WO2023140229A1 - プレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法 - Google Patents

プレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法 Download PDF

Info

Publication number
WO2023140229A1
WO2023140229A1 PCT/JP2023/001096 JP2023001096W WO2023140229A1 WO 2023140229 A1 WO2023140229 A1 WO 2023140229A1 JP 2023001096 W JP2023001096 W JP 2023001096W WO 2023140229 A1 WO2023140229 A1 WO 2023140229A1
Authority
WO
WIPO (PCT)
Prior art keywords
prepolymer composition
less
viscosity
prepolymer
polyol
Prior art date
Application number
PCT/JP2023/001096
Other languages
English (en)
French (fr)
Inventor
和大 前川
拓也 橋口
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023140229A1 publication Critical patent/WO2023140229A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic

Definitions

  • the present invention relates to prepolymer compositions, polyurethane resins, elastic molded articles, and methods for producing prepolymer compositions.
  • a polyurethane resin has, for example, soft segments formed by the reaction of polyisocyanate and macropolyol, and hard segments formed by the reaction of polyisocyanate and a chain extender.
  • polyurethane resins obtained by the following methods are known. That is, first, 1,4-bis(isocyanatomethyl)cyclohexane (H 6 XDI) is reacted with a polycarbonate diol (PCD2) containing 3-methyl-1,5-pentanediol and 1,6-hexanediol as structural units to obtain a urethane prepolymer. Next, the urethane prepolymer and 1,4-butanediol are reacted to obtain a polyurethane resin (see, for example, Patent Document 1 (Example 2)).
  • Patent Document 1 Example 2
  • the polyurethane resin described in Patent Document 1 does not have sufficient crack growth resistance. Therefore, polyurethane resins are required to have excellent crack growth resistance in addition to excellent mechanical properties.
  • the present invention provides a prepolymer composition from which a polyurethane resin having excellent crack growth resistance and mechanical properties can be obtained, a polyurethane resin obtained using the prepolymer composition, an elastic molded article containing the polyurethane resin, and a method for producing the prepolymer composition.
  • the present invention [1] is a prepolymer composition containing an isocyanate group-terminated prepolymer, wherein the isocyanate group-terminated prepolymer is a reaction product of a polyisocyanate component containing 1,4-bis(isocyanatomethyl)cyclohexane and a polyol component containing a polycarbonate polyol, the 1,4-bis(isocyanatomethyl)cyclohexane contains a trans form at a rate of 60 mol% or more, and the viscosity of the polycarbonate polyol at 80 ° C. (V 1 ) is 4000 mPa s or less, and the viscosity of the prepolymer composition at 80° C. (V 2 ) is 4000 mPa ⁇ s or less, and the isocyanate group concentration of the prepolymer composition is 8.0% by mass or more and less than 13.0% by mass.
  • the present invention [2] includes the prepolymer composition according to [1] above, wherein the prepolymer composition contains the isocyanate group-terminated prepolymer and an isocyanate monomer containing 1,4-bis(isocyanatomethyl)cyclohexane.
  • the present invention [3] includes a polyurethane resin containing a reaction product of the prepolymer composition described in [1] or [2] above and a chain extender.
  • the present invention [4] includes an elastic molded article containing the polyurethane resin described in [3] above.
  • the present invention [5] comprises a preparation step of preparing a polyisocyanate component containing 1,4-bis(isocyanatomethyl)cyclohexane and a polyol component containing polycarbonate polyol, and a prepolymer preparation step of reacting the polyisocyanate component and the polyol component at a ratio (NCO/OH) equivalent of isocyanate groups in the polyisocyanate component to hydroxyl groups in the polyol component exceeding 1.0 to prepare a reaction product solution containing an isocyanate group-terminated prepolymer.
  • the 1,4-bis(isocyanatomethyl)cyclohexane contains a trans isomer at a rate of 60 mol% or more, and the viscosity of the polycarbonate polyol at 80 ° C. (V 1 ) is 4000 mPa s or less, and the viscosity of the prepolymer composition at 80° C. (V 2 ) is 4000 mPa s or less, and the viscosity of the polycarbonate polyol at 80 ° C. (V 1 ) of the prepolymer composition at 80° C. (V 2 ) increase rate (V 2 /V 1 ) is 2.0 or less, and the isocyanate group concentration of the prepolymer composition is 8.0% by mass or more and less than 13.0% by mass.
  • 1,4-bis(isocyanatomethyl)cyclohexane contained in the polyisocyanate component contains a trans isomer in a relatively high proportion, and polycarbonate polyol contained in the polyol component has a relatively low viscosity. Additionally, the prepolymer composition has a relatively low viscosity. Additionally, the prepolymer composition has a range of concentrations of isocyanate groups. With such a prepolymer composition, it is possible to obtain a polyurethane resin having excellent crack growth resistance and mechanical properties.
  • the polyurethane resin and elastic molded article of the present invention are obtained using the above prepolymer composition, they have excellent crack propagation resistance and excellent mechanical properties.
  • the above prepolymer composition can be obtained.
  • the prepolymer composition of the present invention contains an isocyanate group-terminated prepolymer.
  • the isocyanate group-terminated prepolymer is the reaction product of the polyisocyanate component and the polyol component.
  • the prepolymer composition of the present invention and the method for producing the same are described in detail below.
  • a polyisocyanate component and a polyol component are prepared (preparation step).
  • the polyisocyanate component contains 1,4-bis(isocyanatomethyl)cyclohexane (1,4-H 6 XDI) as an essential component.
  • 1,4-bis(isocyanatomethyl)cyclohexane has cis-1,4-bis(isocyanatomethyl)cyclohexane and trans-1,4-bis(isocyanatomethyl)cyclohexane as stereoisomers. That is, bis(isocyanatomethyl)cyclohexane preferably contains cis-1,4-bis(isocyanatomethyl)cyclohexane and trans-1,4-bis(isocyanatomethyl)cyclohexane.
  • cis-1,4-bis(isocyanatomethyl)cyclohexane may be referred to as cis-1,4-isomer.
  • trans-1,4-bis(isocyanatomethyl)cyclohexane is sometimes referred to as trans-1,4-isomer.
  • the total amount of trans-1,4-isomer and cis-1,4-isomer is 100 mol %.
  • 1,4-bis(isocyanatomethyl)cyclohexane contains a trans-1,4-isomer.
  • the trans-1,4 content is 60 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 85 mol% or more.
  • the trans-1,4 content is, for example, 100 mol% or less, preferably 99.8 mol% or less, more preferably 99 mol% or less, still more preferably 96 mol% or less, and particularly preferably 90 mol% or less.
  • the content of cis-1,4 is, for example, 0 mol% or more, preferably 0.2 mol% or more, more preferably 1 mol% or more, still more preferably 4 mol% or more, and particularly preferably 10 mol% or more.
  • the content of cis-1,4-isomer is 40 mol% or less, preferably 30 mol% or less, more preferably 20 mol% or less, still more preferably 15 mol% or less.
  • 1,4-bis(isocyanatomethyl)cyclohexane may be modified as long as it does not impair the excellent effects of the present invention.
  • Modified compounds include, for example, uretdione modified products, isocyanurate modified products, iminooxadiazinedione modified products, biuret modified products, allophanate modified products, polyol adducts, oxadiazinetrione modified products and carbodiimide modified products.
  • 1,4-bis(isocyanatomethyl)cyclohexane is a monomer (a monomer of 1,4-bis(isocyanatomethyl)cyclohexane) rather than a modified form.
  • polyisocyanate component can contain other polyisocyanates as optional components within a range that does not impair the excellent effects of the present invention.
  • polyisocyanates are polyisocyanates other than 1,4-bis(isocyanatomethyl)cyclohexane.
  • Other polyisocyanates more specifically include aliphatic polyisocyanates, alicyclic polyisocyanates (excluding 1,4-bis(isocyanatomethyl)cyclohexane), aromatic polyisocyanates, and araliphatic polyisocyanates.
  • aliphatic polyisocyanates include pentamethylene diisocyanate (PDI) and hexamethylene diisocyanate (HDI).
  • Alicyclic polyisocyanates include, for example, 1,3-bis(isocyanatomethyl)cyclohexane (1,3-H 6 XDI), isophorone diisocyanate (IPDI), norbornene diisocyanate (NBDI), and methylenebis(cyclohexylisocyanate) (H 12 MDI).
  • Aromatic polyisocyanates include, for example, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), toluidine diisocyanate (TODI), and naphthalene diisocyanate (NDI).
  • Aroaliphatic polyisocyanates include, for example, xylylene diisocyanate (XDI) and tetramethylxylylene diisocyanate (TMXDI). Further, the other polyisocyanate may be the above-described modified product as long as it does not impair the excellent effects of the present invention. These can be used alone or in combination of two or more.
  • the content of other polyisocyanates is, for example, 50% by mass or less, preferably 30% by mass or less, more preferably 10% by mass or less, and particularly preferably 0% by mass, relative to the total amount of polyisocyanate components.
  • the content of bis(isocyanatomethyl)cyclohexane is, from the viewpoint of mechanical properties, for example, 50% by mass or more, preferably 70% by mass or more, more preferably 90% by mass or more, and particularly preferably 100% by mass, based on the total amount of the polyisocyanate component.
  • the polyisocyanate component preferably consists of 1,4-bis(isocyanatomethyl)cyclohexane.
  • the polyol component contains a relatively low-viscosity polycarbonate polyol (hereinafter referred to as low-viscosity polycarbonate polyol) as an essential component.
  • a relatively low viscosity means that the viscosity (V 1 ) at 80° C. is 4000 mPa ⁇ s or less. That is, the polyol component contains a polycarbonate polyol having a viscosity (V 1 ) at 80° C. of 4000 mPa ⁇ s or less.
  • a low-viscosity polycarbonate polyol contains, for example, a structural unit represented by the following formula (1).
  • R 1 represents a linear alkylene group having 5 or more carbon atoms, a branched alkylene group having 3 or more carbon atoms, or a polyoxyalkylene group.
  • R 1 represents a linear alkylene group having 5 or more carbon atoms, a branched alkylene group having 3 or more carbon atoms, or a polyoxyalkylene group.
  • straight-chain alkylene groups having 5 or more carbon atoms include straight-chain alkylene groups having 5 to 20 carbon atoms.
  • Linear alkylene groups having 5 to 20 carbon atoms include, for example, n-pentylene, n-hexylene, n-heptylene, n-octylene, n-nonylene, n-decylene, n-undecylene, n-dodecylene, n-tridecylene, n-tetradecylene, n-pentadecylene, n-hexadecylene, n-heptadecylene, n-octadecylene, n-nonadecylene and Examples include n-icosylene. These are used singly or in combination of two or more.
  • Examples of branched alkylene groups having 3 or more carbon atoms include branched alkylene groups having 3 to 20 carbon atoms.
  • Examples of branched alkylene groups having 3 to 20 carbon atoms include 1,2-propylene, 1-methyl-1,3-propylene, 2-methyl-1,3-propylene, 1,1-dimethyl-1,3-propylene, 1,2-dimethyl-1,3-propylene, 1,3-dimethyl-1,3-propylene, 2,2-dimethyl-1,3-propylene, 1,2,3-trimethyl-1,3-propylene, 1,1,2-trimethyl-1,3-propylene, 1,2,2-trimethyl-1,3-propylene, 1,1,3-trimethyl-1,3-propylene, 1-methyl-1,4-butylene, 2-methyl-1,4-butylene, 1,1-dimethyl-1,4-butylene, 1,2-dimethylbutylene, 1,3-dimethyl-1,4-butylene, 1,4-dimethyl-1,4
  • examples of oxyalkylene include oxyalkylene having 2 to 4 carbon atoms.
  • examples of oxyalkylene having 2 to 4 carbon atoms include oxyethylene, oxypropylene (oxy-1,2-propylene), oxytrimethylene (oxy-1,3-propylene) and oxytetramethylene.
  • Examples of polyoxyalkylene groups composed of oxyalkylenes having 2 to 4 carbon atoms include polyoxyethylene, polyoxypropylene, polyoxyethylene/propylene (random and/or block copolymers), polyoxytrimethylene and polyoxytetramethylene (PTM). These are used singly or in combination of two or more.
  • the number of repeating units of oxyalkylene is appropriately set so that the viscosity of the low-viscosity polycarbonate polyol falls within the range described later. More specifically, the number of repeating units of oxyalkylene is, for example, 2 or more, preferably 3 or more. Further, the number of repeating units of oxyalkylene is, for example, 60 or less, preferably 50 or less.
  • the number average molecular weight of the polyoxyalkylene group (polystyrene equivalent molecular weight by GPC measurement) is appropriately set so that the viscosity of the low-viscosity polycarbonate polyol falls within the range described below. More specifically, the polyoxyalkylene group has a number average molecular weight (polystyrene equivalent molecular weight by GPC measurement) of, for example, 150 or more, preferably 250 or more. Also, the number average molecular weight of the polyoxyalkylene group (polystyrene equivalent molecular weight by GPC measurement) is, for example, 4000 or less, preferably 3000 or less.
  • R 1 is used alone or in combination of two or more.
  • a polycarbonate polyol having one type of R1 in one molecule can be used alone.
  • a polycarbonate polyol having two or more types of R1 in one molecule can be used alone.
  • two or more types of low-viscosity polycarbonate polyols can be used in combination (for example, mixed use).
  • R 1 in the above formula (1) preferably includes a branched alkylene group having 3 or more carbon atoms or a linear polyoxyalkylene group having 2 or more carbon atoms.
  • the content ratio of the structural unit represented by the above formula (1) is appropriately adjusted so that the viscosity falls within the range described later.
  • the low-viscosity polycarbonate polyol can also contain a structural unit represented by the following formula (2), if necessary, within a range that satisfies the viscosity (V 1 ) described later.
  • R 2 represents a linear alkylene group having 4 or less carbon atoms or a cyclic alkylene group having 3 or more carbon atoms.
  • R 2 represents a linear alkylene group having 4 or less carbon atoms or a cyclic alkylene group having 3 or more carbon atoms.
  • straight-chain alkylene groups having 4 or less carbon atoms include straight-chain alkylene groups having 1 to 4 carbon atoms.
