JP2008010764A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device Download PDF

Info

Publication number
JP2008010764A
JP2008010764A JP2006182066A JP2006182066A JP2008010764A JP 2008010764 A JP2008010764 A JP 2008010764A JP 2006182066 A JP2006182066 A JP 2006182066A JP 2006182066 A JP2006182066 A JP 2006182066A JP 2008010764 A JP2008010764 A JP 2008010764A
Authority
JP
Japan
Prior art keywords
semiconductor element
heat exchange
type semiconductor
electrode plate
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006182066A
Other languages
Japanese (ja)
Inventor
Takaya Nagahisa
堅也 永久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006182066A priority Critical patent/JP2008010764A/en
Publication of JP2008010764A publication Critical patent/JP2008010764A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To relax thermal stress of a thermoelectric conversion device securing conductivity and thermal conductivity of the thermoelectric conversion device. <P>SOLUTION: The thermoelectric conversion device comprises at least a pair of first semicondutor element and a second semiconductor element juxterposed between facing two heat exchange substrates, and having mutually different polarities; an elastic electric plate interposed between the one heat exchange substrate that is a high temperature side of the foregoing two heat exchange substrates and the first and second semiconductor elements, and between the other heat exchange substrate that is a low temperature side of the two heat exchange substrates and the foregoing first and second semiconductor elements for alternately serially connecting the fist and second semiconductor elements; a bar member disposed between the one heat exchanger and the other heat exchanger for supporting the one and the other heat exchange substrates; and a pressure contact member coupled with both ends of the bar member from the outside of the one and the other heat exchange substrates to make pressure contact between the first and second semiconductor elements and the electrode plate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱エネルギー及び電気エネルギーを相互に変換する熱電変換装置に関する。   The present invention relates to a thermoelectric conversion device that mutually converts heat energy and electric energy.

いわゆるペルチェ効果を利用して電気エネルギーを熱エネルギーに変換したり、いわゆるゼーベック効果を利用して熱エネルギーを電気エネルギーに変換したりする熱電変換素子が知られている。例えばゼーベック効果を利用する場合、異なる2種類の金属やP型半導体及びN型半導体等の熱電変換素子を熱的に並列に配置し、これらの素子を電気的に直列に接続し外部に負荷を接続して閉回路を構成することにより、この閉回路に電流が流れ、電力として取り出すことができる。このような構成によれば、例えば高温流体及び低温流体の温度差に基づいて熱電発電が可能となる(例えば、特許文献1参照。)。   Thermoelectric conversion elements that convert electrical energy into thermal energy using the so-called Peltier effect, or convert thermal energy into electrical energy using the so-called Seebeck effect are known. For example, when using the Seebeck effect, thermoelectric conversion elements such as two different types of metals, P-type semiconductors, and N-type semiconductors are arranged in parallel thermally, and these elements are electrically connected in series to load the outside. By connecting and configuring a closed circuit, a current flows through the closed circuit and can be taken out as electric power. According to such a configuration, for example, thermoelectric power generation is possible based on a temperature difference between a high-temperature fluid and a low-temperature fluid (see, for example, Patent Document 1).

図15を参照しつつ、熱交換器に配設されて熱電発電装置となる熱電変換装置900の構成例について説明する。同図は、熱電変換装置900の構成例を説明するための単位ユニットの側部断面図である。この熱電変換装置900は、主として、少なくとも一対のN型半導体素子910及びP型半導体素子920と、これらを交互に直列接続していく電極板930、940、950と、を備えて構成されるものである。このようなπ型構造を有する2つの半導体素子910、920及び3つの電極板930、940、950を単位ユニットとして、複数個の単位ユニットが直列接続されることにより、実際の熱電変換装置900が構成される。以下、この単位ユニットの構成について更に詳しく述べる。   A configuration example of a thermoelectric conversion device 900 that is disposed in a heat exchanger and serves as a thermoelectric power generation device will be described with reference to FIG. The figure is a side sectional view of a unit unit for explaining a configuration example of the thermoelectric conversion device 900. The thermoelectric conversion device 900 mainly includes at least a pair of an N-type semiconductor element 910 and a P-type semiconductor element 920, and electrode plates 930, 940, and 950 that are alternately connected in series. It is. By using two semiconductor elements 910, 920 and three electrode plates 930, 940, 950 having such a π-type structure as unit units, a plurality of unit units are connected in series, so that an actual thermoelectric conversion device 900 can be obtained. Composed. Hereinafter, the configuration of the unit unit will be described in more detail.

同図に例示されるように、前述した単位ユニットにおいて、N型半導体素子910及びP型半導体素子920は、熱交換器における高温側の熱交換基板901及び低温側の熱交換基板902の間に並設される。電極板930は低温側の熱交換基板902とN型半導体素子910との間に介在し、電極板940は低温側の熱交換基板902とP型半導体素子920との間に介在し、電極板950は高温側の熱交換基板901と2つの半導体素子910、920との間に介在する。   As illustrated in the figure, in the unit unit described above, the N-type semiconductor element 910 and the P-type semiconductor element 920 are disposed between the high temperature side heat exchange substrate 901 and the low temperature side heat exchange substrate 902 in the heat exchanger. It is installed side by side. The electrode plate 930 is interposed between the low-temperature side heat exchange substrate 902 and the N-type semiconductor element 910, and the electrode plate 940 is interposed between the low-temperature side heat exchange substrate 902 and the P-type semiconductor element 920. 950 is interposed between the high temperature side heat exchange substrate 901 and the two semiconductor elements 910 and 920.

また、同図に例示されるように、電極板930、940、950は、熱交換基板901、902に対して電気的絶縁性を有する接着材980により固着されている。一方、この電極板930、940、950は、2つの半導体素子910、920に対して半田(又は銀ロウ)990によりろう接されている。尚、電極板930、940、950と、2つの半導体素子910、920とは、例えば溶射により融接されている場合もある。   Further, as illustrated in the figure, the electrode plates 930, 940, 950 are fixed to the heat exchange substrates 901, 902 with an adhesive 980 having electrical insulation. On the other hand, the electrode plates 930, 940, 950 are soldered to the two semiconductor elements 910, 920 by solder (or silver solder) 990. The electrode plates 930, 940, 950 and the two semiconductor elements 910, 920 may be fused together by, for example, thermal spraying.

以上の構成により、高温側の熱交換基板901及び低温側の熱交換基板902の温度差に基づいて、電流は、電極板930、N型半導体素子910、電極板950、P型半導体素子920、電極板940の順(図15の矢印の向き)に流れる。尚、熱電冷却装置としての構成例についても上記と同様である。
特開平11−17234号公報
With the above configuration, based on the temperature difference between the heat exchange substrate 901 on the high temperature side and the heat exchange substrate 902 on the low temperature side, the current is obtained from the electrode plate 930, the N-type semiconductor element 910, the electrode plate 950, the P-type semiconductor element 920, It flows in the order of the electrode plate 940 (the direction of the arrow in FIG. 15). The configuration example as the thermoelectric cooling device is the same as above.
Japanese Patent Laid-Open No. 11-17234

ところで、前述した構成を備えた熱電変換装置900には、対向する二枚の熱交換基板901、902の熱膨張及び熱収縮に伴う変形により熱応力が発生し易い。例えば、高温側の熱交換基板901が熱膨張する際、銅板等からなる電極板950及び半田(又は銀ロウ)990も略同様に熱膨張する。一方、N型半導体素子910及びP型半導体素子920は、一般的に、電極板950及び半田(又は銀ロウ)990とは膨張率が異なる。このため、半導体素子910、920、電極板950、及び半田(又は銀ロウ)990には、図15におけるXY面に沿って熱応力が作用する。このような熱応力が繰り返し作用した場合、電極板950及び半田(又は銀ロウ)990よりも機械的強度が弱いN型半導体素子910及びP型半導体素子920に先ずクラックが発生し、このクラックが伸展して破断に至り、結果的に熱電変換装置900の寿命が短くなる虞がある。このような問題は、低温側の熱交換基板902が熱収縮した場合にも同様に発生する。但し、半田(又は銀ロウ)990は、N型半導体素子910及びP型半導体素子920と電極板930、940、950との間の電流の経路並びに熱の経路を確保し、熱電変換装置900の起電力を保持する(即ち、熱電変換効率を維持する)ためには依然として重要な役割を有する。   By the way, in the thermoelectric conversion apparatus 900 having the above-described configuration, thermal stress is likely to be generated due to deformation caused by thermal expansion and contraction of the two heat exchange substrates 901 and 902 facing each other. For example, when the heat exchange substrate 901 on the high temperature side thermally expands, the electrode plate 950 made of a copper plate or the like and the solder (or silver solder) 990 also expand in a similar manner. On the other hand, the N-type semiconductor element 910 and the P-type semiconductor element 920 generally have different expansion coefficients from the electrode plate 950 and the solder (or silver solder) 990. Therefore, thermal stress acts on the semiconductor elements 910 and 920, the electrode plate 950, and the solder (or silver solder) 990 along the XY plane in FIG. When such a thermal stress is repeatedly applied, cracks are first generated in the N-type semiconductor element 910 and the P-type semiconductor element 920, which have lower mechanical strength than the electrode plate 950 and the solder (or silver solder) 990. There exists a possibility that it may extend | expand and it may fracture | rupture and, as a result, the lifetime of the thermoelectric conversion apparatus 900 may become short. Such a problem also occurs when the low-temperature heat exchange substrate 902 is thermally contracted. However, the solder (or silver solder) 990 secures a current path and a heat path between the N-type semiconductor element 910 and the P-type semiconductor element 920 and the electrode plates 930, 940, and 950. It still has an important role in maintaining electromotive force (ie, maintaining thermoelectric conversion efficiency).

前記課題を解決するための発明は、対向する二枚の熱交換基板の間に並設される互いに極性の異なった少なくとも一対の第1の半導体素子及び第2の半導体素子と、前記二枚の熱交換基板のうち高温側となる一方の前記熱交換基板と前記第1及び前記第2の半導体素子との間と、前記二枚の熱交換基板のうち低温側となる他方の前記熱交換基板と前記第1及び前記第2の半導体素子との間にそれぞれ介在し、前記第1及び前記第2の半導体素子を交互に直列接続していく弾性力を有した電極板と、前記一方及び前記他方の熱交換基板の間に配設されて前記一方及び前記他方の熱交換基板を支持する棒部材と、前記第1及び前記第2の半導体素子と前記電極板とを圧着すべく前記一方及び前記他方の熱交換基板の外側より前記棒部材の両端と結合される圧着部材と、を有することとする。   The invention for solving the above-described problems includes at least a pair of first and second semiconductor elements having different polarities arranged in parallel between two opposing heat exchange substrates, and the two sheets Among the heat exchange substrates, between the one heat exchange substrate on the high temperature side and the first and second semiconductor elements, and on the other heat exchange substrate on the low temperature side of the two heat exchange substrates. And the first and second semiconductor elements, respectively, and an electrode plate having an elastic force for alternately connecting the first and second semiconductor elements in series; A bar member disposed between the other heat exchange substrates and supporting the one and the other heat exchange substrates, the one and the second semiconductor elements, and the electrode plate for pressure bonding the first and second semiconductor elements Connected to both ends of the rod member from the outside of the other heat exchange substrate. A crimping member is, and to have.

熱電変換装置の導電性並びに熱伝導性を確保しつつ、その熱応力を緩和できる。   The thermal stress can be alleviated while ensuring the conductivity and thermal conductivity of the thermoelectric converter.

=== 第1の実施形態 ===
以下、図面を参照しつつ、本発明の第1の実施形態に係る熱電変換装置500の構成例について説明する。尚、以下の説明を通して、各部材の番号に関して、同一の部材には同じ番号を付する。
=== First Embodiment ===
Hereinafter, a configuration example of the thermoelectric conversion device 500 according to the first embodiment of the present invention will be described with reference to the drawings. In addition, throughout the following description, the same number is attached | subjected to the same member regarding the number of each member.

<<< 基本構成 >>>
図1に例示されるように、本実施形態の熱電変換装置500は、互いに極性の異なる少なくとも一対の熱電変換用のN型半導体素子10及びP型半導体素子20と、電極板50、60、70と、ボルト・ナット(棒部材、圧着部材)90と、を備えて構成される熱電発電装置である。尚、図1は、本実施形態の熱電変換装置500の構成例を説明するためのπ型構造の単位ユニットの側部断面図を示している。
<<< Basic structure >>>
As illustrated in FIG. 1, the thermoelectric conversion device 500 of this embodiment includes at least a pair of N-type semiconductor elements 10 and P-type semiconductor elements 20 for thermoelectric conversion having different polarities, and electrode plates 50, 60, 70. And a bolt / nut (bar member, crimping member) 90. FIG. 1 is a side sectional view of a unit unit having a π-type structure for explaining a configuration example of a thermoelectric conversion device 500 of the present embodiment.

N型半導体素子10及びP型半導体素子20は、例えば直方体形状を呈する半導体素子である。N型半導体素子10及びP型半導体素子20は、本実施形態の熱交換器の対向する高温側の熱交換基板30(熱交換基板、+Z側)及び低温側の熱交換基板40(熱交換基板、−Z側)の間に並設されており、本実施形態の熱電変換装置500におけるπ型の単位ユニットを構成するものである。すなわち、熱電変換装置500は、図1に示されるπ型の単位ユニットが複数個組み合わせて構成されるものであり、これらのπ型の単位ユニット100aの起電力の合計が、熱電発電装置としての熱電変換装置500の起電力となる。   The N-type semiconductor element 10 and the P-type semiconductor element 20 are semiconductor elements having a rectangular parallelepiped shape, for example. The N-type semiconductor element 10 and the P-type semiconductor element 20 include a high-temperature side heat exchange board 30 (heat exchange board, + Z side) and a low-temperature side heat exchange board 40 (heat exchange board) facing the heat exchanger of this embodiment. , −Z side) and constitutes a π-type unit unit in the thermoelectric conversion device 500 of the present embodiment. That is, the thermoelectric conversion device 500 is configured by combining a plurality of π-type unit units shown in FIG. 1, and the total electromotive force of these π-type unit units 100a is the thermoelectric power generation device. It becomes an electromotive force of the thermoelectric converter 500.

