WO2023137978A1 - 空气调节设备及基于其的出风控制方法、装置及介质 - Google Patents

空气调节设备及基于其的出风控制方法、装置及介质 Download PDF

Info

Publication number
WO2023137978A1
WO2023137978A1 PCT/CN2022/101551 CN2022101551W WO2023137978A1 WO 2023137978 A1 WO2023137978 A1 WO 2023137978A1 CN 2022101551 W CN2022101551 W CN 2022101551W WO 2023137978 A1 WO2023137978 A1 WO 2023137978A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
angle
conditioning equipment
air conditioning
target
Prior art date
Application number
PCT/CN2022/101551
Other languages
English (en)
French (fr)
Inventor
谢李高
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2023137978A1 publication Critical patent/WO2023137978A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of household appliances, and in particular to an air-conditioning device and an air outlet control method, device and medium based thereon.
  • the air outlet control strategy of the air conditioning equipment has been set before leaving the factory. After the user purchases and installs the air conditioning equipment, the air conditioning equipment can only operate according to the preset air outlet control strategy, but cannot automatically correct the air outlet control strategy according to the actual usage scenario. That is to say, the air-conditioning equipment in the related art cannot provide intelligent and accurate air supply services for users, which affects user experience.
  • an object of the present application is to propose a method for controlling air outlet based on air-conditioning equipment.
  • the method for controlling air outlet can reduce user operation steps and is beneficial to improve user experience.
  • the second object of the present application is to propose a computer-readable storage medium.
  • a third object of the present application is to propose an air conditioning device.
  • the fourth objective of the present application is to propose an air outlet control device based on air conditioning equipment.
  • the embodiment of the first aspect of the present application proposes a method for controlling air output based on air-conditioning equipment, the method comprising: determining the indoor spatial position information of the air-conditioning equipment, wherein the spatial position information includes the installation position of the air-conditioning equipment and the corresponding position characteristic angle; determining compensation parameters according to the position characteristic angle and the installation position; and performing correction control on the air-outflow parameters of the air-conditioning equipment according to the compensation parameters.
  • the spatial position information of the air conditioning equipment in the room can be automatically detected, and the air output parameters of the air conditioning equipment can be automatically adjusted according to the detected spatial position information, and the operation of the air conditioning equipment can be controlled according to the adjusted air output parameters, thereby reducing the operating cost of the user, providing intelligent and accurate air supply services for the user, and improving user experience.
  • determining the indoor spatial position information of the air-conditioning equipment includes: determining a first target wall corner and a second target wall corner indoors, wherein the first target wall corner, the second target wall corner, and the air-conditioning equipment are located on the same horizontal plane, the first target wall corner and the second target wall corner are located on one side of the air-conditioning equipment, and the first target wall corner and the location of the air-conditioning equipment are located on the same wall; a line between the first target wall corner and the location of the air-conditioning equipment is used as the first angle line, and the The line between the second target wall corner and the location of the air conditioning equipment is used as the second angle line, and the angle between the first angle line and the second angle line is used as the position characteristic angle; the installation position is determined according to the position characteristic angle.
  • the third target wall corner is located on the same wall as the first target wall corner and the air conditioning equipment, and the first target wall corner and the third target wall corner are respectively located on both sides of the air conditioning equipment, wherein determining the installation position according to the position characteristic angle includes: when the position characteristic angle is greater than 0° and less than or equal to the first angle, determining that the distance between the air conditioning equipment and the first target wall corner is greater than the distance between the air conditioning equipment and the third target wall corner; when the position characteristic angle is greater than the first angle and less than or equal to the second angle When the distance between the air conditioning equipment and the first target corner is determined to be approximately equal to the distance between the air conditioning equipment and the third target corner; when the position characteristic angle is greater than the second angle and less than or equal to 90°, it is determined that the distance between the air conditioning equipment and the first target corner is smaller than the distance between the air conditioning equipment and the third target corner.
