WO2023138709A1 - 一种光伏组件的制造方法及电池模块、电池串与光伏组件 - Google Patents

一种光伏组件的制造方法及电池模块、电池串与光伏组件 Download PDF

Info

Publication number
WO2023138709A1
WO2023138709A1 PCT/CN2023/088158 CN2023088158W WO2023138709A1 WO 2023138709 A1 WO2023138709 A1 WO 2023138709A1 CN 2023088158 W CN2023088158 W CN 2023088158W WO 2023138709 A1 WO2023138709 A1 WO 2023138709A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
crystalline silicon
temperature
ribbon
polymeric material
Prior art date
Application number
PCT/CN2023/088158
Other languages
English (en)
French (fr)
Inventor
陈世庚
吴永刚
杨勇
葛启飞
韩卓振
Original Assignee
苏州小牛自动化设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州小牛自动化设备有限公司 filed Critical 苏州小牛自动化设备有限公司
Priority to EP23728573.9A priority Critical patent/EP4246599A4/en
Priority to KR1020237020396A priority patent/KR102624958B1/ko
Priority to US18/333,238 priority patent/US11876146B2/en
Publication of WO2023138709A1 publication Critical patent/WO2023138709A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of solar cells, and relates to a method for manufacturing a photovoltaic component, a battery module, a battery string and a photovoltaic component.
  • welding and lamination are two links; among them, welding refers to the process of serially assembling single-piece cells (crystalline silicon cells) through welding strips (cross-linked strips), so as to improve the overall output voltage of the components; the battery strings formed by welding are further connected in series and parallel to form a cell array, and then packaged through a lamination process to form a photovoltaic module.
  • the method of using a diaphragm to bond the ribbon to the cells has a unique advantage. It can form a flexible connection. Compared with the heat welding commonly used in the prior art, it is closer to the stress-free connection. Therefore, the problem of cell splits and hidden cracks will not be caused during the manufacturing process;
  • the adhesiveness of the outermost layer is low or no adhesiveness; therefore, when the diaphragm is used in the process of battery string processing, it is necessary to further distinguish the front and back sides of the diaphragm. Only the side with higher adhesiveness can be properly bonded to the battery sheet, and the process is relatively complicated.
  • the cost of manufacturing and using the membrane formed by two or more layers of polymer materials used in the prior art is relatively high, which leads to an increase in the overall manufacturing cost of the photovoltaic module.
  • the object of the present invention is to provide a method for manufacturing photovoltaic modules, battery modules, battery strings, and photovoltaic modules.
  • the manufacturing method only one layer of isotropic polymer material is covered on the outer surface of the crystalline silicon battery sheet with a ribbon, and then heated to make the ribbon adhere to the crystalline silicon battery sheet to obtain a battery module; a battery array assembled from several battery modules realizes ohmic contact between the ribbon and the grid line through a lamination process.
  • the material is converted into a filling layer and the encapsulation of the front and rear sealing plates is completed to obtain a photovoltaic module.
  • the manufacturing method only uses a thinner layer of film to realize the bonding of the ribbon and the packaging of the photovoltaic module. While ensuring good adhesion and stability, it will not affect the electrical connection performance between the ribbon and the crystalline silicon cell, and there is no need to distinguish the front and back sides, which simplifies the process, saves materials, reduces costs, and does not affect the overall light transmittance of the photovoltaic module.
  • the present invention provides a method for manufacturing a photovoltaic module, which includes the following steps:
  • the polymeric material is an isotropic homogeneous membrane composed of a single substance
  • step (3) Laminating the laminated body obtained in step (2) at a second temperature, melting the brazing layer of the solder strip and welding it to the grid lines on the crystalline silicon battery sheet to form an ohmic contact; at the same time making the polymer material form a filling layer to encapsulate the battery array to obtain a photovoltaic module.
  • the diaphragm used in the bonding process is composed of two layers of materials of different materials, wherein the lower layer material in contact with the welding ribbon has a higher viscosity than the upper layer material, and the upper layer material has a lower viscosity. Therefore, it is necessary to continue to place a viscous material layer on the upper layer material for packaging before the subsequent lamination process.
  • the manufacturing method of the present invention only needs to install a layer of polymer material to complete the bonding of the solder ribbon and the crystalline silicon cell and the encapsulation of the subsequent sealing plate.
  • the polymer material is an isotropic homogeneous membrane composed of a single substance, that is, the physical properties such as viscosity and fluidity do not change with the size and position of the film layer, and the adhesiveness of the front and back sides is the same; It can also ensure that after the lamination process, the filling layer converted from a single polymeric material has a high degree of uniformity and transparency, which is beneficial to the optical gain of the device.
  • the manufacturing method of the present invention does not need to set the process of welding the ribbon to the crystalline silicon cell, but only needs to place the soldering ribbon at the position of the grid line on the surface of the crystalline silicon cell, and cover the polymer material, and heat the polymeric material to cover the solder ribbon and the crystalline silicon cell at the same time, so that the solder ribbon can be effectively and firmly pre-bonded on the crystalline silicon cell, which is a good step for the subsequent lamination process.
  • the polymer material forms the filling layer to lay the foundation; the lamination process requires heating and pressure, the brazing layer on the surface of the ribbon melts and forms a metallized connection with the grid lines, and the polymer material is heated and extruded to form a cross-linking effect, the fluidity increases and fills the internal gaps, and the front and rear sealing plates are completely bonded to the crystalline silicon cell to achieve packaging; in this process, because the solder ribbon has been pre-bonded in advance, its position has been fixed.
  • the brazing layer can achieve better ohmic contact with the grid lines, and the polymer material is not easy to enter the position between the ribbon and the crystalline silicon cell, avoiding the electrical insulation problem caused by the poor contact of the ribbon caused by the polymer material.
  • the polymeric material used in the manufacturing method of the present invention is an isotropic homogeneous material, the adhesiveness on both sides of the material is the same. Therefore, in actual production, it is preferable to perform multi-point mechanical grasping on the polymeric material to realize the grasping and automatic production of the battery module, battery string, and battery array; specifically, the multi-point mechanical grasping is a multi-point contact grasping performed by a manipulator equipped with an anti-stick coating; 5% of the area, and the total contact area is greater than or equal to 85% of the total area of the grasping surface of the grasping object; the anti-stick coating includes any one or at least two combinations of AF, FEP, FER, NXT, PFA, PTEE and ceramic coatings; through multi-contact contact and the cooperation of the anti-sticking layer, it is better to prevent the adhesion of the grasping surface of the polymeric material and the mechanical gripper.
  • the specific process sequence of using the battery modules to produce the battery strings in the present invention can be adjusted according to the actual situation. Specifically, several independent battery modules can be prepared first, and then the battery modules can be connected in series by using welding ribbons to obtain the battery strings; the battery strings can also be directly connected in series by using welding ribbons, and then the corresponding polymer materials can be arranged. After uniform heating at the first temperature, the battery strings can be directly formed.
  • the softening point of the polymer material ⁇ the first temperature ⁇ the melting point of the brazing layer of the ribbon ⁇ the second temperature.
  • the softening point of the polymeric material in the present invention is less than or equal to the first temperature
  • heating at the first temperature can cause the polymeric material to have a certain degree of thermal adhesion.
  • the viscosity can ensure that the polymeric material is bonded to the crystalline silicon cell and fixes the soldering ribbon.
  • the polymeric material is gradually cooled, returns to the original degree of crosslinking and solidifies, and the soldering ribbon is firmly locked at the position corresponding to the grid line; because the polymeric material needs to be melted during lamination to have good fluidity, it is preferable that the melting point of the polymeric material is less than or equal to
  • the second temperature is to ensure the quality of the filling layer formed by lamination.
  • the first temperature in step (1) is 70-130°C and does not contain 130°C, for example Such as 70°C, 75°C, 80°C, 85°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C or 129°C, etc.
  • the second temperature in step (3) is 130-170°C, such as 130°C, 135°C, 140°C, 145°C, 150°C, 155°C, 160°C, 165°C or 170°C °C, etc., but not limited to the enumerated values, and other unenumerated values within the above range of values are also applicable.
  • the present invention limits the bonding of the polymeric material to low temperature, that is, the heating at the first temperature in step (1) of the present invention is preferably low temperature heating. Fixed; the temperature of the low-temperature heating is preferably 70-130°C and does not contain 130°C.
  • the soldering ribbon is a low-temperature soldering ribbon
  • the melting point of the brazing layer of the low-temperature soldering ribbon is 130-170°C, so that the brazing layer of the low-temperature soldering ribbon does not melt at the first temperature, but at the second temperature of step (3), it can melt and form a metallized connection with the corresponding grid line;
  • the polymer material only has a certain thermal adhesion at the first temperature to achieve effective bonding And fix the ribbon, only at the second temperature does it melt and obtain good fluidity, so as to fill the gaps in the battery array.
  • the brazing layer of the above-mentioned low-temperature soldering strip can be made of an alloy formed of tin, lead, silver, bismuth, antimony and gallium, which has the advantage of low cost; or it can be made of a tin-lead-indium-based solder alloy, which at least includes tin, lead, indium and gallium. 0 ⁇ 170°C.
  • the time for heating at the first temperature in step (1) is 1 to 5s, such as 1s, 1.2s, 1.4s, 1.6s, 1.8s, 2s, 2.2s, 2.4s, 2.6s, 2.8s, 3s, 3.2s, 3.4s, 3.6s, 3.8s, 4s, 4.2s, 4.4s, 4.6s, 4.8s or 5s etc., but not limited to the listed values, other unlisted values within the above range of values are also applicable.
  • step (1) further includes applying pressure on the polymeric material towards the crystalline silicon cell during the heating process at the first temperature, and cooling the polymeric material by blowing air after heating to complete the bonding of the polymeric material to the surface of the crystalline silicon cell.
  • step (1) the higher the first temperature in step (1), the shorter the heating time, so as to prevent the cross-linking degree and fluidity of the polymer material from changing too much, and cooling is required immediately after the heating is completed, preferably blowing air cooling, so that the polymer material can quickly return to its original state, realize fast fixing of the welding strip, and avoid weak bonding caused by slow cooling This will cause the problem of movement of the ribbon.
  • rapid cooling is also conducive to the smooth progress of the battery module grabbing process, ensuring the stable and continuous production of the battery string and battery array assembly process.
  • the thickness of the polymer material on the same side in the battery module is 0.02-0.6mm, such as 0.02mm, 0.03mm, 0.04mm, 0.05mm, 0.06mm, 0.07mm, 0.08mm, 0.09mm, 0.1mm, 0.15mm, 0.2mm, 0.25mm, 0.3mm, 0.35mm mm, 0.4mm, 0.45mm, 0.5mm, 0.55mm or 0.6mm, etc., but are not limited to the listed values, and other unlisted values within the above range of values are also applicable.
