的な実施形態を図面に基づいて詳細に説明する。 Hereinafter, exemplary embodiments will be described in detail based on the drawings.
 図1は、複数の熱電発電装置8が組まれた発電ユニットUの概略構成を示す正面図である。発電ユニットUは、複数の熱電発電装置8が組まれることで形成されている。この例の発電ユニットUでは、3つの熱電発電装置8が組まれている。具体的に、3つの熱電発電装置8は、上下方向に積み重ねられて一体形成されている。なお、この発電ユニットUでは、熱電発電装置8の天板88は、その直上に位置する熱電発電装置8の底板81を兼ねている。 FIG. 1 is a front view showing a schematic configuration of a power generation unit U in which a plurality of thermoelectric power generators 8 are assembled. The power generation unit U is formed by assembling a plurality of thermoelectric power generators 8 . In the power generation unit U of this example, three thermoelectric generators 8 are assembled. Specifically, the three thermoelectric generators 8 are vertically stacked and integrally formed. In this power generation unit U, the top plate 88 of the thermoelectric power generator 8 also serves as the bottom plate 81 of the thermoelectric power generator 8 located directly above it.
 図2は、熱電発電装置8の概略構成を示す正面図である。図3は、熱電発電装置8の概略構成を示す背面図である。図4は、熱電発電装置8の概略構成を示す左側面図である。図5は、熱電発電装置8の概略構成を示す右側面図である。図6は、熱電発電装置8を前方から視て示す分解斜視図である。 FIG. 2 is a front view showing a schematic configuration of the thermoelectric generator 8. FIG. FIG. 3 is a rear view showing a schematic configuration of the thermoelectric generator 8. FIG. FIG. 4 is a left side view showing a schematic configuration of the thermoelectric generator 8. As shown in FIG. FIG. 5 is a right side view showing a schematic configuration of the thermoelectric generator 8. FIG. FIG. 6 is an exploded perspective view showing the thermoelectric generator 8 as viewed from the front.
 本実施形態の熱電発電装置8は、熱電変換モジュール84を用いて熱電発電を行う。熱電発電は、熱エネルギを電気エネルギに変換する発電である。具体的に、熱電発電装置8は、底板81と、加熱熱交換器82と、熱電変換モジュール84と、冷却熱交換器85と、可動板86と、板バネ87と、天板88とを備えている。熱電発電装置8では、下から順に、底板81、加熱熱交換器82、熱電変換モジュール84、冷却熱交換器85、可動板86、板バネ87および天板24が設けられている。 The thermoelectric generator 8 of this embodiment uses the thermoelectric conversion module 84 to generate thermoelectric power. Thermoelectric power generation is power generation that converts thermal energy into electrical energy. Specifically, the thermoelectric generator 8 includes a bottom plate 81, a heating heat exchanger 82, a thermoelectric conversion module 84, a cooling heat exchanger 85, a movable plate 86, a plate spring 87, and a top plate 88. ing. The thermoelectric generator 8 is provided with a bottom plate 81, a heating heat exchanger 82, a thermoelectric conversion module 84, a cooling heat exchanger 85, a movable plate 86, a plate spring 87, and a top plate 24 in order from the bottom.
 この例では、上下方向は、鉛直方向と一致している。この例において、左右方向とは、図2や図3における左右方向を示し、前後方向とは、図4や図5における左右方向を示す。 In this example, the vertical direction matches the vertical direction. In this example, the left-right direction indicates the left-right direction in FIGS. 2 and 3, and the front-rear direction indicates the left-right direction in FIGS.
 底板81は、水平に延びる板状に形成されている。この例では、底板81は、平面視が長方形となっている。 The bottom plate 81 is formed in a plate shape extending horizontally. In this example, the bottom plate 81 is rectangular in plan view.
 熱電変換モジュール84は、互いに上下方向に対向する下側の第1面84aおよび上側の第2面84bを有している。熱電変換モジュール84は、第1面84aと第2面84bとの温度差に応じて熱電発電を行う。即ち、第1面84aは高温面であり、第2面84bは低温面である。 The thermoelectric conversion module 84 has a lower first surface 84a and an upper second surface 84b that face each other in the vertical direction. The thermoelectric conversion module 84 generates thermoelectric power according to the temperature difference between the first surface 84a and the second surface 84b. That is, the first surface 84a is the hot surface and the second surface 84b is the cold surface.
 具体的に、熱電変換モジュール84は、水平に延びる板状に形成されている。熱電変換モジュール84は、多数の熱電変換素子が板状に組み合わされて形成されている。熱電変換素子は、熱エネルギを電気エネルギに変換するデバイスであり、ゼーベック素子とも呼ばれる。こうして、板状に組み合わされた多数の熱電変換素子の一方の面が第1面84aとして形成され、他方の面が第2面84bとして形成されている。第1面84aおよび第2面84bはそれぞれ、水平に延びる平面に形成されている。 Specifically, the thermoelectric conversion module 84 is formed in a horizontally extending plate shape. The thermoelectric conversion module 84 is formed by combining a large number of thermoelectric conversion elements in a plate shape. A thermoelectric conversion element is a device that converts thermal energy into electrical energy, and is also called a Seebeck element. In this way, one surface of a large number of thermoelectric conversion elements combined in a plate shape is formed as the first surface 84a, and the other surface is formed as the second surface 84b. The first surface 84a and the second surface 84b are each formed as a horizontally extending plane.
 この例では、熱電変換モジュール84は複数設けられており、より詳しくは、4つの熱電変換モジュール84が設けられている。そして、複数の熱電変換モジュール84は、左右方向に並んでいる。 In this example, a plurality of thermoelectric conversion modules 84 are provided, and more specifically, four thermoelectric conversion modules 84 are provided. A plurality of thermoelectric conversion modules 84 are arranged in the horizontal direction.
 加熱熱交換器82は、熱電変換モジュール84の第1面84aの下方において第1面84aと接して設けられ且つ蒸気が供給される容器状の本体821を有し、本体821の蒸気によって第1面84aを加熱する。つまり、加熱熱交換器82は、熱電変換モジュール84の第1面84aを加熱するための加熱源である。 The heating heat exchanger 82 has a container-like main body 821 provided in contact with the first surface 84a of the thermoelectric conversion module 84 below the first surface 84a and to which steam is supplied. Heat the surface 84a. That is, the heating heat exchanger 82 is a heat source for heating the first surface 84 a of the thermoelectric conversion module 84 .
 具体的に、加熱熱交換器82は、本体821と、流入口822と、流出口823とを有している。本体821は、水平に延びる半円柱形の容器状に形成されている。より詳しくは、本体821は、左右方向に延びている。本体821は、円弧が下方へ向かって突出する状態で設けられている。本体821は、加熱用本体の一例である。流入口822は、本体821の左側面821aに設けられ、流出口823は、本体821の右側面821bに設けられている。本体821の上面821cは、水平に延びる平面に形成されている。本体821は、上面821cが複数の熱電変換モジュール84の第1面84aと接する状態で設けられている。 Specifically, the heating heat exchanger 82 has a main body 821 , an inlet 822 and an outlet 823 . The main body 821 is formed in the shape of a horizontally extending semi-cylindrical container. More specifically, main body 821 extends in the left-right direction. The main body 821 is provided with an arc protruding downward. The body 821 is an example of a heating body. The inlet 822 is provided on the left side 821 a of the main body 821 and the outlet 823 is provided on the right side 821 b of the main body 821 . An upper surface 821c of the main body 821 is formed into a horizontally extending plane. The main body 821 is provided with an upper surface 821 c in contact with the first surfaces 84 a of the plurality of thermoelectric conversion modules 84 .
 加熱熱交換器82では、蒸気が、流入口822から本体821に流入する。本体821に流入した蒸気は、本体821の内部を流通しながら、第1面84aと熱交換する。より詳しくは、本体821内の蒸気は、上面821cを介して第1面84aに放熱する。これにより、第1面84aが加熱される。本体821内の蒸気は、第1面84aと熱交換することで、凝縮してドレンとなる。本体821内のドレンは、流出口823から流出する。 In the heating heat exchanger 82 , steam flows into the main body 821 from the inlet 822 . The steam that has flowed into the main body 821 exchanges heat with the first surface 84a while circulating inside the main body 821 . More specifically, the steam inside the main body 821 dissipates heat to the first surface 84a through the upper surface 821c. This heats the first surface 84a. The steam in the main body 821 exchanges heat with the first surface 84a to condense and become drain. The drain inside the main body 821 flows out from the outlet 823 .
 本体821内で凝縮したドレンは、本体821内の底部に一時的に溜まる。そのため、凝縮したドレンによって第1面84aの加熱が阻害されることはない。つまり、加熱熱交換器82は、第1面84aの下方、即ち熱電変換モジュール84の下方に設けられているため、第1面84aと接する上面821cから離れた位置にドレンを溜めることができる。これにより、加熱熱交換器82の加熱効率が向上する。 The condensed drain inside the main body 821 temporarily accumulates at the bottom inside the main body 821 . Therefore, the condensed drain does not hinder the heating of the first surface 84a. That is, since the heating heat exchanger 82 is provided below the first surface 84a, that is, below the thermoelectric conversion module 84, the drain can be collected at a position away from the upper surface 821c in contact with the first surface 84a. Thereby, the heating efficiency of the heating heat exchanger 82 is improved.
 加熱熱交換器82は、スペーサ83aを介して底板81に支持されている。スペーサ83aは、上下方向に延びる棒状に形成され、底板81と加熱熱交換器82の本体821との間に設けられている。この例では、スペーサ83aは、底板81の4つの角部に位置している。 The heating heat exchanger 82 is supported by the bottom plate 81 via spacers 83a. The spacer 83 a is shaped like a rod extending vertically and provided between the bottom plate 81 and the main body 821 of the heating heat exchanger 82 . In this example, the spacers 83a are positioned at four corners of the bottom plate 81. As shown in FIG.
 冷却熱交換器85は、熱電変換モジュール84の第2面84bの上方において第2面84bと接して設けられ且つ冷却液が供給される容器状の本体851を有し、本体851の冷却液によって第2面84bを冷却する。つまり、冷却熱交換器85は、熱電変換モジュール84の第2面84bを冷却するための冷却源である。 The cooling heat exchanger 85 has a container-like main body 851 that is provided in contact with the second surface 84b above the second surface 84b of the thermoelectric conversion module 84 and to which a cooling liquid is supplied. Cool the second surface 84b. That is, the cooling heat exchanger 85 is a cooling source for cooling the second surface 84 b of the thermoelectric conversion module 84 .
 具体的に、冷却熱交換器85は、本体851と、流入口852と、流出口853とを有している。本体851は、直方体の容器状に形成されている。より詳しくは、本体851は、直方体の長手方向が水平方向と一致し且つ左右方向と一致する状態で設けられている。本体851は、冷却用本体の一例である。流入口852および流出口853は、本体851の前面851aに設けられている。より詳しくは、流入口852は、前面851aにおいて左端部に設けられ、流出口853は、前面851aにおいて右端部に設けられている。 Specifically, the cooling heat exchanger 85 has a main body 851 , an inlet 852 and an outlet 853 . The main body 851 is formed in the shape of a rectangular parallelepiped container. More specifically, the main body 851 is provided in a state in which the longitudinal direction of the rectangular parallelepiped coincides with the horizontal direction and also coincides with the left-right direction. The main body 851 is an example of a cooling main body. The inlet 852 and the outlet 853 are provided on the front surface 851 a of the main body 851 . More specifically, the inlet 852 is provided at the left end of the front surface 851a, and the outlet 853 is provided at the right end of the front surface 851a.