  • determining the compensation parameter according to the position characteristic angle and the installation position includes: when the distance between the air conditioning equipment and the first target wall corner is greater than the distance between the air conditioning equipment and the third target wall corner, using the angle parameter corresponding to the position characteristic angle as the compensation parameter; when the distance between the air conditioning equipment and the first target wall corner is approximately equal to the distance between the air conditioning equipment and the third target wall corner, using 0° as the compensation parameter; When adjusting the distance between the device and the third target wall corner, the negative value of the angle parameter corresponding to the position characteristic angle is used as the compensation parameter.
  • both the first target wall corner and the second target wall corner are located on the right side of the air conditioning equipment, wherein determining the installation position according to the position characteristic angle includes: determining that the air conditioning equipment is installed at a left position when the position characteristic angle is greater than 0° and less than or equal to a first angle; determining that the air conditioning equipment is installed at a middle position when the position characteristic angle is greater than the first angle and less than or equal to a second angle, and the first angle is less than or equal to the second angle; determining that the air conditioning equipment is installed at a position greater than the second angle and less than or equal to 90°. Installed in the right position.
  • both the first target wall corner and the second target wall corner are located on the left side of the air-conditioning equipment, wherein determining the installation position according to the position characteristic angle includes: determining that the air-conditioning equipment is installed at a right position when the position characteristic angle is greater than 0° and less than or equal to a first angle; determining that the air-conditioning equipment is installed at a middle position when the position characteristic angle is greater than the first angle and less than or equal to a second angle, and determining that the air-conditioning equipment is installed at a middle position, and the first angle is less than or equal to the second angle; Installed in the left position.
  • determining the compensation parameter according to the position characteristic angle and the installation position includes: when the air conditioning equipment is installed in the left position, taking the angle parameter corresponding to the position characteristic angle as the compensation parameter; when the air conditioning equipment is installed in the middle position, using 0° as the compensation parameter; when the air conditioning equipment is installed in the right position, taking the negative value of the angle parameter corresponding to the position characteristic angle as the compensation parameter.
  • correcting and controlling the air outlet parameters of the air-conditioning equipment according to the compensation parameters includes: determining a target angle of the left and right wind guides of the air-conditioning equipment; and performing correcting control on the target angle according to the compensation parameters.
  • correcting and controlling the target angle according to the compensation parameter includes: calculating a sum of the compensation parameter and the target angle, using the sum as a corrected target angle, and controlling the air conditioning equipment according to the corrected target angle.
  • the target angle of the left and right wind guides of the air conditioning equipment is determined according to the working mode of the air conditioning equipment and the location of the user.
  • the method when the air-conditioning device is in the wind-avoiding mode, the method further includes: when the user is in the first position, determining that the target angle of the left-right wind guide of the air-conditioning device is corresponding to the third position; The target angle of the left and right wind guides of the air conditioning equipment corresponds to the first position.
  • the embodiment of the second aspect of the present application proposes a computer-readable storage medium on which is stored an air outlet control program based on the air conditioning equipment, and when the air outlet control program is executed by a processor, the air outlet control method based on the air conditioning equipment in any of the above embodiments is implemented.
  • the computer-readable storage medium of the present application it is possible to automatically detect the spatial location information of the air conditioning equipment indoors, automatically adjust the air output parameters of the air conditioning equipment according to the detected spatial location information, and control the operation of the air conditioning equipment according to the adjusted air output parameters, which reduces the user's operating costs, provides intelligent and accurate air supply services for users, and improves user experience.
  • the embodiment of the third aspect of the present application proposes an air-conditioning device, the air-conditioning device includes a memory, a processor, and an air-conditioning device-based air outlet control program stored in the memory and operable on the processor.
  • the processor executes the air-conditioning device-based air outlet control program, the air-conditioning device-based air outlet control method of any of the above-mentioned embodiments is implemented.
  • the air conditioning equipment of the present application it is possible to automatically detect the spatial position information of the air conditioning equipment in the room, automatically adjust the air output parameters of the air conditioning equipment according to the detected spatial position information, and control the operation of the air conditioning equipment according to the adjusted air output parameters, which reduces the user's operating costs, provides intelligent and accurate air supply services for users, and improves user experience.
  • an air-conditioning equipment-based air outlet control device which includes a first determination module, a second determination module and a control module.
  • the first determination module is used to determine spatial position information of the air conditioning equipment indoors, wherein the spatial position information includes the installation position of the air conditioning equipment and the corresponding position characteristic angle.