電極板50、60、70は、N型半導体素子10及びP型半導体素子20を、N・P・N・P・・・等といった順に、交互に直列接続していくための弾性力を有した電極である。例えば、一枚のゴム状の電極板50、60、70が考えられる。   The electrode plates 50, 60, and 70 had elasticity for alternately connecting the N-type semiconductor element 10 and the P-type semiconductor element 20 in series in the order of N, P, N, P, etc. Electrode. For example, one rubber-like electrode plate 50, 60, 70 can be considered.

電極板50は、低温側の熱交換基板40とN型半導体素子10の下部との間に介在する銅板であるとともに、当該単位ユニットに隣接する単位ユニットの電極(当該単位ユニットの電極板60に対応する)をなす銅板にもなりえる。
電極板60は、高温側の熱交換基板30とN型半導体素子10及びP型半導体素子20の上部との間に介在する銅板である。
電極板70は、低温側の熱交換基板40とP型半導体素子20の下部との間に介在する銅板であるとともに、当該単位ユニットに隣接する単位ユニットの電極(当該単位ユニットの電極板50に対応する)をなす銅板にもなりえる。
The electrode plate 50 is a copper plate interposed between the low-temperature side heat exchange substrate 40 and the lower part of the N-type semiconductor element 10, and the unit unit electrode adjacent to the unit unit (the electrode plate 60 of the unit unit). Corresponding) can also be a copper plate.
The electrode plate 60 is a copper plate that is interposed between the heat exchange substrate 30 on the high temperature side and the upper portions of the N-type semiconductor element 10 and the P-type semiconductor element 20.
The electrode plate 70 is a copper plate interposed between the heat exchange substrate 40 on the low temperature side and the lower part of the P-type semiconductor element 20, and the electrode of the unit unit adjacent to the unit unit (the electrode plate 50 of the unit unit). Corresponding) can also be a copper plate.

なお、本実施形態の電極板50、60、70は、それぞれ、電気的導通させた複数の電極層を形成している。当該複数の電極層は、一枚の電極板50、60、70を短手方向(図中に示すY座標)に沿って少なくとも一回折り曲げることで形成される。例えば、一枚の電極板50を図中に示すI部とII部の箇所で二回折り曲げることによって、各電極層間で電気的導通が分断することなく、渦巻き状の3層分の電極層50a、50b、50cが形成される。また、電極板60、70についても同様に、それぞれ、渦巻き状の3層分の電極層60a、60b、60c、渦巻き状の3層分の電極層70a、70b、70cが形成される。尚、電極板50、60、70それぞれの複数の電極層は、図1に例示する渦巻き状の形状に限らず、例えば、S字状の形状としてもよいが、渦巻き状の形状の方が弾性力の点で優れるので好ましい。   Note that the electrode plates 50, 60, and 70 of the present embodiment each form a plurality of electrically conductive electrode layers. The plurality of electrode layers are formed by bending one electrode plate 50, 60, 70 at least once along the short direction (Y coordinate shown in the figure). For example, a single electrode plate 50 is bent twice at portions I and II shown in the figure, so that the electrical continuity is not divided between the electrode layers, and the spiral electrode layers 50a are divided into three layers. , 50b, 50c are formed. Similarly, for the electrode plates 60 and 70, three spiral electrode layers 60a, 60b, and 60c and three spiral electrode layers 70a, 70b, and 70c are formed, respectively. The plurality of electrode layers of each of the electrode plates 50, 60, and 70 are not limited to the spiral shape illustrated in FIG. 1, and may be, for example, an S-shape, but the spiral shape is more elastic. Since it is excellent in terms of power, it is preferable.

この結果、熱交換基板30、31とN型半導体素子10及びP型半導体素子20との間の熱膨張係数の相違に起因して、熱交換基板30、31の熱膨張又は熱収縮が生じた場合にN型半導体素子10及びP型半導体素子20には熱応力が発生することになるが、電極板50、60、70が、当該熱応力を緩和させるための、いわゆる弾性を有したバネとして機能することになる。   As a result, due to the difference in thermal expansion coefficient between the heat exchange substrates 30 and 31 and the N-type semiconductor element 10 and the P-type semiconductor element 20, thermal expansion or contraction of the heat exchange substrates 30 and 31 occurred. In some cases, thermal stress is generated in the N-type semiconductor element 10 and the P-type semiconductor element 20, but the electrode plates 50, 60, and 70 are so-called elastic springs for relaxing the thermal stress. Will work.

例えば、電極板50、60、70の折り曲げ箇所である図1に示すI部とII部は弾性力に富むので、N型半導体素子10及びP型半導体素子20の熱変形が吸収される、すなわち熱応力が緩和される。尚、当該熱応力は、図1に示すXY面に沿った横方向に発生する場合と、図1に示すZY平面に沿った縦方向に発生する場合とがあるが、電極板50、60、70は、これらの横方向並びに縦方向の熱応力をともに緩和させる働きを有する。   For example, the I part and the II part shown in FIG. 1 where the electrode plates 50, 60, and 70 are bent are rich in elastic force, so that the thermal deformation of the N-type semiconductor element 10 and the P-type semiconductor element 20 is absorbed, that is, Thermal stress is relieved. The thermal stress may be generated in the lateral direction along the XY plane shown in FIG. 1 or in the vertical direction along the ZY plane shown in FIG. 1, but the electrode plates 50, 60, 70 has a function of relieving both the thermal stress in the horizontal direction and the vertical direction.

さらに、電極板50、60、70がいわゆるバネとして機能することで、電極板50、60、70と、N型半導体素子10及びP型半導体素子20との密着性が向上することになる。しかして、電極板50、60、70とN型半導体素子10及びP型半導体素子20双方の対向する面(図1に示すXY面)同士が粗くて平坦な形状でなかったとしても、電極板50、60、70が備える弾性力によってそれらの面の粗さを吸収することができる。よって、前述した密着性が得られるので、熱電変換装置500の主たる目的である電気伝導性並びに熱伝導性が確保される。   Furthermore, since the electrode plates 50, 60, and 70 function as so-called springs, adhesion between the electrode plates 50, 60, and 70 and the N-type semiconductor element 10 and the P-type semiconductor element 20 is improved. Even if the opposing surfaces (XY surfaces shown in FIG. 1) of both the electrode plates 50, 60, 70 and the N-type semiconductor element 10 and the P-type semiconductor element 20 are rough and flat, the electrode plates The roughness of those surfaces can be absorbed by the elastic force of 50, 60, 70. Therefore, since the adhesiveness mentioned above is acquired, the electrical conductivity and heat conductivity which are the main objectives of the thermoelectric conversion apparatus 500 are ensured.

ボルト・ナット90は、ボルト90aとナット90bで構成され、電極板50、60、70と、N型半導体素子10及びP型半導体素子20の圧着面との間を、半田や銀ろう等を介在させずに、機械的に圧着させる部材である。   The bolt / nut 90 is composed of a bolt 90a and a nut 90b, and solder, silver solder or the like is interposed between the electrode plates 50, 60, 70 and the crimp surfaces of the N-type semiconductor element 10 and the P-type semiconductor element 20. This is a member that is mechanically pressure-bonded without being caused.

ボルト90aは、対向する熱交換基板30、40の間に配設されて熱交換基板30、40を支持する棒部材と、熱交換基板30の外側(+Z側)を開口させた座ぐり31に当接する頭部(圧着部材)と、を有する部材である。尚、本実施形態のボルト90aは、対向する熱交換基板30、40の間に、N型半導体素子10及びP型半導体素子20とそれらと圧着させる電極板50、60、70に対して並列に配設される場合である。   The bolt 90a is disposed between the opposing heat exchange substrates 30 and 40, and a rod member that supports the heat exchange substrates 30 and 40, and a counterbore 31 that opens the outside (+ Z side) of the heat exchange substrate 30. It is a member which has the head (crimp member) which contacts. In addition, the bolt 90a of this embodiment is parallel between the N-type semiconductor element 10 and the P-type semiconductor element 20 and the electrode plates 50, 60, and 70 to be pressure-bonded between the opposing heat exchange substrates 30 and 40. It is a case where it is arranged.

ナット(圧着部材)90bは、低温側の熱交換基板40の外側(−Z側)を開口させた座ぐり41を貫いたボルト90aの棒部材の頭部と反対側の先端部分に形成されるネジ(不図示)と噛合する圧着部材である。すなわち、ボルト90aは、高温側の熱交換基板30の外側(+Z側)にある座ぐり31から挿入されており、ナット90bは、低温側の熱交換基板40の外側(−Z側)にある座ぐり41に現れるボルト90aのネジと噛合する。   The nut (crimp member) 90b is formed at the tip of the bolt 90a opposite to the head portion of the bolt 90a that penetrates the counterbore 41 that opens the outside (−Z side) of the low-temperature heat exchange substrate 40. A crimping member that meshes with a screw (not shown). That is, the bolt 90a is inserted from the counterbore 31 on the outside (+ Z side) of the high temperature side heat exchange substrate 30, and the nut 90b is on the outside (−Z side) of the low temperature side heat exchange substrate 40. It meshes with the screw of the bolt 90a appearing on the spot face 41.

ボルト・ナット90を使用することにより、N型半導体素子10及びP型半導体素子20と、電極板50、60、70との間が、それらの圧着面において圧着されて密着性が向上するとともに、熱交換基板30、40と電極板50、60、70との間についても、それらの圧着面において圧着されて密着性が向上する。   By using the bolts and nuts 90, the N-type semiconductor element 10 and the P-type semiconductor element 20 and the electrode plates 50, 60, 70 are pressure-bonded at their pressure-bonding surfaces to improve adhesion, Also between the heat exchange substrates 30 and 40 and the electrode plates 50, 60 and 70, they are pressure-bonded on their pressure-bonding surfaces to improve adhesion.

この結果、例えば、熱交換基板30、電極板60、P型半導体素子20、電極板70並びに熱交換基板40をそれぞれ経由する熱の伝わる経路と、電極板60、P型半導体素子20並びに電極板70をそれぞれ経由する電気が伝わる経路双方の伝導性を増すことができる。尚、熱交換基板40、電極板50、N型半導体素子10、電極板60並びに熱交換基板30をそれぞれ経由する熱の伝わる経路と、電極板50、N型半導体素子10並びに電極板60をそれぞれ経由する電気が伝わる経路についても同様のことがいえる。   As a result, for example, the heat transfer path through the heat exchange substrate 30, the electrode plate 60, the P-type semiconductor element 20, the electrode plate 70, and the heat exchange substrate 40, and the electrode plate 60, the P-type semiconductor element 20 and the electrode plate, respectively. It is possible to increase the conductivity of both of the paths through which electricity passes through each 70. The heat transfer substrate 40, the electrode plate 50, the N-type semiconductor element 10, the electrode plate 60, and the heat transfer path passing through the heat-exchange substrate 30, respectively, and the electrode plate 50, the N-type semiconductor element 10 and the electrode plate 60, respectively. The same can be said for the path through which electricity passes.

また、ボルト・ナット90を使用することにより、N型半導体素子10及びP型半導体素子20と、電極板50、60、70との間は、図1に示すXY面及びZY面に沿った相互の摺動が可能となるとともに、熱交換基板30、40と電極板50、60、70との間についても、図1に示すXY面及びZY面に沿った相互の摺動が可能となる。この結果、熱交換基板30、31とN型半導体素子10及びP型半導体素子20との間の熱膨張係数の相違に起因して、N型半導体素子10及びP型半導体素子20に生じる熱応力が緩和されることになる。   Further, by using the bolts and nuts 90, the N-type semiconductor element 10 and the P-type semiconductor element 20 and the electrode plates 50, 60, and 70 are connected to each other along the XY plane and the ZY plane shown in FIG. 1 and the heat exchange substrates 30 and 40 and the electrode plates 50, 60 and 70 can also slide relative to each other along the XY plane and the ZY plane shown in FIG. As a result, the thermal stress generated in the N-type semiconductor element 10 and the P-type semiconductor element 20 due to the difference in thermal expansion coefficient between the heat exchange substrates 30 and 31 and the N-type semiconductor element 10 and the P-type semiconductor element 20. Will be eased.

ところで、熱電変換装置101の熱電変換効率を向上させるために基板30、40の間には熱伝導性の媒体をできるだけ介在させない必要がある。このため、例えば、ボルト90aの少なくとも棒部には、電気的絶縁性を有し且つ熱伝導性の低い材質を用いることが好ましい。ボルト・ナット90の材料としては、例えば、ポリイミド樹脂、SIO2ガラス又はジルコニア等が挙げられる。あるいは、ボルト90aの棒部が電気的絶縁性を有するチューブ等で被覆されている場合、この棒部は、熱伝導性が低いという条件を満たすならば、たとえ電気伝導性が高い材質であってもよい。この場合、ボルト・ナット90には例えばSUS等の金属製のものが使用できるため、例えば、前述したポリイミド樹脂製のものに比べて部材の調達が容易になる。   By the way, in order to improve the thermoelectric conversion efficiency of the thermoelectric conversion device 101, it is necessary that a thermally conductive medium is not interposed between the substrates 30 and 40 as much as possible. For this reason, for example, it is preferable to use a material having electrical insulation and low thermal conductivity for at least the rod portion of the bolt 90a. Examples of the material of the bolt / nut 90 include polyimide resin, SIO2 glass, zirconia, and the like. Alternatively, if the rod portion of the bolt 90a is covered with an electrically insulating tube or the like, this rod portion is made of a material having high electrical conductivity if the condition that thermal conductivity is low is satisfied. Also good. In this case, since a metal such as SUS can be used for the bolt / nut 90, for example, the member can be easily procured as compared with the polyimide resin described above.