 本体851の上面851bおよび下面851cは、水平に延びる平面に形成されている。本体851は、下面851cが複数の熱電変換モジュール84の第2面84bと接する状態で設けられている。また、本体851は、上面851bが後述する可動板86と接する状態で設けられている。 An upper surface 851b and a lower surface 851c of the main body 851 are formed into flat surfaces extending horizontally. The main body 851 is provided with a lower surface 851 c in contact with the second surfaces 84 b of the plurality of thermoelectric conversion modules 84 . Further, the main body 851 is provided with an upper surface 851b in contact with a movable plate 86, which will be described later.
 冷却熱交換器85では、冷却液が、流入口852から本体851に流入する。本体851に流入した冷却液は、本体851の内部を流通しながら、第2面84bと熱交換する。より詳しくは、本体851内の冷却液は、下面851cを介して第2面84bから吸熱する。これにより、第2面84bが冷却される。本体851内において第2面84bと熱交換した冷却液は、流出口853から流出する。 In the cooling heat exchanger 85, the coolant flows into the main body 851 from the inlet 852. The coolant that has flowed into the main body 851 exchanges heat with the second surface 84b while circulating inside the main body 851 . More specifically, the coolant in the main body 851 absorbs heat from the second surface 84b through the lower surface 851c. This cools the second surface 84b. The coolant that has exchanged heat with the second surface 84 b in the main body 851 flows out from the outlet 853 .
 こうして、第1面84aが加熱され且つ第2面84bが冷却されることで、第1面84aと第2面84bとの間に温度差が生じる。そのため、熱電変換モジュール84では、第1面84aおよび第2面84bの温度差に応じて熱電発電が行われる。しかも、第1面84aは加熱熱交換器82によって積極的に加熱され、第2面84bは冷却熱交換器85によって積極的に冷却されるので、第1面84aおよび第2面84bの温度差を稼ぐことができる。そのため、熱電変換モジュール84による発電量が増大する。また、前述したように加熱熱交換器82における加熱効率が向上するため、熱電変換モジュール84による発電量がより増大する。 Thus, the first surface 84a is heated and the second surface 84b is cooled, thereby creating a temperature difference between the first surface 84a and the second surface 84b. Therefore, in the thermoelectric conversion module 84, thermoelectric power generation is performed according to the temperature difference between the first surface 84a and the second surface 84b. Moreover, since the first surface 84a is actively heated by the heating heat exchanger 82 and the second surface 84b is actively cooled by the cooling heat exchanger 85, the temperature difference between the first surface 84a and the second surface 84b is can earn Therefore, the amount of power generated by the thermoelectric conversion module 84 increases. In addition, since the heating efficiency of the heating heat exchanger 82 is improved as described above, the amount of power generated by the thermoelectric conversion module 84 is further increased.
 また、加熱熱交換器82の本体821の内部および冷却熱交換器85の本体851の内部の少なくとも一方は、単一空間で形成されている。この例では、両方の本体821,851の内部が、単一空間で形成されている。そのため、本体821,851の内部において温度が均一となる。そのため、加熱熱交換器82の本体821では、複数の熱電変換モジュール84の第1面84aが満遍なく加熱される。冷却熱交換器85の本体851では、複数の熱電変換モジュール84の第2面84bが満遍なく冷却される。これにより、熱電変換モジュール84における発電効率が向上する。 At least one of the inside of the main body 821 of the heating heat exchanger 82 and the inside of the main body 851 of the cooling heat exchanger 85 is formed in a single space. In this example, the interiors of both bodies 821, 851 are formed with a single space. Therefore, the temperature becomes uniform inside the main bodies 821 and 851 . Therefore, in the main body 821 of the heating heat exchanger 82, the first surfaces 84a of the plurality of thermoelectric conversion modules 84 are evenly heated. In the main body 851 of the cooling heat exchanger 85, the second surfaces 84b of the plurality of thermoelectric conversion modules 84 are evenly cooled. Thereby, the power generation efficiency in the thermoelectric conversion module 84 is improved.
 また、熱電変換モジュール84および冷却熱交換器85の本体851は、上下動自在に設けられている。加熱熱交換器82では、蒸気の熱や圧力によって本体821が膨張する場合がある。仮に熱電変換モジュール84および冷却熱交換器85の本体851が固定されている場合、加熱熱交換器82の本体821が膨張変形すると、熱電変換モジュール84が損傷する虞がある。本実施形態では、熱電変換モジュール84および冷却熱交換器85の本体851が上下動自在に設けられているため、加熱熱交換器82の本体821の膨張変形に伴って、熱電変換モジュール84および本体851が上方へ変位する。つまり、加熱熱交換器82の本体821の膨張変形を吸収することができる。そのため、加熱熱交換器82の本体821の膨張変形に起因する熱電変換モジュール84の損傷が防止される。 Also, the thermoelectric conversion module 84 and the body 851 of the cooling heat exchanger 85 are vertically movable. In the heating heat exchanger 82, the main body 821 may expand due to the heat and pressure of steam. If the thermoelectric conversion module 84 and the body 851 of the cooling heat exchanger 85 are fixed, the thermoelectric conversion module 84 may be damaged if the body 821 of the heating heat exchanger 82 expands and deforms. In the present embodiment, the thermoelectric conversion module 84 and the main body 851 of the cooling heat exchanger 85 are vertically movable. 851 is displaced upward. That is, the expansion deformation of the main body 821 of the heating heat exchanger 82 can be absorbed. Therefore, damage to the thermoelectric conversion module 84 due to expansion deformation of the main body 821 of the heating heat exchanger 82 is prevented.
 板バネ87は、冷却熱交換器85の本体851の上方に設けられ、本体851を下方へ付勢する弾性部材の一例である。この例では、板バネ87は、板部材が非対称のU字状に曲げられてなっている。この例では、板バネ87は、複数設けられており、より詳しくは、2つの板バネ87が設けられている。2つの板バネ87は、左右方向に並んでいる。 The leaf spring 87 is an example of an elastic member that is provided above the main body 851 of the cooling heat exchanger 85 and biases the main body 851 downward. In this example, the plate spring 87 is formed by bending a plate member into an asymmetric U-shape. In this example, a plurality of leaf springs 87 are provided, more specifically, two leaf springs 87 are provided. The two leaf springs 87 are arranged in the horizontal direction.
 板バネ87は、上下方向に弾性を有するように設けられている。具体的に、板バネ87は、板バネ87の上方に設けられている天板88に固定されている。板バネ87は、非対象である2つの直線部のうち長い方の直線部がボルト87aによって天板88に締結されることで固定されている。つまり、板バネ87は、非対象である2つの直線部のうち短い方の直線部が自由端となっている。 The plate spring 87 is provided so as to have elasticity in the vertical direction. Specifically, the leaf spring 87 is fixed to a top plate 88 provided above the leaf spring 87 . The leaf spring 87 is fixed by fastening the longer linear portion of the two asymmetric linear portions to the top plate 88 with a bolt 87a. In other words, the leaf spring 87 has a free end at the shorter linear portion of the two asymmetric linear portions.
 天板88は、水平に延びる板状に形成されている。天板88は、底板81と同様、平面視が長方形となっている。天板88は、スペーサ83bを介して加熱熱交換器82の本体821の上面821cに支持されている。スペーサ83bは、上下方向に延びる棒状に形成され、天板88と上面821cとの間に設けられている。この例では、スペーサ83bは、天板88の4つの角部に位置している。 The top plate 88 is formed in a plate shape extending horizontally. Like the bottom plate 81, the top plate 88 is rectangular in plan view. The top plate 88 is supported on the upper surface 821c of the main body 821 of the heating heat exchanger 82 via spacers 83b. The spacer 83b is formed in a bar shape extending in the vertical direction, and is provided between the top plate 88 and the upper surface 821c. In this example, the spacers 83b are positioned at four corners of the top plate 88. As shown in FIG.
 可動板86は、上下方向と直交する板状に形成され、冷却熱交換器85の本体851と板バネ87との間において上下動自在に設けられ、板バネ87の付勢力を本体851に伝達する。 The movable plate 86 is formed in a plate shape perpendicular to the vertical direction, and is vertically movable between the main body 851 of the cooling heat exchanger 85 and the plate spring 87, and transmits the biasing force of the plate spring 87 to the main body 851. do.
 具体的に、可動板86は、水平に延びる板状に形成されている。可動板86は、下面が冷却熱交換器85の本体851の上面851bと接する状態で設けられている。また、可動板86は、上面が板バネ87と接する状態で設けられている。より詳しくは、可動板86の上面は、板バネ87の2つの直線部のうち短い方の直線部と接している。可動板86は、平面視で冷却熱交換器85の本体851の上面851bを覆う大きさに形成されている。可動板86は、板バネ87の付勢力を本体851の上面851bに伝達する。つまり、板バネ87は、可動板86を介して冷却熱交換器85の本体851を下方へ付勢する。 Specifically, the movable plate 86 is formed in a plate shape extending horizontally. The movable plate 86 is provided with its lower surface in contact with the upper surface 851 b of the main body 851 of the cooling heat exchanger 85 . Also, the movable plate 86 is provided with its upper surface in contact with the plate spring 87 . More specifically, the upper surface of the movable plate 86 is in contact with the shorter linear portion of the two linear portions of the leaf spring 87 . The movable plate 86 is sized to cover the upper surface 851b of the main body 851 of the cooling heat exchanger 85 in plan view. The movable plate 86 transmits the biasing force of the plate spring 87 to the upper surface 851b of the main body 851. As shown in FIG. That is, the plate spring 87 urges the main body 851 of the cooling heat exchanger 85 downward via the movable plate 86 .
 こうして、板バネ87が冷却熱交換器85の本体851を下方へ付勢することで、熱電変換モジュール84の第2面84bと本体851との密着度、および熱電変換モジュール84の第1面84aと本体821との密着度が高まる。そのため、熱電変換モジュール84と加熱熱交換器82および冷却熱交換器85との熱交換の効率が向上する。そのため、第1面84aと第2面84bとの温度差をより稼ぐことができる。 In this way, the leaf spring 87 urges the main body 851 of the cooling heat exchanger 85 downward, thereby increasing the adhesion between the second surface 84b of the thermoelectric conversion module 84 and the main body 851 and the first surface 84a of the thermoelectric conversion module 84. and the degree of close contact with the main body 821 is increased. Therefore, the efficiency of heat exchange between the thermoelectric conversion module 84 and the heating heat exchanger 82 and the cooling heat exchanger 85 is improved. Therefore, it is possible to increase the temperature difference between the first surface 84a and the second surface 84b.
 しかも、板バネ87は可動板86を介して冷却熱交換器85の本体851を下方へ付勢するため、板バネ87の付勢力が本体851の全体に対して満遍なく作用する。そのため、第2面84bと本体851との密着度、および第1面84aと本体821との密着度を満遍なく高めることができる。 Moreover, since the leaf spring 87 urges the main body 851 of the cooling heat exchanger 85 downward via the movable plate 86 , the urging force of the leaf spring 87 evenly acts on the entire main body 851 . Therefore, the degree of adhesion between the second surface 84b and the main body 851 and the degree of adhesion between the first surface 84a and the main body 821 can be evenly increased.