  • the second determination module is used for determining compensation parameters according to the position characteristic angle and the installation position.
  • the control module is used for correcting and controlling the air outlet parameters of the air conditioning equipment according to the compensation parameters.
  • the air outlet control device based on the air conditioning equipment of the present application, it can automatically detect the spatial location information of the air conditioning equipment in the room, automatically adjust the air outlet parameters of the air conditioning equipment according to the detected spatial location information, and control the operation of the air conditioning equipment according to the adjusted air outlet parameters, which reduces the user's operating costs, provides users with intelligent and accurate air supply services, and improves user experience.
  • FIG. 1 is a schematic flow chart of a method for controlling air outlet according to an embodiment of the present application
  • Fig. 2 is another schematic flow chart of the air outlet control method according to the embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scene of a wind outlet control method according to an embodiment of the present application.
  • Fig. 4 is another schematic flow chart of the air outlet control method according to the embodiment of the present application.
  • Fig. 5 is another schematic flow chart of the air outlet control method according to the embodiment of the present application.
  • Fig. 6 is another schematic flow chart of the air outlet control method according to the embodiment of the present application.
  • Fig. 7 is another schematic flow chart of the air outlet control method according to the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another scene of a wind outlet control method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another scene of a wind outlet control method according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another scene of a wind outlet control method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another scene of a wind outlet control method according to an embodiment of the present application.
  • Fig. 12 is a structural block diagram of an air conditioning device according to an embodiment of the present application.
  • Fig. 13 is a structural block diagram of an air outlet control device according to an embodiment of the present application.
  • the air outlet control method based on air-conditioning equipment in the embodiment of the present application includes the following steps:
  • S11 Determine the indoor spatial position information of the air conditioning equipment, wherein the spatial position information includes the installation position of the air conditioning equipment and the corresponding position characteristic angle;
  • S15 Perform correction control on the air outlet parameters of the air conditioning equipment according to the compensation parameters.
  • the spatial position information of the air conditioning equipment in the room can be automatically detected, and the air output parameters of the air conditioning equipment can be automatically adjusted according to the detected spatial position information, and the operation of the air conditioning equipment can be controlled according to the adjusted air output parameters, thereby reducing the operating cost of the user, providing intelligent and accurate air supply services for the user, and improving user experience.
  • the air-conditioning equipment cannot automatically detect its own indoor installation position, and automatically adjust the air output parameters of the air-conditioning equipment according to its indoor installation position, so the air-conditioning equipment in the related art has problems such as low intelligence, low air outlet control accuracy, complicated operation, and affecting user experience.
  • the air conditioning equipment can automatically determine its own indoor installation position and the indoor user’s position, as well as the position characteristic angle corresponding to the installation position, and determine the compensation parameters according to the automatically determined installation position and the automatically determined position characteristic angle, and correct the air outlet parameters of the air conditioning equipment according to the compensation parameters, so that when performing air outlet control, the air conditioning equipment can be automatically controlled according to the corrected air outlet parameters, which improves the intelligence of the air conditioning equipment.
  • Wind control is beneficial to improve user experience.
  • air conditioning equipment includes but is not limited to wall-mounted air conditioners.
  • the air conditioning equipment itself may include radar or other position detection sensors, and the indoor spatial position information of the air conditioning equipment may be automatically determined by analyzing the acquired radar data or other position detection sensor data.
  • the indoor spatial position information of the air-conditioning device can also be automatically generated by other household appliances, and the air-conditioning device can communicate with other household appliances and obtain its own spatial position information.
  • Other household appliances include, but are not limited to, televisions, drinking fountains, robot vacuums, or other air-conditioning equipment.
  • the spatial position information may also be actively input by the user, so as to meet the control requirements of different users, which is not limited here.
  • the corresponding relationship between different position characteristic angles, different installation positions and compensation parameters can be calibrated and stored in advance, so that after the installation position and position characteristic angle are determined, the corresponding compensation parameters can be quickly and directly determined in combination with the corresponding relationship.
  • the corresponding relationship may not be calibrated in advance, and the corresponding compensation parameters may be calculated in real time after the installation position and position characteristic angle are determined, thus saving storage space.
