WO2023143300A1 - 一种切片选择方法、***及相关装置 - Google Patents

一种切片选择方法、***及相关装置 Download PDF

Info

Publication number
WO2023143300A1
WO2023143300A1 PCT/CN2023/072861 CN2023072861W WO2023143300A1 WO 2023143300 A1 WO2023143300 A1 WO 2023143300A1 CN 2023072861 W CN2023072861 W CN 2023072861W WO 2023143300 A1 WO2023143300 A1 WO 2023143300A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
terminal
service
data packet
slice
Prior art date
Application number
PCT/CN2023/072861
Other languages
English (en)
French (fr)
Inventor
赵志华
黄瑜
惠少博
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023143300A1 publication Critical patent/WO2023143300A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier

Definitions

  • the present application relates to the field of terminal and communication technologies, and in particular to a slice selection method, system and related devices.
  • terminals can be connected to the cellular network through slices.
  • 5G fifth generation
  • Operators can provide users with differentiated network services through different slices.
  • the terminal For the application scenario where there is Customer Premise Equipment (CPE), the terminal needs to be connected to the CPE first, and the CPE determines the slice corresponding to the data sent by the terminal according to the routing policy.
  • the CPE can only identify the IP triplet in the routing policy as a data routing matching standard to determine the corresponding slice.
  • the terminal can subscribe to different network services, and different network services require different slices.
  • the present application provides a slice selection method, system, and related devices.
  • the CPE can determine the network slice corresponding to the data sent by the terminal based on the network services signed by the terminal. In this way, for terminals subscribed to different network services, the data sent by the same type of application in different terminals can be routed to different network slices.
  • CPE can provide differentiated network services for terminals that subscribe to different network services.
  • the present application provides a slice selection method, which may include: the first terminal receives the first data packet sent by the second terminal, and the second terminal communicates with the first terminal through a wireless fidelity Wi-Fi network Establishing a communication connection, the first terminal establishes a communication connection with the network side through the cellular network; the first terminal determines one or more network services subscribed by the second terminal, and each of the one or more network services is associated with a network slice; The first terminal determines that the network service type corresponding to the first data packet is the first network service in one or more network services; the first terminal sends the service request for the first data packet through the first slice network associated with the first network service transmitted to the network side.
  • the first terminal may be a CPE
  • the second terminal may be a user terminal such as a mobile phone, a tablet, or a computer.
  • the first data packet may be a service request data packet.
  • the first terminal may determine the network slice corresponding to the data sent by the second terminal according to the network service subscribed by the second terminal.
  • the first terminal may provide differentiated network services for the second terminals subscribed to different network services.
  • the first terminal determines one or more network services subscribed by the second terminal based on the first identifier of the second terminal, including: the first terminal determines based on the first identifier of the second terminal Identify and determine one or more network services subscribed by the second terminal.
  • the first terminal determines one or more network services subscribed by the second terminal based on the first identifier of the second terminal, including: , at the first terminal's Searching for one or more network services associated with the first identifier in a database; the first database stores one or more terminal identifiers and one or more network services associated with the one or more terminal identifiers, one The identifiers of one or more terminals include the first identifier; the first terminal determines one or more network services subscribed by the second terminal.
  • the first terminal can conveniently and accurately find the network service subscribed by the second terminal.
  • the method may further include: the first terminal receives the terminal routing policy URSP information sent by the network side,
  • the URSP information includes one or more slice parameter information, and the one or more slice parameter information includes first slice parameter information, and the first slice parameter information is used to indicate the first slice network.
  • the first terminal determining one or more network services subscribed by the second terminal includes: the first terminal determining that one network service subscribed by the second terminal is the first network service;
  • the first terminal determining that the network service type corresponding to the first data packet is the first network service in one or more network services includes: the first terminal determining that the network service type corresponding to the first data packet is the first network service.
  • the first terminal determines that the network service type corresponding to the first data packet is the first network service, including: the first terminal Obtain the service feature in the first data packet; the first terminal matches the service feature with the service feature corresponding to the directional service in the URSP information; when the service feature is successful with the service feature corresponding to the directional service in the URSP information, the first terminal It is determined that the network service type corresponding to the first data packet is the first network service.
  • the second terminal may subscribe to a specific service or a specific application-oriented service for the second terminal. Therefore, it is necessary to match according to the URSP rules whether it is the application where the specific service is located or the data sent by the specific application. If so, the network service of the data is a directional service; Network business is not targeted business.
  • the first terminal determines one or more network services subscribed by the second terminal, including: the first terminal determines the multiple network services subscribed by the second terminal; the first terminal determines The network service type corresponding to the first data packet is the first network service in one or more network services, including: the service characteristics of the first terminal based on the first data packet, and the service characteristics corresponding to the multiple network services in the URSP information, It is determined that the network service type corresponding to the first data packet is the first network service among the plurality of network services.
  • the first terminal determines that the network service type corresponding to the first data packet is The first network service among the multiple network services includes: the first terminal obtains the service characteristics in the first data packet; the first terminal respectively matches the service characteristics with the service characteristics corresponding to the multiple network services in the URSP; When the service feature matches the service feature corresponding to the first network service in the URSP successfully, the first terminal determines that the network service type corresponding to the first data packet is the first network service.
  • the method may further include: based on the subscription information sent by the second terminal, the first terminal sends the second The first identifier of the terminal is associated with one or more network services in the second terminal.
  • the first terminal transmits the first data packet to the network side through the first slice network associated with the first network service, including: connecting the first terminal and the network If a protocol data unit PDU session corresponding to the first network slice has been established between the two parties, the first terminal transmits the first data packet to the network side through the first network slice based on the PDU session.
  • the first terminal transmits the first data packet to the network side through the first slice network associated with the first network service, including: the first terminal transmits the first data packet to the network side based on the slice parameter information, established with the network side Corresponding to the PDU session of the first network slice; based on the PDU session, the first terminal transmits the first data packet to the network side through the first network slice.
  • the method may further include: A terminal receives the second data packet sent by the network side; when the first slice network is a low-latency slice network, the first terminal accelerates sending the second data packet to the second terminal.
  • the second data packet may be a service response data packet.
  • the method may further include: the first terminal receives the allowed network slice selection auxiliary information Allowed NSSAI sent by the network side, and the Allowed NSSAI is used to indicate that the first terminal is allowed to transmit data A set of network slices; the first network slice is included in the set of network slices.
  • the first identifier includes a user name of the second terminal and/or a media storage control MAC address of the second terminal.
  • the user name of the second terminal may be a mobile phone number of the second terminal.
  • the service characteristics of the first data packet include at least one of the App Id of the first application, IP triplet information, data network name DNN information, and destination full domain name FQDN information ;
  • the first application is an application that sends the first data packet in the second terminal.
  • a slice selection system which is characterized in that it includes a first terminal and a second terminal, the second terminal establishes a communication connection with the first terminal through a wireless fidelity Wi-Fi network, and the first terminal Establish a communication connection with the network side through the cellular network; the second terminal is used to send the first data packet to the first terminal; the first terminal is used to receive the first data packet sent by the second terminal; the first terminal is used to determine the second terminal One or more network services subscribed, and each network service in the one or more network services is associated with a network slice; the first terminal is used to determine that the network service type corresponding to the first data packet is one of the one or more network services The first network service; the first terminal is used to transmit the first data packet to the network side through the first network slice associated with the first network service.
  • the first terminal may be a CPE
  • the second terminal may be a user terminal such as a mobile phone, a tablet, or a computer.
  • the first terminal may determine the network slice corresponding to the data sent by the second terminal according to the network service subscribed by the second terminal.
  • the first terminal may provide differentiated network services for the second terminals subscribed to different network services.
  • the first terminal may also execute the method in any possible implementation manner of the foregoing first aspect.
  • the second terminal may also execute the method in any possible implementation manner of the foregoing second aspect.
  • the present application provides a communication device, including one or more processors, one or more memories, and a transceiver.
  • the transceiver, the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the The communication device executes the method in any possible implementation manner of the first terminal in the foregoing first aspect.
  • the communication device may be a first terminal or equipment in other product forms.
  • the present application provides a communication device, including one or more processors, one or more memories, and a transceiver.
  • the transceiver, the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the The communication device executes the method in any possible implementation manner of the second terminal in the first aspect above.
  • the communication device may be a second terminal or equipment in other product forms.
  • the present application provides a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the computer, the computer is made to execute the method in any possible implementation manner of the first aspect above.
  • the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any possible implementation manner of the above first aspect.
  • the present application provides a chip or a chip system, which is applied to the first terminal, including a processing circuit and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processing circuit, and the processing circuit is used to run the The code instructions are used to execute the method in any possible implementation manner of the first aspect above.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a terminal provided in an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a CPE provided in an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the format of a URSP provided by the embodiment of the present application.
  • FIG. 5 is a schematic flow diagram of a CPE accessing a core network provided by an embodiment of the present application
  • FIG. 6 is a schematic flow diagram of a UE accessing a CPE provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of interaction between a UE, a CPE, and a core network provided in an embodiment of the present application;
  • Fig. 8A is a schematic diagram of a data format provided by the embodiment of the present application.
  • Fig. 8B is a schematic diagram of a data format provided by the embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a slice selection method provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a flow chart of parsing URSP provided by the embodiment of the present application.
  • Fig. 11 is a schematic diagram of the scenario of signing different network services provided by the embodiment of the present application.
  • Fig. 12 is a schematic diagram of a user interface provided by an embodiment of the present application.
  • FIG. 13 is a schematic flow diagram of determining a network service type corresponding to a data packet sent by a UE according to an embodiment of the present application
  • Fig. 14 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Fig. 16 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • Fig. 17 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as implying or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” meaning is two or more.
  • first and second in the description and claims of the embodiments of the present application are used to distinguish different objects, rather than to describe a specific order of objects.
  • first target object, the second target object, etc. are used to distinguish different target objects, rather than describing a specific order of the target objects.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • FIG. 1 exemplarily shows a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system 10 includes a terminal 100 (for example, a mobile phone 101, a watch 102, a computer 103, a projector 104, etc.), a CPE 200 and a core network.
  • a terminal 100 for example, a mobile phone 101, a watch 102, a computer 103, a projector 104, etc.
  • the number of terminals 100 and CPEs can be one or more.
  • the core network can be a device cluster composed of one or more core network devices.
  • the core network device can be an access and mobility management function (access and mobility management function, AMF), which is mainly responsible for access Functions such as access control, mobility management (MM), attach and detach, and gateway selection.
  • AMF access and mobility management function
  • the core network equipment involved in this embodiment of the present application is not limited to the AMF.
  • the terminal 100 may be a wireless communication chip, a wireless sensor, or a wireless communication terminal, etc., and may also be called a user equipment (user equipment, UE), a station (station, STA) or a terminal device.
  • the terminal 100 may be a mobile phone supporting a wireless fidelity (Wi-Fi) communication function, a tablet computer supporting a Wi-Fi communication function, a set-top box supporting a Wi-Fi communication function, or a mobile phone supporting a Wi-Fi communication function.
  • Wi-Fi wireless fidelity
  • the terminal can support the 802.11be standard.
  • the terminal can also support multiple wireless local area network (wireless local area network, WLAN) standards of the 802.11 family such as 802.11be, 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • WLAN wireless local area network
  • the CPE 200 and the terminal 100 may be devices applied in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT, internet of things), smart cameras in smart homes, smart remote controls, smart water meters and electricity meters, and Sensors in smart cities, etc.
  • IoT Internet of Things
  • smart cameras in smart homes smart remote controls
  • smart water meters and electricity meters smart water meters and electricity meters
  • Sensors in smart cities etc.
  • the CPE 200 and the terminal 100 in this application may also be a wireless communication device that supports multiple links for parallel transmission, for example, called a multi-link device (multi-link device) or a multi-band device ( multi-band device). Compared with devices that only support single-link transmission, multi-link devices have higher transmission efficiency and higher throughput.
  • multi-link device multi-link device
  • multi-band device multi-band device
  • a wired network can also be deployed between the CPE200 and the terminal 100, and the terminal 100 can be a wired communication chip, a wired sensor, or a wired communication terminal, which is a device connected to the CPE200 through a network cable.
  • the deployment of wireless network between CPE200 and terminal 100 is taken as an example for illustration.
  • FIG. 2 is a schematic structural diagram of a terminal 100 provided by an embodiment of the present application.
  • terminal 100 uses the terminal 100 as an example to describe the embodiment in detail. It should be understood that terminal 100 may have more or fewer components than shown in the figures, may combine two or more components, or may have a different configuration of components.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the terminal 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194 and user An identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal 100 .
  • the terminal 100 may include more or fewer components than shown in the figure, or combine some components, or separate some components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU) wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit, NPU
  • the controller may be the nerve center and command center of the terminal 100 .
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thereby improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flashlight, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the terminal 100 .
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled to the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 communicates with the camera 193 through a CSI interface to realize the shooting function of the terminal 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to realize the display function of the terminal 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the SIM interface can be used to communicate with the SIM card interface 195 to realize the function of transmitting data to the SIM card or reading data in the SIM card.
  • the USB interface 130 is an interface conforming to the USB standard specification, specifically, it can be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the terminal 100, and can also be used to transmit data between the terminal 100 and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules shown in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the terminal 100 .
  • the terminal 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the wireless communication function of the terminal 100 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the terminal 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves and radiate them through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to transmit the low-frequency baseband signal Modulated into medium and high frequency signals.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent from the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite system, etc. (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the terminal 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA broadband Code division multiple access
  • WCDMA wideband code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • LTE long
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the terminal 100 realizes the display function through the GPU, the display screen 194, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-OLED, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the terminal 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the terminal 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the optical element may be a charge coupled device (charge coupled device, CCD) or a complementary metal-oxide-semiconductor (complementary metal-oxide-semiconductor, CMOS) phototransistor.
  • CCD charge coupled device
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the terminal 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the terminal 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • Terminal 100 may support one or more video codecs.
  • the terminal 100 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the terminal 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 may be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. Such as saving music, video and other files in the external memory card.
  • the internal memory 121 may be used to store computer-executable program codes including instructions.
  • the processor 110 executes various functional applications and data processing of the terminal 100 by executing instructions stored in the internal memory 121 .
  • the internal memory 121 may include an area for storing programs and an area for storing data. Wherein, the stored program area can store an operating system, at least one application required by a function (such as a face recognition function, a fingerprint recognition function, a mobile payment function, etc.) and the like.
  • the storage data area can store data created during the use of the terminal 100 (such as face information template data, fingerprint information template, etc.) and the like.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (universal flash storage, UFS) and the like.
  • the terminal 100 may implement an audio function through an audio module 170 , a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, and an application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals. Terminal 100 can listen to music through speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the receiver 170B can be placed close to the human ear to listen to the voice.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can put his mouth close to the microphone 170C to make a sound, and input the sound signal to the microphone 170C.
  • the terminal 100 may be provided with at least one microphone 170C.
  • the earphone interface 170D is used for connecting wired earphones.
  • the earphone interface 170D can be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • the gyro sensor 180B can be used to determine the motion posture of the terminal 100 .
  • the air pressure sensor 180C is used to measure air pressure.
  • the magnetic sensor 180D includes a Hall sensor.
  • the terminal 100 may use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the acceleration sensor 180E can detect the acceleration of the terminal 100 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the terminal 100 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 180F is used to measure the distance.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the terminal 100 emits infrared light through the light emitting diode.
  • the terminal 100 detects infrared reflected light from nearby objects using a photodiode.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the terminal 100 may adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the temperature sensor 180J is used to detect temperature.
  • Touch sensor 180K also known as "touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the terminal 100 may receive key input and generate key signal input related to user settings and function control of the terminal 100 .
  • the motor 191 can generate a vibrating reminder.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 195 is used for connecting a SIM card.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal 100 interacts with the network through the SIM card to implement functions such as calling and data communication.
  • FIG. 3 is a schematic structural diagram of a CPE 200 exemplarily shown.
  • the CPE 200 may further include at least one memory 202 and at least one network interface 204 .
  • the processor 201, the memory 202, the transceiver 203 and the network interface 204 are connected, for example, through a bus.
  • the antenna 205 is connected to the transceiver 203 .
  • the network interface 204 is used to connect the CPE with other communication devices through a communication link, for example, a terminal device may be connected through the network interface 204 .
  • the connection may include various types of interfaces, transmission lines or buses, etc., which are not limited in this embodiment.
  • the SIM card interface 206 is used to enable the CPE to communicate with the core network through the mobile network. For specific description, please refer to the description on the terminal side, which will not be repeated here.
  • the processor in the embodiment of the present application may include at least one of the following types: a general-purpose central processing unit (Central Processing Unit, CPU), a digital signal processor (Digital Signal Processor, DSP), a microprocessor, Application-Specific Integrated Circuit (Application-Specific Integrated Circuit, ASIC), Microcontroller (Microcontroller Unit, MCU), Field Programmable Gate Array (Field Programmable Gate Array, FPGA), or an integrated circuit for implementing logic operations .
  • the processor 201 may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor. At least one processor 201 may be integrated in one chip or located on multiple different chips.
  • the memory in the embodiment of the present application may include at least one of the following types: read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions, It may also be an electrically erasable programmable read-only memory (Electrically erasable programmable read-only memory, EEPROM).
  • read-only memory read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.) , disk storage medium or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but not limited thereto.
  • CD-ROM compact disc read-only memory
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • disk storage medium or other magnetic storage devices or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, but not limited thereto.
  • the memory 202 may exist independently and be connected with the processor 201 .
  • the memory 202 may also be integrated with the processor 201, for example, integrated into one chip.
  • the memory 202 can store program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor 201 , and various types of computer program codes to be executed can also be regarded as drivers for the processor 201 .
  • the processor 201 is configured to execute computer program codes stored in the memory 202, so as to implement the technical solutions in the embodiments of the present application.
  • the memory 202 may also be connected to the processor 201 through an interface outside the chip.
  • the transceiver 203 can be used to support the reception or transmission of radio frequency signals between the CPE and the terminal, and between the CPE and the core network equipment, and the transceiver 203 can be connected to the antenna 205 .
  • the transceiver 203 includes a transmitter Tx and a receiver Rx.
  • one or more antennas 205 can receive radio frequency signals
  • the receiver Rx of the transceiver 203 is used to receive the radio frequency signals from the antennas, convert the radio frequency signals into digital baseband signals or digital intermediate frequency signals, and convert the digital
  • the baseband signal or digital intermediate frequency signal is provided to the processor 201, so that the processor 201 performs further processing on the digital baseband signal or digital intermediate frequency signal, such as demodulation processing and decoding processing.
  • the transmitter Tx in the transceiver 203 is also used to receive the modulated digital baseband signal or digital intermediate frequency signal from the processor 201, and convert the modulated digital baseband signal or digital intermediate frequency signal into a radio frequency signal, and pass a One or more antennas 205 transmit the radio frequency signal.
  • the receiver Rx can selectively perform one or more stages of down-mixing processing and analog-to-digital conversion processing on the radio frequency signal to obtain a digital baseband signal or a digital intermediate frequency signal, and the down-mixing processing and analog-to-digital conversion processing The sequence is adjustable.