固体潤滑性物質(絶縁性潤滑材)80は、例えば、窒化ホウ素(BN)粒子等を採用することができる。固体潤滑性物質80は、電極板50、60、70との間の電気的絶縁性並びに潤滑性をともに確保するために、熱交換基板30の内側(−Z側)及び熱交換基板40の内側(+Z側)の面に対し塗布される。なお、電極板50、60、70と熱交換基板30、40の面との間は電気的絶縁体が介在していればよい。但し、固体潤滑性物質80を用いた方が、電極板50、60、70と熱交換基板30、40の面との間のXY面及びYZ面に沿った相互の変位をより円滑化させる。すなわち、熱交換基板30、40の熱膨張又は熱収縮に伴ってN型半導体素子10及びP型半導体素子20に生じ得る熱応力を緩和させることができる。   For example, boron nitride (BN) particles can be employed as the solid lubricant (insulating lubricant) 80. In order to ensure both electrical insulation and lubricity between the electrode plates 50, 60, and 70, the solid lubricating substance 80 is provided inside the heat exchange substrate 30 and inside the heat exchange substrate 40. It is applied to the (+ Z side) surface. It should be noted that an electrical insulator may be interposed between the electrode plates 50, 60, 70 and the surfaces of the heat exchange substrates 30, 40. However, the use of the solid lubricating material 80 further smoothes the mutual displacement along the XY plane and the YZ plane between the electrode plates 50, 60, 70 and the surfaces of the heat exchange substrates 30, 40. That is, the thermal stress that can be generated in the N-type semiconductor element 10 and the P-type semiconductor element 20 due to the thermal expansion or contraction of the heat exchange substrates 30 and 40 can be reduced.

<<< 半導体素子の選択の自由度向上 >>>
N型半導体素子を構成する様々な合金は、耐熱温度や、熱電材料としての性能を示すいわゆる無次元性能指数が最大となる温度(以下、最大性能温度という。)が規定されている。尚、N型半導体素子の推奨温度は、例えば、n-CoSb合金ではおよそ800Kであり、n-MgSi合金ではおよそ700Kであり、n-PbTe合金ではおよそ600Kであり、n-BiTe合金ではおよそ300Kであることが知られている。尚、「n-」はいわゆるNドープを意味する。
<<< Improvement of flexibility in selection of semiconductor elements >>>
Various alloys constituting the N-type semiconductor element have a heat-resistant temperature and a temperature at which a so-called dimensionless figure of merit indicating performance as a thermoelectric material is maximized (hereinafter referred to as maximum performance temperature). The recommended temperature of the N-type semiconductor element is, for example, about 800K for n-CoSb alloy, about 700K for n-MgSi alloy, about 600K for n-PbTe alloy, and about 300K for n-BiTe alloy. It is known that “N−” means so-called N-doping.

同様に、P型半導体素子を構成する様々な合金についても、耐熱温度や最大性能温度が規定されている。尚、P型半導体素子の最大性能温度は、例えば、p-SiGe合金ではおよそ1100Kであり、p-CeFeSb合金ではおよそ1000Kであり、p-MnSi合金ではおよそ700Kであり、p-BiTe合金ではおよそ300Kであることが知られている。尚、「p-」はいわゆるPドープを意味する。   Similarly, the heat-resistant temperature and the maximum performance temperature are defined for various alloys constituting the P-type semiconductor element. The maximum performance temperature of the P-type semiconductor element is, for example, about 1100K for a p-SiGe alloy, about 1000K for a p-CeFeSb alloy, about 700K for a p-MnSi alloy, and about about a p-BiTe alloy. It is known to be 300K. “P-” means so-called P-doping.

ここで、同一のπ型の単位ユニットを構成するN型半導体素子10及びP型半導体素子20は、熱交換基板30、40の温度に応じて、前述した耐熱温度や最大性能温度を基本的には一致させるように、N型半導体素子10及びP型半導体素子20を選択する必要がある。しかし、同一の耐熱温度並びに最大性能温度のN型半導体素子10及びP型半導体素子20を選択した場合であっても、製造バラツキが潜在的に存在し得る。   Here, the N-type semiconductor element 10 and the P-type semiconductor element 20 constituting the same π-type unit unit basically have the aforementioned heat-resistant temperature and maximum performance temperature according to the temperature of the heat exchange substrates 30 and 40. N-type semiconductor element 10 and P-type semiconductor element 20 need to be selected so as to match. However, even if the N-type semiconductor element 10 and the P-type semiconductor element 20 having the same heat resistance temperature and maximum performance temperature are selected, there may be potential manufacturing variations.

また、後述するカスケード半導体素子で構成した単位ユニット(図13参照)についても同様のことがいえ、高温域仕様のNh型半導体素子200及びPh型半導体素子220と、低温域仕様のPc型半導体素子210及びNc型半導体素子230の耐熱温度を一致させる必要がある。   The same applies to unit units (see FIG. 13) configured by cascade semiconductor elements to be described later. The high-temperature specification Nh-type semiconductor element 200 and the Ph-type semiconductor element 220, and the low-temperature specification Pc-type semiconductor element. It is necessary to match the heat resistant temperatures of 210 and Nc type semiconductor element 230.

なお、後述するカスケード半導体素子で構成した単位ユニットの場合では、高温域仕様のNh型半導体素子200及びPh型半導体素子220と、低温域仕様のPc型半導体素子210及びNc型半導体素子230について、積極的に、耐熱温度や最大性能温度を異ならせて使用する場合も考えられる。   In the case of a unit unit composed of cascade semiconductor elements, which will be described later, the high-temperature specification Nh-type semiconductor element 200 and Ph-type semiconductor element 220, and the low-temperature specification Pc-type semiconductor element 210 and Nc-type semiconductor element 230, In some cases, the heat resistance temperature and the maximum performance temperature may be positively changed.

例えば、高温側の熱交換基板30が例えば800K以上であり、低温側の基板40が例えば300K以下である場合、高温域仕様のNh型半導体素子200にはn-CoSb合金を使用し、高温域仕様のPh型半導体素子220にはp-CeFeSb合金を使用し、低温域仕様のNc型半導体素子230にはn-BiTe合金を使用し、低温域仕様のPc型半導体素子210にはp-BiTe合金を使用する場合とする。   For example, when the high-temperature side heat exchanging substrate 30 is 800K or higher and the low-temperature side substrate 40 is 300K or lower, for example, an n-CoSb alloy is used for the high-temperature specification Nh-type semiconductor element 200, A p-CeFeSb alloy is used for the Ph type semiconductor element 220 of the specification, an n-BiTe alloy is used for the Nc type semiconductor element 230 of the low temperature range specification, and a p-BiTe alloy is used for the Pc type semiconductor element 210 of the low temperature range specification. Suppose that an alloy is used.

この場合、熱交換基板30の近傍にあるn-CoSb合金及びp-CeFeSb合金の温度(カスケード半導体素子の温度)は、熱交換基板30の温度(800K以上)に応じた温度となる。一方、熱交換基板40の近傍にあるn-BiTe合金及びp-BiTe合金の温度(カスケード半導体素子の温度)は、熱交換基板40の温度(300K以下)に応じた温度となる。よって、n-CoSb合金及びp-CeFeSb合金は、n-BiTe合金及びp-BiTe合金に比べて、熱交換基板30及び熱交換基板40の温度差(およそ500K以上)に応じた温度差をもって、より高温となる。   In this case, the temperature of the n-CoSb alloy and the p-CeFeSb alloy in the vicinity of the heat exchange substrate 30 (the temperature of the cascade semiconductor element) is a temperature corresponding to the temperature of the heat exchange substrate 30 (800 K or more). On the other hand, the temperature of the n-BiTe alloy and the p-BiTe alloy in the vicinity of the heat exchange substrate 40 (the temperature of the cascade semiconductor element) is a temperature corresponding to the temperature of the heat exchange substrate 40 (300 K or less). Therefore, the n-CoSb alloy and the p-CeFeSb alloy have a temperature difference corresponding to the temperature difference (approximately 500 K or more) between the heat exchange substrate 30 and the heat exchange substrate 40 as compared with the n-BiTe alloy and the p-BiTe alloy. Higher temperature.

この結果、各半導体素子の熱電変換効率の平均値が上記温度分布(800K、300K)において最大となり、例えば、高温域仕様及び低温域仕様のNh型及びNc型半導体素子200、230両方にn-CoSb合金を使用した場合に比べて、熱電変換効率が向上することが見込まれる。   As a result, the average value of the thermoelectric conversion efficiency of each semiconductor element becomes maximum in the above temperature distribution (800K, 300K). For example, n-type semiconductor elements 200 and 230 of high-temperature specification and low-temperature specification are both n-type. It is expected that the thermoelectric conversion efficiency will be improved as compared with the case where a CoSb alloy is used.

そこで、図1に示した本実施形態を採用することによって、電極板50、60、70の弾性力とボルト・ナット90による圧着調整力とによって、N型半導体素子10とP型半導体素子20との間に製造バラツキ(耐熱温度や最大性能温度のバラツキ)があったとしても、当該製造バラツキをπ型の単位ユニット側で吸収することが可能となる。   Therefore, by adopting the present embodiment shown in FIG. 1, the N-type semiconductor element 10 and the P-type semiconductor element 20 are obtained by the elastic force of the electrode plates 50, 60, 70 and the pressure adjusting force by the bolt / nut 90. Even if there is a manufacturing variation (variation in heat-resistant temperature or maximum performance temperature) between the two, the manufacturing variation can be absorbed on the π-type unit unit side.

例えば、図2に示すように、π型の単位ユニットにおいて、製造バラツキに起因してN型半導体素子10とP型半導体素子20双方の耐熱温度並びに最大性能温度を一致させた結果、N型半導体素子10と対比してP型半導体素子20のZ方向の長さが短い場合とする。この場合、本実施形態では、電極板50、60、70の弾性力とボルト・ナット90による圧着調整力とによって、N型半導体素子10とP型半導体素子20との間のZ方向の長さの相違を吸収することができる。   For example, as shown in FIG. 2, in the π-type unit unit, as a result of matching the heat resistance temperature and the maximum performance temperature of both the N-type semiconductor element 10 and the P-type semiconductor element 20 due to manufacturing variations, It is assumed that the length of the P-type semiconductor element 20 in the Z direction is shorter than that of the element 10. In this case, in this embodiment, the length in the Z direction between the N-type semiconductor element 10 and the P-type semiconductor element 20 is determined by the elastic force of the electrode plates 50, 60, 70 and the pressure adjusting force by the bolt / nut 90. Can absorb the difference.

また、カスケード半導体素子で構成する単位ユニットの場合、積極的に、N型半導体素子10及びP型半導体素子の耐熱温度並びに最大性能温度を異ならせて使用することで、熱電変換効率の向上を図る場合があるが、電極板50、60、70の弾性力とボルト・ナット90による圧着調整力とによって、N型半導体素子10及びP型半導体素子の耐熱温度並びに最大性能温度の相違を吸収することができる。   Further, in the case of a unit unit composed of cascade semiconductor elements, the thermoelectric conversion efficiency is improved by actively using the N type semiconductor element 10 and the P type semiconductor element with different heat resistant temperatures and maximum performance temperatures. In some cases, the difference between the heat resistance temperature and the maximum performance temperature of the N-type semiconductor element 10 and the P-type semiconductor element is absorbed by the elastic force of the electrode plates 50, 60, 70 and the pressure adjusting force by the bolts and nuts 90. Can do.

すなわち、本実施形態によれば、単位ユニットを構成するN型半導体素子10及びP型半導体素子20を選択する際の自由度が格段に向上することになる。   That is, according to the present embodiment, the degree of freedom when selecting the N-type semiconductor element 10 and the P-type semiconductor element 20 constituting the unit unit is significantly improved.

===第1の実施形態に係るその他の形態===
<<<電極板内にバネを設ける場合>>>
図1に示した本発明の第1の実施形態に関して、電極板50、60、70を構成する複数の電極層の間に介在させるバネ(弾性部材)100をさらに有するのが好ましい。
図3(a)は、この場合におけるπ型構造の単位ユニットの側部断面図を示したものである。尚、図3(a)に示す実施形態は、電極板60の電極層60a、60bの間の空隙にバネ100を設けた場合である。
=== Other Forms According to First Embodiment ===
<<< When providing a spring in the electrode plate >>>
Regarding the first embodiment of the present invention shown in FIG. 1, it is preferable to further include a spring (elastic member) 100 interposed between a plurality of electrode layers constituting the electrode plates 50, 60 and 70.
FIG. 3A shows a side sectional view of a unit unit having a π-type structure in this case. Note that the embodiment shown in FIG. 3A is a case where the spring 100 is provided in the gap between the electrode layers 60 a and 60 b of the electrode plate 60.

この場合、電極板50、60、70内にバネ100を更に設けることで、図1に示した実施形態と対比して、電極板50、60、70の弾性力が増すことになり、電極板50、60、70とN型半導体素子10及びP型半導体素子20との間の密着性向上による熱伝導性並びに電気伝導性の更なる確保や、熱交換基板30、40の熱膨張又は熱収縮に伴ってN型半導体素子10及びP型半導体素子20に生じ得る熱応力をさらに緩和させることが可能となる。   In this case, by further providing the spring 100 in the electrode plates 50, 60, 70, the elastic force of the electrode plates 50, 60, 70 increases as compared with the embodiment shown in FIG. 50, 60, 70 and further ensuring thermal conductivity and electrical conductivity by improving adhesion between the N-type semiconductor element 10 and the P-type semiconductor element 20, and thermal expansion or contraction of the heat exchange substrates 30, 40 Accordingly, it is possible to further relax the thermal stress that may occur in the N-type semiconductor element 10 and the P-type semiconductor element 20.

<<<ボルト等を素子内に貫通させる場合>>>
図1に示した本発明の第1の実施形態に関して、一方の熱交換基板30の外側(+Z側)を開口した座ぐり32から他方の熱交換基板40の外側(−Z側)を開口した座ぐり(不図示)までの間で電極板60、70及びP型半導体素子20を介して貫通し、また、一方の熱交換基板30の座ぐり32から他方の熱交換基板40の座ぐりまでの間で電極板60、50及びN型半導体素子10を介して貫通する貫通孔11をそれぞれ設け、ボルト91aがこれらの貫通孔11に挿入されることが好ましい。尚、ボルト91aの頭部の反対側にあるネジに対して、ナット(不図示)が噛合されることは言うまでもない。
<<< When bolts or the like are passed through the element >>>
With respect to the first embodiment of the present invention shown in FIG. 1, the outside (−Z side) of the other heat exchange substrate 40 is opened from the counterbore 32 that opens the outside (+ Z side) of one heat exchange substrate 30. Between the counterbore (not shown) and through the electrode plates 60 and 70 and the P-type semiconductor element 20, and from the counterbore 32 of one heat exchange board 30 to the counterbore of the other heat exchange board 40 It is preferable that through-holes 11 penetrating through the electrode plates 60 and 50 and the N-type semiconductor element 10 are respectively provided between them, and bolts 91 a are inserted into these through-holes 11. Needless to say, a nut (not shown) is engaged with a screw on the opposite side of the head of the bolt 91a.