  • Linear alkylene groups having 1 to 4 carbon atoms include, for example, methylene, ethylene, 1,3-propylene and 1,4-butylene. These can be used alone or in combination of two or more.
  • the cyclic alkylene group having 3 or more carbon atoms includes, for example, a cycloalkylene group having 3 to 8 carbon atoms.
  • Cycloalkylene groups having 3 to 8 carbon atoms include, for example, cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene and cyclooctylene. These can be used alone or in combination of two or more.
  • the content ratio of the structural unit represented by the above formula (2) is appropriately adjusted so that the viscosity falls within the range described below.
  • a low-viscosity polycarbonate polyol is obtained, for example, by copolymerizing an alkylene carbonate and a polyhydric alcohol containing R 1 in the above formula (1). Moreover, if necessary, a polyhydric alcohol containing R 1 in the above formula (1) and a polyhydric alcohol containing R 2 in the above formula (2) can be used in combination.
  • Alkylene carbonates include, for example, ethylene carbonate, propylene carbonate and butylene carbonate. These can be used alone or in combination of two or more. Alkylene carbonate preferably includes ethylene carbonate.
  • Examples of polyhydric alcohols containing R 1 in formula (1) above include dihydric alcohols containing R 1 in formula (1) above.
  • Examples of the dihydric alcohol containing R 1 in the formula (1) include linear alkylenediol having 5 to 20 carbon atoms, branched alkylenediol having 3 to 20 carbon atoms, and polyoxyalkylenediol.
  • Linear alkylenediols having 5 to 20 carbon atoms include, for example, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol and 1,10-decanediol.
  • Branched alkylene diols having 3 to 20 carbon atoms include, for example, 1,2-propanediol, 1,3-butanediol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2-methyl-1,8-octanediol, 2-butyl-2-ethylpropanediol and 2,2,4-trimethyl-1,6-hexanediol.
  • Polyoxyalkylene diols include, for example, polyoxyethylene glycol (PEG), polyoxypropylene glycol (PPG) and polytetramethylene ether glycol (PTMG).
  • the number average molecular weight (Mn) of the polyoxyalkylenediol is appropriately set according to the purpose and application.
  • the number average molecular weight (polystyrene equivalent molecular weight by GPC measurement) of the polyoxyalkylene diol is, for example, 150 or more, preferably 250 or more.
  • the number average molecular weight (polystyrene equivalent molecular weight by GPC measurement) of the polyoxyalkylenediol is, for example, 4000 or less, preferably 3000 or less.
  • the average number of hydroxyl groups of the low-viscosity polycarbonate polyol is, for example, 2 or more, for example, 4 or less, preferably 3 or less, and particularly preferably 2. That is, the low-viscosity polycarbonate polyol preferably includes a low-viscosity polycarbonate diol.
  • the number average molecular weight (polystyrene equivalent molecular weight by GPC measurement) of the low-viscosity polycarbonate polyol is, for example, 400 or more, preferably 500 or more, more preferably 1000 or more.
  • the number average molecular weight (polystyrene equivalent molecular weight by GPC measurement) of the low-viscosity polycarbonate polyol is, for example, 5000 or less, preferably 4000 or less, more preferably 3000 or less.
  • the viscosity of low viscosity polycarbonate polyols is relatively low. More specifically, the viscosity (V 1 ) of the low-viscosity polycarbonate polyol at 80° C. is 4000 mPa ⁇ s or less, preferably 3000 mPa ⁇ s or less, more preferably 2500 mPa ⁇ s or less, still more preferably 2000 mPa ⁇ s or less, and particularly preferably 1500 mPa ⁇ s or less. The viscosity (V 1 ) of the low-viscosity polycarbonate polyol at 80° C.
  • the viscosity of the low-viscosity polycarbonate polyol is measured with a Brookfield viscometer (cone plate type) in accordance with the examples described later.
  • V 1 viscosity (V 1 ) at 80° C. of the low-viscosity polycarbonate polyol is within the above range and the content of the trans-1,4-isomer of 1,4-bis(isocyanatomethyl)cyclohexane is within the above range, a polyurethane resin having excellent crack propagation resistance and excellent mechanical properties can be obtained.
  • the polyol component can optionally contain a relatively high-viscosity polycarbonate polyol (hereinafter referred to as high-viscosity polycarbonate polyol).
  • a relatively low viscosity indicates a viscosity (V 1 ) at 80° C. exceeding 4000 mPa ⁇ s, preferably 4500 or more. That is, the polyol component can include a polycarbonate polyol having a viscosity (V 1 ) at 80° C. exceeding 4000 mPa ⁇ s.
  • the high-viscosity polycarbonate polyol can contain, for example, a structural unit represented by the above formula (1), and can also contain a structural unit represented by the above formula (2).
  • the content ratio of the structural unit represented by the above formula (1) is appropriately adjusted so that the viscosity (V 1 ) at 80° C. exceeds 4000 mPa ⁇ s.
  • the content ratio of the structural unit represented by the above formula (2) is appropriately adjusted so that the viscosity (V 1 ) at 80° C. exceeds 4000 mPa ⁇ s.
  • the content of the high-viscosity polycarbonate polyol in the polyol component is appropriately set within a range that does not impair the excellent effects of the present invention. More specifically, the content of the high-viscosity polycarbonate polyol is, for example, 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, particularly preferably 0% by mass, relative to the total amount of the polyol component. That is, the polyol component particularly preferably does not contain high viscosity polycarbonate polyols.
  • the polyol component can contain other polyols (polyols other than polycarbonate polyols) as optional components.
  • Other polyols include, for example, other macropolyols (macropolyols other than polycarbonate polyols).
  • a macropolyol is an organic compound having two or more hydroxyl groups in its molecule and having a relatively high molecular weight.
  • a relatively high molecular weight indicates a number average molecular weight of 400 or more, preferably 500 or more.
  • macropolyols include, for example, polyether polyols, polyester polyols, polyurethane polyols, epoxy polyols, vegetable oil polyols, polyolefin polyols, acrylic polyols, and vinyl monomer-modified polyols.
  • Other macropolyols can be used alone or in combination of two or more.
  • the content ratio of other macropolyols in the polyol component is appropriately set within a range that does not impair the excellent effects of the present invention. More specifically, the content of other macropolyols is, for example, 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 0% by mass with respect to the total amount of polyol components. That is, the polyol component particularly preferably does not contain other macropolyols.
  • the polyol component can contain a low-molecular-weight polyol as an optional component.
  • Low-molecular-weight polyols are relatively low-molecular-weight organic compounds having two or more hydroxyl groups in the molecule.
  • a relatively low molecular weight indicates a number average molecular weight of less than 400, preferably 300 or less. That is, the molecular weight of the low molecular weight polyol is, for example, less than 400, preferably 300 or less. Moreover, the molecular weight of the low-molecular-weight polyol is usually 40 or more.
  • low-molecular-weight polyols examples include dihydric alcohols described later, trihydric alcohols described later, and tetrahydric or higher alcohols described later. These can be used alone or in combination of two or more.
  • the content of the low-molecular-weight polyol in the polyol component is appropriately set within a range that does not impair the excellent effects of the present invention. More specifically, the content of the low-molecular-weight polyol is, for example, 30% by mass or less, preferably 20% by mass or less, more preferably 10% by mass or less, and particularly preferably 0% by mass, relative to the total amount of the polyol component. That is, the polyol component especially preferably does not contain low molecular weight polyols.
  • the polyol component preferably consists of a low-viscosity polycarbonate polyol, particularly preferably a low-viscosity polycarbonate diol.
  • prepolymer preparation step the above polyisocyanate component and the above polyol component are reacted to obtain a reaction product liquid containing an isocyanate group-terminated prepolymer (prepolymer preparation step).
  • the mixing ratio of the polyisocyanate component and the polyol component is adjusted so that the isocyanate groups in the polyisocyanate component are excessive relative to the hydroxyl groups in the polyol component.
  • the equivalent ratio (NCO/OH) of the isocyanate groups in the polyisocyanate component to the hydroxyl groups in the polyol component exceeds 1.0, preferably 1.1 or more, more preferably 2.0 or more, and still more preferably 3.0 or more.
  • the equivalent ratio (NCO/OH) of isocyanate groups in the polyisocyanate component to hydroxyl groups in the polyol component is, for example, 5.0 or less, preferably 4.0 or less.
  • reaction methods include bulk polymerization and solution polymerization.
  • reaction temperature is, for example, 50° C. or higher.
  • reaction temperature is, for example, 250° C. or lower, preferably 200° C. or lower.
  • reaction time is, for example, 0.5 hours or longer, preferably 1 hour or longer.
  • reaction time is, for example, 15 hours or less.
  • reaction temperature is, for example, 50° C. or higher. Also, the reaction temperature is, for example, 120° C. or lower, preferably 100° C. or lower. Also, the reaction time is, for example, 0.5 hours or longer, preferably 1 hour or longer. Also, the reaction time is, for example, 15 hours or less.
  • the above reaction is carried out until the isocyanate group concentration (NCO%) of the reaction product liquid (prepolymer composition) reaches a predetermined value (described later).
  • a known urethanization catalyst may be added in the prepolymer preparation step.
  • Urethane catalysts include, for example, organometallic catalysts, amine catalysts and potassium salts. These can be used alone or in combination of two or more.
  • an organometallic catalyst is preferably used as the urethanization catalyst.
  • organometallic catalysts examples include organotin catalysts, organolead catalysts, organonickel catalysts, organocopper catalysts and organobismuth catalysts. These can be used alone or in combination of two or more.
  • the organometallic catalyst preferably includes an organotin catalyst.
  • organotin catalysts include tin acetate, tin octylate, tin oleate, tin laurate, monobutyltin trioctate, dibutyltin diacetate, dimethyltin dilaurate, dibutyltin dilaurate, dibutyltin dimercaptide, dibutyltin maleate, dibutyltin dineodecanoate, dioctyltin dimercaptide, dioctyltin dilaurate, and dibutyltin. tin dichloride. These can be used alone or in combination of two or more.
  • the organotin catalyst preferably includes dibutyltin dilaurate.
  • the amount of the urethanization catalyst to be added is not particularly limited, and is appropriately set according to the purpose and application. Moreover, the timing of adding the urethanization catalyst is not particularly limited.
  • a urethanization catalyst can be added to the polyisocyanate component and/or the polyol component in the prepolymer preparation process. Further, in the prepolymer preparation step, a urethanization catalyst can be added during mixing of the polyisocyanate component and the polyol component. Also, a urethanization catalyst can be added to the mixture (reaction mixture) of the polyisocyanate component and the polyol component.
  • a plurality of these may be combined to add the urethanization catalyst at a plurality of timings.
  • the method of adding the urethanization catalyst is not particularly limited, and for example, it may be added all at once or may be added in portions.
  • the reaction product liquid contains, for example, an isocyanate group-terminated prepolymer that is a reaction product of a polyisocyanate component and a polyol component, and a polyisocyanate component (polyisocyanate monomer) that is an unreacted raw material.
  • This reaction product liquid is a prepolymer composition containing an isocyanate group-terminated prepolymer. That is, in the prepolymer preparation step, the reaction product liquid (the reaction product liquid of the prepolymer preparation step) can be obtained as a prepolymer composition.
  • the content of the isocyanate group-terminated prepolymer (reaction product) and the content of the unreacted polyisocyanate component (polyisocyanate monomer) are not particularly limited.
  • the isocyanate group concentration is within the range described later. If necessary, part of the unreacted polyisocyanate component (polyisocyanate monomer) can be removed from the reaction product liquid by a known method. Moreover, an unreacted polyisocyanate component (polyisocyanate monomer) can also be added to the reaction product liquid as needed.
  • the isocyanate group concentration (NCO%) is adjusted by the mixing ratio of the polyisocyanate component and the polyol component and the reaction conditions in the prepolymer preparation step.
  • the isocyanate group concentration of the prepolymer composition is 8.0% by mass or more, preferably 9.0% by mass or more, more preferably 10.0% by mass or more, still more preferably 11.0% by mass or more, and particularly preferably 11.5% by mass or more.
  • the isocyanate group concentration of the prepolymer composition is less than 13.0% by mass, preferably 12.9% by mass or less, more preferably 12.5% by mass or less, still more preferably 12.2% by mass or less, and particularly preferably 12.0% by mass or less, from the viewpoint of crack propagation resistance.
  • the isocyanate group concentration (isocyanate group content) can be obtained by a known measuring method. Measurement methods include, for example, titration with di-n-butylamine and FT-IR analysis (same below).
  • the prepolymer composition has a relatively low viscosity.
  • the viscosity (V 2 ) of the prepolymer composition at 80° C. is 4000 mPa s or less, preferably 3500 mPa s or less, more preferably 3000 mPa s or less, still more preferably 2000 mPa s or less, still more preferably 1000 mPa s or less, from the viewpoint of crack propagation resistance and mechanical properties.