  • the transmitter Tx can selectively perform one or more stages of up-mixing processing and digital-to-analog conversion processing on the modulated digital baseband signal or digital intermediate frequency signal to obtain a radio frequency signal.
  • the up-mixing processing and digital-to-analog conversion processing The order of priority is adjustable.
  • Digital baseband signals and digital intermediate frequency signals can be collectively referred to as digital signals.
  • the above communication system can be used to support the fifth generation (fifth generation, 5G) access technology and future-oriented communication technology, such as new radio (new radio, NR) access technology, for example, in the description of the embodiment of the present application Taking the Standalone (SA) in 5G as an example for illustration, in fact, the technical solution of the present application can also be applied to other scenarios such as non-Standalone (NSA), which is not limited in this application.
  • 5G fifth generation
  • NR new radio
  • SA Standalone
  • NSA non-Standalone
  • the 5G communication system introduces the concept of network slicing.
  • Network slicing technology can divide a physical network into multiple virtual networks.
  • a virtual network is regarded as a "network slice", and each network slice is independent of each other.
  • Different protocol data unit (protocol data unit, PDU) sessions in one terminal may require network slices corresponding to PDU sessions to provide services.
  • PDU protocol data unit
  • a network slice is a logical network that provides specific network capabilities and network characteristics (Network Slice: Alogical network that provides specific network capabilities and network characteristics). It can be a logical network with different network capabilities and network characteristics customized according to different service requirements or tenants on the physical or virtual network infrastructure.
  • a network slice consists of a set of network functions and their required resources (eg, computing resources, storage resources, network resources).
  • network slicing may be referred to as slicing for short.
  • Network slices can be configured by an operation, administration and maintenance (OAM) system.
  • OAM operation, administration and maintenance
  • Single network slice selection assistance information (single network slice selection assistance information, S-NSSAI) is used to identify a network slice.
  • the S-NSSAI includes at least one of the following: slice type, service type (slice/service type, SST) information, and optionally, the S-NSSAI may also include slice differentiator (SD).
  • the SST information is used to indicate the behavior of the network slice, such as the characteristics of the network slice and the service type
  • the SD information is the supplementary information of the SST. For example: if the SST points to multiple network slices, then the SD can assist in corresponding to the only one network slice .
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency communications
  • mMTC massive machine type communication
  • network slices corresponding to PDU sessions of different types of services may be different.
  • Different applications in the terminal may correspond to different service types, that is, applications in the terminal may correspond to different network slices.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable low latency communications
  • mMTC massive machine type communication
  • network slicing can provide network resources for at least one PDU session of the terminal.
  • the core network sends the UE route selection policy (UE route selection policy, URSP) to the terminal, so that the terminal determines the routing mode of the data (which can be understood as the application data of different service types).
  • URSP can be used for Indicate the service characteristics that need to be transmitted on the slice network and the activation parameters of the slice network.
  • the routing method includes which slice to route to, or use a non-slice network to transmit data.
  • URSP includes but not limited to: URSP rule length (Length of URSP rule) field, URSP rule priority (Precedence value of URSP rule) field, business Descriptor length (Length of Traffic descriptor) field, Traffic descriptor field, route selection descriptor list length (Length of Route selection descriptor list) field and Route selection descriptor field.
  • the Route selection descriptor list field is used to carry slice network activation parameters
  • the slice network activation parameters include but are not limited to: parameters such as S-NSSAI corresponding to one or more slices.
  • the Traffic descriptor field is used to carry the above-mentioned information (or parameters) corresponding to the service characteristics that need to be transmitted on the slice.
  • information or parameters
  • Traffic descriptor component type identifier business descriptor field type definition
  • IPv4 remote address type ipv4 remote address type
  • IPv6 remote address/prefix length type ipv6 remote address/prefix length type
  • Protocol identifier/next header type (protocol identifier/next protocol header type)
  • Remote port range type (remote port range type)
  • Security parameter index type (security parameter index type)
  • Destination MAC address type (destination MAC address type)
  • 802.1Q C-TAG VID type 802.1Q user tag virtual LAN identifier type
  • 802.1Q S-TAG VID type (802.1Q service tag virtual LAN identifier type)
  • Ethertype type (Ethernet type)
  • OS Id+App Id form application descriptors (Application descriptors) information, which is used to identify applications in the operating system. It can also be understood that Application descriptors can be used to indicate which applications in the operating system can transmit data through the slice network.
  • OS Id is used to identify the operating system
  • App Id is used to identify applications in the operating system.
  • the App Id can be the application package name of the application, that is, the UE downloads and installs the application from any platform or store, the application installation package contains the App Id, and the UE can store the application installation package name after the application is installed .
  • the terminal can match the App Id and other parameters of the current application with the URSP issued by the core network to route the application data to Specifies the slice.
  • the terminal can match the App Id and other parameters of the current application with the URSP issued by the core network to route the application data to Specifies the slice.
  • the existing CPE since the existing CPE only has a forwarding function, there is no corresponding slice matching the UE accessing the CPE and the service of the UE.
  • the CPE can only pass the IP triplet in the URSP (including IPv4 remote address type or IPv6 remote address/prefix length type, Protocol identifier/next header type, Single remote port type), DNN (that is, DNN type) and/or FQDN (that is, Destination FQDN type), the application data is routed to the corresponding slice.
  • IPv4 remote address type or IPv6 remote address/prefix length type, Protocol identifier/next header type, Single remote port type DNN (that is, DNN type) and/or FQDN (that is, Destination FQDN type)
  • the application data is routed to the corresponding slice.
  • users can subscribe to different data services on the LAN side, for example, low-latency services, large-bandwidth services, directional services, and so on.
  • Different data services have different requirements on the data transmission network.
  • the CPE can only route the data sent in the UE to the corresponding slice according to the URSP.
  • different UEs may subscribe to different types of network services, and different types of network services correspond to different slices.
  • the CPE cannot associate the service type of the UE with different slices. In this way, the CPE cannot meet the differentiated network requirements of the UE.
  • FIG. 5 shows a schematic flow diagram of the CPE accessing the core network in the embodiment of the present application.
  • the CPE accessing the core network may include the following steps:
  • the CPE sends a Registration request message to the core network.
  • the CPE will initiate the registration process when it is powered on, restarted, or updated. For example, after the CPE is powered on, it will initiate the registration process, or after the CPE is refreshed, it will also initiate the registration process.
  • the registration process can be understood as CPE registration and network access .
  • the CPE sends a Registration request message to the core network for requesting to initiate a registration process.
  • the Registration request message can carry registration type, security parameters and other information. It should be noted that, for the core network, the CPE is equivalent to the UE, so its specific process of initiating registration can refer to the UE in the existing standard The registration process will not be repeated in this application.
  • the core network sends a Registration accept message to the CPE.
  • the core network sends a Registration accept message to the CPE after agreeing the CPE to register and join the network.
  • the Registration accept message may carry one or more parameters for instructing the CPE to access the core network.
  • the Registration accept message carries Allowed Network Slice Selection Assistance Information (Allowed Network Slice Selection Assistance Information, Allowed NSSAI), which is used to indicate one or more slices that the CPE is allowed to access.
  • Allowed NSSAI Allowed Network Slice Selection Assistance Information
  • the CPE may save the Allowed NSSAI to a storage unit, for example, in the memory of the CPE, for use in subsequent establishment of a PDU session.
  • the core network sends a Manage UE policy command message to the CPE.
  • the core network sends a Manage UE policy command message to the UE, and the message includes but is not limited to URSP.
  • the URSP may include service characteristics (such as IP triplet, App Id, etc.) and network slice activation parameters.
  • the CPE saves the URSP.
  • the CPE can decode the URSP to obtain and store parameters and information carried in each field in the URSP.
  • the CPE sends a Manage UE policy complete message to the core network.
  • the CPE can send a Manage UE policy complete message to the core network to indicate that the CPE has successfully processed the URSP.
  • the CPE if the CPE fails to parse the URSP or fails to save the URSP due to other reasons, the CPE sends a Manage UE policy command reject message to the core network.
  • the UE accesses the core network through the CPE
  • FIG. 6 exemplarily shows a specific process for the UE to connect to the CPE.
  • the UE accessing the CPE may include the following steps:
  • the UE sends an Authentication Request message to the CPE.
  • the CPE sends an Authentication Responce message to the UE.
  • the UE sends an Association Request message to the CPE.
  • the CPE sends an Association Responce message to the UE.
  • the CPE receives the Association Response sent by the UE, and determines that the UE successfully accesses the CPE, or it can be understood as successfully accessing the core network through the CPE.
  • a Wi-Fi channel between the UE and the CPE is established.
  • the UE can send data to the CPE through the Wi-Fi channel between it and the CPE, and the CPE forwards the data to the core network through the mobile communication network between the CPE and the core network.
  • the CPE may also receive data corresponding to the UE sent by the core network through the mobile communication network. Then, the CPE forwards the data to the UE through the Wi-Fi channel between the CPE and the UE. Therefore, data interaction between the UE and the core network can be realized.
  • Fig. 7 exemplarily shows a schematic flow diagram of UE, CPE and core network interaction, as shown in Fig. 7, UE, CPE and core network interaction may specifically include the following steps:
  • the UE sends data packet 1 to the CPE.
  • the UE sends a data packet 1 to the CPE through the Wi-Fi channel between the UE and the CPE, and the format of the data packet 1 may be as shown in FIG. 8A or FIG. 8B .
  • the data packet 1 may also be called an IP data packet, and the data packet 1 may carry a data part and an IP header (i.e. header in the figure), the IP packet header includes a fixed part (also can be called a fixed field) and a variable part (also can be called a variable field), wherein, the fixed field includes but is not limited to: parameters such as destination address and source address, which can be Variable fields include optional fields and reserved fields (also called padding fields).
  • the fields included in the fixed part are fixed, that is to say, each data packet sent by the UE to the CPE needs to carry each field in the fixed part shown in FIG.
  • each field included in the variable part and the length of each field are variable, that is to say, for different UEs, or in different application scenarios, the field names, positions and lengths included in the variable part can be changed The same or different, which is not limited in this application. It should be noted that the names and positions of the parameters in the format of the data packet 1 shown in FIG. 8A are only illustrative, and are not limited in this application.
  • the data packet 1 may carry a data part and an IP header (that is, the header in the figure), and the IP header includes a fixed part (also may be a fixed field) and a variable part (also may be called a variable field).
  • the optional field part in the IP packet header in the data packet 1 may include the App Id of the application sending the data packet 1 in the UE. It should be noted that the position of the App Id field in the optional field shown in FIG. 8B is only a schematic example, and the length and position of the field can be set according to actual needs, which are not limited in this application.
  • the CPE obtains the IP triplet.
  • the URSP issued by the core network includes the IP triplet as an example for illustration.
  • the CPE acquires the IP triplet in response to the received data packet 1 sent by the UE.
  • the URSP issued by the core network may also include the App Id.
  • the CPE can also obtain the App Id of the application sending the data packet 1 in the UE from the data packet 1.
  • the CPE matches the acquired IP triplet with the IP triplet indicated by the URSP stored in S105. If the IP triplet matches successfully, that is, each parameter in the IP triplet exists in the URSP issued by the core network. Then the CPE determines that the verification of the IP triplet is successful, and the data packet corresponding to the IP triplet can be routed to the slice network.
  • the CPE determines that the verification fails, and the data packet will be routed to the default slice.
  • the default slice is a low-priority slice, or, packets will be routed to a non-sliced network.
  • the CPE may also match the App Id of the application that sends the data packet 1 obtained from the data packet 1 in the UE with the App Id in the URSP. If the App Id matches successfully, the App Id of the application that sent the data packet 1 exists in the URSP issued by the core network. Then the CPE determines that the verification of the App Id is successful, and the data packet 1 corresponding to the App Id can be routed to the slice corresponding to the App Id in the URSP.
  • the CPE can also match the App Id and IP triplet of the application that sends the data packet 1 obtained from the data packet 1 in the UE with the App Id and IP triplet in the URSP.
  • the CPE routes the data packet 1 to a specified slice.
  • the CPE may further obtain other related information of the slice, such as the NSSAI of the slice, based on other information in the URSP, such as the slice network activation parameters described above.
  • the CPE may match the NSSAI of the slice with the Allowed NSSAI stored in S103, to determine whether the core network allows the UE's data to be routed to the slice.
  • the CPE binds the IP triplet in data packet 1 to the PDU session corresponding to the slice, so that subsequent received data packets containing the IP triplet can be routed to the corresponding slice through the bound PDU session.
  • the binding may mean that the CPE records the IP triplet and the relevant information of the PDU session (such as a service interface or a routing table entry) in the memory correspondingly, so that the CPE detects the data corresponding to the IP triplet (that is, include the data packet of the IP triplet), determine the PDU session bound to the IP triplet, and route the data to the slice corresponding to the PDU session.
  • the CPE may have bound the IP triplet in the data packet 1 with the PDU session corresponding to the slice before step S304a.
  • the CPE can further obtain other relevant information of the slice, such as the NSSAI of the slice, based on other information in the URSP, such as the slice network activation parameters described above.
  • the method also includes:
  • the CPE sends a PDU session establishment request message to the core network.
  • the CPE initiates a PDU session establishment process to the core network to establish a PDU session corresponding to the slice.
  • the PDU session establishment request message carries the NSSAI of the slice corresponding to the IP triplet or the App Id.
  • the core network sends a PDU session establishment success message to the CPE.
  • the core network establishes a PDU session of a slice corresponding to the NSSAI based on the received PDU session establishment request message, and returns a PDU session establishment success message to the CPE after the PDU session is successfully established.
  • PDU session establishment process can refer to the PDU session establishment process specified in the existing standards, and this application will not repeat them.
  • the CPE determines that the PDU session establishment is successful, and binds the data flow corresponding to the IP triplet with the PDU session.
  • the CPE detects that the PDU session of the slice corresponding to the IP triplet or App Id has been established, the CPE directly binds the IP triplet, App Id and the PDU session without executing the PDU session establishment process.
  • the core network may reply the data packet 2 to the UE through the CPE.
  • the interaction between the UE, the CPE and the core network specifically includes the following steps:
  • the core network sends the data packet 2 to the CPE.
  • the core network may generate data packet 2 based on data packet 1, and then send data packet 2 to the CPE.
  • the core network may receive a data packet sent by another UE or a server.
  • the core network parses the data packet and encapsulates it into a data packet 2 and sends it to the CPE.
  • the embodiment of the present application does not limit how the core network generates the data packet 2 or obtains the data packet 2 .
  • the CPE sends the data packet 2 to the UE.
  • the CPE may parse the data packet 2 to determine the destination receiving device of the data packet 2, for example, UE.
  • the CPE may send the data packet 2 to the destination receiving device, that is, the UE.
  • the process shown in Figure 7 is based on the service characteristics indicated by the URSP issued by the core network (the service characteristics may include but not limited to one or more of App Id, IP triplet, DNN, and FQDN) Verification, if the verification is successful, the CPE is allowed to route the data to the slice network.
  • the service characteristics may include but not limited to one or more of App Id, IP triplet, DNN, and FQDN
  • Verification if the verification is successful, the CPE is allowed to route the data to the slice network.
  • the CPE cannot associate the service subscribed by the user with the slice, and can only determine the slice matching the data sent by the user terminal through the URSP.
  • the slice determined according to the URSP may not be consistent with the slice corresponding to the service activated by the user. In this way, differentiated network services cannot be provided for the user.
  • the CPE should route the data to the low-latency slice.
  • the CPE determines only according to the URSP that the slice corresponding to the data sent by the user A's terminal is a normal slice. Then user A cannot experience low-latency network services.
  • the embodiment of the present application provides a slice selection method, and the CPE can associate the network service of the UE with the slice.
  • the CPE may route data sent by the UE to a slice associated with the UE's network service based on the UE's network service. In this way, the CPE can provide differentiated network services to different UEs.
  • the UE may sign up for a network service in the CPE. Different network services can be associated with different slices.
  • the CPE may route the data sent by the UE to the slice corresponding to the service subscribed by the UE based on the service subscribed by the UE. In this way, the UE can experience differentiated network services.
  • FIG. 9 exemplarily shows a slice selection method provided by the embodiment of the present application.
  • a slice selection method provided in the embodiment of the present application may include the following steps:
  • the CPE 200 accesses the core network 300.
  • the CPE200 accessing the core network 300 may include the following steps:
  • the modem module 2003 in the CPE 200 initiates registration to the core network 300 .
  • step S101 which will not be repeated here.
  • the core network 300 may send the URSP and the subscription information of the CPE 200 to the CPE 200 .
  • the core network 300 may send the URSP and the subscription information of the CPE 200 to the modem module 2003 of the CPE 200 .
  • CPE200 can sign one or more network services with the operator.
  • the types of network services that can be provided by the operator include: one or more of the network services such as large-bandwidth high-priority services, large-bandwidth medium-priority services, large-bandwidth low-priority services, directional services, and low-latency services. indivual.
  • the directional service may be a network service provided by an operator for a specific service of a certain company.
  • the operator can provide one or more directional slices to only provide network services for the specific service, that is, only the data sent by the UE100 for the specific service can be routed to the slice provided by the operator for the specific service, and the data of other services cannot be routed to the slice.
  • On the slice provided by the operator for this specific service an operator's provision of network services for a certain game can be called targeted services.
  • the network services provided by operators for coal mine operations can also be called targeted services.
  • the network services provided by operators to grid companies can also be called targeted services. It can be understood that, the embodiment of the present application does not limit the specific directional service.
  • one type of network service may correspond to one type of slice.
  • Different network services correspond to different slices.
  • the fact that the CPE 200 can sign one or more network services with the operator may refer to that the CPE 200 activates the right to use one or more slices at the operator.
  • the fact that the CPE 200 has the right to use the first slice may mean that the CPE 200 can route data to the first slice, and can transmit data to the core network through the first slice.
  • the CPE200 can analyze the URSP issued by the core network, and the CPE200 can analyze slice information.
  • the slice information may indicate the slices that can be used in the CPE 200 and the slices that can be provided to the UE 100 .
  • the CPE200 may specifically include the following steps in parsing the URSP:
  • the CPE 200 traverses the terminal routing selection policy URSP list according to priority.
  • CPE 200 may traverse the URSP list according to priority.
  • the URSP rules at the top of the URSP list have a higher priority than the URSP rules at the bottom.
  • the CPE 200 determines whether there is a URSP with the next priority in the URSP list. If it exists, execute the steps S4013, if not, execute step S40111.
  • the CPE 200 may first match the URSP with the highest priority in the URSP list. If the URSP with the highest priority is successfully matched, step S4012 will not be executed. If the URSP with the highest priority is not matched successfully, the next priority will be matched. The URSP.
  • the CPE 200 performs traffic descriptor matching.
  • the CPE200 judges whether the service indicated by the service descriptor of the URSP rule includes the service of the CPE200, or judges whether the service indicated by the service descriptor of the URSP rule is the same as the service of the CPE200.
  • the CPE200 determines whether the Traffic descriptor matches successfully, if yes, execute step S4015, if not, execute step S4012.
  • the CPE200 determines whether the traffic descriptor matches successfully. Then the CPE200 executes step S4015. Otherwise, the CPE200 continues to execute S4012 to query the next URSP rule.
  • the CPE 200 traverses the route selection description list Route selection descriptor list.
  • the CPE 200 traverses each S-NSSAI in the route selection descriptor list one by one.
  • CPE200 determines whether the S-NSSAI is included in the allowed NSSAI, if yes, execute step S4017, if not, execute step S4012.
  • the CPE 200 determines whether each S-NSSAI in the route selection descriptor list is included in the allowed NSSAI. If yes, execute step S4017. If not, execute step S4012, that is, traverse the next URSP rule.
  • the CPE200 selects the S-NSSAI as the PDU session activation parameter.
  • the CPE200 determines that the DNN&NSSAI has been successfully activated, if yes, execute step S4019, if not, execute step S40110.
  • the CPE200 determines that the PDU session does not need to be activated again.
  • the CPE200 uses the S-NSSAI to activate the PDU session.
  • the CPE200 determines that the slice selection fails.
  • the CPE 200 determines that the slice selection fails.
  • the modem 203 in the CPE200 can report slice information to the slice application module in the CPE200.
  • the slice application module in the CPE200 records the slice information.
  • the slice application module in the CPE200 initiates dialing.
  • the modem 203 in the CPE200 establishes PDU sessions of multiple slices based on the dialing initiated by the slice application module.
  • the UE 100 may perform identity authentication and subscribe to a network service.
  • the CPE 200 can obtain the identity information of the UE 100 and the network service information subscribed by the UE 100 through the identity authentication of the UE 100 .
  • UE 100 may perform identity authentication and sign up for network services through Portal (portal website or portal webpage) authentication.
  • Portal portal website or portal webpage
  • the user can turn on Wi-Fi in UE100, and when connecting to CPE200, UE100 can display a webpage for identity authentication, and the user can enter a user name and password in the webpage for identity verification.
  • CPE200 can obtain the MAC address of UE100.
  • FIG. 11 shows a scenario where a terminal is subscribing to a network service provided by a CPE.
  • terminal 1 can sign up for the large-bandwidth high-priority service provided by the CPE.
  • Terminal 2 can subscribe to the high-bandwidth medium-priority service provided by the CPE.
  • Terminal 3 can subscribe to the high-bandwidth low-priority service provided by the CPE.
  • Terminal 4 can subscribe to the low-latency service provided by the CPE.
  • Terminal 5 can sign up for multi-slice services provided by the CPE (that is, multiple services in high-bandwidth high-priority services, large-bandwidth medium-priority services, large-bandwidth low-priority services, low-latency services, and directional services).
  • Terminal 6 can subscribe to the directional service provided by the CPE.
  • the CPE 200 can pre-configure the name of the slice that the CPE can provide, and the CPE can associate (or call it binding) the name of the slice with the slice ID.
  • Subscribing to a network service by a UE may mean that after the UE selects the name of one or more slices that the CPE can provide in the CPE, the CPE associates the UE's identifier with the slice corresponding to the name of the slice selected by the UE. In this way, the UE has the right to use the slice.
  • the fact that the UE has the right to use the slice may mean that the data sent by the UE can be transmitted to the core network (or referred to as the network side) through the slice.
  • an administrator user in the CPE for example, a terminal connected to the CPE through a USB or network port may be called an administrator user.
  • This embodiment of the application does not limit the administrator user.
  • the management user can configure the names of the slices that the CPE 200 can provide.
  • the administrator user can sign up network services that the CPE 200 can provide for other UEs.
  • the SIM card in the CPE 200 can sign up for one or more network services at the operator.
  • the network service that the CPE200 can provide to the UE100 is the network service that the SIM card in the CPE200 has subscribed to at the operator. For example, if the SIM card in CPE200 subscribes to the low-latency service at the operator, then CPE200 can provide UE100 with the low-latency service. Only when the SIM card in the CPE 200 subscribes to multiple network services at the operator, can the UE 100 subscribe to multi-slice services.
  • UE100 may sign up for a network service that CPE200 can provide by logging into a web page.
  • UE100 may subscribe to a network service that CPE200 can provide through an administrator user.
  • the embodiment of the present application does not limit the manner in which the UE 100 subscribes to a network service.
  • FIG. 12 shows a schematic diagram of a user interface for subscribing to a network service.
  • a user interface 1200 may be used to select a network service subscribed by UE100 and perform network service subscription.
