WO2023140225A1 - Battery and patch - Google Patents

Battery and patch Download PDF

Info

Publication number
WO2023140225A1
WO2023140225A1 PCT/JP2023/001073 JP2023001073W WO2023140225A1 WO 2023140225 A1 WO2023140225 A1 WO 2023140225A1 JP 2023001073 W JP2023001073 W JP 2023001073W WO 2023140225 A1 WO2023140225 A1 WO 2023140225A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
negative electrode
positive electrode
separator
film
Prior art date
Application number
PCT/JP2023/001073
Other languages
French (fr)
Japanese (ja)
Inventor
古谷隆博
仲泰嘉
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023140225A1 publication Critical patent/WO2023140225A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to a battery with excellent high-temperature storage characteristics and a patch equipped with the battery.
  • Batteries that use an aqueous electrolyte are generally button-shaped with a metal can for the exterior body, or cylindrical with a cylindrical exterior can.
  • a separator made of non-woven fabric or paper is used, and there is also a proposal to use a sheet-like material containing polyvinyl alcohol having a crosslinked structure as a separator (Patent Document 1).
  • the batteries as described above have also been made into sheet-like batteries using an exterior body made of a resin film (Patent Documents 2, 3, etc.).
  • Patent Document 2 uses an electrolyte with a low pH so as to reduce the environmental impact as much as possible even if the user disposes of the replaced battery in order to better meet such needs.
  • Patent Document 3 in view of the fact that there is room for improvement in the load characteristics of the battery in the technology described in Patent Document 2, the load characteristics of the battery are improved by using a porous membrane made of resin and having thickness, air permeability, and contact angle with water within specific ranges as the separator.
  • batteries with aqueous electrolytes may be exposed to relatively high temperatures when stored in the summer, etc., and there is a demand for excellent high-temperature storage characteristics so that, for example, the decrease in capacity can be suppressed as much as possible even under such circumstances.
  • the present application has been made in view of the above circumstances, and provides a battery with excellent high-temperature storage characteristics and a patch including the battery.
  • the battery of the present application comprises a battery element including a positive electrode, a negative electrode, an aqueous electrolyte, and a separator.
  • the negative electrode contains a metal material as an active material
  • the separator is characterized by being a film made of a resin containing a structural unit (A) represented by the following formula (1) at a rate of 70 mol% or more in the total amount of repeating units.
  • the patch of the present application includes a power source, is attachable to the body, and is characterized by comprising the battery of the present application as the power source.
  • FIG. 1 is a plan view schematically showing an example of an embodiment of the battery of the present application.
  • FIG. 2 is a sectional view taken along line II of FIG.
  • the battery of the present embodiment includes a battery element including a positive electrode, a negative electrode using a metal material as an active material, an aqueous electrolytic solution, and a separator interposed between the positive electrode and the negative electrode, and the separator uses a film made of a resin containing a structural unit (A) represented by the following formula (1) at a rate of 70 mol% or more in the total amount of repeating units.
  • a battery element including a positive electrode, a negative electrode using a metal material as an active material, an aqueous electrolytic solution, and a separator interposed between the positive electrode and the negative electrode, and the separator uses a film made of a resin containing a structural unit (A) represented by the following formula (1) at a rate of 70 mol% or more in the total amount of repeating units.
  • A structural unit represented by the following formula (1)
  • the capacity tends to decrease when stored for a long period of time in a high temperature environment of about 60°C.
  • the decrease in capacity is considered to be caused by the metal related to the metal material, which is the negative electrode active material, eluted into the aqueous electrolyte solution during storage, passing through the separator and being deposited on the surface of the positive electrode.
  • a film composed of a resin having a specific ratio of the structural unit (A) represented by the above formula (1) to the total amount of repeating units is used as the separator.
  • the battery of the present embodiment can suppress the decrease in battery capacity during high-temperature storage, it is speculated that metal ions eluted from the negative electrode in the aqueous electrolytic solution are trapped by the hydroxyl groups in the structural unit (A) of the separator, thereby suppressing deposition of the metal on the surface of the positive electrode.
  • the film used for the separator of the battery of this embodiment is composed of a resin having the structural unit (A) represented by the formula (1) in its main chain. That is, the resin has hydroxyl groups directly bonded to the carbon atoms forming the main chain.
  • resins constituting the film examples include polyvinyl alcohol homopolymer, ethylene-vinyl alcohol copolymer, vinyl acetate-vinyl alcohol copolymer, and vinylon.
  • the proportion of the structural unit (A) in the total amount of repeating units constituting the main chain is 70 mol% or more, preferably 90 mol% or more, and particularly preferably 100 mol% (that is, the resin is a homopolymer of polyvinyl alcohol), from the viewpoint of suppressing a decrease in battery capacity during high-temperature storage.
  • the repeating unit forming the main chain includes a structural unit represented by the following formula (2).
  • the proportion of the structural unit (A) in the total amount of repeating units in the resin constituting the film is the value determined by the method for measuring the degree of saponification described in Japanese Industrial Standards (JIS) K 6726 (1994) (as described later, the values described in the examples are values determined by this method).
  • JIS Japanese Industrial Standards
  • K 6726 (1994) the values described in the examples are values determined by this method.
  • resins (including vinyl acetate copolymers) other than resins obtained by saponifying polyvinyl acetate it can be determined by nuclear magnetic resonance (NMR) measurement.
  • NMR nuclear magnetic resonance
  • the resin composition [ratio of the structural unit (A) in the total amount of repeating units] is usually provided by the manufacturer of the resin, and can be confirmed by such a nominal value.
  • the film which serves as a separator, has substantially no pores from the viewpoint of better suppressing the decrease in capacity of the battery during high-temperature storage.
  • the air permeability of the separator is preferably 3000 sec/100 mL or more, more preferably 6000 sec/100 mL or more.
  • the air permeability of a film used as a general separator is usually 600 sec/100 mL or less.
  • the air permeability of the separator referred to in this specification is a value determined by the Gurley method specified in JIS P 8117.
  • the thickness of the separator is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of enabling the positive electrode and the negative electrode to be separated well, and is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, from the viewpoint of suppressing a decrease in the volume capacity density of the battery due to the thick separator.
  • a commercially available product can be used for the resin that constitutes the film that serves as the separator.
  • the commercially available resins are available in powder form and film form, but the powder form can be used as a separator by molding into a film, and the film form can be used as a separator as it is.
  • the battery of the present embodiment only needs to have the above-mentioned separator, a negative electrode using a metal material as an active material, and an aqueous electrolyte solution, and there are no particular restrictions on other configurations. That is, the battery of the present embodiment can take the form of various batteries having an aqueous electrolyte, such as alkaline batteries (alkaline primary batteries, alkaline secondary batteries); manganese batteries; air batteries;
  • the alkaline batteries include nickel-zinc batteries using nickel oxyhydroxide as a positive electrode active material and a zinc-based material (a zinc material and a zinc alloy material are collectively referred to as such) as a negative electrode active material; silver-zinc batteries using silver oxide as a positive electrode active material and a zinc-based material as a negative electrode active material; and the like.
  • the electrolyte solution, the negative electrode, the positive electrode, and the form of the battery of the present embodiment will be described in detail below.
  • the electrolyte of the battery of this embodiment is an aqueous solution in which an electrolyte salt is dissolved in water as a solvent.
  • the aqueous solution used as the electrolytic solution preferably has a pH as close to neutral as possible from the viewpoint of reducing the environmental load at the time of disposal and ensuring safety when the electrolytic solution leaks due to damage to the outer package, etc.
  • the pH is preferably 3 or more, more preferably 5 or more, and preferably 10 or less, and more preferably less than 7 from the viewpoint of suppressing corrosion of the negative electrode active material.
  • the electrolyte salt of the aqueous solution used as the electrolyte includes chlorides such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, ammonium chloride and zinc chloride; hydroxides of alkali metals and alkaline earth metals (lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, etc.), acetates (sodium acetate, potassium acetate, magnesium acetate, etc.), nitrates (sodium nitrate, potassium nitrate, magnesium nitrate, etc.), sulfates (sodium sulfate, potassium sulfate, magnesium sulfate, etc.), phosphates (sodium phosphate, potassium phosphate, magnesium phosphate, etc.), Borate (sodium borate, potassium borate, magnesium borate, etc.), citrate (sodium citrate, potassium citrate, magnesium citrate, etc.), glutamate (sodium glutamate,
  • the electrolyte salt is preferably a salt of a strong acid selected from hydrochloric acid, sulfuric acid and nitric acid and a weak base typified by hydroxides of metal elements such as ammonia, aluminum hydroxide and magnesium hydroxide, and more preferably an ammonium salt or a salt of a specific metal element. Specifically, it is more preferably a salt of at least one ion selected from Cl ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ and NO 3 ⁇ and at least one ion selected from Al ion, Mg ion, Fe ion and ammonium ion . OH)], magnesium salts such as magnesium nitrate;
  • a metal material such as a metal or an alloy is used as an active material for the negative electrode of the battery of the present embodiment, and the electrolytic solution composed of an aqueous solution containing a salt of a strong acid and a weak base as exemplified above has a relatively weak effect of corroding the metal material, which is the negative electrode active material, compared to an electrolytic solution containing a salt of a strong acid and a strong base such as sodium chloride.
  • an electrolytic solution containing a salt of a metal element selected from Al, Mg and Fe or an ammonium salt has a relatively high electrical conductivity compared to, for example, an aqueous solution of zinc chloride.
  • an electrolytic solution comprising an aqueous solution containing a salt of at least one ion selected from Cl ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ and NO 3 ⁇ and at least one ion selected from Al ions, Mg ions, Fe ions and ammonium ions is used as a salt of a strong acid and a weak base, the discharge characteristics of the battery can be further enhanced.
  • the salt of Cl ⁇ ion and Fe 3+ ion [iron chloride (III)] has a stronger corrosive effect on the metal material that is the negative electrode active material than the salt of the combination of other ions. Therefore, it is preferable to use a salt other than iron chloride (III), and it is more preferable to use an ammonium salt because the effect of corroding the metal material that is the negative electrode active material is weaker.
  • perchlorate poses a danger such as combustion due to heating, etc. Therefore, from the viewpoint of environmental load and safety at the time of disposal, it is preferable not to include it in the aqueous solution, or even if it does, the amount of perchlorate ion is small (preferably less than 100 ppm, more preferably less than 10 ppm).
  • the aqueous solution is not contained, or even if it is contained, the amount of heavy metal ions other than iron ions is small (preferably less than 100 ppm, more preferably less than 10 ppm).
  • the aqueous solution that can be used as the electrolyte preferably contains a water-soluble high-boiling solvent with a boiling point of 150° C. or higher as a solvent together with water.
  • a water-soluble high-boiling solvent with a boiling point of 150° C. or higher as a solvent together with water.
  • the aqueous solution contains a water-soluble high-boiling-point solvent, such fluctuations in voltage in the latter stage of discharge can be suppressed, and an air battery with better discharge characteristics can be obtained.
  • the upper limit of the boiling point of the water-soluble high boiling point solvent is usually 320°C.
  • the water-soluble high boiling point solvent preferably has high surface tension and dielectric constant.
  • specific examples include polyhydric alcohols such as ethylene glycol (boiling point 197°C, surface tension 48 mN/m, dielectric constant 39), propylene glycol (boiling point 188°C, surface tension 36 mN/m, dielectric constant 32), glycerin (boiling point 290°C, surface tension 63 mN/m, dielectric constant 43); , surface tension of 43 mN/m, dielectric constant of 35) and the like (preferably those having a molecular weight of 600 or less); Only one kind of these water-soluble high boiling point solvents may be used in the electrolytic solution, or two or more kinds thereof may be used in combination, but it is more preferable to use glycerin.
  • the content of the water-soluble high-boiling solvent in the total solvent of the aqueous solution is preferably 1% by mass or more, more preferably 3% by mass or more, from the viewpoint of ensuring the effects of its use.
  • the amount of the water-soluble high-boiling solvent in the aqueous solution is too large, the ionic conductivity of the aqueous solution may become too small, and the battery characteristics may deteriorate.
  • the concentration of the electrolyte salt in the aqueous solution may be, for example, a concentration that can adjust the conductivity of the aqueous solution to about 80 to 700 mS/cm, and is usually 5 to 50% by mass.
  • various known additives may be added to the aqueous solution as necessary within a range that does not impair the effects of the battery of the present embodiment.
  • zinc oxide may be added to prevent corrosion (oxidation) of the metal material used for the negative electrode.
  • the aqueous solution constituting the electrolytic solution may be gelled, and it is also preferable to use a gelled electrolytic solution (gelled electrolyte) obtained by blending the aqueous solution containing an electrolyte salt and having a pH of 3 or more and 10 or less and a thickener (sodium polyacrylate, carboxymethylcellulose, etc.) as the electrolytic solution of the battery.
  • a gelled electrolytic solution obtained by blending the aqueous solution containing an electrolyte salt and having a pH of 3 or more and 10 or less and a thickener (sodium polyacrylate, carboxymethylcellulose, etc.) as the electrolytic solution of the battery.
  • the discharge characteristics of the battery can be further improved by suppressing the voltage fluctuation in the latter half of the discharge, and the volatilization of water from the gelled electrolyte is suppressed. Therefore, especially in an air battery in which air holes are formed in the exterior body, the deterioration of the discharge characteristics due to the compositional fluctu
  • the negative electrode of the battery of the present embodiment contains a metal material such as a zinc-based material (zinc or zinc alloy), a magnesium-based material (magnesium or magnesium alloy), or an aluminum-based material (aluminum or aluminum alloy) as an active material.
  • a metal material such as a zinc-based material (zinc or zinc alloy), a magnesium-based material (magnesium or magnesium alloy), or an aluminum-based material (aluminum or aluminum alloy) as an active material.
  • the metal material used for the negative electrode has a low content of mercury, cadmium, lead, and chromium. Specifically, the content is more preferably 0.1% or less mercury, 0.01% or less cadmium, 0.1% or less lead, and 0.1% or less chromium, based on mass.
  • a metal sheet such as a sheet (zinc foil, zinc alloy foil, magnesium foil, magnesium alloy foil, aluminum foil, aluminum alloy foil, etc.) composed of the above materials is preferably used.
  • a negative electrode preferably has a thickness of 5 to 1000 ⁇ m.
  • the alloy components of zinc alloys include, for example, indium, bismuth, and aluminum, and alloys containing one or more of the above elements are used.
  • the content of indium in the zinc alloy is, for example, 0.005% or more and 0.1% or less on a mass basis.
  • the content of bismuth is, for example, 0.002% or more and 0.2% or less on a mass basis.
  • the aluminum content is, for example, 0.0001% or more and 0.15% or less on a mass basis.
  • zinc foil zinc alloy foil
  • electrolytic zinc foil is less likely to generate gas due to reaction with the electrolytic solution in the battery
  • electrolytic zinc foil is preferably used, and electrolytic zinc foil containing bismuth is particularly preferably used.
  • a preferable content range of bismuth in the electrolytic zinc foil is 0.02% or more and 0.1% or less on a mass basis.
  • alloy components of magnesium alloys include, for example, calcium, manganese, zinc, and aluminum, and alloys containing one or more of the above elements are used.
  • the content of calcium in the magnesium alloy is, for example, 1% or more and 3% or less on a mass basis.
  • the manganese content is, for example, 0.1% or more and 0.5% or less on a mass basis.
  • the content of zinc is, for example, 0.4% or more and 1% or less on a mass basis.
  • the aluminum content is, for example, 8% or more and 10% or less on a mass basis.
  • alloy components of aluminum alloys include, for example, zinc, tin, gallium, silicon, iron, magnesium, and manganese, and alloys containing one or more of the above elements are used.
  • the content of zinc in the aluminum alloy is, for example, 0.5% or more and 10% or less on a mass basis.
  • the content of tin is, for example, 0.04% or more and 1.0% or less on a mass basis.
  • the gallium content is, for example, 0.003% or more and 1.0% or less on a mass basis.
  • the silicon content is, for example, 0.05% or less on a mass basis.
  • the iron content is, for example, 0.1% or less on a mass basis.
  • the magnesium content is, for example, 0.1% or more and 2.0% or less on a mass basis.
  • the content of manganese is, for example, 0.01% or more and 0.5% or less on a mass basis.
  • a negative electrode containing a metal material a negative electrode containing metal particles such as particles made of the above materials can be exemplified.
  • the metal particles may be of one type alone or of two or more types.
  • the ratio of particles with a particle size of 75 ⁇ m or less in all particles is preferably 50% by mass or less, more preferably 30% by mass or less, and the ratio of particles with a particle size of 100 to 200 ⁇ m is 50% by mass or more, more preferably 90% by mass or more.
  • the ratio of particles with a particle size of 30 ⁇ m or less in all particles is preferably 50% by mass or less, more preferably 30% by mass or less, and the ratio of particles with a particle size of 50 to 200 ⁇ m is 50% by mass or more, more preferably 90% by mass or more.
  • the particle size of metal particles as used herein is the particle size (D 50 ) at a cumulative frequency of 50% based on volume, measured by dispersing these particles in a medium that does not dissolve the particles using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by Horiba Ltd.).
  • the negative electrode containing the metal particles may contain a gelling agent (polyethylene oxide, sodium polyacrylate, carboxymethyl cellulose, etc.) and a binder added as necessary, and a negative electrode agent (gelled negative electrode, etc.) formed by adding an electrolytic solution to this may be used.
  • a gelling agent polyethylene oxide, sodium polyacrylate, carboxymethyl cellulose, etc.
  • a binder added as necessary
  • the amount of the gelling agent in the negative electrode is, for example, preferably 0.5 to 1.5% by mass, and the amount of the binder is preferably 0.5 to 3% by mass.
  • the same electrolyte that is injected into the battery can be used as the electrolyte for the negative electrode containing metal particles.
  • the content of metal particles in the negative electrode is, for example, preferably 60% by mass or more, more preferably 65% by mass or more, and preferably 95% by mass or less, more preferably 90% by mass or less.
  • the negative electrode containing metal particles preferably contains an indium compound.
  • an indium compound in the negative electrode it is possible to more effectively prevent generation of hydrogen gas due to corrosion reaction between the metal particles and the electrolyte.
  • Examples of the indium compound include indium oxide and indium hydroxide.
  • the mass ratio of the indium compound used in the negative electrode is preferably 0.003 to 1 with respect to the metal particles: 100.
  • a current collector may be used for the negative electrode containing the metal material, if necessary.
  • Examples of current collectors for negative electrodes containing metal materials include metal nets, foils, expanded metals, punching metals such as nickel, copper, and stainless steel; carbon sheets and nets; and the like.
  • the thickness of the current collector of the negative electrode is preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • the resin film that constitutes the sheet-shaped exterior body can be used as the current collector of the negative electrode.
  • carbon paste can be applied to the surface of the resin film, which is expected to become the inner surface of the sheet-like exterior body, to form the current collector.
  • the thickness of the carbon paste layer is preferably 50 to 200 ⁇ m.
  • the positive electrode has, for example, a positive electrode mixture layer containing a positive electrode active material, a conductive aid, and a binder on one or both sides of a current collector. Can be used.
  • Positive electrode active materials that can be used when the battery of the present embodiment is an alkaline battery include silver oxide (silver(I) oxide, silver(II) oxide, etc.); manganese oxides such as manganese dioxide; nickel oxyhydroxide; and composite oxides of silver and cobalt, nickel or bismuth.
  • Manganese oxide such as manganese dioxide is used as the positive electrode active material when the battery of the present embodiment is a manganese battery.
  • Examples of conductive additives for the positive electrode mixture layer include carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; carbon fibers; conductive fibers such as metal fibers; carbon fluoride; metal powders such as copper and nickel;