 また、加熱熱交換器82の本体821が膨張変形した場合には、熱電変換モジュール84、冷却熱交換器85の本体851および可動板86が、板バネ87の付勢力に抗して上方へ変位する。つまり、加熱熱交換器82の本体821の膨張変形を吸収することができる。このように、板バネ87を設けることで、加熱熱交換器82の本体821の膨張変形に起因する熱電変換モジュール84の損傷を防止しつつ、熱電変換モジュール84と本体821,851との密着度を高めることができる。 Further, when the main body 821 of the heating heat exchanger 82 expands and deforms, the thermoelectric conversion module 84, the main body 851 of the cooling heat exchanger 85 and the movable plate 86 are displaced upward against the biasing force of the plate spring 87. do. That is, the expansion deformation of the main body 821 of the heating heat exchanger 82 can be absorbed. By providing the plate spring 87 in this way, damage to the thermoelectric conversion module 84 due to expansion deformation of the main body 821 of the heating heat exchanger 82 can be prevented, and the degree of adhesion between the thermoelectric conversion module 84 and the main bodies 821 and 851 can be improved. can increase
 さらに、熱電発電装置8は、ガイド棒89a,89bをさらに備えている。ガイド棒89aは、可動板86の上下動をガイドするガイド部の一例である。ガイド棒89aは、上下方向に延びている。ガイド棒89aは、底板81と天板88との間に亘って設けられている。この例では、ガイド棒89aは、複数設けられており、より詳しくは、4本のガイド棒89aが設けられている。 Furthermore, the thermoelectric generator 8 further includes guide rods 89a and 89b. The guide rod 89 a is an example of a guide portion that guides the vertical movement of the movable plate 86 . The guide rod 89a extends vertically. A guide rod 89 a is provided between the bottom plate 81 and the top plate 88 . In this example, a plurality of guide rods 89a are provided, and more specifically, four guide rods 89a are provided.
 可動板86には、ガイド棒89aが貫通する貫通孔86aが形成されている。この構成により、可動板86は、ガイド棒89aに沿って上下動する。なお、可動板86の4つの角部には、スペーサ83bとの接触を回避するために切欠き86bが設けられている。 A through hole 86a through which a guide rod 89a passes is formed in the movable plate 86. With this configuration, the movable plate 86 moves up and down along the guide rod 89a. Notches 86b are provided at four corners of the movable plate 86 to avoid contact with the spacers 83b.
 ガイド棒89bは、冷却熱交換器85の本体851の上下動をガイドするガイド部の一例である。ガイド棒89bは、上下方向に延びている。ガイド棒89aは、上端が可動板86に固定されることで設けられている。つまり、ガイド棒89bは、可動板86から下方へ向かって延びている。ガイド棒89bは、可動板86と共に上下動する。この例では、ガイド棒89bは、複数設けられており、より詳しくは、4本のガイド棒89bが設けられている。ガイド棒89bは、冷却熱交換器85の本体851の外方に位置している。この構成により、本体851は、ガイド棒89bに沿って上下動する。そのため、本体851は、熱電変換モジュール84および可動板86に対してずれることなく上下動する。 The guide rod 89b is an example of a guide portion that guides the vertical movement of the main body 851 of the cooling heat exchanger 85. The guide rod 89b extends vertically. The guide rod 89 a is provided by fixing its upper end to the movable plate 86 . That is, the guide rod 89b extends downward from the movable plate 86. As shown in FIG. The guide rod 89b moves up and down together with the movable plate 86. As shown in FIG. In this example, a plurality of guide rods 89b are provided, and more specifically, four guide rods 89b are provided. The guide rod 89b is positioned outside the main body 851 of the cooling heat exchanger 85. As shown in FIG. With this configuration, the main body 851 moves up and down along the guide rod 89b. Therefore, the main body 851 moves up and down without shifting with respect to the thermoelectric conversion module 84 and the movable plate 86 .
 次に、前述した発電ユニットU(即ち、3つの熱電発電装置8)が設けられた熱回収システム100について説明する。図7は、熱電発電装置8が設けられた熱回収システム100の概略構成を示す配管系統図である。なお、図7では、説明の便宜上、1つの熱電発電装置8について概略的に示している。 Next, the heat recovery system 100 provided with the power generation unit U (that is, three thermoelectric generators 8) described above will be described. FIG. 7 is a piping system diagram showing a schematic configuration of a heat recovery system 100 provided with the thermoelectric generator 8. As shown in FIG. Note that FIG. 7 schematically shows one thermoelectric generator 8 for convenience of explanation.
 熱回収システム100は、熱回収システム100外に設けられている蒸気使用機器において蒸気が凝縮して発生したドレンおよびそのドレンのフラッシュ蒸気(湯気等)を回収する。つまり、熱回収システム100は、高温ドレンの熱およびフラッシュ蒸気の熱を回収する。熱回収システム100は、蒸気システムの一例である。 The heat recovery system 100 recovers drain generated by condensation of steam in steam-using equipment provided outside the heat recovery system 100 and flush steam (such as steam) from the drain. That is, the heat recovery system 100 recovers the heat of the hot drain and the heat of the flash steam. Heat recovery system 100 is an example of a steam system.
 熱回収システム100は、気液分離部1と、ヘッダタンク2と、熱交換器4と、液体圧送装置5と、経路切換部6と、発電ユニットUとを備えている。 The heat recovery system 100 includes a gas-liquid separation section 1, a header tank 2, a heat exchanger 4, a liquid pumping device 5, a path switching section 6, and a power generation unit U.
 気液分離部1は、蒸気使用機器(図示省略)から送られてきたドレンおよびそのフラッシュ蒸気を分離する。気液分離部1は、回収管10と、液管11と、ガス管12とを有している。 The gas-liquid separation unit 1 separates the drain sent from the steam-using equipment (not shown) and its flash steam. The gas-liquid separation section 1 has a recovery pipe 10 , a liquid pipe 11 and a gas pipe 12 .
 回収管10には、蒸気使用機器で発生したドレンおよびそのフラッシュ蒸気が流入してくる。液管11およびガス管12は、回収管10が2つに分岐した分岐管である。回収管10に流入したドレンおよびフラッシュ蒸気のうち、ドレンは液管11に流入し、フラッシュ蒸気はガス管12に流入する。ガス管12は、回収管10の端部から鉛直上方へ向かって延びる直管である。ガス管12は、熱交換器4に接続されており、フラッシュ蒸気を熱交換器4に供給する。液管11は、回収管10の端部から下方へ向かって延びている。液管11は、ヘッダタンク2に接続されており、ドレンをヘッダタンク2に流入させる。 Drain generated by steam-using equipment and its flash steam flow into the recovery pipe 10 . The liquid pipe 11 and the gas pipe 12 are branch pipes obtained by branching the recovery pipe 10 into two. Of the drain and flash steam that have flowed into the recovery pipe 10 , the drain flows into the liquid pipe 11 and the flash steam flows into the gas pipe 12 . The gas pipe 12 is a straight pipe extending vertically upward from the end of the recovery pipe 10 . The gas pipe 12 is connected to the heat exchanger 4 and supplies flash steam to the heat exchanger 4 . The liquid tube 11 extends downward from the end of the recovery tube 10 . The liquid pipe 11 is connected to the header tank 2 and allows drain to flow into the header tank 2 .
 図8にも示すように、液管11は、U字状に屈曲する、いわゆるU字管である。具体的に、液管11は、第1管11a、第2管11b、第3管11cおよび第4管11dを有している。第1管11aは、回収管10の端部から鉛直下方へ延びる直管である。第2管11bは、第1管11aの下端から水平方向に延びる直管であり、U字の底部に相当する部分である。第3管11cは、第2管11bの端部から鉛直上方へ延びる直管である。つまり、第1管11aおよび第3管11cは、互いに鉛直方向へ平行に延びている。第4管11dは、第3管11cの上端から水平方向に延びる直管である。第4管11dは、ヘッダタンク2(より詳しくは、タンク本体21)の側部に接続されている。 As shown in FIG. 8, the liquid tube 11 is a so-called U-shaped tube that bends in a U-shape. Specifically, the liquid tube 11 has a first tube 11a, a second tube 11b, a third tube 11c and a fourth tube 11d. The first pipe 11a is a straight pipe extending vertically downward from the end of the recovery pipe 10 . The second pipe 11b is a straight pipe extending horizontally from the lower end of the first pipe 11a, and corresponds to the bottom of the U shape. The third pipe 11c is a straight pipe extending vertically upward from the end of the second pipe 11b. That is, the first pipe 11a and the third pipe 11c extend parallel to each other in the vertical direction. The fourth pipe 11d is a straight pipe extending horizontally from the upper end of the third pipe 11c. The fourth pipe 11d is connected to the side of the header tank 2 (more precisely, the tank main body 21).
 このように構成された液管11では、第1管11a、第2管11bおよび第3管11cにドレンが滞留し、その滞留ドレンによって水封される。より詳しくは、第3管11cでは、ドレンが上端まで滞留する一方、第1管11aでは、ドレンの水頭が第3管11cのドレンの水頭よりも低い。つまり、第1管11aと第3管11cとでは、ドレンの水頭差Hが生じる。この水頭差Hは、熱交換器4における圧力損失によって生じる。こうして水頭差Hが生じることにより、熱交換器4の圧力損失が相殺される。第1管11aおよび第3管11cは、熱交換器4の圧力損失に相当する水頭差Hを確保し得る十分な高さに設定されている。そのため、熱交換器4の圧力損失を確実に相殺することができる。これにより、ガス管12から熱交換器4にフラッシュ蒸気が容易に流入させることができる。 In the liquid pipe 11 configured in this manner, drain stays in the first pipe 11a, the second pipe 11b, and the third pipe 11c, and is water-sealed by the staying drain. More specifically, in the third pipe 11c, the drain stays up to the upper end, while in the first pipe 11a, the drain head is lower than that of the third pipe 11c. That is, a drain head difference H is generated between the first pipe 11a and the third pipe 11c. This head difference H is caused by pressure loss in the heat exchanger 4 . The pressure loss in the heat exchanger 4 is offset by the water head difference H thus generated. The first pipe 11 a and the third pipe 11 c are set to have a height sufficient to ensure a water head difference H corresponding to the pressure loss of the heat exchanger 4 . Therefore, the pressure loss of the heat exchanger 4 can be reliably offset. As a result, the flash steam can easily flow into the heat exchanger 4 from the gas pipe 12 .
 ヘッダタンク2は、蒸気使用機器で発生したドレンが流入して貯留される水封式のヘッダタンクである。具体的に、ヘッダタンク2は、容器状のタンク本体21と、オーバーフロー管24とを有している。 The header tank 2 is a water-sealed header tank into which drain generated by steam-using equipment flows and is stored. Specifically, the header tank 2 has a container-like tank body 21 and an overflow pipe 24 .
 タンク本体21は、内部空間が、ドレンの液相部22と蒸気の気相部23とに分かれている。タンク本体21には、液管11(第4管11d)、流出管13および流入管16aが接続されている。液管11は、気相部23に開口している。流出管13は、タンク本体21の頂部に接続され、気相部23に開口している。流入管16aは、液相部22に開口している。タンク本体21では、液管11からドレンが流入して貯留される。また、タンク本体21では、熱交換器4からのドレンが流出管13を介して流入し貯留される。また、タンク本体21では、液相部22のドレンが流入管16aを介して液体圧送装置5に流入する。オーバーフロー管24は、流入端である一端が液相部22に開口し、流出端である他端がタンク本体21の上部の側壁を貫通して大気に開口している。 The internal space of the tank body 21 is divided into a liquid phase portion 22 of drain and a gas phase portion 23 of steam. The tank main body 21 is connected to the liquid pipe 11 (fourth pipe 11d), the outflow pipe 13 and the inflow pipe 16a. The liquid pipe 11 opens to the gas phase portion 23 . The outflow pipe 13 is connected to the top of the tank body 21 and opens to the gas phase portion 23 . The inflow pipe 16 a opens to the liquid phase portion 22 . Drain flows from the liquid pipe 11 and is stored in the tank body 21 . In the tank main body 21, the drain from the heat exchanger 4 flows through the outflow pipe 13 and is stored. In the tank main body 21, the drain of the liquid phase portion 22 flows into the liquid pumping device 5 through the inflow pipe 16a. One end of the overflow pipe 24, which is an inflow end, opens to the liquid phase portion 22, and the other end, which is an outflow end, penetrates the upper side wall of the tank body 21 and opens to the atmosphere.