  • the user interface 1200 may include a control 1201 , a control 1202 , an option box 1203 , an input box 1204 , a control 1205 and a control 1206 .
  • an option box 1203 may be displayed in the user interface 1200 .
  • the user can select a network service in the option box, and input a user name (such as mobile phone number 131********) in the input box 1204 .
  • a user name such as mobile phone number 131********
  • the UE whose mobile phone number is 131******** can successfully subscribe to the network service selected by the user in the option box 1203 .
  • the user can click on the control 1206 to view the tariff description corresponding to different network services, or the tariff description corresponding to the network service selected by the user.
  • the UE 100 may display the user interface 1200 , and the user may sign a network service for the UE 100 in the user interface 1200 .
  • the user interface 1200 may also be displayed in the UE of the administrator user of the CPE 200 .
  • the administrator user can sign network services for different UEs in the user interface 1200 .
  • the CPE200 may associate the UE with a slice corresponding to the network service subscribed by the UE (or referred to as binding).
  • the CPE 200 may record the UE identifier and its associated slice or the ID of the slice in the database.
  • the identifier of the UE may be the MAC address of the UE or the mobile phone number of the UE, which is not limited here.
  • the CPE 200 may save the user name of the UE, and may obtain the MAC address of the UE 200 .
  • CPE200 can save the user name and MAC address of UE100 in the portal information database.
  • CPE may associate UE100's username with slice IDs corresponding to the network services subscribed by UE100, and store them in the user database.
  • the CPE200 can update the user database with the user name and MAC address of the UE100 stored in the portal information database, and the CPE200 can establish an association relationship between the user name and MAC address of the UE100 and the slice ID corresponding to the network service subscribed by the UE100, and save them in the user database.
  • a slice ID in CPE 200 may establish associations with user names of multiple UEs.
  • the CPE200 may generate a routing rule for the UE100.
  • the routing rule is used to instruct the CPE 200 to transmit the data of the UE 100 to the core network through the slice corresponding to the network service subscribed by the UE 100 based on which PDU session.
  • S403, UE100 sends data packet R1 to CPE200.
  • the UE100 may send data packet R1 to CPE200.
  • the data packet R1 may be a service request.
  • the data packet R1 may carry an IP triplet.
  • the format of the data packet may be as shown in FIG. 8A .
  • the data packet may also carry an App Id.
  • the format of the data packet may be as shown in FIG. 8B.
  • the mobile phone number of UE100 may also be carried in the data packet R1.
  • the specific format of the data packet is not limited here.
  • sending the data packet R1 from the UE100 to the CPE200 includes: S403a, the UE100 sends the data packet R1 to the Wi-Fi module 2001 of the CPE200; S403b, the Wi-Fi module in the CPE200 sends the data Packet R1 is sent to routing module 2002 in CPE200.
  • the CPE 200 determines the network service type A1 corresponding to the data packet R1.
  • the CPE 200 may determine the network service type A1 corresponding to the data packet R1. Specifically, the CPE200 may first determine the network service subscribed by the UE100 sending the data packet R1. If the network service subscribed by UE100 includes only one network service and is not a directional service, then CPE200 can determine that the network service type A1 corresponding to data packet R1 is the network service subscribed by UE200.
  • the CPE200 needs to match the service characteristics corresponding to the directional service slice in the URSP according to the service characteristics carried in the data packet R1 (for example, IP triplet, or IP triplet and App Id, etc.), and if the matching is successful, the CPE200 It is determined that the network service type A1 corresponding to the data packet R1 is a directional service. If the matching is unsuccessful, the CPE200 determines that the network service A1 corresponding to the data packet R1 is a common service, that is, the CPE200 can route the data packet R1 to the default slice.
  • the service characteristics corresponding to the directional service slice in the URSP for example, IP triplet, or IP triplet and App Id, etc.
  • the CPE200 needs to use the service characteristics and The service characteristics corresponding to the slices associated with multiple network services in the URSP are matched respectively. If the service feature carried in the data packet R1 matches the service feature corresponding to the associated slice of the network service A2 in the multiple network services in the URSP, the CPE200 determines that the network service type A1 corresponding to the data packet R1 is the network service A2. If the matching is unsuccessful, the CPE200 determines that the network service A1 corresponding to the data packet R1 is a common service, that is, the CPE200 can route the data packet R1 to the default slice. Optionally, in a possible implementation manner, if the matching is unsuccessful, the CPE 200 may route the data packet R1 to a high-bandwidth high-priority service slice. In this way, user experience can be improved.
  • the CPE200 determining the network service type A1 corresponding to sending the data packet R1 may include: the CPE200 determining the network service subscribed by the UE100 that sends the data packet R1, and determining the data packet based on the network service subscribed by the UE.
  • the CPE200 has signed five types of network services with the operator, including large-bandwidth high-priority services, large-bandwidth medium-priority services, large-bandwidth low-priority services, low-latency services, and directional services.
  • the type of network service is used as an example for illustration.
  • the network service type A1 corresponding to the sending data packet R1 determined by the CPE200 may include:
  • the CPE200 determines the network service type subscribed by the UE100 sending the data packet R1.
  • the type of network service subscribed by UE100 can be one or more of large bandwidth high priority service, large bandwidth medium priority service, large bandwidth low priority service, low delay service, and directional service.
  • the network service type A1 corresponding to the network service determination data packet R1 includes the following situations:
  • the CPE 200 determines that the UE 100 sending the data packet R1 has subscribed to a large-bandwidth high-priority service.
  • the CPE 200 may determine that the UE 100 has subscribed to a high-bandwidth high-priority service based on the MAC address of the UE 100 carried in the data packet R1 or the mobile phone number of the UE 100 .
  • the CPE 200 determines that the network service type A1 is a service with large bandwidth and high priority.
  • the CPE 200 may determine that the network service type A1 is a service with large bandwidth and high priority.
  • the CPE 200 determines that the UE 100 sending the data packet R1 has subscribed to the high-bandwidth medium-priority service.
  • the CPE 200 may determine that the UE 100 has subscribed to the high-bandwidth medium-priority service based on the MAC address of the UE 100 carried in the data packet R1 or the mobile phone number of the UE 100 .
  • the CPE 200 determines that the network service type A1 is a large-bandwidth high-priority service.
  • the CPE 200 determines that the UE 100 sending the data packet R1 has subscribed to a high-bandwidth low-priority service.
  • the CPE 200 may determine that the UE 100 has subscribed to the high-bandwidth low-priority service based on the MAC address of the UE 100 carried in the data packet R1 or the mobile phone number of the UE 100 .
  • the CPE 200 determines that the network service type A1 is a high-bandwidth low-priority service.
  • the CPE200 determines that the UE100 sending the data packet R1 has subscribed to the directional service.
  • the CPE 200 may determine that the UE 100 has subscribed to the directional service based on the MAC address of the UE 100 carried in the data packet R1 or the mobile phone number of the UE 100 .
  • the CPE 200 matches the service feature in the data packet R1 with the feature of the directional service in the URSP.
  • the CPE200 determines that the network service type A1 is a directed service.
  • the CPE200 needs to match the service feature in the data packet R1 with the feature of the directional service in the URSP, so as to determine whether the data packet R1 is sent by a specific application corresponding to the directional service in the UE100. If the matching is successful, the CPE 200 determines that the network service type A1 is a directed service. If the matching is unsuccessful, the CPE 200 determines that the network service type A1 is not a directional service.
  • the CPE200 determines that the UE100 sending the data packet R1 has subscribed to the low-latency service.
  • the CPE 200 may determine that the UE 100 has subscribed to the high-bandwidth low-priority service based on the MAC address of the UE 100 carried in the data packet R1 or the mobile phone number of the UE 100 .
  • the CPE200 determines that the network service type A1 is a low-latency service.
  • Scenario 6 UE100 has signed a multi-slice service
  • the CPE200 determines that the UE100 sending the data packet R1 has subscribed to the multi-slice service.
  • the CPE 200 may determine that the UE 100 has subscribed to the multi-slice service based on the MAC address of the UE 100 carried in the data packet R1 or the mobile phone number of the UE 100 . That is, the UE100 has subscribed to multiple network services in the large-bandwidth high-priority service, low-latency service, and directional service.
  • the CPE200 determines the network service type A1 corresponding to the data packet R1 based on the service characteristics and URSP in the data packet R1.
  • the CPE 200 can match the service feature in the data packet R1 with the service feature corresponding to each network service in the multi-slice service in the URSP. If the service feature in the data packet R1 successfully matches the service feature of the low-latency service in the multi-slice service, the CPE 200 can determine that the network service type A1 of the data packet R1 is a low-latency service. If the service feature in the data packet R1 successfully matches the service feature of the directional service in the multi-slice service, the CPE 200 can determine that the network service type A1 of the data packet R1 is a directional service.
  • the CPE200 can determine that the network service type A1 of the data packet R1 is a large-bandwidth high-priority service.
  • the CPE200 determines that the data packet R1
  • the corresponding network service A1 is a common service, that is, the CPE 200 can route the data packet R1 to the default slice.
  • the CPE200 may also It is determined that the network service A1 corresponding to the data packet R1 is a high-bandwidth and high-priority service, that is, the CPE 200 can route the data packet R1 to a high-bandwidth and high-priority service slice. In this way, user experience can be improved.
  • the data transmission rate of the default slice is lower than the data transmission rate of the above-mentioned directional slices, low-latency service slices, large-bandwidth high-priority slices, large-bandwidth medium-priority slices, and large-bandwidth low-priority slices.
  • the data transfer rate of the large-bandwidth high-priority slice is higher than that of the large-bandwidth medium-priority slice.
  • the data transfer rate of the high-bandwidth medium-priority slice is higher than the data-transfer rate of the large-bandwidth low-priority slice.
  • CPE200 may route data packet R1 to slice S1 corresponding to network service type A1.
  • case 1 when the network service type A1 is a high-bandwidth and high-priority service, the CPE 200 may route the data packet R1 to a large-bandwidth and high-priority service slice.
  • Case 2 when the network service type A1 is a high-bandwidth medium-priority service, the CPE200 can route the data packet R1 to the high-bandwidth Priority business slicing.
  • Case 3 S4045c, when the network service type A1 is a high-bandwidth and low-priority service, the CPE200 can route the data packet R1 to a high-bandwidth and low-priority service slice.
  • Case 4 when the network service type A1 is a low-latency service, the CPE200 can route the data packet R1 to the directional service slice.
  • Case 5 when the network service type A1 is a directional service, the CPE200 can route the data packet R1 to the low-latency service slice.
  • the CPE200 when the CPE200 parses out that the App Id is carried in the data packet R1, the CPE200 can re-encapsulate the data packet R1, and the re-encapsulated data packet R1 does not include the App Id so that the core network side cannot identify the App Id in the optional field. Id, causing compatibility issues.
  • the CPE200 may route the data packet R1 to a default slice.
  • the CPE200 may not send the data packet R1 to the core network 300. That is, CPE 200 does not provide network services for UE 100 .
  • the core network 300 may also send a service response R2 based on the data packet R1. That is, optionally, a slice selection method provided in the embodiment of the present application may further include step S406-step S408a, step S408b.
  • the core network 300 sends the data packet R2 to the CPE200.
  • the core network 300 may send the data packet R2 to the UE100 through the CPE200.
  • the CPE 200 determines whether the data packet R2 corresponds to a low-latency service slice. If yes, execute step S408b; if not, execute step S408a.
  • the CPE 200 may determine whether data packet R2 corresponds to a low-latency slice. When the CPE200 determines that the data packet R1 corresponds to a low-latency service slice, it may add the service characteristics (such as IP triplet, or IP triplet and App Id) of the data packet R1 into the feature table. When the service feature of the service response R2 matches the service feature in the feature table, the CPE 200 can determine that the service response corresponds to a low-latency slice. Otherwise, the data packet R2 does not correspond to the low-latency service slice.
  • the service characteristics such as IP triplet, or IP triplet and App Id
  • the data (for example, data packet R1 ) sent uplink by the UE 100 is routed to the low-latency service slice, and then the data (for example, data packet R2 ) received downlink is routed.
  • the CPE 200 accelerates the Wi-Fi link for downlink transmission of the data packet R2.
  • the CPE200 may determine that the data packet R2 corresponds to the low-latency service slice. Then, the CPE200 can accelerate the Wi-Fi link transmitting the data packet R2 through the higame module in the CPE200.
  • CPE 200 can associate the network service subscribed by the UE with the slice. Then, CPE 200 can route data sent by UEs that have subscribed to different types of network services to different slices. For example, if UE1 subscribes to a low-latency service slice, and if UE2 subscribes to a high-bandwidth high-priority service, then CPE200 can route the data sent by application A in UE1 to the low-latency service slice, and CPE200 can route the data sent by application A in UE2 to the low-latency service slice. The data is routed to high-bandwidth and high-priority business slices. In this way, CPE200 can provide differentiated network services to users.
  • the administrator user can also set a virtual Wi-Fi access point in the CPE200, and set a password of the virtual Wi-Fi access point.
  • the administrator user can also associate the information of the virtual Wi-Fi access point (for example, the name and password of the virtual Wi-Fi access point) with a slice.
  • the data sent by the UE connected to the virtual Wi-Fi access point can be routed to the same slice (that is, a slice associated with the information of the virtual Wi-Fi access point). In this way, each user can avoid the need for individual operations to bind slices or pay for access, thereby improving user experience.
  • an outdoor CPE multiplayer game is taken as an example.
  • the administrator user can set the virtual Wi-Fi access point of CPE200.
  • the virtual Wi-Fi access point slices Wi-Fi for the xx game and sets a Wi-Fi password.
  • Admin users can also associate the xx game slice Wi-Fi with the xx game slice, and understandably, the CPE has contracted many slices, including the xx game slice. All UEs connected through the xx game slice Wi-Fi can perform the xx game slice service.
  • the CPE may associate the MAC address of the UE accessing the Wi-Fi of the xx game slice with the xx game slice and store it in the database.
  • a slice selection method provided in this embodiment of the present application may include:
  • the CPE200 is connected to the core network.
  • a virtual Wi-Fi access point is set in the CPE 200, and the access information of the Wi-Fi access point is associated with the slice S2.
  • the CPE 200 is configured with a virtual Wi-Fi access point, and associates the access information of the virtual Wi-Fi access point with the slice S2.
  • UE100 accesses CPE200.
  • UE100 sends data packet R1 to CPE200.
  • the CPE200 judges whether the UE100 is connected to the virtual Wi-Fi access point, and if so, routes the data packet R1 to the slice S2 associated with the virtual Wi-Fi access point; if not, the CPE200 can perform the above steps S404-S405.
  • the CPE 200 or the CPE may be referred to as the first terminal.
  • a UE, or UE100, UE1, and UE2 may all be referred to as a second terminal.
  • the data packet R1 may be called a first data packet, and the data packet R2 may be called a second data packet.
  • the network where the slice S1 is located may be referred to as the first slice network.
  • the functional modules of the CPE 200 may be divided according to the above method example.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware. It should be noted that the division of modules in this embodiment is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 14 shows a schematic structural diagram of an apparatus 1400 .
  • the apparatus 1400 may include: a Wi-Fi module 2001 , a routing module 2002 , a modem module 2003 , a slice application module 2004 , and a UI module 2005 . in:
  • the Wi-Fi module 2001 can be used to obtain and save the MAC address of the UE accessed through Wi-Fi into the database, and the Wi-Fi module 2001 can also send the stored MAC address of the accessed UE to the routing module 2002.
  • the Wi-Fi module 2001 can also be used to accelerate downlink low-latency services.
  • the Wi-Fi module 2001 may also include a Wi-Fi network card routing policy management module and a Wi-Fi data packet management module.
  • the Wi-Fi network card routing policy management module can be used to manage and save the URSP issued by the core network.
  • the Wi-Fi packet management module accelerates downlink data transmitted to CPE200 through low-latency service slices.
  • the routing module 2002 can be used to associate the MAC address of the UE with the network services and slices subscribed by the UE.
  • the routing module 2002 can also be used to construct an end-to-end data path according to the MAC address of the UE and the network service signed by the UE, the association relationship of the slice, and the routing rules of the slice.
  • the routing module 2002 can also be used to update dynamic routing rules according to network status.
  • the routing module 2002 can also be used to refresh the database storing the UE's MAC address and refresh the routing rules when the Portal information authentication of the UI module 2005 changes or the configuration in the UI module 2005 changes. For example, When the MAC address changes after re-access, or the user subscription slice changes, or the user cancels the subscription, etc., the routing module 2002 refreshes the routing rules.
  • the routing module 2002 can also be used to execute the above step S404-step S405, which will not be repeated here.
  • the modem module 2003 can be used to receive the URSP sent by the core network, and report the URSP information to the slice application module 2004 .
  • the modem module 2003 can also be used to execute the above step S4011-step S40111, which will not be repeated here.
  • the slice application module 2004 may be configured to initiate the establishment of a multi-channel slice session according to the URSP information reported by the modem module 2003 and information about allowed slices and disallowed slices.
  • the slice application module 2004 can be used to report the PDU session information to the UI module 2005.
  • the UI module 2005 can be used to display a UI interface and provide a user interface for the user to perform Portal authentication.
  • the UI module 2005 can also be used to configure the association relationship between the UE and the subscribed services and slices.
  • the UI module 2005 can also be used to associate the UE's user name with the UE's MAC address, save the association between the UE's user name and the MAC address in the database, and send it to the router module 2002 .
  • the device 1400 may be the CPE 200 in the foregoing embodiments.
  • FIG. 15 shows a schematic structural diagram of an apparatus 1500
  • the apparatus 1500 may include: a transceiver unit 1501 .
  • the transceiver unit 1501 may be configured to receive a first routing policy URSP information from a terminal device on the network side, the first URSP information includes an application identifier App Id and first slice parameter information, the App Id is used to identify an application, and the first slice
  • the parameter information is used to indicate the first network slice; the device 1500 performs data interaction with the network side through the cellular network.
  • the transceiver unit 1501 may also be configured to receive data packets sent by the UE through the Wi-Fi network.
  • the data packet may carry the App Id of the application sending the data packet in the UE.
  • the transceiver unit 1501 may also be configured to transmit the data packet to the network side through the network slice of the first slice when determining the first slice corresponding to the network service subscribed by the UE sending the data packet.
  • the transceiver unit 1501 may also be configured to transmit the data packet to the network side through the first slice network indicated by the first slice parameter information when the App Id in the data packet is the same as the App Id in the first URSP information.
  • the first URSP information further includes other service feature information
  • the other service feature information includes at least one of the following: IP triplet information, data network name DNN information, and destination full-quantity domain name FQDN information.
  • the transceiver unit 1501 is further configured to receive second URSP information from the network side, the second URSP information includes App Id, other service feature information and second slice parameter information, the second slice parameter information is used to indicate the second slice network, and the second slice parameter information is used to indicate the second slice network.
  • the first slice parameter information is different from the second slice parameter information.
  • the apparatus 1500 further includes a processing unit 1502, configured to update the second URSP information when other service characteristic information in the second URSP information is different from other service characteristic information in the first URSP information, and the updated second URSP Other service feature information in the message is the same as other service feature information in the first URSP message.
  • a processing unit 1502 configured to update the second URSP information when other service characteristic information in the second URSP information is different from other service characteristic information in the first URSP information, and the updated second URSP Other service feature information in the message is the same as other service feature information in the first URSP message.
  • the processing unit 1502 may be configured to determine the network service type and the corresponding slice corresponding to the data packet sent by the UE according to the network service subscribed by the UE.
  • the processing unit 1502 can be configured to determine that the network service subscribed by the UE is a directional service, match the service characteristics in the data packet sent by the UE with the service characteristics of the directional service in the URSP, and if the matching is successful, determine the data packet sent by the UE The corresponding network service type is directed service.
  • the transceiver unit 1501 is also configured to determine that the UE has not subscribed to a service, or the UE When the directional service is signed, but the service characteristics of the data packet sent by the UE do not match the service characteristics in the URSP, the data packet is transmitted to the network side through the non-slicing network or the third slice network, and the third slice network can be the default slice.
  • the transceiver unit 1501 is further configured to: if a protocol data unit PUD session corresponding to the first network slice has been established between the second electronic device and the network side, based on the PDU session, first The data of the first application is transmitted on the chip network.
  • the processing unit 1502 may be configured to communicate with the network based on the slice parameter information when no protocol data unit PUD session corresponding to the first network slice is established between the device 1500 and the network side.
  • the side establishes a PDU session corresponding to the first network slice; the transceiver unit 1501 can be configured to transmit data packets on the first network slice based on the PDU session.
  • the transceiver unit 1501 may also be configured to receive the allowed network slice selection auxiliary information Allowed NSSAI from the network side, and the Allowed NSSAI is used to indicate the set of network slices that the device 1500 is allowed to transmit data; the first Slice networks are included in the set of slice networks.
  • the App Id may be the application package name of the application.
  • the device 1500 may be the CPE 200 in the foregoing embodiments.
  • FIG. 16 shows a schematic structural diagram of an apparatus 1600.
  • the apparatus 1600 includes: a processing unit 1601 and a transceiver unit 1602, where the processing unit 1601 is configured to run an application program for sending data packets.
  • the transceiver unit 1602 is configured to send a data packet to the device 1500 through the Wi-Fi network, and the data packet may carry an App Id.
  • the App Id is the application package name of the application.
  • Apparatus 1600 may be UE100 in the foregoing embodiments.
  • FIG. 17 shows a schematic block diagram of an apparatus 1700 according to an embodiment of the present application.
  • the apparatus 1700 may include: a processor 1701 , a transceiver/transceiving pin 1702 , and optionally a memory 1703 .
  • bus 1704 includes a power bus, a control bus, and a status signal bus in addition to a data bus.
  • the various buses are referred to as bus 1704 in the figure.
  • the memory 1703 may be used to store the instructions in the foregoing method embodiments.
  • the processor 1701 can be used to execute instructions in the memory 1703, and control the receiving pin to receive signals, and control the sending pin to send signals.
  • Apparatus 1700 may be UE100 or CPE200 in the foregoing method embodiments.
  • the memory 1703 may also store association information between information such as the UE's MAC address and user name in the above-mentioned embodiment, the network service subscribed by the UE, and the slice corresponding to the network service.
  • the apparatus 1700 may be a chip, and the chip may implement a slice selection method described in the foregoing embodiments.
  • This embodiment also provides a computer storage medium, where computer instructions are stored in the computer storage medium, and when the computer instructions are run on the electronic device, the electronic device executes the above-mentioned relevant method steps to realize a kind of slice selection in the above-mentioned embodiment method.
  • This embodiment also provides a computer program product, which, when running on a computer, causes the computer to execute the above related steps, so as to implement a slice selection method in the above embodiment.
  • an embodiment of the present application also provides a device, which may specifically be a chip, a component or a module, and the device may include a connected processor and a memory; wherein the memory is used to store computer-executable instructions, and when the device is running, The processor can execute the computer-executable instructions stored in the memory, so that the chip executes a method for selecting slices in the above method embodiments.
  • the electronic device, computer storage medium, computer program product or chip provided in this embodiment is all used to execute the corresponding method provided above, therefore, the beneficial effects it can achieve can refer to the corresponding method provided above The beneficial effects in the method will not be repeated here.
  • the term “when” may be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting".
  • the phrase “in determining” or “if detected (a stated condition or event)” may be interpreted to mean “if determining" or “in response to determining" or “on detecting (a stated condition or event)” or “in response to detecting (a stated condition or event)”.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state hard disk), etc.
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种切片选择方法、***及相关装置。在该方法中,CPE接收UE发送的数据包,CPE中存储有UE签约的网络业务与切片的对应关系,CPE基于UE签约的网络业务类型确定数据包对应的切片,并将该数据包路由到对应的切片。实施本申请提供的技术方案,CPE可以为签约了不同网络业务的UE提供差异化的网络服务。