  • binders for the positive electrode mixture layer include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC), and polyvinylpyrrolidone (PVP).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • CMC carboxymethylcellulose
  • PVP polyvinylpyrrolidone
  • the amount of the positive electrode active material is preferably 80 to 98% by mass
  • the content of the conductive aid is preferably 1.5 to 10% by mass
  • the content of the binder is preferably 0.5 to 10% by mass.
  • the thickness of the positive electrode mixture layer is preferably 30 to 300 ⁇ m.
  • a positive electrode having a positive electrode mixture layer can be manufactured by, for example, dispersing a positive electrode active material, a conductive agent, a binder, and the like in water or an organic solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode mixture-containing composition (slurry, paste, etc.) (the binder may be dissolved in a solvent), applying this on a current collector, drying it, and subjecting it to press treatment such as calendering as necessary.
  • NMP N-methyl-2-pyrrolidone
  • an air electrode including a catalyst layer for example, an air electrode having a structure in which a catalyst layer and a current collector are laminated can be used as the positive electrode.
  • the catalyst layer can contain catalysts, binders, and the like.
  • catalysts for the catalyst layer include phthalocyanine-based air catalysts; silver, platinum group metals or alloys thereof; transition metals; platinum/metal oxides such as Pt/ IrO2 ; perovskite oxides such as La1 - xCaxCoO3 ; black, lamp black , thermal black , etc.), charcoal, activated carbon, etc.], and one or more of these are used.
  • the catalyst layer preferably has a heavy metal content of 1% by mass or less, excluding the components of the electrolytic solution.
  • a positive electrode having a catalyst layer with a low heavy metal content as described above a battery with a small environmental burden can be obtained even if it is discarded without special treatment.
  • the content of heavy metals in the catalyst layer referred to in this specification can be measured by fluorescent X-ray analysis.
  • fluorescent X-ray analysis For example, using "ZSX100e” manufactured by Rigaku Corporation, the measurement can be performed under the conditions of excitation source: Rh 50 kV and analysis area: ⁇ 10 mm.
  • the catalyst for the catalyst layer does not contain heavy metals, and it is more preferable to use the various types of carbon described above.
  • the specific surface area of the carbon used as the catalyst is preferably 200 m 2 /g or more, more preferably 300 m 2 /g or more, and even more preferably 500 m 2 /g or more.
  • the specific surface area of carbon referred to in this specification is a value determined by the BET method according to JIS K 6217, and can be measured, for example, using a specific surface area measuring device (“Macsorb HM model-1201” manufactured by Mounttech) using a nitrogen adsorption method.
  • the upper limit of the specific surface area of carbon is usually about 2000 m 2 /g.
  • the content of the catalyst in the catalyst layer is preferably 20-70% by mass.
  • PVDF polylidene fluoride-hexafluoropropylene copolymer
  • PVDF-CTFE vinylidene fluoride-chlorotrifluoroethylene copolymer
  • PVDF-TFE vinylidene fluoride-tetrafluoroethylene copolymer
  • PVDF-HFP-TFE vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • PVDF-HFP-TFE vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • PVDF-HFP-TFE vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • the binder content in the catalyst layer is preferably 3 to 50% by mass.
  • a positive electrode having a catalyst layer for example, it can be manufactured by mixing the catalyst, binder, etc. with water, rolling the mixture with rolls, and adhering it to the current collector. Further, a catalyst layer-forming composition (slurry, paste, etc.) prepared by dispersing the above-mentioned catalyst and a binder used as necessary in water or an organic solvent is applied to the surface of the current collector, dried, and then optionally subjected to a press treatment such as calendering.
  • a catalyst layer-forming composition slurry, paste, etc.
  • current collectors related to positive electrodes having a positive electrode mixture layer and positive electrodes having a catalyst layer for example, metal nets, foils, expanded metals, punching metals such as titanium, nickel, stainless steel, and copper; carbon nets, sheets; and the like can be used.
  • the thickness of the current collector for the positive electrode is preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • a carbon paste can be applied to the surface of the resin film constituting the sheet-shaped exterior body, which is expected to become the inner surface of the sheet-shaped exterior body, as the current collector for the positive electrode.
  • the thickness of the carbon paste layer is preferably 30 to 300 ⁇ m.
  • the shape of the battery of the present embodiment is not particularly limited, and a flat type (including a coin shape and a button shape) having a battery case in which the outer can and the sealing plate are crimped and sealed via a gasket or the outer can and the sealing plate are welded and sealed; a sheet type having a sheet-like outer body made of a resin film; a bottomed cylindrical outer can and the sealing plate are crimped and sealed via a gasket; Any shape such as a cylindrical shape [cylindrical shape, prismatic shape (rectangular cylindrical shape)] having a battery case can be used.
  • the battery of the present embodiment is used as a power supply for medical and health equipment such as a patch that can be worn on the body, especially a patch that is worn on the surface of the skin and used to measure body conditions such as body temperature, pulse, and perspiration, it is preferable to use a sheet-like battery having a sheet-like outer body made of a resin film.
  • the sheet-like exterior body is composed of a resin film, and examples of such a resin film include nylon film (nylon 66 film, etc.) and polyester film (polyethylene terephthalate (PET) film, etc.).
  • a resin film include nylon film (nylon 66 film, etc.) and polyester film (polyethylene terephthalate (PET) film, etc.).
  • the sealing of the sheet-shaped exterior body is generally performed by heat-sealing the ends of the resin film on the upper side of the sheet-shaped exterior body and the ends of the resin film on the lower side of the sheet-shaped exterior body, but for the purpose of making this heat-sealing easier, the sheet-shaped exterior body may be formed by laminating a heat-sealable resin layer on the resin film exemplified above.
  • the heat-sealable resin constituting the heat-sealable resin layer include modified polyolefins (modified polyolefin ionomers, etc.), polypropylene and copolymers thereof.
  • the thickness of the heat-sealable resin layer is preferably 20 to 200 ⁇ m.
  • a metal layer may be laminated on the resin film.
  • the metal layer can be composed of an aluminum film (including aluminum foil and aluminum alloy foil), a stainless steel film (stainless steel foil), or the like.
  • the thickness of the metal layer is preferably 10-150 ⁇ m.
  • the resin film that constitutes the sheet-like exterior body may be a film having a configuration in which the heat-sealable resin layer and the metal layer are laminated.
  • the resin film that constitutes the sheet-like exterior body has an electrically insulating water vapor barrier layer.
  • the electrically insulating resin film itself may have a single-layer structure that also serves as a water vapor barrier layer, or may have a multi-layer structure having a plurality of electrically insulating resin film layers, at least one of which serves as a water vapor barrier layer, or may have a multilayer structure having an electrically insulating water vapor barrier layer on the surface of a substrate layer made of a resin film.
  • Such resin films those in which a water vapor barrier layer composed of at least an inorganic oxide is formed on the surface of a substrate layer composed of a resin film are preferably used.
  • Inorganic oxides constituting the water vapor barrier layer include aluminum oxide and silicon oxide. Note that a water vapor barrier layer made of silicon oxide tends to have a higher function of suppressing permeation of moisture in the electrolytic solution in the battery than a water vapor barrier layer made of aluminum oxide. Therefore, it is more preferable to use silicon oxide as the inorganic oxide that constitutes the water vapor barrier layer.
  • a water vapor barrier layer composed of an inorganic oxide can be formed on the surface of the base layer by, for example, a vapor deposition method.
  • the thickness of the water vapor barrier layer is preferably 10-300 nm.
  • the substrate layer of the resin film having a water vapor barrier layer in addition to the nylon film and polyester film mentioned above, polyolefin film, polyimide film, polycarbonate film and the like can also be used.
  • the thickness of the base material layer is preferably 5 to 100 ⁇ m.
  • a protective layer for protecting the water vapor barrier layer may be formed on the surface of the water vapor barrier layer (the side opposite to the base layer).
  • the heat-sealable resin layer may be further laminated.
  • the thickness of the entire resin film is preferably 10 ⁇ m or more from the viewpoint of ensuring sufficient strength for the battery, and preferably 200 ⁇ m or less from the viewpoint of suppressing an increase in battery thickness and a decrease in energy density.
  • the water vapor transmission rate of the resin film constituting the sheet-like exterior body is 10 g/m 2 ⁇ 24 h or less. In addition, it is desirable that the resin film does not transmit water vapor as much as possible.
  • the water vapor permeability of the resin film referred to in this specification is a value measured according to the JIS K 7129B method.
  • the resin film constituting the sheet-shaped outer package has a certain degree of oxygen permeability.
  • air holes for introducing oxygen into the battery are formed in the sheet-like outer body in order to supply air (oxygen) to the positive electrode and discharge it.
  • oxygen can be introduced into the battery by permeating the outer body from places other than the air holes of the sheet-like outer body.
  • the specific oxygen permeability of the resin film constituting the sheet-like exterior body is preferably 0.02 cm 3 /m 2 24 h MPa or more, and more preferably 0.2 cm 3 /m 2 24 h MPa or more.
  • the resin film that constitutes the sheet - like exterior body allows too much oxygen to pass through , self-discharge may occur and the capacity may be impaired.
  • the battery of the present embodiment is a battery other than an air battery
  • the oxygen permeability of the resin film that constitutes the sheet-like outer package there is no particular restriction on the oxygen permeability of the resin film that constitutes the sheet-like outer package, but from the viewpoint of improving the storage stability of the battery, it is preferable that the resin film does not permeate much oxygen.
  • the oxygen permeability of the resin film referred to in this specification is a value measured according to the JIS K 7126-2 method.
  • materials used in alkaline batteries such as polypropylene and nylon can be used as the material for the gasket interposed between the outer can and the sealing plate.
  • the inner surface of the outer can with a corrosion-resistant metal such as tin, zinc, or indium in order to prevent elements such as iron that make up the outer can from eluting during charging.
  • a corrosion-resistant metal such as tin, zinc, or indium
  • FIGS. 1 and 2 schematically show an example of the battery of this embodiment.
  • FIGS. 1 and 2 show an example in which the battery of the present embodiment is an air battery (sheet-shaped air battery) having a sheet-shaped outer package, FIG. 1 shows a plan view thereof, and FIG.
  • a battery element including a positive electrode 10, a separator 30, a negative electrode 20, and an aqueous electrolyte solution (not shown) is housed in a sheet-shaped exterior body 50.
  • the dotted line in FIG. 1 represents the size of the positive electrode 10 housed in the sheet-like outer package 50 (the size of the wide body portion excluding the terminal portion, which corresponds to the size of the catalyst layer of the positive electrode).
  • a terminal portion 10a of the positive electrode 10 and a terminal portion 20a of the negative electrode 20 protrude from the upper side of the sheet-shaped exterior body 50 in the drawing. These terminal portions 10a and 20a are used as external terminals for electrically connecting the battery 1 and applicable equipment.
  • the sheet-like exterior body 50 has a plurality of air holes 51 for taking air into the positive electrode on one side on which the positive electrode 10 is arranged, and a water-repellent film 40 for preventing leakage of the electrolytic solution from the air holes 51 is disposed on the side of the sheet-like exterior body 50 of the positive electrode 10.
  • the positive electrode 10 has a catalyst layer, and as described above, has, for example, a structure in which the catalyst layer and the current collector are laminated, but in FIG.
  • FIG. 2 shows the sheet-like exterior body 50 (the resin film that constitutes it) in a single-layer structure, as described above, the resin film that constitutes the sheet-like exterior body can also have a multilayer structure.
  • the terminal portion of the positive electrode may be provided by forming the positive electrode current collector into a main body portion on which the positive electrode mixture layer and the catalyst layer are formed and an exposed portion on which the positive electrode mixture layer and the catalyst layer are not formed, or by attaching a separate lead body to the positive electrode current collector by welding or the like.
  • the terminal portion of the negative electrode can also be formed by forming the negative electrode current collector in a shape having a body portion in which a layer containing a negative electrode active material is formed and an exposed portion in which this is not formed, and by providing the exposed portion or by attaching a separate lead body to the negative electrode current collector by welding or the like.
  • the metal sheet When the negative electrode is composed of a metal sheet, the metal sheet can be cut into a shape having a main body portion and a terminal portion functioning as a negative electrode active material layer, whereby a negative electrode having a main body portion and a terminal portion can be formed from a single metal sheet.
  • the shape of the sheet-like exterior body may be polygonal (triangle, quadrangle, pentagon, hexagon, heptagon, octagon) in plan view, or may be circular or elliptical in plan view.
  • the positive electrode terminal portion and the negative electrode terminal portion may be drawn out from the same side or may be drawn out from different sides.
  • a water-repellent film is usually arranged between the positive electrode and the outer casing.
  • water-repellent films include films made of resins such as fluororesins such as PTFE; polyolefins such as polypropylene and polyethylene; and the like.
  • the thickness of the water-repellent film is preferably 50-250 ⁇ m.
  • an air diffusion film may be arranged between the exterior body and the water-repellent film for supplying the air taken in the exterior body to the positive electrode.
  • a nonwoven fabric made of a resin such as cellulose, polyvinyl alcohol, polypropylene, or nylon can be used for the air diffusion film.
  • the thickness of the air diffusion film is preferably 100-250 ⁇ m.
  • the thickness (the length of a in FIG. 2) is not particularly limited, and can be changed as appropriate according to the application of the battery.
  • One of the advantages of the sheet-like battery is that it can be made thin. From this point of view, the thickness is preferably 1 mm or less, for example.
  • the battery of this embodiment is a sheet-like air battery, it is particularly easy to provide such a thin battery.
  • the thickness of the sheet-shaped battery there is no particular limit to the lower limit of the thickness of the sheet-shaped battery, but in order to ensure a certain capacity, it is usually preferable to set the thickness to 0.2 mm or more.
  • the battery of the present embodiment has an aqueous electrolyte solution, and particularly in the case of an aqueous solution with a suitable pH of 3 or more and 10 or less, the environmental load is small, and even if the electrolyte leaks due to breakage or the like and adheres to the body, problems are unlikely to occur, and safety is excellent. Therefore, the battery of the present embodiment is suitable as a power supply for devices for medical and health use, such as a patch that can be worn on the body, particularly a patch that is worn on the surface of the skin and used to measure body conditions such as body temperature, pulse, and perspiration. It can also be applied to the same applications as conventionally known air batteries, alkaline batteries, and other batteries having an aqueous electrolyte (primary batteries).
  • the patch of this embodiment includes a power supply, is a patch that can be worn on the body, and has the battery of the previous embodiment as the power supply. Since the patch of the present embodiment uses the battery of the above embodiment as a power source, it is excellent in safety and high-temperature storage properties, and can be worn on the body, particularly, on the surface of the skin, and can be suitably used as a patch for measuring body conditions such as body temperature, pulse, and perspiration.
  • the patch of this embodiment preferably has an adhesive layer formed on one side so that it can be easily attached to the body.
  • the battery of the present application will be described in detail below based on examples. However, the following examples do not limit the batteries of the present application.
  • Example 1 Carbon having a DBP oil absorption of 495 cm 3 /100 g and a specific surface area of 1270 m 2 /g ("Ketjen Black EC600JD" manufactured by Lion Specialty Chemicals): 10 parts by mass, phthalocyanine-based air catalyst: 1.0 parts by mass, acrylic dispersant: 2.5 parts by mass, polytetrafluoroethylene: 7.5 parts by mass, and ethanol: 500 parts by mass were mixed to form a catalyst layer forming composition. made.
  • Porous carbon paper (thickness: 0.25 mm, porosity: 75%) was used as a current collector, and the composition for forming a catalyst layer was applied in stripes on the surface of the carbon paper so that the coating amount after drying was 10 mg/cm 2 , and dried to obtain a current collector having a portion with a catalyst layer formed thereon and a portion without a catalyst layer formed thereon.
  • This current collector was punched into a shape having a catalyst layer of 15 mm ⁇ 15 mm and a lead part of 5 mm ⁇ 15 mm on which no catalyst layer was formed at one end, thereby producing a positive electrode (air electrode) having an overall thickness of 0.27 mm.
  • a zinc alloy foil (thickness: 0.05 mm, electrolytic zinc foil) containing 0.05% by mass of In, 0.04% by mass of Bi, and 0.001% by mass of Al as additive elements was punched into a shape having a 15 mm ⁇ 15 mm size portion functioning as an active material and a 5 mm ⁇ 15 mm portion serving as a lead portion at one end to prepare a negative electrode.
  • An electrolytic solution was prepared by adding glycerin to an ammonium sulfate aqueous solution having a concentration of 20% by mass so that the total amount of glycerin and water contained in the aqueous solution would be 10% by mass.
  • the pH of this electrolytic solution was measured at 25° C. using a “LAQUA twin compact pH meter” manufactured by Horiba Ltd., and found to be 5.3. It should be noted that the pH obtained by the same measurement method was the same value for the electrolytic solutions of the sheet-like air batteries of all Examples and Comparative Examples described later.
  • the concentrations of heavy metal ions other than perchlorate ions and iron ions in the electrolytic solution were each less than 100 ppm. The same applies to the electrolyte solutions of the sheet-like air batteries of Example 2 and Comparative Examples 1 and 2 described later.
  • a film (a) (thickness: 30 ⁇ m, air permeability: >3000 sec/100 mL) containing a homopolymer of polyvinyl alcohol [ratio of structural unit (A) in the total amount of repeating units constituting the main chain: 100 mol%, degree of saponification: 100%] was used.
  • the film (a) contains 10% by weight of a plasticizer (glycerin) in addition to a homopolymer of polyvinyl alcohol.
  • the degree of saponification of a homopolymer of polyvinyl alcohol is a value determined by the measuring method described in JIS K 6726 (1994). The same applies to the homopolymer of polyvinyl alcohol in Example 2.
  • a PTFE sheet having a thickness of 200 ⁇ m was used for the water-repellent film.
  • ⁇ Battery assembly> Two aluminum laminate films (thickness: 65 ⁇ m) measuring 25 mm ⁇ 25 mm each having a PET film on the outer surface of the aluminum foil and a PP film as a heat-sealing resin layer on the inner surface were used as the exterior body.
  • the positive electrode, the separator, and the negative electrode were sequentially laminated on the water-repellent film of the exterior body, and another exterior body was layered so that the modified polyolefin ionomer film was positioned on the leads of the positive electrode and the negative electrode.
  • the three peripheral sides of the two exterior bodies were thermally welded to each other to form a bag, and the electrolytic solution was introduced through the opening, and the opening was thermally welded and sealed to obtain a sheet-shaped air battery.
  • Example 2 A sheet-like air battery was fabricated in the same manner as in Example 1, except that the separator was changed to the film (b), which had a thickness of 30 ⁇ m, an air permeability of >3000 sec/100 mL, was composed only of a homopolymer of polyvinyl alcohol [the proportion of the structural unit (A) in the total amount of the repeating units constituting the main chain was 100 mol%, and the degree of saponification was 100%], and did not contain a plasticizer.
  • Example 1 A sheet-like air battery was fabricated in the same manner as in Example 1, except that two graft films (thickness per sheet: 15 ⁇ m) composed of a graft copolymer having a structure in which acrylic acid was graft-copolymerized on a PE main chain were used as separators on both sides of a cellophane film (thickness: 20 ⁇ m) (total thickness: 50 ⁇ m).
  • the air permeability of the entire separator was a value (>3000 sec/100 mL) exceeding the upper limit of measurement.
  • Example 2 A sheet-like air battery was produced in the same manner as in Example 1, except that the separator was changed to a PE microporous membrane (thickness: 16 ⁇ m, air permeability: 150 sec/100 mL).
  • a resistor of 3.9 k ⁇ was connected to the sheet-shaped air batteries of Examples and Comparative Examples to discharge them, and the discharge capacity (initial capacity) until the battery voltage dropped to 1 V was measured.
  • the batteries of Examples 1 and 2 in which a film made of a resin having an appropriate proportion of the structural unit (A) in the total amount of repeating units constituting the main chain, was used as a separator, maintained a good discharge capacity even after long-term storage in a high-temperature environment.
  • the battery of Comparative Example 1 in which a laminate of a graft film and a cellophane film is used as a separator, and the battery of Comparative Example 2, in which a PE microporous film is used as a separator, showed a large decrease in discharge capacity when stored in a high-temperature environment for a long period of time compared to the batteries of Examples.