  • the air outlet parameters of the air conditioning equipment include, but are not limited to, the left and right air guide angles, the up and down air guide angles, and the air outlet time.
  • the air outlet parameters of the air conditioning equipment can be preset parameters without considering different spatial location information, which can be stored on the air conditioning equipment or in the cloud. When the air outlet parameters are stored in the cloud, the air conditioning equipment can communicate with the cloud to obtain the air outlet parameters.
  • the air output parameter of the air conditioning device may be related to the working mode of the air conditioning device and the location of the user.
  • the working mode may include a function mode and an air supply mode
  • the function mode may include a wind avoidance mode and a normal mode
  • the air supply mode may include a cooling mode, a dehumidification mode, a heating mode, and the like.
  • the wind parameters corresponding to each working mode and the user's position may be partly the same or completely different.
  • step S11 includes:
  • S111 Determine the first target wall corner and the second target wall corner in the room, wherein the first target wall corner, the second target wall corner and the air conditioning equipment are located on the same horizontal plane, the first target wall corner and the second target wall corner are located on one side of the air conditioning equipment, and the first target wall corner and the air conditioning equipment are located on the same wall;
  • S113 use the line connecting the first target wall corner and the location of the air conditioning equipment as the first angle line, use the line connecting the second target wall corner and the location of the air conditioning equipment as the second angle line, and use the angle between the first angle line and the second angle line as the position characteristic angle;
  • S115 Determine the installation location according to the angle of the location feature.
  • the position characteristic angle of the air-conditioning equipment is determined not according to the two wall corners on the same vertical plane as the air-conditioning equipment, but according to the two wall corners on the same horizontal plane as the air-conditioning equipment.
  • the air conditioning equipment may be installed on the first indoor wall, and at this time, the installation position may be understood as the position of the air conditioning equipment relative to the first wall.
  • the room may include a first side wall and a second side wall respectively connected to the first wall on which the air conditioning equipment is installed, and a second wall connected to the first side wall and the second side wall and disposed opposite to the first wall.
  • the horizontal plane where the air conditioning equipment is located may intersect the first wall on a first line segment, may intersect the second wall on a second line segment, may intersect the first side wall on a third line segment, and may intersect the second side wall on a fourth line segment.
  • the first line segment Q1Q2, the second line segment Q3Q4, the third line segment Q1Q3 and the fourth line segment Q2Q4 can enclose a quadrilateral closed space, and the four vertices Q1, Q2, Q3, Q4 of the quadrilateral closed space can be understood as four corners.
  • the first target wall corner can be understood as the vertex of one end of the third line segment Q1Q3, the second target wall corner can be understood as the vertex of the other end of the third line segment Q1Q3; or, the first target wall corner can be understood as the vertex of one end of the fourth line segment Q2Q4, and the second target wall corner can be understood as the vertex of the other end of the fourth line segment Q2Q4.
  • the air-conditioning equipment may include a radar, and the position of the air-conditioning equipment may be used as the coordinate origin O to establish a rectangular coordinate system. According to the echo data received by the radar, the coordinates of the four corners in the room and the air-conditioning equipment on the same horizontal plane may be determined, and then the angle value of the angle between the second angled line and the first angled line may be calculated, and the angle value may be used as the position characteristic angle, and the installation position may be determined according to the angle value.
  • the first target corner is Q1
  • the second target corner is Q3
  • the first angle line is OQ1
  • the position feature angle is an acute angle formed by the first angled line and the second angled line, rather than an obtuse angle formed by the first angled line and the second angled line.
  • the location feature angle is less than or equal to 90 degrees.
  • step S115 includes:
  • the first angle can be 40°
  • the second angle can be 50°, that is, when the position characteristic angle is greater than 0° and less than or equal to 40°, it can be automatically determined that the distance between the air conditioning equipment and the first target wall corner is greater than the distance between the air conditioning equipment and the third target wall corner; It is determined that the distance between the air conditioning device and the first target corner is smaller than the distance between the air conditioning device and the third target corner.