  • the viscosity of the prepolymer composition is, for example, 10 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, more preferably 100 mPa ⁇ s or more, and still more preferably 300 mPa ⁇ s or more.
  • the viscosity of the prepolymer composition is measured with a Brookfield viscometer (cone plate type) in accordance with the examples described later.
  • the increase ratio (V 2 /V 1 ) of the viscosity (V 2 ) of the prepolymer composition at 80° C. to the viscosity (V 1 ) of the low-viscosity polycarbonate polyol at 80° C. is, for example, 2.0 or less, preferably 1.5 or less, more preferably 1.3 or less, further preferably 1.1 or less.
  • the viscosity (V 2 ) increase ratio (V 2 /V 1 ) of the prepolymer composition at 80° C. is, for example, 1.0 or more, preferably more than 1.0, and more preferably 1.05 or more.
  • the prepolymer composition can contain known additives as necessary.
  • additives include antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, antiblocking agents, release agents, pigments, dyes, lubricants, fillers, hydrolysis inhibitors, rust inhibitors, and bluing agents.
  • the amount and timing of addition of the additive are appropriately set according to the purpose and application.
  • a prepolymer composition can be obtained.
  • the 1,4-bis(isocyanatomethyl)cyclohexane contained in the polyisocyanate component contains a trans form at a relatively high proportion, and the polycarbonate polyol contained in the polyol component has a relatively low viscosity. Additionally, the prepolymer composition has a relatively low viscosity. Additionally, the prepolymer composition has a range of concentrations of isocyanate groups. With such a prepolymer composition, it is possible to obtain a polyurethane resin having excellent crack growth resistance and mechanical properties.
  • the above prepolymer composition uses a low-viscosity polycarbonate polyol, and the viscosity and isocyanate group concentration of the prepolymer composition are adjusted. Therefore, by increasing the ratio of the trans isomer of 1,4-bis(isocyanatomethyl)cyclohexane, it is possible to improve the mechanical properties (for example, hardness), increase the elongation rate of the polyurethane resin, and improve the crack propagation resistance.
  • a method for obtaining a polyurethane resin using the above prepolymer composition will be described in detail below.
  • the above prepolymer composition and a chain extender are reacted to synthesize a polyurethane resin (chain extender step).
  • a chain extender is a curing agent for the prepolymer composition.
  • chain extenders include low-molecular-weight compounds containing a plurality (preferably two) of active hydrogen groups (hydroxyl group, amino group). Low molecular weight compounds more specifically include low molecular weight polyols and low molecular weight polyamines. Chain extenders preferably include low molecular weight polyols. A polyurethane resin having excellent mechanical properties can be obtained by using a low-molecular-weight polyol.
  • Low-molecular-weight polyols include the above-mentioned low-molecular-weight polyols. More specifically, low-molecular-weight polyols include, for example, dihydric alcohols, trihydric alcohols, and tetrahydric or higher alcohols. Dihydric alcohols include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, triethylene glycol and dipropylene glycol.
  • Trihydric alcohols include, for example, glycerin and trimethylolpropane. Tetrahydric or higher alcohols include, for example, pentaerythritol and diglycerin.
  • the low-molecular-weight polyol a polymer obtained by addition-polymerizing alkylene (C2-3) oxide to a dihydric to tetrahydric alcohol so as to have a number average molecular weight of 400 or less can be mentioned. These can be used alone or in combination of two or more.
  • the low-molecular-weight polyol preferably includes dihydric alcohols and trihydric alcohols, more preferably dihydric alcohols, and still more preferably 1,4-butanediol. That is, the low molecular weight polyol preferably comprises 1,4-butanediol, more preferably consists of 1,4-butanediol. Thereby, a polyurethane resin having excellent mechanical properties can be obtained.
  • the equivalent ratio of active hydrogen groups in the chain extender to isocyanate groups in the prepolymer composition is, for example, 0.85 or more, preferably 0.90 or more, more preferably 0.95 or more.
  • the equivalent ratio of active hydrogen groups in the chain extender to isocyanate groups in the prepolymer composition is, for example, 1.10 or less, preferably 1.20 or less, more preferably 1.10 or less, still more preferably 1.00 or less, and particularly preferably 0.98 or less.
  • the prepolymer composition and the chain elongation agent are mixed in the above ratio and heated.
  • the reaction temperature (curing temperature) in the chain elongation step is, for example, 100° C. or higher, preferably 110° C. or higher.
  • the reaction temperature (curing temperature) in the chain elongation step is, for example, 140° C. or lower, preferably 130° C. or lower.
  • the reaction time (curing time) in the chain elongation step is, for example, 10 hours or longer, preferably 12 hours or longer. Also, the reaction time (curing time) in the chain elongation step is, for example, 24 hours or less, preferably 18 hours or less.
  • the above-described urethanization catalyst may be added in the chain elongation step.
  • the amount of the urethanization catalyst to be added is not particularly limited, and is appropriately set according to the purpose and application.
  • the timing of adding the urethanization catalyst is not particularly limited.
  • a urethanization catalyst can be added to the prepolymer composition and/or the chain extender in the chain extension step.
  • a urethanization catalyst can be added during mixing of the prepolymer composition and the chain elongation agent.
  • a plurality of these may be combined to add the urethanization catalyst at a plurality of timings.
  • the method of adding the urethanization catalyst is not particularly limited, and for example, it may be added all at once or may be added in portions.
  • a polyurethane resin is obtained as a reaction product between the prepolymer composition and the chain extender.
  • the polyurethane resin can contain known additives as necessary.
  • additives include antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, antiblocking agents, release agents, pigments, dyes, lubricants, fillers, hydrolysis inhibitors, rust inhibitors, and bluing agents.
  • the amount and timing of addition of the additive are appropriately set according to the purpose and application.
  • the above polyurethane resin is obtained using the above prepolymer composition, it has excellent crack growth resistance and excellent mechanical properties. Therefore, it is suitably used as an elastic molded article (polyurethane elastomer).
  • Examples of elastic molded articles include TPU (thermoplastic polyurethane elastomer) and TSU (thermosetting polyurethane elastomer).
  • Polyurethane elastomers preferably include TSU (thermosetting polyurethane elastomer).
  • the elastic molded product (polyurethane elastomer) is obtained as a cast polyurethane elastomer.
  • Cast polyurethane elastomers are obtained, for example, by heating and curing a mixture of a prepolymer composition and a chain extender in a mold having a desired shape in a chain extension step.
  • the elastic molded product (polyurethane elastomer) is heat-treated as necessary.
  • the heat treatment temperature is, for example, 50° C. or higher, preferably 80° C. or higher.
  • the heat treatment temperature is, for example, 200° C. or lower, preferably 150° C. or lower.
  • the heat treatment time is, for example, 30 minutes or longer, preferably 1 hour or longer.
  • the heat treatment time is, for example, 30 hours or less, preferably 20 hours or less.
  • the elastic molded product (polyurethane elastomer) is aged as necessary.
  • the aging temperature is, for example, 10° C. or higher, preferably 20° C. or higher.
  • the aging temperature is, for example, 50° C. or lower, preferably 40° C. or lower.
  • the aging time is, for example, 1 hour or more, preferably 10 hours or more.
  • the aging time is, for example, 50 days or less, preferably 30 days or less.
  • polyurethane elastomers are suitably used in various applications.
  • Applications of polyurethane elastomers include, for example, transparent hard plastics, waterproof materials, potting agents, inks, binders, films, sheets, bands, belts, shoe press belts, tubes, rollers, blades, speakers, sensors, outsoles, threads, fibers, non-woven fabrics, cosmetics, shoe products, heat insulating materials, sealing materials, tape materials, sealing materials, solar power generation members, robot members, android members, wearable members, clothing items, sanitary products, cosmetic products, furniture products, food packaging members, sporting goods, leisure products, medical products, nursing care products, and housing members.
  • a solution prepared by dissolving 400 parts by mass of 1,4-bis(aminomethyl)cyclohexane in 2500 parts by mass of ortho-dichlorobenzene was fed thereto by a feed pump over 60 minutes, and cold phosgenation was carried out at 30° C. or less under normal pressure. After completion of feeding, the inside of the flask became a pale brownish white slurry liquid.
  • the liquid in the reactor was heated to 140° C. over 60 minutes, pressurized to 0.25 MPa, and further subjected to hot phosgenation at a pressure of 0.25 MPa and a reaction temperature of 140° C. for 2 hours. Further, 480 parts by mass of phosgene was added during the thermal phosgenation. During the process of thermal phosgenation, the liquid in the flask became a pale brown clear solution. After completion of hot phosgenation, nitrogen gas was passed through at 100 to 140° C. at 100 L/hour to degas. Next, after distilling off the solvent ortho-dichlorobenzene under reduced pressure, further rectification is performed while refluxing under conditions of 138 to 143 ° C.
  • the obtained 1,4-H 6 XDI had a purity of 99.9% by gas chromatography, a hue of 5 by APHA measurement, and a trans/cis ratio of 41/59 by 13 C-NMR measurement.
  • HC was 22 ppm.
  • Production Example 3 (1,4-H 6 XDI, trans 86 mol%) 865 parts by mass of 1,4-H 6 XDI (93 mol% of trans isomer) of Production Example 1 and 135 parts by mass of 1,4-H 6 XDI (41 mol% of trans isomer) of Production Example 2 were placed in a four-necked flask equipped with a stirrer, a thermometer, a reflux tube, and a nitrogen inlet tube, and stirred at room temperature for 1 hour under a nitrogen atmosphere.
  • the obtained 1,4-H 6 XDI had a purity of 99.9% by gas chromatography, a hue of 5 by APHA measurement, and a trans/cis ratio of 86/14 by 13 C-NMR measurement.
  • HC was 19 ppm.
  • Production Example 4 (1,4-H 6 XDI, trans form 65 mol%) 462 parts by mass of 1,4-H 6 XDI (93 mol% trans isomer) of Production Example 1 and 538 parts by mass of 1,4-H 6 XDI (41 mol% trans isomer) of Production Example 2 were placed in a four-necked flask equipped with a stirrer, a thermometer, a reflux tube, and a nitrogen inlet tube, and stirred at room temperature for 1 hour under a nitrogen atmosphere.
  • the obtained 1,4-H 6 XDI had a purity of 99.9% by gas chromatography, a hue of 5 by APHA measurement, and a trans/cis ratio of 65/35 by 13 C-NMR measurement.
  • HC was 19 ppm.
  • Production Example 5 (1,4-H 6 XDI, trans form 50 mol%) 173 parts by mass of 1,4-H 6 XDI (93 mol% trans isomer) of Production Example 1 and 827 parts by mass of 1,4-H 6 XDI (41 mol% trans isomer) of Production Example 2 were placed in a four-necked flask equipped with a stirrer, a thermometer, a reflux tube, and a nitrogen inlet tube, and stirred at room temperature for 1 hour under a nitrogen atmosphere.
  • the obtained 1,4-H 6 XDI had a purity of 99.9% by gas chromatography, a hue of 5 by APHA measurement, and a trans/cis ratio of 50/50 by 13 C-NMR measurement.
  • HC was 19 ppm.
  • Viscosity The viscosity (V 1 ) of the polycarbonate polyol at 80° C. was measured using a Brookfield viscometer (cone plate type) under the conditions of 40P cone and 188 rpm. The results are shown in Table 1. Table 1 also shows R 1 and R 2 of the structural units (formula (1) and formula (2)) contained in each polycarbonate polyol and their ratios.
  • PTM (Mn250) indicates a polyoxytetramethylene group with a number average molecular weight of 250.
  • the viscosity (V 2 ) of the prepolymer composition at 80° C. was measured using a Brookfield viscometer (cone plate type) under the conditions of 40P cone and 188 rpm. Also, the increase ratio (V 2 /V 1 ) of the viscosity (V 2 ) of the prepolymer composition at 80° C. to the viscosity (V 1 ) of the polycarbonate polyol at 80° C. was calculated. The results are also shown in the table.
  • an initial crack of 1 mm was made with a cutter knife perpendicular to the surface direction at the end of the test piece at the center position in the length direction. Then, the upper portion of the test piece was fixed to the gripping jig of the De Mattia bending tester so that the location where the initial crack was formed was the center between the upper and lower gripping jigs. In addition, the lower part of the test piece was gripped by a gripping jig capable of reciprocating motion. Also, the distance between the upper portion fixed by the gripping jig and the lower portion gripped by the gripping jig (that is, the length of the test piece not gripped) was adjusted to about 75 mm.
  • the test piece was subjected to reciprocating bending motion at a temperature of 20°C and a frequency of 5 Hz.
  • the distance between the upper portion of the test piece fixed by the gripping jig and the lower portion of the test piece gripped by the gripping jig was about 17 mm.
  • the value obtained by dividing the length (crack length) developed from the initial crack by the number of times of bending was calculated. Crack propagation resistance was thus evaluated.
  • the prepolymer composition, polyurethane resin, elastic molded article, and method for producing the prepolymer composition of the present invention are suitably used in various industrial fields requiring polyurethane resins having excellent crack growth resistance and mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