  • the thickness of the polymeric material used in the present invention is thicker within the preferred range, the wrapping property of the ribbon is better, the bonding with the crystalline silicon cell is more reliable, and at the same time, the area other than the overlapping part of the ribbon and the cell will be better filled during the lamination process.
  • the step (1) further includes paving the polymer material in the obtained battery array, so as to completely fill the gaps.
  • the supplementary laying includes arranging strips, blocks, and nets of the polymer material in the gaps and/or adding a whole sheet of the polymer material to cover the surface of the battery array;
  • the total thickness of the polymeric material on the same side in the battery array in step (1) is 0.15-0.6mm, and optionally the total thickness is 0.40-0.6mm, specifically for example 0.15mm, 0.20mm, 0.25mm, 0.30mm, 0.35mm, 0.38mm, 0.4mm, 0.42mm, 0.44mm, 0.46mm, 0.48mm, 0 .5mm, 0.52mm, 0.54mm, 0.56mm, 0.58mm or 0.6mm, etc., but not limited to the enumerated values, other unlisted values within the above range of values are also applicable.
  • the surface of one or both sides of each crystalline silicon battery sheet with the solder ribbon is covered with the polymer material, and at the same time, for the connection of the solder ribbon and/or the bus bar and the gap between the battery modules, it is preferable to supplement the polymer material to ensure that the filling layer formed by the cross-linking and fusion of the polymer material in the subsequent lamination process is more uniform and complete without redundant pores and air bubbles; , blocks and nets, etc., so as to fill each gap, and be similar to the level of the original polymeric material, the whole is one layer, so as to save materials and reduce costs, and/or add a large piece of the whole layer of polymeric material to cover and lay, which is located on the outside of the original existing polymeric material, to form a new layer of polymeric material; but it should be emphasized that no matter how it is supplemented, the total thickness of the polymeric material on the same side should be
  • the polymeric material in step (1) includes any one of PVB, EVA, POE, POM, PVD, TPO, TPU or PA; wherein, PVB refers to polyvinyl butyral ester, EVA refers to ethylene-vinyl acetate copolymer, POE refers to polyolefin elastomer, POM refers to polyoxymethylene resin, PVD refers to polyvinylidene chloride, TPO refers to thermoplastic polyolefin, TPU refers to thermoplastic polyurethane elastomer, and PA refers to polyamide.
  • PVB refers to polyvinyl butyral ester
  • EVA refers to ethylene-vinyl acetate copolymer
  • POE polyolefin elastomer
  • POM polyoxymethylene resin
  • PVD refers to polyvinylidene chloride
  • TPO thermoplastic polyolefin
  • TPU thermoplastic polyurethane elastomer
  • PA refer
  • the present invention preferably uses a thermoplastic resin material as the polymeric material, such as a PVB film formed by PVB and a plasticizer.
  • the PVB film has the characteristics of recyclability, secondary processing, and reusability. In the low-temperature bonding temperature range defined by the present invention and under a certain pressure, the PVB film can maintain its original shape and will not undergo body polycondensation. Therefore, it can prevent the problem of positional movement of the solder ribbon caused by the condensation of the film due to heating during the preparation of the battery string or photovoltaic module.
  • step (3) also includes assembling the obtained battery assembly.
  • the assembly includes installing the frame and installing the junction box.
  • the material of the front sealing plate and the rear sealing plate in step (2) both includes glass and/or high molecular polymer.
  • the present invention provides a battery module produced according to the manufacturing method described in the first aspect.
  • the present invention provides a battery string produced according to the manufacturing method described in the first aspect.
  • the present invention provides a photovoltaic module produced according to the manufacturing method described in the first aspect.
  • the present invention has at least the following beneficial effects:
  • the present invention only uses a layer of isotropic homogeneous polymer material composed of a single substance as the adhesive film, which effectively reduces the thickness and cost.
  • the adhesive film When in use, there is no need to distinguish the front and back sides, and achieve high-quality bonding between the solder ribbon and the crystalline silicon cell at a lower cost and a more simplified process, avoiding errors in the bonding process;
  • the manufacturing method of the present invention does not need to set the process of welding the ribbon to the crystalline silicon cell, and directly uses a layer of polymeric material to complete the bonding of the soldering ribbon at low temperature before laminating the device. While ensuring the bonding stability between the soldering ribbon and the crystalline silicon cell, it avoids the insulation problem of the soldering ribbon caused by the polymer material entering between the soldering ribbon and the crystalline silicon cell.
  • Fig. 1 is a view along the width direction of the ribbon of the battery module obtained in step (1) of Example 1 of the present invention
  • Example 2 is a schematic structural view of the battery string obtained in step (1) in Example 1 of the present invention.
  • Fig. 3 is a view along the width direction of the ribbon of a battery module in the photovoltaic module obtained in step (3) in Example 1 of the present invention
  • Fig. 4 is a view along the width direction of the ribbon of the battery module obtained in step (1) of Example 2 of the present invention.
  • Fig. 5 is a view along the length direction of the ribbon of the battery module obtained in step (1) in Example 2 of the present invention.
  • Example 6 is a schematic structural view of the battery string obtained in step (1) in Example 2 of the present invention.
  • Fig. 7 is a view along the width direction of the ribbon of a battery module in the photovoltaic module obtained in step (3) in Example 2 of the present invention.
  • Fig. 8 is the schematic diagram of the PVB bar that supplements laying in the embodiment of the present invention 3 steps (1);
  • Fig. 9 is the schematic diagram of the PVB net of supplementary laying in the embodiment of the present invention 4 steps (1);
  • the front side of the battery modules, battery strings, battery arrays, and photovoltaic modules described below refers to the light-receiving side (light-facing side), and the back side or back side both refer to the backlight side opposite to the front side.
  • soldering strips used in the following examples and comparative examples are all the same soldering strips; the melting point of the brazing layer of the soldering strips is 138-169° C., and the copper content of the base material is ⁇ 99.96%. It is suitable for the low-temperature welding process of cells, and can reduce the risk of hidden cracks in cells. It is more suitable for thinning and large-size silicon chips, and can reduce component loss.
  • This embodiment provides a method for manufacturing a photovoltaic module, which is suitable for the manufacture of solar cells in which the positive and negative electrodes are respectively located on the front and back surfaces of a crystalline silicon cell, and the manufacturing method includes the following steps:
  • Adhesive process Arranging the welding ribbon on the two busbars on the back of the crystalline silicon cell and the two busbars on the front of the adjacent crystalline silicon cell in sequence, so that the two adjacent crystalline silicon cells are connected in series to prepare 15 sequentially connected crystalline silicon cells, and then each of the crystalline silicon cells is provided with an isotropic homogeneous PVB film with a thickness of 0.5 mm on both sides of the outer surface. Carry out low-temperature bonding at 70°C for 3 seconds to obtain a battery string with 15 battery modules connected in series; prepare 4 of the battery strings and connect them in parallel via bus bars to form a battery array;
  • step (3) laminate the laminate in step (2) in a double-sided heating laminator at 160° C. for 360 seconds, melt the tin layer of the solder ribbon and form an ohmic contact with the grid wire metallization, and form a front filling layer and a back filling layer on the front and back sides respectively, complete the packaging of the glass front plate and the polymer back plate, and obtain a photovoltaic module; install a frame around the edges of the photovoltaic module, and install a junction box on the polymer back plate to obtain a final product.
  • Fig. 1 and Fig. 2 are respectively the structural schematic diagrams of the battery module and the battery string obtained in step (1) of the present embodiment.
  • the front and back of the crystalline silicon cell 1 in the battery module are respectively provided with welding ribbons 2, and the outer surfaces of the front and back welding ribbons 2 are respectively covered with polymeric materials 3, so that the welding ribbon 2 and the crystalline silicon cell 1 are firmly attached and bonded;
  • the battery string includes 15 battery modules (only 4 are shown in the figure) arranged in sequence along a straight line, and the back welding ribbon 2 of the previous battery module is connected with the front welding ribbon 2 of the next adjacent battery module. making each of the battery modules connected in series;
  • the battery module includes a crystalline silicon cell 1.
  • the front and back of the crystalline silicon cell 1 are respectively provided with welding ribbons 2.
  • the outer surfaces of the front and back of the crystalline silicon cell 1 are provided with a filler layer 4 formed of the polymer material 3.
  • the filler layer 4 covers the exposed solder ribbon 2 and the crystalline silicon cell 1.
  • the outer surface of the filling layer 4 on the back is covered with a rear sealing plate 6 formed of high molecular polymer.
  • This embodiment provides a method for manufacturing a photovoltaic module, which is suitable for the manufacture of full-back contact solar cells in which the positive and negative electrodes are located on the back of the crystalline silicon cell at the same time, and the manufacturing method includes the following steps:
  • Bonding process Arranging the welding ribbon on the negative busbar on the backside of the crystalline silicon cell and the positive busbar on the backside of the adjacent crystalline silicon cell respectively, so that two adjacent crystalline silicon cells are connected in series to prepare 10 sequentially connected crystalline silicon cells, and then the outer surface of each of the crystalline silicon cells provided with a soldering ribbon is covered with a layer of isotropic PVB film with a thickness of 0.38mm.
  • step (3) Laminate the laminate in step (2) in a single-sided heating laminator at 140° C. for 900 seconds.
  • the tin layer of the solder ribbon is melted and connected to the metallization of the grid lines to form an ohmic contact, and a front filling layer and a back filling layer are formed on the front and back sides respectively, and the packaging of the glass front plate and the polymer back plate is completed to obtain a photovoltaic module; a frame is installed around the edges of the photovoltaic module, and a junction box is installed on the polymer back plate to obtain a final product.
  • the main difference between the single-sided heating machine described in step (3) of this embodiment and the double-sided heating machine described in step (3) of embodiment (1) lies in the speed of heat conduction and heating time.
  • FIG. 4 and 5 are schematic structural views of the battery module obtained in step (1) of this embodiment
  • FIG. 6 is a schematic structural view of the battery string obtained in step (1) of this embodiment.
  • the battery module only the back side of the crystalline silicon battery sheet 1 is provided with a welding ribbon 2, and the outer surface of the welding ribbon 2 is covered with a polymer material 3, so that the welding ribbon 2 and the crystalline silicon battery sheet 1 are firmly attached and bonded; 4), the positive main grid line of the previous battery module is connected to the negative main grid line of the adjacent subsequent battery module through the welding ribbon 2, so that each of the battery modules is connected in series;
  • the battery module includes a crystalline silicon cell 1.
  • the back side of the crystalline silicon cell 1 is provided with a welding ribbon 2, and the outer surfaces of the front and back of the crystalline silicon cell 1 are respectively provided with a filling layer 4 formed of the polymer material 3.
  • the outer surface of the filling layer 4 on the front is covered with a front sealing plate 5 formed of glass, and the filling layer 4 on the back covers the exposed welding ribbon 2 and the crystalline silicon cell 1. And its outer surface is covered with the rear sealing plate 6 formed by high molecular polymer.