Description

一种切片选择方法、***及相关装置
本申请要求于2022年01月29日提交中国专利局、申请号为202210111677.7、申请名称为“一种切片选择方法、***及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端及通信技术领域,尤其涉及一种切片选择方法、***及相关装置。
背景技术
目前,在第五代(5th Generation,5G)通信***中,终端可以通过切片接入到蜂窝网络中。为了满足不同场景下的用户的需求,切片的类型也越来越多。运营商可以通过不同的切片来给用户提供差异化的网络服务。
对于存在用户前置设备(Customer Premise Equipment,CPE)的应用场景下,终端需要先接入到CPE,由CPE根据路由策略确定该终端发送的数据对应的切片。CPE仅能识别路由策略中的IP三元组,以作为数据的路由匹配标准,从而确定对应的切片。但是,终端可以签约不同的网络业务,不同的网络业务需要不同的切片。
由此,CPE如何为签约不同网络业务的终端提供差异化的网络服务是亟待解决的问题。
发明内容
本申请提供了一种切片选择方法、***及相关装置,实施本申请实施例提供的切片选择方法,CPE可以基于终端签约的网络业务,来确定终端发送的数据对应的切片网络。这样,签约了不同网络业务的终端,不同的终端中同一种类型应用发送的数据可以路由到不同的切片网络中。CPE可以为签约不同网络业务的终端提供差异化的网络服务。
第一方面,本申请提供了一种切片选择方法,该切片选择方法可以包括:第一终端接收第二终端发送的第一数据包,第二终端通过无线保真Wi-Fi网络与第一终端建立通信连接,第一终端通过蜂窝网络与网络侧建立通信连接;第一终端确定第二终端签约的一个或多个网络业务,一个或多个网络业务中每个网络业务关联一种切片网络;第一终端确定第一数据包对应的网络业务类型为一个或多个网络业务中的第一网络业务;第一终端通过与第一网络业务关联的第一切片网络将业务请求第一数据包传输至网络侧。
其中,第一终端可以是CPE,第二终端可以是手机、平板、电脑等等用户终端。
其中,在一种可能的实现方式中,该第一数据包可以是业务请求数据包。
这样,第一终端可以根据第二终端签约的网络业务来确定第二终端发送的数据对应的切片网络。第一终端可以为签约不同网络业务的第二终端提供差异化的网络服务。
结合第一方面,在一种可能的实现方式中,第一终端基于第二终端的第一标识确定第二终端签约的一个或多个网络业务,包括:第一终端基于第二终端的第一标识确定第二终端签约的一个或多个网络业务。
结合第一方面,在一种可能的实现方式中,第一终端基于第二终端的第一标识确定第二终端签约的一个或多个网络业务,包括第一终端基于第二终端的第一标识,在第一终端的第 一数据库中查找与第一标识关联的一个或多个网络业务;第一数据库中保存有一个或多个终端的标识,以及与一个或多个终端的标识关联的一个或多个网络业务,一个或多个终端的标识中包括第一标识;第一终端确定第二终端签约的一个或多个网络业务。
这样,第一终端可以便捷地、准确地查找到第二终端签约的网络业务。
结合第一方面,在一种可能的实现方式中,第一终端接收第二终端发送的第一数据包之前,该方法还可以包括:第一终端接收网络侧发送的终端路由选择策略URSP信息,URSP信息中包括一个或多个切片参数信息,一个或多个切片参数信息中包括第一切片参数信息,第一切片参数信息用于指示第一切片网络。
结合第一方面,在一种可能的实现方式中,第一终端确定第二终端签约的一个或多个网络业务,包括:第一终端确定第二终端签约的一个网络业务为第一网络业务;第一终端确定第一数据包对应的网络业务类型为一个或多个网络业务中的第一网络业务,包括:第一终端确定第一数据包对应的网络业务类型为第一网络业务。
结合第一方面,在一种可能的实现方式中,在第一网络业务为定向业务的情况下,第一终端确定第一数据包对应的网络业务类型为第一网络业务,包括:第一终端获取第一数据包中的业务特征;第一终端将业务特征与URSP信息中定向业务对应的业务特征进行匹配;在业务特征与URSP信息中定向业务对应的业务特征成功的情况下,第一终端确定第一数据包对应的网络业务类型为第一网络业务。
一般地,第二终端可以签约针对第二终端某个特定业务或特定应用的定向业务。因此,需要根据URSP规则来匹配是否是特定业务所在的应用或特定应用发送的数据,若是,则该数据的网络业务为定向业务;若是第二终端中其他应用发送的数据,则该数据对应的网络业务不是定向业务。
结合第一方面,在一种可能的实现方式中,第一终端确定第二终端签约的一个或多个网络业务,包括:第一终端确定第二终端签约的多个网络业务;第一终端确定第一数据包对应的网络业务类型为一个或多个网络业务中的第一网络业务,包括:第一终端基于第一数据包的业务特征、以及URSP信息中多个网络业务对应的业务特征,确定第一数据包对应的网络业务类型为多个网络业务中的第一网络业务。
结合第一方面,在一种可能的实现方式中,第一终端基于第一数据包的业务特征、以及URSP信息中多个网络业务对应的业务特征,确定第一数据包对应的网络业务类型为多个网络业务中的第一网络业务,包括:第一终端获取第一数据包中的业务特征;第一终端将所述业务特征与URSP中多个网络业务对应的业务特征分别进行匹配;在业务特征与URSP中第一网络业务对应的业务特征匹配成功的情况下,第一终端确定第一数据包对应的网络业务类型为第一网络业务。
结合第一方面,在一种可能的实现方式中,第一终端接收第二终端发送的第一数据包之前,该方法还可以包括:第一终端基于第二终端发送的签约信息,将第二终端的第一标识与第二终端中的一个或多个网络业务建立关联关系。
结合第一方面,在一种可能的实现方式中,第一终端通过与第一网络业务关联的第一切片网络将第一数据包传输至所述网络侧,包括:在第一终端与网络侧之间已建立有与第一切片网络对应的协议数据单元PDU会话的情况下,第一终端基于PDU会话,通过第一切片网络将第一数据包传输至网络侧。
结合第一方面,在一种可能的实现方式中,第一终端通过与所述第一网络业务关联的第一切片网络将第一数据包传输至网络侧,包括:第一终端基于切片参数信息,与网络侧建立 对应于第一切片网络的PDU会话;第一终端基于PDU会话,通过第一切片网络将第一数据包传输至网络侧。
结合第一方面,在一种可能的实现方式中,第一终端通过与第一网络业务关联的第一切片网络将第一数据包传输至所述网络侧之后,该方法还可以包括:第一终端接收到网络侧发送的第二数据包;在第一切片网络为低时延切片网络的情况下,第一终端将第二数据包加速发送给第二终端。
示例性地,该第二数据包可以是业务响应数据包。
结合第一方面,在一种可能的实现方式中,该方法还可以包括:第一终端接收到网络侧发送的允许的网络切片选择辅助信息Allowed NSSAI,Allowed NSSAI用于指示允许第一终端传输数据的切片网络集合;第一切片网络包含于切片网络集合中。
结合第一方面,在一种可能的实现方式中,第一标识包括第二终端的用户名、和/或第二终端的媒体存储控制MAC地址。
结合第一方面,在一种可能的实现方式中,第二终端的用户名可以是第二终端的手机号码。
结合第一方面,在一种可能的实现方式中,第一数据包的业务特征包括第一应用的App Id、IP三元组信息、数据网络名称DNN信息、目的全量域名FQDN信息中至少一项;第一应用为第二终端中发送第一数据包的应用。
第二方面,提供一种切片选择***,其特征在于,包括第一终端和第二终端,第二终端通过无线保真Wi-Fi网络与所述第一终端建立通信连接,所述第一终端通过蜂窝网络与网络侧建立通信连接;第二终端用于向第一终端发送第一数据包;第一终端用于接收第二终端发送的第一数据包;第一终端用于确定第二终端签约的一个或多个网络业务,一个或多个网络业务中每个网络业务关联一种切片网络;第一终端用于确定第一数据包对应的网络业务类型为一个或多个网络业务中的第一网络业务;第一终端用于通过与第一网络业务关联的第一切片网络将第一数据包传输至网络侧。
其中,第一终端可以是CPE,第二终端可以是手机、平板、电脑等等用户终端。
这样,第一终端可以根据第二终端签约的网络业务来确定第二终端发送的数据对应的切片网络。第一终端可以为签约不同网络业务的第二终端提供差异化的网络服务。
在一种可能的实现方式中,第一终端还可以执行上述第一方面中任一种可能的实现方式中的方法。
在一种可能的实现方式中,第二终端还可以执行上述第二方面中任一种可能的实现方式中的方法。
第三方面,本申请提供了一种通信装置,包括一个或多个处理器、一个或多个存储器和收发器。收发器、该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执行上述第一方面中第一终端任一项可能的实现方式中的方法。
其中,该通信装置可以为第一终端或其他产品形态的设备。
第四方面,本申请提供了一种通信装置,包括一个或多个处理器、一个或多个存储器和收发器。收发器、该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执行上述第一方面种第二终端任一项可能的实现方式中的方法。
其中,该通信装置可以为第二终端或其他产品形态的设备。
第五方面,本申请提供了一种计算机存储介质,包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述第一方面任一项可能的实现方式中的方法。
第六方面,本申请提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第一方面任一项可能的实现方式中的方法。
第七方面,本申请提供了一种芯片或芯片***,应用于第一终端,包括处理电路和接口电路,接口电路用于接收代码指令并传输至所述处理电路,处理电路用于运行所述代码指令以执行上述第一方面任一项可能的实现方式中的方法。
附图说明
图1是本申请实施例提供的一种通信***示意图;
图2是本申请实施例提供的一种终端的结构示意图;
图3是本申请实施例提供的一种CPE的结构示意图;
图4是本申请实施例提供的一种URSP的格式示意图;
图5是本申请实施例提供的一种CPE接入核心网的流程示意图;
图6是本申请实施例提供的一种UE接入CPE的流程示意图;
图7是本申请实施例提供的一种UE、CPE与核心网的交互示意图;
图8A是本申请实施例提供的一种数据格式示意图;
图8B是本申请实施例提供的一种数据格式示意图;
图9是本申请实施例提供的一种切片选择方法流程示意图;
图10是本申请实施例提供的解析URSP流程示意图;
图11是本申请实施例提供的签约不同网络业务场景示意图;
图12是本申请实施例提供的一种用户界面示意图;
图13是本申请实施例提供的一种确定UE发送的数据包对应的网络业务类型的流程示意图;
图14是本申请实施例提供的一种装置结构示意图;
图15是本申请实施例提供的一种装置结构示意图;
图16是本申请实施例提供的一种装置结构示意图;
图17是本申请实施例提供的一种装置结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是 两个或两个以上。
本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在介绍本申请实施例的技术方案之前,首先结合附图对本申请实施例的通信***进行说明。
图1示例性地示出了本申请实施例提供的一种通信***示意图。参见图1,该通信***10中包括终端100(例如,手机101、手表102、电脑103、投影仪104等等)、CPE200与核心网。需要说明的是,在实际应用中,终端100和CPE的数量均可以为一个或多个,图1所示通信***10的终端100和CPE200的数量仅为适应性举例,本申请对此不做限定。
进一步需要说明的是核心网可以为一个或多个核心网设备组成的设备集群,可选地,核心网设备可以是接入和移动性管理功能(access and mobility management function,AMF),主要负责接入控制、移动性管理(mobility management,MM)、附着与去附着以及网关选择等功能。本申请实施例所涉及的核心网设备不限于AMF。
终端100可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户终端(user equipment,UE)、站点(station,STA)或终端设备。例如,终端100可以为支持无线保真(wireless fidelity,Wi-Fi)通讯功能的移动电话、支持Wi-Fi通讯功能的平板电脑、支持Wi-Fi通讯功能的机顶盒、支持Wi-Fi通讯功能的智能电视、支持Wi-Fi通讯功能的智能可穿戴设备、支持Wi-Fi通讯功能的车载通信设备和支持Wi-Fi通讯功能的计算机等等。可选地,终端可以支持802.11be制式。终端也可以支持802.11be、802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等802.11家族的多种无线局域网(wireless local area network,WLAN)制式。
例如,CPE200和终端100可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。
需要说明的是,本申请中的CPE200和终端100还可以是一种支持多条链路并行进行传输的无线通信设备,例如,称为多链路设备(multi-link device)或多频段设备(multi-band device)。相比于仅支持单条链路传输的设备来说,多链路设备具有更高的传输效率和更高的吞吐量。
虽然本申请以CPE200与终端100之间部署IEEE 802.11的网络为例进行说明,本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,BLUETOOTH(蓝牙),高性能无线局域网(high performance radio local area network,HIPERLAN)(一种与IEEE 802.1 1标准类似的无线标准,主要在欧洲使用)以及广域网(wide area network,WAN)、无线局域网(wireless local area network,WLAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络。因此,无论使用的覆盖范围和无线接入协议如何,本申请提供的各种方面可以适用于任何合适的无线网络。
在一种可能的实现方式中,CPE200与终端100之间还可以部署有线网络,终端100可以是有线通讯芯片、有线传感器或有线通信终端等,即通过网线与CPE200连接的设备。本申请中以CPE200与终端100之间部署无线网络为例进行说明,对于CPE与终端之间部署有线 网络的场景,同样可参照本申请实施例中的技术方案,本申请不再重复说明。
下面介绍本申请实施例提供的示例性终端100。图2是本申请实施例提供的终端100的结构示意图。
参见图2,下面以终端100为例对实施例进行具体说明。应该理解的是,终端100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
终端100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了***的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现终端100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等***器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现终端100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现终端100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
SIM接口可以被用于与SIM卡接口195通信,实现传送数据到SIM卡或读取SIM卡中数据的功能。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为终端100充电,也可以用于终端100与***设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号 调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星***(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯***(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位***(global positioning system,GPS),全球导航卫星***(global navigation satellite system,GLONASS),北斗卫星导航***(beidou navigation satellite system,BDS),准天顶卫星***(quasi-zenith satellite system,QZSS)和/或星基增强***(satellite based augmentation systems,SBAS)。
终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-OLED,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端100可以包括1个或N个显示屏194,N为大于1的正整数。
终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,颜色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感 光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端100可以支持一种或多种视频编解码器。这样,终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,从而执行终端100的各种功能应用以及数据处理。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作***,至少一个功能所需的应用(比如人脸识别功能,指纹识别功能、移动支付功能等)等。存储数据区可存储终端100使用过程中所创建的数据(比如人脸信息模板数据,指纹信息模板等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当终端100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。终端100可以设置至少一个麦克风170C。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。
陀螺仪传感器180B可以用于确定终端100的运动姿态。
气压传感器180C用于测量气压。
磁传感器180D包括霍尔传感器。终端100可以利用磁传感器180D检测翻盖皮套的开合。
加速度传感器180E可检测终端100在各个方向上(一般为三轴)加速度的大小。当终端100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端100通过发光二极管向外发射红外光。终端100使用光电二极管检测来自附近物体的红外反射光。
环境光传感器180L用于感知环境光亮度。终端100可以根据感知的环境光亮度自适应调节显示屏194亮度。
指纹传感器180H用于采集指纹。
温度传感器180J用于检测温度。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。终端100可以接收按键输入,产生与终端100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡接口195也可以兼容外部存储卡。终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。
接下来,介绍本申请实施例的示例性CPE200。
图3为示例性示出的CPE200的结构示意图,参照图3,CPE200中包括至少一个处理器201、至少一个收发器203、一个或多个天线205和至少一个SIM卡接口206。可选地,CPE200还可以包括至少一个存储器202和至少一个网络接口204。处理器201、存储器202、收发器203和网络接口204相连,例如通过总线相连。天线205与收发器203相连。网络接口204用于使得CPE通过通信链路,与其它通信设备相连,例如可以通过网络接口204连接终端设备。在本申请实施例中,所述连接可包括各类接口、传输线或总线等,本实施例对此不做限定。SIM卡接口206用于使得CPE通过移动网络与核心网进行通信,具体描述可参照终端侧的描述,此处不再赘述。
本申请实施例中的处理器,例如处理器201,可以包括如下至少一种类型:通用中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、微处理器、特定应用集成电路专用集成电路(Application-Specific Integrated Circuit,ASIC)、微控制器(Microcontroller Unit,MCU)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、或者用于实现逻辑运算的集成电路。例如,处理器201可以是一个单核(single-CPU)处理器或多核(multi-CPU)处理器。至少一个处理器201可以是集成在一个芯片中或位于多个不同的芯片上。
本申请实施例中的存储器,例如存储器202,可以包括如下至少一种类型:只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备, 也可以是电可擦可编程只读存储器(Electrically erasable programmabler-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器202可以是独立存在,与处理器201相连。可选的,存储器202也可以和处理器201集成在一起,例如集成在一个芯片之内。其中,存储器202能够存储执行本申请实施例的技术方案的程序代码,并由处理器201来控制执行,被执行的各类计算机程序代码也可被视为是处理器201的驱动程序。例如,处理器201用于执行存储器202中存储的计算机程序代码,从而实现本申请实施例中的技术方案。可选的,存储器202还可以在芯片之外,通过接口与处理器201相连。
收发器203可以用于支持CPE与终端,以及CPE与核心网设备之间射频信号的接收或者发送,收发器203可以与天线205相连。收发器203包括发射机Tx和接收机Rx。具体地,一个或多个天线205可以接收射频信号,该收发器203的接收机Rx用于从天线接收所述射频信号,并将射频信号转换为数字基带信号或数字中频信号,并将该数字基带信号或数字中频信号提供给所述处理器201,以便处理器201对该数字基带信号或数字中频信号做进一步的处理,例如解调处理和译码处理。此外,收发器203中的发射机Tx还用于从处理器201接收经过调制的数字基带信号或数字中频信号,并将该经过调制的数字基带信号或数字中频信号转换为射频信号,并通过一个或多个天线205发送所述射频信号。具体地,接收机Rx可以选择性地对射频信号进行一级或多级下混频处理和模数转换处理以得到数字基带信号或数字中频信号,所述下混频处理和模数转换处理的先后顺序是可调整的。发射机Tx可以选择性地对经过调制的数字基带信号或数字中频信号时进行一级或多级上混频处理和数模转换处理以得到射频信号,所述上混频处理和数模转换处理的先后顺序是可调整的。数字基带信号和数字中频信号可以统称为数字信号。
上述通信***可以用于支持第五代(fifth generation,5G)接入技术以及面向未来的通信技术,例如新无线(new radio,NR)接入技术,示例性的,本申请实施例的描述中以5G中的独立组网(Standalone,SA)为例进行说明,实际上,本申请技术方案还可以应用于非独立组网(non-Standalone,NSA)等其他场景,本申请不做限定。
5G通信***引入了网络切片的概念,网络切片技术能够实现将一个物理网络划分为多个虚拟网络。一个虚拟网络当作一个“网络切片”,每个网络切片之间是相互独立的。一个终端中的不同协议数据单元(protocol data unit,PDU)会话可能需要与PDU会话相对应的网络切片来提供服务。
为使本领域技术人员更好的理解本申请,下面对本申请涉及到的网络切片的概念以及其它可能涉及到的背景技术进行简单说明:
网络切片作为5G的一项关键技术,在3GPP和其他各种国际标准化组织得到了广泛的重视和研究。其可以满足运营商对于各种工业、垂直市场和各种虚拟运营业务的定制化需求。网络切片是一个提供特定网络能力和网络特征的逻辑网络(Network Slice:Alogical network that provides specific network capabilities and network characteristics)。它可以是在物理或者虚拟的网络基础设施之上,根据不同的服务需求或者租户等定制化的有不同网络能力和网络特性的逻辑网络。网络切片由一组网络功能及其所需的资源(例如,计算资源、存储资源、网络资源)构成。
在本申请实施例中,网络切片可以简称为切片。
网络切片可以由操作、管理和维护***(operation,administration and maintenance,OAM)配置。单一网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)用于标识一个网络切片。