プレポリマー組成物は、イソシアネート基末端プレポリマーを含有する。イソシアネート基末端プレポリマーは、1,4-ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、ポリカーボネートポリオールを含むポリオール成分との反応生成物である。1,4-ビス(イソシアナトメチル)シクロヘキサンは、60モル%以上の割合でトランス体を含有する。ポリカーボネートポリオールの80℃における粘度(V)が、4000mPa・s以下である。プレポリマー組成物の80℃における粘度(V)が、4000mPa・s以下である。プレポリマー組成物のイソシアネート基濃度が、8.0質量%以上13.0質量%未満である。

Description

プレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法
 本発明は、プレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法に関する。
 ポリウレタン樹脂は、例えば、ポリイソシアネートおよびマクロポリオールの反応により形成されるソフトセグメントと、ポリイソシアネートおよび鎖伸長剤の反応により形成されるハードセグメントとを有している。
 より具体的には、以下の方法で得られるポリウレタン樹脂が、知られている。すなわち、まず、1,4-ビス(イソシアナトメチル)シクロヘキサン(HXDI)と、3-メチル-1,5-ペンタンジオールおよび1,6-ヘキサンジオールを構成単位として含むポリカーボネートジオール(PCD2)とを反応させて、ウレタンプレポリマーを得る。次いで、ウレタンプレポリマーと、1,4-ブタンジオールとを反応させて、ポリウレタン樹脂を得る(例えば、特許文献1(実施例2)参照。)。
 また、例えば、ポリウレタン樹脂において、比較的高い割合でトランス体を含有する1,4-ビス(イソシアナトメチル)シクロヘキサンを用いることにより、各種機械物性が向上することが、知られている。
 より具体的には、80モル%以上のトランス体を含む1,4-ビス(イソシアナトメチル)シクロヘキサンを含有するポリイソシアネート成分と、活性水素化合物との反応により得られる弾性成形用ポリウレタン樹脂が、提案されている(例えば、特許文献2(段落[0291]~[0300])参照。)。
特開2021-134464号公報 国際公開2009/051114号
 一方、特許文献1に記載されるポリウレタン樹脂は、十分な耐亀裂進展性を有していない。そのため、ポリウレタン樹脂には、優れた機械物性に加えて、優れた耐亀裂進展性を有することが要求される。
 しかし、優れた機械物性に加えて、優れた耐亀裂進展性を有するポリウレタン樹脂を得るために、特許文献2(段落[0291]~[0300])に記載されるように、1,4-ビス(イソシアナトメチル)シクロヘキサンのトランス体の比率を増加させると、機械物性としての破断強度(TS)は増加するが、破断伸び(EL)は減少する。このような場合、通常、破断伸び(EL)に伴って、耐亀裂進展性も低下する。
 本発明は、優れた耐亀裂進展性および機械物性を有するポリウレタン樹脂を得ることができるプレポリマー組成物、そのプレポリマー組成物を用いて得られるポリウレタン樹脂、そのポリウレタン樹脂を含む弾性成形品、および、プレポリマー組成物の製造方法である。
 本発明[1]は、イソシアネート基末端プレポリマーを含有するプレポリマー組成物であって、前記イソシアネート基末端プレポリマーは、1,4-ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、ポリカーボネートポリオールを含むポリオール成分との反応生成物であり、前記1,4-ビス(イソシアナトメチル)シクロヘキサンは、60モル%以上の割合でトランス体を含有し、前記ポリカーボネートポリオールの80℃における粘度(V)が、4000mPa・s以下であり、前記プレポリマー組成物の80℃における粘度(V)が、4000mPa・s以下であり、前記プレポリマー組成物のイソシアネート基濃度が、8.0質量%以上13.0質量%未満である、プレポリマー組成物を、含んでいる。
 本発明[2]は、前記プレポリマー組成物が、前記イソシアネート基末端プレポリマーと、1,4-ビス(イソシアナトメチル)シクロヘキサンを含むイソシアネートモノマーとを含む、上記[1]に記載のプレポリマー組成物を、含んでいる。
 本発明[3]は、上記[1]または[2]に記載のプレポリマー組成物と、鎖伸長剤との反応生成物を含む、ポリウレタン樹脂を、含んでいる。
 本発明[4]は、上記[3]に記載のポリウレタン樹脂を含む、弾性成形品を、含んでいる。
 本発明[5]は、前記1,4-ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、ポリカーボネートポリオールを含むポリオール成分とを準備する準備工程と、前記ポリイソシアネート成分と前記ポリオール成分とを、前記ポリオール成分中の水酸基に対するポリイソシアネート成分中のイソシアネート基の当量比(NCO/OH)が1.0を超過する割合で反応させ、イソシアネート基末端プレポリマーを含む反応生成液を調製するプレポリマー調製工程とを備え、前記1,4-ビス(イソシアナトメチル)シクロヘキサンは、60モル%以上の割合でトランス体を含有し、前記ポリカーボネートポリオールの80℃における粘度(V)が、4000mPa・s以下であり、前記プレポリマー組成物の80℃における粘度(V)が、4000mPa・s以下であり、前記ポリカーボネートポリオールの80℃における前記粘度(V)に対する、前記プレポリマー組成物の80℃における前記粘度(V)の増加比率(V/V)が、2.0以下であり、前記プレポリマー組成物のイソシアネート基濃度が、8.0質量%以上13.0質量%未満である、プレポリマー組成物の製造方法を、含んでいる。
 本発明のプレポリマー組成物では、ポリイソシアネート成分に含まれる1,4-ビス(イソシアナトメチル)シクロヘキサンが、比較的高い割合でトランス体を含有し、かつ、ポリオール成分に含まれるポリカーボネートポリオールが、比較的低い粘度を有する。さらに、プレポリマー組成物は、比較的低い粘度を有する。加えて、プレポリマー組成物は、所定範囲のイソシアネート基濃度を有する。このようなプレポリマー組成物によれば、優れた耐亀裂進展性および優れた機械物性を有するポリウレタン樹脂を得ることができる。
 また、本発明のポリウレタン樹脂および弾性成形品は、上記のプレポリマー組成物を用いて得られるため、優れた耐亀裂進展性および優れた機械物性を有する。
 また、本発明のプレポリマーの製造方法によれば、上記のプレポリマー組成物を得ることができる。
 本発明のプレポリマー組成物は、イソシアネート基末端プレポリマーを含有する。イソシアネート基末端プレポリマーは、ポリイソシアネート成分とポリオール成分との反応生成物である。以下において、本発明のプレポリマー組成物およびその製造方法について、詳述する。
 プレポリマー組成物の製造では、まず、ポリイソシアネート成分とポリオール成分とを準備する(準備工程)。
 ポリイソシアネート成分は、必須成分として、1,4-ビス(イソシアナトメチル)シクロヘキサン(1,4-HXDI)を含む。
 1,4-ビス(イソシアナトメチル)シクロヘキサンは、立体異性体として、シス-1,4-ビス(イソシアナトメチル)シクロヘキサンと、トランス-1,4-ビス(イソシアナトメチル)シクロヘキサンとを有する。すなわち、ビス(イソシアナトメチル)シクロヘキサンは、好ましくは、シス-1,4-ビス(イソシアナトメチル)シクロヘキサンと、トランス-1,4-ビス(イソシアナトメチル)シクロヘキサンとを含有する。以下において、シス-1,4-ビス(イソシアナトメチル)シクロヘキサンを、シス1,4体と称する場合がある。また、トランス-1,4-ビス(イソシアナトメチル)シクロヘキサンを、トランス1,4体と称する場合がある。なお、トランス1,4体およびシス1,4体の総量は、100モル%である。
 1,4-ビス(イソシアナトメチル)シクロヘキサンは、トランス1,4体を含んでいる。1,4-ビス(イソシアナトメチル)シクロヘキサンにおいて、トランス1,4体の含有割合は、60モル%以上、好ましくは、70モル%以上、より好ましくは、80モル%以上、さらに好ましくは、85モル%以上である。また、1,4-ビス(イソシアナトメチル)シクロヘキサンにおいて、トランス1,4体の含有割合は、例えば、100モル%以下、好ましくは、99.8モル%以下、より好ましくは、99モル%以下、さらに好ましくは、96モル%以下、とりわけ好ましくは、90モル%以下の割合である。
 また、1,4-ビス(イソシアナトメチル)シクロヘキサンにおいて、シス1,4体の含有割合は、例えば、0モル%以上、好ましくは、0.2モル%以上、より好ましくは、1モル%以上、さらに好ましくは、4モル%以上、とりわけ好ましくは、10モル%以上である。また、1,4-ビス(イソシアナトメチル)シクロヘキサンにおいて、シス1,4体の含有割合は、40モル%以下、好ましくは、30モル%以下、より好ましくは、20モル%以下、さらに好ましくは、15モル%以下である。
 トランス1,4体の含有割合、および、シス1,4体の含有割合が上記範囲であり、かつ、後述するポリオール成分が用いられていれば、優れた耐亀裂進展性および優れた機械物性を有するポリウレタン樹脂が得られる。
 1,4-ビス(イソシアナトメチル)シクロヘキサンは、本発明の優れた効果を阻害しない範囲において、変性体であってもよい。変性体としては、例えば、ウレトジオン変性体、イソシアヌレート変性体、イミノオキサジアジンジオン、ビウレット変性体、アロファネート変性体、ポリオール付加体、オキサジアジントリオン変性体、および、カルボジイミド変性体が挙げられる。好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンは、変性体ではなく、単量体(1,4-ビス(イソシアナトメチル)シクロヘキサンのモノマー)である。
 また、ポリイソシアネート成分は、本発明の優れた効果を阻害しない範囲で、任意成分として、その他のポリイソシアネートを含有することができる。
 その他のポリイソシアネートは、1,4-ビス(イソシアナトメチル)シクロヘキサンを除くポリイソシアネートである。その他のポリイソシアネートとして、より具体的には、脂肪族ポリイソシアネート、脂環族ポリイソシアネート(1,4-ビス(イソシアナトメチル)シクロヘキサンを除く。)、芳香族ポリイソシアネート、および、芳香脂肪族ポリイソシアネートが挙げられる。脂肪族ポリイソシアネートとしては、例えば、ペンタメチレンジイソシアネート(PDI)、ヘキサメチレンジイソシアネート(HDI)が挙げられる。脂環族ポリイソシアネートとしては、例えば、1,3-ビス(イソシアナトメチル)シクロヘキサン(1,3-HXDI)、イソホロンジイソシアネート(IPDI)、ノルボルネンジイソシアネート(NBDI)、および、メチレンビス(シクロヘキシルイソシアネート)(H12MDI)が挙げられる。芳香族ポリイソシアネートとしては、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、トルイジンジイソシアネート(TODI)、および、ナフタレンジイソシアネート(NDI)が挙げられる。芳香脂肪族ポリイソシアネートとしては、例えば、キシリレンジイソシアネート(XDI)、および、テトラメチルキシリレンジイソシアネート(TMXDI)が挙げられる。また、その他のポリイソシアネートは、本発明の優れた効果を阻害しない範囲において、上記した変性体であってもよい。これらは、単独使用または2種類以上併用できる。
 その他のポリイソシアネートの含有割合は、耐亀裂進展性の観点から、ポリイソシアネート成分の総量に対して、例えば、50質量%以下、好ましくは、30質量%以下、より好ましくは、10質量%以下、とりわけ好ましくは、0質量%である。また、ビス(イソシアナトメチル)シクロヘキサンの含有割合は、ポリイソシアネート成分の総量に対して、機械物性の観点から、例えば、50質量%以上、好ましくは、70質量%以上、より好ましくは、90質量%以上、とりわけ好ましくは、100質量%である。
 すなわち、ポリイソシアネート成分は、好ましくは、1,4-ビス(イソシアナトメチル)シクロヘキサンからなる。
 ポリオール成分は、必須成分として、比較的低粘度のポリカーボネートポリオール(以下、低粘度ポリカーボネートポリオール)を含んでいる。比較的低粘度とは、80℃における粘度(V)が、4000mPa・s以下であることを示す。すなわち、ポリオール成分は、80℃における粘度(V)が、4000mPa・s以下であるポリカーボネートポリオールを、含んでいる。
 低粘度ポリカーボネートポリオールは、例えば、下記式(1)で示される構造単位を含有する。
   -R-O-COO-    (1)
(式中、Rは、炭素数5以上の直鎖状アルキレン基、炭素数3以上の分岐鎖状アルキレン基、または、ポリオキシアルキレン基を示す。)
 上記式(1)において、Rは、炭素数5以上の直鎖状アルキレン基、炭素数3以上の分岐鎖状アルキレン基、または、ポリオキシアルキレン基を示す。
 炭素数5以上の直鎖状アルキレン基としては、例えば、炭素数5~20の直鎖状アルキレン基が挙げられる。炭素数5~20の直鎖状アルキレン基としては、例えば、n-ペンチレン、n-ヘキシレン、n-へプチレン、n-オクチレン、n-ノニレン、n-デシレン、n-ウンデシレン、n-ドデシレン、n-トリデシレン、n-テトラデシレン、n-ペンタデシレン、n-ヘキサデシレン、n-ヘプタデシレン、n-オクタデシレン、n-ノナデシレンおよびn-イコシレンが挙げられる。これらは、単独使用または2種類以上併用される。