  • This embodiment provides a method for manufacturing a photovoltaic module, which is suitable for the manufacture of full-back contact solar cells in which the positive and negative electrodes are located on the back of the crystalline silicon cell at the same time, and the manufacturing method includes the following steps:
  • Bonding process place two welding ribbons on the positive busbar and the negative busbar on the back of the crystalline silicon cell respectively, and cover the outer surface of the backside of the crystalline silicon solar cell with a thickness of 0.02 mm and isotropic homogeneous PVD film.
  • the corresponding heating temperature is about 120 ° C.
  • the height is about 20 mm from the PVD film.
  • the crystalline silicon cells were hot-pressed for 1.5 seconds to obtain a battery module; 12 battery modules arranged in a straight line were sequentially prepared, and the positive busbar of the previous battery module was connected with the negative busbar of the next adjacent battery module by welding tape to obtain a battery string formed by 12 sequentially connected battery modules, and 6 battery strings were prepared and connected in parallel via bus bars to form a battery array; an isotropic PVB strip with a thickness of 0.02 mm was additionally laid on the back of the battery array, as shown in FIG.
  • the exposed solder strips and bus bars fill the gaps between the battery modules; then lay 0.4mm thick, isotropic homogeneous PVB diaphragms on the front and back sides of the battery array to cover the front and back surfaces of the battery array; add 0.13mm, 0.15mm, 0.20mm, 0.30mm thick, isotropic homogeneous PVB diaphragms on the front and back sides of the battery array in other embodiments to cover the front and back surfaces of the battery array;
  • step (3) Laminate the laminate in step (2) in a single-sided heating laminator at 140° C. for 600 seconds. After the tin layer of the solder ribbon is melted, it is connected with the metallization of the grid lines to form an ohmic contact, and a front filling layer and a back filling layer are formed on the front and back sides respectively, and the packaging of the glass front plate and the polymer back plate is completed to obtain a photovoltaic module; a frame is installed around the edges of the photovoltaic module, and a junction box is installed on the polymer back plate to obtain a final product.
  • the heating power is preferably 150-170W.
  • the heating time can be appropriately reduced, but it should be greater than or equal to 1s; when the heating time is less than 1s, the PVD diaphragm is not easy to adhere to the crystalline silicon cell.
  • This embodiment provides a method for manufacturing a photovoltaic module, which is suitable for the manufacture of solar cells in which the positive and negative electrodes are respectively located on the front and back surfaces of a crystalline silicon cell, and the manufacturing method includes the following steps:
  • Bonding process place four welding ribbons on the two busbars on the front side of the crystalline silicon cell and the two busbars on the back, respectively, and cover the outer surfaces of both sides of the crystalline silicon cell with the ribbons on both sides with a layer of isotropic TPU film with a thickness of 0.1 mm.
  • Use a heating workpiece to directly contact and heat the polymer material on the surface of the crystalline silicon cell, and perform low-temperature bonding at 105° C. for 3 seconds to obtain a battery module; sequentially prepare 14 battery modules arranged in a straight line, and connect the soldering ribbons sequentially.
  • the busbars on the front and back surfaces of the adjacent battery modules are used to obtain a battery string formed by 14 sequentially connected battery modules, and 5 battery strings are prepared and connected in parallel via bus bars to form a battery array; an isotropic PVB net with a thickness of 0.5 mm is additionally laid on both sides of the battery array, as shown in Figure 9, to cover the exposed solder strips and bus bars, and to fill the gap between the battery modules;
  • step (3) laminate the laminate in step (2) in a double-sided heating laminator at 160° C. for 600 s, melt the tin layer of the solder ribbon and form an ohmic contact with the grid wire metallization, and form a front filling layer and a back filling layer on the front and back sides respectively, complete the packaging of the glass front plate and the polymer back plate, and obtain a photovoltaic module; install a frame around the edges of the photovoltaic module, and install a junction box on the polymer back plate to obtain a final product.
  • an infrared lamp can be used to conduct non-contact remote heating of the homogeneous TPU diaphragm.
  • the height distance is about 20mm.
  • the heating power is preferably 130-140W. The greater the power, the heating time can be appropriately shortened. When the heating power is 140W, the heating time is preferably 1s. At this time, there is no air bubble between the TPU diaphragm and the crystalline silicon cell.
  • This embodiment provides a method for manufacturing a photovoltaic module.
  • the method is suitable for the manufacture of solar cells in which the positive and negative electrodes are respectively positioned on the front and back surfaces of a crystalline silicon cell.
  • the method for manufacturing is identical to that of Example 1 except that the thickness of the PVB diaphragm in step (1) is adjusted from 0.5 mm to 0.2 mm.
  • This embodiment provides a method for manufacturing a photovoltaic module.
  • the method is suitable for the manufacture of solar cells in which the positive and negative electrodes are respectively located on the front and back surfaces of a crystalline silicon cell.
  • the thickness of the PVB diaphragm in step (1) is adjusted from 0.5 mm to 0.8 mm, other conditions are exactly the same as in Example 1.
  • This embodiment provides a method for manufacturing a photovoltaic module.
  • the method is suitable for the manufacture of solar cells in which the positive and negative electrodes are respectively located on the front and back surfaces of a crystalline silicon cell.
  • the low-temperature bonding at 70° C. in step (1) is adjusted to the low-temperature bonding at 55° C., other conditions are exactly the same as in Example 1.
  • This embodiment provides a method for manufacturing a photovoltaic module.
  • the method is suitable for the manufacture of solar cells in which the positive and negative electrodes are respectively located on the front and back surfaces of a crystalline silicon cell.
  • the manufacturing method is completely the same as in Example 1 except that the low-temperature bonding at 70°C in step (1) is adjusted to bonding at 145°C.
  • This comparative example provides a method for manufacturing a photovoltaic module, which is suitable for the manufacture of solar cells in which the positive and negative electrodes are respectively located on the front and back surfaces of a crystalline silicon cell, and the manufacturing method is as follows:
  • Bonding process place four welding ribbons on the two busbars on the front side of the crystalline silicon cell and the two busbars on the back, respectively, and cover the outer surfaces of both sides of the crystalline silicon cell with the soldering ribbons on both sides of the crystalline silicon cell with a layer of isotropic PVB film with a thickness of 0.25 mm.
  • Use a heating workpiece to directly contact and heat the polymer material on the surface of the crystalline silicon cell, and perform low-temperature bonding at 70° C. for 3 seconds to obtain a battery module; sequentially prepare 15 battery modules arranged in a straight line, and connect the soldering ribbons sequentially.
  • busbars on the front and back surfaces of adjacent battery modules, and leave a gap between adjacent battery modules to obtain a battery string formed by the battery modules connected in series in sequence, prepare 4 battery strings and connect them in parallel via bus bars to form a battery array; then lay 0.25 mm thick, isotropic homogeneous TPU diaphragms on the front and back of the battery array to cover the front and back surfaces of the battery array.
  • step (3) Laminate the laminated body in step (2) in a double-sided heating laminator at 160° C. for 360 seconds. After the tin layer of the solder ribbon is melted, it is connected with the metallization of the grid line to form an ohmic contact, and a front filling layer and a back filling layer with a thickness of about 0.35 mm are formed on the front and back sides respectively, and the packaging of the glass front plate and the polymer back plate is completed to obtain a photovoltaic module; a frame is installed around the edge of the photovoltaic module, and a junction box is installed on the polymer back plate to obtain a photovoltaic module. final product.
  • This comparative example provides a method for manufacturing a photovoltaic module, which is suitable for the manufacture of solar cells in which the positive and negative electrodes are respectively located on the front and back surfaces of a crystalline silicon cell, and the manufacturing method includes the following steps:
  • Adhesive process place four welding ribbons on the two busbars on the front side of the crystalline silicon cell and the two busbars on the back side respectively, and cover the outer surfaces of both sides of the crystalline silicon cell with the soldering strips as a 0.5mm EVA/PVB diaphragm, wherein the EVA layer is in direct contact with the soldering ribbon and the crystalline silicon cell, and the thickness of the EVA layer is 0.25mm, and the thickness of the PVB layer is 0.25mm; Heating, performing low-temperature bonding at 70° C.
  • step (3) Laminate the laminated body in step (2) in a double-sided heating laminator at 160° C. for 360 seconds. After the tin layer of the solder ribbon is melted, it is connected with the metallization of the grid line to form an ohmic contact, and a front filling layer and a back filling layer with a thickness of about 0.35 mm are formed on the front and back sides respectively, and the packaging of the glass front plate and the polymer back plate is completed to obtain a photovoltaic module; a frame is installed around the edge of the photovoltaic module, and a junction box is installed on the polymer back plate to obtain a photovoltaic module. final product.
  • the adhesion between the ribbon and the crystalline silicon cells is good, there is no detachment and ribbon insulation problems, there are no obvious air bubbles and voids in the filling layer, and the packaging of the front sealing plate and the rear sealing plate is firm, and the obtained photovoltaic module has Excellent factory quality; compared with Example 1, the thickness of the PVB diaphragm is reduced and increased in Examples 5 and 6 respectively, exceeding the preferred thickness value of the polymer material on the same side of the battery array by 0.4-0.6 mm, so the amount of PVB in Example 5 is too small, and the gaps in the battery array are not completely filled by the filling layer.
  • Example 7 Exceeding the range of the preferred temperature of 70-130°C, the too low heating temperature in Example 7 makes the bonding between PVB and crystalline silicon cells weak, and the ribbon tends to move.
  • the excessively high heating temperature in Example 8 increases the fluidity of PVB.
  • the total thickness of the polymeric material on the same side in Example 2 is the same as in Example 1, but the light transmission of the device is affected because the two different materials cannot be fused during the lamination process.
  • the manufacturing method of the present invention only uses a thinner layer of film to realize the bonding of the solder ribbon and the packaging of the photovoltaic module. While ensuring good adhesion and stability, it will not affect the electrical connection performance between the solder ribbon and the crystalline silicon cell, and there is no need to distinguish between the front and back sides, which simplifies the process, saves materials, reduces costs, and does not affect the overall light transmittance of the photovoltaic module.
  • the present invention illustrates the detailed structural features of the present invention through the above embodiments, but the present invention is not limited to the above detailed structural features, that is, it does not mean that the present invention must rely on the above detailed structural features to be implemented.
  • Those skilled in the art should understand that any improvement of the present invention, equivalent replacement of selected components in the present invention, addition of auxiliary components, selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Materials Engineering (AREA)