 タンク本体21の内部空間は、水封トラップ3の水封によって密閉されている。具体的に、水封トラップ3は、接続管15aおよび流出管15bによってタンク本体21と接続されている。接続管15aは、流入端である一端がタンク本体21の気相部23に開口し、流出端である他端が水封トラップ3の封水に開口している。つまり、接続管15aの他端は水封されている。流出管15bは、流入端である一端が水封トラップ3に接続され、流出端である他端がタンク本体21の液相部22に開口している。水封トラップ3は、通常時は、タンク本体21の蒸気が漏れ出ることを水封によって阻止する一方、タンク本体21が異常高圧となる非常時には、水封が破られてタンク本体21の蒸気を大気に逃がす。また、水封トラップ3では、蒸気の凝縮によって発生した余剰のドレンは流出管15bを介してタンク本体21に流入して貯留される。 The internal space of the tank body 21 is sealed by the water seal of the water seal trap 3 . Specifically, the water seal trap 3 is connected to the tank body 21 by a connection pipe 15a and an outflow pipe 15b. The connection pipe 15 a has one end, which is an inflow end, opened to the gas phase portion 23 of the tank body 21 , and the other end, which is an outflow end, is opened to the sealing water of the water seal trap 3 . That is, the other end of the connection pipe 15a is water sealed. The outflow pipe 15 b has one inflow end connected to the water seal trap 3 and the other outflow end opening to the liquid phase portion 22 of the tank body 21 . The water seal trap 3 normally prevents the steam from leaking out of the tank body 21 by means of a water seal. escape to the atmosphere. Further, in the water seal trap 3, excess drain generated by condensation of steam flows into the tank main body 21 through the outflow pipe 15b and is stored therein.
 熱交換器4は、内部流路である第1流路41および第2流路42を有している。第1流路41は、蒸気使用機器からヘッダタンク2に流入するドレンのフラッシュ蒸気を流入させて第2流路42の対象物(例えば、水)と熱交換させるである。より詳しくは、第1流路41の流入端にはガス管12が接続され、第1流路41の流出端には流出管13が接続されている。第2流路42には、水を供給する流入管14aと、第2流路42から水が流出する流出管14bとが接続されている。熱交換器4では、第1流路41のフラッシュ蒸気が第2流路42の水と熱交換し、水が加熱される。フラッシュ蒸気は、凝縮してドレンとなり、流出管13を介してヘッダタンク2に流入する。こうして、フラッシュ蒸気の熱が回収される。 The heat exchanger 4 has a first channel 41 and a second channel 42 which are internal channels. The first flow path 41 allows the flush steam of the drain flowing into the header tank 2 from the steam-using equipment to flow into the second flow path 42 to exchange heat with an object (for example, water). More specifically, the gas pipe 12 is connected to the inflow end of the first flow path 41 , and the outflow pipe 13 is connected to the outflow end of the first flow path 41 . The second flow path 42 is connected to an inflow pipe 14 a for supplying water and an outflow pipe 14 b for outflowing water from the second flow path 42 . In the heat exchanger 4, the flash steam in the first flow path 41 exchanges heat with the water in the second flow path 42 to heat the water. The flash steam condenses to become drain and flows into the header tank 2 through the outflow pipe 13 . The heat of the flash steam is thus recovered.
 図9に示すように、液体圧送装置5は、ドレンの貯留室51および蒸気の排気口55が形成されたケーシング50を有し、貯留室51の蒸気を排気口55から排出することによってヘッダタンク2のドレンを貯留室51に流入させて貯留する流入動作と、貯留室51に蒸気を導入することによって貯留室51のドレンを圧送する圧送動作とを行う。 As shown in FIG. 9, the liquid pumping device 5 has a casing 50 in which a drain storage chamber 51 and a steam exhaust port 55 are formed. An inflow operation for causing the drain No. 2 to flow into the storage chamber 51 and store it, and a pumping operation for pumping the drain in the storage chamber 51 by introducing steam into the storage chamber 51 are performed.
 具体的に、液体圧送装置5は、流入動作と圧送動作とを交互に行う。圧送動作の際、貯留室51に導入する蒸気は、作動気体であり、高温高圧の蒸気である。液体圧送装置5は、密閉容器であるケーシング50と、給気弁56および排気弁57と、弁作動機構58とを備えている。液体圧送装置5は、熱回収システム100が備える蒸気使用機器の一例である。 Specifically, the liquid pumping device 5 alternately performs an inflow operation and a pumping operation. During the pumping operation, the steam introduced into the storage chamber 51 is the working gas and is high-temperature and high-pressure steam. The liquid pumping device 5 includes a casing 50 that is a closed container, an air supply valve 56 and an exhaust valve 57, and a valve operating mechanism 58. The liquid pumping device 5 is an example of steam-using equipment included in the heat recovery system 100 .
 ケーシング50は、本体部50aと蓋部50bとがボルトによって結合され、内部にドレンの貯留室51が形成されている。蓋部50bには、ドレンが流入する流入口52と、ドレンが圧送される圧送口53と、作動気体が供給される給気口54と、作動気体が排出される排気口55とが設けられている。これら流入口52等は何れも、蓋部50bに設けられており、貯留室51と連通している。流入口52には流入管16aが接続され、圧送口53には圧送管16bが接続され、給気口54には給気管16cが接続され、排気口55には排気管16dが接続されている。給気管16cは、蒸気システム内の例えばボイラで生成された高圧の蒸気を給気口54に供給する。圧送管16bは、圧送口53からのドレンを所定の利用箇所へ供給する。これにより、高温ドレンの熱が回収される。 The casing 50 has a body portion 50a and a lid portion 50b that are joined by bolts, and a drain storage chamber 51 is formed inside. The lid portion 50b is provided with an inflow port 52 for drain inflow, a pumping port 53 for pumping the drain, an air supply port 54 for supplying the working gas, and an exhaust port 55 for discharging the working gas. ing. These inflow ports 52 and the like are all provided in the lid portion 50b and communicate with the storage chamber 51. As shown in FIG. The inflow port 52 is connected to the inflow pipe 16a, the pressure feed port 53 is connected to the pressure feed pipe 16b, the air supply port 54 is connected to the air supply pipe 16c, and the exhaust port 55 is connected to the exhaust pipe 16d. . The air supply pipe 16c supplies high-pressure steam generated by, for example, a boiler in the steam system to the air supply port 54 . The pressure-feeding pipe 16b supplies the drain from the pressure-feeding port 53 to a predetermined utilization point. Thereby, the heat of the hot drain is recovered.
 給気弁56は、給気口54に設けられており、給気口54を開閉する。排気弁57は、排気口55に設けられており、排気口55を開閉する。排気弁57の下部には、弁操作棒57aが連結されている。弁操作棒57aには、給気弁56の下方領域まで延びる連設板57bが取り付けられている。この構成によれば、弁操作棒57aが上昇すると、給気弁56が給気口54を開放する一方、排気弁57が排気口55を閉鎖する。弁操作棒57aが下降すると、給気弁56が給気口54を閉鎖する一方、排気弁57が排気口55を開放する。 The air supply valve 56 is provided in the air supply port 54 and opens and closes the air supply port 54 . The exhaust valve 57 is provided at the exhaust port 55 and opens and closes the exhaust port 55 . A valve operating rod 57 a is connected to the lower portion of the exhaust valve 57 . A connecting plate 57b extending to a region below the air supply valve 56 is attached to the valve operating rod 57a. According to this configuration, when the valve operating rod 57 a rises, the air supply valve 56 opens the air supply port 54 and the exhaust valve 57 closes the exhaust port 55 . When the valve operating rod 57 a descends, the air supply valve 56 closes the air supply port 54 and the exhaust valve 57 opens the exhaust port 55 .
 弁作動機構58は、ケーシング50内に設けられ、弁操作棒57aを上下動させて給気弁56および排気弁57を作動させる。弁作動機構58は、フロート581およびスナップ機構59を有する。 The valve operating mechanism 58 is provided inside the casing 50 and operates the intake valve 56 and the exhaust valve 57 by moving the valve operating rod 57a up and down. The valve actuation mechanism 58 has a float 581 and a snap mechanism 59 .
 フロート581は、球形に形成され、レバー582が取り付けられている。レバー582は、ブラケット584に設けられた軸583に回転可能に支持されている。レバー582には、フロート581側とは反対側の端部に軸585が設けられている。スナップ機構59は、フロートアーム591、副アーム592、コイルバネ593、2つの受け部材594a,594bを有する。フロートアーム591の一端部は、ブラケット597に設けられた軸596に回転可能に支持されている。フロートアーム591の他端部は、溝591aが形成されており、その溝591aにレバー582の軸585が嵌っている。この構成により、フロートアーム591はフロート581の浮き沈みに伴い軸596を中心として揺動する。 The float 581 is spherical and has a lever 582 attached. Lever 582 is rotatably supported by shaft 583 provided on bracket 584 . A shaft 585 is provided at the end of the lever 582 opposite to the float 581 side. The snap mechanism 59 has a float arm 591, a sub arm 592, a coil spring 593, and two receiving members 594a, 594b. One end of the float arm 591 is rotatably supported by a shaft 596 provided on a bracket 597 . A groove 591a is formed in the other end of the float arm 591, and the shaft 585 of the lever 582 is fitted in the groove 591a. With this configuration, the float arm 591 swings around the shaft 596 as the float 581 rises and falls.
 また、フロートアーム591には軸595aが設けられている。副アーム592は、上端部が軸596に回転可能に支持され、下端部に軸595bが設けられている。受け部材594aはフロートアーム591の軸595aに回転可能に支持され、受け部材594bは副アーム592の軸595bに回転可能に支持されている。両受け部材594a,594bの間には、圧縮状態のコイルバネ593が取り付けられている。また、副アーム592には軸598が設けられ、その軸598に弁操作棒57aの下端部が連結されている。 In addition, the float arm 591 is provided with a shaft 595a. The secondary arm 592 has an upper end rotatably supported by a shaft 596 and a lower end provided with a shaft 595b. The receiving member 594a is rotatably supported by the shaft 595a of the float arm 591, and the receiving member 594b is rotatably supported by the shaft 595b of the sub arm 592. As shown in FIG. A compressed coil spring 593 is attached between the receiving members 594a and 594b. Further, the sub arm 592 is provided with a shaft 598 to which the lower end of the valve operating rod 57a is connected.
 液体圧送装置5では、貯留室51にドレンが溜まっていない場合、フロート581は貯留室51の底部に位置する。この状態において、弁操作棒57aは下降しており、給気弁56は閉弁し排気弁57は開弁している。そして、ドレンが流入口52から流入し貯留室51に溜まっていくに従って、フロート581が浮上する。一方、貯留室51では、ドレンが溜まっていくにつれて蒸気が排気口55から排出される。こうして、流入動作が行われる。つまり、流入動作ではドレンと蒸気とが置換される。そして、貯留室51におけるドレンの水位が所定高水位に達すると、スナップ機構59によって弁操作棒57aが上昇する。これにより、給気弁56が開弁すると共に排気弁57が閉弁する。 In the liquid pumping device 5, the float 581 is positioned at the bottom of the storage chamber 51 when no drain is accumulated in the storage chamber 51. In this state, the valve operating rod 57a is lowered, the intake valve 56 is closed, and the exhaust valve 57 is open. As the drain flows from the inflow port 52 and accumulates in the storage chamber 51, the float 581 rises. On the other hand, in the storage chamber 51, steam is discharged from the exhaust port 55 as the drain accumulates. Thus, the inflow operation is performed. That is, the inlet operation replaces drain with steam. When the drain water level in the storage chamber 51 reaches a predetermined high water level, the snap mechanism 59 raises the valve operating rod 57a. As a result, the air supply valve 56 is opened and the exhaust valve 57 is closed.