S-NSSAI包括以下至少之一:切片类型、服务类型(slice/service type,SST)信息,可选地,S-NSSAI还可以包括切片区分信息(slice differentiator,SD)。其中,SST信息用于指示网络切片的行为,例如网络切片的特征以及服务类型,SD信息是SST的补足信息,例如:若SST指向多个网络切片,那么SD可以辅助对应到唯一的一个网络切片。
终端中存在多种类型的业务,例如增强的移动宽带业务(enhanced mobile broadband,eMBB),超可靠低时延通信(ultra-reliable low latency communications,URLLC),海量机器类通信(massive machine type communication,mMTC)等,而不同类型业务的PDU会话对应的网络切片可能不同。终端中的不同应用可以对应于不同的业务类型,也就是说,终端中的应用可以对应不同的网络切片。需要说明的是,即使是相同的业务类型,由于提供的运营商或者业务提供商不同,也可能对应不同的网络切片。也就是说,网络切片可以给终端的至少一个PDU会话提供网络资源。
在已有的标准中,核心网通过向终端发送UE路由选择策略(UE route selection policy,URSP),以使终端确定数据(可以理解为不同业务类型的应用的数据)的路由方式,URSP可用于指示需要在切片网络上传输的业务特征和切片网络激活参数,路由方式包括具体路由到哪个切片,或者是采用非切片网络传输数据。
示例性的,如图4为示例性示出的URSP的格式示意图,URSP包括但不限于:URSP规则长度(Length of URSP rule)字段、URSP规则的优先级(Precedence value of URSP rule)字段、业务描述符长度(Length of Traffic descriptor)字段、Traffic descriptor字段、路由选择描述符列表长度(Length of Route selection descriptor list)字段以及Route selection descriptor字段。
其中,Route selection descriptor list字段用于承载切片网络激活参数,切片网络激活参数包括但不限于:一个或多个切片对应的S-NSSAI等参数。
Traffic descriptor字段用于承载上文所述的需要在切片上传输的业务特征对应的信息(或参数)。其它字段的定义可参照3GPP标准中的描述,此处不赘述。
3GPP 24526协议中对于Traffic descriptor字段的描述如下:
Traffic descriptor component type identifier(业务描述符字段类型定义)
Bits(比特位)
8 7 6 5 4 3 2 1
0 0 0 0 0 0 0 1 Match-all type(全匹配类型)
0 0 0 0 1 0 0 0 OS Id+App Id type(操作***标识+应用标识类型)
0 0 0 1 0 0 0 0 IPv4 remote address type(ipv4远端地址类型)
0 0 1 0 0 0 0 1 IPv6 remote address/prefix length type(ipv6远端地址/前缀长度类型)
0 0 1 1 0 0 0 0 Protocol identifier/next header type(协议标识/下一个协议头类型)
0 1 0 1 0 0 0 0 Single remote port type(单个远端端口类型)
0 1 0 1 0 0 0 1 Remote port range type(远端端口范围类型)
0 1 1 0 0 0 0 0 Security parameter index type(安全参数索引类型)
0 1 1 1 0 0 0 0 Type of service/traffic class type(服务/业务等级类型)
1 0 0 0 0 0 0 0 Flow label type(流标签类型)
1 0 0 0 0 0 0 1 Destination MAC address type(目标MAC地址类型)
1 0 0 0 0 0 1 1 802.1Q C-TAG VID type(802.1Q用户标签虚拟局域网识别符类型)
1 0 0 0 0 1 0 0 802.1Q S-TAG VID type(802.1Q业务标签虚拟局域网识别符类型)
1 0 0 0 0 1 0 1 802.1Q C-TAG PCP/DEI type(802.1Q用户标签优先权代码点/丢弃指示器类型)
1 0 0 0 0 1 1 0 802.1Q S-TAG PCP/DEI type(802.1Q业务标签优先权代码点/丢弃指示器类型)
1 0 0 0 0 1 1 1 Ethertype type(以太网类型)
1 0 0 0 1 0 0 0 DNN type(数据网络名称(Data Network Name)类型)
1 0 0 1 0 0 0 0 Connection capabilities type(连接能力类型)
1 0 0 1 0 0 0 1 Destination FQDN type(目的全量域名(Full quality domain name)类型)
其中,OS Id+App Id组成应用描述符(Application descriptors)信息,用于标识操作***中的应用,也可以理解为,Application descriptors可用于指示操作***中的哪些应用可以通过切片网络传输数据。其中,OS Id用于标识操作***,App Id用于标识操作***中的应用。示例性的,App Id可以为应用的应用包名,即,UE从任一平台或商店下载并安装应用,应用的安装包中包含App Id,UE可在安装应用后,存储应用的安装包名。
需要说明的是,上述标准适用于终端与核心网之间的交互,也就是说,终端可通过当前应用的App Id及其它参数与核心网下发的URSP进行匹配,以将应用的数据路由至指定切片。但是,在存在CPE的应用场景中,由于现有CPE只具有转发功能,并没有对应的切片和接入CPE的UE以及UE的业务匹配。因此,在该场景中,CPE仅能通过URSP中的IP三元组(包括IPv4 remote address type或IPv6 remote address/prefix length type、Protocol identifier/next header type、Single remote port type)、DNN(即DNN type)和/或FQDN(即Destination FQDN type)的匹配方式,将应用的数据路由至相应切片。
但是,在一些场景中,用户可以在LAN侧签约不同的数据业务,例如,低时延业务、大带宽业务、定向业务等等。不同的数据业务对数据传输网络的需求不同。但是,CPE仅能根据URSP将UE中发送的数据路由至相应切片。但是,不同的UE可能签约了不同类型的网络业务,不同类型的网络业务对应不同的切片。目前,CPE并不能将UE的业务类型与不同的切片关联起来。这样,CPE不能满足UE差异化的网络需求。
下面结合图2所示的应用场景,对已有标准中的终端、CPE以及核心网的交互流程进行简单说明:
1)CPE接入核心网
结合图2,图5示出了本申请实施例中的CPE接入核心网的流程示意图,如图5所示,CPE接入核心网可以包括如下步骤:
S101,CPE向核心网发送注册请求Registration request消息。
具体的,CPE开机、重启或更新等情况下会发起注册流程,例如,CPE在开机后,将会发起注册流程,或者,CPE刷新后,也会发起注册流程,注册流程可以理解为CPE注册入网。
示例性的,参照图5,CPE向核心网发送Registration request消息,用于请求发起注册流程。示例性的,该Registration request消息中可携带注册类型、安全参数等信息,需要说明的是,对于核心网而言,CPE相当于UE,因此其具体发起注册的流程可参照已有标准中的UE注册流程,本申请不再赘述。
S102,核心网向CPE发送注册接受Registration accept消息。
具体的,核心网同意CPE注册入网后,向CPE发送Registration accept消息。该Registration accept消息中可以携带用于指示CPE接入核心网的一个或多个参数。示例性的,在本实施例中,Registration accept消息中携带允许网络切片选择辅助信息(Allowed Network Slice Selection Assistance Information,Allowed NSSAI),用于指示允许CPE接入的一个或多个切片。
S103,CPE保存Allowed NSSAI。
示例性的,CPE可以将Allowed NSSAI保存至存储单元,例如CPE的内存中,以在后续的建立PDU session时使用。
S104,核心网向CPE发送管理终端策略命令Manage UE policy command消息。
具体的,核心网向UE发送Manage UE policy command消息,该消息中包括但不限于URSP。示例性的,如上文所述,URSP可以包括业务特征(例如IP三元组、App Id等等)和切片网络激活参数。
S105,CPE保存URSP。
具体的,CPE获取到来自核心网传输的URSP后,可以对URSP进行解码,以获取并存储URSP中各字段携带的参数及信息。
S106,CPE向核心网发送管理终端策略完成Manage UE policy complete消息。
具体的,CPE成功保存URSP包括的各参数后,可以向核心网发送Manage UE policy complete消息,以指示CPE已对URSP成功处理。
示例性的,如果CPE未能成功解析URSP或由于其他原因导致CPE未能成功保存URSP,则CPE向核心网发送管理终端策略命令失败Manage UE policy command reject消息。
2)UE接入CPE
具体的,在本申请实施例的通信***中,UE通过CPE接入核心网,图6示例性地示出了UE连接CPE的具体流程。如图6所示,UE接入CPE可以包括如下步骤:
S201,UE向CPE发送认证请求Authentication Request消息。
S202,CPE向UE发送认证响应Authentication Responce消息。
S203,UE向CPE发送关联请求Association Request消息。
S204,CPE向UE发送关联响应Association Responce消息。
CPE接收到UE发送的Association Response,确定UE成功接入CPE,或者可以理解为,成功通过CPE接入核心网。
上述步骤S201~步骤S204的具体细节及相关描述可参照802.11协议的标准,本申请不再赘述。
3)UE、CPE与核心网进行数据交互。
具体的,UE接入CPE后,UE与CPE之间的Wi-Fi通道建立。UE可通过其与CPE之间的Wi-Fi通道向CPE发送数据,并由CPE通过CPE与核心网之间的移动通信网络将数据转发至核心网。并且,CPE还可接收到核心网通过移动通信网络发送的对应于UE的数据。然后,CPE通过CPE与UE之间的Wi-Fi通道,将数据转发至UE。从而,可以实现UE与核心网之间的数据交互。
图7示例性地示出了UE、CPE与核心网交互的流程示意图,如图7所示,UE、CPE与核心网交互可以具体包括如下步骤:
S301,UE向CPE发送数据包1。
示例性的,UE通过与CPE之间的Wi-Fi通道,向CPE发送数据包1,数据包1的格式可以如图8A或者图8B所示。
参照图8A,具体的,UE与CPE之间为三层(即网络层)的数据交互,该数据包1也可以称为IP数据包,数据包1中可以携带数据部分以及IP包头(即为图中首部),IP包头中包括固定部分(也可以成为固定字段)和可变部分(也可以称为可变字段),其中,固定字段包括但不限于:目的地址、源地址等参数,可变字段包括可选字段和预留字段(也可以称为填充字段)。示例性的,固定部分所包括的字段是固定不变的,也就是说,UE向CPE发送的每个数据包均需要携带图8A中所示的固定部分中的各字段,字段中携带的信息可以相同,可以不同。可变部分所包括的各字段及各字段的长度均是可变的,也就是说,不同的UE,或者说是在不同的应用场景下,可变部分所包括的字段名称、位置及长度可以相同,也可以不同,本申请不做限定。需要说明的是,图8A所示数据包1格式中的各参数的名称及位置仅为示例性说明,本申请不做限定。
参照图8B,数据包1中可以携带数据部分以及IP包头(即为图中首部),IP包头中包括固定部分(也可以成为固定字段)和可变部分(也可以称为可变字段)。其中,IP包头中固定部分可参考图8A中的描述,此处不再赘述。数据包1中的IP包头中的可选字段部分可以包括UE中发送数据包1的应用的App Id。需要说明的是,图8B中所示的App Id字段在可选字段中的位置仅为示意性举例,该字段的长度及位置可根据实际需求设置,本申请不做限定。
S302,CPE获取IP三元组。
示例性的,仅以核心网下发的URSP中包括IP三元组为例进行说明。CPE响应于接收到的UE发送的数据包1,获取IP三元组。
可选地,核心网下发的URSP中还可以包括App Id。CPE还可以从数据包1中获取UE中发送该数据包1的应用的App Id。
S303,CPE对IP三元组进行校验。
示例性的,CPE将获取到的IP三元组与S105保存的URSP指示的IP三元组进行匹配。若IP三元组匹配成功,即,IP三元组中的各参数均存在于核心网下发的URSP中。则CPE确定IP三元组校验成功,该IP三元组对应的数据包可路由到切片网络。
示例性的,如果IP三元组校验失败,即,IP三元组中的任一参数不存在于URSP中,则CPE确定校验失败,该数据包将路由到默认切片,通常情况下,默认切片为低优先级切片,或者,数据包将路由到非切片网络。
可选地,CPE还可以将从数据包1中获取到UE中发送该数据包1的应用的App Id,与URSP中的App Id进行匹配。若App Id匹配成功,即发送该数据包1的应用的App Id存在于核心网下发的URSP中。则CPE确定App Id校验成功,该App Id对应的数据包1可路由到URSP中App Id对应的切片。
可选地,CPE还可以将从数据包1中获取到UE中发送该数据包1的应用的App Id、以及IP三元组,与URSP中的App Id和IP三元组进行匹配。
S304a,CPE将数据包1路由到指定切片。
示例性的,CPE对IP三元组验证成功后,可进一步基于URSP中的其它信息,例如上文所述的切片网络激活参数等,获取切片的其它相关信息,例如切片的NSSAI。
示例性的,CPE可将切片的NSSAI与S103中存储的Allowed NSSAI进行匹配,以确定核心网是否允许UE的数据路由到该切片。
CPE将数据包1中的IP三元组与该切片对应的PDU session进行绑定,以使后续接收到的包含该IP三元组的数据包均可通过绑定的PDU session路由到对应切片。示例性的,绑定可以是指CPE将IP三元组与PDU session的相关信息(例如业务接口或者路由表项)对应记录在内存中,以使CPE检测到与该IP三元组对应的数据(即包括IP三元组的数据包)后,确定与IP三元组绑定的PDU session,并将数据路由到PDU session所对应的切片上。
这里,CPE可以在步骤S304a之前,已经将数据包1中的IP三元组与该切片对应的PDU session绑定。
可选地,CPE对App Id验证成功后,可进一步基于URSP中的其它信息,例如上文所述的切片网络激活参数等,获取切片的其它相关信息,例如切片的NSSAI。
一个示例中,如果CPE检测到未建立与该切片对应的PDU session,则需触发PDU session建立流程,仍参照图7,方法还包括:
S304b,CPE向核心网发送PDU session建立请求消息。
示例性的,CPE向核心网发起PDUsession建立流程,以建立对应于切片的PDU session。示例性的,PDU session建立请求消息携带所述IP三元组或App Id对应的切片的NSSAI。
S304c,核心网向CPE发送PDU session建立成功消息。
示例性的,核心网基于接收到的PDU session建立请求消息,建立与NSSAI对应的切片的PDU session,并在PDU session建立成功后,向CPE返回PDU session建立成功消息。
需要说明的是,PDU session建立流程的具体细节可参照已有标准中规定的PDU session建立流程,本申请不再赘述。
具体的,CPE接收到PDU session建立成功消息后,确定PDU session建立成功,并将IP三元组对应的数据流与PDU session进行绑定。
另一个示例中,若CPE检测到IP三元组或App Id对应的切片的PDU session已建立,则CPE直接将IP三元组、App Id与PDU session绑定,而无需执行PDU session建立流程。
可选地,核心网接收到数据包1之后,可以通过CPE向UE回复数据包2。具体,可参照图7,核心网接收到数据包1之后,UE、CPE与核心网交互具体还包括如下步骤:
S305,核心网向CPE发送数据包2。
示例性地,核心网可以在接收到数据包1后,基于数据包1生成数据包2,然后将数据包2发送给CPE。
可选地,核心网可以接收到另一个UE或者服务器发送的数据包。核心网对该数据包解析并封装成数据包2后发送给CPE。
可以理解的,本申请实施例对核心网如何生成数据包2、或者获取数据包2不作限定。
S306,CPE将数据包2发送给UE。
示例性地,CPE接收到核心网发送的数据包2后,可以解析该数据包2,确定该数据包2的目的接收设备,例如,UE。CPE可以将该数据包2发送给该目的接收设备,即UE。
关于UE、CPE与核心网下行数据传输流程可以参考已有标准中的描述,此处不再赘述。
图7中所示的过程是基于核心网下发的URSP所指示的业务特征(该业务特征可以包括但不限于App Id、IP三元组、DNN、FQDN中的一种或一种以上)进行校验,如果校验成功,则允许CPE将数据路由至切片网络。在一些场景中,用户可以开通不同的网络业务来体验差异化的网络服务。但是,CPE无法将用户开通的业务与切片进行关联,只能通过URSP来确定用户终端发送的数据匹配的切片。而根据URSP确定的切片有可能与用户所开通的业务对应的切片不一致,这样,无法为用户提供差异化的网络服务。举例来说,如果用户A的终端 开通了低时延网络业务,该低时延网络业务对应低时延切片。那么用户A的终端通过CPE向核心网发送数据时,CPE应该将该数据路由到低时延切片上。但是,若CPE仅按照URSP确定该用户A的终端发送的数据对应的切片为普通切片。那么用户A无法体验低时延的网络服务。
本申请实施例提供一种切片选择方法,CPE可以将UE的网络业务,与切片进行关联。CPE可以基于UE的网络业务来将该UE发送的数据路由与UE的网络业务关联的切片。这样,CPE可以给不同的UE提供差异化的网络服务。
在本申请实施例中提供的切片选择方法中,UE可以在CPE中签约网络业务。不同的网络业务可以与不同的切片关联。CPE可以基于UE签约的业务将UE发送的数据路由到UE所签约的业务对应的切片上。这样,UE可以体验差异化的网络服务。
图9示例性地示出了本申请实施例提供的一种切片选择方法。如图9所示,本申请实施例提供的一种切片选择方法可以包括如下步骤:
S401,CPE200接入核心网300。
在一些示例中,CPE200接入核心网300可以包括如下步骤:
1、CPE200中的调制解调器(modem)模块2003向核心网300发起注册。
这里,可以参考步骤S101中的描述,此处不再赘述。
2、核心网300可以向CPE200发送URSP和CPE200的签约信息。
示例性地,核心网300可以向CPE200的modem模块2003发送URSP和CPE200的签约信息。CPE200可以向运营商签约一个或多个网络业务。例如,运营商处可以提供网络业务的类型包括:大带宽高优先级业务,大带宽中优先级业务,大带宽低优先级业务,定向业务、低时延业务等等网络业务中的一个或多个。
可以理解的是,不同的运营商处的网络业务分类可能不同,网络业务的类型、名称也可能不同。本申请实施例对CPE200可以签约的网络业务的类型和名称不作限定。
在本申请实施例,定向业务可以运营商针对某一个公司的特定业务提供的网络业务。运营商可以提供一个或多个定向切片只对该特定业务提供网络服务,即只有UE100发送该特定业务的数据才能路由到运营商为该特定业务提供的切片上,其他业务的数据不能路由到该运营商为该特定业务提供的切片上。例如,运营商针对某一种游戏提供网络业务可以称为定向业务。运营商针对煤矿作业提供的网络业务也可以称为定向业务。运营商针对电网公司提供的网络业务也可以称为定向业务。可以理解的是,本申请实施例对具体的定向业务不作限定。
本申请实施例中,一种网络业务可以对应一种切片。不同的网络业务对应不同的切片。CPE200可以向运营商签约一个或多个网络业务可以是指,CPE200在运营商处开通使用一个或多个切片的权限。在本申请实施例中,CPE200具备使用第一切片的权限可以指,CPE200可以将数据路由到第一切片,可以通过第一切片将数据传输至核心网。
CPE200可以对核心网下发的URSP进行解析,CPE200可以解析出切片信息。该切片信息可以指示CPE200中能够使用的切片,以及能够提供给UE100的切片。
示例性地,参见图10,CPE200对URSP解析可以具体包括如下步骤:
S4011,CPE200按优先级遍历终端路由选择策略URSP列表。
示例性地,CPE200可以按照优先级遍历URSP列表。该URSP列表中可以多个URSP规则。可选地,URSP列表位置靠前的URSP规则的优先级高于位置靠后的URSP规则。
S4012,CPE200确定URSP列表中是否存在下一个优先级的URSP。若存在,执行步骤 S4013,若不存在,则执行步骤S40111。
可以理解的,CPE200可以先对URSP列表中最高优先级的URSP进行匹配,若最高优先级的URSP匹配成功,则不执行步骤S4012,若最高优先级的URSP匹配不成功,则匹配下一个优先级的URSP。
S4013,CPE200进行业务描述符Traffic descriptor匹配。
CPE200判断URSP规则的业务描述符所指示业务是否包括CPE200的业务,或者,判断URSP规则的业务描述符所指示业务是否与CPE200的业务相同。
S4014,CPE200确定Traffic descriptor是否匹配成功,若是,则执行步骤S4015,若否,则执行步骤S4012。
若CPE200确定Traffic descriptor指示的业务包括CPE200的业务,或者与CPE200的业务相同,则CPE200确定Traffic descriptor是否匹配成功。则CPE200执行步骤S4015。否则,CPE200继续执行S4012,查询下一条URSP规则。
S4015,CPE200遍历路由选择描述列表Route selection descriptor list。
CPE200逐条遍历路由选择描述列表Route selection descriptor list中的每个S-NSSAI。
S4016,CPE200确定S-NSSAI是否包含在allowed NSSAI,若是,则执行步骤S4017,若否,则执行步骤S4012。
CPE200确定路由选择描述列表Route selection descriptor list中的每个S-NSSAI是否包含在allowed NSSAI。若是,则执行步骤S4017。若否,则执行步骤S4012,即遍历下一条URSP规则。
S4017,CPE200选择S-NSSAI为PDU session激活参数。
S4018,CPE200确定DNN&NSSAI已经激活成功,若是,则执行步骤S4019,若否,则执行步骤S40110。
S4019,CPE200确定无需再激活PDU session。
S40110,CPE200用S-NSSAI激活PDU session。
S40111,CPE200确定切片选择失败。
若CPE200未遍历到次高优先级的URSP,则CPE200确定切片选择失败。
可以理解的,CPE200解析URSP的具体过程可以参考已有标准中的描述,此处不再赘述。
3、CPE200中的modem203可以向CPE200中的切片应用模块上报切片信息。
4、CPE200中的切片应用模块记录切片信息。
5、CPE200中的切片应用模块发起拨号。
6、CPE200中的modem203基于切片应用模块发起的拨号,建立多个切片的PDU session。
这里CPE200拨号,建立切片的PDU session的具体过程可以参考已有标准,此处不再赘述。
S402,UE100接入CPE200。
UE100接入CPE200的具体过程可以参考S201-S204中的描述,此处不再赘述。
在本申请实施例中,在UE100执行步骤S402之前或者之后,UE100可以进行身份认证以及签约网络业务。CPE200可以通过UE100的身份认证获取UE100的标识信息以及UE100签约的网络业务信息。
可选地,UE100可以通过Portal(门户网站或入口网页)认证来进行身份认证以及签约网络业务。
示例性,用户可以开启UE100中的Wi-Fi,在连接CPE200时,UE100可以显示用于身份认证的网页,用户可以在该网页中输入用户名和密码进行身份证。在UE100进行身份认证是,CPE200可以获取到UE100的MAC地址。
进一步地,UE100可以签约一项或多项CPE能够提供的网络业务。示例性地,图11示出了终端在签约CPE提供的网络业务的场景。如图11所示,终端1可以签约CPE提供的大带宽高优先级业务。终端2可以签约CPE提供的大带宽中优先级业务。终端3可以签约CPE提供的大带宽低优先级业务。终端4可以签约CPE提供的低时延业务。终端5可以签约CPE提供的多切片业务(即大带宽高优先级业务、大带宽中优先级业务、大带宽低优先级业务、低时延业务、定向业务等等业务中的多项业务)。终端6可以签约CPE提供的定向业务。