図3(b)は、この場合におけるπ型構造の単位ユニットの側部断面図を示したものである。尚、図3(b)に示す実施形態は、ボルト91aを、熱交換基板30とその内側の面に塗布させる固体潤滑性物質80、電極板60、N型半導体素子10、電極板50及び熱交換基板40とその内側に塗布される固体潤滑性物質80を上下方向(±Z方向)に貫通させた貫通孔11へと挿入した場合である。尚、ボルト91aの頭部の反対側にあるネジに対してナット(不図示)が噛合される。この場合、図1に示した実施形態と対比して、熱交換基板30、40と、電極板50、60、70と、N型半導体素子10及びP型半導体素子20との間の密着性の更なる向上が図られるので、熱伝導性並びに電気伝導性の更なる確保が可能となる。   FIG. 3B shows a side sectional view of the unit unit of the π-type structure in this case. In the embodiment shown in FIG. 3B, the solid lubricating material 80, the electrode plate 60, the N-type semiconductor element 10, the electrode plate 50, and the heat which apply the bolt 91a to the heat exchange substrate 30 and its inner surface. This is a case where the replacement substrate 40 and the solid lubricating substance 80 applied to the inside thereof are inserted into the through-holes 11 penetrating in the vertical direction (± Z direction). A nut (not shown) is engaged with a screw on the opposite side of the head of the bolt 91a. In this case, in contrast to the embodiment shown in FIG. 1, the adhesion between the heat exchange substrates 30 and 40, the electrode plates 50, 60 and 70, the N-type semiconductor element 10 and the P-type semiconductor element 20 is improved. Since further improvement is achieved, it is possible to further ensure thermal conductivity and electrical conductivity.

さらに、貫通孔11及びボルト91aの棒部との間に隙間を生じさせるべく、貫通孔11の径とボルト91aの棒部の径の大きさが設定されることが好ましい。この結果、電極板50、60、70とN型半導体素子10及びP型半導体素子20は、この隙間の分だけ相互に摺動可能となる。よって、電極板50、60、70とN型半導体素子10及びP型半導体素子20との熱膨張差によるXY面及びYZ面に沿った熱応力が、電極板50、60、70とN型半導体素子10及びP型半導体素子20とのXY面及びYZ面に沿った相互の摺動において吸収されるので、更に緩和させることが可能となる。   Furthermore, it is preferable that the size of the diameter of the through hole 11 and the diameter of the rod portion of the bolt 91a is set so as to create a gap between the through hole 11 and the rod portion of the bolt 91a. As a result, the electrode plates 50, 60, 70 and the N-type semiconductor element 10 and the P-type semiconductor element 20 can slide relative to each other by this gap. Therefore, the thermal stress along the XY plane and the YZ plane due to the difference in thermal expansion between the electrode plates 50, 60, 70 and the N-type semiconductor element 10 and the P-type semiconductor element 20 causes the electrode plates 50, 60, 70 and the N-type semiconductor. Since it is absorbed in mutual sliding along the XY plane and the YZ plane with the element 10 and the P-type semiconductor element 20, further relaxation can be achieved.

ところで、本実施形態のボルト91aは、貫通孔11の内面と、ボルト91aの棒部とが相互に電気的絶縁性を有する必要がある。また、熱電変換装置500の熱電変換効率を向上させるべく、高温側の熱交換基板30及び低温側の熱交換基板40の間には熱伝導性の媒体をできるだけ介在させない方が良い。   By the way, the bolt 91a of the present embodiment requires that the inner surface of the through hole 11 and the rod portion of the bolt 91a have electrical insulation between each other. Further, in order to improve the thermoelectric conversion efficiency of the thermoelectric conversion device 500, it is preferable that a heat conductive medium is not interposed between the high temperature side heat exchange substrate 30 and the low temperature side heat exchange substrate 40 as much as possible.

そこで、例えば、ボルト91aの少なくとも棒部としては、電気的絶縁性を有し且つ熱伝導性の低い材質を用いることが好ましい。ボルト91aの材料としては、例えば、ポリイミド樹脂、SIO2ガラス又はジルコニア等が挙げられる。あるいは、例えば、貫通孔11の内周面又はボルト91aの棒部が、電気的絶縁性を有するチューブ等で被覆されている場合には、この棒部は、熱伝導性が低ければ、たとえ電気伝導性が高い材質であってもよい。この場合、ボルト91aとしては、例えばSUS等の金属製のものが使用できるため、例えば、前述したポリイミド樹脂製のものに比べて部材調達が容易になる。   Therefore, for example, as at least the rod portion of the bolt 91a, it is preferable to use a material having electrical insulation and low thermal conductivity. Examples of the material of the bolt 91a include polyimide resin, SIO2 glass, zirconia, and the like. Alternatively, for example, when the inner peripheral surface of the through-hole 11 or the rod portion of the bolt 91a is covered with an electrically insulating tube or the like, the rod portion has an electric conductivity if it has low thermal conductivity. A material having high conductivity may be used. In this case, as the bolt 91a, for example, a metal such as SUS can be used. Therefore, for example, the member can be easily procured as compared with the polyimide resin described above.

<<<ボルト等を素子内に貫通させ且つ電極板内にバネを設ける場合>>>
図3(c)は、図3(b)に示したπ型構造の単位ユニットに関して、図3(a)に示したように、電極板50、60、70の内部にバネ100を設けた場合のπ型構造の単位ユニットの側部断面図を示したものである。
<<< When a bolt or the like is passed through the element and a spring is provided in the electrode plate >>>
FIG. 3C shows a case where the spring 100 is provided inside the electrode plates 50, 60, and 70 as shown in FIG. 3A with respect to the unit unit of the π-type structure shown in FIG. 2 is a side sectional view of a unit unit having a π-type structure.

尚、図3(c)に示す実施形態は、ボルト91aを、熱交換基板30とその内側の面に塗布させる固体潤滑性物質80、電極板60、N型半導体素子10、電極板50及び熱交換基板40とその内側に塗布される固体潤滑性物質80を上下方向(±Z方向)に貫通させた貫通孔11へと挿入した上で、更に、電極板60の電極層60a、60bの間にある空隙にバネ100を設けた場合である。尚、ボルト91aの頭部の反対側にあるネジに対してナット(不図示)が噛合される。   In the embodiment shown in FIG. 3 (c), the solid lubricant 80, the electrode plate 60, the N-type semiconductor element 10, the electrode plate 50, and the heat are applied to the bolt 91a on the heat exchange substrate 30 and the inner surface thereof. After inserting the replacement substrate 40 and the solid lubricating material 80 applied to the inside thereof into the through-holes 11 penetrating in the vertical direction (± Z direction), further, between the electrode layers 60 a and 60 b of the electrode plate 60. This is a case in which the spring 100 is provided in the gap in FIG. A nut (not shown) is engaged with a screw on the opposite side of the head of the bolt 91a.

図3(c)に示す場合では、図3(b)に示した実施形態と対比して、電極板60の弾性力が更に増すことになり、熱交換基板30、40と、電極板50、60、70と、N型半導体素子10及びP型半導体素子20との間の密着性向上によって熱伝導性並びに電気伝導性の更なる確保が可能となる。また、熱交換基板30、40の熱膨張又は熱収縮に伴ってN型半導体素子10及びP型半導体素子20に生じ得る熱応力をさらに緩和させることが可能となる。   In the case shown in FIG. 3 (c), the elastic force of the electrode plate 60 is further increased as compared with the embodiment shown in FIG. 3 (b), and the heat exchange substrates 30, 40, the electrode plate 50, 60 and 70 and the adhesion between the N-type semiconductor element 10 and the P-type semiconductor element 20 can improve the thermal conductivity and electrical conductivity. In addition, it is possible to further relax the thermal stress that may occur in the N-type semiconductor element 10 and the P-type semiconductor element 20 as the heat exchange substrates 30 and 40 expand or contract.

<<<導電性並びに熱伝導性を有した接着剤を使用する場合>>>
図1並びに図3(a)〜(c)に示した本発明の第1実施形態に関して、電極板50、60、70とN型半導体素子10及びP型半導体素子20との間は、導電性並びに熱伝導性を有した接着材110dで接着することが好ましい。尚、熱交換基板30、40の内側に固体潤滑性物質80を塗布させる場合には、更に、熱交換基板30、40と固体潤滑性物質80との間を接着剤110aで接着し、固体潤滑性物質80と電極板50、60、70との間を接着剤110bで接着し、さらに、電極板50、60、70の各電極層のうち密着させる層間に接着剤110cで接着することが好ましい。
<<< When using an adhesive having conductivity and thermal conductivity >>>
With respect to the first embodiment of the present invention shown in FIG. 1 and FIGS. 3A to 3C, there is electrical conductivity between the electrode plates 50, 60, 70 and the N-type semiconductor element 10 and the P-type semiconductor element 20. In addition, it is preferable to bond with an adhesive 110d having thermal conductivity. In addition, when applying the solid lubricating material 80 inside the heat exchange substrates 30 and 40, the heat exchange substrates 30 and 40 and the solid lubricating material 80 are further bonded with an adhesive 110a, and solid lubrication is performed. It is preferable to adhere between the active substance 80 and the electrode plates 50, 60, and 70 with an adhesive 110b, and to further adhere between the electrode layers of the electrode plates 50, 60, and 70 with an adhesive 110c. .

尚、導電性並びに熱伝導性を有した接着剤110a〜110dの材料としては、例えば、図5に示した仕様を示す銀充填型セラミックペーストを採用することができる。銀充填型セラミックペーストとは、耐熱性に優れたセラミックペーストに対して銀を充填させることで、更に高導電性並びに高伝導性の特性を実現した接着剤である。尚、銀充填型セラミックペーストに限られず、密着性を確保するだけならば非導電性樹脂をベースにした一般のエポキシ接着剤等を採用してもよいが、銀充填型セラミックペーストの方が、高導電性を得られるので好適である。   In addition, as a material of adhesive 110a-110d which has electroconductivity and heat conductivity, the silver filling type | mold ceramic paste which shows the specification shown in FIG. 5 is employable, for example. The silver-filled ceramic paste is an adhesive that realizes further high conductivity and high conductivity characteristics by filling silver into a ceramic paste having excellent heat resistance. It should be noted that the present invention is not limited to silver-filled ceramic paste, and a general epoxy adhesive or the like based on a non-conductive resin may be adopted as long as adhesion is ensured. This is suitable because high conductivity can be obtained.

<<<バネを介してナットをボルトに噛合させる場合>>>
図1並びに図3(a)〜(c)に示した本発明の第1実施形態に関して、低温側の熱交換基板40の外側(−Z側)の座ぐり41、42に現れるボルト90a、91aのネジに対しバネ95を介してナット90b等を噛合させるようにしてもよい。図6は、図1に対応した実施形態に対してバネ95を介在させた場合である。
<<< When engaging a nut with a bolt via a spring >>>
With respect to the first embodiment of the present invention shown in FIG. 1 and FIGS. 3A to 3C, the bolts 90a and 91a appearing on the counterbore 41 and 42 on the outside (−Z side) of the low-temperature side heat exchange substrate 40. A nut 90b or the like may be engaged with the other screw via a spring 95. FIG. 6 shows a case where a spring 95 is interposed in the embodiment corresponding to FIG.

この場合、電極板50、60、70とN型半導体素子10及びP型半導体素子20は、ボルト90aの頭部、ナット90b、及びバネ95によって、図6に示すZ軸方向に圧着される。尚、バネ95より、電極板50、60、70とN型半導体素子10及びP型半導体素子20とは、バネ95によって、図6に示すYZ面に沿って摺動可能となる。   In this case, the electrode plates 50, 60, 70 and the N-type semiconductor element 10 and the P-type semiconductor element 20 are pressure-bonded in the Z-axis direction shown in FIG. 6 by the head of the bolt 90a, the nut 90b, and the spring 95. Incidentally, the electrode plates 50, 60, 70 and the N-type semiconductor element 10 and the P-type semiconductor element 20 can be slid along the YZ plane shown in FIG.

ここで、もしナット90bがボルト90aに対してより締め込まれれば、バネ95の弾性力がより大きくなって、前述した圧着がより強まり、ひいては、接触抵抗がより小さくなる。よって、電極板50、N型半導体素子10、電極板60、P型半導体素子20、電極板70へ流れる電流はより大きくなり、高温側の熱交換基板30及び低温側の熱交換基板40の間の温度差に応じて生じる起電力(熱電変換効率)もより大きくなる。   Here, if the nut 90b is tightened more with respect to the bolt 90a, the elastic force of the spring 95 becomes larger, the above-mentioned crimping becomes stronger, and the contact resistance becomes smaller. Therefore, the current flowing to the electrode plate 50, the N-type semiconductor element 10, the electrode plate 60, the P-type semiconductor element 20, and the electrode plate 70 becomes larger, and between the high-temperature side heat exchange substrate 30 and the low-temperature side heat exchange substrate 40. The electromotive force (thermoelectric conversion efficiency) generated according to the temperature difference is also increased.

一方、もしナット90bがボルト90aからより緩められれば、バネ95の弾性力がより小さくなって、前述した圧着がより弱まり、電極板50、60、70と、N型半導体素子10及びP型半導体素子20との熱膨張差によるYZ面に沿った熱応力が、電極板50、60、70とN型半導体素子10及びP型半導体素子20とのYZ面に沿った相互の摺動に吸収されてより小さくなる。   On the other hand, if the nut 90b is further loosened from the bolt 90a, the elastic force of the spring 95 becomes smaller and the above-mentioned crimping becomes weaker, and the electrode plates 50, 60, 70, the N-type semiconductor element 10 and the P-type semiconductor The thermal stress along the YZ plane due to the difference in thermal expansion from the element 20 is absorbed by the mutual sliding along the YZ plane between the electrode plates 50, 60, 70 and the N-type semiconductor element 10 and the P-type semiconductor element 20. Become smaller.