 給気弁56が開弁すると、蒸気(高圧蒸気)が給気口54から供給されて貯留室51の上部(ドレンの上方空間)に導入される。そうすると、貯留室51に溜まっているドレンは、導入された蒸気の圧力によって下方へ押されて圧送口53から圧送される。こうして、圧送動作が行われる。この圧送動作によって貯留室51のドレン水位が低下すると、フロート581が下降する。そして、貯留室51におけるドレンの水位が所定低水位に達すると、スナップ機構59によって弁操作棒57aが下降する。これにより、給気弁56が閉弁すると共に排気弁57が開弁する。 When the air supply valve 56 opens, steam (high-pressure steam) is supplied from the air supply port 54 and introduced into the upper portion of the storage chamber 51 (the space above the drain). Then, the drain accumulated in the storage chamber 51 is pushed downward by the pressure of the introduced steam and is pressure-fed from the pressure-feed port 53 . Thus, the pumping operation is performed. When the drain water level in the storage chamber 51 drops due to this pumping operation, the float 581 descends. When the drain water level in the storage chamber 51 reaches a predetermined low level, the snap mechanism 59 lowers the valve operating rod 57a. As a result, the air supply valve 56 is closed and the exhaust valve 57 is opened.
 経路切換部6は、排気口55から排出された蒸気を、ヘッダタンク2へ供給する第1経路およびヘッダタンク2とは別の熱交換器4の第1流路41へ供給する第2経路を有し、液体圧送装置5の流入動作の際、排気口55から排出された蒸気の圧力である排気圧力に応じて第1経路と第2経路とを選択切換する。つまり、経路切換部6は、液体圧送装置5の流入動作の際、排気口55から排出された蒸気の経路を切り換える。具体的に、経路切換部6は、液体圧送装置5の流入動作の際、排気圧力が所定値未満の場合は第1経路に切り換え、排気圧力が前記所定値以上の場合は第2経路に切り換える。 The path switching unit 6 selects a first path for supplying the steam discharged from the exhaust port 55 to the header tank 2 and a second path for supplying the steam to the first flow path 41 of the heat exchanger 4 different from the header tank 2 . During the inflow operation of the liquid pumping device 5, the first path and the second path are selectively switched according to the exhaust pressure, which is the pressure of the steam discharged from the exhaust port 55. FIG. That is, the path switching unit 6 switches the path of the vapor discharged from the exhaust port 55 during the inflow operation of the liquid pumping device 5 . Specifically, during the inflow operation of the liquid pumping device 5, the path switching unit 6 switches to the first path when the exhaust pressure is less than a predetermined value, and switches to the second path when the exhaust pressure is equal to or higher than the predetermined value. .
 より具体的に、経路切換部6は、切換弁60と、連通管71と、大気開放管74と、逆止弁75とを有している。 More specifically, the path switching section 6 has a switching valve 60 , a communication pipe 71 , an atmosphere release pipe 74 and a check valve 75 .
 切換弁60は、排気管16dに接続されている。連通管71は、切換弁60とヘッダタンク2とに接続されている。より詳しくは、連通管71は、流入端である一端が切換弁60の第1流出路64に連通し、流出端である他端がヘッダタンク2の気層部23に連通している。大気開放管74は、流入端である一端が切換弁60の第2流出路65に連通し、流出端である他端が大気に開放されている。この例では、第1経路は、連通管71によって形成され、第2経路は、大気開放管74によって形成されている。逆止弁75は、大気開放管74に設けられている。逆止弁75は、切換弁60から大気に向かう蒸気の流れのみを許容する。 The switching valve 60 is connected to the exhaust pipe 16d. The communication pipe 71 is connected to the switching valve 60 and the header tank 2 . More specifically, the communication pipe 71 communicates with the first outflow path 64 of the switching valve 60 at one end, which is the inflow end, and communicates with the gas layer 23 of the header tank 2 at the other end, which is the outflow end. One end of the air release pipe 74, which is an inflow end, communicates with the second outflow path 65 of the switching valve 60, and the other end, which is an outflow end, is open to the atmosphere. In this example, the first path is formed by the communication pipe 71 and the second path is formed by the atmosphere release pipe 74 . The check valve 75 is provided on the atmosphere release pipe 74 . The check valve 75 only allows steam to flow from the switching valve 60 to the atmosphere.
 切換弁60は、排気圧力に応じて第1経路と第2経路とを選択切換する。つまり、切換弁60は、流入してきた蒸気を排気圧力に応じて連通管71または大気開放管74に流出させることにより、蒸気の供給場所をヘッダタンク2と大気とに切り換える。図10に示すように、切換弁60は、排気口55から排出された蒸気が流入する流入路62と、第1経路が接続された第1流出路64と、第2経路が接続された第2流出路65と、第1流出路64を開閉する弁体671と、弁体671を開弁方向に付勢するバネ676とを有し、排気圧力が所定値以上になると、排気圧力によって弁体671がバネ676の付勢力に抗して閉弁する。バネ676は、付勢部材の一例である。 The switching valve 60 selectively switches between the first path and the second path according to the exhaust pressure. In other words, the switching valve 60 switches the supply location of the steam between the header tank 2 and the atmosphere by causing the incoming steam to flow out to the communication pipe 71 or the atmosphere release pipe 74 according to the exhaust pressure. As shown in FIG. 10, the switching valve 60 includes an inflow path 62 into which the steam discharged from the exhaust port 55 flows, a first outflow path 64 connected to the first path, and a second path connected to the second path. It has a second outflow passage 65, a valve body 671 that opens and closes the first outflow passage 64, and a spring 676 that biases the valve body 671 in the valve opening direction. Body 671 closes the valve against the biasing force of spring 676 . Spring 676 is an example of a biasing member.
 具体的に、切換弁60は、ケーシング61と、スクリーン66と、弁機構67とを有している。 Specifically, the switching valve 60 has a casing 61 , a screen 66 and a valve mechanism 67 .
 ケーシング61には、流体の流路が形成されている。具体的に、流路は、流入路62、捕捉路63および2つの流出路64,65(即ち、第1流出路64および第2流出路65)によって形成されている。流路は、流入してきた蒸気をヘッダタンク2側に流出させるための第1流路と、流入してきた蒸気を熱交換器4側に流出させるための第2流路とを有している。第1流路は、流入路62、捕捉路63および第1流出路64によって形成されている。第2流路は、流入路62、捕捉路63および第2流出路65によって形成されている。 A fluid flow path is formed in the casing 61 . Specifically, the flow path is formed by an inflow channel 62, a capture channel 63 and two outflow channels 64, 65 (ie, a first outflow channel 64 and a second outflow channel 65). The flow path has a first flow path for causing the inflowing steam to flow out to the header tank 2 side and a second flow path for causing the inflowing steam to flow out to the heat exchanger 4 side. A first flow path is formed by an inflow channel 62 , a capture channel 63 and a first outflow channel 64 . A second flow path is formed by an inflow channel 62 , a capture channel 63 and a second outflow channel 65 .
 流入路62には、排気管16dが接続されている。つまり、流入路62は、排気管16dから蒸気が流入してくる流路である。第1流出路64は、蒸気が連通管71に流出していく流路であり、第2流出路65は、蒸気が大気開放管74に流出していく流路である。流入路62および第2流出路65は、互いに対向しており、水平に延びる共通の軸心X1を有している。 An exhaust pipe 16 d is connected to the inflow path 62 . That is, the inflow path 62 is a flow path into which steam flows from the exhaust pipe 16d. The first outflow channel 64 is a channel through which steam flows out to the communication pipe 71 , and the second outflow channel 65 is a channel through which steam flows out to the atmosphere open pipe 74 . The inflow path 62 and the second outflow path 65 face each other and have a common axis X1 extending horizontally.
 捕捉路63は、流入路62と第2流出路65とに接続され、スクリーン66が設けられる流路である。つまり、流入路62と第2流出路65とは、捕捉路63を介して連通している。より詳しくは、捕捉路63は、流入路62から斜め下方に延びており、捕捉路63の側部が第2流出路65に接続されている。つまり、捕捉路63の軸心X2は、第2流出路65側にいくに従って軸心X1に対し下方に傾いている。 The capture channel 63 is a channel connected to the inflow channel 62 and the second outflow channel 65 and provided with a screen 66 . In other words, the inflow path 62 and the second outflow path 65 communicate with each other through the trapping path 63 . More specifically, the catching path 63 extends obliquely downward from the inflow path 62 , and the side portion of the catching path 63 is connected to the second outflow path 65 . That is, the axis X2 of the catching passage 63 is inclined downward with respect to the axis X1 toward the second outflow passage 65 side.
 第1流出路64は、捕捉路63の下方に位置して捕捉路63と連通している。第1流出路64は、弁機構67の弁室も構成している。より詳しくは、第1流出路64は、上下方向に延びている。つまり、第1流出路64は、流入路62および第2流出路65に対しては垂直となる方向に延びており、捕捉路63に対しては傾斜する方向に延びている。ケーシング61には、捕捉路63と第1流出路64とを仕切る仕切壁641が設けられている。仕切壁641には、捕捉路63と第1流出路64とを連通させる連通孔642が設けられている。こうして構成された第1流出路64には、捕捉路63から蒸気が連通孔642を通じて流入する。 The first outflow path 64 is located below the capture path 63 and communicates with the capture path 63 . The first outflow passage 64 also constitutes the valve chamber of the valve mechanism 67 . More specifically, the first outflow path 64 extends vertically. That is, the first outflow channel 64 extends in a direction perpendicular to the inflow channel 62 and the second outflow channel 65 and extends in an oblique direction to the capture channel 63 . The casing 61 is provided with a partition wall 641 that partitions the capture path 63 and the first outflow path 64 . The partition wall 641 is provided with a communication hole 642 that allows the capture channel 63 and the first outflow channel 64 to communicate with each other. Steam flows from the capture passage 63 through the communication hole 642 into the first outflow passage 64 configured in this way.
 スクリーン66は、流入路62から第1流出路64および第2流出路65に流れる蒸気中の異物を捕捉する。スクリーン66は、捕捉路63の軸心X2と同軸に延びる円筒状に形成されている。スクリーン66の一端は、流入路62に向かって開口している。捕捉路63では、流入路62からの蒸気が、スクリーン66の内部に流入し、スクリーン66の周壁を通過して第1流出路64または第2流出路65に流入する。こうして蒸気がスクリーン66を通過する際、蒸気中の異物が捕捉される。 The screen 66 captures foreign matter in steam flowing from the inflow path 62 to the first outflow path 64 and the second outflow path 65 . The screen 66 is formed in a cylindrical shape extending coaxially with the axis X2 of the catching path 63 . One end of the screen 66 opens toward the inflow channel 62 . In the trap passage 63 , steam from the inflow passage 62 flows into the screen 66 , passes through the peripheral wall of the screen 66 and flows into the first outflow passage 64 or the second outflow passage 65 . As the steam thus passes through the screen 66, foreign matter in the steam is captured.