Abstract

本发明提供了一种光伏组件的制造方法及电池模块、电池串与光伏组件,所述制造方法在晶硅电池片附有焊带的外表面上覆盖仅为一层且各向同性的聚合材料,再进行加热使所述焊带粘接于所述晶硅电池片上,得到电池模块;若干电池模块组装成的电池阵列经层压工序实现焊带与栅线的欧姆接触,同时,所述聚合材料转化为填充层并完成前后封板的封装,得到光伏组件。相比于现有技术,所述制造方法仅使用较薄的一层膜片实现了焊带的粘接与光伏组件的封装,在保证良好的粘接性和稳定性的同时,不会影响焊带与晶硅电池片之间的电气连接性能,且无需区别正反面,简化了工序、节省了材料、降低了成本,且不会影响光伏组件的整体透光性。

Description

一种光伏组件的制造方法及电池模块、电池串与光伏组件 技术领域
本发明属于太阳能电池领域,涉及一种光伏组件的制造方法及电池模块、电池串与光伏组件。
背景技术
目前,太阳能电池光伏组件的制作工艺流程中,焊接和层压为其中的两个环节;其中,焊接指将单片的电池片(晶硅电池片)通过焊带(交联条)进行串联组装,从而能提升组件整体输出电压的工序;将焊接形成的电池串进一步串并联形成电池阵列后经层压工序封装,形成光伏组件。
在制作串联电池片的过程中,使用膜片将焊带粘接于电池片上的方法具有独特优势,可以形成柔性连接,与现有技术中常用的热焊接相比,其更加接近无应力连接的方式,因此,制程中不会造成电池片裂片和电池片隐裂的问题;但是,在现有的膜粘技术中,所用的膜片均为不同种聚合物叠加或连接而形成的两层或两层以上的结构,其中,用于直接与焊带和电池片接触的最内一层的粘附性较高,位于最外侧的一层的粘附性较低或没有粘附性;因此,在电池串加工过程中使用膜片时,需要进一步区分膜片的正反面,只能让具有较高粘接性的一面与电池片进行粘接才算正确,工艺相对复杂。而且,现有技术中使用的两层或多层聚合物材料形成的膜片本身的制造和使用成本较高,导致光伏组件的整体制造成本提高。
鉴于此,急需开发一种低成本的、操作简便的新的技术方案,使得焊带与电池片得到良好粘接的同时,简化工艺,降低成本,获得高成品率的电池组件。
发明内容
鉴于现有技术中存在的问题,本发明的目的在于提供一种光伏组件的制造方法及电池模块、电池串与光伏组件,所述制造方法在晶硅电池片附有焊带的外表面上覆盖仅为一层且各向同性的聚合材料,再进行加热使所述焊带粘接于所述晶硅电池片上,得到电池模块;若干电池模块组装成的电池阵列经层压工序实现焊带与栅线的欧姆接触,同时,所述聚合 材料转化为填充层并完成前后封板的封装,得到光伏组件。相比于现有技术,所述制造方法仅使用较薄的一层膜片实现了焊带的粘接与光伏组件的封装,在保证良好的粘接性和稳定性的同时,不会影响焊带与晶硅电池片之间的电气连接性能,且无需区别正反面,简化了工序、节省了材料、降低了成本,且不会影响光伏组件的整体透光性。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供了一种光伏组件的制造方法,所述制造方法包括如下步骤:
(1)将焊带布置于晶硅电池片的一侧或双侧表面所对应的位置,再将聚合材料覆盖于所述晶硅电池片附有焊带的外表面,在第一温度下进行加热,使所述聚合材料与所述晶硅电池片的表面粘接,将所述焊带稳固于所述晶硅电池片上,得到电池模块;
依次或同时制作若干个由所述焊带串联起来的电池模块以形成电池串,再将若干个所述电池串通过汇流条串联和/或并联为电池阵列;
所述聚合材料为单一物质构成的各向同性的均质膜片;
(2)在步骤(1)所得电池阵列的正反两侧的外表面分别敷设前封板及后封板,得到叠层体;
(3)在第二温度下对步骤(2)所得叠层体进行层压,使所述焊带的钎焊层熔化后与所述晶硅电池片上的栅线相焊接以形成欧姆接触;同时使所述聚合材料形成填充层,以封装所述电池阵列,得到光伏组件。
现有技术在粘接工序中采用的膜片由两层不同材质的材料构成,其中与焊带接触的下层材料具有比上层材料更大的粘度,而上层材料的粘度较小,因此需要在后续的层压过程前,继续在上层材料上设置用于封装的粘性材料层。而本发明所述的制造方法仅需设置一层聚合材料即可完成焊带与晶硅电池片的粘接以及后续封板的封装,所述聚合材料为单一物质构成的各向同性的均质膜片,即,物理性质如粘度,流动性等不随膜层内的尺寸及位置发生变化,其正反两面的粘接性相同;与现有技术中相比,有效减小了厚度,降低了成本,在使用时,无需区分正反面,减少了工序的繁琐程度并降低了工艺出错率,还能保证层压过程后,单一的聚合材料转化为的填充层具有高度的均一性和透过性,有利于器件的光学增益。
本发明所述制造方法无须设置将焊带焊接于晶硅电池片上的工序,仅需将焊带置于晶硅电池片表面栅线的位置,并覆盖所述聚合材料,通过加热使聚合材料同时包覆住所述焊带和晶硅电池片,因而能使焊带有效地,且牢固地预粘接在晶硅电池片上,为后续层压工 序中聚合材料形成填充层做好基础;层压过程需要加热并施加压力,焊带表层的钎焊层融化并与栅线形成金属化连接,而聚合材料受热挤压发生交联作用,流动性增加并填充内部各个缝隙,将前后封板完全粘接于晶硅电池片上实现封装;在这个过程中,因焊带已经事先实现了预粘接,其位置已经固定,再施加压力时,只会使其在原本的位置紧贴于主栅表面,并不会造成偏移,因而融化的钎焊层可以与栅线实现较好的欧姆接触,且所述聚合材料不容易进入到焊带与晶硅电池片之间的位置,避免了聚合材料引起的焊带接触不良导致的电性绝缘问题。
需要说明的是,因本发明所述制造方法使用的聚合材料为各向同性的均质材料,其两侧表面的粘结性相同,因而在实际生产中,优选对所述聚合材料进行多点式机械抓取,以实现所述电池模块、电池串及电池阵列的抓取和自动化生产;具体地,所述多点式机械抓取为通过设置了防粘涂层的机械手进行的多点接触抓取;所述多点接触抓取中,每个接触点的面积小于等于抓取对象的抓取面总面积的5%,总接触面积大于等于抓取对象的抓取面总面积的85%;所述防粘涂层包括AF、FEP、FER、NXT、PFA、PTEE及陶瓷涂层中的任意一种或至少两种的组合;通过多触点接触以及防粘层的配合,更好的防止聚合材料的抓取面与机械抓手的粘连。
还需要说明的是,本发明利用所述电池模块制作所述电池串的具体工序顺序可以根据实际情况进行调整,具体地说,可以先制备若干个独立的所述电池模块,再使用焊带将各个电池模块进行串联,得到所述电池串;也可以直接使用焊带将依次排列的晶硅电池片直接串联,然后布置相应的聚合材料,在所述第一温度下经统一加热后,直接形成所述电池串。
作为本发明优选的技术方案,所述聚合材料的软化点≤所述第一温度<所述焊带的钎焊层的熔点≤所述第二温度。
本发明所述聚合材料的软化点小于等于所述第一温度时,在所述第一温度下进行加热能够让所述聚合材料产生一定的热附着性,此时具有的黏性能保证所述聚合材料粘接于所述晶硅电池片上,并将焊带固定住,当加热完成后,所述聚合材料逐渐冷却,恢复到原先的交联程度并固化,将焊带牢固地锁定在对应栅线的位置;因层压时,需要所述聚合材料熔化而具有良好的流动性,优选所述聚合材料的熔点小于等于所述第二温度,以保证层压所形成的填充层的质量。
作为本发明优选的技术方案,步骤(1)所述第一温度为70~130℃且不含130℃,例 如70℃、75℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃或129℃等,步骤(3)所述第二温度为130~170℃,例如130℃、135℃、140℃、145℃、150℃、155℃、160℃、165℃或170℃等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
为了保证所述聚合材料能将焊带包覆于晶硅电池片的表面,实现良好粘接的同时,不进一步破坏焊带与晶硅电池片接触状况,本发明限制所述聚合材料在低温下进行粘接,即,本发明步骤(1)中所述在第一温度下进行加热优选为低温加热,温度较低时,所述聚合材料的流动性非常小,不会进入焊带与晶硅电池片之间的缝隙,但能很好地将焊带与晶硅电池片的表面进行包裹,使得焊带粘接固定;所述低温加热的温度优选为70~130℃且不含130℃,相应地,所述焊带为低温焊带,所述低温焊带的钎焊层的熔点为130~170℃,以使得所述低温焊带的钎焊层在第一温度下不发生熔化,但在步骤(3)的第二温度下,可以熔化并与对应的栅线形成金属化连接;相应地,所述聚合材料在第一温度下仅产生一定的热附着性,以实现有效的粘接并固定焊带,只在第二温度下才发生熔化并获得良好的流动性,以填充电池阵列中各个缝隙。
上述低温焊带的钎焊层可以由锡、铅、银、铋、锑及镓形成的合金所构成,其具有成本低的优势;或由锡铅铟基钎料合金构成,所述锡铅铟基钎料合金中至少包括锡、铅、铟及镓,所述锡铅铟基钎料合金的成本较高,但其熔点温度更低;本领域的技术人员可以根据实际情况和需要对所述低温焊带进行选择,但所选择的低温焊带的钎焊层的熔点温度应为130~170℃。
作为本发明优选的技术方案,步骤(1)所述在第一温度下进行加热的时间为1~5s,例如1s、1.2s、1.4s、1.6s、1.8s、2s、2.2s、2.4s、2.6s、2.8s、3s、3.2s、3.4s、3.6s、3.8s、4s、4.2s、4.4s、4.6s、4.8s或5s等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
作为本发明优选的技术方案,步骤(1)还包括在第一温度下进行加热的过程中,对所述聚合材料施加朝向所述晶硅电池片的压力,加热完成后,对所述聚合材料进行吹气冷却,完成所述聚合材料与所述晶硅电池片的表面粘接。
需要说明的是,步骤(1)中的第一温度越高,加热时间应越短,以防止所述聚合材料的交联程度及流动性改变过大,且加热完成后需立刻进行冷却,优选吹气冷却,以使所述聚合材料快速恢复原先的状态,实现焊带的快速固定,避免因冷却较慢引起的粘接不牢 固致而使焊带发生移动的问题,同时,快速冷却也有利于电池模块的抓取工序的顺利进行,保证电池串和电池阵列组装工序的稳定连续生产。