以上より、バネ95を介したボルト・ナット90の締め込みの度合いを所定のレベルに設定することにより、前述した圧着及び摺動のバランスをとることができる。つまり、バネ95の弾性力を、熱電変換装置500の熱電変換効率を維持しつつ熱応力を抑制するように設定できる。   From the above, by setting the degree of tightening of the bolts and nuts 90 via the springs 95 to a predetermined level, it is possible to balance the above-described crimping and sliding. That is, the elastic force of the spring 95 can be set so as to suppress the thermal stress while maintaining the thermoelectric conversion efficiency of the thermoelectric conversion device 500.

尚、バネ95は、高温劣化防止及び圧着の調整のために、低温側の基板40に設けることが好ましいが、これに限定されるものではなく、例えば高温側の熱交換基板30及び低温側の熱交換基板40の両方に備えていてもよい。   The spring 95 is preferably provided on the low temperature side substrate 40 for preventing high temperature deterioration and adjusting the pressure bonding, but is not limited to this. For example, the high temperature side heat exchange substrate 30 and the low temperature side substrate are not limited thereto. Both of the heat exchange substrates 40 may be provided.

=== 第2の実施形態 ===
以下、図面を参照しつつ、本発明の第2の実施形態に係る熱電変換装置510の構成例について説明する。ここで、本発明の第2の実施形態は、電極板51、61、71を構成する複数の電極層に関して、1枚の電極板51、61、71を短手方向に沿って一回折り曲げてコの字状又は逆コの字状に形成した場合である。尚、図7は、本実施形態の熱電変換装置510の構成例を説明するためのπ型構造の単位ユニットの側部断面図を示している。
=== Second Embodiment ===
Hereinafter, a configuration example of the thermoelectric conversion device 510 according to the second embodiment of the present invention will be described with reference to the drawings. Here, in the second embodiment of the present invention, one electrode plate 51, 61, 71 is bent once along the short direction with respect to the plurality of electrode layers constituting the electrode plates 51, 61, 71. This is a case of forming a U shape or an inverted U shape. FIG. 7 is a side sectional view of a unit unit having a π-type structure for explaining a configuration example of the thermoelectric conversion device 510 of the present embodiment.

本発明の第2実施形態では、図1に示した本発明の第1の実施形態と対比して、1枚の電極板51、61、71を一回折り曲げただけの単純な構成をとるが、本発明の第1の実施形態の場合と同様に、例えば、電極板51、61、71の折り曲げ箇所である図7に示すI部は弾性力に富むので、N型半導体素子10及びP型半導体素子20の熱変形が吸収される、すなわち熱応力が緩和される。   In contrast to the first embodiment of the present invention shown in FIG. 1, the second embodiment of the present invention has a simple configuration in which one electrode plate 51, 61, 71 is bent once. As in the case of the first embodiment of the present invention, for example, the portion I shown in FIG. 7 where the electrode plates 51, 61, 71 are bent is rich in elastic force, so that the N-type semiconductor element 10 and the P-type Thermal deformation of the semiconductor element 20 is absorbed, that is, thermal stress is relieved.

また、ボルト・ナット90を使用することにより、N型半導体素子10及びP型半導体素子20と、電極板51、61、71との間が、それらの圧着面において圧着されて密着性が向上するとともに、熱交換基板30、40と電極板51、61、71との間についても、それらの圧着面において圧着されて密着性が向上する。   Further, by using the bolt / nut 90, the N-type semiconductor element 10 and the P-type semiconductor element 20 and the electrode plates 51, 61, 71 are crimped at their crimping surfaces, thereby improving the adhesion. At the same time, the heat exchange substrates 30 and 40 and the electrode plates 51, 61, and 71 are also crimped on their crimp surfaces to improve adhesion.

この結果、例えば、熱交換基板30、電極板61、P型半導体素子20、電極板71並びに熱交換基板40をそれぞれ経由する熱の伝わる経路と、電極板61、P型半導体素子20並びに電極板71をそれぞれ経由する電気が伝わる経路双方の伝導性を増すことができる。尚、熱交換基板40、電極板51、N型半導体素子10、電極板61並びに熱交換基板30をそれぞれ経由する熱の伝わる経路と、電極板51、N型半導体素子10並びに電極板61をそれぞれ経由する電気が伝わる経路についても同様のことがいえる。   As a result, for example, the heat transfer path passing through the heat exchange substrate 30, the electrode plate 61, the P-type semiconductor element 20, the electrode plate 71, and the heat exchange substrate 40, and the electrode plate 61, the P-type semiconductor element 20 and the electrode plate, respectively. The conductivity of both paths through which electricity passes through 71 can be increased. The heat transfer substrate 40, the electrode plate 51, the N-type semiconductor element 10, the electrode plate 61, and the heat transfer path passing through the heat exchange substrate 30, respectively, and the electrode plate 51, the N-type semiconductor element 10 and the electrode plate 61, respectively. The same can be said for the path through which electricity passes.

また、本発明の第1の実施形態の場合と同様に、電極板51、61、71の内部にバネ100を設ける場合(図8(a)参照)、ボルト91a等を電極板51、61、71及びN型半導体素子10及びP型半導体素子20の内部に上下方向(±Z方向)へと貫通させる場合(図8(b)参照)、ボルト91a等を電極板51、61、71及びN型半導体素子10及びP型半導体素子20の内部に上下方向(±Z方向)へと貫通させ且つ電極板51、61、71内部にバネ100を設ける場合(図8(c)参照)、導電性並びに熱伝導性を有した接着剤110a、110b、110dを使用する場合(図4参照)が採用され得る。それぞれ、本発明の第1の実施形態で説明した前述した理由に基づくものである。   Similarly to the case of the first embodiment of the present invention, when the spring 100 is provided inside the electrode plates 51, 61, 71 (see FIG. 8A), the bolt 91a or the like is attached to the electrode plates 51, 61, 71. 71 and the N-type semiconductor element 10 and the P-type semiconductor element 20 are penetrated in the vertical direction (± Z direction) (see FIG. 8B), the bolt 91a and the like are connected to the electrode plates 51, 61, 71 and N When the springs 100 are provided in the electrode plates 51, 61, 71 (see FIG. 8 (c)) while penetrating in the vertical direction (± Z direction) inside the type semiconductor element 10 and the P type semiconductor element 20 In addition, the case where the adhesives 110a, 110b, and 110d having thermal conductivity are used (see FIG. 4) can be employed. Each is based on the above-described reason described in the first embodiment of the present invention.

=== 第3の実施形態 ===
以下、図面を参照しつつ、本発明の第3の実施形態に係る熱電変換装置520の構成例について説明する。ここで、本発明の第3の実施形態は、電極板52、62、72を構成する複数の電極層に関して、1枚の電極板52、62、72を短手方向に沿って一回折り曲げてコの字状又は逆コの字状に形成した上で、当該コの字状又は逆コの字状の開口部140を、導電性の特質の他に弾性力を有した導電材120と、導電性並びに熱伝導性を確保するための接着剤130と、によって電気的導通させた場合である。尚、図9は、本実施形態の熱電変換装置520の構成例を説明するためのπ型構造の単位ユニットの側部断面図を示している。
=== Third Embodiment ===
Hereinafter, a configuration example of the thermoelectric conversion device 520 according to the third embodiment of the present invention will be described with reference to the drawings. Here, in the third embodiment of the present invention, one electrode plate 52, 62, 72 is bent once along the short direction with respect to the plurality of electrode layers constituting the electrode plates 52, 62, 72. After forming the U-shaped or inverted U-shape, the U-shaped or inverted U-shaped opening 140, in addition to the conductive characteristics, the conductive material 120 having elasticity, and This is a case where electrical conduction is achieved by the adhesive 130 for ensuring conductivity and thermal conductivity. FIG. 9 is a side sectional view of a unit unit having a π-type structure for explaining a configuration example of the thermoelectric conversion device 520 of the present embodiment.

ここで、電極板52、62、72の開口部140に介在して当該開口部140を電気的導通させる導電材120としては、電極板52、62、72の弾性力を更に向上させるために、円筒状又は角柱状の金属繊維織物や蛇腹(銅等)を採用することが好ましい。尚、導電材120は、電極板52、62、72やN型半導体素子10及びP型半導体素子20の断面形状に基づいて選定する必要がある。
また、導電材120を電極板52、62、72に接着させる接着材としては、図5に示した仕様の銀充填型セラミックペーストを採用することが好適である。
Here, in order to further improve the elastic force of the electrode plates 52, 62, 72 as the conductive material 120 that is interposed in the openings 140 of the electrode plates 52, 62, 72 and electrically connects the openings 140, A cylindrical or prismatic metal fiber fabric or bellows (copper or the like) is preferably employed. The conductive material 120 needs to be selected based on the cross-sectional shapes of the electrode plates 52, 62 and 72, the N-type semiconductor element 10 and the P-type semiconductor element 20.
Further, as an adhesive for adhering the conductive material 120 to the electrode plates 52, 62, 72, it is preferable to employ a silver-filled ceramic paste having the specifications shown in FIG.

本発明の第3実施形態では、図7に示した本発明の第2の実施形態と対比して、電極板52、62、72の折り曲げ箇所である図9に示すI’’部及びII’’部の弾性力の他に、導電材120の弾性力を有するので、N型半導体素子10及びP型半導体素子20の熱変形が更に吸収される、すなわち熱応力が更に緩和される。   In the third embodiment of the present invention, in contrast to the second embodiment of the present invention shown in FIG. 7, the portions I ″ and II ′ shown in FIG. 9 which are the bent portions of the electrode plates 52, 62, 72 are shown. Since it has the elastic force of the conductive material 120 in addition to the elastic force of the part, the thermal deformation of the N-type semiconductor element 10 and the P-type semiconductor element 20 is further absorbed, that is, the thermal stress is further relaxed.

また、ボルト・ナット90を使用することにより、N型半導体素子10及びP型半導体素子20と、電極板52、62、72との間が、それらの圧着面において圧着されて密着性が向上するとともに、熱交換基板30、40と電極板52、62、72との間についても、それらの圧着面において圧着されて密着性が向上する。   Further, by using the bolts and nuts 90, the N-type semiconductor element 10 and the P-type semiconductor element 20 and the electrode plates 52, 62, 72 are pressure-bonded at their pressure-bonding surfaces, thereby improving the adhesion. At the same time, the space between the heat exchange substrates 30 and 40 and the electrode plates 52, 62, and 72 is also crimped at their crimping surfaces to improve adhesion.

この結果、例えば、熱交換基板30、電極板62、P型半導体素子20、電極板72並びに熱交換基板40をそれぞれ経由する熱の伝わる経路と、電極板62、P型半導体素子20並びに電極板72をそれぞれ経由する電気が伝わる経路双方の伝導性を増すことができる。尚、熱交換基板40、電極板52、N型半導体素子10、電極板62並びに熱交換基板30をそれぞれ経由する熱の伝わる経路と、電極板52、N型半導体素子10並びに電極板62をそれぞれ経由する電気が伝わる経路についても同様のことがいえる。   As a result, for example, the heat transfer path through the heat exchange substrate 30, the electrode plate 62, the P-type semiconductor element 20, the electrode plate 72, and the heat exchange substrate 40, and the electrode plate 62, the P-type semiconductor element 20 and the electrode plate, respectively. It is possible to increase the conductivity of both the paths through which electricity passes through 72. The heat transfer substrate 40, the electrode plate 52, the N-type semiconductor element 10, the electrode plate 62, and the heat transfer path passing through the heat exchange substrate 30, respectively, and the electrode plate 52, the N-type semiconductor element 10 and the electrode plate 62 are respectively connected. The same can be said for the path through which electricity passes.

また、本発明の第1の実施形態の場合と同様に、電極板52、62、72の内部にバネ100を設ける場合(図10(a)参照)、ボルト91a等を電極板52、62、72及びN型半導体素子10及びP型半導体素子20の内部に上下方向(±Z方向)へと貫通させる場合(図10(b)参照)、ボルト91a等を電極板52、62、72及びN型半導体素子10及びP型半導体素子20の内部に上下方向(±Z方向)へと貫通させ且つ電極板52、62、72内部にバネ100を設ける場合(図10(c)参照)、導電性並びに熱伝導性を有した接着剤110a、110b、110dを使用する場合(図4参照)が採用され得る。それぞれ、本発明の第1の実施形態で説明した前述した理由に基づくものである。   Similarly to the case of the first embodiment of the present invention, when the spring 100 is provided inside the electrode plates 52, 62, 72 (see FIG. 10A), the bolt 91a or the like is attached to the electrode plates 52, 62, 72 and the N-type semiconductor element 10 and the P-type semiconductor element 20 are penetrated in the vertical direction (± Z direction) (see FIG. 10B), the bolt 91a and the like are connected to the electrode plates 52, 62, 72 and N When the springs 100 are provided in the electrode plates 52, 62, and 72 (see FIG. 10 (c)) through the vertical semiconductor elements 10 and P-type semiconductor elements 20 in the vertical direction (± Z direction). In addition, the case where the adhesives 110a, 110b, and 110d having thermal conductivity are used (see FIG. 4) can be employed. Each is based on the above-described reason described in the first embodiment of the present invention.

=== 第4の実施形態 ===
以下、図面を参照しつつ、本発明の第4の実施形態に係る熱電変換装置530の構成例について説明する。ここで、本発明の第4の実施形態は、電極板53、63、73を構成する複数の電極層に関して、複数枚の電極板53、63、73を熱交換基板30、40とそれぞれ対向させて並列配置させるとともに、当該複数枚の電極板53、63、73の間を、導電性の他に弾性力を確保するための伸縮可能な導電材121と、導電性並びに熱伝導性を確保するための接着剤131と、によって電気的導通させて形成される場合である。
=== Fourth Embodiment ===
Hereinafter, a configuration example of a thermoelectric conversion device 530 according to the fourth embodiment of the present invention will be described with reference to the drawings. Here, in the fourth embodiment of the present invention, the plurality of electrode plates 53, 63, 73 are opposed to the heat exchange substrates 30, 40 with respect to the plurality of electrode layers constituting the electrode plates 53, 63, 73, respectively. In addition to electrical conductivity, the conductive material 121 that can be expanded and contracted to secure elastic force, and electrical conductivity and thermal conductivity are secured between the electrode plates 53, 63, and 73. In this case, it is formed by electrical conduction with the adhesive 131 for the purpose.