 炭素数3以上の分岐鎖状アルキレン基としては、例えば、炭素数3~20の分岐鎖状アルキレン基が挙げられる。炭素数3~20の分岐鎖状アルキレン基としては、例えば、1,2-プロピレン、1-メチル-1,3-プロピレン、2-メチル-1,3-プロピレン、1,1-ジメチル-1,3-プロピレン、1,2-ジメチル-1,3-プロピレン、1,3-ジメチル-1,3-プロピレン、2,2-ジメチル-1,3-プロピレン、1,2,3-トリメチル-1,3-プロピレン、1,1,2-トリメチル-1,3-プロピレン、1,2,2-トリメチル-1,3-プロピレン、1,1,3-トリメチル-1,3-プロピレン、1-メチル-1,4-ブチレン、2-メチル-1,4-ブチレン、1,1-ジメチル-1,4-ブチレン、1,2-ジメチルブチレン、1,3-ジメチル-1,4-ブチレン、1,4-ジメチル-1,4-ブチレン、2,2-ジメチル-1,4-ブチレン、2,3-ジメチル-1,4-ブチレン、1,2,3-トリメチル-1,4-ブチレン、1,2,4-トリメチル-1,4-ブチレン、1,1,2-トリメチル-1,4-ブチレン、1,2,2-トリメチル-1,4-ブチレン、1,3,3-トリメチル-1,4-ブチレン、1-メチル-1,5-ペンチレン、2-メチル-1,5-ペンチレン、3-メチル-1,5-ペンチレン、1-メチルへキシレン、2-メチルへキシレン、3-メチル-1,6-へキシレン、2-メチル-1,8-オクチレン、2-ブチル-2-エチル-1,3-プロピレンおよび2,2,4-トリメチル-1,6-ヘキシレンが挙げられる。これらは、単独使用または2種類以上併用される。
 ポリオキシアルキレン基において、オキシアルキレンとしては、例えば、炭素数2~4のオキシアルキレンが挙げられる。炭素数2~4のオキシアルキレンとしては、例えば、オキシエチレン、オキシプロピレン(オキシ-1,2-プロピレン)、オキシトリメチレン(オキシ-1,3-プロピレン)およびオキシテトラメチレンが挙げられる。また、炭素数2~4のオキシアルキレンからなるポリオキシアルキレン基としては、例えば、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシエチレン・プロピレン(ランダムおよび/またはブロック共重合体)、ポリオキシトリメチレンおよびポリオキシテトラメチレン(PTM)が挙げられる。これらは、単独使用または2種類以上併用される。
 なお、オキシアルキレンの繰り返し単位数は、低粘度ポリカーボネートポリオールの粘度が後述する範囲になるように、適宜設定される。より具体的には、オキシアルキレンの繰り返し単位数は、例えば、2以上、好ましくは、3以上である。また、オキシアルキレンの繰り返し単位数は、例えば、60以下、好ましくは、50以下である。
 また、ポリオキシアルキレン基の数平均分子量(GPC測定によるポリスチレン換算分子量)は、低粘度ポリカーボネートポリオールの粘度が後述する範囲になるように、適宜設定される。より具体的には、ポリオキシアルキレン基の数平均分子量(GPC測定によるポリスチレン換算分子量)は、例えば、150以上、好ましくは、250以上である。また、ポリオキシアルキレン基の数平均分子量(GPC測定によるポリスチレン換算分子量)が、例えば、4000以下、好ましくは、3000以下である。
 上記式(1)において、Rは、単独使用または2種類以上併用される。例えば、低粘度ポリカーボネートポリオールとして、1分子中に1種類のRを有するポリカーボネートポリオール(単独変性ポリカーボネートポリオール)を、単独使用することができる。
 また、低粘度ポリカーボネートポリオールとして、1分子中に2種類以上のRを有するポリカーボネートポリオール(複合変性ポリカーボネートポリオール)を、単独使用することができる。
 また、互いに異なるRを有する低粘度ポリカーボネートポリオール(単独変性ポリカーボネートポリオールおよび/または複合変性ポリカーボネートポリオール)を、2種類以上併用(例えば、混合使用)することもできる。
 上記式(1)におけるRとして、好ましくは、炭素数3以上の分岐鎖状アルキレン基、または、炭素数2以上の直鎖状ポリオキシアルキレン基が挙げられる。
 低粘度ポリカーボネートポリオールにおいて、上記式(1)で示される構造単位の含有割合は、粘度が後述する範囲になるように、適宜調整される。
 また、低粘度ポリカーボネートポリオールは、後述する粘度(V)を満たす範囲で、必要に応じて、下記式(2)で示される構造単位を含有することもできる。
   -R-O-COO-    (2)
(式中、Rは、炭素数4以下の直鎖状アルキレン基、または、炭素数3以上の環状アルキレン基を示す。)
 上記式(2)において、Rは、炭素数4以下の直鎖状アルキレン基、または、炭素数3以上の環状アルキレン基を示す。
 炭素数4以下の直鎖状アルキレン基としては、例えば、炭素数1~4の直鎖状アルキレン基が挙げられる。炭素数1~4の直鎖状アルキレン基としては、例えば、メチレン、エチレン、1,3-プロピレンおよび1,4-ブチレンが挙げられる。これらは、単独使用または2種類以上併用できる。
 炭素数3以上の環状アルキレン基としては、例えば、炭素数3~8のシクロアルキレン基が挙げられる。炭素数3~8のシクロアルキレン基としては、例えば、シクロプロピレン、シクロブチレン、シクロペンチレン、シクロへキシレン、シクロヘプチレンおよびシクロオクチレンが挙げられる。これらは、単独使用または2種類以上併用できる。
 低粘度ポリカーボネートポリオールにおいて、上記式(2)で示される構造単位の含有割合は、粘度が後述する範囲になるように、適宜調整される。
 低粘度ポリカ-ボネートポリオールは、例えば、アルキレンカーボネートと、上記式(1)におけるRを含む多価アルコールとの共重合によって得られる。また、必要により、上記式(1)におけるRを含む多価アルコールと、上記式(2)におけるRを含む多価アルコールとを併用することもできる。
 アルキレンカーボネートとしては、例えば、エチレンカーボネート、プロピレンカーボネートおよびブチレンカーボネートが挙げられる。これらは、単独使用または2種類以上併用できる。アルキレンカーボネートとして、好ましくは、エチレンカーボネートが挙げられる。
 上記式(1)におけるRを含む多価アルコールとしては、例えば、上記式(1)におけるRを含む2価アルコールが挙げられる。上記式(1)におけるRを含む2価アルコールとしては、例えば、炭素数5~20の直鎖状アルキレンジオール、炭素数3~20の分岐鎖状アルキレンジオール、および、ポリオキシアルキレンジオールが挙げられる。炭素数5~20の直鎖状アルキレンジオールとしては、例えば、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオールおよび1,10-デカンジオールが挙げられる。炭素数3~20の分岐鎖状アルキレンジオールとしては、例えば、1,2-プロパンジオール、1,3-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,8-オクタンジオール、2-ブチル-2-エチルプロパンジオールおよび2,2,4-トリメチル-1,6-ヘキサンジオールが挙げられる。ポリオキシアルキレンジオールとしては、例えば、ポリオキシエチレングリコール(PEG)、ポリオキシプロピレングリコール(PPG)およびポリテトラメチレンエーテルグリコール(PTMG)が挙げられる。なお、ポリオキシアルキレンジオールの数平均分子量(Mn)は、目的および用途に応じて、適宜設定される。ポリオキシアルキレンジオールの数平均分子量(GPC測定によるポリスチレン換算分子量)は、例えば、150以上、好ましくは、250以上である。また、ポリオキシアルキレンジオールの数平均分子量(GPC測定によるポリスチレン換算分子量)が、例えば、4000以下、好ましくは、3000以下である。
 低粘度ポリカーボネートポリオールの平均水酸基数は、例えば、2以上であり、例えば、4以下、好ましくは、3以下、とりわけ好ましくは、2である。すなわち、低粘度ポリカーボネートポリオールとして、好ましくは、低粘度ポリカーボネートジオールが挙げられる。
 低粘度ポリカーボネートポリオールの数平均分子量(GPC測定によるポリスチレン換算分子量)は、例えば、400以上、好ましくは、500以上、より好ましくは、1000以上である。また、低粘度ポリカーボネートポリオールの数平均分子量(GPC測定によるポリスチレン換算分子量)は、例えば、5000以下、好ましくは、4000以下、より好ましくは、3000以下である。
 低粘度ポリカーボネートポリオールの粘度は、比較的低い。より具体的には、低粘度ポリカーボネートポリオールの80℃における粘度(V)は、4000mPa・s以下、好ましくは、3000mPa・s以下、より好ましくは、2500mPa・s以下、さらに好ましくは、2000mPa・s以下、とりわけ好ましくは、1500mPa・s以下である。また、低粘度ポリカーボネートポリオールの80℃における粘度(V)は、例えば、10mPa・s以上、好ましくは、50mPa・s以上、より好ましくは、100mPa・s以上、さらに好ましくは、500mPa・s以上である。なお、低粘度ポリカーボネートポリオールの粘度は、後述する実施例に準拠して、B型粘度計(コーンプレート型)により測定される。
 低粘度ポリカーボネートポリオールの80℃における粘度(V)が上記範囲であれば、優れたポットライフが得られる。
 さらに、低粘度ポリカーボネートポリオールの80℃における粘度(V)が上記範囲であり、かつ、上記した1,4-ビス(イソシアナトメチル)シクロヘキサンのトランス1,4体の含有割合が上記範囲であれば、優れた耐亀裂進展性および優れた機械物性を有するポリウレタン樹脂が得られる。
 ポリオール成分は、任意成分として、比較的高粘度のポリカーボネートポリオール(以下、高粘度ポリカーボネートポリオール)を含むことができる。比較的低粘度とは、80℃における粘度(V)が、4000mPa・sを超過し、好ましくは、4500以上であることを示す。すなわち、ポリオール成分は、80℃における粘度(V)が、4000mPa・sを超過するポリカーボネートポリオールを、含むことができる。
 高粘度ポリカーボネートポリオールは、例えば、上記式(1)で示される構造単位を含むことができ、また、上記式(2)で示される構造単位を含むことができる。なお、高粘度ポリカーボネートポリオールにおいて、上記式(1)で示される構造単位の含有割合は、80℃における粘度(V)が、4000mPa・sを超過するように、適宜調整される。また、高粘度ポリカーボネートポリオールにおいて、上記式(2)で示される構造単位の含有割合は、80℃における粘度(V)が、4000mPa・sを超過するように、適宜調整される。
 ポリオール成分において、高粘度ポリカーボネートポリオールの含有割合は、本発明の優れた効果を阻害しない範囲において、適宜設定される。より具体的には、高粘度ポリカーボネートポリオールの含有割合は、ポリオール成分の総量に対して、例えば、30質量%以下、好ましくは、20質量%以下、より好ましくは、10質量%以下、とりわけ好ましくは、0質量%である。すなわち、ポリオール成分は、とりわけ好ましくは、高粘度ポリカーボネートポリオールを含有しない。
 ポリオール成分は、任意成分として、その他のポリオール(ポリカーボネートポリオールを除くポリオール)を含むことができる。その他のポリオールとしては、例えば、その他のマクロポリオール(ポリカーボネートポリオールを除くマクロポリオール)が挙げられる。マクロポリオールは、分子中に水酸基を2つ以上有し、比較的高分子量の有機化合物である。比較的高分子量とは、数平均分子量が400以上、好ましくは、500以上であることを示す。
 その他のマクロポリオールとしては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリウレタンポリオール、エポキシポリオール、植物油ポリオール、ポリオレフィンポリオール、アクリルポリオール、および、ビニルモノマー変性ポリオールが挙げられる。その他のマクロポリオールは、単独使用または2種類以上併用できる。
 ポリオール成分において、その他のマクロポリオールの含有割合は、本発明の優れた効果を阻害しない範囲において、適宜設定される。より具体的には、その他のマクロポリオールの含有割合は、ポリオール成分の総量に対して、例えば、30質量%以下、好ましくは、20質量%以下、より好ましくは、10質量%以下、とりわけ好ましくは、0質量%である。すなわち、ポリオール成分は、とりわけ好ましくは、その他のマクロポリオールを含有しない。
 ポリオール成分は、任意成分として、低分子量ポリオールを含むことができる。低分子量ポリオールは、分子中に水酸基を2つ以上有し、比較的低分子量の有機化合物である。比較的低分子量とは、数平均分子量が400未満、好ましくは、300以下であることを示す。すなわち、低分子量ポリオールの分子量は、例えば、400未満、好ましくは、300以下である。また、低分子量ポリオールの分子量は、通常、40以上である。
 低分子量ポリオールとしては、例えば、後述する2価アルコール、後述する3価アルコール、および、後述する4価以上のアルコールが挙げられる。これらは、単独使用または2種類以上併用できる。