作为本发明优选的技术方案,在步骤(1)得到所述电池阵列之前,所述电池模块中位于同一侧面的聚合材料的厚度为0.02~0.6mm,例如0.02mm、0.03mm、0.04mm、0.05mm、0.06mm、0.07mm、0.08mm、0.09mm、0.1mm、0.15mm、0.2mm、0.25mm、0.3mm、0.35mm、0.4mm、0.45mm、0.5mm、0.55mm或0.6mm等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
本发明使用的聚合材料在优选范围内厚度越厚时,对焊带的包裹性越好,与晶硅电池片的粘接越牢靠,同时会在层压过程中更好地填充除焊带和电池片的搭接部分以外的区域。
作为本发明优选的技术方案,步骤(1)还包括在所得电池阵列中补充铺设所述聚合材料,以达到空隙处完全填充。
优选地,所述补充铺设包括将条状、块状、网状的所述聚合材料布置于空隙中和/或增设整张所述聚合材料以覆盖所述电池阵列的表面;
且在补充铺设所述聚合材料后,步骤(1)所述电池阵列中位于同一侧面的聚合材料的总厚度为0.15~0.6mm,可选地总厚度为0.40~0.6mm,具体例如0.15mm、0.20mm、0.25mm、0.30mm、0.35mm、0.38mm、0.4mm、0.42mm、0.44mm、0.46mm、0.48mm、0.5mm、0.52mm、0.54mm、0.56mm、0.58mm或0.6mm等,但并不仅限于所列举的数值,上述数值范围内其他未列举的数值同样适用。
在本发明步骤(1)中,若干电池模块组成的电池串及若干电池串组成的电池阵列中,每个晶硅电池片附有焊带的一侧或双侧表面均覆盖有所述聚合材料,同时,对于焊带和/或汇流条的连接处、电池模块之间的空隙处,优选补充铺设所述聚合材料,以保证后续层压过程中,所述聚合材料发生交联融合所形成的填充层更加均匀完整,无多余的孔隙和气泡;所述补充铺设的聚合材料优选为条状、块状及网状等以便于得以填充各个缝隙,并与原先存在的聚合材料的水平高度相近,整体为一层,从而节省材料并降低成本,和/或增设大片的整层的聚合材料进行加盖铺设,其位于原先存在的聚合材料的外侧,以形成一层新的聚合材料;但需要强调的是,无论以何种方式进行补充,位于同一侧的所述聚合材料的总厚度应有所限制,优选总厚度处于0.4~0.6mm,以使得最后形成的填充层均匀完整又不至于过厚,造成不必要的损失;上述聚合材料均为单一物质构成的各向同性的均质膜片, 且与原先存在的聚合材料的材质完全相同。
作为本发明优选的技术方案,步骤(1)所述聚合材料包括PVB、EVA、POE、POM、PVD、TPO、TPU或PA中的任意一种;其中,PVB指聚乙烯醇缩丁醛酯、EVA指乙烯-醋酸乙烯共聚物、POE指聚烯烃弹性体、POM指聚甲醛树脂、PVD指聚偏二氯乙烯、TPO指热塑性聚烯烃、TPU指热塑性聚氨酯弹性体、PA指聚酰胺。
本发明优选使用热塑性树脂材料作为所述聚合材料,如PVB与增塑剂形成的PVB胶膜,PVB胶膜具有可回收利用,可二次加工,可重复使用的特点,在本发明限定的低温粘接的温度区间内和一定的压力作用下,PVB胶膜可保持原有的形态,不会发生体型缩聚,因此,能防止在电池串或光伏组件制备时,因加热使得膜片缩聚导致焊带发生位置移动的问题。
作为本发明优选的技术方案,步骤(3)还包括对所得电池组件进行装配。
优选地,所述装配包括安装边框及安装接线盒。
优选地,步骤(2)所述前封板与所述后封板的材质均包括玻璃和/或高分子聚合物。
第二方面,本发明提供了一种根据第一方面所述的制造方法生产出的电池模块。
第三方面,本发明提供了一种根据第一方面所述的制造方法生产出的电池串。
第四方面,本发明提供了一种根据第一方面所述的制造方法生产出的光伏组件。
与现有技术方案相比,本发明至少具有以下有益效果:
(1)相比于现有技术,本发明仅使用一层单一物质构成的各向同性的均质聚合材料作为粘接膜片,有效减小了厚度,降低了成本,在使用时,无需区分正反面,以更低的成本及更简化的工序实现焊带与晶硅电池片高质量的粘接,避免了粘接工序的出错;
(2)本发明所述制造方法无须设置将焊带焊接于晶硅电池片上的工序,直接利用一层聚合材料在低温下完成焊带的粘接再进行器件的层压封装,在保证焊带与晶硅电池片之间的粘接稳定性的同时,避免了聚合材料进入焊带与晶硅电池片之间造成的焊带绝缘问题;因粘接和层压均使用同一种所述聚合材料,因而具有高度的均一性和透过性,有利于提高器件的光学增益。
附图说明
图1是本发明实施例1于步骤(1)所得电池模块沿焊带宽度方向的视图;
图2是本发明实施例1于步骤(1)所得电池串的结构示意图;
图3是本发明实施例1于步骤(3)所得光伏组件中的一个电池模块沿焊带宽度方向的视图;
图4是本发明实施例2于步骤(1)所得电池模块沿焊带宽度方向的视图;
图5是本发明实施例2于步骤(1)所得电池模块沿焊带长度方向的视图;
图6是本发明实施例2于步骤(1)所得电池串的结构示意图;
图7是本发明实施例2于步骤(3)所得光伏组件中的一个电池模块沿焊带宽度方向的视图;
图8是本发明实施例3步骤(1)中补充铺设的PVB条的示意图;
图9是本发明实施例4步骤(1)中补充铺设的PVB网的示意图;
图中:1-晶硅电池片,2-焊带,3-聚合材料,4-填充层,5-前封板,6-后封板。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
以下所述电池模块、电池串、电池阵列及光伏组件的正面指代受光面(迎光面),反面或背面均指代与正面相对的背光面。
以下实施例及对比例所用焊带均为同一焊带;所述焊带的钎焊层的熔点为138~169℃,其基材的铜含量≥99.96%,适用于电池片的低温焊接工艺,并可降低电池片隐裂风险,更加适用于薄片化和大尺寸硅片,可降低组件损耗。
实施例1
本实施例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极分别位于晶硅电池片正反表面的太阳能电池的制造,所述制造方法包括如下步骤:
(1)粘接工序:将焊带依次布置于晶硅电池片背面的两条主栅线及临近的晶硅电池片正面的两条主栅线上,使两个临近的晶硅电池片相串联,制备15个依次串联的晶硅电池片,然后在各个所述晶硅电池片设置有焊带的两侧外表面均覆盖一层厚度为0.5mm的、各向同性的均质PVB膜片,使用加热工件与晶硅电池片表面的PVB膜片直接接触并进行加热,在70℃下进行低温粘接3s,得到15个电池模块串联起来的电池串;准备4个所述电池串并经汇流条并联为电池阵列;
(2)叠层工序:在所述电池阵列的正面及反面,分别敷设对应的玻璃前板及高分子背板,得到叠层体;
(3)层压工序:将步骤(2)所述叠层体于160℃下的双面加热层压机中进行层压360s,所述焊带的锡层熔化后与栅线金属化连接形成欧姆接触,并分别于正反面形成正面填充层及背面填充层,完成所述玻璃前板与所述高分子背板的封装,得到光伏组件;在所述光伏组件的四周边缘安装边框,并在所述高分子背板上安装接线盒,得到最终产品。
图1,图2分别是本实施例于步骤(1)所得电池模块、电池串的结构示意图,所述电池模块中晶硅电池片1的正背面分别设置有焊带2,正背面焊带2的外表面分别覆盖有聚合材料3,使得焊带2与晶硅电池片1牢固贴合粘接;所述电池串包括15个沿直线依次排列的所述电池模块(图中仅示出4个),前一个电池模块的背面焊带2与相邻的后一个电池模块的正面焊带2相连接,使得各个所述电池模块相串联;
图3是本实施例于步骤(3)所得光伏组件中的一个电池模块的结构示意图,从图中可以看出,在经过层压工序后,电池模块包括晶硅电池片1,晶硅电池片1的正背面分别设置有焊带2,所述晶硅电池片1的正背面的外表面均设置有由所述聚合材料3形成的填充层4,填充层4覆盖裸露出的焊带2及晶硅电池片1,其中,正面的填充层4的外表面覆盖有玻璃形成的前封板5,背面的填充层4的外表面覆盖有高分子聚合物形成的后封板6。
实施例2
本实施例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极同时位于晶硅电池片背面的全背接触式太阳能电池的制造,所述制造方法包括如下步骤:
(1)粘接工序:将焊带分别布置于晶硅电池片背面的负极主栅线及临近的晶硅电池片背面的正极主栅线上,使两个临近的晶硅电池片相串联,制备10个依次串联的晶硅电池片,然后在各个所述晶硅电池片设置有焊带的背面的外表面均覆盖一层厚度为0.38mm的、各向同性的均质PVB膜片,使用加热工件与晶硅电池片背面直接接触进行加热,于128℃下进行低温粘接1s,得到10个串联起来的电池模块形成的电池串;准备4个所述电池串并经汇流条并联为电池阵列;在所述电池阵列的正反两面分别补充铺设0.58mm及0.2mm厚的,各向同性的均质PVB膜片,覆盖所述电池阵列的正反表面;
(2)叠层工序:分别在补充铺设PVB膜片后的电池阵列的正面及反面,分别设置对应的玻璃前板及高分子背板,得到叠层体;
(3)层压工序:将步骤(2)所述叠层体于140℃下的单面加热层压机中进行层压900s,所述焊带的锡层熔化后与栅线金属化连接形成欧姆接触,并分别于正反面形成正面填充层及背面填充层,完成所述玻璃前板与所述高分子背板的封装,得到光伏组件;在所述光伏组件的四周边缘安装边框,并在所述高分子背板上安装接线盒,得到最终产品。
本实施例步骤(3)所述单面加热机与实施例(1)步骤(3)所述双面加热机的主要区别在于热导速度及加热时间上的快慢不同。
图4,图5是本实施例于步骤(1)所得电池模块的结构示意图,图6是本实施例于步骤(1)所得电池串的结构示意图,从图中可以看出,所述电池模块中仅晶硅电池片1的背面设置有焊带2,焊带2的外表面覆盖有聚合材料3,使得焊带2与晶硅电池片1牢固贴合粘接;所述电池串包括10个沿直线依次排列并留有间隙的所述电池模块(图中仅示 出4个),前一个电池模块的正极主栅线通过焊带2与临近的后一个电池模块的负极主栅线相连接,使得各个所述电池模块相串联;
图7是本实施例于步骤(3)所得光伏组件中的一个电池模块的结构示意图,从图中可以看出,在经过层压工序后,电池模块包括晶硅电池片1,晶硅电池片1的背面设置有焊带2,所述晶硅电池片1的正背面的外表面分别设置有由所述聚合材料3形成的填充层4,其中,正面的填充层4的外表面覆盖有玻璃形成的前封板5,背面的填充层4覆盖裸露出的焊带2及晶硅电池片1,且其外表面覆盖有高分子聚合物形成的后封板6。