尚、図11は、本実施形態の熱電変換装置530の構成例を説明するためのπ型構造の単位ユニットの側部断面図を示している。尚、図11に示す例は、熱交換基板30、40それぞれと対向させる複数枚の電極板53、63、73として、2枚の電極板(53a、53b)、(63a、63b)、(73a、73b)を採用した場合である。   FIG. 11 is a side sectional view of a unit unit having a π-type structure for explaining a configuration example of the thermoelectric conversion device 530 of the present embodiment. In the example shown in FIG. 11, two electrode plates (53a, 53b), (63a, 63b), (73a) are used as a plurality of electrode plates 53, 63, 73 opposed to the heat exchange substrates 30, 40, respectively. 73b).

ここで、2枚の電極板(53a、53b)、(63a、63b)、(73a、73b)の間にある空隙を電気的導通させる導電材121としては、本発明の第3の実施形態における導電材120と同様に、円筒状又は角柱状の金属繊維織物や、蛇腹(銅等)を採用することができる。また、導電材121を2枚の電極板(53a、53b)、(63a、63b)、(73a、73b)の間に接着させる接着材としては、図5に示した仕様の銀充填型セラミックペーストを採用することが好適である。   Here, the conductive material 121 for electrically conducting the gap between the two electrode plates (53a, 53b), (63a, 63b), (73a, 73b) is the same as in the third embodiment of the present invention. Similarly to the conductive material 120, a cylindrical or prismatic metal fiber fabric or a bellows (copper or the like) can be employed. As an adhesive for bonding the conductive material 121 between the two electrode plates (53a, 53b), (63a, 63b), (73a, 73b), a silver-filled ceramic paste having the specifications shown in FIG. It is preferable to adopt.

本発明の第4実施形態では、前述した本発明の第1乃至第3の実施形態と対比して、電極板53、63、73を複数枚使用する点で異なっており、また、電極板53、63、73として要求される弾性力を、伸縮可能な導電材121によって確保するものである。この結果、本発明の第1乃至第3の実施形態と同様に、N型半導体素子10及びP型半導体素子20の熱変形が吸収される、すなわち熱応力が緩和される。   The fourth embodiment of the present invention is different from the first to third embodiments of the present invention described above in that a plurality of electrode plates 53, 63, 73 are used. , 63, 73 to secure the elastic force required by the expandable conductive material 121. As a result, as in the first to third embodiments of the present invention, thermal deformation of the N-type semiconductor element 10 and the P-type semiconductor element 20 is absorbed, that is, thermal stress is alleviated.

また、ボルト・ナット90を使用することにより、N型半導体素子10及びP型半導体素子20と、電極板53、63、73との間が、それらの圧着面において圧着されて密着性が向上するとともに、熱交換基板30、40と電極板53、63、73との間についても、それらの圧着面において圧着されて密着性が向上する。   Further, by using the bolt / nut 90, the N-type semiconductor element 10 and the P-type semiconductor element 20 and the electrode plates 53, 63, 73 are pressure-bonded on their pressure-bonding surfaces, thereby improving the adhesion. At the same time, between the heat exchange substrates 30 and 40 and the electrode plates 53, 63 and 73, they are pressure-bonded at their pressure-bonding surfaces to improve adhesion.

この結果、例えば、熱交換基板30、電極板63、P型半導体素子20、電極板73並びに熱交換基板40をそれぞれ経由する熱の伝わる経路と、電極板63、P型半導体素子20並びに電極板73をそれぞれ経由する電気が伝わる経路双方の伝導性を増すことができる。尚、熱交換基板40、電極板53、N型半導体素子10、電極板63並びに熱交換基板30をそれぞれ経由する熱の伝わる経路と、電極板53、N型半導体素子10並びに電極板63をそれぞれ経由する電気が伝わる経路についても同様のことがいえる。   As a result, for example, the heat transfer path through the heat exchange substrate 30, the electrode plate 63, the P-type semiconductor element 20, the electrode plate 73 and the heat exchange substrate 40, and the electrode plate 63, the P-type semiconductor element 20 and the electrode plate It is possible to increase the conductivity of both paths through which electricity passes through 73. The heat transfer substrate 40, the electrode plate 53, the N-type semiconductor element 10, the electrode plate 63, and the heat transfer path passing through the heat-exchange substrate 30, respectively, and the electrode plate 53, the N-type semiconductor element 10 and the electrode plate 63, respectively. The same can be said for the path through which electricity passes.

また、本発明の第1の実施形態の場合と同様に、電極板53、63、73の内部にバネ100を設ける場合(図12(a)参照)、ボルト91a等を電極板53、63、73及びN型半導体素子10及びP型半導体素子20の内部に上下方向(±Z方向)へと貫通させる場合(図12(b)参照)、ボルト91a等を電極板53、63、73及びN型半導体素子10及びP型半導体素子20の内部に上下方向(±Z方向)へと貫通させ且つ電極板53、63、73内部にバネ100を設ける場合(図12(c)参照)、導電性並びに熱伝導性を有した接着剤110a、110b、110dを使用する場合(図4参照)が採用され得る。それぞれ、本発明の第1の実施形態で説明した前述した理由に基づくものである。   Similarly to the case of the first embodiment of the present invention, when the spring 100 is provided inside the electrode plates 53, 63, 73 (see FIG. 12A), the bolt 91a and the like are connected to the electrode plates 53, 63, 73 and the N-type semiconductor element 10 and the P-type semiconductor element 20 are penetrated in the vertical direction (± Z direction) (see FIG. 12B), the bolt 91a and the like are connected to the electrode plates 53, 63, 73 and N When the springs 100 are provided in the electrode plates 53, 63, 73 (see FIG. 12 (c)) while penetrating in the vertical direction (± Z direction) inside the p-type semiconductor element 10 and the p-type semiconductor element 20 In addition, the case where the adhesives 110a, 110b, and 110d having thermal conductivity are used (see FIG. 4) can be employed. Each is based on the above-described reason described in the first embodiment of the present invention.

< その他の実施形態 >
前述した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく変更、改良されるとともに、本発明にはその等価物も含まれる。
<Other embodiments>
The above-described embodiment is intended to facilitate understanding of the present invention, and is not intended to limit the present invention. The present invention is changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.

=== カスケード型 ===
前述した実施形態では、単体のN型半導体素子10及びP型半導体素子20を採用した熱電変換装置500、510、520、530の場合であったが、例えば、図13に示すように、高温側(+Z側)の熱交換基板30の側に設けた弾力性を有する電極板300と圧着される高温域仕様のNh型半導体素子200と、低温側(−Z側)の熱交換基板40の側に設けた弾力性を有する電極板310と圧着される低温域仕様のPc型半導体素子210と、が電流入力用の電極板320を介在させてボルト・ナット90により圧着させて成る第1のカスケード型半導体素子と、高温側の熱交換基板30の側に設けた弾力性を有する電極板300と圧着させる高温域仕様のPh型半導体素子220と、低温側の熱交換基板40の側に設けた弾力性を有する電極板310と圧着させる低温域仕様のNc型半導体素子230と、が電流出力用の電極板330を介在させてボルト・ナット90により圧着させて成る第2のカスケード型半導体素子と、を採用した熱電変換装置600であってもよい。
=== Cascade type ===
In the above-described embodiment, the case of the thermoelectric conversion devices 500, 510, 520, and 530 employing the single N-type semiconductor element 10 and the P-type semiconductor element 20 is used. For example, as shown in FIG. An Nh-type semiconductor element 200 having a high-temperature region specification that is pressure-bonded to an elastic electrode plate 300 provided on the (+ Z side) heat exchange substrate 30 side, and a low-temperature side (−Z side) heat exchange substrate 40 side. The first cascade is formed by bonding the electrode plate 310 having elasticity with the Pc type semiconductor element 210 having a low-temperature specification to be pressure-bonded by a bolt / nut 90 with the electrode plate 320 for current input interposed therebetween. Type semiconductor element, a high-temperature-specification Ph-type semiconductor element 220 to be pressure-bonded to the elastic electrode plate 300 provided on the high temperature side heat exchange substrate 30 side, and a low temperature side heat exchange substrate 40 side. Elasticity Nc type semiconductor element 230 having a low temperature range specification to be bonded to electrode plate 310 to be bonded, and a second cascade type semiconductor element formed by pressure bonding with bolt / nut 90 with electrode plate 330 for current output interposed therebetween The thermoelectric conversion device 600 may be used.

尚、「Nh型半導体素子及びPh型半導体素子」とは、高温域において熱電変換効率が相対的に高いN型及びP型半導体素子をそれぞれ意味し、「Nc型半導体素子及びPc型半導体素子」とは、低温域において熱電変換効率が相対的に高いN型及びP型半導体素子をそれぞれ意味する。また、電極板300、310は、図1、図2等に示した第1の実施形態に係る電極板50、60と同様に、当該電極板300、310を短手方向に沿って少なくとも二回折り曲げて渦巻き状に形成されることで弾力性を獲得したものであるが、これに限られず、前述した各種実施形態を採用することができる。   “Nh-type semiconductor element and Ph-type semiconductor element” means N-type and P-type semiconductor elements having relatively high thermoelectric conversion efficiency in a high temperature range, respectively. “Nc-type semiconductor element and Pc-type semiconductor element” Means an N-type semiconductor device and a P-type semiconductor device each having relatively high thermoelectric conversion efficiency in a low temperature range. In addition, the electrode plates 300 and 310 are arranged at least twice along the short direction in the same manner as the electrode plates 50 and 60 according to the first embodiment shown in FIGS. Although the elasticity is obtained by being bent and formed into a spiral shape, the present invention is not limited to this, and the various embodiments described above can be employed.

ここで、熱電変換装置600の高温側に着目すれば、電流Ihは、電極板320、Nh型半導体素子200、電極板300、Ph型半導体素子220、電極板330の順に流れる(図13の矢印参照)。一方、熱電変換装置600の低温側に着目すれば、電流Icは、電極板320、Pc型半導体素子210、電極板310、Nc型半導体素子230、電極板330の順に流れる(図13の矢印参照)。すなわち、電極板320を流れる電流Ih+Icのうち、熱電変換装置600の高温側には、熱交換基板30における高温と、電極板320と電極板330の間における中間温度と、の温度差に基づく起電力が発生して電流Ihが流れる一方で、熱電変換装置600の低温側には、電極板320と電極板330の間における中間温度と、熱交換基板40における低温との温度差に基づく起電力が発生して電流Icが流れる。   Here, focusing on the high temperature side of the thermoelectric conversion device 600, the current Ih flows in the order of the electrode plate 320, the Nh type semiconductor element 200, the electrode plate 300, the Ph type semiconductor element 220, and the electrode plate 330 (arrows in FIG. 13). reference). On the other hand, focusing on the low temperature side of the thermoelectric conversion device 600, the current Ic flows in the order of the electrode plate 320, the Pc type semiconductor element 210, the electrode plate 310, the Nc type semiconductor element 230, and the electrode plate 330 (see the arrow in FIG. 13). ). That is, of the current Ih + Ic flowing through the electrode plate 320, the high temperature side of the thermoelectric conversion device 600 has an origin based on the temperature difference between the high temperature in the heat exchange substrate 30 and the intermediate temperature between the electrode plate 320 and the electrode plate 330. While electric power is generated and current Ih flows, an electromotive force based on a temperature difference between the intermediate temperature between the electrode plate 320 and the electrode plate 330 and the low temperature of the heat exchange substrate 40 is provided on the low temperature side of the thermoelectric conversion device 600. Occurs and current Ic flows.

このように、カスケード半導体素子を採用した熱電変換装置600の場合、半導体素子200、210、220、230それぞれのZ軸方向の長さが相対的に短くなり、電気抵抗が小さくなるために、ジュール発熱による熱損失が低減される。この結果、熱電変換装置600の熱電変換効率がより向上することなる。さらに、熱電変換装置600は、弾性力に富んだ電極板300、310と、ボルト・ナット90による圧着によって電気的伝導性並びに熱伝導性をともに向上させる仕組みによって、熱交換基板30、40の熱膨張又は熱収縮に起因した半導体素子200、210、220、230の熱応力を緩和させつつ、電気的伝導性並びに熱伝導性を同時に確保することができる。   As described above, in the case of the thermoelectric conversion device 600 employing the cascade semiconductor element, the length in the Z-axis direction of each of the semiconductor elements 200, 210, 220, and 230 is relatively short, and the electrical resistance is small. Heat loss due to heat generation is reduced. As a result, the thermoelectric conversion efficiency of the thermoelectric conversion device 600 is further improved. Further, the thermoelectric conversion device 600 uses the electrode plates 300 and 310, which are rich in elasticity, and the mechanism for improving both the electrical conductivity and the thermal conductivity by pressure bonding with the bolts and nuts 90, so that the heat of the heat exchange substrates 30 and 40 is increased. While relaxing the thermal stress of the semiconductor elements 200, 210, 220, and 230 due to expansion or thermal contraction, electrical conductivity and thermal conductivity can be secured at the same time.

また、図13に示す以外にも、図14に示すように、高温側の熱交換基板30の側に設けた電極板710と圧着される高温域仕様のPh型半導体素子220と、低温側の熱交換基板40の側に設けた電極板720と圧着される低温域仕様のPc型半導体素子210と、が導電性及び熱伝導性を具備した接着材740を介して直列接続され且つボルト・ナット90により圧着させて成る半導体素子と、高温側の熱交換基板30の側に設けた電極板710と圧着させる高温域仕様のNh型半導体素子200と、低温側の熱交換基板40の側に設けた電極板730と圧着させる低温域仕様のNc型半導体素子230と、が導電性及び熱伝導性を具備した接着材740を介して直列接続され且つボルト・ナット90により圧着させて成る半導体素子と、を用いた熱電変換装置700であってもよい。尚、電極板710、720、730は、図13に示した電極板300、31050、60と同様に、当該電極板710、720、730を短手方向に沿って少なくとも二回折り曲げて渦巻き状に形成されることで弾力性を獲得したものであるが、これに限られず、前述した各種実施形態を採用することができる。当該熱電変換装置700もまた、熱交換基板30、40の熱膨張又は熱収縮に起因した半導体素子200、210、220、230の熱応力を緩和させつつ、電気的伝導性並びに熱伝導性を同時に確保することができる。   In addition to the configuration shown in FIG. 13, as shown in FIG. 14, a Ph-type semiconductor element 220 having a high temperature range specification to be crimped to an electrode plate 710 provided on the high temperature side heat exchange substrate 30 side, and a low temperature side An electrode plate 720 provided on the side of the heat exchange substrate 40 and a low-temperature region specification Pc-type semiconductor element 210 to be pressure-bonded are connected in series via an adhesive 740 having conductivity and thermal conductivity, and are bolts and nuts. 90, a semiconductor element formed by pressure bonding, an electrode plate 710 provided on the high-temperature side heat exchange substrate 30 side, a high-temperature region specification Nh-type semiconductor element 200 to be pressure-bonded, and a low-temperature side heat exchange substrate 40 side. An Nc type semiconductor element 230 having a low temperature range specification to be bonded to the electrode plate 730, and a semiconductor element formed by being connected in series via an adhesive 740 having electrical conductivity and thermal conductivity and being crimped by a bolt and nut 90 It may be a thermoelectric conversion apparatus 700 was used. The electrode plates 710, 720, and 730 are spirally formed by bending the electrode plates 710, 720, and 730 at least twice along the short direction, like the electrode plates 300, 31050, and 60 shown in FIG. Although it has acquired elasticity by being formed, it is not restricted to this, The various embodiment mentioned above is employable. The thermoelectric conversion device 700 also reduces electrical stress of the semiconductor elements 200, 210, 220, and 230 due to thermal expansion or contraction of the heat exchange substrates 30 and 40, and simultaneously achieves electrical conductivity and thermal conductivity. Can be secured.