Abstract

The battery according to the present application comprises: a positive electrode; a negative electrode; an aqueous solution-based electrolyte; and a separator, wherein the negative electrode contains a metal material as an active material, and the separator is a film formed with a resin containing a structural unit (A) represented by formula (1) at 70% by mole or more in the total amount of repeating units. The patch according to the present application comprises a power source and is wearable on the body, and the power source comprises the battery according to the present application.

Description

電池およびパッチbattery and patch
 本願は、高温貯蔵特性に優れた電池と、前記電池を備えたパッチに関するものである。 This application relates to a battery with excellent high-temperature storage characteristics and a patch equipped with the battery.
 空気電池やアルカリ電池などの、水溶液系の電解液を用いた電池は、外装体に金属缶を使用したボタン型の形状のものや、筒形の外装缶を用いた筒形形状のものが一般的である。この種の電池においては、不織布製や紙製のセパレータが使用されている他、架橋構造を有するポリビニルアルコールを含むシート状物をセパレータとして使用することの提案もある(特許文献1)。 Batteries that use an aqueous electrolyte, such as air batteries and alkaline batteries, are generally button-shaped with a metal can for the exterior body, or cylindrical with a cylindrical exterior can. In this type of battery, a separator made of non-woven fabric or paper is used, and there is also a proposal to use a sheet-like material containing polyvinyl alcohol having a crosslinked structure as a separator (Patent Document 1).
 また、前記のような電池を、樹脂製フィルムで構成された外装体を用いたシート状電池とすることも行われている(特許文献2、3など)。 In addition, the batteries as described above have also been made into sheet-like batteries using an exterior body made of a resin film (Patent Documents 2, 3, etc.).
 このような電池では、その形態などの特徴を生かして、体温パッチなどのような身体用の各種センサの電源用途への利用が検討されているが、特許文献2においては、こうしたニーズにより良好に対応させるべく、ユーザーが交換後の電池を廃棄しても環境への影響を可及的に低減できるように、pHが低い電解液を使用している。 Such batteries are being considered for use as power sources for various body sensors, such as body temperature patches, by taking advantage of their morphology and other features. Patent Document 2 uses an electrolyte with a low pH so as to reduce the environmental impact as much as possible even if the user disposes of the replaced battery in order to better meet such needs.
 なお、前記のような低pHの電解液を適用すると電池の放電容量が低下しやすいが、特許文献2に記載の電池では、樹脂製の微多孔膜や不織布、またはセロファンフィルムなどの半透膜からなり、透気度が特定値以上に制限されたセパレータを適用することで、こうした問題を回避している。 Although the discharge capacity of the battery tends to decrease when the low pH electrolyte solution as described above is applied, in the battery described in Patent Document 2, such a problem is avoided by using a separator made of a semipermeable membrane such as a resin microporous membrane or non-woven fabric, or a cellophane film, and having an air permeability limited to a specific value or more.
 また、特許文献3では、特許文献2に記載の技術において、電池の負荷特性の面で改善の余地があることに鑑み、樹脂製であり、かつ厚み、透気度および水との接触角が、それぞれ特定範囲にある多孔質膜をセパレータに使用することで、電池の負荷特性の向上などを図っている。 In addition, in Patent Document 3, in view of the fact that there is room for improvement in the load characteristics of the battery in the technology described in Patent Document 2, the load characteristics of the battery are improved by using a porous membrane made of resin and having thickness, air permeability, and contact angle with water within specific ranges as the separator.
特開平6-260162号公報JP-A-6-260162 国際公開第2018/056307号WO2018/056307 国際公開第2020/213741号WO2020/213741
 ところで、水溶液系の電解液を有する電池においては、夏季に貯蔵する場合などに比較的高温に晒されることもあり、このような状況下でも、例えば容量の低下を可及的に抑制できるように、優れた高温貯蔵特性を有することの要請がある。 By the way, batteries with aqueous electrolytes may be exposed to relatively high temperatures when stored in the summer, etc., and there is a demand for excellent high-temperature storage characteristics so that, for example, the decrease in capacity can be suppressed as much as possible even under such circumstances.
 本願は、前記事情に鑑みてなされたものであり、高温貯蔵特性に優れた電池と、前記電池を備えたパッチとを提供するものである。 The present application has been made in view of the above circumstances, and provides a battery with excellent high-temperature storage characteristics and a patch including the battery.
 本願の電池は、正極と、負極と、水溶液系の電解液と、セパレータとを含む電池要素を備え、前記負極は、金属材料を活物質として含有し、前記セパレータは、下記式(1)で表される構造単位(A)を、繰り返し単位全量中に70モル%以上の割合で含む樹脂で構成されたフィルムであることを特徴とするものである。 The battery of the present application comprises a battery element including a positive electrode, a negative electrode, an aqueous electrolyte, and a separator. The negative electrode contains a metal material as an active material, and the separator is characterized by being a film made of a resin containing a structural unit (A) represented by the following formula (1) at a rate of 70 mol% or more in the total amount of repeating units.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、本願のパッチは、電源を含み、身体に装着可能なパッチであって、前記電源として、前記本願の電池を備えたことを特徴とするものである。 Further, the patch of the present application includes a power source, is attachable to the body, and is characterized by comprising the battery of the present application as the power source.
 本願によれば、高温貯蔵特性に優れた電池と、前記電池を備えたパッチとを提供することができる。 According to the present application, it is possible to provide a battery with excellent high-temperature storage characteristics and a patch equipped with the battery.
図1は、本願の電池の実施形態の一例を模式的に表す平面図である。FIG. 1 is a plan view schematically showing an example of an embodiment of the battery of the present application. 図2は、図1のI-I線断面図である。FIG. 2 is a sectional view taken along line II of FIG.
 (本願の電池の実施形態)
 本実施形態の電池は、正極と、金属材料を活物質とする負極と、水溶液系の電解液と、正極と負極との間に介在するセパレータとを含む電池要素を備え、このセパレータに、下記式(1)で表される構造単位(A)を、繰り返し単位全量中に70モル%以上の割合で含む樹脂で構成されたフィルムを使用する。
(Embodiment of battery of the present application)
The battery of the present embodiment includes a battery element including a positive electrode, a negative electrode using a metal material as an active material, an aqueous electrolytic solution, and a separator interposed between the positive electrode and the negative electrode, and the separator uses a film made of a resin containing a structural unit (A) represented by the following formula (1) at a rate of 70 mol% or more in the total amount of repeating units.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 金属材料を活物質とする負極を有する電池において、60℃程度の高温環境下で長期間貯蔵すると容量低下が生じやすい。貯蔵後の電池において、正極表面に負極活物質に使用している金属の析出が認められることから、前記の容量低下は、貯蔵途中に水溶液系の電解液中に溶出した負極活物質である金属材料に係る金属が、セパレータを通過して正極表面で析出することで引き起こされていると考えられる。 In a battery with a negative electrode that uses a metal material as an active material, the capacity tends to decrease when stored for a long period of time in a high temperature environment of about 60°C. In the battery after storage, since deposition of the metal used for the negative electrode active material is observed on the surface of the positive electrode, the decrease in capacity is considered to be caused by the metal related to the metal material, which is the negative electrode active material, eluted into the aqueous electrolyte solution during storage, passing through the separator and being deposited on the surface of the positive electrode.
 そこで、本実施形態の電池においては、前記式(1)で表される構造単位(A)を、繰り返し単位全量中に特定の割合で有する樹脂で構成されたフィルムを、セパレータに使用することとし、これにより、高温貯蔵時における電池の容量低下の抑制を可能とした。 Therefore, in the battery of the present embodiment, a film composed of a resin having a specific ratio of the structural unit (A) represented by the above formula (1) to the total amount of repeating units is used as the separator.
 本実施形態の電池において、高温貯蔵時における電池容量の低下抑制が可能となる理由は定かではないが、水溶液系の電解液中に負極から溶出した金属のイオンが、前記セパレータの構造単位(A)中の水酸基にトラップされることで、正極表面での金属の析出が抑制されるためではないかと推測される。 Although it is not clear why the battery of the present embodiment can suppress the decrease in battery capacity during high-temperature storage, it is speculated that metal ions eluted from the negative electrode in the aqueous electrolytic solution are trapped by the hydroxyl groups in the structural unit (A) of the separator, thereby suppressing deposition of the metal on the surface of the positive electrode.
 本実施形態の電池のセパレータに使用するフィルムは、前記式(1)で表される構造単位(A)を主鎖に有する樹脂で構成されたものである。すなわち、前記樹脂は、主鎖を構成する炭素原子に直接結合した水酸基を有している。 The film used for the separator of the battery of this embodiment is composed of a resin having the structural unit (A) represented by the formula (1) in its main chain. That is, the resin has hydroxyl groups directly bonded to the carbon atoms forming the main chain.
 前記フィルムを構成する樹脂としては、ポリビニルアルコールのホモポリマー、エチレン-ビニルアルコール共重合体、酢酸ビニル-ビニルアルコール共重合体、ビニロンなどが挙げられる。 Examples of resins constituting the film include polyvinyl alcohol homopolymer, ethylene-vinyl alcohol copolymer, vinyl acetate-vinyl alcohol copolymer, and vinylon.
 前記樹脂において、主鎖を構成する繰り返し単位全量中の構造単位(A)の割合は、高温貯蔵時における電池の容量低下を抑制する観点から、70モル%以上であり、90モル%以上であることが好ましく、100モル%(すなわち、前記樹脂がポリビニルアルコールのホモポリマー)であることが特に好ましい。 In the resin, the proportion of the structural unit (A) in the total amount of repeating units constituting the main chain is 70 mol% or more, preferably 90 mol% or more, and particularly preferably 100 mol% (that is, the resin is a homopolymer of polyvinyl alcohol), from the viewpoint of suppressing a decrease in battery capacity during high-temperature storage.
 例えば、ビニロンの場合、主鎖を形成する繰り返し単位としては、構造単位(A)の他に、下記式(2)で表される構造単位がある。 For example, in the case of vinylon, in addition to the structural unit (A), the repeating unit forming the main chain includes a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 前記フィルムを構成する樹脂における繰り返し単位全量中の構造単位(A)の割合は、ポリ酢酸ビニルをけん化して得られる樹脂の場合、日本産業規格(JIS) K 6726(1994)に記載のけん化度の測定方法で求められる値である(後述するように、実施例に記載の値は、この方法によって求めた値である)。また、ポリ酢酸ビニルをけん化して得られる樹脂以外の樹脂(酢酸ビニルの共重合体を含む)の場合には、核磁気共鳴(NMR)測定によって求めることができる。なお、通常は、前記樹脂のメーカーから、樹脂の組成〔繰り返し単位全量中の構造単位(A)の割合〕が提供されており、こうした公称値によって確認することもできる。 In the case of a resin obtained by saponifying polyvinyl acetate, the proportion of the structural unit (A) in the total amount of repeating units in the resin constituting the film is the value determined by the method for measuring the degree of saponification described in Japanese Industrial Standards (JIS) K 6726 (1994) (as described later, the values described in the examples are values determined by this method). In the case of resins (including vinyl acetate copolymers) other than resins obtained by saponifying polyvinyl acetate, it can be determined by nuclear magnetic resonance (NMR) measurement. The resin composition [ratio of the structural unit (A) in the total amount of repeating units] is usually provided by the manufacturer of the resin, and can be confirmed by such a nominal value.
 前記フィルムには、前記例示の樹脂のうちの1種のみを単独で使用してもよく、2種以上を併用してもよい。 For the film, only one type of the resins exemplified above may be used alone, or two or more types may be used in combination.
 セパレータとなる前記フィルムは、電池の高温貯蔵時の容量低下をより良好に抑制する観点から、実質的に空孔を有しないことが好ましい。例えば、セパレータの透気度でいえば、3000sec/100mL以上であることが好ましく、6000sec/100mL以上であることが好ましい。また、一般的なセパレータとして用いられるフィルムの透気度は、通常、600sec/100mL以下である。 It is preferable that the film, which serves as a separator, has substantially no pores from the viewpoint of better suppressing the decrease in capacity of the battery during high-temperature storage. For example, the air permeability of the separator is preferably 3000 sec/100 mL or more, more preferably 6000 sec/100 mL or more. Moreover, the air permeability of a film used as a general separator is usually 600 sec/100 mL or less.
 本明細書でいうセパレータの透気度は、JIS P 8117に規定のガーレー法によって求められる値である。 The air permeability of the separator referred to in this specification is a value determined by the Gurley method specified in JIS P 8117.
 セパレータの厚みは、正極と負極とを良好に隔離できるようにする観点から、5μm以上であることが好ましく、10μm以上であることがより好ましく、また、セパレータが厚くなることによる電池の体積容量密度の低下を抑制する観点から、200μm以下であることが好ましく、100μm以下であることがより好ましい。 The thickness of the separator is preferably 5 μm or more, more preferably 10 μm or more, from the viewpoint of enabling the positive electrode and the negative electrode to be separated well, and is preferably 200 μm or less, more preferably 100 μm or less, from the viewpoint of suppressing a decrease in the volume capacity density of the battery due to the thick separator.
 セパレータとする前記フィルムを構成する樹脂については、市販品を使用することができる。市販されている前記樹脂には、粉体状のものやフィルム状のものがあるが、粉体状のものについてはフィルム状に成形することでセパレータとして使用でき、また、フィルム状のものは、そのままセパレータとして使用することができる。 A commercially available product can be used for the resin that constitutes the film that serves as the separator. The commercially available resins are available in powder form and film form, but the powder form can be used as a separator by molding into a film, and the film form can be used as a separator as it is.
 本実施形態の電池は、前記のセパレータと、金属材料を活物質とする負極と、水溶液系の電解液とを有していればよく、その他の構成については特に制限はない。すなわち、本実施形態の電池は、例えば、アルカリ電池(アルカリ一次電池、アルカリ二次電池);マンガン電池;空気電池;などといった、水溶液系の電解液を有する各種の電池の態様をとることができる。前記のアルカリ電池には、オキシ水酸化ニッケルを正極活物質とし、亜鉛系材料(亜鉛材料と亜鉛合金材料とを纏めてこのように称する)を負極活物質とするニッケル亜鉛電池;酸化銀を正極活物質とし、亜鉛系材料を負極活物質とする銀亜鉛電池;などが含まれる。 The battery of the present embodiment only needs to have the above-mentioned separator, a negative electrode using a metal material as an active material, and an aqueous electrolyte solution, and there are no particular restrictions on other configurations. That is, the battery of the present embodiment can take the form of various batteries having an aqueous electrolyte, such as alkaline batteries (alkaline primary batteries, alkaline secondary batteries); manganese batteries; air batteries; The alkaline batteries include nickel-zinc batteries using nickel oxyhydroxide as a positive electrode active material and a zinc-based material (a zinc material and a zinc alloy material are collectively referred to as such) as a negative electrode active material; silver-zinc batteries using silver oxide as a positive electrode active material and a zinc-based material as a negative electrode active material; and the like.
 以下、本実施形態の電池の電解液、負極、正極および電池の形態について詳細に説明する。 The electrolyte solution, the negative electrode, the positive electrode, and the form of the battery of the present embodiment will be described in detail below.
 <電解液>
 本実施形態の電池の電解液は、溶媒としての水に電解質塩を溶解させた水溶液である。電解液として使用される水溶液は、廃棄時の環境負荷の低減や外装体の破損などにより電解液が漏出した際の安全性確保の点から、電解液のpHはできるだけ中性に近いことが好ましく、pHが、3以上であることが好ましく、5以上であることがより好ましく、また、10以下であることが好ましく、負極活物質の腐食抑制などの点から、7未満であることがより好ましい。
<Electrolyte>
The electrolyte of the battery of this embodiment is an aqueous solution in which an electrolyte salt is dissolved in water as a solvent. The aqueous solution used as the electrolytic solution preferably has a pH as close to neutral as possible from the viewpoint of reducing the environmental load at the time of disposal and ensuring safety when the electrolytic solution leaks due to damage to the outer package, etc. The pH is preferably 3 or more, more preferably 5 or more, and preferably 10 or less, and more preferably less than 7 from the viewpoint of suppressing corrosion of the negative electrode active material.