 弁機構67は、第1流出路64に設けられ、第1流出路64(即ち、第1流路)を開閉する。具体的に、弁機構67は、第1流出路64を開放することにより、蒸気を連通管71に流出させる。また、弁機構67は、第1流出路64を閉鎖することにより、蒸気を第2流出路65から大気開放管74に流出させる。弁機構67は、弁体671、弁座673、バネ676および邪魔板677を有している。 The valve mechanism 67 is provided in the first outflow path 64 and opens and closes the first outflow path 64 (that is, the first flow path). Specifically, the valve mechanism 67 causes the steam to flow out to the communication pipe 71 by opening the first outflow path 64 . Also, the valve mechanism 67 causes the steam to flow out from the second outflow path 65 to the atmosphere open pipe 74 by closing the first outflow path 64 . The valve mechanism 67 has a valve body 671 , a valve seat 673 , a spring 676 and a baffle plate 677 .
 第1流出路64には、弁孔675が設けられている。弁体671は、円板状に形成されている。弁体671は、軸心が上下方向に延びる状態で第1流出路64に収容されている。弁体671は、上下動自在に設けられている。弁体671は、弁孔675の上方に配置され、上下動することによって弁孔675を開閉する。弁座673は、第1流出路64の下部に設けられている。弁座673には、弁孔675が形成されている。弁孔675は、第1流出路64において上下方向に開口している。弁孔675は、第1流出路64と連通管71とを連通させている。 A valve hole 675 is provided in the first outflow passage 64 . The valve body 671 is formed in a disc shape. The valve body 671 is accommodated in the first outflow passage 64 with its axis extending in the vertical direction. The valve body 671 is vertically movable. The valve body 671 is arranged above the valve hole 675 and opens and closes the valve hole 675 by moving up and down. The valve seat 673 is provided below the first outflow passage 64 . A valve hole 675 is formed in the valve seat 673 . The valve hole 675 opens vertically in the first outflow passage 64 . The valve hole 675 allows the first outflow passage 64 and the communicating pipe 71 to communicate with each other.
 バネ676は、弁体671を開弁方向に付勢するコイルバネにより構成されている。バネ676は、第1流出路64における弁体671の下方に設けられ、弁体671を上方へ付勢している。つまり、バネ676は、弁体671と弁座673との間に設けられている。 The spring 676 is composed of a coil spring that biases the valve body 671 in the valve opening direction. A spring 676 is provided below the valve body 671 in the first outflow passage 64 and biases the valve body 671 upward. That is, the spring 676 is provided between the valve body 671 and the valve seat 673 .
 バネ676は、一端が弁体671の下面に接続されて弁体671を支持している。より詳しくは、バネ676の一端は、弁体671の下面に形成された環状の凹部672に嵌め込まれて接続されている。バネ676の他端は、弁座673によって支持されている。より詳しくは、バネ676の他端は、弁座673の上流側端面における弁孔675の周囲に形成された環状の凹部674に嵌め込まれている。 One end of the spring 676 is connected to the lower surface of the valve body 671 to support the valve body 671 . More specifically, one end of the spring 676 is fitted and connected to an annular recess 672 formed in the lower surface of the valve body 671 . The other end of spring 676 is supported by valve seat 673 . More specifically, the other end of the spring 676 is fitted into an annular recess 674 formed around the valve hole 675 in the upstream end face of the valve seat 673 .
 邪魔板677は、捕捉路63から第1流出路64に流入する蒸気が弁体671の上面に当たるのを阻止する。邪魔板677は、第1流出路64における弁体671の上方に設けられている。邪魔板677は、略円錐面状に形成され、円錐面の頂点が上側に位置する状態で設けられている。弁体671は、開弁時にはバネ676の付勢力によって邪魔板677に押し付けられている。 The baffle plate 677 prevents the steam flowing from the capture passage 63 into the first outflow passage 64 from hitting the upper surface of the valve body 671 . The baffle plate 677 is provided above the valve body 671 in the first outflow passage 64 . The baffle plate 677 is formed in a substantially conical surface shape, and is provided with the apex of the conical surface located on the upper side. The valve body 671 is pressed against the baffle plate 677 by the biasing force of the spring 676 when the valve is opened.
 そして、弁機構67では、第1流出路64の圧力(即ち、排気圧力)が所定値未満になると、バネ676の付勢力によって弁体671が上昇して弁座673から離座し、弁孔675が開放される(図10に示す状態)。また、弁機構67では、第1流出路64の圧力(即ち、排気圧力)が所定値以上になると、その圧力によって弁体671がバネ676の付勢力に抗して下降し弁座673に着座する(図11に示す状態)。これにより、弁孔675が閉鎖される。こうして、弁孔675が開閉されることにより、第1流出路64が開閉される。前述の第1流出路64の圧力は、流入路62や第1流出路64に流入した蒸気の圧力に相当する。前述の所定値は、液体圧送装置5の流入動作の際、水封トラップ3の水封が破られる排気圧力の値に設定される。 In the valve mechanism 67, when the pressure of the first outflow passage 64 (that is, the exhaust pressure) becomes less than a predetermined value, the biasing force of the spring 676 lifts the valve body 671 away from the valve seat 673, and the valve hole is closed. 675 is opened (state shown in FIG. 10). In the valve mechanism 67, when the pressure of the first outflow passage 64 (that is, the exhaust pressure) reaches or exceeds a predetermined value, the pressure causes the valve body 671 to move downward against the biasing force of the spring 676 and seat on the valve seat 673. (state shown in FIG. 11). This closes the valve hole 675 . By opening and closing the valve hole 675 in this way, the first outflow passage 64 is opened and closed. The pressure of the first outflow path 64 described above corresponds to the pressure of the steam that has flowed into the inflow path 62 and the first outflow path 64 . The aforementioned predetermined value is set to an exhaust pressure value at which the water seal of the water seal trap 3 is broken during the inflow operation of the liquid pumping device 5 .
 このように構成された経路切換部6では、液体圧送装置5の流入動作の際、排気口55から排出されて切換弁66に流入した蒸気の圧力(即ち、排気圧力)が所定値以上の場合は、切換弁60において第1流出路64が閉鎖される。そのため、連通管71(即ち、第1経路)が遮断されるので、排気管16dから切換弁60に流入した蒸気は第2流出路65から大気開放管74介して大気に放出される。つまり、経路切換部6では、所定値以上の高圧の蒸気がヘッダタンク2に供給されることを阻止すると共に、その蒸気の熱を大気に放出する。 In the path switching unit 6 configured as described above, when the pressure of the steam discharged from the exhaust port 55 and flowing into the switching valve 66 (that is, the exhaust pressure) is equal to or higher than a predetermined value during the inflow operation of the liquid pumping device 5, , the first outflow passage 64 is closed in the switching valve 60 . Therefore, the communication pipe 71 (that is, the first path) is blocked, so that the steam that has flowed into the switching valve 60 from the exhaust pipe 16d is released to the atmosphere from the second outflow path 65 through the atmosphere release pipe 74. In other words, the path switching unit 6 prevents steam having a pressure higher than a predetermined value from being supplied to the header tank 2, and releases the heat of the steam to the atmosphere.
 また、経路切換部6では、液体圧送装置5の流入動作の際、排気口55から排出されて切換弁66に流入した蒸気の圧力(即ち、排気圧力)が所定値未満に低下すると、切換弁60において第1流出路64が開放される。そのため、連通管71(即ち、第1経路)が開放されるので、排気管16dから切換弁60に流入した蒸気は第1流出路64から連通管71を介してヘッダタンク2に流入する。これにより、タンク本体21と貯留室51とが均圧し両者の間で気液置換(即ち、ドレンと蒸気との置換)が行われる。そのため、ヘッダタンク2から液体圧送装置5へのドレンの流入がスムーズに行われる。 Further, in the path switching unit 6, when the pressure of the steam discharged from the exhaust port 55 and flowing into the switching valve 66 (that is, the exhaust pressure) drops below a predetermined value during the inflow operation of the liquid pumping device 5, the switching valve At 60 the first outlet channel 64 is opened. Therefore, the communication pipe 71 (that is, the first path) is opened, and the steam that has flowed into the switching valve 60 from the exhaust pipe 16 d flows into the header tank 2 from the first outflow passage 64 via the communication pipe 71 . As a result, the tank main body 21 and the storage chamber 51 are pressure-equalized, and gas-liquid replacement (that is, replacement of drain with steam) is performed between them. Therefore, the inflow of drain from the header tank 2 to the liquid pumping device 5 is performed smoothly.
 また、図7に示すように、熱回収システム100では、発電ユニットU(熱電発電装置8)に、流入管17a,18aおよび流出管17b,18bが接続されている。 In addition, as shown in FIG. 7, in the heat recovery system 100, the power generation unit U (thermoelectric generator 8) is connected to the inflow pipes 17a, 18a and the outflow pipes 17b, 18b.
 具体的に、流入管17aは、流入端である一端が給気管16cの途中に接続されており、流出端である他端が熱電発電装置8に接続されている。詳しくは、流入管17aは、加熱熱交換器82の流入口822に接続されている。この構成によれば、給気管16cを流れる蒸気の一部が、流入管17aを介して加熱熱交換器82の本体821に供給される。流出管17bは、流入端である一端が熱電発電装置8に接続されており、流出端である他端がガス管12の途中に接続されている。詳しくは、流出管17bは、加熱熱交換器82の流出口823に接続されている。この構成によれば、加熱熱交換器82の本体821内のドレンが、流出管17bを介してガス管12に流出する。なお、流出管17bの他端は、ガス管12ではなく、回収管10または液管11に接続されていてもよい。 Specifically, the inflow pipe 17a has one end that is the inflow end connected to the middle of the air supply pipe 16c, and the other end that is the outflow end is connected to the thermoelectric generator 8 . Specifically, the inflow pipe 17 a is connected to the inflow port 822 of the heating heat exchanger 82 . According to this configuration, part of the steam flowing through the air supply pipe 16c is supplied to the main body 821 of the heating heat exchanger 82 via the inflow pipe 17a. The outflow pipe 17 b has one inflow end connected to the thermoelectric generator 8 and the other outflow end connected to the middle of the gas pipe 12 . Specifically, the outflow pipe 17 b is connected to the outflow port 823 of the heating heat exchanger 82 . According to this configuration, the drain in the main body 821 of the heating heat exchanger 82 flows out to the gas pipe 12 through the outflow pipe 17b. The other end of the outflow pipe 17b may be connected to the recovery pipe 10 or the liquid pipe 11 instead of the gas pipe 12 .
 流入管18aは、流入端である一端が流入管14aの途中に接続されており、流出端である他端が熱電発電装置8に接続されている。詳しくは、流入管18aは、冷却熱交換器85の流入口852に接続されている。この構成によれば、流入管14aを流れる水が、流入管18aを介して冷却熱交換器85の本体851に供給される。つまり、冷却熱交換器85の本体851では、水が冷却液として供給される。流出管18bは、流入端である一端が熱電発電装置8に接続されており、流出端である他端が流入管14aにおける流入管18aよりも下流側に接続されている。詳しくは、流出管18bは、冷却熱交換器85の流出口853に接続されている。この構成によれば、冷却熱交換器85の本体851内の水が、流出管18bを介して流入管14aに流出する。 The inflow pipe 18a has one inflow end connected to the middle of the inflow pipe 14a and the other outflow end connected to the thermoelectric generator 8 . Specifically, the inflow pipe 18 a is connected to the inflow port 852 of the cooling heat exchanger 85 . According to this configuration, water flowing through the inflow pipe 14a is supplied to the main body 851 of the cooling heat exchanger 85 through the inflow pipe 18a. That is, in the main body 851 of the cooling heat exchanger 85, water is supplied as cooling liquid. The outflow pipe 18b has one inflow end connected to the thermoelectric generator 8 and the other outflow end connected to the inflow pipe 14a downstream of the inflow pipe 18a. Specifically, the outflow pipe 18 b is connected to the outflow port 853 of the cooling heat exchanger 85 . According to this configuration, the water in the main body 851 of the cooling heat exchanger 85 flows out to the inflow pipe 14a through the outflow pipe 18b.