实施例3
本实施例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极同时位于晶硅电池片背面的全背接触式太阳能电池的制造,所述制造方法包括如下步骤:
(1)粘接工序:将两条焊带分别置于晶硅电池片背面的正极主栅线及负极主栅线上,在所述晶硅电池片设置有焊带的背面的外表面均覆盖一层厚度为0.02mm的、各向同性的均质PVD膜片,使用红外灯管进行非接触的远距离加热,加热功率150W,对应的加热温度约为120℃,高度距离所述PVD膜片约为20mm,并在过程中对所述PVD膜片和晶硅电池片热压1.5s,得到电池模块;依次制备12个沿直线排列的所述电池模块,使用焊带将前一个电池模块的正极主栅线与临近的后一个电池模块的负极主栅线连通,得到12个依次串联的所述电池模块形成的电池串,准备6个所述电池串并经汇流条并联为电池阵列;在所述电池阵列的背面补充铺设厚度为0.02mm的、各向同性的PVB条,如图8所示,覆盖裸露出的焊带及汇流条,填充电池模块之间的间隙;再于电池阵列的正反两面补充铺设0.4mm厚的,各向同性的均质PVB膜片,覆盖所述电池阵列的正反表面;在另一些实施例电池阵列的正反两面补充铺设0.13mm、0.15mm、0.20mm、0.30mm厚的,各向同性的均质PVB膜片,覆盖所述电池阵列的正反表面;
(2)叠层工序:分别在补充铺设PVB膜片后的电池阵列的正面及反面,分别设置对应的玻璃前板及高分子背板,得到叠层体;
(3)层压工序:将步骤(2)所述叠层体于140℃下的单面加热层压机中进行层压600s,所述焊带的锡层熔化后与栅线金属化连接形成欧姆接触,并分别于正反面形成正面填充层及背面填充层,完成所述玻璃前板与所述高分子背板的封装,得到光伏组件;在所述光伏组件的四周边缘安装边框,并在所述高分子背板上安装接线盒,得到最终产品。
在一些实施例中,使用红外灯管对PVB膜片进行非接触的远距离加热时,加热功率优选为150~170W,功率越大加热时间可适当缩小,但应大于等于1s;加热时间低于1s时,PVD膜片不易与晶硅电池片粘连,功率超过170W时,PVD膜片会迅速缩聚不易将焊带与晶硅电池片粘连。
实施例4
本实施例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极分别位于晶硅电池片正反表面的太阳能电池的制造,所述制造方法包括如下步骤:
(1)粘接工序:将四条焊带分别置于晶硅电池片正面的两条主栅线及背面的两条主栅线上,在所述晶硅电池片设置有焊带的两侧外表面均覆盖一层厚度为0.1mm的、各向同性的均质TPU膜片,使用加热工件与晶硅电池片表面的聚合材料直接接触并进行加热,于105℃下进行低温粘接3s,得到电池模块;依次制备14个沿直线排列的所述电池模块,使焊带依次连接相邻电池模块正反表面的主栅线,得到14个依次串联的所述电池模块形成的电池串,准备5个所述电池串并经汇流条并联为电池阵列;在所述电池阵列的正反两面均补充铺设厚度为0.5mm的、各向同性的PVB网,如图9所示,覆盖裸露出的焊带及汇流条,填充电池模块之间的间隙;
(2)叠层工序:分别在补充铺设PVB网后的电池阵列的正面及反面,分别设置对应的玻璃前板及高分子背板,得到叠层体;
(3)层压工序:将步骤(2)所述叠层体于160℃下的双面加热层压机中进行层压600s,所述焊带的锡层熔化后与栅线金属化连接形成欧姆接触,并分别于正反面形成正面填充层及背面填充层,完成所述玻璃前板与所述高分子背板的封装,得到光伏组件;在所述光伏组件的四周边缘安装边框,并在所述高分子背板上安装接线盒,得到最终产品。
在一些实施例中,可以选用红外灯管对所述均质TPU膜片进行非接触的远距离加热,高度距离约为20mm,加热功率优选为130~140W,功率越大加热时间可适当缩小,当加热功率为140W,加热时间优选为1s,此时TPU膜片与晶硅电池片之间无气泡。
实施例5
本实施例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极分别位于晶硅电池片正反表面的太阳能电池的制造,所述制造方法除了将步骤(1)所述PVB膜片的厚度由0.5mm调整为厚度为0.2mm外,其他条件与实施例1完全相同。
实施例6
本实施例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极分别位于晶硅电池片正反表面的太阳能电池的制造,所述制造方法除了将步骤(1)所述PVB膜片的厚度由0.5mm调整为厚度为0.8mm外,其他条件与实施例1完全相同。
实施例7
本实施例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极分别位于晶硅电池片正反表面的太阳能电池的制造,所述制造方法除了将步骤(1)所述于70℃下进行低温粘接调整为于55℃下进行低温粘接外,其他条件与实施例1完全相同。
实施例8
本实施例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极分别位于晶硅电池片正反表面的太阳能电池的制造,所述制造方法除了将步骤(1)所述于70℃下进行低温粘接调整为于145℃下进行粘接外,其他条件与实施例1完全相同。
对比例1
本对比例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极分别位于晶硅电池片正反表面的太阳能电池的制造,所述制造方法如下:
(1)粘接工序:将四条焊带分别置于晶硅电池片正面的两条主栅线及背面的两条主栅线上,在所述晶硅电池片设置有焊带的两侧外表面均覆盖一层厚度为0.25mm的、各向同性的均质PVB膜片,使用加热工件与晶硅电池片表面的聚合材料直接接触并进行加热,在70℃下进行低温粘接3s,得到电池模块;依次制备15个沿直线排列的所述电池模块,使焊带依次连接相邻电池模块正反表面的主栅线,并使相邻的电池模块之间留有间隙,得到依次串联的所述电池模块形成的电池串,准备4个所述电池串并经汇流条并联为电池阵列;再于电池阵列的正反两面补充铺设0.25mm厚的,各向同性的均质TPU膜片,覆盖所述电池阵列的正反表面。
(2)叠层工序:分别在所述电池阵列的正面及反面,分别设置对应的玻璃前板及高分子背板,得到叠层体;
(3)层压工序:将步骤(2)所述叠层体于160℃下的双面加热层压机中进行层压360s,所述焊带的锡层熔化后与栅线金属化连接形成欧姆接触,并分别于正反面形成厚度均为0.35mm左右的正面填充层及背面填充层,完成所述玻璃前板与所述高分子背板的封装,得到光伏组件;在所述光伏组件的四周边缘安装边框,并在所述高分子背板上安装接线盒,得到最终产品。
对比例2
本对比例提供了一种光伏组件的制造方法,所述制造方法适用于正负电极分别位于晶硅电池片正反表面的太阳能电池的制造,所述制造方法包括如下步骤:
(1)粘接工序:将四条焊带分别置于晶硅电池片正面的两条主栅线及背面的两条主栅线上,在所述晶硅电池片设置有焊带的两侧外表面均覆盖一层厚度为0.5mm的EVA/PVB膜片,其中,EVA层与所述焊带及晶硅电池片直接接触,且所述EVA层的厚度为0.25mm,PVB层的厚度为0.25mm;使用加热工件与晶硅电池片表面的聚合材料直接接触并进行加热,在70℃下进行低温粘接3s,得到电池模块;依次制备15个沿直线排列的所述电池模块,使焊带依次连接相邻电池模块正反表面的主栅线,并使相邻的电池模块之间留有间隙,得到依次串联的所述电池模块形成的电池串,准备4个所述电池串并经汇流条并联为电池阵列;
(2)叠层工序:分别在所述电池阵列的正面及反面,分别设置对应的玻璃前板及高分子背板,得到叠层体;
(3)层压工序:将步骤(2)所述叠层体于160℃下的双面加热层压机中进行层压360s,所述焊带的锡层熔化后与栅线金属化连接形成欧姆接触,并分别于正反面形成厚度均为0.35mm左右的正面填充层及背面填充层,完成所述玻璃前板与所述高分子背板的封装,得到光伏组件;在所述光伏组件的四周边缘安装边框,并在所述高分子背板上安装接线盒,得到最终产品。
本发明实施例1-4中焊带与晶硅电池片的粘接情况良好,无脱离及焊带绝缘问题的产生,填充层中没有明显的气泡和空隙,且前封板及后封板的封装牢固,所得光伏组件具有 优异的出厂质量;相比于实施例1,实施例5及6分别将PVB膜片的厚度降低及升高,超出了电池阵列中同侧聚合材料的优选厚度值0.4~0.6mm,因此实施例5中PVB的量过少,电池阵列中的缝隙并没有全部被填充层填充,实施例6中PVB用量过多,多余的聚合材料发生溢胶,清理繁琐,且增加成本;实施例7及8分别将加热的温度(低温粘接)降低及升高,超出了优选温度70~130℃的范围,实施例7中过低的加热温度,使得PVB与晶硅电池片粘接不牢固,焊带易发生移动,实施例8中过高的加热温度,使得PVB的流动性变大,随着温度继续增加,PVB会进入到焊带与晶硅电池片之间造成绝缘;对比例1在步骤(1)中补充铺设了第二种不同材质的膜片,对比例2直接使用了两种材料构成的膜片,虽然对比例1及对比例2中同一侧的聚合材料的总厚度与实施例1相同,但因在层压过程中,两种不同材料之间无法融合,因而对器件的透光性产生影响。
从以上可以看出,本发明所述制造方法仅使用较薄的一层膜片实现了焊带的粘接与光伏组件的封装,在保证良好的粘接性和稳定性的同时,不会影响焊带与晶硅电池片之间的电气连接性能,且无需区别正反面,简化了工序、节省了材料、降低了成本,且不会影响光伏组件的整体透光性。
本发明通过上述实施例来说明本发明的详细结构特征,但本发明并不局限于上述详细结构特征,即不意味着本发明必须依赖上述详细结构特征才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用部件的等效替换以及辅助部件的增加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (8)