 電解液として使用される前記水溶液の電解質塩としては、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、塩化アンモニウムや塩化亜鉛などの塩化物;アルカリ金属やアルカリ土類金属の水酸化物(水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウムなど)、酢酸塩(酢酸ナトリウム、酢酸カリウム、酢酸マグネシウムなど)、硝酸塩(硝酸ナトリウム、硝酸カリウム、硝酸マグネシウムなど)、硫酸塩(硫酸ナトリウム、硫酸カリウム、硫酸マグネシウムなど)、リン酸塩(リン酸ナトリウム、リン酸カリウム、リン酸マグネシウムなど)、ホウ酸塩(ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸マグネシウムなど)、クエン酸塩(クエン酸ナトリウム、クエン酸カリウム、クエン酸マグネシウムなど)、グルタミン酸塩(グルタミン酸ナトリウム、グルタミン酸カリウム、グルタミン酸マグネシウムなど);アルカリ金属の炭酸水素塩(炭酸水素ナトリウム、炭酸水素カリウムなど);アルカリ金属の過炭酸塩(過炭酸ナトリウム、過炭酸カリウムなど);フッ化物などのハロゲンを含む化合物;多価カルボン酸;などが挙げられ、前記水溶液は、これらの電解質塩のうちの1種または2種以上を含有していればよい。 The electrolyte salt of the aqueous solution used as the electrolyte includes chlorides such as sodium chloride, potassium chloride, magnesium chloride, calcium chloride, ammonium chloride and zinc chloride; hydroxides of alkali metals and alkaline earth metals (lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, etc.), acetates (sodium acetate, potassium acetate, magnesium acetate, etc.), nitrates (sodium nitrate, potassium nitrate, magnesium nitrate, etc.), sulfates (sodium sulfate, potassium sulfate, magnesium sulfate, etc.), phosphates (sodium phosphate, potassium phosphate, magnesium phosphate, etc.), Borate (sodium borate, potassium borate, magnesium borate, etc.), citrate (sodium citrate, potassium citrate, magnesium citrate, etc.), glutamate (sodium glutamate, potassium glutamate, magnesium glutamate, etc.); alkali metal hydrogen carbonate (sodium hydrogen carbonate, potassium hydrogen carbonate, etc.); alkali metal percarbonate (sodium percarbonate, potassium percarbonate, etc.); halogen-containing compounds such as fluoride; It suffices if the species or two or more species are contained.
 なお、前記電解質塩としては、塩酸、硫酸および硝酸より選択される強酸と、アンモニアや、水酸化アルミニウム、水酸化マグネシウムなど金属元素の水酸化物に代表される弱塩基との塩が好ましく、アンモニウム塩または特定の金属元素の塩を使用することがより好ましい。具体的には、Cl、SO 2-、HSO およびNO より選択される少なくとも1種のイオンと、Alイオン、Mgイオン、Feイオンおよびアンモニウムイオンより選択される少なくとも1種のイオンとの塩であることがより好ましく、硫酸アンモニウム、硫酸水素アンモニウム〔(NH)HSO〕、塩化アンモニウム、硝酸アンモニウムなどのアンモニウム塩;硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウムなどのアルミニウム塩;硫酸マグネシウム、塩化マグネシウム、塩化水酸化マグネシウム〔MgCl(OH)〕、硝酸マグネシウムなどのマグネシウム塩;硫酸鉄(II)、硫酸アンモニウム鉄(II)〔(NHFe(SO〕、硫酸鉄(III)、塩化鉄(II)、硝酸鉄(II)などの鉄塩;などが例示される。 The electrolyte salt is preferably a salt of a strong acid selected from hydrochloric acid, sulfuric acid and nitric acid and a weak base typified by hydroxides of metal elements such as ammonia, aluminum hydroxide and magnesium hydroxide, and more preferably an ammonium salt or a salt of a specific metal element. Specifically, it is more preferably a salt of at least one ion selected from Cl , SO 4 2− , HSO 4 and NO 3 and at least one ion selected from Al ion, Mg ion, Fe ion and ammonium ion . OH)], magnesium salts such as magnesium nitrate;
 本実施形態の電池の負極には、金属や合金といった金属材料を活物質として使用するが、前記例示の強酸と弱塩基との塩を含有する水溶液からなる電解液は、塩化ナトリウムなどの強酸と強塩基との塩を含有する電解液などに比べて、負極活物質である金属材料を腐食させる作用が比較的弱い。また、強酸の塩のうち、Al、MgおよびFeより選択される金属元素の塩またはアンモニウム塩を含有する電解液は、例えば塩化亜鉛水溶液などに比べて比較的高い導電率を有している。よって、強酸と弱塩基との塩として、Cl、SO 2-、HSO およびNO より選択される少なくとも1種のイオンと、Alイオン、Mgイオン、Feイオンおよびアンモニウムイオンより選択される少なくとも1種のイオンとの塩を含有する水溶液からなる電解液を用いた場合には、電池の放電特性をより高めることができる。 A metal material such as a metal or an alloy is used as an active material for the negative electrode of the battery of the present embodiment, and the electrolytic solution composed of an aqueous solution containing a salt of a strong acid and a weak base as exemplified above has a relatively weak effect of corroding the metal material, which is the negative electrode active material, compared to an electrolytic solution containing a salt of a strong acid and a strong base such as sodium chloride. Further, among strong acid salts, an electrolytic solution containing a salt of a metal element selected from Al, Mg and Fe or an ammonium salt has a relatively high electrical conductivity compared to, for example, an aqueous solution of zinc chloride. Therefore, when an electrolytic solution comprising an aqueous solution containing a salt of at least one ion selected from Cl , SO 4 2− , HSO 4 and NO 3 and at least one ion selected from Al ions, Mg ions, Fe ions and ammonium ions is used as a salt of a strong acid and a weak base, the discharge characteristics of the battery can be further enhanced.
 ただし、ClイオンとFe3+イオンとの塩〔塩化鉄(III)〕については、その他のイオンの組み合わせによる塩に比べて負極活物質である金属材料を腐食させる作用が強いため、塩化鉄(III)以外の塩を用いることが好ましく、負極活物質である金属材料を腐食させる作用がより弱いことから、アンモニウム塩を用いることがより好ましい。 However, the salt of Cl ion and Fe 3+ ion [iron chloride (III)] has a stronger corrosive effect on the metal material that is the negative electrode active material than the salt of the combination of other ions. Therefore, it is preferable to use a salt other than iron chloride (III), and it is more preferable to use an ammonium salt because the effect of corroding the metal material that is the negative electrode active material is weaker.
 また、前記強酸と弱塩基との塩のうち、過塩素酸塩は、加熱などにより燃焼などの危険を生じることから、環境負荷や廃棄時の安全性の観点からは、前記水溶液に含有させないか、または含有しても過塩素酸イオンの量がわずか(100ppm未満が好ましく、10ppm未満がより好ましい)であることが好ましい。 In addition, among the salts of the strong acid and the weak base, perchlorate poses a danger such as combustion due to heating, etc. Therefore, from the viewpoint of environmental load and safety at the time of disposal, it is preferable not to include it in the aqueous solution, or even if it does, the amount of perchlorate ion is small (preferably less than 100 ppm, more preferably less than 10 ppm).
 また、前記強酸と弱塩基との塩のうち、塩化亜鉛や硫酸銅などに代表される重金属塩(鉄の塩を除く)は、有害であるものが多いため、環境負荷や廃棄時の安全性の観点からは、前記水溶液に含有させないか、または含有しても鉄イオンを除く重金属イオンの量がわずか(100ppm未満が好ましく、10ppm未満がより好ましい)であることが好ましい。 In addition, among the salts of strong acids and weak bases, many of the heavy metal salts (excluding iron salts) typified by zinc chloride and copper sulfate are harmful. Therefore, from the viewpoint of environmental load and safety at the time of disposal, it is preferable that the aqueous solution is not contained, or even if it is contained, the amount of heavy metal ions other than iron ions is small (preferably less than 100 ppm, more preferably less than 10 ppm).
 また、電池が空気電池の場合には、電解液として使用できる前記水溶液は、沸点が150℃以上の水溶性高沸点溶媒を、水と共に溶媒として含有していることが好ましい。空気電池においては、放電を行い負極の残存容量が減っていくと、それに従って電圧が低下していくが、残存容量が少なくなる放電後期では電圧の低下に加えてその変動が大きくなりやすい。しかしながら、前記水溶液が水溶性高沸点溶媒を含有している場合には、こうした放電後期の電圧の変動を抑えて、より良好な放電特性を有する空気電池とすることができる。水溶性高沸点溶媒の沸点の上限値は、通常、320℃である。 In addition, when the battery is an air battery, the aqueous solution that can be used as the electrolyte preferably contains a water-soluble high-boiling solvent with a boiling point of 150° C. or higher as a solvent together with water. In the air battery, as the remaining capacity of the negative electrode decreases as the battery is discharged, the voltage decreases accordingly. In the latter stage of discharge when the remaining capacity decreases, the voltage tends to decrease and fluctuate greatly. However, when the aqueous solution contains a water-soluble high-boiling-point solvent, such fluctuations in voltage in the latter stage of discharge can be suppressed, and an air battery with better discharge characteristics can be obtained. The upper limit of the boiling point of the water-soluble high boiling point solvent is usually 320°C.
 水溶性高沸点溶媒は、その表面張力や比誘電率が高いことが望ましく、具体例としては、エチレングリコール(沸点197℃、表面張力48mN/m、比誘電率39)、プロピレングリコール(沸点188℃、表面張力36mN/m、比誘電率32)、グリセリン(沸点290℃、表面張力63mN/m、比誘電率43)などの多価アルコール;ポリエチレングリコール(例えば、沸点230℃、表面張力43mN/m、比誘電率35)などのポリアルキレングリコール(分子量が600以下のものが好ましい);などが挙げられる。電解液には、これらの水溶性高沸点溶媒のうちの1種のみを用いてもよく、2種以上を併用してもよいが、グリセリンを使用することがより好ましい。 The water-soluble high boiling point solvent preferably has high surface tension and dielectric constant. Specific examples include polyhydric alcohols such as ethylene glycol (boiling point 197°C, surface tension 48 mN/m, dielectric constant 39), propylene glycol (boiling point 188°C, surface tension 36 mN/m, dielectric constant 32), glycerin (boiling point 290°C, surface tension 63 mN/m, dielectric constant 43); , surface tension of 43 mN/m, dielectric constant of 35) and the like (preferably those having a molecular weight of 600 or less); Only one kind of these water-soluble high boiling point solvents may be used in the electrolytic solution, or two or more kinds thereof may be used in combination, but it is more preferable to use glycerin.
 水溶性高沸点溶媒を使用する場合、その使用による効果を良好に確保する観点から、前記水溶液の全溶媒中の水溶性高沸点溶媒の含有量は、1質量%以上であることが好ましく、3質量%以上であることがより好ましい。ただし、前記水溶液中の水溶性高沸点溶媒の量が多すぎると、前記水溶液のイオン伝導性が小さくなりすぎて、電池特性が低下する虞があることから、前記水溶液の全溶媒中の水溶性高沸点溶媒の含有量は、30質量%以下であることが好ましく、20質量%以下であることがより好ましい。 When using a water-soluble high-boiling solvent, the content of the water-soluble high-boiling solvent in the total solvent of the aqueous solution is preferably 1% by mass or more, more preferably 3% by mass or more, from the viewpoint of ensuring the effects of its use. However, if the amount of the water-soluble high-boiling solvent in the aqueous solution is too large, the ionic conductivity of the aqueous solution may become too small, and the battery characteristics may deteriorate.
 前記水溶液における電解質塩の濃度は、例えば、前記水溶液の導電率を80~700mS/cm程度に調整できる濃度であればよく、通常は、5~50質量%である。 The concentration of the electrolyte salt in the aqueous solution may be, for example, a concentration that can adjust the conductivity of the aqueous solution to about 80 to 700 mS/cm, and is usually 5 to 50% by mass.
 前記水溶液には、前記の各成分の他に、本実施形態の電池の効果を損なわない範囲で、必要に応じて公知の各種添加剤を添加してもよい。例えば、負極に用いる金属材料の腐食(酸化)を防止するために、酸化亜鉛を添加するなどしてもよい。 In addition to the components described above, various known additives may be added to the aqueous solution as necessary within a range that does not impair the effects of the battery of the present embodiment. For example, zinc oxide may be added to prevent corrosion (oxidation) of the metal material used for the negative electrode.
 また、電解液を構成する水溶液はゲル化されていてもよく、電解質塩を含有するpHが3以上10以下の前記水溶液と、増粘剤(ポリアクリル酸ソーダ、カルボキシメチルセルロースなど)とを配合してなるゲル状の電解液(ゲル状電解質)を、電池の電解液に使用することも好ましい。この場合にも、放電後期の電圧の変動を抑えて電池の放電特性をより高めることができ、また、ゲル状の電解液からの水の揮発が抑制されるため、特に外装体に空気孔を形成する空気電池において、電解液の組成変動による放電特性の低下を抑制することができ、電池の貯蔵特性をより高めることも可能となる。 In addition, the aqueous solution constituting the electrolytic solution may be gelled, and it is also preferable to use a gelled electrolytic solution (gelled electrolyte) obtained by blending the aqueous solution containing an electrolyte salt and having a pH of 3 or more and 10 or less and a thickener (sodium polyacrylate, carboxymethylcellulose, etc.) as the electrolytic solution of the battery. Also in this case, the discharge characteristics of the battery can be further improved by suppressing the voltage fluctuation in the latter half of the discharge, and the volatilization of water from the gelled electrolyte is suppressed. Therefore, especially in an air battery in which air holes are formed in the exterior body, the deterioration of the discharge characteristics due to the compositional fluctuation of the electrolyte can be suppressed, and the storage characteristics of the battery can be further improved.
 <負極>
 本実施形態の電池の負極には、亜鉛系材料(亜鉛または亜鉛合金)やマグネシウム系材料(マグネシウムまたはマグネシウム合金)、アルミニウム系材料(アルミニウムまたはアルミニウム合金)などの金属材料を活物質として含有するものが使用される。
<Negative Electrode>
The negative electrode of the battery of the present embodiment contains a metal material such as a zinc-based material (zinc or zinc alloy), a magnesium-based material (magnesium or magnesium alloy), or an aluminum-based material (aluminum or aluminum alloy) as an active material.
 なお、電池の廃棄時の環境負荷の低減を考慮すると、負極に使用する金属材料は、水銀、カドミウム、鉛およびクロムの含有量が少ないことが好ましく、具体的な含有量が、質量基準で、水銀:0.1%以下、カドミウム:0.01%以下、鉛:0.1%以下、およびクロム:0.1%以下であることがより好ましい。 Considering the reduction of the environmental load at the time of disposal of the battery, it is preferable that the metal material used for the negative electrode has a low content of mercury, cadmium, lead, and chromium. Specifically, the content is more preferably 0.1% or less mercury, 0.01% or less cadmium, 0.1% or less lead, and 0.1% or less chromium, based on mass.
 金属材料を含有する負極の具体例としては、前記材料で構成されたシート(亜鉛箔、亜鉛合金箔、マグネシウム箔、マグネシウム合金箔、アルミニウム箔、アルミニウム合金箔など)などの金属シートが好ましく用いられる。このような負極の場合、その厚みは、5~1000μmであることが好ましい。 As a specific example of the negative electrode containing a metal material, a metal sheet such as a sheet (zinc foil, zinc alloy foil, magnesium foil, magnesium alloy foil, aluminum foil, aluminum alloy foil, etc.) composed of the above materials is preferably used. Such a negative electrode preferably has a thickness of 5 to 1000 μm.
 亜鉛合金の合金成分としては、例えば、インジウム、ビスマス、アルミニウムなどが挙げられ、前記元素の1種または複数種を含有する合金が用いられる。 The alloy components of zinc alloys include, for example, indium, bismuth, and aluminum, and alloys containing one or more of the above elements are used.
 亜鉛合金におけるインジウムの含有量は、例えば、質量基準で0.005%以上であり、また、0.1%以下である。ビスマスの含有量は、例えば、質量基準で0.002%以上であり、また、0.2%以下である。アルミニウムの含有量は、例えば、質量基準で0.0001%以上であり、また、0.15%以下である。 The content of indium in the zinc alloy is, for example, 0.005% or more and 0.1% or less on a mass basis. The content of bismuth is, for example, 0.002% or more and 0.2% or less on a mass basis. The aluminum content is, for example, 0.0001% or more and 0.15% or less on a mass basis.
 なお、亜鉛箔(亜鉛合金箔)としては、電解亜鉛箔と圧延亜鉛箔があるが、電解亜鉛箔の方が電池内で電解液との反応によるガスを生じ難いため、電解亜鉛箔が好ましく用いられ、特にビスマスを含有する電解亜鉛箔がより好ましく用いられる。電解亜鉛箔中でのビスマスの好適な含有量の範囲は、質量基準で0.02%以上0.1%以下である。 As zinc foil (zinc alloy foil), there are electrolytic zinc foil and rolled zinc foil, but electrolytic zinc foil is less likely to generate gas due to reaction with the electrolytic solution in the battery, so electrolytic zinc foil is preferably used, and electrolytic zinc foil containing bismuth is particularly preferably used. A preferable content range of bismuth in the electrolytic zinc foil is 0.02% or more and 0.1% or less on a mass basis.
 また、マグネシウム合金の合金成分としては、例えば、カルシウム、マンガン、亜鉛、アルミニウムなどが挙げられ、前記元素の1種または複数種を含有する合金が用いられる。 In addition, alloy components of magnesium alloys include, for example, calcium, manganese, zinc, and aluminum, and alloys containing one or more of the above elements are used.
 マグネシウム合金におけるカルシウムの含有量は、例えば、質量基準で1%以上であり、また、3%以下である。マンガンの含有量は、例えば、質量基準で0.1%以上であり、また、0.5%以下である。亜鉛の含有量は、例えば、質量基準で0.4%以上であり、また、1%以下である。アルミニウムの含有量は、例えば、質量基準で8%以上であり、また、10%以下である。 The content of calcium in the magnesium alloy is, for example, 1% or more and 3% or less on a mass basis. The manganese content is, for example, 0.1% or more and 0.5% or less on a mass basis. The content of zinc is, for example, 0.4% or more and 1% or less on a mass basis. The aluminum content is, for example, 8% or more and 10% or less on a mass basis.
 さらに、アルミニウム合金の合金成分としては、例えば、亜鉛、スズ、ガリウム、ケイ素、鉄、マグネシウム、マンガンなどが挙げられ、前記元素の1種または複数種を含有する合金が用いられる。 Furthermore, alloy components of aluminum alloys include, for example, zinc, tin, gallium, silicon, iron, magnesium, and manganese, and alloys containing one or more of the above elements are used.
 アルミニウム合金における亜鉛の含有量は、例えば、質量基準で0.5%以上であり、また、10%以下である。スズの含有量は、例えば、質量基準で0.04%以上であり、また、1.0%以下である。ガリウムの含有量は、例えば、質量基準で0.003%以上であり、また、1.0%以下である。ケイ素の含有量は、例えば、質量基準で0.05%以下である。鉄の含有量は、例えば、質量基準で0.1%以下である。マグネシウムの含有量は、例えば、質量基準で0.1%以上であり、また、2.0%以下である。マンガンの含有量は、例えば、質量基準で0.01%以上であり、また、0.5%以下である。 The content of zinc in the aluminum alloy is, for example, 0.5% or more and 10% or less on a mass basis. The content of tin is, for example, 0.04% or more and 1.0% or less on a mass basis. The gallium content is, for example, 0.003% or more and 1.0% or less on a mass basis. The silicon content is, for example, 0.05% or less on a mass basis. The iron content is, for example, 0.1% or less on a mass basis. The magnesium content is, for example, 0.1% or more and 2.0% or less on a mass basis. The content of manganese is, for example, 0.01% or more and 0.5% or less on a mass basis.