 こうして、加熱熱交換器82に蒸気が供給され且つ冷却熱交換器85に水が供給されることで、熱電変換モジュール84において第1面84aが加熱され且つ第2面84bが冷却される。これにより、熱電発電装置8において熱電発電が行われる。 In this way, steam is supplied to the heating heat exchanger 82 and water is supplied to the cooling heat exchanger 85 , thereby heating the first surface 84 a and cooling the second surface 84 b of the thermoelectric conversion module 84 . Thereby, thermoelectric power generation is performed in the thermoelectric generator 8 .
 以上のように、前記実施形態の熱電発電装置8は、熱電変換モジュール84と、加熱熱交換器82と、冷却熱交換器85とを備えている。熱電変換モジュール84は、互いに上下方向に対向する下側の第1面84aおよび上側の第2面84bを有し、第1面84aと第2面84bとの温度差に応じて熱電発電を行う。加熱熱交換器82は、第1面84aの下方において第1面84aと接して設けられ且つ蒸気が供給される容器状の本体821を有し、本体821の蒸気によって第1面84aを加熱する。冷却熱交換器85は、第2面84bの上方において第2面84bと接して設けられ且つ冷却液が供給される容器状の本体851を有し、本体851の冷却液によって第2面84bを冷却する。 As described above, the thermoelectric generator 8 of the embodiment includes the thermoelectric conversion module 84, the heating heat exchanger 82, and the cooling heat exchanger 85. The thermoelectric conversion module 84 has a lower first surface 84a and an upper second surface 84b that face each other in the vertical direction, and performs thermoelectric power generation according to the temperature difference between the first surface 84a and the second surface 84b. . The heating heat exchanger 82 has a container-like main body 821 provided in contact with the first surface 84a below the first surface 84a and to which steam is supplied, and the first surface 84a is heated by the steam of the main body 821. . The cooling heat exchanger 85 has a container-like main body 851 provided above the second surface 84b in contact with the second surface 84b and supplied with cooling liquid. Cooling.
 また、前記実施形態の熱回収システム100は、蒸気が供給され、前記供給された蒸気を使用する液体圧送装置5と、熱電発電装置8とを備えている。本体821には、液体圧送装置5に供給される蒸気の一部が供給される。 In addition, the heat recovery system 100 of the embodiment is supplied with steam and includes a liquid pumping device 5 that uses the supplied steam, and a thermoelectric generator 8 . The main body 821 is supplied with a portion of the vapor supplied to the liquid pumping device 5 .
 これらの構成によれば、第1面84aが加熱熱交換器82によって積極的に加熱され、第2面84bが冷却熱交換器85によって積極的に冷却されるので、第1面84aおよび第2面84bの温度差を稼ぐことができる。そのため、熱電変換モジュール84による発電量を増大させることができる。 According to these configurations, the first surface 84a is actively heated by the heating heat exchanger 82 and the second surface 84b is actively cooled by the cooling heat exchanger 85. The temperature difference of the surface 84b can be earned. Therefore, the amount of power generated by the thermoelectric conversion module 84 can be increased.
 また、加熱熱交換器82は、第1面84aの下方、即ち熱電変換モジュール84の下方に設けられているため、本体821内で蒸気の凝縮によって発生したドレンを、第1面84aと接する部分(即ち、上面821c)から離れた位置に溜めることができる。そのため、凝縮したドレンによって第1面84aの加熱が阻害されることはない。これにより、加熱熱交換器82の加熱効率が向上する。そのため、熱電変換モジュール84による発電量がより増大する。 In addition, since the heating heat exchanger 82 is provided below the first surface 84a, that is, below the thermoelectric conversion module 84, the drain generated by condensation of steam in the main body 821 is transferred to the portion that contacts the first surface 84a. (ie, the upper surface 821c). Therefore, the condensed drain does not hinder the heating of the first surface 84a. Thereby, the heating efficiency of the heating heat exchanger 82 is improved. Therefore, the amount of power generated by the thermoelectric conversion module 84 is further increased.
 また、前記実施形態の熱電発電装置8において、熱電変換モジュール84および冷却熱交換器85の本体851は、上下動自在に設けられている。 In addition, in the thermoelectric generator 8 of the above embodiment, the thermoelectric conversion module 84 and the body 851 of the cooling heat exchanger 85 are vertically movable.
 この構成によれば、加熱熱交換器82の本体821が蒸気の熱や圧力によって熱膨張変形した場合、その膨張変形に伴って、熱電変換モジュール84および冷却熱交換器85の本体851が上方へ変位する。つまり、加熱熱交換器82の本体821の膨張変形を吸収することができる。そのため、加熱熱交換器82の本体821の膨張変形に起因する熱電変換モジュール84の損傷を防止することができる。 According to this configuration, when the main body 821 of the heating heat exchanger 82 is thermally expanded and deformed by the heat and pressure of steam, the thermoelectric conversion module 84 and the main body 851 of the cooling heat exchanger 85 move upward along with the expansion deformation. Displace. That is, the expansion deformation of the main body 821 of the heating heat exchanger 82 can be absorbed. Therefore, damage to the thermoelectric conversion module 84 due to expansion deformation of the main body 821 of the heating heat exchanger 82 can be prevented.
 また、前記実施形態の熱電発電装置8は、本体851の上方に設けられ、本体851を下方へ付勢する板バネ87をさらに備えている。 Further, the thermoelectric generator 8 of the embodiment further includes a plate spring 87 provided above the main body 851 and biasing the main body 851 downward.
 この構成によれば、板バネ87が冷却熱交換器85の本体851を下方へ付勢することで、熱電変換モジュール84の第2面84bと本体851との密着度、および熱電変換モジュール84の第1面84aと本体821との密着度が高まる。そのため、熱電変換モジュール84と加熱熱交換器82および冷却熱交換器85との熱交換の効率が向上する。そのため、第1面84aと第2面84bとの温度差をより稼ぐことができる。 According to this configuration, the plate spring 87 urges the main body 851 of the cooling heat exchanger 85 downward, thereby increasing the degree of adhesion between the second surface 84b of the thermoelectric conversion module 84 and the main body 851 and the degree of adhesion of the thermoelectric conversion module 84. The degree of close contact between the first surface 84a and the main body 821 increases. Therefore, the efficiency of heat exchange between the thermoelectric conversion module 84 and the heating heat exchanger 82 and the cooling heat exchanger 85 is improved. Therefore, it is possible to increase the temperature difference between the first surface 84a and the second surface 84b.
 また、加熱熱交換器82の本体821が膨張変形した場合には、熱電変換モジュール84および冷却熱交換器85の本体851が、板バネ87の付勢力に抗して上方へ変位する。つまり、加熱熱交換器82の本体821の膨張変形を吸収することができる。このように、板バネ87を設けることで、加熱熱交換器82の本体821の膨張変形に起因する熱電変換モジュール84の損傷を防止しつつ、熱電変換モジュール84と本体821,851との密着度を高めることができる。 Further, when the main body 821 of the heating heat exchanger 82 expands and deforms, the thermoelectric conversion module 84 and the main body 851 of the cooling heat exchanger 85 are displaced upward against the biasing force of the plate spring 87 . That is, the expansion deformation of the main body 821 of the heating heat exchanger 82 can be absorbed. By providing the plate spring 87 in this way, damage to the thermoelectric conversion module 84 due to expansion deformation of the main body 821 of the heating heat exchanger 82 can be prevented, and the degree of adhesion between the thermoelectric conversion module 84 and the main bodies 821 and 851 can be improved. can increase
 また、前記実施形態の熱電発電装置8は、上下方向と直交する板状に形成され、本体851と板バネ87との間において上下動自在に設けられ、板バネ87の付勢力を本体851に伝達する可動板86をさらに備えている。 Further, the thermoelectric generator 8 of the above embodiment is formed in a plate shape perpendicular to the vertical direction, and is provided vertically movable between the main body 851 and the plate spring 87, and the biasing force of the plate spring 87 is applied to the main body 851. It further comprises a movable plate 86 for transmission.
 この構成によれば、板バネ87が可動板86を介して冷却熱交換器85の本体851を下方へ付勢するため、板バネ87の付勢力が本体851の全体に対して満遍なく作用する。そのため、第2面84bと本体851との密着度、および第1面84aと本体821との密着度を満遍なく高めることができる。 According to this configuration, the leaf spring 87 urges the main body 851 of the cooling heat exchanger 85 downward through the movable plate 86 , so that the urging force of the leaf spring 87 evenly acts on the entire main body 851 . Therefore, the degree of adhesion between the second surface 84b and the main body 851 and the degree of adhesion between the first surface 84a and the main body 821 can be evenly increased.
 また、前記実施形態の熱電発電装置8は、可動板86の上下動をガイドするガイド棒89aをさらに備えている。 In addition, the thermoelectric generator 8 of the embodiment further includes a guide rod 89a that guides the vertical movement of the movable plate 86.
 この構成によれば、可動板86がガイド棒89aに沿って上下動する。そのため、可動板86が板バネ87および冷却熱交換器85の本体851からずれることを防止することができる。 According to this configuration, the movable plate 86 moves up and down along the guide rod 89a. Therefore, it is possible to prevent the movable plate 86 from being displaced from the leaf spring 87 and the main body 851 of the cooling heat exchanger 85 .
 また、前記実施形態の熱電発電装置8において、本体821の内部および本体851の内部の両方は、単一空間で形成されている。 Also, in the thermoelectric generator 8 of the embodiment, both the interior of the main body 821 and the interior of the main body 851 are formed as a single space.
 この構成によれば、本体821,851の内部における温度を均一化させることができる。そのため、加熱熱交換器82の本体821では、熱電変換モジュール84の第1面84aが満遍なく加熱される。冷却熱交換器85の本体851では、熱電変換モジュール84の第2面84bが満遍なく冷却される。これにより、熱電変換モジュール84における発電効率が向上する。 According to this configuration, the temperature inside the main bodies 821 and 851 can be made uniform. Therefore, in the main body 821 of the heating heat exchanger 82, the first surface 84a of the thermoelectric conversion module 84 is evenly heated. In the main body 851 of the cooling heat exchanger 85, the second surface 84b of the thermoelectric conversion module 84 is evenly cooled. Thereby, the power generation efficiency in the thermoelectric conversion module 84 is improved.
 《その他の実施形態》
 以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
<<Other embodiments>>
As described above, the embodiments have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can be applied to embodiments in which modifications, replacements, additions, omissions, etc. are made as appropriate. Moreover, it is also possible to combine the constituent elements described in the above embodiments to create new embodiments. In addition, among the components described in the attached drawings and detailed description, there are not only components essential for solving the problem, but also components not essential for solving the problem in order to exemplify the above technology. can also be included. Therefore, it should not be immediately recognized that those non-essential components are essential just because they are described in the attached drawings and detailed description.
 例えば、加熱熱交換器82の本体821および冷却熱交換器85の本体851の形状は、前述した形状に限られず、第1面84aおよび第2面84bと適切に熱交換を行うことができる形状であれば如何なるものであってもよい。 For example, the shapes of the main body 821 of the heating heat exchanger 82 and the main body 851 of the cooling heat exchanger 85 are not limited to the shapes described above, and are shapes that can appropriately perform heat exchange with the first surface 84a and the second surface 84b. It can be anything as long as it is.