  1. 一种光伏组件的制造方法,其特征在于,所述制造方法包括如下步骤:
    (1)将焊带布置于晶硅电池片的一侧或双侧表面所对应的位置,再将聚合材料覆盖于所述晶硅电池片附有焊带的外表面,在第一温度下进行加热,使所述聚合材料与所述晶硅电池片的表面粘接,将所述焊带稳固于所述晶硅电池片上,得到电池模块;
    依次或同时制作若干个由所述焊带串联起来的电池模块以形成电池串,再将若干个所述电池串通过汇流条串联和/或并联为电池阵列;在所得电池阵列中补充铺设所述聚合材料,以达到空隙处完全填充;所述补充铺设的聚合材料与原先存在的聚合材料的材质完全相同;
    所述聚合材料为单一物质构成的各向同性的均质膜片;
    在得到所述电池阵列之前,所述电池模块中位于同一侧面的聚合材料的厚度为0.02~0.25mm;
    且在补充铺设所述聚合材料后,步骤(1)所述电池阵列中位于同一侧面的聚合材料的总厚度为0.4~0.6mm;
    所述第一温度为70~130℃且不含130℃,在所述第一温度下进行加热的时间为1~5s;
    (2)在步骤(1)所得电池阵列的正反两侧的外表面分别敷设前封板及后封板,得到叠层体;
    (3)在第二温度下对步骤(2)所得叠层体进行层压,所述聚合材料的软化点≤所述第一温度<所述焊带的钎焊层的熔点≤所述第二温度,所述第二温度为130~170℃,使所述焊带的钎焊层熔化后与所述晶硅电池片上的栅线相焊接以形成欧姆接触;同时使所述聚合材料形成填充层,以封装所述电池阵列,得到光伏组件。
  2. 根据权利要求1所述的制造方法,其特征在于,步骤(1)还包括在第一温度下进行加热的过程中,对所述聚合材料施加朝向所述晶硅电池片的压力,加热完成后,对所述聚合材料进行吹气冷却,完成所述聚合材料与所述晶硅电池片的表面粘接。
  3. 根据权利要求1所述的制造方法,其特征在于,所述补充铺设包括将条状、块状、网状的所述聚合材料布置于空隙中和/或增设整张所述聚合材料以覆盖所述电池阵列的表面。
  4. 根据权利要求1所述的制造方法,其特征在于,步骤(1)所述聚合材料包括PVB、EVA、POE、POM、PVD、TPO、TPU或PA中的任意一种。
  5. 一种根据权利要求1-4任意一项所述的制造方法生产出的电池模块。
  6. 一种根据权利要求1-4任意一项所述的制造方法生产出的电池串。
  7. 一种根据权利要求1-4任意一项所述的制造方法生产出的光伏组件。
  8. 一种光伏组件的制造方法,其特征在于,所述制造方法包括如下步骤:
    (1)将焊带布置于晶硅电池片的一侧或双侧表面所对应的位置,再将聚合材料覆盖于所述晶硅电池片附有焊带的外表面,在第一温度下进行加热,使所述聚合材料与所述晶硅电池片的表面粘接,将所述焊带稳固于所述晶硅电池片上,得到电池模块;
    依次或同时制作若干个由所述焊带串联起来的电池模块以形成电池串,再将若干个所述电池串通过汇流条串联和/或并联为电池阵列;在所得电池阵列中补充铺设所述聚合材料,以达到空隙处完全填充;所述补充铺设的聚合材料与原先存在的聚合材料的材质完全相同;
    所述聚合材料为单一物质构成的各向同性的均质膜片;
    在得到所述电池阵列之前,所述电池模块中位于同一侧面的聚合材料的厚度为0.02~0.25mm;
    且在补充铺设所述聚合材料后,步骤(1)所述电池阵列中位于同一侧面的聚合材料的总厚度为0.15~0.6mm;
    所述第一温度为70~130℃且不含130℃,在所述第一温度下进行加热的时间为1~5s;
    (2)在步骤(1)所得电池阵列的正反两侧的外表面分别敷设前封板及后封板,得到叠层体;
    (3)在第二温度下对步骤(2)所得叠层体进行层压,所述聚合材料的软化点≤所述第一温度<所述焊带的钎焊层的熔点≤所述第二温度,所述第二温度为130~170℃,使所述焊带的钎焊层熔化后与所述晶硅电池片上的栅线相焊接以形成欧姆接触;同时使所述聚合材料形成填充层,以封装所述电池阵列,得到光伏组件。
PCT/CN2023/088158 2022-08-30 2023-04-13 一种光伏组件的制造方法及电池模块、电池串与光伏组件 WO2023138709A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP23728573.9A EP4246599A4 (en) 2022-08-30 2023-04-13 METHOD FOR PRODUCING A PHOTOVOLTAIC MODULE, BATTERY MODULE, BATTERY STRING AND PHOTOVOLTAIC MODULE
KR1020237020396A KR102624958B1 (ko) 2022-08-30 2023-04-13 태양광 발전 어셈블리의 제조 방법 및 배터리 모듈, 배터리 스트링과 태양광 발전 어셈블리
US18/333,238 US11876146B2 (en) 2022-08-30 2023-06-12 Photovoltaic (PV) module and method for fabricating the same, and solar cell module and solar cell string