CPE200可以预先配置CPE能够提供的切片的名称,CPE可以将切片的名称与切片ID进行关联(或者称为绑定)。UE签约网络业务可以是指,UE在CPE中选定CPE能够提供的一种或者多种切片的名称后,CPE将该UE的标识与UE选定的切片的名称对应的切片关联。这样,UE具有使用该切片的权限。
在本申请实施例中,UE具有使用切片的权限可以指,UE发送的数据可以通过该切片传输至核心网(或者称为网络侧)。
可选地,CPE中可以有管理员用户,示例性地,通过USB或网口连接到CPE的终端可以称为管理员用户。本申请实施例对管理员用户不作限定。示例性地,该管理用户可以配置CPE200能够提供的切片的名称。以及,该管理员用户可以为其他UE签约CPE200能够提供的网络业务。
可以理解的是,CPE200中的SIM卡可以在运营商处签约一项或多项网络业务。CPE200能够提供给UE100的网络业务为CPE200中SIM卡在运营商处已签约过的网络业务。例如,CPE200中的SIM卡若在运营商处签约了低时延业务,那么CPE200可以给UE100提供低时延业务。只有当CPE200中的SIM卡在运营商处签约多项网络业务时,UE100才可以签约多切片业务。
进一步地,可选地,UE100可以通过登录网页签约CPE200能够提供的网络业务。或者,UE100可以通过管理员用户签约CPE200能够提供的网络业务。本申请实施例对UE100签约网络业务的方式不作限定。
示例性地,图12示出了一种用于签约网络业务的用户界面示意图。如图12所示,用户界面1200可以用于选择UE100签约的网络业务,并进行网络业务签约。用户界面1200中可以包括控件1201、控件1202、选项框1203、输入框1204、控件1205以及控件1206。用户点击控件1201和控件1202后,用户界面1200中可以显示选项框1203。用户可以在选项框中选择网络业务、在输入框1204中输入用户名(例如手机号码131********)。用户点击控件1205后,手机号码为131********的UE可以成功签约用户在选项框1203中所选定的网络业务。可选地,用户可以点击控件1206查看不同的网络业务对应的资费说明,或者用户所选定的网络业务对应的资费说明。
可以理解的是,UE100可以显示该用户界面1200,用户可以在该用户界面1200中为UE100签约网络业务。
可选地,CPE200的管理员用户的UE中也可以显示该用户界面1200。管理员用户可以在该用户界面1200中给不同的UE签约网络服务。
进一步地,当UE签约CPE200提供的网络业务后,CPE200可以将UE与该UE所签约的网络业务对应的切片进行关联(或者称为绑定)。
可选地,CPE200可以在数据库中记录UE的标识与其关联的切片或者该切片的ID。UE的标识可以是UE的MAC地址或者UE的手机号码,此处不作限定。
示例性地,在UE100进行portal认证时,CPE200可以保存UE的用户名,并且可以获取UE200的MAC地址。CPE200可以将UE100的用户名和MAC地址保存到portal信息数据库中。
示例性地,在UE100签约CPE200中能够提供的一项或多项网络业务后,CPE可以将UE100的用户名和UE100所签约的网络业务对应的切片ID建立关联关系,并保存到用户数据库中。CPE200可以将portal信息数据库保存的UE100的用户名和MAC地址刷新用户数据库,CPE200可以将UE100的用户名和MAC地址,与UE100所签约的网络业务对应的切片ID建立关联关系,并保存到用户数据库中。
可以理解的是,不同的UE可以签约同一项网络业务。CPE200中的一个切片ID可以与多个UE的用户名建立关联关系。
示例性地,在一种可能的实现方式中,CPE将UE100的用户名和UE100所签约的网络业务对应的切片ID建立关联关系之后,CPE200可以生成UE100的路由规则。该路由规则用于指示CPE200基于哪个PDU会话,将UE100的数据通过UE100签约的网络业务对应的切片传输至核心网。
S403,UE100向CPE200发送数据包R1。
UE100可以向CPE200发送数据包R1。该数据包R1可以是一种业务请求。该数据包R1中可以携带IP三元组,示例性地,该数据包的格式可以如图8A。可选地,该数据包还可以携带App Id,示例性地,该数据包的格式可以如图8B所示。可选地,数据包R1中还可以携带UE100的手机号码。此处对该数据包的具体格式不作限定。
示例性地,在一种可能的实现方式中,UE100向CPE200发送数据包R1包括:S403a,UE100将数据包R1发送给CPE200的Wi-Fi模块2001;S403b,CPE200中的Wi-Fi模块将数据包R1发送给CPE200中的路由模块2002。
S404,CPE200确定数据包R1对应的网络业务类型A1。
CPE200可以确定数据包R1对应的网络业务类型A1。具体地,CPE200可以先确定发送该数据包R1的UE100签约的网络业务。若UE100签约的网络业务仅包含为一项网络业务,且不是定向业务,则CPE200可以确定数据包R1对应的网络业务类型A1即为UE200签约的网络业务。
可选地,在一种可能的实现方式中,若该UE100签约的网络业务类型签约的网络业务为定向业务。则CPE200需要根据数据包R1中携带的业务特征(例如,IP三元组、或者IP三元组与App Id等等)与URSP中定向业务切片对应的业务特征进行匹配,若匹配成功,则CPE200确定数据包R1对应的网络业务类型A1为定向业务。若匹配不成功,则CPE200确定该数据包R1对应的网络业务A1为普通业务,即CPE200可以将该数据包R1路由到默认切片。
可选地,在一种可能的实现方式中,若该UE100签约的网络业务类型签约的网络业务为多切片业务,即包含多项网络业务,则CPE200需要根据数据包R1中携带的业务特征与URSP中多项网络业务所关联切片对应的业务特征分别进行匹配。若数据包R1中携带的业务特征与与URSP中多项网络业务中网络业务A2关联切片对应的业务特征匹配成功,则CPE200确定数据包R1对应的网络业务类型A1为网络业务A2。若匹配不成功,则CPE200确定该数据包R1对应的网络业务A1为普通业务,即CPE200可以将该数据包R1路由到默认切片。 可选地,一种可能的实现方式中,若匹配不成功,CPE200可以将该数据包R1路由到大带宽高优先级业务切片。这样,可以提高用户体验。
可选地,在一种可能的实现方式中,CPE200确定发送数据包R1对应的网络业务类型A1可以包括:CPE200确定发送数据包R1的UE100签约的网络业务,基于UE签约的网络业务确定数据包R1对应的网络业务类型A1。
示例性地,如图13所示,以CPE200与运营商签约了大带宽高优先级业务、大带宽中优先级业务、大带宽低优先级业务、低时延业务、定向业务等五种网络业务类型的网络业务为例进行说明,CPE200确定发送数据包R1对应的网络业务类型A1可以包括:
S4041,CPE200确定发送数据包R1的UE100签约的网络业务类型。
UE100签约的网络业务类型可以为大带宽高优先级业务、大带宽中优先级业务、大带宽低优先级业务、低时延业务、定向业务的一种或多项。
当UE100签约的网络业务类型可以为大带宽高优先级业务、大带宽中优先级业务、大带宽低优先级业务、低时延业务、定向业务的任一种或多种时,基于UE签约的网络业务确定数据包R1对应的网络业务类型A1包括如下几种情况:
情况1:UE100仅签约大带宽高优先级业务
S4042a,CPE200确定发送该数据包R1的UE100签约了大带宽高优先级业务。
示例性地,CPE200可以基于数据包R1中携带的UE100的MAC地址或者UE100的手机号码确定UE100签约了大带宽高优先级业务。
S4044a,CPE200确定网络业务类型A1为大带宽高优先级业务。
然后,CPE200可以确定网络业务类型A1为大带宽高优先级业务。
情况2:UE100仅签约大带宽中优先级业务
S4042b,CPE200确定发送该数据包R1的UE100签约了大带宽中优先级业务。
示例性地,CPE200可以基于数据包R1中携带的UE100的MAC地址或者UE100的手机号码确定UE100签约了大带宽中优先级业务。
S4044b,CPE200确定网络业务类型A1为大带宽高优先级业务。
情况3:UE100仅签约大带宽低优先级业务
S4042c,CPE200确定发送该数据包R1的UE100签约了大带宽低优先级业务。
示例性地,CPE200可以基于数据包R1中携带的UE100的MAC地址或者UE100的手机号码确定UE100签约了大带宽低优先级业务。
S4044c,CPE200确定网络业务类型A1为大带宽低优先级业务。
情况4:UE100仅签约定向业务
S4042d,CPE200确定发送该数据包R1的UE100签约了定向业务。
示例性地,CPE200可以基于数据包R1中携带的UE100的MAC地址或者UE100的手机号码确定UE100签约了定向业务。
S4043d,CPE200将数据包R1中的业务特征与URSP中定向业务的特征进行匹配。
S4044d,若匹配成功,则CPE200确定网络业务类型A1为定向业务。
可以理解的是,UE100签约了定向业务,UE100中只有特定应用才对应定向业务,其 他应用均不是定向业务。所以CPE200需要将数据包R1中的业务特征与URSP中定向业务的特征进行匹配,以确定该数据包R1是不是由该UE100中定向业务对应的特定应用发送的。若匹配成功,则CPE200确定网络业务类型A1为定向业务。若匹配不成功,则CPE200确定网络业务类型A1不是定向业务。
情况5:UE100仅签约低时延业务
S4042e,CPE200确定发送该数据包R1的UE100签约了低时延业务。
示例性地,CPE200可以基于数据包R1中携带的UE100的MAC地址或者UE100的手机号码确定UE100签约了大带宽低优先级业务。
S4044e,CPE200确定网络业务类型A1为低时延业务。
情况6:UE100签约了多切片业务
S4042f,CPE200确定发送该数据包R1的UE100签约了多切片业务。
示例性地,CPE200可以基于数据包R1中携带的UE100的MAC地址或者UE100的手机号码确定UE100签约了多切片业务。即UE100签约了大带宽高优先级业务、低时延业务、定向业务中的多项网络业务。
S4043f,CPE200基于数据包R1中的业务特征与URSP确定数据包R1对应的网络业务类型A1。
CPE200可以将数据包R1中的业务特征与URSP中的多切片业务中的每一种网络业务对应的业务特征分别进行匹配。若数据包R1中的业务特征与多切片业务中低时延业务的业务特征匹配成功,则CPE200可以确定数据包R1的网络业务类型A1为低时延业务。若数据包R1中的业务特征与多切片业务中定向业务的业务特征匹配成功,则CPE200可以确定数据包R1的网络业务类型A1为定向业务。若数据包R1中的业务特征与多切片业务中大带宽高优先级业务的业务特征匹配成功,则CPE200可以确定数据包R1的网络业务类型A1为大带宽高优先级业务。
在一种可能的实现方式中,若该数据包R1的业务特征与定向业务的业务特征、低时延业务的业务特征、以及大带宽高优先级业务均不匹配,则CPE200确定该数据包R1对应的网络业务A1为普通业务,即CPE200可以将该数据包R1路由到默认切片。
可选地,一种可能的实现方式中,若该数据包R1的业务特征与定向业务的业务特征、低时延业务的业务特征、以及大带宽高优先级业务均不匹配,则CPE200也可以确定该数据包R1对应的网络业务A1为大带宽高优先级业务,即CPE200可以将该数据包R1路由到大带宽高优先级业务切片。这样,可以提高用户体验。
可以理解的是,默认切片的数据传输速率低于上述定向切片、低时延业务切片、大带宽高优先级切片、大带宽中优先级切片、大带宽低优先级切片等切片的数据传输速率。大带宽高优先级切片的数据传输速率高于大带宽中优先级切片的数据传输速率。大带宽中优先级切片的数据传输速率高于大带宽低优先级切片的数据传输速率。S405,CPE200将数据包R1路由到网络业务类型A1对应的切片S1。
CPE200可以将数据包R1路由到网络业务类型A1对应的切片S1。
示例性地,参见图13,情况1:S4045a,在网络业务类型A1为大带宽高优先级业务的情况下,CPE200可以将数据包R1路由到大带宽高优先级业务切片。情况2:S4045b,在网络业务类型A1为大带宽中优先级业务的情况下,CPE200可以将数据包R1路由到大带宽中 优先级业务切片。情况3:S4045c,在网络业务类型A1为大带宽低优先级业务的情况下,CPE200可以将数据包R1路由到大带宽低优先级业务切片。情况4:S4045d,在网络业务类型A1为低时延业务的情况下,CPE200可以将数据包R1路由到定向业务切片。情况5:S4045e,在网络业务类型A1为定向业务的情况下,CPE200可以将数据包R1路由到低时延业务切片。
可选地,当CPE200解析出数据包R1中携带App Id时,CPE200可以将数据包R1重新封装,重新封装后的数据包R1不包括App Id以避免核心网侧无法识别可选字段中的App Id,导致兼容性问题。
可以理解的是,在一种可能的实现方式中,当CPE200确定UE100未签约CPE200提供的网络业务时,CPE200可以将该数据包R1路由到默认切片。
可选地,在一种可能的实现方式中,当CPE200确定UE100未签约CPE200提供的网络业务时,CPE200可以不将该数据包R1发送至核心网300。即,CPE200不为UE100提供网络服务。
可选地,核心网300还可以基于该数据包R1,发送业务响应R2。即可选地,本申请实施例提供的一种切片选择方法还可以包括步骤S406-步骤S408a、步骤S408b。
S406,核心网300向CPE200发送数据包R2。
核心网300可以基于UE100发送的数据包R1,通过CPE200向UE100发送数据包R2。
S407,CPE200确定数据包R2是否对应低时延业务切片。若是,则执行步骤S408b,若否,则执行步骤S408a。
CPE200可以确定数据包R2是否对应低时延切片。当CPE200在确定数据包R1对应低时延业务切片时,可以将该数据包R1的业务特征(例如IP三元组、或者IP三元组和App Id)加入特征表。当业务响应R2的业务特征与特征表中的业务特征相匹配时,CPE200可以确定业务响应对应低时延切片。否则,数据包R2不对应低时延业务切片。
可以理解的是,一般UE100上行发送的数据(例如,数据包R1)路由到低时延业务切片,那么下行接收到的数据(例如,数据包R2)。
S408a,若数据包R2不对应低时延业务切片,则向UE100发送数据包R2。
S408b,若数据包R2对应低时延业务切片,则将数据包R2进行加速发送给UE100。
若数据包R2对应低时延业务切片,则CPE200对下行传输该数据包R2的Wi-Fi链路进行加速。示例性地,若数据包R2是通过低时延业务切片发送到CPE200,则,CPE200可以确定该数据包R2对应低时延业务切片。然后,CPE200可以通过CPE200中的higame模块对传输该数据包R2的Wi-Fi链路进行加速。
这样,CPE可以将UE签约的网络业务与切片进行关联。然后,CPE200可以将签约了不同类型网络业务的UE发送的数据路由到不同的切片上。例如,若UE1签约了低时延业务切片,若UE2签约了大带宽高优先级业务,那么CPE200可以将UE1中应用A发送的数据路由到低时延业务切片,CPE200可以将UE2中应用A发送的数据路由到大带宽高优先级业务切片。这样,CPE200可以给用户提供差异化的网络服务。
在一些场景中,管理员用户还可以在CPE200中设置一个虚拟Wi-Fi接入点,并设置该虚拟Wi-Fi接入点的密码。管理员用户还可以将该虚拟Wi-Fi接入点的信息(例如,虚拟Wi-Fi接入点的名称和密码)与一个切片关联。连接该虚拟Wi-Fi接入点的UE发送的数据均可路由到同一个切片(即与虚拟Wi-Fi接入点的信息关联的一个切片)上。这样,可以避免每个用户需要单独操作来绑定切片或者付费接入,提高用户体验。
示例性地,以户外CPE多人玩游戏为例。管理员用户可以设定CPE200的虚拟Wi-Fi接入点。例如,该虚拟Wi-Fi接入点为xx游戏切片Wi-Fi,并设定Wi-Fi密码。管理员用户还可以将xx游戏切片Wi-Fi与xx游戏切片关联起来,可以理解的是,CPE签约了很多切片,其中包括xx游戏切片。通过该xx游戏切片Wi-Fi接入的UE均可以进行xx游戏切片业务。可选地,CPE可以将接入xx游戏切片Wi-Fi的UE的MAC地址和xx游戏切片进行关联并存储到数据库中。
这样,对于多人玩游戏,群组户外组团打游戏等场景也减少了用户认证的过程。
在上述CPE200设置有虚拟Wi-Fi连接点的场景中,本申请实施例提供的一种切片选择方法可以包括:
1,CPE200接入核心网。CPE200中设置有虚拟Wi-Fi接入点,并将Wi-Fi接入点的接入信息与切片S2关联。
这里,CPE200接入核心网的过程可以参考上述步骤S401中的描述,此处不再赘述。
该CPE200中设置有虚拟Wi-Fi接入点,并将虚拟Wi-Fi接入点的接入信息与切片S2关联。
2,UE100接入CPE200。
这里,可以参考上述步骤S402中的描述,此处不再赘述。
3,UE100向CPE200发送数据包R1。
这里,可以参考上述步骤S403中的描述。
4,CPE200判断UE100是否接入虚拟Wi-Fi接入点,若是,则将该数据包R1路由到虚拟Wi-Fi接入点关联的切片S2;若否,CPE200可以执行上述步骤S404-S405。
在本申请实施例中,CPE200或CPE可以称为第一终端。UE、或者UE100、UE1、UE2均可以称为第二终端。数据包R1可以称为第一数据包,数据包R2可以称为第二数据包。切片S1所在的网络可以称为第一切片网络。
本实施例可以根据上述方法示例对CPE200进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块可以采用硬件的形式实现。需要说明的是,本实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图14示出了一种装置1400的结构示意图。该装置1400可以包括:Wi-Fi模块2001、路由模块2002、调制解调器模块2003、切片应用模块2004、UI模块2005。其中:
Wi-Fi模块2001可以用于获取并保存通过Wi-Fi接入的UE的MAC地址到数据库中,Wi-Fi模块2001还可以将保存的接入UE的MAC地址发送给路由模块2002。
可选地,Wi-Fi模块2001还可以用于对下行低时延业务进行加速。
可选地,参见图11,Wi-Fi模块2001还可以包括Wi-Fi网卡路由策略管理模块、Wi-Fi数据包管理模块。Wi-Fi网卡路由策略管理模块可以用于管理和保存核心网下发的URSP。Wi-Fi数据包管理模块对下行通过低时延业务切片传输给CPE200的数据进行加速。
路由模块2002可以用于将UE的MAC地址与UE签约的网络业务,切片进行关联。
路由模块2002还可以用于根据UE的MAC地址与UE签约的网络业务,切片的关联关系,以及该切片的路由规则,构建端到端的数据通路。
路由模块2002还可以用于根据网络状态,负责刷新动态路由规则。
路由模块2002还可以用于,在UI模块2005的Portal信息认证有变化或者UI模块2005中配置有变化的情况下,刷新保存有UE的MAC地址的数据库,同时刷新路由规则。例如, 在重新接入后MAC地址变化,或者用户签约切片变化,用户取消签约等情况下,路由模块2002刷新路由规则。
路由模块2002还可以用于执行上述步骤S404-步骤S405,此处不再赘述。
调制解调器模块2003可以用于接收核心网发送的URSP,并将该URSP信息上报给切片应用模块2004。
调制解调器模块2003还可以用于执行上述步骤S4011-步骤S40111,此处不再赘述。
切片应用模块2004可以用于根据调制解调器模块2003上报的URSP信息以及允许的切片,不允许的切片信息等,发起多路切片会话的建立。
切片应用模块2004可以用于将PDU session信息上报给UI模块2005。
UI模块2005可以用于显示UI界面,以及提供用户进行Portal认证的用户界面。UI模块2005还可以用于配置UE与所签约业务、切片的关联关系。
UI模块2005还可以用于将UE的用户名与UE的MAC地址进行关系,并将UE的用户名和MAC地址之间的关联关系保存在数据库中,并发送给路由器模块2002。
装置1400可以是上述实施例中的CPE200。
另一个示例中,图15示出了装置1500的结构示意图,装置1500可以包括:收发单元1501。收发单元1501,可以用于接收来自网络侧的终端设备第一路由选择策略URSP信息,第一URSP信息包括应用标识App Id和第一切片参数信息,App Id用于标识应用,第一切片参数信息用于指示第一切片网络;装置1500通过蜂窝网络与网络侧进行数据交互。
收发单元1501,还可以用于接收UE通过Wi-Fi网络发送的数据包。该数据包中可以携带有UE中发送该数据包的应用的App Id。
收发单元1501,还可以用于当确定发送数据包的UE签约的网络业务对应的第一切片时,通过第一切片网络传输数据包至网络侧。
收发单元1501,还可以用于当数据包中的App Id与第一URSP信息中的App Id相同时,通过第一切片参数信息指示的第一切片网络传输数据包至网络侧。
在上述方法实施例的基础上,第一URSP信息还包括其它业务特征信息,其它业务特征信息包括以下至少之一:IP三元组信息、数据网络名称DNN信息、目的全量域名FQDN信息。
收发单元1501,还用于接收来自网络侧的第二URSP信息,第二URSP信息包括App Id、其它业务特征信息和第二切片参数信息,第二切片参数信息用于指示第二切片网络,第一切片参数信息与第二切片参数信息不同。
装置1500,还包括处理单元1502,可以用于当第二URSP信息中的其它业务特征信息与第一URSP信息中的其它业务特征信息不相同时,更新第二URSP信息,更新后的第二URSP信息中的其它业务特征信息与第一URSP信息中的其它业务特征信息相同。
处理单元1502,可以用于根据UE签约的网络业务,确定UE发送的数据包对应的网络业务类型和对应的切片。
处理单元1502,可以用于在确定UE签约的网络业务为定向业务,将UE发送的数据包中的业务特征与URSP中定向业务的业务特征进行匹配,若匹配成功,则确定UE发送的数据包对应的网络业务类型为定向业务。
在上述方法实施例的基础上,收发单元1501,还用于在确定UE未签约业务时,或者UE 签约了定向业务,但是UE发送的数据包的业务特征与URSP中的业务特征不匹配时,通过非切片网络或者第三切片网络传输数据包至网络侧,第三切片网络可以为默认切片。
在上述方法实施例的基础上,收发单元1501,还用于若第二电子设备与网络侧之间已建立与第一切片网络对应的协议数据单元PUD会话,基于PDU会话,在第一切片网络上传输第一应用的数据。
在上述方法实施例的基础上,处理单元1502,可以用于在装置1500与网络侧之间未建立与第一切片网络对应的协议数据单元PUD会话的情况下,基于切片参数信息,与网络侧建立对应于第一切片网络的PDU会话;收发单元1501,可以用于基于PDU会话,在第一切片网络上传输数据包。
在上述方法实施例的基础上,收发单元1501,还可以用于接收来自网络侧的允许的网络切片选择辅助信息Allowed NSSAI,Allowed NSSAI用于指示允许装置1500传输数据的切片网络集合;第一切片网络包含于切片网络集合中。
在上述方法实施例的基础上,App Id可以为应用的应用包名。
装置1500可以是上述实施例中的CPE200。
又一个示例中,图16示出了一种装置1600的结构示意图,装置1600包括:处理单元1601和收发单元1602,其中,处理单元1601,用于运行发送数据包的应用程序。收发单元1602,用于通过Wi-Fi网络向装置1500发送数据包,该数据包中可以携带App Id。
在上述方法实施例的基础上,App Id为应用的应用包名。
装置1600可以是上述实施例中的UE100。
又一个示例中,图17示出了本申请实施例的一种装置1700的示意性框图。该装置1700可包括:处理器1701和收发器/收发管脚1702,可选地,还包括存储器1703。
装置1700的各个组件通过总线1704耦合在一起,其中总线1704除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都称为总线1704。
可选地,存储器1703可以用于存储前述方法实施例中的指令。该处理器1701可用于执行存储器1703中的指令,并控制接收管脚接收信号,以及控制发送管脚发送信号。
装置1700可以是上述方法实施例中的UE100或CPE200。示例性地,当装置是上述CPE200时,存储器1703还可以存储上述实施例中UE的MAC地址、用户名等等信息与UE签约的网络业务、以及网络业务对应的切片之间的关联信息。
装置1700可以是芯片,该芯片可以实现上述实施例中所述的一种切片选择方法。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本实施例还提供一种计算机存储介质,该计算机存储介质中存储有计算机指令,当该计算机指令在电子设备上运行时,使得电子设备执行上述相关方法步骤实现上述实施例中的一种切片选择方法。
本实施例还提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行上述相关步骤,以实现上述实施例中的一种切片选择方法。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的一种切片选择方法。
其中,本实施例提供的电子设备、计算机存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (20)