 また、可動板86を省略するようにしてもよい。つまり、板バネ87は、冷却熱交換器85の本体851に直接に接して、本体851を下方へ付勢するようにしてもよい。 Also, the movable plate 86 may be omitted. That is, the leaf spring 87 may be in direct contact with the main body 851 of the cooling heat exchanger 85 and bias the main body 851 downward.
 また、加熱熱交換器82の本体821および冷却熱交換器85の本体851のいずれか一方が、単一空間で形成されてもよい。 Either the body 821 of the heating heat exchanger 82 or the body 851 of the cooling heat exchanger 85 may be formed in a single space.
 また、加熱熱交換器82の本体821および冷却熱交換器85の本体851のいずれもが、単一空間で形成されていなくてもよい。例えば、本体821,851の内部には、蒸気や冷却液の通路が形成されていてもよい。 Also, neither the main body 821 of the heating heat exchanger 82 nor the main body 851 of the cooling heat exchanger 85 may be formed in a single space. For example, the body 821, 851 may have steam or coolant passages formed therein.
 また、冷却熱交換器85の本体851には、冷却液として、水以外の液体が供給されてもよい。 Further, liquid other than water may be supplied to the main body 851 of the cooling heat exchanger 85 as the coolant.
 また、弾性部材としては、板バネ87に代えて、例えばコイルバネを用いるようにしてもよい。この場合も、コイルバネは、上下方向に弾性を有するように設けられる。 Also, as the elastic member, instead of the plate spring 87, for example, a coil spring may be used. Also in this case, the coil spring is provided so as to have elasticity in the vertical direction.
 また、熱電発電装置8は、熱回収システム100以外の蒸気システムに設けるようにしてもよい。 Also, the thermoelectric generator 8 may be provided in a steam system other than the heat recovery system 100.
 以上説明したように、本開示の技術は、熱電発電装置および蒸気システムについて有用である。 As described above, the technology of the present disclosure is useful for thermoelectric generators and steam systems.
100  熱回収システム(蒸気システム)
5    液体圧送装置(蒸気使用機器)
8    熱電発電装置
82   加熱熱交換器
821  本体(加熱用本体)
84   熱電変換モジュール
84a  第1面
84b  第2面
85   冷却熱交換器
851  本体(冷却用本体)
86   可動板
87   板バネ(弾性部材)
89a  ガイド棒(ガイド部)

 
100 heat recovery system (steam system)
5 Liquid pumping device (equipment using steam)
8 thermoelectric generator 82 heating heat exchanger 821 main body (heating main body)
84 Thermoelectric conversion module 84a First surface 84b Second surface 85 Cooling heat exchanger 851 Main body (main body for cooling)
86 Movable plate 87 Leaf spring (elastic member)
89a guide rod (guide portion)

Claims (7)

  1.  互いに上下方向に対向する下側の第1面および上側の第2面を有し、前記第1面と前記第2面との温度差に応じて熱電発電を行う熱電変換モジュールと、
     前記第1面の下方において前記第1面と接して設けられ且つ蒸気が供給される容器状の加熱用本体を有し、前記加熱用本体の蒸気によって前記第1面を加熱する加熱熱交換器と、
     前記第2面の上方において前記第2面と接して設けられ且つ冷却液が供給される容器状の冷却用本体を有し、前記冷却用本体の冷却液によって前記第2面を冷却する冷却熱交換器とを備えている
    ことを特徴とする熱電発電装置。
    a thermoelectric conversion module having a lower first surface and an upper second surface facing each other in the vertical direction, and performing thermoelectric power generation according to a temperature difference between the first surface and the second surface;
    A heating heat exchanger having a container-shaped heating main body provided below the first surface in contact with the first surface and supplied with steam, and heating the first surface with the steam of the heating main body. and,
    Cooling heat for cooling the second surface with the cooling liquid of the cooling main body, which has a container-shaped cooling main body provided above the second surface in contact with the second surface and supplied with a cooling liquid. A thermoelectric generator, comprising: an exchanger.
  2.  請求項1に記載の熱電発電装置において、
     前記熱電変換モジュールおよび前記冷却用本体は、上下動自在に設けられている
    ことを特徴とする熱電発電装置。
    In the thermoelectric generator according to claim 1,
    A thermoelectric generator, wherein the thermoelectric conversion module and the cooling main body are vertically movable.
  3.  請求項2に記載の熱電発電装置において、
     前記冷却用本体の上方に設けられ、前記冷却用本体を下方へ付勢する弾性部材をさらに備えている
    ことを特徴とする熱電発電装置。
    In the thermoelectric generator according to claim 2,
    A thermoelectric generator, further comprising an elastic member provided above the cooling body and biasing the cooling body downward.
  4.  請求項1乃至3の何れか1項に記載の熱電発電装置において、
     前記加熱用本体の内部および前記冷却用本体の内部の少なくとも一方は、単一空間で形成されている
    ことを特徴とする熱電発電装置。
    In the thermoelectric generator according to any one of claims 1 to 3,
    A thermoelectric generator, wherein at least one of the interior of the heating main body and the interior of the cooling main body is formed as a single space.
  5.  請求項3に記載の熱電発電装置において、
     上下方向と直交する板状に形成され、前記冷却用本体と前記弾性部材との間において上下動自在に設けられ、前記弾性部材の付勢力を前記冷却用本体に伝達する可動板をさらに備えている
    ことを特徴とする熱電発電装置。
    In the thermoelectric generator according to claim 3,
    a movable plate formed in a plate-like shape perpendicular to the vertical direction, provided vertically movable between the cooling main body and the elastic member, and transmitting the biasing force of the elastic member to the cooling main body; A thermoelectric power generator characterized by:
  6.  請求項5に記載の熱電発電装置において、
     前記可動板の上下動をガイドするガイド部をさらに備えている
    ことを特徴とする熱電発電装置。
    In the thermoelectric generator according to claim 5,
    A thermoelectric generator, further comprising a guide portion that guides vertical movement of the movable plate.
  7.  蒸気が供給され、前記供給された蒸気を使用する蒸気使用機器と、
     請求項1乃至6の何れか1項に記載の熱電発電装置とを備え、
     前記加熱用本体には、前記蒸気使用機器に供給される蒸気の一部が供給される
    ことを特徴とする蒸気システム。

     
    a steam-using device to which steam is supplied and which uses the supplied steam;
    A thermoelectric generator according to any one of claims 1 to 6,
    A steam system, wherein a part of the steam supplied to the steam-using equipment is supplied to the heating main body.

PCT/JP2022/040977 2022-01-26 2022-11-02 Thermoelectric power generation device and steam system WO2023145185A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023534368A JPWO2023145185A1 (en) 2022-01-26 2022-11-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022010151 2022-01-26
JP2022-010151 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145185A1 true WO2023145185A1 (en) 2023-08-03

Family

ID=87471371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040977 WO2023145185A1 (en) 2022-01-26 2022-11-02 Thermoelectric power generation device and steam system

Country Status (2)

Country Link
JP (1) JPWO2023145185A1 (en)
WO (1) WO2023145185A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050661A (en) * 1998-07-23 2000-02-18 Nishinomiya Kinzoku Kogyo Kk Power generator
JP2008010764A (en) * 2006-06-30 2008-01-17 Chugoku Electric Power Co Inc:The Thermoelectric conversion device
US20120012146A1 (en) * 2009-04-02 2012-01-19 Avl List Gmbh Thermoelectric generator unit
JP2013002661A (en) * 2011-06-13 2013-01-07 Panasonic Environmental Systems & Engineering Co Ltd Boiler waste heat utilization system
JP2013211470A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Thermoelectric power generating device
JP2017041620A (en) * 2015-08-21 2017-02-23 パナソニックIpマネジメント株式会社 Thermoelectric converter and thermoelectric conversion system
KR20170058483A (en) * 2015-11-18 2017-05-29 재단법인 포항산업과학연구원 Apparatus of thermoelectric generator
JP2019110251A (en) * 2017-12-20 2019-07-04 日立造船株式会社 Thermoelectric generator
KR20190111654A (en) * 2018-03-23 2019-10-02 티엠에스테크 주식회사 Led lighting apparatus of self generating by using waste energy
JP2019204809A (en) * 2018-05-21 2019-11-28 三菱電機株式会社 Thermoelectric conversion device
CN111521923A (en) * 2020-05-25 2020-08-11 深圳职业技术学院 Thermoelectric device performance test system and test method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050661A (en) * 1998-07-23 2000-02-18 Nishinomiya Kinzoku Kogyo Kk Power generator
JP2008010764A (en) * 2006-06-30 2008-01-17 Chugoku Electric Power Co Inc:The Thermoelectric conversion device
US20120012146A1 (en) * 2009-04-02 2012-01-19 Avl List Gmbh Thermoelectric generator unit
JP2013002661A (en) * 2011-06-13 2013-01-07 Panasonic Environmental Systems & Engineering Co Ltd Boiler waste heat utilization system
JP2013211470A (en) * 2012-03-30 2013-10-10 Jfe Steel Corp Thermoelectric power generating device
JP2017041620A (en) * 2015-08-21 2017-02-23 パナソニックIpマネジメント株式会社 Thermoelectric converter and thermoelectric conversion system
KR20170058483A (en) * 2015-11-18 2017-05-29 재단법인 포항산업과학연구원 Apparatus of thermoelectric generator
JP2019110251A (en) * 2017-12-20 2019-07-04 日立造船株式会社 Thermoelectric generator
KR20190111654A (en) * 2018-03-23 2019-10-02 티엠에스테크 주식회사 Led lighting apparatus of self generating by using waste energy
JP2019204809A (en) * 2018-05-21 2019-11-28 三菱電機株式会社 Thermoelectric conversion device
CN111521923A (en) * 2020-05-25 2020-08-11 深圳职业技术学院 Thermoelectric device performance test system and test method

Also Published As

Publication number Publication date
JPWO2023145185A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
US9651030B2 (en) Solar thermal power generation system using single hot molten salt thermal energy storage tank
KR101168777B1 (en) Heat exchanger having plural tubular arrays
RU2571695C2 (en) Heat exchanger
JP4848968B2 (en) Waste heat recovery device
JP6163491B2 (en) Capillary pump type heat transport device
JP2007278623A (en) Exhaust heat recovery system
US20080011458A1 (en) Exhaust heat recovery device
DK2485004T3 (en) Heat exchange device and use of a device in a heat exchange device
WO2023145185A1 (en) Thermoelectric power generation device and steam system
JP5740790B2 (en) Steam generation system
JP5611019B2 (en) Shell plate heat exchanger and power plant equipped with the same
JP7218267B2 (en) Drain recovery device
US20090000285A1 (en) Exhaust heat recovery device
JP6573700B1 (en) HEAT EXCHANGE SYSTEM AND METHOD OF OPERATING HEAT EXCHANGE SYSTEM
JP7021026B2 (en) Exhaust heat recovery device
JP2010138982A (en) Pressure valve, and waste heat recovery device including the same
JP2024057394A (en) Power generation and steam systems
JP7124250B1 (en) heat recovery system
JP2006002622A (en) Regenerator for gas turbine
WO2022249670A1 (en) Heat recovery system
JP7261015B2 (en) heat recovery system
JP2012246836A (en) Heat recovery apparatus body, assembly of the same, and exhaust heat recovery apparatus
JP7168824B1 (en) heat recovery system
WO2022249669A1 (en) Heat recovery system
JP2024057393A (en) Power Generation and Steam Systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023534368

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924039

Country of ref document: EP

Kind code of ref document: A1