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211044155.6 2022-08-30
CN202211044155.6A CN115117206B (zh) 2022-08-30 2022-08-30 一种光伏组件的制造方法及电池模块、电池串与光伏组件

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/333,238 Continuation US11876146B2 (en) 2022-08-30 2023-06-12 Photovoltaic (PV) module and method for fabricating the same, and solar cell module and solar cell string

Publications (1)

Publication Number Publication Date
WO2023138709A1 true WO2023138709A1 (zh) 2023-07-27

Family

ID=83335960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/088158 WO2023138709A1 (zh) 2022-08-30 2023-04-13 一种光伏组件的制造方法及电池模块、电池串与光伏组件

Country Status (5)

Country Link
US (1) US11876146B2 (zh)
EP (1) EP4246599A4 (zh)
KR (1) KR102624958B1 (zh)
CN (1) CN115117206B (zh)
WO (1) WO2023138709A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629168A (zh) * 2021-07-07 2021-11-09 宁夏小牛自动化设备有限公司 一种电池片划片串焊一体化设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115117206B (zh) * 2022-08-30 2022-12-16 苏州小牛自动化设备有限公司 一种光伏组件的制造方法及电池模块、电池串与光伏组件
CN115295685B (zh) * 2022-10-09 2022-12-16 苏州小牛自动化设备有限公司 固连电池串的方法、压具组件及固化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068734A (zh) * 2021-11-11 2022-02-18 任佳新 一种光伏电池组件的制造方法
CN114068735A (zh) * 2021-11-11 2022-02-18 任佳新 一种异质结光伏电池组件的制作方法
CN114744080A (zh) * 2022-06-10 2022-07-12 苏州小牛自动化设备有限公司 一种电池串生产方法及电池串铺设设备
CN115117206A (zh) * 2022-08-30 2022-09-27 苏州小牛自动化设备有限公司 一种光伏组件的制造方法及电池模块、电池串与光伏组件

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080185033A1 (en) * 2007-02-06 2008-08-07 Kalejs Juris P Solar electric module
JP5484663B2 (ja) * 2007-09-25 2014-05-07 三洋電機株式会社 太陽電池モジュールの製造方法
JP5415396B2 (ja) * 2010-12-22 2014-02-12 デクセリアルズ株式会社 太陽電池モジュールの製造方法及び太陽電池モジュール
KR20130008918A (ko) * 2011-07-13 2013-01-23 고려대학교 산학협력단 혼합형 태양전지 모듈
JP2014060278A (ja) * 2012-09-18 2014-04-03 Dexerials Corp ストリングのリペア方法、及び結晶系太陽電池モジュールの製造方法
JPWO2017134784A1 (ja) * 2016-02-03 2018-04-12 三菱電機株式会社 太陽電池モジュール及びその製造方法
EP3790059A1 (en) * 2019-09-05 2021-03-10 Imec VZW Methods for electrically contacting and interconnecting photovoltaic cells
CN112225981B (zh) * 2020-09-18 2022-04-12 苏州赛伍应用技术股份有限公司 一种焊带载体膜及其制备方法和应用
CN112289889A (zh) * 2020-10-20 2021-01-29 无锡奥特维科技股份有限公司 电池串生产方法
CN113037210A (zh) * 2021-03-05 2021-06-25 浙江晶科能源有限公司 电池串结构和光伏组件及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068734A (zh) * 2021-11-11 2022-02-18 任佳新 一种光伏电池组件的制造方法
CN114068735A (zh) * 2021-11-11 2022-02-18 任佳新 一种异质结光伏电池组件的制作方法
CN114744080A (zh) * 2022-06-10 2022-07-12 苏州小牛自动化设备有限公司 一种电池串生产方法及电池串铺设设备
CN115117206A (zh) * 2022-08-30 2022-09-27 苏州小牛自动化设备有限公司 一种光伏组件的制造方法及电池模块、电池串与光伏组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4246599A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113629168A (zh) * 2021-07-07 2021-11-09 宁夏小牛自动化设备有限公司 一种电池片划片串焊一体化设备
CN113629168B (zh) * 2021-07-07 2024-01-02 宁夏小牛自动化设备股份有限公司 一种电池片划片串焊一体化设备

Also Published As

Publication number Publication date
EP4246599A4 (en) 2024-03-20
US11876146B2 (en) 2024-01-16
KR102624958B1 (ko) 2024-01-12
EP4246599A1 (en) 2023-09-20
US20230327046A1 (en) 2023-10-12
CN115117206B (zh) 2022-12-16
CN115117206A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2023138709A1 (zh) 一种光伏组件的制造方法及电池模块、电池串与光伏组件
US20170047464A1 (en) Thermoplastic wire network support for photovoltaic cells
KR101476478B1 (ko) 태양 전지 모듈의 제조 방법
US20060207645A1 (en) Method of manufacturing a solor cell module
CN113066885A (zh) 一种串联光伏电池组件及其封装方法
WO2022222628A1 (zh) 一种单电池片、封装膜、太阳能电池组件及其制作方法
CN116960207A (zh) 电池串结构和光伏组件及其制造方法
KR101441264B1 (ko) 태양전지 모듈, 태양전지 모듈의 제조 방법, 태양전지 셀 및 탭선의 접속 방법
CN113851549A (zh) 一种太阳能电池串及其制备方法和应用
CN215418200U (zh) 一种太阳能电池串以及包含太阳能电池串的光伏组件
CN110634978A (zh) 一种双面发电太阳能电池组件及其制备方法
CN115241310A (zh) 一种光伏组件中电池片电气连接的加固方法
WO2023103260A1 (zh) 光伏电池组件及其制造方法
CN107057598B (zh) 用于无主栅太阳能电池组件的复合膜及其制备方法
CN115763603A (zh) 光伏组件
CN117153951A (zh) 一种背接触光伏组件的生产方法及背接触光伏组件
CN113892191A (zh) 太阳能电池板及其制造方法
CN215266323U (zh) 一种单电池片、封装膜、太阳能电池组件
CN219873559U (zh) 无焊接光伏组件
CN109390427A (zh) 背接触式导电集成背板、光伏组件及其制造方法
CN218730988U (zh) 光伏组件及电池串封装结构
CN116072753B (zh) 光伏组件及制备方法
CN217983362U (zh) 光伏组件
CN117352568A (zh) 光伏组件制备方法及光伏组件
JP2013232496A (ja) 太陽電池モジュール、タブリード成形装置およびタブリード成形方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023728573

Country of ref document: EP

Effective date: 20230614