  • Step S13 includes:
  • the air outlet parameters of the air conditioning equipment are preset. Therefore, when the distance between the air conditioning equipment and the first target wall corner is automatically determined to be approximately equal to the distance between the air conditioning equipment and the third target wall corner, the preset air outlet parameters may not be corrected, that is, the compensation parameter is determined to be 0°, so that the operation of the air conditioning equipment is directly controlled by using the preset air outlet parameters.
  • the angle parameter corresponding to the position feature angle is a positive value. If the angle parameter corresponding to the position feature angle is recorded as ⁇ , then the negative value of the angle parameter corresponding to the position feature angle is - ⁇ . When the air conditioning equipment is closer to the wall corner on its right side, the compensation parameter is a negative value; when the air conditioning equipment is closer to the wall corner on its left side, the compensation parameter is a positive value.
  • the compensation parameter is the angle value used to compensate the angle.
  • both the first target wall corner and the second target wall corner are located on the right side of the air-conditioning device, wherein step S115 includes:
  • the first angle may be 40°
  • the second angle may be 50°, that is, when the positional characteristic angle is greater than 0° and less than or equal to 40°, the installation position of the air conditioning equipment may be automatically determined as being on the left side; when the positional characteristic angle is greater than 40° and less than or equal to 50°, the installation position of the air conditioning equipment may be automatically determined as being in the middle position;
  • the right side of the air conditioning equipment should be understood as the right side of the air conditioning equipment itself, that is, the right side along the air outlet direction of the air conditioning equipment, and cannot be directly understood as the right side of the user's line of sight, because the right side of the user's line of sight may be completely opposite to the right side of the air conditioning equipment.
  • the air-conditioning equipment can predetermine two target wall corners on its own right, and determine the first target wall corner and the second target wall corner of the two target wall corners on its own right, and then determine the installation position of the air-conditioning equipment according to the two target wall corners on its own right.
  • the left position should be understood as the left position of the wall itself, and cannot be directly understood as the left position of the user's line of sight;
  • the right position should be understood as the right position of the wall itself, and cannot be directly understood as the right position of the user's line of sight.
  • both the first target wall corner and the second target wall corner are located on the left side of the air-conditioning device, wherein step S115 includes:
  • the first angle may be 40°
  • the second angle may be 50°, that is, when the characteristic angle of the position is greater than 0° and less than or equal to 40°, the installation position of the air conditioning equipment may be automatically determined as being on the right; when the characteristic angle of the position is greater than 40° and less than or equal to 50°, the installation position of the air conditioning equipment may be automatically determined as being in the middle; when the characteristic angle of the position is greater than 50° and less than or equal to 90°, the installation position of the air conditioning equipment may be automatically determined as being on the left.
  • the left side of the air-conditioning equipment should be understood as the left side of the air-conditioning equipment itself, that is, the left side along the air outlet direction of the air-conditioning equipment, and can be directly understood as the left side of the user's line of sight, because the left side of the user's line of sight may be completely opposite to the left side of the air-conditioning equipment.
  • the air-conditioning device can predetermine its own two left target wall corners, and determine the first target wall corner and the second target wall corner of its own two left target wall corners, and then determine the installation position of the air-conditioning device according to its own left two target wall corners.
  • the left position should be understood as the left position of the wall itself, and cannot be directly understood as the left position of the user's line of sight;
  • the right position should be understood as the right position of the wall itself, and cannot be directly understood as the right position of the user's line of sight.
  • step S13 includes:
  • the air outlet parameters of the air conditioning equipment are preset. Therefore, when the installation position of the air conditioning equipment is automatically determined to be in the middle position, the preset air outlet parameters may not be corrected, that is, the compensation parameter is determined to be 0°, so that the operation of the air conditioning equipment is directly controlled by the preset air outlet parameters.
  • the angle parameter corresponding to the position feature angle is a positive value. If the angle parameter corresponding to the position feature angle is recorded as ⁇ , then the negative value of the angle parameter corresponding to the position feature angle is - ⁇ .
  • the compensation parameter is the angle value used to compensate the angle.
  • step S15 includes:
  • the target angle of the left and right wind guides of the air conditioning equipment is determined according to the working mode of the air conditioning equipment and the location of the user.