  1. 一种切片选择方法,其特征在于,包括:
    第一终端接收第二终端发送的第一数据包,所述第二终端通过无线保真Wi-Fi网络与所述第一终端建立通信连接,所述第一终端通过蜂窝网络与网络侧建立通信连接;
    所述第一终端确定所述第二终端签约的一个或多个网络业务,所述一个或多个网络业务中每个网络业务关联一种切片网络;
    所述第一终端确定所述第一数据包对应的网络业务类型为所述一个或多个网络业务中的第一网络业务;
    所述第一终端通过与所述第一网络业务关联的第一切片网络将所述第一数据包传输至所述网络侧。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端确定所述第二终端签约的一个或多个网络业务,包括:
    所述第一终端基于所述第二终端的第一标识,在所述第一终端的第一数据库中查找与所述第一标识关联的一个或多个网络业务,所述第一数据库中保存有一个或多个终端的标识,以及与所述一个或多个终端的标识关联的一个或多个网络业务,所述一个或多个终端的标识中包括所述第一标识;
    所述第一终端确定所述第二终端签约的一个或多个网络业务。
  3. 根据权利要求1或2任一项所述的方法,其特征在于,所述第一终端接收第二终端发送的第一数据包之前,所述方法还包括:
    所述第一终端接收所述网络侧发送的终端路由选择策略URSP信息,所述URSP信息中包括一个或多个切片参数信息,所述一个或多个切片参数信息中包括第一切片参数信息,所述第一切片参数信息用于指示所述第一切片网络。
  4. 根据权利要求3所述的方法,其特征在于,所述第一终端确定所述第二终端签约的一个或多个网络业务,包括:
    所述第一终端确定所述第二终端签约的网络业务为所述第一网络业务;
    所述第一终端确定所述第一数据包对应的网络业务类型为所述一个或多个网络业务中的第一网络业务,包括:
    所述第一终端确定所述第一数据包对应的网络业务类型为所述第一网络业务。
  5. 根据权利要求4所述的方法,其特征在于,在所述第一网络业务为定向业务的情况下,所述第一终端确定所述第一数据包对应的网络业务类型为所述第一网络业务,包括:
    所述第一终端获取所述第一数据包中的业务特征;
    所述第一终端将所述业务特征与所述URSP信息中所述定向业务对应的业务特征进行匹配;
    在所述业务特征与所述URSP信息中所述定向业务对应的业务特征匹配成功的情况下,所述第一终端确定所述第一数据包对应的网络业务类型为所述第一网络业务。
  6. 根据权利要求2所述的方法,其特征在于,所述第一终端确定所述第二终端签约的一个或多个网络业务,包括:
    所述第一终端确定所述第二终端签约的多个网络业务;
    所述第一终端确定所述第一数据包对应的网络业务类型为所述一个或多个网络业务中的第一网络业务,包括:
    所述第一终端基于所述第一数据包的业务特征、以及所述URSP信息中所述多个网络业务对应的业务特征,确定所述第一数据包对应的网络业务类型为所述多个网络业务中的第一网络业务。
  7. 根据权利要求6所述的方法,特征在于,所述第一终端基于所述第一数据包的业务特征、以及所述URSP信息中所述多个网络业务对应的业务特征,确定所述第一数据包对应的网络业务类型为所述多个网络业务中的第一网络业务,包括:
    所述第一终端获取所述第一数据包中的业务特征;
    所述第一终端将所述业务特征与所述URSP中所述多个网络业务对应的业务特征分别进行匹配;
    在所述业务特征与所述URSP中所述第一网络业务对应的业务特征匹配成功的情况下,所述第一终端确定所述第一数据包对应的网络业务类型为所述第一网络业务。
  8. 根据权利要求2所述的方法,其特征在于,所述第一终端接收第二终端发送的第一数据包之前,所述方法还包括:
    所述第一终端基于所述第二终端发送的签约信息,将所述第二终端的第一标识与所述第二终端中的一个或多个网络业务建立关联关系。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一终端通过与所述第一网络业务关联的第一切片网络将所述第一数据包传输至所述网络侧,包括:
    在所述第一终端与所述网络侧之间已建立有与所述第一切片网络对应的协议数据单元PDU会话的情况下,所述第一终端基于所述PDU会话,通过所述第一切片网络将所述第一数据包传输至所述网络侧。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一终端通过与所述第一网络业务关联的第一切片网络将所述第一数据包传输至所述网络侧,包括:
    所述第一终端基于所述切片参数信息,与所述网络侧建立对应于所述第一切片网络的PDU会话;
    所述第一终端基于所述PDU会话,通过所述第一切片网络将所述第一数据包传输至所述网络侧。
  11. 根据权利要求1所述的方法,其特征在于,所述第一终端通过与所述第一网络业务关联的第一切片网络将所述第一数据包传输至所述网络侧之后,所述方法还包括:
    所述第一终端接收到所述网络侧通过所述第一切片网络发送的第二数据包;
    在所述第一切片网络为低时延切片网络的情况下,所述第一终端将所述第二数据包加速发送给所述第二终端。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端接收到所述网络侧发送的允许的网络切片选择辅助信息Allowed NSSAI,所述Allowed NSSAI用于指示允许所述第一终端传输数据的切片网络集合;所述第一切片网络包含于所述切片网络集合中。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第一标识包括所述第二终端的用户名、和/或所述第二终端的媒体存储控制MAC地址。
  14. 根据权利要求13所述的方法,其特征在于,所述第一数据包的业务特征包括第一应用的App Id、IP三元组信息、数据网络名称DNN信息、目的全量域名FQDN信息中至少一项;所述第一应用为所述第二终端中发送所述第一数据包的应用。
  15. 一种切片选择***,其特征在于,包括第一终端和第二终端,所述第二终端通过无线保真Wi-Fi网络与所述第一终端建立通信连接,所述第一终端通过蜂窝网络与网络侧建立通信连接;
    所述第二终端用于向所述第一终端发送第一数据包;
    第一终端用于接收第二终端发送的第一数据包;
    所述第一终端用于确定所述第二终端签约的一个或多个网络业务,所述一个或多个网络业务中每个网络业务关联一种切片网络;
    所述第一终端用于确定所述第一数据包对应的网络业务类型为所述一个或多个网络业务中的第一网络业务;
    所述第一终端用于通过与所述第一网络业务关联的第一切片网络将所述第一数据包传输至所述网络侧。
  16. 一种通信装置,其特征在于,包括一个或多个处理器、一个或多个存储器和收发器;其中,所述收发器、所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当一个或多个处理器在执行所述计算机指令时,使得所述通信装置执行如权利要求1-14任一项所述的方法。
  17. 根据权利要求16所述的通信装置,其特征在于,所述通信装置为第一终端。
  18. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-14任一项所述的方法。
  19. 一种芯片或芯片***,应用于第一终端,其特征在于,包括处理电路和接口电路,所述接口电路用于接收代码指令并传输至所述处理电路,所述处理电路用于运行所述代码指令以执行如权利要求1-14任一项所述的方法。
  20. 一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-14任一项所述的方法。
PCT/CN2023/072861 2022-01-29 2023-01-18 一种切片选择方法、***及相关装置 WO2023143300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210111677.7 2022-01-29
CN202210111677.7A CN116567783A (zh) 2022-01-29 2022-01-29 一种切片选择方法、***及相关装置