=== 単位ユニット毎の分離 ===
前述した熱電変換装置500、510、520、530、600は、1枚の高温側の熱交換基板30と、1枚の低温側の熱交換基板40との間に設けられているが、これに限定されるものではなく、これらの熱交換基板30、40は、単位ユニット毎に分離してもよい。この場合、分離された熱交換基板30、40及び単位ユニットを新たな単位とすれば、本実施形態の熱交換器の部分的な修理や変更等に対して柔軟な対応が可能となる。
=== Separation by unit ===
The above-described thermoelectric conversion devices 500, 510, 520, 530, and 600 are provided between one high-temperature side heat exchange substrate 30 and one low-temperature side heat exchange substrate 40. However, the heat exchange substrates 30 and 40 may be separated for each unit. In this case, if the separated heat exchange boards 30 and 40 and the unit unit are used as new units, it is possible to flexibly cope with partial repair or change of the heat exchanger of the present embodiment.

=== 同心円形 ===
前述した熱電変換装置500、510、520、530、600は、平面形状をなし対向する熱交換基板30、40の間に設けられたものであるが、これに限定されるものではない。熱電変換装置500、510、520、530、600は、例えば、蒸気配管の外周面を高温側の熱交換基板30とし、その更に外周面を低温側の熱交換基板40とする同心円形を呈するものでもよい。
=== Concentric circles ===
The above-described thermoelectric conversion devices 500, 510, 520, 530, and 600 are provided between the heat exchange substrates 30 and 40 facing each other in a planar shape, but are not limited thereto. The thermoelectric converters 500, 510, 520, 530, and 600 have, for example, concentric circles in which the outer peripheral surface of the steam pipe is the high temperature side heat exchange substrate 30 and the outer peripheral surface is the low temperature side heat exchange substrate 40. But you can.

=== 熱電冷却装置===
前述した熱電変換装置500、510、520、530、600は、ゼーベック効果を利用した熱電発電装置の場合であったが、ペルチェ効果を利用した熱電冷却装置であってもよい。尚、この場合、熱電変換装置500、510、520、530、600に電流を供給する所定の電源が別途必要となる。
=== Thermoelectric cooling device ===
The thermoelectric conversion devices 500, 510, 520, 530, and 600 described above are cases of thermoelectric power generation devices that use the Seebeck effect, but may be thermoelectric cooling devices that use the Peltier effect. In this case, a predetermined power source for supplying current to the thermoelectric converters 500, 510, 520, 530, and 600 is separately required.

本発明の第1の実施形態に係る熱電変換装置の構成例を説明するための単位ユニットの側部断面図である。It is side part sectional drawing of the unit unit for demonstrating the structural example of the thermoelectric conversion apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱電変換装置の構成例によって半導体素子の選択の自由度が向上することを説明するため図である。It is a figure for demonstrating that the freedom degree of selection of a semiconductor element improves with the structural example of the thermoelectric conversion apparatus which concerns on the 1st Embodiment of this invention. (a)〜(c)は、本発明の第1の実施形態に係る熱電変換装置のその他の構成例を説明するための単位ユニットの側部断面図の一部である。(A)-(c) is a part of side sectional drawing of the unit unit for demonstrating the other structural example of the thermoelectric conversion apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱電変換装置のその他の構成例を説明するための単位ユニットの側部断面図の一部である。It is a part of side sectional drawing of the unit unit for demonstrating the other structural example of the thermoelectric conversion apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る接着材の仕様を説明するための図である。It is a figure for demonstrating the specification of the adhesive material which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱電変換装置のその他の構成例を説明するための単位ユニットの側部断面図である。It is side part sectional drawing of the unit unit for demonstrating the other structural example of the thermoelectric conversion apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る熱電変換装置の構成例を説明するための単位ユニットの側部断面図である。It is side part sectional drawing of the unit unit for demonstrating the structural example of the thermoelectric conversion apparatus which concerns on the 2nd Embodiment of this invention. (a)〜(c)は、本発明の第2の実施形態に係る熱電変換装置のその他の構成例を説明するための単位ユニットの側部断面図の一部である。(A)-(c) is a part of side sectional drawing of the unit unit for demonstrating the other structural example of the thermoelectric conversion apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る熱電変換装置の構成例を説明するための単位ユニットの側部断面図である。It is side part sectional drawing of the unit unit for demonstrating the structural example of the thermoelectric conversion apparatus which concerns on the 3rd Embodiment of this invention. (a)〜(c)は、本発明の第3の実施形態に係る熱電変換装置のその他の構成例を説明するための単位ユニットの側部断面図の一部である。(A)-(c) is a part of side sectional drawing of the unit unit for demonstrating the other structural example of the thermoelectric conversion apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る熱電変換装置の構成例を説明するための単位ユニットの側部断面図である。It is side part sectional drawing of the unit unit for demonstrating the structural example of the thermoelectric conversion apparatus which concerns on the 4th Embodiment of this invention. (a)〜(c)は、本発明の第4の実施形態に係る熱電変換装置のその他の構成例を説明するための単位ユニットの側部断面図の一部である。(A)-(c) is a part of side sectional drawing of the unit unit for demonstrating the other structural example of the thermoelectric conversion apparatus which concerns on the 4th Embodiment of this invention. 本発明に係る熱電変換装置のその他の構成例を説明するための単位ユニットの側部断面図である。It is side part sectional drawing of the unit unit for demonstrating the other structural example of the thermoelectric conversion apparatus which concerns on this invention. 本発明に係る熱電変換装置のその他の構成例を説明するための単位ユニットの側部断面図である。It is side part sectional drawing of the unit unit for demonstrating the other structural example of the thermoelectric conversion apparatus which concerns on this invention. 従来の熱電変換装置の構成例を説明するための単位ユニットの側部断面図である。It is side part sectional drawing of the unit unit for demonstrating the structural example of the conventional thermoelectric conversion apparatus.

符号の説明Explanation of symbols

11 貫通孔
120、121 導電材
110a〜110d、 接着剤
130、131 接着剤
140 開口部
10、910 N型半導体素子
20、920 P型半導体素子
200 Nh型半導体素子
210 Pc型半導体素子
220 Ph型半導体素子
230 Nc型半導体素子
30、40、901、902 熱交換基板
31、41、32、42 座ぐり
300、310、320、330 電極板
50〜53、60〜63、70〜73 電極板
50a〜50c、60a〜60c、70a〜70c 電極層
500、510、520、530 熱電変換装置
600、700、900 熱電変換装置
710、720、730 電極板
740 接着剤
80 固体潤滑性物質
90 ボルト・ナット
90a、91a ボルト
90b ナット
95、100 バネ
930、940、950 電極板
980 接着剤
990 半田(又は銀ロウ)
DESCRIPTION OF SYMBOLS 11 Through-hole 120, 121 Conductive material 110a-110d, Adhesive 130, 131 Adhesive 140 Opening 10, 910 N-type semiconductor element 20, 920 P-type semiconductor element 200 Nh-type semiconductor element 210 Pc-type semiconductor element 220 Ph-type semiconductor Element 230 Nc type semiconductor element 30, 40, 901, 902 Heat exchange substrate 31, 41, 32, 42 Counterbore 300, 310, 320, 330 Electrode plates 50-53, 60-63, 70-73 Electrode plates 50a-50c 60a-60c, 70a-70c Electrode layer 500, 510, 520, 530 Thermoelectric converter 600, 700, 900 Thermoelectric converter 710, 720, 730 Electrode plate 740 Adhesive 80 Solid lubricant 90 Bolt / nut 90a, 91a Bolt 90b Nut 95, 100 Spring 930, 940, 950 Electrode plate 80 adhesive 990 solder (or silver solder)

Claims (17)

対向する二枚の熱交換基板の間に並設される互いに極性の異なった少なくとも一対の第1の半導体素子及び第2の半導体素子と、
前記二枚の熱交換基板のうち高温側となる一方の前記熱交換基板と前記第1及び前記第2の半導体素子との間と、前記二枚の熱交換基板のうち低温側となる他方の前記熱交換基板と前記第1及び前記第2の半導体素子との間にそれぞれ介在し、前記第1及び前記第2の半導体素子を交互に直列接続していく弾性力を有した電極板と、
前記一方及び前記他方の熱交換基板の間に配設されて前記一方及び前記他方の熱交換基板を支持する棒部材と、
前記第1及び前記第2の半導体素子と前記電極板とを圧着すべく前記一方及び前記他方の熱交換基板の外側より前記棒部材の両端と結合される圧着部材と、
を有することを特徴とする熱電変換装置。
At least a pair of first semiconductor elements and second semiconductor elements having different polarities arranged in parallel between two opposing heat exchange substrates;
Of the two heat exchange substrates, between the one heat exchange substrate on the high temperature side and the first and second semiconductor elements, and the other of the two heat exchange substrates on the low temperature side. An electrode plate having an elastic force interposed between the heat exchange substrate and the first and second semiconductor elements, respectively, and alternately connecting the first and second semiconductor elements in series;
A rod member disposed between the one and the other heat exchange substrate and supporting the one and the other heat exchange substrate;
A pressure-bonding member coupled to both ends of the rod member from the outside of the one and the other heat exchange substrates to pressure-bond the first and second semiconductor elements and the electrode plate;
A thermoelectric conversion device comprising:
前記棒部材は、前記対向する熱交換基板の間で、前記第1及び前記第2の半導体素子並びに当該第1及び第2の半導体素子に圧着される前記電極板に対して、並列に配設されること、
を特徴とする請求項1に記載の熱電変換装置。
The rod member is disposed in parallel with the first and second semiconductor elements and the electrode plate to be crimped to the first and second semiconductor elements between the opposing heat exchange substrates. Being
The thermoelectric conversion device according to claim 1.
前記一方の熱交換基板から前記他方の熱交換基板まで前記第1の半導体素子及び当該第1の半導体素子に圧着させる前記電極板を介して貫通し、前記一方の熱交換基板から前記他方の熱交換基板まで前記第2の半導体素子及び当該第2の半導体素子に圧着させる前記電極板を介して貫通する貫通孔を有しており、
前記棒部材は、前記貫通孔へと挿入されること、
を特徴とする請求項1に記載の熱電変換装置。
The one heat exchange substrate to the other heat exchange substrate penetrates through the first semiconductor element and the electrode plate to be crimped to the first semiconductor element, and the one heat exchange substrate to the other heat exchange substrate. Having a through-hole penetrating through the second semiconductor element and the electrode plate to be crimped to the second semiconductor element up to the replacement substrate;
The rod member is inserted into the through hole;
The thermoelectric conversion device according to claim 1.
前記貫通孔は、前記挿入された棒部材との間に隙間を生じさせる大きさであること、を特徴とする請求項3に記載の熱電変換装置。   The thermoelectric conversion device according to claim 3, wherein the through hole has a size that creates a gap with the inserted rod member. 前記電極板に介在させる弾性部材を更に有すること、を特徴とする請求項2又は3に記載の熱電変換装置。   The thermoelectric conversion device according to claim 2, further comprising an elastic member interposed between the electrode plates. 前記熱交換基板と前記電極板との間は、絶縁性潤滑材で絶縁されること、を特徴とする請求項1乃至5のいずれかに記載の熱電変換装置。   The thermoelectric conversion device according to any one of claims 1 to 5, wherein the heat exchange substrate and the electrode plate are insulated by an insulating lubricant. 前記第1及び前記第2の半導体素子と当該第1及び第2の半導体素子に圧着される前記電極板との間は、導電性並びに熱伝導性を有した接着材で接着されること、を特徴とする請求項1乃至6のいずれかに記載の熱電変換装置。   The first and second semiconductor elements and the electrode plate to be crimped to the first and second semiconductor elements are bonded with an adhesive having conductivity and thermal conductivity. The thermoelectric conversion device according to any one of claims 1 to 6, wherein 前記熱交換基板と前記絶縁性潤滑材との間と、前記絶縁性潤滑材と前記電極板との間は、導電性並びに熱伝導性を有した接着材によって接着されること、を特徴とする請求項6又は7に記載の熱電変換装置。   The heat exchange substrate and the insulating lubricant, and the insulating lubricant and the electrode plate are bonded by an adhesive having conductivity and heat conductivity. The thermoelectric conversion apparatus according to claim 6 or 7. 前記接着剤は、銀充填型セラミックペーストであること、を特徴とする請求項7又は8に記載の熱電変換装置。   The thermoelectric conversion device according to claim 7 or 8, wherein the adhesive is a silver-filled ceramic paste. 前記電極板は、当該電極板を短手方向に沿って少なくとも一回折り曲げて形成されること、を特徴とする請求項1乃至9のいずれかに記載の熱電変換装置。   The thermoelectric conversion device according to any one of claims 1 to 9, wherein the electrode plate is formed by bending the electrode plate at least once along a short direction. 前記電極板は、当該電極板を短手方向に沿って少なくとも二回折り曲げて渦巻き状に形成されること、を特徴とする請求項10に記載の熱電変換装置。   The thermoelectric conversion device according to claim 10, wherein the electrode plate is formed in a spiral shape by bending the electrode plate at least twice along the short direction. 前記電極板は、当該電極板を短手方向に沿って一回折り曲げてコの字状又は逆コの字状に形成されること、を特徴とする請求項10に記載の熱電変換装置。   The thermoelectric conversion device according to claim 10, wherein the electrode plate is formed in a U shape or an inverted U shape by bending the electrode plate once along the short direction. 前記電極板の前記コの字状又は前記逆コの字状の開口部に、弾性力を有した導電材を介在させること、を特徴とする請求項12に記載の熱電変換装置。   The thermoelectric conversion device according to claim 12, wherein a conductive material having an elastic force is interposed in the U-shaped opening or the inverted U-shaped opening of the electrode plate. 前記電極板は、複数の前記電極板を前記熱交換基板と対向させて並列配置させたものであり、当該複数の電極板の間に弾力性を有した導電材を介在させること、を特徴とする請求項1乃至9のいずれかに記載の熱電変換装置。   The electrode plate is formed by arranging a plurality of the electrode plates facing the heat exchange substrate in parallel, and a conductive material having elasticity is interposed between the plurality of electrode plates. Item 10. The thermoelectric conversion device according to any one of Items 1 to 9. 前記導電材は、金属繊維織物又は蛇腹であること、を特徴とする請求項13又は14に記載の熱電変換装置。   The thermoelectric conversion device according to claim 13 or 14, wherein the conductive material is a metal fiber fabric or a bellows. 前記第1の半導体素子は、前記一方の前記熱交換基板の側に設けた一方の前記電極板と圧着される第1のN型半導体素子と、前記他方の前記熱交換基板の側に設けた他方の前記電極板と圧着される第1のP型半導体素子と、が電流入力用の電極板を介在させて前記圧着部材により圧着させて成る第1のカスケード型半導体素子であり、
前記第2の半導体素子は、前記一方の熱交換基板の側に設けた一方の前記電極板と圧着させる第2のP型半導体素子と、前記他方の熱交換基板の側に設けた他方の前記電極板と圧着させる第2のN型半導体素子と、が電流出力用の電極板を介在させて前記圧着部材により圧着させて成る第2のカスケード型半導体素子であり、
前記第1のN型半導体素子及び前記第2のP型半導体素子の熱電変換効率は、前記高温側において前記低温側よりも高く、
前記第2のP型半導体素子及び前記第1のN型半導体素子の熱電変換効率は、前記低温側において前記高温側よりも高い、
ことを特徴とする請求項1乃至15のいずれかに記載の熱電変換装置。
The first semiconductor element is provided on the side of the one heat exchange substrate, the first N-type semiconductor element that is pressure-bonded to the one electrode plate, and the other side of the heat exchange substrate. The first P-type semiconductor element that is crimped to the other electrode plate is a first cascade-type semiconductor element that is crimped by the crimping member with an electrode plate for current input interposed therebetween,
The second semiconductor element includes a second P-type semiconductor element to be pressure-bonded to one of the electrode plates provided on the one heat exchange substrate side, and the other of the second heat exchange substrate provided on the other heat exchange substrate side. A second N-type semiconductor element to be pressure-bonded to the electrode plate is a second cascade-type semiconductor element formed by pressure-bonding with the pressure-bonding member with an electrode plate for current output interposed therebetween,
The thermoelectric conversion efficiency of the first N-type semiconductor element and the second P-type semiconductor element is higher on the high temperature side than on the low temperature side,
The thermoelectric conversion efficiency of the second P-type semiconductor element and the first N-type semiconductor element is higher on the low temperature side than on the high temperature side,
The thermoelectric conversion device according to any one of claims 1 to 15, wherein
前記第1の半導体素子は、前記一方の前記熱交換基板の側に設けた一方の前記電極板と圧着される第1のP型半導体素子と、前記他方の前記熱交換基板の側に設けた他方の前記電極板と圧着される第2のP型半導体素子と、が直列接続され、且つ、前記圧着部材により圧着させて成る半導体素子であり、
前記第2の半導体素子は、前記一方の熱交換基板の側に設けた一方の前記電極板と圧着させる第1のN型半導体素子と、前記他方の熱交換基板の側に設けた他方の前記電極板と圧着させる第2のN型半導体素子と、が直列接続され、且つ、前記圧着部材により圧着されて成る半導体素子であり、
前記第1のP型半導体素子及び前記第1のN型半導体素子の熱電変換効率は、前記高温側において前記低温側よりも高く、
前記第2のP型半導体素子及び前記第2のN型半導体素子の熱電変換効率は、前記低温側において前記高温側よりも高い、
ことを特徴とする請求項1乃至15のいずれかに記載の熱電変換装置。