 また、金属材料を含有する負極の具体例としては、前記材料で構成された粒子などの金属粒子を含有する負極を例示することもできる。 In addition, as a specific example of the negative electrode containing a metal material, a negative electrode containing metal particles such as particles made of the above materials can be exemplified.
 金属粒子を含有する負極の場合、その金属粒子は、1種単独でもよく、2種以上であってもよい。 In the case of a negative electrode containing metal particles, the metal particles may be of one type alone or of two or more types.
 亜鉛系材料の粒子の粒度としては、例えば、全粒子中、粒径が75μm以下の粒子の割合が50質量%以下のものが好ましく、30質量%以下のものがより好ましく、また、粒径が100~200μmの粒子の割合が、50質量%以上、より好ましくは90質量%以上であるものが挙げられる。 As for the particle size of the zinc-based material, for example, the ratio of particles with a particle size of 75 μm or less in all particles is preferably 50% by mass or less, more preferably 30% by mass or less, and the ratio of particles with a particle size of 100 to 200 μm is 50% by mass or more, more preferably 90% by mass or more.
 また、マグネシウム系材料の粒子およびアルミニウム系材料の粒子の粒度としては、例えば、全粒子中、粒径が30μm以下の粒子の割合が50質量%以下のものが好ましく、30質量%以下のものがより好ましく、また、粒径が50~200μmの粒子の割合が、50質量%以上、より好ましくは90質量%以上であるものが挙げられる。 As for the particle size of the magnesium-based material particles and the aluminum-based material particles, for example, the ratio of particles with a particle size of 30 μm or less in all particles is preferably 50% by mass or less, more preferably 30% by mass or less, and the ratio of particles with a particle size of 50 to 200 μm is 50% by mass or more, more preferably 90% by mass or more.
 本明細書でいう金属粒子における粒度は、レーザー散乱粒度分布計(例えば、堀場製作所製「LA-920」)を用い、粒子を溶解しない媒体に、これらの粒子を分散させて測定した、体積基準での累積頻度50%における粒径(D50)である。 The particle size of metal particles as used herein is the particle size (D 50 ) at a cumulative frequency of 50% based on volume, measured by dispersing these particles in a medium that does not dissolve the particles using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by Horiba Ltd.).
 前記の金属粒子を含有する負極の場合には、必要に応じて添加されるゲル化剤(ポリエチレンオキシド、ポリアクリル酸ソーダ、カルボキシメチルセルロースなど)やバインダを含んでもよく、これに電解液を加えることで構成される負極剤(ゲル状負極など)を使用することができる。負極中のゲル化剤の量は、例えば、0.5~1.5質量%とすることが好ましく、バインダの量は、0.5~3質量%とすることが好ましい。 In the case of the negative electrode containing the metal particles, it may contain a gelling agent (polyethylene oxide, sodium polyacrylate, carboxymethyl cellulose, etc.) and a binder added as necessary, and a negative electrode agent (gelled negative electrode, etc.) formed by adding an electrolytic solution to this may be used. The amount of the gelling agent in the negative electrode is, for example, preferably 0.5 to 1.5% by mass, and the amount of the binder is preferably 0.5 to 3% by mass.
 金属粒子を含有する負極に係る電解液には、電池に注入するものと同じものを使用することができる。 The same electrolyte that is injected into the battery can be used as the electrolyte for the negative electrode containing metal particles.
 負極における金属粒子の含有量は、例えば、60質量%以上であることが好ましく、65質量%以上であることがより好ましく、また、95質量%以下であることが好ましく、90質量%以下であることがより好ましい。 The content of metal particles in the negative electrode is, for example, preferably 60% by mass or more, more preferably 65% by mass or more, and preferably 95% by mass or less, more preferably 90% by mass or less.
 金属粒子を含有する負極は、インジウム化合物を含有していることが好ましい。負極がインジウム化合物を含有することによって、金属粒子と電解液との腐食反応による水素ガス発生をより効果的に防ぐことができる。 The negative electrode containing metal particles preferably contains an indium compound. By including an indium compound in the negative electrode, it is possible to more effectively prevent generation of hydrogen gas due to corrosion reaction between the metal particles and the electrolyte.
 前記のインジウム化合物としては、例えば、酸化インジウム、水酸化インジウムなどが挙げられる。 Examples of the indium compound include indium oxide and indium hydroxide.
 負極に使用するインジウム化合物の量は、質量比で、金属粒子:100に対し、0.003~1であることが好ましい。 The mass ratio of the indium compound used in the negative electrode is preferably 0.003 to 1 with respect to the metal particles: 100.
 また、金属材料を含有する負極には、必要に応じて集電体を用いてもよい。金属材料を含有する負極の集電体としては、ニッケル、銅、ステンレス鋼などの金属の網、箔、エキスパンドメタル、パンチングメタル;カーボンのシート、網;などが挙げられる。負極の集電体の厚みは、10μm以上300μm以下であることが好ましい。 In addition, a current collector may be used for the negative electrode containing the metal material, if necessary. Examples of current collectors for negative electrodes containing metal materials include metal nets, foils, expanded metals, punching metals such as nickel, copper, and stainless steel; carbon sheets and nets; and the like. The thickness of the current collector of the negative electrode is preferably 10 μm or more and 300 μm or less.
 また、本実施形態の電池の外装体に樹脂製フィルムで構成されたシート状外装体(詳しくは後述する)を使用する場合、負極の集電体には、シート状外装体を構成する樹脂製フィルムを利用することもできる。この場合、例えば、樹脂製フィルムの、シート状外装体の内面となることが予定される面にカーボンペーストを塗布して集電体とすることができる。前記のカーボンペースト層の厚みは、50~200μmであることが好ましい。 In addition, when a sheet-shaped exterior body (described in detail later) made of a resin film is used as the exterior body of the battery of the present embodiment, the resin film that constitutes the sheet-shaped exterior body can be used as the current collector of the negative electrode. In this case, for example, carbon paste can be applied to the surface of the resin film, which is expected to become the inner surface of the sheet-like exterior body, to form the current collector. The thickness of the carbon paste layer is preferably 50 to 200 μm.
 <正極>
 本実施形態の電池がアルカリ電池やマンガン電池の場合、その正極には、例えば、正極活物質、導電助剤およびバインダを含有する正極合剤層を集電体の片面または両面に有する構造のものが使用できる。
<Positive electrode>
When the battery of the present embodiment is an alkaline battery or a manganese battery, the positive electrode has, for example, a positive electrode mixture layer containing a positive electrode active material, a conductive aid, and a binder on one or both sides of a current collector. Can be used.
 本実施形態の電池がアルカリ電池の場合に使用可能な正極活物質としては、酸化銀(酸化第一銀、酸化第二銀など);二酸化マンガンなどのマンガン酸化物;オキシ水酸化ニッケル;銀とコバルト、ニッケルまたはビスマスとの複合酸化物;などが挙げられる。また、本実施形態の電池がマンガン電池の場合の正極活物質には、二酸化マンガンなどのマンガン酸化物が使用される。 Positive electrode active materials that can be used when the battery of the present embodiment is an alkaline battery include silver oxide (silver(I) oxide, silver(II) oxide, etc.); manganese oxides such as manganese dioxide; nickel oxyhydroxide; and composite oxides of silver and cobalt, nickel or bismuth. Manganese oxide such as manganese dioxide is used as the positive electrode active material when the battery of the present embodiment is a manganese battery.
 正極合剤層に係る導電助剤には、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類;炭素繊維;などの炭素材料の他、金属繊維などの導電性繊維類;フッ化カーボン;銅、ニッケルなどの金属粉末類;ポリフェニレン誘導体などの有機導電性材料;などを用いることができる。 Examples of conductive additives for the positive electrode mixture layer include carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; carbon fibers; conductive fibers such as metal fibers; carbon fluoride; metal powders such as copper and nickel;
 正極合剤層に係るバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリビニルピロリドン(PVP)などが挙げられる。 Examples of binders for the positive electrode mixture layer include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), carboxymethylcellulose (CMC), and polyvinylpyrrolidone (PVP).
 正極合剤層中の組成としては、正極活物質の量が80~98質量%であることが好ましく、導電助剤の含有量が1.5~10質量%であることが好ましく、バインダの含有量が0.5~10質量%であることが好ましい。また、正極合剤層の厚み(集電体の片面あたりの厚み)は、30~300μmであることが好ましい。 As for the composition of the positive electrode mixture layer, the amount of the positive electrode active material is preferably 80 to 98% by mass, the content of the conductive aid is preferably 1.5 to 10% by mass, and the content of the binder is preferably 0.5 to 10% by mass. Moreover, the thickness of the positive electrode mixture layer (thickness per side of the current collector) is preferably 30 to 300 μm.
 正極合剤層を有する正極は、例えば、正極活物質、導電助剤およびバインダなどを水またはN-メチル-2-ピロリドン(NMP)などの有機溶媒に分散させて正極合剤含有組成物(スラリー、ペーストなど)を調製し(バインダは溶媒に溶解していてもよい)、これを集電体上に塗布し乾燥し、必要に応じてカレンダ処理などのプレス処理を施す工程を経て製造することができる。 A positive electrode having a positive electrode mixture layer can be manufactured by, for example, dispersing a positive electrode active material, a conductive agent, a binder, and the like in water or an organic solvent such as N-methyl-2-pyrrolidone (NMP) to prepare a positive electrode mixture-containing composition (slurry, paste, etc.) (the binder may be dissolved in a solvent), applying this on a current collector, drying it, and subjecting it to press treatment such as calendering as necessary.
 また、本実施形態の電池が空気電池の場合の正極には、触媒層を含む空気極、例えば、触媒層と集電体とを積層した構造を備えた空気極を使用することができる。 In addition, when the battery of the present embodiment is an air battery, an air electrode including a catalyst layer, for example, an air electrode having a structure in which a catalyst layer and a current collector are laminated can be used as the positive electrode.
 触媒層には、触媒やバインダなどを含有させることができる。 The catalyst layer can contain catalysts, binders, and the like.
 触媒層に係る触媒としては、例えば、フタロシアニン系空気触媒;銀、白金族金属またはその合金;遷移金属;Pt/IrOなどの白金/金属酸化物;La1-xCaCoOなどのペロブスカイト酸化物;WCなどの炭化物;MnNなどの窒化物;二酸化マンガンなどのマンガン酸化物;カーボン〔黒鉛、カーボンブラック(アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなど)、木炭、活性炭など〕などが挙げられ、これらのうちの1種または2種以上が使用される。 Examples of catalysts for the catalyst layer include phthalocyanine-based air catalysts; silver, platinum group metals or alloys thereof; transition metals; platinum/metal oxides such as Pt/ IrO2 ; perovskite oxides such as La1 - xCaxCoO3 ; black, lamp black , thermal black , etc.), charcoal, activated carbon, etc.], and one or more of these are used.
 なお、触媒層は、電解液の成分を除く重金属の含有量が、1質量%以下であることが好ましい。重金属の含有量が前記のように少ない触媒層を有する正極の場合、特別な処理などを経ずに廃棄しても環境負荷が小さい電池とすることができる。 The catalyst layer preferably has a heavy metal content of 1% by mass or less, excluding the components of the electrolytic solution. In the case of a positive electrode having a catalyst layer with a low heavy metal content as described above, a battery with a small environmental burden can be obtained even if it is discarded without special treatment.
 本明細書でいう触媒層中の重金属の含有量は、蛍光X線分析により測定することができる。例えば、リガク社製「ZSX100e」を用い、励起源:Rh50kV、分析面積:φ10mmの条件で測定することができる。 The content of heavy metals in the catalyst layer referred to in this specification can be measured by fluorescent X-ray analysis. For example, using "ZSX100e" manufactured by Rigaku Corporation, the measurement can be performed under the conditions of excitation source: Rh 50 kV and analysis area: φ 10 mm.
 よって、触媒層に係る触媒には、重金属を含有していないものが推奨され、前記の各種カーボンを使用することがより好ましい。 Therefore, it is recommended that the catalyst for the catalyst layer does not contain heavy metals, and it is more preferable to use the various types of carbon described above.
 また、正極の反応性をより高める観点からは、触媒として使用するカーボンの比表面積は、200m/g以上であることが好ましく、300m/g以上であることがより好ましく、500m/g以上であることがさらに好ましい。本明細書でいうカーボンの比表面積は、JIS K 6217に準じた、BET法によって求められる値であり、例えば、窒素吸着法による比表面積測定装置(Mountech社製「Macsorb HM model-1201」)を用いて測定することができる。なお、カーボンの比表面積の上限値は、通常、2000m/g程度である。 From the viewpoint of further increasing the reactivity of the positive electrode, the specific surface area of the carbon used as the catalyst is preferably 200 m 2 /g or more, more preferably 300 m 2 /g or more, and even more preferably 500 m 2 /g or more. The specific surface area of carbon referred to in this specification is a value determined by the BET method according to JIS K 6217, and can be measured, for example, using a specific surface area measuring device (“Macsorb HM model-1201” manufactured by Mounttech) using a nitrogen adsorption method. The upper limit of the specific surface area of carbon is usually about 2000 m 2 /g.
 触媒層における触媒の含有量は、20~70質量%であることが好ましい。 The content of the catalyst in the catalyst layer is preferably 20-70% by mass.
 触媒層に係るバインダとしては、PVDF、PTFE、フッ化ビニリデンの共重合体やテトラフルオロエチレンの共重合体〔フッ化ビニリデン-ヘキサフルオロプロピレン共重合体(PVDF-HFP)、フッ化ビニリデン-クロロトリフルオロエチレン共重合体(PVDF-CTFE)、フッ化ビニリデン-テトラフルオロエチレン共重合体(PVDF-TFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体(PVDF-HFP-TFE)など〕などのフッ素樹脂バインダなどが挙げられる。これらの中でも、テトラフルオロエチレンの重合体(PTFE)またはその共重合体が好ましく、PTFEがより好ましい。触媒層におけるバインダの含有量は、3~50質量%であることが好ましい。 As the binder for the catalyst layer, PVDF, PTFE, vinylidene fluoride copolymer and tetrafluoroethylene copolymer [vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), vinylidene fluoride-chlorotrifluoroethylene copolymer (PVDF-CTFE), vinylidene fluoride-tetrafluoroethylene copolymer (PVDF-TFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer (PVDF-HFP-TFE, etc.)] and the like. Among these, a polymer of tetrafluoroethylene (PTFE) or a copolymer thereof is preferable, and PTFE is more preferable. The binder content in the catalyst layer is preferably 3 to 50% by mass.
 触媒層を有する正極の場合、例えば、前記触媒、バインダなどを水と混合してロールで圧延し、集電体と密着させることにより製造することができる。また前記の触媒や必要に応じて使用するバインダなどを、水や有機溶媒に分散させて調製した触媒層形成用組成物(スラリー、ペーストなど)を、集電体の表面に塗布し乾燥した後に、必要に応じてカレンダ処理などのプレス処理を施す工程を経て製造することもできる。 In the case of a positive electrode having a catalyst layer, for example, it can be manufactured by mixing the catalyst, binder, etc. with water, rolling the mixture with rolls, and adhering it to the current collector. Further, a catalyst layer-forming composition (slurry, paste, etc.) prepared by dispersing the above-mentioned catalyst and a binder used as necessary in water or an organic solvent is applied to the surface of the current collector, dried, and then optionally subjected to a press treatment such as calendering.
 正極合剤層を有する正極や触媒層を有する正極に係る集電体には、例えば、チタン、ニッケル、ステンレス鋼、銅などの金属の網、箔、エキスパンドメタル、パンチングメタル;カーボンの網、シート;などを用いることができる。正極に係る集電体の厚みは、10μm以上300μm以下であることが好ましい。 For current collectors related to positive electrodes having a positive electrode mixture layer and positive electrodes having a catalyst layer, for example, metal nets, foils, expanded metals, punching metals such as titanium, nickel, stainless steel, and copper; carbon nets, sheets; and the like can be used. The thickness of the current collector for the positive electrode is preferably 10 μm or more and 300 μm or less.
 また、本実施形態の電池の外装体に樹脂製フィルムで構成されたシート状外装体を使用する場合、正極の集電体には、負極の集電体の場合と同様に、シート状外装体を構成する樹脂製フィルムの、シート状外装体の内面となることが予定される面にカーボンペーストを塗布して集電体とすることができる。前記のカーボンペースト層の厚みは、30~300μmであることが好ましい。 In addition, when a sheet-shaped exterior body made of a resin film is used as the exterior body of the battery of the present embodiment, as in the case of the negative electrode current collector, a carbon paste can be applied to the surface of the resin film constituting the sheet-shaped exterior body, which is expected to become the inner surface of the sheet-shaped exterior body, as the current collector for the positive electrode. The thickness of the carbon paste layer is preferably 30 to 300 μm.
 <電池の形態>
 本実施形態の電池の形態については特に制限はなく、外装缶と封口板とをガスケットを介してカシメ封口したり、外装缶と封口板とを溶接して封口したりする電池ケースを有する扁平形(コイン形、ボタン形を含む);樹脂製フィルムで構成されたシート状外装体を有するシート形;有底筒形の外装缶と封口板とをガスケットを介してカシメ封口したり、外装缶と封口板とを溶接して封口したりする電池ケースを有する筒形〔円筒形、角形(角筒形)〕;など、いずれの形態とすることもできる。
<Battery form>
The shape of the battery of the present embodiment is not particularly limited, and a flat type (including a coin shape and a button shape) having a battery case in which the outer can and the sealing plate are crimped and sealed via a gasket or the outer can and the sealing plate are welded and sealed; a sheet type having a sheet-like outer body made of a resin film; a bottomed cylindrical outer can and the sealing plate are crimped and sealed via a gasket; Any shape such as a cylindrical shape [cylindrical shape, prismatic shape (rectangular cylindrical shape)] having a battery case can be used.