 ポリオール成分において、低分子量ポリオールの含有割合は、本発明の優れた効果を阻害しない範囲において、適宜設定される。より具体的には、低分子量ポリオールの含有割合は、ポリオール成分の総量に対して、例えば、30質量%以下、好ましくは、20質量%以下、より好ましくは、10質量%以下、とりわけ好ましくは、0質量%である。すなわち、ポリオール成分は、とりわけ好ましくは、低分子量ポリオールを含有しない。
 すなわち、ポリオール成分は、好ましくは、低粘度ポリカーボネートポリオールからなり、とりわけ好ましくは、低粘度ポリカーボネートジオールからなる。
 そして、プレポリマー組成物の製造では、上記のポリイソシアネート成分と、上記のポリオール成分とを、反応させ、イソシアネート基末端プレポリマーを含む反応生成液を得る(プレポリマー調製工程)。
 ポリイソシアネート成分とポリオール成分との配合割合は、ポリオール成分中の水酸基に対して、ポリイソシアネート成分中のイソシアネート基が過剰となるように、調整される。
 より具体的には、プレポリマー調製工程において、ポリオール成分中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(NCO/OH)が、1.0を超過し、好ましくは、1.1以上、より好ましくは、2.0以上、さらに好ましくは、3.0以上である。また、ポリオール成分中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比(NCO/OH)が、例えば、5.0以下、好ましくは、4.0以下である。
 プレポリマー調製工程において、反応方法としては、例えば、バルク重合および溶液重合が挙げられる。
 バルク重合では、例えば、ポリイソシアネート成分およびポリオール成分を、窒素気流下で反応させる。反応温度は、例えば、50℃以上である。また、反応温度は、例えば、250℃以下、好ましくは、200℃以下である。また、反応時間が、例えば、0.5時間以上、好ましくは、1時間以上である。また、反応時間が、例えば、15時間以下である。
 溶液重合では、ポリイソシアネート成分およびポリオール成分を、公知の有機溶剤の存在下で反応させる。反応温度は、例えば、50℃以上である。また、反応温度は、例えば、120℃以下、好ましくは、100℃以下である。また、反応時間が、例えば、0.5時間以上、好ましくは、1時間以上である。また、反応時間が、例えば、15時間以下である。
 プレポリマー調製工程では、例えば、上記反応を、反応生成液(プレポリマー組成物)のイソシアネート基濃度(NCO%)が所定の値(後述)となるまで実施する。
 また、プレポリマー調製工程では、公知のウレタン化触媒が添加されていてもよい。ウレタン化触媒としては、例えば、有機金属触媒、アミン触媒およびカリウム塩が挙げられる。これらは、単独使用または2種類以上併用できる。ウレタン化触媒として、好ましくは、有機金属触媒が挙げられる。
 有機金属触媒としては、例えば、有機錫触媒、有機鉛触媒、有機ニッケル触媒、有機銅触媒および有機ビスマス触媒が挙げられる。これらは、単独使用または2種類以上併用できる。有機金属触媒として、好ましくは、有機錫触媒が挙げられる。
 有機錫触媒としては、例えば、酢酸スズ、オクチル酸スズ、オレイン酸スズ、ラウリル酸スズ、モノブチルスズトリオクテート、ジブチルスズジアセテート、ジメチルスズジラウレート、ジブチルスズジラウレート、ジブチルスズジメルカプチド、ジブチルスズマレエート、ジブチルスズジネオデカノエート、ジオクチルスズジメルカプチド、ジオクチルスズジラウリレート、および、ジブチルスズジクロリドが挙げられる。これらは、単独使用または2種類以上併用できる。有機錫触媒として、好ましくは、ジブチルスズジラウレートが挙げられる。
 ウレタン化触媒の添加量は、特に制限されず、目的および用途に応じて、適宜設定される。また、ウレタン化触媒を添加するタイミングは、特に制限されない。例えば、プレポリマー調製工程において、ポリイソシアネート成分および/またはポリオール成分に、ウレタン化触媒を添加できる。また、プレポリマー調製工程において、ポリイソシアネート成分およびポリオール成分の混合時に、ウレタン化触媒を添加できる。また、ポリイソシアネート成分およびポリオール成分の混合物(反応混合液)に、ウレタン化触媒を添加できる。
 また、これらを複数組み合わせて、複数のタイミングでウレタン化触媒を添加してもよい。また、ウレタン化触媒の添加方法は、特に制限されず、例えば、一括添加であってもよく、分割添加であってもよい。
 これにより、ポリイソシアネート成分とポリオール成分との反応生成液が得られる。より具体的には、反応生成液は、例えば、ポリイソシアネート成分およびポリオール成分の反応生成物であるイソシアネート基末端プレポリマーと、未反応原料であるポリイソシアネート成分(ポリイソシアネートモノマー)とを含んでいる。
 この反応生成液は、イソシアネート基末端プレポリマーを含むプレポリマー組成物である。すなわち、プレポリマー調製工程では、上記の反応生成液(プレポリマー調製工程の反応生成液)を、プレポリマー組成物として得ることができる。
 プレポリマー組成物(反応生成液)において、イソシアネート基末端プレポリマー(反応生成物)の含有割合、および、未反応のポリイソシアネート成分(ポリイソシアネートモノマー)の含有割合は、特に制限されず、例えば、イソシアネート基濃度が後述の範囲となる割合である。なお、必要に応じて、反応生成液から未反応のポリイソシアネート成分(ポリイソシアネートモノマー)の一部を公知の方法により除去することもできる。また、必要に応じて、反応生成液に未反応のポリイソシアネート成分(ポリイソシアネートモノマー)を添加することもできる。好ましくは、未反応のポリイソシアネート成分(ポリイソシアネートモノマー)を除去および添加せずに、プレポリマー調製工程におけるポリイソシアネート成分およびポリオール成分の配合割合および反応条件によって、イソシアネート基濃度(NCO%)を調整する。
 プレポリマー組成物のイソシアネート基濃度は、機械物性の観点から、8.0質量%以上、好ましくは、9.0質量%以上、より好ましくは、10.0質量%以上、さらに好ましくは、11.0質量%以上、とりわけ好ましくは、11.5質量%以上である。また、プレポリマー組成物のイソシアネート基濃度は、耐亀裂進展性の観点から、13.0質量%未満、好ましくは、12.9質量%以下、より好ましくは、12.5質量%以下、さらに好ましくは、12.2質量%以下、とりわけ好ましくは、12.0質量%以下である。なお、イソシアネート基濃度(イソシアネート基含有率)は、公知の測定方法によって求めることができる。測定方法としては、例えば、ジ-n-ブチルアミンによる滴定法、および、FT-IR分析が挙げられる(以下同様)。
 また、プレポリマー組成物は、比較的低粘度である。プレポリマー組成物の80℃における粘度(V)は、耐亀裂進展性および機械物性の観点から、4000mPa・s以下であり、好ましくは、3500mPa・s以下、より好ましくは、3000mPa・s以下、さらに好ましくは、2000mPa・s以下、さらに好ましくは、1000mPa・s以下である。また、プレポリマー組成物の80℃における粘度(V)は、例えば、10mPa・s以上、好ましくは、50mPa・s以上、より好ましくは、100mPa・s以上、さらに好ましくは、300mPa・s以上である。なお、プレポリマー組成物の粘度は、後述する実施例に準拠して、B型粘度計(コーンプレート型)により測定される。
 また、低粘度ポリカーボネートポリオールの80℃における粘度(V)に対する、プレポリマー組成物の80℃における粘度(V)の増加比率(V/V)は、例えば、2.0以下、好ましくは、1.5以下、より好ましくは、1.3以下、さらに好ましくは、1.1以下である。また、プレポリマー組成物の80℃における粘度(V)の増加比率(V/V)は、例えば、1.0以上、好ましくは、1.0を超過、より好ましくは、1.05以上である。
 低粘度ポリカーボネートポリオールの80℃における粘度(V)に対する、プレポリマー組成物の80℃における粘度(V)の増加比率(V/V)が、上記範囲であれば、より一層、耐亀裂進展性の向上を図ることができる。
 プレポリマー組成物は、必要に応じて、公知の添加剤を含むことができる。添加剤としては、例えば、酸化防止剤、耐熱安定剤、耐光安定剤、紫外線吸収剤、ブロッキング防止剤、離型剤、顔料、染料、滑剤、フィラー、加水分解防止剤、防錆剤およびブルーイング剤が挙げられる。なお、添加剤の添加量および添加のタイミングは、目的および用途に応じて、適宜設定される。
 上記のプレポリマーの製造方法によれば、プレポリマー組成物を得ることができる。
 そして、このようなプレポリマー組成物では、ポリイソシアネート成分に含まれる1,4-ビス(イソシアナトメチル)シクロヘキサンが、比較的高い割合でトランス体を含有し、かつ、ポリオール成分に含まれるポリカーボネートポリオールが、比較的低い粘度を有する。さらに、プレポリマー組成物は、比較的低い粘度を有する。加えて、プレポリマー組成物は、所定範囲のイソシアネート基濃度を有する。このようなプレポリマー組成物によれば、優れた耐亀裂進展性および優れた機械物性を有するポリウレタン樹脂を得ることができる。
 すなわち、従来、1,4-ビス(イソシアナトメチル)シクロヘキサンのトランス体の比率を増加させると、ポリウレタン樹脂の伸び率は減少し、耐亀裂進展性も低下する場合があった。
 これに対して、上記のプレポリマー組成物は、低粘度ポリカーボネートポリオールが用いられ、さらに、プレポリマー組成物の粘度およびイソシアネート基濃度が調整される。そのため、1,4-ビス(イソシアナトメチル)シクロヘキサンのトランス体の比率を増加させることによって、機械物性(例えば、硬度)を向上できるとともに、ポリウレタン樹脂の伸び率を増加させ、耐亀裂進展性を向上することができる。
 以下において、上記のプレポリマー組成物を用いてポリウレタン樹脂を得る方法について、詳述する。この方法では、上記のプレポリマー組成物と鎖伸長剤とを反応させ、ポリウレタン樹脂を合成する(鎖伸長工程)。
 鎖伸長剤は、プレポリマー組成物に対する硬化剤である。鎖伸長剤としては、例えば、複数(好ましくは、2つ)の活性水素基(水酸基、アミノ基)を含有する低分子量化合物が挙げられる。低分子量化合物として、より具体的には、低分子量ポリオールおよび低分子量ポリアミンが挙げられる。鎖伸長剤として、好ましくは、低分子量ポリオールが挙げられる。低分子量ポリオールを用いることにより、優れた機械物性を有するポリウレタン樹脂が得られる。
 低分子量ポリオールとしては、上記の低分子量ポリオールが挙げられる。より具体的には、低分子量ポリオールとしては、例えば、2価アルコール、3価アルコール4価以上のアルコールが挙げられる。2価アルコールとしては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコールおよびジプロピレングリコールが挙げられる。3価アルコールとしては、例えば、グリセリンおよびトリメチロールプロパンが挙げられる。4価以上のアルコールとしては、例えば、ペンタエリスリトールおよびジグリセリンが挙げられる。また、低分子量ポリオールとしては、数平均分子量が400以下になるように、2~4価アルコールに対してアルキレン(C2~3)オキサイドを付加重合した重合物も挙げられる。これらは、単独使用または2種類以上併用できる。
 低分子量ポリオールとして、好ましくは、2価アルコールおよび3価アルコールが挙げられ、より好ましくは、2価アルコールが挙げられ、さらに好ましくは、1,4-ブタンジオールが挙げられる。すなわち、低分子量ポリオールは、好ましくは、1,4-ブタンジオールを含み、より好ましくは、1,4-ブタンジオールからなる。これにより、優れた機械物性を有するポリウレタン樹脂が得られる。
 プレポリマー組成物と鎖伸長剤との配合割合は、プレポリマー組成物中のイソシアネート基に対する、鎖伸長剤中の活性水素基の当量比(活性水素基/NCO)が、例えば、0.85以上、好ましくは、0.90以上、より好ましくは、0.95以上である。また、プレポリマー組成物中のイソシアネート基に対する、鎖伸長剤中の活性水素基の当量比(活性水素基/NCO)が、例えば、1.10以下、好ましくは、1.20以下、より好ましくは、1.10以下、さらに好ましくは、1.00以下、とりわけ好ましくは、0.98以下である。
 そして、鎖伸長工程では、例えば、プレポリマー組成物および鎖伸長剤が、上記の割合で混合され、加熱される。鎖伸長工程における反応温度(硬化温度)は、例えば、100℃以上、好ましくは、110℃以上である。また、鎖伸長工程における反応温度(硬化温度)は、例えば、140℃以下、好ましくは、130℃以下である。
 鎖伸長工程における反応時間(硬化時間)は、例えば、10時間以上、好ましくは、12時間以上である。また、鎖伸長工程における反応時間(硬化時間)は、例えば、24時間以下、好ましくは、18時間以下である。
 また、鎖伸長工程では、上記したウレタン化触媒が添加されていてもよい。ウレタン化触媒の添加量は、特に制限されず、目的および用途に応じて、適宜設定される。また、ウレタン化触媒を添加するタイミングは、特に制限されない。例えば、鎖伸長工程において、プレポリマー組成物および/または鎖伸長剤に、ウレタン化触媒を添加できる。また、鎖伸長工程において、プレポリマー組成物および鎖伸長剤の混合時に、ウレタン化触媒を添加できる。また、これらを複数組み合わせて、複数のタイミングでウレタン化触媒を添加してもよい。また、ウレタン化触媒の添加方法は、特に制限されず、例えば、一括添加であってもよく、分割添加であってもよい。