Publications (1)

Publication Number Publication Date
WO2023143300A1 true WO2023143300A1 (zh) 2023-08-03

Family

ID=87470747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072861 WO2023143300A1 (zh) 2022-01-29 2023-01-18 一种切片选择方法、***及相关装置

Country Status (2)

Country Link
CN (1) CN116567783A (zh)
WO (1) WO2023143300A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116723587A (zh) * 2023-08-07 2023-09-08 荣耀终端有限公司 一种会话管理方法及电子设备
CN116886541A (zh) * 2023-08-04 2023-10-13 中国联合网络通信有限公司深圳市分公司 一种业务宽带5gcpe保护和带宽实时分配方法及***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114598607A (zh) * 2020-11-19 2022-06-07 ***通信有限公司研究院 一种传输处理方法、装置及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039742A (zh) * 2018-08-03 2018-12-18 西安电子科技大学 一种服务不同业务类型的网络切片及其切换方法
CN111698725A (zh) * 2020-06-23 2020-09-22 腾讯科技(深圳)有限公司 动态确定网络切片的方法及电子设备
US20200383004A1 (en) * 2019-05-31 2020-12-03 Qualcomm Incorporated Traffic burst awareness in communication systems
CN113285827A (zh) * 2021-05-18 2021-08-20 成都欧珀通信科技有限公司 数据传输方法、***及相关装置
CN113993167A (zh) * 2021-12-14 2022-01-28 荣耀终端有限公司 数据流调度方法、终端及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109039742A (zh) * 2018-08-03 2018-12-18 西安电子科技大学 一种服务不同业务类型的网络切片及其切换方法
US20200383004A1 (en) * 2019-05-31 2020-12-03 Qualcomm Incorporated Traffic burst awareness in communication systems
CN111698725A (zh) * 2020-06-23 2020-09-22 腾讯科技(深圳)有限公司 动态确定网络切片的方法及电子设备
CN113285827A (zh) * 2021-05-18 2021-08-20 成都欧珀通信科技有限公司 数据传输方法、***及相关装置
CN113993167A (zh) * 2021-12-14 2022-01-28 荣耀终端有限公司 数据流调度方法、终端及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Update on slice and service types", 3GPP DRAFT; S5-173150 PCR 28.801 UPDATE ON SLICE AND SERVICE TYPES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG5, no. West Palm Beach, Florida (US); 20170508 - 20170512, 28 April 2017 (2017-04-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051269865 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116886541A (zh) * 2023-08-04 2023-10-13 中国联合网络通信有限公司深圳市分公司 一种业务宽带5gcpe保护和带宽实时分配方法及***
CN116723587A (zh) * 2023-08-07 2023-09-08 荣耀终端有限公司 一种会话管理方法及电子设备
CN116723587B (zh) * 2023-08-07 2023-11-21 荣耀终端有限公司 一种会话管理方法及电子设备

Also Published As

Publication number Publication date
CN116567783A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2023143300A1 (zh) 一种切片选择方法、***及相关装置
WO2021082829A1 (zh) 蓝牙连接方法及相关装置
WO2021175268A1 (zh) 移动网络热点的共享方法、装置和热点共享设备
WO2022083386A1 (zh) 投屏方法、***及电子设备
US20230164630A1 (en) Chip, Device, and Method for Adjusting Data Transmission Policy Based On Service Type
WO2021169698A1 (zh) 一种连接管理方法及相关设备
US20240049056A1 (en) Terminal device, multi-link communication method, and chip
WO2021179990A1 (zh) 一种应用服务器的访问方法及终端
WO2022135143A1 (zh) 设备配网方法、移动终端及存储介质
CN115278611A (zh) 一种多设备建立连接的方法及设备
CN113133089A (zh) 手动搜网的方法及相关装置
WO2020134868A1 (zh) 一种连接建立方法及终端设备
WO2022042264A1 (zh) 一种切换接入点的方法、装置及***
US12041026B2 (en) Reverse address resolution method and electronic device
WO2020155013A1 (zh) 一种紧急呼叫方法及用户终端
US20240022469A1 (en) Method for determining edge configuration server and apparatus
WO2022068486A1 (zh) 数据发送方法、电子设备、芯片***及存储介质
CN113141637B (zh) 一种多路径传输控制的方法及控制装置
WO2023202533A1 (zh) 通信方法、电子设备以及***
WO2023061217A1 (zh) 一种数据传输方法及装置
WO2021143921A1 (zh) 一种多路径传输控制的方法及控制装置
WO2022228234A1 (zh) 一种无线局域网中传输报文的方法及电子设备
US20240147329A1 (en) Wi-fi access method and related device
WO2024104122A1 (zh) 分享方法、电子设备及计算机存储介质
WO2023001044A1 (zh) 数据处理方法及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746181

Country of ref document: EP

Kind code of ref document: A1