The first semiconductor element is provided on the side of the one heat exchange substrate, the first P-type semiconductor element that is pressure-bonded to the one electrode plate, and the other side of the heat exchange substrate. A second P-type semiconductor element to be pressure-bonded to the other electrode plate, and a semiconductor element formed by pressure-bonding with the pressure-bonding member.
The second semiconductor element includes a first N-type semiconductor element to be pressure-bonded to one of the electrode plates provided on the one heat exchange substrate side, and the other of the second semiconductor element provided on the other heat exchange substrate side. A second N-type semiconductor element to be pressure-bonded to the electrode plate, and a semiconductor element formed by being pressure-bonded by the pressure-bonding member in series.
The thermoelectric conversion efficiency of the first P-type semiconductor element and the first N-type semiconductor element is higher on the high temperature side than on the low temperature side,
The thermoelectric conversion efficiency of the second P-type semiconductor element and the second N-type semiconductor element is higher on the low temperature side than on the high temperature side,
The thermoelectric conversion device according to any one of claims 1 to 15, wherein

JP2006182066A 2006-06-30 2006-06-30 Thermoelectric conversion device Pending JP2008010764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006182066A JP2008010764A (en) 2006-06-30 2006-06-30 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006182066A JP2008010764A (en) 2006-06-30 2006-06-30 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2008010764A true JP2008010764A (en) 2008-01-17

Family

ID=39068680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006182066A Pending JP2008010764A (en) 2006-06-30 2006-06-30 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2008010764A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051085A1 (en) * 2007-10-15 2009-04-23 Sumitomo Chemical Company, Limited Thermoelectric conversion module
WO2009093653A1 (en) * 2008-01-24 2009-07-30 Aruze Corp. Thermoelectric conversion module and connector for thermoelectric conversion element
WO2010041725A1 (en) * 2008-10-07 2010-04-15 住友化学株式会社 Thermoelectric conversion module and thermoelectric conversion element
JP2011014737A (en) * 2009-07-02 2011-01-20 Fujitsu Ltd Thermoelectric conversion module
WO2011042263A1 (en) * 2009-10-09 2011-04-14 O-Flexx Technologies Gmbh Module comprising a plurality of thermoelectric elements
JP2011124375A (en) * 2009-12-10 2011-06-23 Toshiba Corp Thermoelectric device and thermoelectric module
KR101068647B1 (en) 2009-03-13 2011-09-28 한국기계연구원 Thermoelectric energy conversion module having spring structure
JPWO2010010783A1 (en) * 2008-07-22 2012-01-05 コニカミノルタホールディングス株式会社 Thermoelectric conversion element
JP2012109335A (en) * 2010-11-16 2012-06-07 Nec Corp Thermoelectric conversion module
WO2013051691A1 (en) * 2011-10-05 2013-04-11 株式会社Kelk Thermoelectric generator
WO2015092608A1 (en) * 2013-12-17 2015-06-25 International Business Machines Corporation Thermoelectric device
KR101592441B1 (en) 2011-10-05 2016-02-05 가부시키가이샤 케르쿠 Thermoelectric generator
JP2016127278A (en) * 2015-01-05 2016-07-11 ザ・ボーイング・カンパニーThe Boeing Company Thermoelectric generator
EP3226314A3 (en) * 2016-03-31 2017-10-25 Hitachi Metals, Ltd. Stress relaxation structure and thermoelectric conversion module
JP2018098479A (en) * 2016-12-15 2018-06-21 財團法人工業技術研究院Industrial Technology Research Institute Thermoelectric module
JP2019062054A (en) * 2017-09-26 2019-04-18 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module
JP2019169702A (en) * 2018-03-21 2019-10-03 アールエムティー リミテッド Method for manufacturing thermoelectric microcooler (variant)
CN111156060A (en) * 2018-11-08 2020-05-15 瑞莱国际开发股份有限公司 Combined type environment-friendly thermal power generation and energy storage system
WO2023145185A1 (en) * 2022-01-26 2023-08-03 株式会社テイエルブイ Thermoelectric power generation device and steam system

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009051085A1 (en) * 2007-10-15 2009-04-23 Sumitomo Chemical Company, Limited Thermoelectric conversion module
WO2009093653A1 (en) * 2008-01-24 2009-07-30 Aruze Corp. Thermoelectric conversion module and connector for thermoelectric conversion element
JPWO2010010783A1 (en) * 2008-07-22 2012-01-05 コニカミノルタホールディングス株式会社 Thermoelectric conversion element
WO2010041725A1 (en) * 2008-10-07 2010-04-15 住友化学株式会社 Thermoelectric conversion module and thermoelectric conversion element
JP2010093009A (en) * 2008-10-07 2010-04-22 Sumitomo Chemical Co Ltd Thermoelectric transduction module and thermoelectric transducer
CN102187488A (en) * 2008-10-07 2011-09-14 住友化学株式会社 Thermoelectric conversion module and thermoelectric conversion element
KR101068647B1 (en) 2009-03-13 2011-09-28 한국기계연구원 Thermoelectric energy conversion module having spring structure
JP2011014737A (en) * 2009-07-02 2011-01-20 Fujitsu Ltd Thermoelectric conversion module
WO2011042263A1 (en) * 2009-10-09 2011-04-14 O-Flexx Technologies Gmbh Module comprising a plurality of thermoelectric elements
DE102010054070B4 (en) * 2009-12-10 2017-06-22 Kabushiki Kaisha Toshiba Thermoelectric device and thermoelectric module
US8895833B2 (en) 2009-12-10 2014-11-25 Kabushiki Kaisha Toshiba Thermoelectric device and thermoelectric module
JP2011124375A (en) * 2009-12-10 2011-06-23 Toshiba Corp Thermoelectric device and thermoelectric module
JP2012109335A (en) * 2010-11-16 2012-06-07 Nec Corp Thermoelectric conversion module
WO2013051691A1 (en) * 2011-10-05 2013-04-11 株式会社Kelk Thermoelectric generator
JP2013080883A (en) * 2011-10-05 2013-05-02 Kelk Ltd Thermoelectric generator
KR20140051416A (en) * 2011-10-05 2014-04-30 가부시키가이샤 케르쿠 Thermoelectric generator
US20140216516A1 (en) * 2011-10-05 2014-08-07 Kelk Ltd. Thermoelectric generator
KR101589987B1 (en) 2011-10-05 2016-01-29 가부시키가이샤 케르쿠 Thermoelectric generator
KR101592441B1 (en) 2011-10-05 2016-02-05 가부시키가이샤 케르쿠 Thermoelectric generator
GB2535940A (en) * 2013-12-17 2016-08-31 Ibm Thermoelectric device
WO2015092608A1 (en) * 2013-12-17 2015-06-25 International Business Machines Corporation Thermoelectric device
GB2535940B (en) * 2013-12-17 2018-06-27 Ibm Thermoelectric device
JP2016127278A (en) * 2015-01-05 2016-07-11 ザ・ボーイング・カンパニーThe Boeing Company Thermoelectric generator
EP3226314A3 (en) * 2016-03-31 2017-10-25 Hitachi Metals, Ltd. Stress relaxation structure and thermoelectric conversion module
JP2018098479A (en) * 2016-12-15 2018-06-21 財團法人工業技術研究院Industrial Technology Research Institute Thermoelectric module
US10648708B2 (en) 2016-12-15 2020-05-12 Industrial Technology Research Institute Thermoelectric module
US10955174B2 (en) 2016-12-15 2021-03-23 Industrial Technology Research Institute Thermoelectric module
JP2019062054A (en) * 2017-09-26 2019-04-18 三菱マテリアル株式会社 Thermoelectric conversion cell and thermoelectric conversion module
JP2019169702A (en) * 2018-03-21 2019-10-03 アールエムティー リミテッド Method for manufacturing thermoelectric microcooler (variant)
CN111156060A (en) * 2018-11-08 2020-05-15 瑞莱国际开发股份有限公司 Combined type environment-friendly thermal power generation and energy storage system
WO2023145185A1 (en) * 2022-01-26 2023-08-03 株式会社テイエルブイ Thermoelectric power generation device and steam system

Similar Documents

Publication Publication Date Title
JP2008010764A (en) Thermoelectric conversion device
JP2007073889A (en) Thermoelectric conversion device
US9006557B2 (en) Systems and methods for reducing current and increasing voltage in thermoelectric systems
US20140261608A1 (en) Thermal Interface Structure for Thermoelectric Devices
JP4728745B2 (en) Thermoelectric device and thermoelectric module
JP5065077B2 (en) Thermoelectric generator
US20060042675A1 (en) Thermoelectric device and method of manufacturing the same
US9349934B2 (en) Method for manufacturing a thermoelectric device, especially intended to generate an electrical current in an automotive vehicle
JP2007035974A (en) Thermoelectric converter
JP2007073890A (en) Thermoelectric conversion device
JP2011029295A (en) Thermoelectric conversion module and method of manufacturing the same
JP6390546B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP2007035907A (en) Thermoelectric module
JP2009081286A (en) Thermoelectric conversion module
JP2010287729A (en) Heating/cooling test apparatus
JP3472593B2 (en) Thermoelectric device
JP6641858B2 (en) Thermoelectric conversion module, thermoelectric converter, and method of manufacturing thermoelectric conversion module
JP2003179274A (en) Thermoelectric converting device
JP6592996B2 (en) Thermoelectric generator
JP5761123B2 (en) Thermoelectric converter
JP2017069443A (en) Thermoelectric conversion module
US20130228205A1 (en) Apparatus for reversibly converting thermal energy to electric energy
JP5141434B2 (en) Thermoelectric module
JP2017041620A (en) Thermoelectric converter and thermoelectric conversion system
JP2014110245A (en) Thermoelectric conversion device