 これにより、プレポリマー組成物と鎖伸長剤との反応生成物として、ポリウレタン樹脂が得られる。
 なお、ポリウレタン樹脂は、必要に応じて、公知の添加剤を含むことができる。添加剤としては、例えば、酸化防止剤、耐熱安定剤、耐光安定剤、紫外線吸収剤、ブロッキング防止剤、離型剤、顔料、染料、滑剤、フィラー、加水分解防止剤、防錆剤およびブルーイング剤が挙げられる。なお、添加剤の添加量および添加のタイミングは、目的および用途に応じて、適宜設定される。
 そして、上記のポリウレタン樹脂は、上記のプレポリマー組成物を用いて得られるため、優れた耐亀裂進展性および優れた機械物性を有する。そのため、弾性成形品(ポリウレタンエラストマー)として、好適に用いられる。
 弾性成形品(ポリウレタンエラストマー)としては、例えば、TPU(熱可塑性ポリウレタンエラストマー)およびTSU(熱硬化性ポリウレタンエラストマー)が挙げられる。ポリウレタンエラストマーとして、好ましくは、TSU(熱硬化性ポリウレタンエラストマー)が挙げられる。
 より具体的には、弾性成形品(ポリウレタンエラストマー)は、注型ポリウレタンエラストマーとして得られる。注型ポリウレタンエラストマーは、例えば、鎖伸長工程において、プレポリマー組成物と鎖伸長剤との混合物を、所望形状の成形型内で加熱硬化させることによって得られる。
 また、弾性成形品(ポリウレタンエラストマー)は、必要に応じて、熱処理される。熱処理温度は、例えば、50℃以上、好ましくは、80℃以上である。また、熱処理温度は、例えば、200℃以下、好ましくは、150℃以下である。また、熱処理時間が、例えば、30分以上、好ましくは、1時間以上である。また、熱処理時間が、例えば、30時間以下、好ましくは、20時間以下である。
 また、弾性成形品(ポリウレタンエラストマー)は、必要に応じて、エージングされる。エージング温度は、例えば、10℃以上、好ましくは、20℃以上である。また、エージング温度は、例えば、50℃以下、好ましくは、40℃以下である。また、エージング時間が、例えば、1時間以上、好ましくは、10時間以上である。また、エージング時間が、例えば、50日間以下、好ましくは、30日間以下である。
 このような弾性成形品は、上記のプレポリマー組成物を用いて得られるため、優れた耐亀裂進展性および優れた機械物性を有する。
 そのため、弾性成形品(ポリウレタンエラストマー)は、種々の用途において、好適に使用される。ポリウレタンエラストマーの用途としては、例えば、透明性硬質プラスチック、防水材、ポッティング剤、インク、バインダー、フィルム、シート、バンド、ベルト、シュープレスベルト、チューブ、ローラ、ブレード、スピーカー、センサー、アウトソール、糸、繊維、不織布、化粧品、靴用品、断熱材、シール材、テープ材、封止材、太陽光発電部材、ロボット部材、アンドロイド部材、ウェアラブル部材、衣料用品、衛生用品、化粧用品、家具用品、食品包装部材、スポーツ用品、レジャー用品、医療用品、介護用品、住宅用部材、音響部材、照明部材、防振部材、防音部材、日用品、雑貨、クッション、寝具、応力吸収材、応力緩和材、自動車内装材、自動車外装材、鉄道部材、航空機部材、光学部材、OA機器用部材、雑貨表面保護部材、半導体封止材、自己修復材料、健康器具、メガネレンズ、玩具、パッキン、ケーブルシース、ワイヤーハーネス、電気通信ケーブル、自動車配線、コンピューター配線、工業用品、衝撃吸収材、半導体用品および橋梁支承が挙げられる。
 次に、本発明を実施例および比較例に基づいて説明するが、本発明は、これらによって限定されるものではない。なお、「部」および「%」は、特に言及がない限り、質量基準である。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
 1.原料
 <ポリイソシアネート成分>
 製造例1(1,4-HXDI、トランス体93モル%)
 13C-NMR測定によるトランス/シス比が93/7の1,4-ビス(アミノメチル)シクロヘキサン(三菱瓦斯化学社製)を原料として、冷熱2段ホスゲン化法を加圧下で実施した。
 すなわち、電磁誘導撹拌機、自動圧力調整弁、温度計、窒素導入ライン、ホスゲン導入ライン、凝縮器および原料フィードポンプを備え付けたジャケット付き加圧反応器に、オルトジクロロベンゼン2500質量部を仕込んだ。次いで、ホスゲン1425質量部をホスゲン導入ラインより加え撹拌を開始した。反応器のジャケットには冷水を通し、内温を約10℃に保った。そこへ、1,4-ビス(アミノメチル)シクロヘキサン400質量部をオルトジクロロベンゼン2500質量部に溶解した溶液を、フィードポンプにて60分かけてフィードし、30℃以下、常圧下で冷ホスゲン化を実施した。フィード終了後、フラスコ内は淡褐白色スラリー状液となった。
 次いで、反応器内液を60分で140℃に昇温しながら0.25MPaに加圧し、さらに圧力0.25MPa、反応温度140℃で2時間熱ホスゲン化した。また、熱ホスゲン化の途中でホスゲンを480質量部追加した。熱ホスゲン化の過程でフラスコ内液は淡褐色澄明溶液となった。熱ホスゲン化終了後、100~140℃で窒素ガスを100L/時で通気し、脱ガスした。次いで、減圧下で溶媒のオルトジクロルベンゼンを留去した後、ガラス製フラスコに、充填物(住友重機械工業株式会社製、商品名:住友/スルザーラボパッキングEX型)を4エレメント充填した蒸留管、還流比調節タイマーを装着した蒸留塔(柴田科学株式会社製、商品名:蒸留頭K型)および冷却器を装備する精留装置を用いて、138~143℃、0.7~1KPaの条件下、さらに還流しながら精留し、382質量部得た。得られた1,4-HXDIのガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は93/7であった。加水分解性塩素(HC)は19ppmであった。
 製造例2(1,4-HXDI、トランス体41モル%)
 13C-NMR測定によるトランス/シス比が41/59の1,4-ビス(アミノメチル)シクロヘキサン(東京化成工業社製)を原料として、製造例1と同様の方法にて388質量部のトランス/シス比が41/59の1,4-ビス(イソシアナトメチル)シクロヘキサンを得た。得られた1,4-HXDIのガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は41/59であった。HCは22ppmであった。
 製造例3(1,4-HXDI、トランス体86モル%)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例1の1,4-HXDI(トランス体93モル%)を865質量部、製造例2の1,4-HXDI(トランス体41モル%)を135質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-HXDIのガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は86/14であった。HCは19ppmであった。
 製造例4(1,4-HXDI、トランス体65モル%)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例1の1,4-HXDI(トランス体93モル%)を462質量部、製造例2の1,4-HXDI(トランス体41モル%)を538質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-HXDIのガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は65/35であった。HCは19ppmであった。
 製造例5(1,4-HXDI、トランス体50モル%)
 攪拌機、温度計、還流管、および、窒素導入管を備えた4つ口フラスコに、製造例1の1,4-HXDI(トランス体93モル%)を173質量部、製造例2の1,4-HXDI(トランス体41モル%)を827質量部装入し、窒素雰囲気下、室温にて1時間撹拌した。得られた1,4-HXDIのガスクロマトグラフィー測定による純度は99.9%、APHA測定による色相は5、13C-NMR測定によるトランス/シス比は50/50であった。HCは19ppmであった。
 <ポリオール成分>
 (1)種類
 以下のポリカーボネートポリオールを準備した。
G4672;商品名デュラノールG4672(Mn=2000)、旭化成社製
T5651;商品名デュラノールT5651(Mn=1000)、旭化成社製
T5652;商品名デュラノールT5652(Mn=2000)、旭化成社製
NL2010DB;商品名ベネビオールNL2010DB(Mn=2000)、三菱ケミカル社製
NT1002;商品名ベネビオールNT1002(Mn=1000)、三菱ケミカル社製
C2090;商品名クラレポリオールC2090(Mn=2000)、クラレ社製
 (2)粘度
 ポリカーボネートポリオールの80℃における粘度(V)を、B型粘度計(コーンプレート型)を用いて、40Pコーンおよび188rpmの条件で測定した。その結果を、表1に示す。また、各ポリカーボネートポリオールに含まれる構成単位(式(1)および式(2))のR、Rおよびこれらの割合を、表1に併せて示す。
 なお、表中、PTM(Mn250)は、数平均分子量250のポリオキシテトラメチレン基を示す。
 <鎖伸長剤>
 ・1,4-BG:1,4-ブタンジオール(ブチレングリコール)
 <ウレタン化触媒>
 ・DBTDL:ジブチルスズジラウレート
 2.プレポリマー組成物およびポリウレタン樹脂
 実施例1~7および比較例1~7
 (1)プレポリマー調製工程
 ・プレポリマー調製工程
 表2~表5に記載のポリイソシアネート成分およびポリオール成分を、窒素雰囲気下、イソシアネート基濃度(プレポリマー調製工程後のイソシアネート基濃度)が表2~表5に記載の値に至るまで、80℃で反応させた。
 なお、ポリオール成分中の水酸基に対する、ポリイソシアネート成分中のイソシアネート基の当量比R1(NCO/OH)を、表中に示す。
 また、プレポリマー組成物の80℃における粘度(V)を、B型粘度計(コーンプレート型)を用いて、40Pコーンおよび188rpmの条件で測定した。また、ポリカーボネートポリオールの80℃における粘度(V)に対する、プレポリマー組成物の80℃における粘度(V)の増加比率(V/V)を計算した。その結果を、表中に併せて示す。
 (2)鎖伸長工程
 プレポリマー組成物100質量部に対して、ジブチルスズジラウレート(ウレタン化触媒、DBTDLを、表2~表5に記載の割合で添加した。そして、表2~表5に記載の当量比で、プレポリマー組成物と鎖伸長剤とを配合し、60秒混合し、室温にて60秒減圧脱泡した。その後、混合物を金型に流し込み、表2~表5に記載の硬化条件で硬化させ、その後、23℃で3週間養生した。これにより、ポリウレタン樹脂を得た。より具体的には、上記の注型成形により、注型ポリウレタンエラストマーを得た。
 3.評価
 (1)ポットライフ
 プレポリマー組成物および鎖伸長剤の混合後のポットライフを、JIS K 7301(1995)に準拠して、測定した。なお、プレポリマー組成物および鎖伸長剤の予熱温度を80℃に設定した。また、恒温槽の温度を80℃に設定した。その結果を表中に示す。
 (2)A硬度
 ポリウレタン樹脂のショアA硬度を、JIS K 7312(1996年)に準拠して測定した。
 (3)引張特性
 ポリウレタン樹脂の引張特性を、万能引張試験機(インテスコ社製 205N)により、JIS K 7312(1996年)に準拠して測定した。すなわち、ポリウレタン樹脂を切断し、3号ダンベル試験片を得た。そして、引張速度500mm/分の条件で、100%モジュラスおよび300%モジュラス(MPa)と、引張強度(MPa)と、伸び(破断伸び、%)とを測定した。
 (4)耐亀裂進展性
 ポリウレタン樹脂を、幅25mm×長さ10cm×厚み2mmのサイズに切り出して試験片を得た。試験片の耐亀裂進展性を、デマチャ式屈曲試験機(FT-1500シリーズ、上島製作所製)を用いて、以下の方法で評価した。
 すなわち、まず、試験片の長さ方向中心位置の端部に、面方向に対して垂直にカッターナイフで1mmの初期亀裂を入れた。そして、初期亀裂を入れた箇所が、上下の掴み治具の間の中心となるように、試験片の上部をデマチャ式屈曲試験機の掴み治具に固定した。また、試験片の下部を、往復運動可能な掴み治具で把持した。また、掴み治具で固定された上部と、掴み治具で把持された下部との距離(すなわち、把持されていない試験片の長さ)を、約75mmに調整した。
 その後、温度20℃および周波数5Hzで、試験片を往復屈曲運動させた。なお、最大屈曲時において、掴み治具で固定された試験片の上部と、掴み治具で把持された試験片の下部との距離を、約17mmとした。そして、初期亀裂から進展した長さ(亀裂長さ)を、屈曲回数で割った値を算出した。これにより、耐亀裂進展性を評価した。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示にすぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記特許請求の範囲に含まれるものである。
 本発明のプレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法は、優れた耐亀裂進展性および機械物性を有するポリウレタン樹脂が要求される各種産業分野において、好適に用いられる。
 