 本実施形態の電池を、身体に装着可能なパッチ、特に、皮膚の表面に装着し、体温、脈拍、発汗量など身体の状況に関する測定を行うためのパッチなどの、医療・健康用途の機器の電源として使用する場合には、樹脂製フィルムで構成されたシート状外装体を有するシート状電池とすることが好ましい。 When the battery of the present embodiment is used as a power supply for medical and health equipment such as a patch that can be worn on the body, especially a patch that is worn on the surface of the skin and used to measure body conditions such as body temperature, pulse, and perspiration, it is preferable to use a sheet-like battery having a sheet-like outer body made of a resin film.
 シート状外装体は、樹脂製フィルムで構成されるが、このような樹脂製フィルムとしては、ナイロンフィルム(ナイロン66フィルムなど)、ポリエステルフィルム〔ポリエチレンテレフタレート(PET)フィルムなど〕などが挙げられる。 The sheet-like exterior body is composed of a resin film, and examples of such a resin film include nylon film (nylon 66 film, etc.) and polyester film (polyethylene terephthalate (PET) film, etc.).
 なお、シート状外装体の封止は、シート状外装体の上側の樹脂製フィルムの端部と下側の樹脂製フィルムの端部との熱融着によって行うことが一般的であるが、この熱融着をより容易にする目的で、前記例示の樹脂製フィルムに熱融着樹脂層を積層してシート状外装体に用いてもよい。熱融着樹脂層を構成する熱融着樹脂としては、変性ポリオレフィン(変性ポリオレフィンアイオノマーなど)、ポリプロピレンおよびその共重合体などが挙げられる。熱融着樹脂層の厚みは、20~200μmであることが好ましい。 The sealing of the sheet-shaped exterior body is generally performed by heat-sealing the ends of the resin film on the upper side of the sheet-shaped exterior body and the ends of the resin film on the lower side of the sheet-shaped exterior body, but for the purpose of making this heat-sealing easier, the sheet-shaped exterior body may be formed by laminating a heat-sealable resin layer on the resin film exemplified above. Examples of the heat-sealable resin constituting the heat-sealable resin layer include modified polyolefins (modified polyolefin ionomers, etc.), polypropylene and copolymers thereof. The thickness of the heat-sealable resin layer is preferably 20 to 200 μm.
 また、樹脂製フィルムには金属層を積層してもよい。金属層は、アルミニウムフィルム(アルミニウム箔、アルミニウム合金箔を含む)、ステンレス鋼フィルム(ステンレス鋼箔)などにより構成することができる。金属層の厚みは、10~150μmであることが好ましい。 Also, a metal layer may be laminated on the resin film. The metal layer can be composed of an aluminum film (including aluminum foil and aluminum alloy foil), a stainless steel film (stainless steel foil), or the like. The thickness of the metal layer is preferably 10-150 μm.
 さらに、シート状外装体を構成する樹脂製フィルムは、前記の熱融着樹脂層と前記の金属層とが積層された構成のフィルムであってもよい。 Furthermore, the resin film that constitutes the sheet-like exterior body may be a film having a configuration in which the heat-sealable resin layer and the metal layer are laminated.
 また、シート状外装体を構成する樹脂製フィルムは、電気絶縁性の水蒸気バリア層を有していることも好ましい。この場合、電気絶縁性の樹脂製フィルム自体が水蒸気バリア層の役割も担う単層構造のものや、電気絶縁性の樹脂製フィルムの層を複数有し、そのうちの少なくとも1層が水蒸気バリア層の役割を担う多層構造のものであってもよく、また、樹脂製フィルムからなる基材層の表面に電気絶縁性の水蒸気バリア層を有する多層構造のものであってもよい。 In addition, it is also preferable that the resin film that constitutes the sheet-like exterior body has an electrically insulating water vapor barrier layer. In this case, the electrically insulating resin film itself may have a single-layer structure that also serves as a water vapor barrier layer, or may have a multi-layer structure having a plurality of electrically insulating resin film layers, at least one of which serves as a water vapor barrier layer, or may have a multilayer structure having an electrically insulating water vapor barrier layer on the surface of a substrate layer made of a resin film.
 このような樹脂製フィルムの中でも、少なくとも無機酸化物で構成される水蒸気バリア層が、樹脂製フィルムからなる基材層の表面に形成されたものが、好ましく使用される。 Among such resin films, those in which a water vapor barrier layer composed of at least an inorganic oxide is formed on the surface of a substrate layer composed of a resin film are preferably used.
 水蒸気バリア層を構成する無機酸化物としては、酸化アルミニウム、酸化ケイ素などが挙げられる。なお、酸化ケイ素で構成される水蒸気バリア層は、酸化アルミニウムで構成される水蒸気バリア層に比べて、電池内の電解液中の水分の透過を抑制する機能が高い傾向にある。よって、水蒸気バリア層を構成する無機酸化物には、酸化ケイ素を採用することがより好ましい。  Inorganic oxides constituting the water vapor barrier layer include aluminum oxide and silicon oxide. Note that a water vapor barrier layer made of silicon oxide tends to have a higher function of suppressing permeation of moisture in the electrolytic solution in the battery than a water vapor barrier layer made of aluminum oxide. Therefore, it is more preferable to use silicon oxide as the inorganic oxide that constitutes the water vapor barrier layer.
 無機酸化物で構成される水蒸気バリア層は、例えば蒸着法によって基材層の表面に形成することができる。水蒸気バリア層の厚みは、10~300nmであることが好ましい。 A water vapor barrier layer composed of an inorganic oxide can be formed on the surface of the base layer by, for example, a vapor deposition method. The thickness of the water vapor barrier layer is preferably 10-300 nm.
 水蒸気バリア層を有する樹脂製フィルムの基材層には、前記のナイロンフィルムやポリエステルフィルムが挙げられる他、ポリオレフィンフィルム、ポリイミドフィルム、ポリカーボネートフィルムなども用いることができる。基材層の厚みは、5~100μmであることが好ましい。 For the substrate layer of the resin film having a water vapor barrier layer, in addition to the nylon film and polyester film mentioned above, polyolefin film, polyimide film, polycarbonate film and the like can also be used. The thickness of the base material layer is preferably 5 to 100 μm.
 水蒸気バリア層と基材層とを有する樹脂製フィルムの場合、水蒸気バリア層を保護するための保護層を、水蒸気バリア層の表面(基材層とは反対側の面)に形成してもよい。 In the case of a resin film having a water vapor barrier layer and a base layer, a protective layer for protecting the water vapor barrier layer may be formed on the surface of the water vapor barrier layer (the side opposite to the base layer).
 また、水蒸気バリア層と基材層とを有する樹脂製フィルムの場合にも、前記の熱融着樹脂層がさらに積層されていてもよい。 Also, in the case of a resin film having a water vapor barrier layer and a base material layer, the heat-sealable resin layer may be further laminated.
 樹脂製フィルム全体の厚みは、電池に十分な強度を持たせるなどの観点から、10μm以上であることが好ましく、電池の厚みの増大やエネルギー密度の低下を抑える観点から、200μm以下であることが好ましい。 The thickness of the entire resin film is preferably 10 μm or more from the viewpoint of ensuring sufficient strength for the battery, and preferably 200 μm or less from the viewpoint of suppressing an increase in battery thickness and a decrease in energy density.
 シート状外装体を構成する樹脂製フィルムの水蒸気透過度は、10g/m・24h以下であることが好ましい。なお、樹脂製フィルムは、できるだけ水蒸気を透過しないことが望ましく、すなわち、その水蒸気透過度は、できるだけ小さい値であることが好ましく、0g/m・24hであってもよい。 It is preferable that the water vapor transmission rate of the resin film constituting the sheet-like exterior body is 10 g/m 2 ·24 h or less. In addition, it is desirable that the resin film does not transmit water vapor as much as possible.
 本明細書でいう樹脂製フィルムの水蒸気透過度は、JIS K 7129B法に準じて測定される値である。 The water vapor permeability of the resin film referred to in this specification is a value measured according to the JIS K 7129B method.
 なお、本実施形態の電池が空気電池の場合には、シート状外装体を構成する樹脂製フィルムが、ある程度の酸素透過性を有していることが好ましい。空気電池は正極に空気(酸素)を供給して放電させるため、電池内に酸素を導入するための空気孔をシート状外装体に形成するが、シート状外装体を構成する樹脂製フィルムが酸素透過性を有している場合には、シート状外装体の空気孔以外の箇所からも、外装体を透過させて電池内に酸素を導入することができるため、正極の全体にわたってより均一に酸素が供給されるようになり、電池の放電特性を向上させたり、その放電時間を長時間化したりすることが可能となる。また、シート状外装体に空気孔を持たないシート状空気電池の実現も可能となる。 In addition, when the battery of the present embodiment is an air battery, it is preferable that the resin film constituting the sheet-shaped outer package has a certain degree of oxygen permeability. In the air battery, air holes for introducing oxygen into the battery are formed in the sheet-like outer body in order to supply air (oxygen) to the positive electrode and discharge it. However, if the resin film that constitutes the sheet-like outer body has oxygen permeability, oxygen can be introduced into the battery by permeating the outer body from places other than the air holes of the sheet-like outer body. In addition, it is possible to realize a sheet-like air battery having no air holes in the sheet-like exterior body.
 本実施形態の電池が空気電池の場合の、シート状外装体を構成する樹脂製フィルムの具体的な酸素透過度としては、0.02cm/m・24h・MPa以上であることが好ましく、0.2cm/m・24h・MPa以上であることがより好ましい。ただし、空気電池の場合、シート状外装体を構成する樹脂製フィルムが酸素を透過しすぎると、自己放電が生じて容量が損なわれる虞があるため、樹脂製フィルムの酸素透過度は、100cm/m・24h・MPa以下であることが好ましく、50cm/m・24h・MPa以下であることがより好ましい。 When the battery of the present embodiment is an air battery, the specific oxygen permeability of the resin film constituting the sheet-like exterior body is preferably 0.02 cm 3 /m 2 24 h MPa or more, and more preferably 0.2 cm 3 /m 2 24 h MPa or more. However, in the case of an air battery, if the resin film that constitutes the sheet - like exterior body allows too much oxygen to pass through , self-discharge may occur and the capacity may be impaired.
 他方、本実施形態の電池が空気電池以外の電池の場合には、シート状外装体を構成する樹脂製フィルムの酸素透過性については特に制限はないが、電池の貯蔵性向上の観点からは、あまり酸素を透過しないものが好ましく、具体的な樹脂製フィルムの酸素透過度は、10cm/m・24h・MPa以下であることが好ましい。 On the other hand, when the battery of the present embodiment is a battery other than an air battery, there is no particular restriction on the oxygen permeability of the resin film that constitutes the sheet-like outer package, but from the viewpoint of improving the storage stability of the battery, it is preferable that the resin film does not permeate much oxygen.
 本明細書でいう樹脂製フィルムの酸素透過度は、JIS K 7126-2法に準じて測定される値である。 The oxygen permeability of the resin film referred to in this specification is a value measured according to the JIS K 7126-2 method.
 また、カシメ封口を行う形態の外装体を使用する場合、外装缶と封口板との間に介在させるガスケットの素材には、ポリプロピレン、ナイロンなど、アルカリ電池などで使用されている材料を使用することができる。 In addition, when using an outer package that is crimped and sealed, materials used in alkaline batteries such as polypropylene and nylon can be used as the material for the gasket interposed between the outer can and the sealing plate.
 また、充電時に外装缶を構成する鉄などの元素が溶出するのを防ぐため、外装缶の内面には、スズ、亜鉛、インジウムなどの耐食性の金属をメッキしておくことが望ましい。 In addition, it is desirable to plate the inner surface of the outer can with a corrosion-resistant metal such as tin, zinc, or indium in order to prevent elements such as iron that make up the outer can from eluting during charging.
 次に、本実施形態の電池を図面に基づき説明する。図1および図2に本実施形態の電池の一例を模式的に示す。図1および図2は、本実施形態の電池が、シート状外装体を有する空気電池(シート状空気電池)の場合の例であり、図1はその平面図を示し、図2は図1のI-I線断面図を示している。 Next, the battery of this embodiment will be described based on the drawings. 1 and 2 schematically show an example of the battery of this embodiment. FIGS. 1 and 2 show an example in which the battery of the present embodiment is an air battery (sheet-shaped air battery) having a sheet-shaped outer package, FIG. 1 shows a plan view thereof, and FIG.
 図2に示すように、電池1においては、正極10、セパレータ30および負極20と、水溶液系の電解液(図示しない)とを含む電池要素が、シート状外装体50内に収容されている。なお、図1における点線は、シート状外装体50内に収容された正極10の大きさ(端子部を除く、幅の広い本体部の大きさであって、正極の触媒層の大きさに相当する)を表している。 As shown in FIG. 2, in the battery 1, a battery element including a positive electrode 10, a separator 30, a negative electrode 20, and an aqueous electrolyte solution (not shown) is housed in a sheet-shaped exterior body 50. The dotted line in FIG. 1 represents the size of the positive electrode 10 housed in the sheet-like outer package 50 (the size of the wide body portion excluding the terminal portion, which corresponds to the size of the catalyst layer of the positive electrode).
 シート状外装体50の図中上辺からは、正極10の端子部10aおよび負極20の端子部20aが突出している。これらの端子部10a、20aは、電池1と適用機器とを電気的に接続するための外部端子として使用される。 A terminal portion 10a of the positive electrode 10 and a terminal portion 20a of the negative electrode 20 protrude from the upper side of the sheet-shaped exterior body 50 in the drawing. These terminal portions 10a and 20a are used as external terminals for electrically connecting the battery 1 and applicable equipment.
 シート状外装体50は、正極10が配置された側の片面に、正極に空気を取り込むための空気孔51が複数設けられており、正極10のシート状外装体50側には、空気孔51からの電解液の漏出を防止するための撥水膜40が配置されている。 The sheet-like exterior body 50 has a plurality of air holes 51 for taking air into the positive electrode on one side on which the positive electrode 10 is arranged, and a water-repellent film 40 for preventing leakage of the electrolytic solution from the air holes 51 is disposed on the side of the sheet-like exterior body 50 of the positive electrode 10.
 正極10は、触媒層を有しており、前記の通り、例えば触媒層が集電体と積層された構造を有しているが、図2では、図面が煩雑になることを避けるために、正極10の有する各層を区別して示していない。また、図2では、シート状外装体50(それを構成する樹脂製フィルム)を単層構造で示しているが、前記の通り、シート状外装体を構成する樹脂製フィルムは、多層構造とすることもできる。 The positive electrode 10 has a catalyst layer, and as described above, has, for example, a structure in which the catalyst layer and the current collector are laminated, but in FIG. In addition, although FIG. 2 shows the sheet-like exterior body 50 (the resin film that constitutes it) in a single-layer structure, as described above, the resin film that constitutes the sheet-like exterior body can also have a multilayer structure.
 一般に、正極の端子部は、正極集電体を、正極合剤層や触媒層が形成される本体部と、正極合剤層や触媒層を形成しない露出部とを有する形状とし、この露出部によって設けてもよく、正極集電体に、別体のリード体を溶接するなどして取り付けることで設けてもよい。 In general, the terminal portion of the positive electrode may be provided by forming the positive electrode current collector into a main body portion on which the positive electrode mixture layer and the catalyst layer are formed and an exposed portion on which the positive electrode mixture layer and the catalyst layer are not formed, or by attaching a separate lead body to the positive electrode current collector by welding or the like.
 また、負極の端子部も、負極集電体を有する負極の場合には、負極集電体を、負極活物質などを含む層が形成される本体部と、これを形成しない露出部とを有する形状とし、この露出部によって設けたり、負極集電体に、別体のリード体を溶接するなどして取り付けたりすることで形成できる。 In addition, in the case of a negative electrode having a negative electrode current collector, the terminal portion of the negative electrode can also be formed by forming the negative electrode current collector in a shape having a body portion in which a layer containing a negative electrode active material is formed and an exposed portion in which this is not formed, and by providing the exposed portion or by attaching a separate lead body to the negative electrode current collector by welding or the like.
 なお、負極が金属シートで構成される場合には、前記金属シートを、負極活物質層として機能する本体部と端子部とを有する形状に切断することにより、1枚の金属シートから本体部と端子部とを有する負極を形成することもできる。 When the negative electrode is composed of a metal sheet, the metal sheet can be cut into a shape having a main body portion and a terminal portion functioning as a negative electrode active material layer, whereby a negative electrode having a main body portion and a terminal portion can be formed from a single metal sheet.
 シート状外装体の形状は、平面視で多角形(三角形、四角形、五角形、六角形、七角形、八角形)であってもよく、平面視で円形や楕円形であってもよい。なお、平面視で多角形のシート状外装体の場合、正極の端子部および負極の端子部は、同一辺から外部へ引き出してもよく、それぞれを異なる辺から外部へ引き出しても構わない。 The shape of the sheet-like exterior body may be polygonal (triangle, quadrangle, pentagon, hexagon, heptagon, octagon) in plan view, or may be circular or elliptical in plan view. In the case of a polygonal sheet-like exterior body in plan view, the positive electrode terminal portion and the negative electrode terminal portion may be drawn out from the same side or may be drawn out from different sides.
 本実施形態の電池が空気電池の場合には、図2に示すように、通常、正極と外装体との間に撥水膜を配するが、その撥水膜には、撥水性がある一方で空気を透過できる膜が使用される。このような撥水膜の具体例としては、PTFEなどのフッ素樹脂;ポリプロピレン、ポリエチレンなどのポリオレフィン;などの樹脂で構成された膜などが挙げられる。撥水膜の厚みは、50~250μmであることが好ましい。 When the battery of this embodiment is an air battery, as shown in FIG. 2, a water-repellent film is usually arranged between the positive electrode and the outer casing. Specific examples of such water-repellent films include films made of resins such as fluororesins such as PTFE; polyolefins such as polypropylene and polyethylene; and the like. The thickness of the water-repellent film is preferably 50-250 μm.