  • the working mode may include a function mode and an air supply mode
  • the function mode may include a wind avoidance mode and a normal mode
  • the air supply mode may include a cooling mode, a dehumidification mode, a heating mode, and the like.
  • the user's location can be determined by radar installed on the air conditioning equipment.
  • the target angles of the left and right air guides corresponding to each working mode and the position of the user may be partly the same or completely different.
  • the mapping relationship between each working mode, the position of the user, and the target angle of the left and right air guides can be established in advance, so that the target angle of the left and right air guides of the air conditioning equipment can be quickly determined according to the mapping relationship, the working mode of the air conditioning equipment, and the position of the user.
  • step S153 includes: S1531 calculating the sum of the compensation parameter and the target angle, using the sum as the corrected target angle, and controlling the air conditioning equipment according to the corrected target angle.
  • the method when the air-conditioning equipment is in the wind avoidance mode, the method further includes:
  • the wind parameter control strategy in the wind avoidance mode is established in advance, so as to achieve the effect of wind avoidance.
  • the user's position can include horizontal position and far and near position at the same time. Please refer to FIG. 8 and FIG. In this way, the air outlet parameters of the air-conditioning equipment are preset for the purpose of avoiding people from the wind from the two dimensions of the horizontal direction and the far and near direction.
  • the first position 1, the second position 2 and the third position 3 can be set according to the effective range of the left and right air guides of the air-conditioning equipment. For example, when the effective range of the left and right air guides of the air-conditioning equipment is 120°, an area can be divided every 40° to determine the first position 1, the second position 2 and the third position 3.
  • Position A, position B, and position C can be set according to the effective range of the air-conditioning equipment's up-and-down air guide, for example, when the air-conditioning equipment's effective range of up-and-down air guide is 60°, an area can be divided every 20° to determine position A, position B, and position C.
  • the function mode is the wind avoidance mode and the air supply mode is the cooling mode
  • the target angle of the left and right air guides is determined to correspond to the third position 3.
  • the far and near position of the user is at position B, position AB, position BC, position AC or position ABC, then determine the target angle of the upper and lower air guides as the upper limit of the cooling room, so as to avoid directly supplying air to the position where the user is located;
  • the target angle of the up and down air guide is determined according to the user’s far and near position; if it is detected that the user’s position is in the first position 1 and the second position 2, then determine that the target angle of the left and right air guide corresponds to the third position 3, and at the same time, the target angle of the up and down air guide is set as the upper limit of the cooling room; Then determine that the target angle of the left and right air guides is centered, and at the same time set the target angle of the upper and lower air guides as the upper limit of the cooling room; if it is detected that the user's position is in the first position 1, the second position 2, and the third position 3, then determine that the target angle of the left and right air guides is
  • the function mode is the wind avoidance mode and the air supply mode is the dehumidification mode
  • the target angles of the up and down air guides are determined according to the user’s far and near positions, which can be uniformly set as the upper limit of dehumidification, so as to avoid directly supplying air to the user’s position as much as possible
  • the target angles of the up and down air guides are determined according to the user’s far and near positions, which can be uniformly set as the upper limit of dehumidification
  • the function mode is the wind avoidance mode and the air supply mode is the heating mode
  • the target angle of the left and right air guides corresponds to the third position 3
  • the target angle of the left and right air guides is wide angle
  • the target angle of the left and right air guide corresponds to the first position 1
  • the target angle of the left and right air guide is centered
  • the target angles of the upper and lower air deflectors are uniformly set as the lower limit of heating.
  • the windless air deflectors can also be opened to further achieve the effect of avoiding people from the wind.
  • the air conditioning equipment may include a left air deflector and a right air deflector, and the left air deflector and the right air deflector can operate independently.
  • the above-mentioned "wide angle" can be understood as setting the left and right air deflector target angles of the left air deflector to correspond to the third position 3, and setting the left and right air deflector target angles of the right air deflector to correspond to the first position 1, so that the left air deflector and the right air deflector are in the shape of an "eight" and conduct air guidance.
  • the above-mentioned “centering” can be understood as setting the left wind deflector and the right wind deflector parallel to the front, so that the air conditioning equipment can supply air to the area directly in front of itself.