Claims (5)

  1.  イソシアネート基末端プレポリマーを含有するプレポリマー組成物であって、
     前記イソシアネート基末端プレポリマーは、1,4-ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、ポリカーボネートポリオールを含むポリオール成分との反応生成物であり、
      前記1,4-ビス(イソシアナトメチル)シクロヘキサンは、60モル%以上の割合でトランス体を含有し、
     前記ポリカーボネートポリオールの80℃における粘度(V)が、4000mPa・s以下であり、
     前記プレポリマー組成物の80℃における粘度(V)が、4000mPa・s以下であり、
     前記プレポリマー組成物のイソシアネート基濃度が、8.0質量%以上13.0質量%未満である、プレポリマー組成物。
  2.  前記プレポリマー組成物が、前記イソシアネート基末端プレポリマーと、1,4-ビス(イソシアナトメチル)シクロヘキサンを含むイソシアネートモノマーとを含む、請求項1に記載のプレポリマー組成物。
  3.  請求項1に記載のプレポリマー組成物と、鎖伸長剤との反応生成物を含む、ポリウレタン樹脂。
  4.  請求項3に記載のポリウレタン樹脂を含む、弾性成形品。
  5.  前記1,4-ビス(イソシアナトメチル)シクロヘキサンを含むポリイソシアネート成分と、ポリカーボネートポリオールを含むポリオール成分とを準備する準備工程と、
     前記ポリイソシアネート成分と前記ポリオール成分とを、前記ポリオール成分中の水酸基に対するポリイソシアネート成分中のイソシアネート基の当量比(NCO/OH)が1.0を超過する割合で反応させ、イソシアネート基末端プレポリマーを含む反応生成液を調製するプレポリマー調製工程とを備え、
      前記1,4-ビス(イソシアナトメチル)シクロヘキサンは、60モル%以上の割合でトランス体を含有し、
     前記ポリカーボネートポリオールの80℃における粘度(V)が、4000mPa・s以下であり、
     前記プレポリマー組成物の80℃における粘度(V)が、4000mPa・s以下であり、
     前記ポリカーボネートポリオールの80℃における前記粘度(V)に対する、前記プレポリマー組成物の80℃における前記粘度(V)の増加比率(V/V)が、2.0以下であり、
     前記プレポリマー組成物のイソシアネート基濃度が、8.0質量%以上13.0質量%未満である、プレポリマー組成物の製造方法。
     
PCT/JP2023/001096 2022-01-18 2023-01-17 プレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法 WO2023140229A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022005728 2022-01-18
JP2022-005728 2022-01-18

Publications (1)

Publication Number Publication Date
WO2023140229A1 true WO2023140229A1 (ja) 2023-07-27

Family

ID=87348826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001096 WO2023140229A1 (ja) 2022-01-18 2023-01-17 プレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法

Country Status (1)

Country Link
WO (1) WO2023140229A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148886A (ja) * 2010-01-21 2011-08-04 Ube Industries Ltd ポリカ−ボネートジオール及びポリカーボネートジオール共重合体
WO2015046369A1 (ja) * 2013-09-26 2015-04-02 三井化学株式会社 1,4-ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物、ポリウレタン樹脂、成形品、アイウェア材料、アイウェアフレームおよびレンズ
JP2016519696A (ja) * 2013-03-14 2016-07-07 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. ポリウレタンおよびそれから調製される物品およびコーティング、ならびにそれらを作製する方法。
WO2017038910A1 (ja) * 2015-09-01 2017-03-09 三井化学株式会社 緩衝材、塗装用自動運動装置用緩衝材、緩衝材付自動運動装置および緩衝材付塗装用自動運動装置
WO2018207807A1 (ja) * 2017-05-11 2018-11-15 三井化学株式会社 ポリウレタン樹脂、ポリウレタン樹脂の製造方法、および、成形品
JP2019001868A (ja) * 2017-06-13 2019-01-10 トヨタ自動車株式会社 自動車内装用部品
WO2019069802A1 (ja) * 2017-10-05 2019-04-11 三井化学株式会社 ポリウレタン樹脂、成形品、および、ポリウレタン樹脂の製造方法
JP2019123871A (ja) * 2018-01-17 2019-07-25 宇部興産株式会社 高分岐ポリカーボネートポリオール組成物
JP2019137755A (ja) * 2018-02-08 2019-08-22 第一工業製薬株式会社 ポリウレタン樹脂、ポリウレタン樹脂組成物、及び光学フィルム
JP2019137756A (ja) * 2018-02-08 2019-08-22 第一工業製薬株式会社 ポリウレタン樹脂、ポリウレタン樹脂組成物、及び光学フィルム
WO2019230541A1 (ja) * 2018-05-30 2019-12-05 三井化学株式会社 熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、熱可塑性ポリウレタン樹脂の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148886A (ja) * 2010-01-21 2011-08-04 Ube Industries Ltd ポリカ−ボネートジオール及びポリカーボネートジオール共重合体
JP2016519696A (ja) * 2013-03-14 2016-07-07 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッドPPG Industries Ohio,Inc. ポリウレタンおよびそれから調製される物品およびコーティング、ならびにそれらを作製する方法。
WO2015046369A1 (ja) * 2013-09-26 2015-04-02 三井化学株式会社 1,4-ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物、ポリウレタン樹脂、成形品、アイウェア材料、アイウェアフレームおよびレンズ
WO2017038910A1 (ja) * 2015-09-01 2017-03-09 三井化学株式会社 緩衝材、塗装用自動運動装置用緩衝材、緩衝材付自動運動装置および緩衝材付塗装用自動運動装置
WO2018207807A1 (ja) * 2017-05-11 2018-11-15 三井化学株式会社 ポリウレタン樹脂、ポリウレタン樹脂の製造方法、および、成形品
JP2019001868A (ja) * 2017-06-13 2019-01-10 トヨタ自動車株式会社 自動車内装用部品
WO2019069802A1 (ja) * 2017-10-05 2019-04-11 三井化学株式会社 ポリウレタン樹脂、成形品、および、ポリウレタン樹脂の製造方法
JP2019123871A (ja) * 2018-01-17 2019-07-25 宇部興産株式会社 高分岐ポリカーボネートポリオール組成物
JP2019137755A (ja) * 2018-02-08 2019-08-22 第一工業製薬株式会社 ポリウレタン樹脂、ポリウレタン樹脂組成物、及び光学フィルム
JP2019137756A (ja) * 2018-02-08 2019-08-22 第一工業製薬株式会社 ポリウレタン樹脂、ポリウレタン樹脂組成物、及び光学フィルム
WO2019230541A1 (ja) * 2018-05-30 2019-12-05 三井化学株式会社 熱可塑性ポリウレタン樹脂、光学用ポリウレタン樹脂、ディスプレイパネル用カバー板、アイウェア材料、アイウェアレンズ、アイウェアフレーム、自動車内外装材用部品、および、熱可塑性ポリウレタン樹脂の製造方法

Similar Documents

Publication Publication Date Title
TWI610958B (zh) 眼鏡材料、眼鏡架及眼鏡
CN109906241B (zh) 聚氨酯树脂的制造方法、聚氨酯树脂及成型品
JP7184760B2 (ja) ポリウレタンエラストマー、ポリウレタンエラストマーの製造方法、および、成形品
CN105308109B (zh) 包含甲硅烷基化的聚合物的组合物
CN111065666A (zh) 聚氨酯树脂、成型品、及聚氨酯树脂的制造方法
JP2020512430A (ja) 低いブルーミング効果、及び良好な低温フレキシビリティーを示すポリウレタンを、ウレタン含有ポリマー性ヒドロキシル化合物に基づいて製造する方法。
CA3149330A1 (en) Thermoplastic polyurethane and process for making a thermoplastic polyurethane and components thereof
WO2023140229A1 (ja) プレポリマー組成物、ポリウレタン樹脂、弾性成形品、および、プレポリマー組成物の製造方法
JP2023046114A (ja) ポリウレタン樹脂、弾性成形品、ポリウレタン樹脂の製造方法、および、プレポリマー組成物
CN118234769A (zh) 预聚物组合物、聚氨酯树脂、弹性成型品及预聚物组合物的制造方法
JP7296249B2 (ja) 熱可塑性ポリウレタン樹脂
WO2023153398A1 (ja) プレポリマー組成物、ポリウレタン樹脂、弾性成形品およびプレポリマー組成物の製造方法
JP7057858B1 (ja) ポリウレタン樹脂の製造方法、および、ポリウレタン樹脂
JP2023046115A (ja) ポリウレタン樹脂の製造方法
JP2024073073A (ja) ポリウレタンエラストマーの製造方法、ポリウレタンエラストマーおよび弾性成形品
JP2023115948A (ja) ポリウレタン樹脂原料キット、ポリウレタン樹脂、弾性成形体およびポリウレタン樹脂の製造方法
JP2024073074A (ja) ポリウレタンエラストマーの製造方法、ポリウレタンエラストマーおよび弾性成形品
JP7184615B2 (ja) ポリウレタン
WO2023153397A1 (ja) プレポリマー組成物、ポリウレタン樹脂、弾性成形品およびプレポリマー組成物の製造方法
JP2023070576A (ja) ポリウレタンエラストマー
TW202405045A (zh) 聚胺基甲酸酯樹脂、彈性成形品及聚胺基甲酸酯樹脂之製造方法
JP2022133751A (ja) ポリウレタンエラストマー
KR20220043127A (ko) 폴리실록산 카프로락톤 폴리올을 함유하는 열가소성 폴리우레탄
WO2022264785A1 (ja) ポリウレタンエラストマー
CN114222792A (zh) 含热塑性多异氰酸酯加成聚合产物的制剂、其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743223

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023575243

Country of ref document: JP

Kind code of ref document: A