 また、本実施形態の電池が空気電池の場合には、外装体と撥水膜との間に、外装体内に取り込んだ空気を正極に供給するための空気拡散膜を配置してもよい。空気拡散膜には、セルロース、ポリビニルアルコール、ポリプロピレン、ナイロンなどの樹脂で構成された不織布を用いることができる。空気拡散膜の厚みは、100~250μmであることが好ましい。 Further, when the battery of the present embodiment is an air battery, an air diffusion film may be arranged between the exterior body and the water-repellent film for supplying the air taken in the exterior body to the positive electrode. A nonwoven fabric made of a resin such as cellulose, polyvinyl alcohol, polypropylene, or nylon can be used for the air diffusion film. The thickness of the air diffusion film is preferably 100-250 μm.
 本実施形態の電池がシート状電池である場合、その厚み(図2中aの長さ)については特に制限はなく、電池の用途に応じて適宜変更できる。なお、シート状電池は薄型にできることがその利点の一つであり、かかる観点からは、その厚みは、例えば1mm以下であることが好ましい。本実施形態の電池がシート状空気電池の場合には、特にこのような薄型の電池の提供が容易となる。 When the battery of this embodiment is a sheet-like battery, the thickness (the length of a in FIG. 2) is not particularly limited, and can be changed as appropriate according to the application of the battery. One of the advantages of the sheet-like battery is that it can be made thin. From this point of view, the thickness is preferably 1 mm or less, for example. When the battery of this embodiment is a sheet-like air battery, it is particularly easy to provide such a thin battery.
 また、シート状電池の厚みの下限値についても特に制限はないが、一定の容量を確保するために、通常は、0.2mm以上とすることが好ましい。 Also, there is no particular limit to the lower limit of the thickness of the sheet-shaped battery, but in order to ensure a certain capacity, it is usually preferable to set the thickness to 0.2 mm or more.
 本実施形態の電池は、水溶液系の電解液を有しており、特にpHが好適な3以上10以下の水溶液の場合には、環境負荷が小さく、また、破損などによって電解液が漏出して身体に付着しても、問題が生じ難く、安全性に優れている。よって、本実施形態の電池は、身体に装着可能なパッチ、特に、皮膚の表面に装着し、体温、脈拍、発汗量など身体の状況に関する測定を行うためのパッチなど、医療・健康用途の機器の電源として好適であり、また、従来から知られている空気電池やアルカリ電池などの水溶液系の電解液を有する電池(一次電池)が採用されている用途と同じ用途にも適用することができる。 The battery of the present embodiment has an aqueous electrolyte solution, and particularly in the case of an aqueous solution with a suitable pH of 3 or more and 10 or less, the environmental load is small, and even if the electrolyte leaks due to breakage or the like and adheres to the body, problems are unlikely to occur, and safety is excellent. Therefore, the battery of the present embodiment is suitable as a power supply for devices for medical and health use, such as a patch that can be worn on the body, particularly a patch that is worn on the surface of the skin and used to measure body conditions such as body temperature, pulse, and perspiration. It can also be applied to the same applications as conventionally known air batteries, alkaline batteries, and other batteries having an aqueous electrolyte (primary batteries).
 (本願のパッチの実施形態)
 本実施形態のパッチは、電源を含み、身体に装着可能なパッチであって、前記電源として、前述の実施形態の電池を備えている。本実施形態のパッチは、前記実施形態の電池を電源として使用しているので、安全性および高温貯蔵性に優れ、身体に装着可能なパッチ、特に、皮膚の表面に装着し、体温、脈拍、発汗量など身体の状況に関する測定を行うためのパッチとして好適に用いることができる。
(Embodiment of patch of the present application)
The patch of this embodiment includes a power supply, is a patch that can be worn on the body, and has the battery of the previous embodiment as the power supply. Since the patch of the present embodiment uses the battery of the above embodiment as a power source, it is excellent in safety and high-temperature storage properties, and can be worn on the body, particularly, on the surface of the skin, and can be suitably used as a patch for measuring body conditions such as body temperature, pulse, and perspiration.
 また、本実施形態のバッチは、身体への装着を容易に行えるように、片面に粘着層を形成することも好ましい。 In addition, the patch of this embodiment preferably has an adhesive layer formed on one side so that it can be easily attached to the body.
 以下、実施例に基づいて本願の電池を詳細に述べる。ただし、下記実施例は、本願の電池を制限するものではない。 The battery of the present application will be described in detail below based on examples. However, the following examples do not limit the batteries of the present application.
 (実施例1)
 <正極>
 DBP吸油量495cm/100g、比表面積1270m/gのカーボン(ライオン・スペシャリティ・ケミカルズ社製の“ケッチェンブラックEC600JD”):10質量部と、フタロシアニン系空気触媒:1.0質量部と、アクリル系分散剤:2.5質量部と、ポリテトラフロロエチレン:7.5質量部と、エタノール:500質量部とを混合して触媒層形成用組成物を作製した。
(Example 1)
<Positive electrode>
Carbon having a DBP oil absorption of 495 cm 3 /100 g and a specific surface area of 1270 m 2 /g ("Ketjen Black EC600JD" manufactured by Lion Specialty Chemicals): 10 parts by mass, phthalocyanine-based air catalyst: 1.0 parts by mass, acrylic dispersant: 2.5 parts by mass, polytetrafluoroethylene: 7.5 parts by mass, and ethanol: 500 parts by mass were mixed to form a catalyst layer forming composition. made.
 集電体として多孔性のカーボンペーパー(厚み:0.25mm、空孔率:75%)を用い、前記触媒層形成用組成物を、乾燥後の塗布量が10mg/cmとなるように前記カーボンペーパーの表面にストライプ塗布し、乾燥することにより、触媒層が形成された部分と形成されていない部分とを有する集電体を得た。この集電体を、触媒層の大きさが15mm×15mmで、その一端に、触媒層が形成されていない5mm×15mmの大きさのリード部となる部分を有する形状に打ち抜いて、全体の厚みが0.27mmの正極(空気極)を作製した。 Porous carbon paper (thickness: 0.25 mm, porosity: 75%) was used as a current collector, and the composition for forming a catalyst layer was applied in stripes on the surface of the carbon paper so that the coating amount after drying was 10 mg/cm 2 , and dried to obtain a current collector having a portion with a catalyst layer formed thereon and a portion without a catalyst layer formed thereon. This current collector was punched into a shape having a catalyst layer of 15 mm × 15 mm and a lead part of 5 mm × 15 mm on which no catalyst layer was formed at one end, thereby producing a positive electrode (air electrode) having an overall thickness of 0.27 mm.
 <負極>
 添加元素としてIn:0.05質量%、Bi:0.04質量%およびAl:0.001質量%含有する亜鉛合金箔(厚み:0.05mm、電解亜鉛箔)を、活物質として機能する15mm×15mmの大きさの部分と、その一端にリード部となる5mm×15mmの部分とを有する形状に打ち抜いて負極を作製した。
<Negative Electrode>
A zinc alloy foil (thickness: 0.05 mm, electrolytic zinc foil) containing 0.05% by mass of In, 0.04% by mass of Bi, and 0.001% by mass of Al as additive elements was punched into a shape having a 15 mm × 15 mm size portion functioning as an active material and a 5 mm × 15 mm portion serving as a lead portion at one end to prepare a negative electrode.
 <電解液>
 濃度20質量%の硫酸アンモニウム水溶液に、グリセリンを、前記水溶液に含まれる水との合計量中に10質量%となる量で添加して、電解液を調製した。この電解液のpHを堀場製作所製の「LAQUA twinコンパクトpHメータ」を用い、25℃環境下で測定したところ5.3であった。なお、後記の全ての実施例および比較例のシート状空気電池の電解液についても、同じ測定法で求められたpHは同じ値であった。
<Electrolyte>
An electrolytic solution was prepared by adding glycerin to an ammonium sulfate aqueous solution having a concentration of 20% by mass so that the total amount of glycerin and water contained in the aqueous solution would be 10% by mass. The pH of this electrolytic solution was measured at 25° C. using a “LAQUA twin compact pH meter” manufactured by Horiba Ltd., and found to be 5.3. It should be noted that the pH obtained by the same measurement method was the same value for the electrolytic solutions of the sheet-like air batteries of all Examples and Comparative Examples described later.
 また、上記電解液中の過塩素酸イオンおよび鉄イオンを除く重金属イオンの濃度は、それぞれ100ppm未満であった。後記の実施例2および比較例1、2のシート状空気電池の電解液についても、同様である。 In addition, the concentrations of heavy metal ions other than perchlorate ions and iron ions in the electrolytic solution were each less than 100 ppm. The same applies to the electrolyte solutions of the sheet-like air batteries of Example 2 and Comparative Examples 1 and 2 described later.
 <セパレータ>
 セパレータには、ポリビニルアルコールのホモポリマー〔主鎖を構成する繰り返し単位全量中の、構造単位(A)の割合が100モル%、けん化度100%〕を含有するフィルム(a)(厚み:30μm、透気度:>3000sec/100mL)を使用した。前記フィルム(a)は、ポリビニルアルコールのホモポリマーの他に、10質量%の可塑剤(グリセリン)を含有している。なお、ポリビニルアルコールのホモポリマーのけん化度は、JIS K 6726(1994)に記載の測定方法で求めた値である。実施例2におけるポリビニルアルコールのホモポリマーについても、同様である。
<Separator>
As the separator, a film (a) (thickness: 30 μm, air permeability: >3000 sec/100 mL) containing a homopolymer of polyvinyl alcohol [ratio of structural unit (A) in the total amount of repeating units constituting the main chain: 100 mol%, degree of saponification: 100%] was used. The film (a) contains 10% by weight of a plasticizer (glycerin) in addition to a homopolymer of polyvinyl alcohol. The degree of saponification of a homopolymer of polyvinyl alcohol is a value determined by the measuring method described in JIS K 6726 (1994). The same applies to the homopolymer of polyvinyl alcohol in Example 2.
 <撥水膜>
 撥水膜には、厚みが200μmのPTFE製シートを用いた。
<Water repellent film>
A PTFE sheet having a thickness of 200 μm was used for the water-repellent film.
 <電池の組み立て>
 アルミニウム箔の外面にPETフィルムを有し、内面に熱融着樹脂層としてPPフィルムを有する25mm×25mmの大きさのアルミラミネートフィルム(厚み:65μm)2枚を外装体として用いた。
<Battery assembly>
Two aluminum laminate films (thickness: 65 μm) measuring 25 mm×25 mm each having a PET film on the outer surface of the aluminum foil and a PP film as a heat-sealing resin layer on the inner surface were used as the exterior body.
 正極側に配置される一方の外装体には、直径0.2mmの空気孔9個を縦4.8mm×横4.8mmの等間隔(空気孔同士の中心間距離は5mm)で規則的に形成し、その内面側に、ホットメルト樹脂を用いて前記撥水膜を熱溶着させた。また、負極側に配置されるもう一方の外装体には、正極および負極のリードが配置される部分に、リードと外装体との熱溶着部の封止性を高めるため、外装体の辺と平行に、変性ポリオレフィンアイオノマーフィルムを取り付けた。 On one of the exterior bodies placed on the positive electrode side, 9 air holes with a diameter of 0.2 mm were regularly formed at regular intervals of 4.8 mm long and 4.8 mm wide (the center-to-center distance between the air holes was 5 mm), and the water-repellent film was heat-sealed to the inner surface using a hot-melt resin. In addition, on the other exterior body arranged on the negative electrode side, a modified polyolefin ionomer film was attached in parallel with the sides of the exterior body in order to improve the sealing performance of the thermally welded portions between the leads and the exterior body at the portions where the leads of the positive electrode and the negative electrode are arranged.
 撥水膜を有するシート状外装体を下にして、その外装体の前記撥水膜の上に、前記正極、前記セパレータおよび前記負極を順に積層し、さらに、もう1枚の外装体を、前記正極および前記負極のリードの上に前記変性ポリオレフィンアイオノマーフィルムが位置するようにして重ねた。次に、2枚の外装体の周囲3辺を互いに熱溶着して袋状にし、その開口部から前記電解液を入れた後、前記開口部を熱溶着して封止し、シート状空気電池とした。 With the sheet-shaped exterior body having the water-repellent film facing downward, the positive electrode, the separator, and the negative electrode were sequentially laminated on the water-repellent film of the exterior body, and another exterior body was layered so that the modified polyolefin ionomer film was positioned on the leads of the positive electrode and the negative electrode. Next, the three peripheral sides of the two exterior bodies were thermally welded to each other to form a bag, and the electrolytic solution was introduced through the opening, and the opening was thermally welded and sealed to obtain a sheet-shaped air battery.
 (実施例2)
 セパレータを、厚み:30μm、透気度:>3000sec/100mLで、ポリビニルアルコールのホモポリマーのみで構成され〔主鎖を構成する繰り返し単位全量中の、構造単位(A)の割合が100モル%、けん化度100%〕、可塑剤を含有しないフィルム(b)に変更した以外は、実施例1と同様にしてシート状空気電池を作製した。
(Example 2)
A sheet-like air battery was fabricated in the same manner as in Example 1, except that the separator was changed to the film (b), which had a thickness of 30 μm, an air permeability of >3000 sec/100 mL, was composed only of a homopolymer of polyvinyl alcohol [the proportion of the structural unit (A) in the total amount of the repeating units constituting the main chain was 100 mol%, and the degree of saponification was 100%], and did not contain a plasticizer.
 (比較例1)
 セパレータを、PE主鎖にアクリル酸をグラフト共重合させた構造を有するグラフト共重合体で構成された2枚のグラフトフィルム(1枚当たりの厚み:15μm)を、セロファンフィルム(厚み:20μm)の両側に配置したもの(全体の厚み:50μm)に変更した以外は、実施例1と同様にしてシート状空気電池を作製した。セパレータ全体の透気度は、測定上限値を超える値(>3000sec/100mL)となった。
(Comparative example 1)
A sheet-like air battery was fabricated in the same manner as in Example 1, except that two graft films (thickness per sheet: 15 μm) composed of a graft copolymer having a structure in which acrylic acid was graft-copolymerized on a PE main chain were used as separators on both sides of a cellophane film (thickness: 20 μm) (total thickness: 50 μm). The air permeability of the entire separator was a value (>3000 sec/100 mL) exceeding the upper limit of measurement.
 (比較例2)
 セパレータを、PE製微多孔膜(厚み:16μm、透気度:150sec/100mL)に変更した以外は、実施例1と同様にしてシート状空気電池を作製した。
(Comparative example 2)
A sheet-like air battery was produced in the same manner as in Example 1, except that the separator was changed to a PE microporous membrane (thickness: 16 μm, air permeability: 150 sec/100 mL).
 実施例および比較例のシート状空気電池について、以下の方法で高温貯蔵特性を評価した。 The high-temperature storage characteristics of the sheet-shaped air batteries of Examples and Comparative Examples were evaluated by the following method.
 実施例および比較例のシート状空気電池に3.9kΩの抵抗を接続して放電させ、電池電圧が1Vに低下するまでの放電容量(初期容量)を測定した。 A resistor of 3.9 kΩ was connected to the sheet-shaped air batteries of Examples and Comparative Examples to discharge them, and the discharge capacity (initial capacity) until the battery voltage dropped to 1 V was measured.
 次に、実施例および比較例のシート状電池(初期容量を測定していないもの)を複数個用意して60℃の恒温槽内で貯蔵し、開始から21日目、56日目、97日目および125日目に、それぞれ別の電池を恒温槽から取り出し、室温に戻してから、初期容量と同じ方法で放電容量を測定した。そして、各電池について、各貯蔵期間での放電容量を初期容量で除して、容量維持率を求めた。これらの結果を表1に示す。表1の日数は、60℃での貯蔵期間を意味している。 Next, a plurality of sheet-shaped batteries (without initial capacity measurement) of Examples and Comparative Examples were prepared and stored in a constant temperature bath at 60°C. On the 21st, 56th, 97th, and 125th days from the start, the batteries were removed from the constant temperature bath, returned to room temperature, and the discharge capacity was measured in the same manner as for the initial capacity. Then, for each battery, the discharge capacity in each storage period was divided by the initial capacity to obtain the capacity retention rate. These results are shown in Table 1. The number of days in Table 1 means the storage period at 60°C.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示す通り、主鎖を構成する繰り返し単位全量中の構造単位(A)の割合が適正な樹脂で構成されたフィルムをセパレータとする実施例1、2の電池は、高温環境下で長期間貯蔵しても、放電容量が良好に維持できていた。 As shown in Table 1, the batteries of Examples 1 and 2, in which a film made of a resin having an appropriate proportion of the structural unit (A) in the total amount of repeating units constituting the main chain, was used as a separator, maintained a good discharge capacity even after long-term storage in a high-temperature environment.
 これに対し、グラフトフィルムとセロハンフィルムとの積層体をセパレータとする比較例1の電池、およびPE製微多孔膜をセパレータとする比較例2の電池は、実施例の電池に比べて、高温環境下での貯蔵が長期間になると放電容量が大きく低下した。 On the other hand, the battery of Comparative Example 1, in which a laminate of a graft film and a cellophane film is used as a separator, and the battery of Comparative Example 2, in which a PE microporous film is used as a separator, showed a large decrease in discharge capacity when stored in a high-temperature environment for a long period of time compared to the batteries of Examples.
 本願は、上記以外の形態としても実施が可能である。本願に開示された実施形態は一例であって、これらに限定はされない。本願の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。 The present application can be implemented in forms other than the above. The embodiments disclosed in this application are examples and are not limiting. The scope of the present application shall be interpreted with priority given to the descriptions in the attached claims rather than the descriptions in the above specification, and all changes within the scope of equivalents to the claims shall be included in the scope of the claims.
  1  電池
 10  正極(空気極)
 10a 正極の端子部
 20  負極
 20a 負極の端子部
 30  セパレータ
 40  撥水膜
 50  シート状外装体
 51  空気孔
 
1 battery 10 positive electrode (air electrode)
10a Positive electrode terminal portion 20 Negative electrode 20a Negative electrode terminal portion 30 Separator 40 Water-repellent film 50 Sheet-like exterior body 51 Air hole

Claims (8)

  1.  正極と、負極と、水溶液系の電解液と、セパレータとを含む電池要素を備えた電池であって、
     前記負極は、金属材料を活物質として含有し、
     前記セパレータは、下記式(1)で表される構造単位(A)を、繰り返し単位全量中に70モル%以上の割合で含む樹脂で構成されたフィルムであることを特徴とする電池。
    Figure JPOXMLDOC01-appb-C000001
    A battery comprising a battery element including a positive electrode, a negative electrode, an aqueous electrolyte, and a separator,
    The negative electrode contains a metal material as an active material,
    A battery, wherein the separator is a film made of a resin containing a structural unit (A) represented by the following formula (1) in a proportion of 70 mol % or more in the total amount of repeating units.
    Figure JPOXMLDOC01-appb-C000001
  2.  前記セパレータは、ポリビニルアルコールのホモポリマーで構成されたフィルムである請求項1に記載の電池。 The battery according to claim 1, wherein the separator is a film made of a homopolymer of polyvinyl alcohol.
  3.  前記セパレータは、透気度が3000sec/100mL以上である請求項1または2に記載の電池。 The battery according to claim 1 or 2, wherein the separator has an air permeability of 3000 sec/100 mL or more.
  4.  前記負極は、前記金属材料として亜鉛系材料を含有している請求項1~3のいずれかに記載の電池。 The battery according to any one of claims 1 to 3, wherein the negative electrode contains a zinc-based material as the metal material.
  5.  前記電解液は、pHが3~10である請求項1~4のいずれかに記載の電池。 The battery according to any one of claims 1 to 4, wherein the electrolyte has a pH of 3 to 10.
  6.  前記正極が、触媒層を含む空気極である請求項1~5のいずれかに記載の電池。 The battery according to any one of claims 1 to 5, wherein the positive electrode is an air electrode containing a catalyst layer.
  7.  前記発電要素が、樹脂製フィルムからなる外装体に収納されている請求項1~6のいずれかに記載の電池。 The battery according to any one of claims 1 to 6, wherein the power generation element is housed in an exterior body made of a resin film.
  8.  電源を含み、身体に装着可能なパッチであって、
     前記電源として、請求項1~7のいずれかに記載の電池を備えたことを特徴とするパッチ。
     
    A body wearable patch containing a power source,
    A patch comprising the battery according to any one of claims 1 to 7 as the power supply.
PCT/JP2023/001073 2022-01-18 2023-01-17 Battery and patch WO2023140225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022005627 2022-01-18
JP2022-005627 2022-01-18

Publications (1)

Publication Number Publication Date
WO2023140225A1 true WO2023140225A1 (en) 2023-07-27

Family

ID=87348772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001073 WO2023140225A1 (en) 2022-01-18 2023-01-17 Battery and patch

Country Status (1)

Country Link
WO (1) WO2023140225A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116274A (en) * 1980-02-19 1981-09-11 Furukawa Electric Co Ltd:The Alkaline battery
JPH06260162A (en) * 1993-03-04 1994-09-16 Japan Vilene Co Ltd Alkaline battery and separator for same
JPH08273653A (en) * 1995-03-31 1996-10-18 Nippon Oil Co Ltd Separator for alkaline battery and alkaline battery
JPH10275608A (en) * 1997-03-28 1998-10-13 Yuasa Corp Separator for alkaline zinc storage battery and alkaline zinc storage battery
JPH1154102A (en) * 1997-07-31 1999-02-26 Nippon Oil Co Ltd Separator for primary battery
JP2008218426A (en) * 2008-04-25 2008-09-18 Gs Yuasa Corporation:Kk Separator for alkaline zinc storage battery, and alkaline zinc storage battery using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116274A (en) * 1980-02-19 1981-09-11 Furukawa Electric Co Ltd:The Alkaline battery
JPH06260162A (en) * 1993-03-04 1994-09-16 Japan Vilene Co Ltd Alkaline battery and separator for same
JPH08273653A (en) * 1995-03-31 1996-10-18 Nippon Oil Co Ltd Separator for alkaline battery and alkaline battery
JPH10275608A (en) * 1997-03-28 1998-10-13 Yuasa Corp Separator for alkaline zinc storage battery and alkaline zinc storage battery
JPH1154102A (en) * 1997-07-31 1999-02-26 Nippon Oil Co Ltd Separator for primary battery
JP2008218426A (en) * 2008-04-25 2008-09-18 Gs Yuasa Corporation:Kk Separator for alkaline zinc storage battery, and alkaline zinc storage battery using it

Similar Documents

Publication Publication Date Title
JP7354092B2 (en) Sheet batteries and patches
JP7008630B2 (en) Air batteries and patches
JP7251956B2 (en) Sheet-shaped air battery, its manufacturing method and patch
US20230282907A1 (en) Sheet-type air cell, method for manufacturing the same, and patch
WO2020162591A1 (en) Negative electrode for aqueous electrolytic solution batteries, and sheet-like battery
JP7017354B2 (en) Sheet air battery and patch
JP6770701B2 (en) Power storage element
US20210399305A1 (en) A protective barrier layer for alkaline batteries
WO2020213741A1 (en) Aqueous liquid-electrolyte cell and patch
WO2023140225A1 (en) Battery and patch
JP7330971B2 (en) Battery roll and manufacturing method thereof
JP2021128895A (en) Sheet-like battery and patch
JP7406545B2 (en) Sheet battery and its manufacturing method
JP2019067754A (en) Sheet-like air battery and patch
JP6673791B2 (en) Sheet air battery
JP2023008555A (en) Primary battery and manufacturing method thereof
JP6938416B2 (en) How to manufacture sheet batteries
JP2021144872A (en) Sheet-shaped air battery and patch
JP2021192361A (en) Negative electrode for secondary battery and secondary battery
JP2019160793A (en) Negative electrode mixture composition for secondary battery, method for manufacturing negative electrode for secondary battery, and method for manufacturing secondary battery
JP2019212391A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743219

Country of ref document: EP

Kind code of ref document: A1