  • the above-mentioned “cooling room upper limit” can be understood as the limit position where the upper and lower air deflectors of the air-conditioning equipment rotate upwards in the cooling mode.
  • the above “dehumidification upper limit” can be understood as the limit position where the upper and lower wind deflectors of the air-conditioning equipment rotate upwards in the dehumidification mode.
  • the upper and lower sweeping angles corresponding to the upper limit of the cooling room and the upper limit of dehumidification are the same.
  • the upper and lower sweeping angles corresponding to the upper limit of the cooling room are smaller than the upper and lower sweeping angles corresponding to the upper limit of the dehumidification.
  • the above “lower limit of heating” can be understood as the limit position of the downward rotation of the upper and lower air deflectors of the air-conditioning equipment in the heating mode, for example, 90° downward from the horizontal plane.
  • correction control can be performed on the above-mentioned preset air outlet parameters.
  • the revised wind parameters are shown in Table 1 and Table 2.
  • Figure 10 is a scene diagram of the air outlet control of the related technology and the air outlet control of this method after the air conditioning device (air conditioner) is displaced. It can be seen from the figure that in the wind avoidance mode, when the user is in the first position 1, the target angle of the left and right air guides corresponds to the third position 3. The left and right air guide angles of the adjustment equipment are corrected according to the spatial position information of the air conditioning equipment, which can avoid blowing to users and realize the function of wind avoiding people.
  • Fig. 11 is another schematic diagram of the air outlet control of the related technology and the air outlet control of this method after the air conditioner (air conditioner) is displaced. It can be seen from the figure that in the wind avoidance mode, when the user is in the first position 1, the target angle of the left and right air guides corresponds to the third position 3. According to the cooling capacity, the left and right air guide angles of the air-conditioning equipment of the present application are corrected according to the spatial position information of the air-conditioning equipment, which can effectively reduce the situation of blowing air towards the wall, and at the same time ensure the function of avoiding people from the wind.
  • the principle of the correction control of the air outlet parameters of this method can be understood as: when the air conditioning equipment is installed on the left side, the angles of the left and right air guides in the air outlet parameters are all offset to the right by the position characteristic angle; Therefore, when the angle value defined when the left and right wind deflectors of the air-conditioning equipment face to the left is smaller than the angle value defined when the left and right wind deflectors face to the right, for example, when the angle of the left and right wind deflectors is set to be 0 degrees when the left and right wind deflectors are facing horizontally, the angle of the left and right wind deflectors is negative, and the angle of the left and right wind deflectors is positive.
  • step S133 determine compensation parameters.
  • the angle value defined when the left and right air deflectors of the air-conditioning equipment are facing the left is greater than the angle value defined when the left and right air deflectors are facing the right, for example, when the angle of the left and right air deflectors is set to be 0 degrees when the left and right air deflectors are facing the right, the angle of the left and right wind deflectors is positive, and the angle of the left and right air deflectors is negative.
  • the negative value of the position characteristic angle is determined as the compensation parameter; if it is determined that the air conditioning equipment is installed in the middle position, 0° can be determined as the compensation parameter; if it is determined that the air conditioning equipment is installed in the right position, the position characteristic angle can be directly determined as the compensation parameter.
  • the air outlet is controlled according to the angle corresponding to the rotation limit of the left and right air deflectors.
  • the embodiments of the present application further provide a computer-readable storage medium, which can implement the method for controlling the air outlet based on the air-conditioning equipment in any of the above-mentioned embodiments.
  • the computer-readable storage medium proposed by the present application stores an air-conditioning equipment-based air outlet control program thereon, and when the air-outflow control program is executed by a processor, the air-outflow control method based on the air-conditioning equipment in any of the above embodiments is implemented.
  • the computer-readable storage medium of the present application it is possible to automatically detect the spatial location information of the air conditioning equipment indoors, automatically adjust the air output parameters of the air conditioning equipment according to the detected spatial location information, and control the operation of the air conditioning equipment according to the adjusted air output parameters, which reduces the user's operating costs, provides intelligent and accurate air supply services for users, and improves user experience.
  • step S11 , step S13 and step S15 of the above embodiment can be implemented.
  • the embodiments of the present application further provide an air-conditioning device, and the air-conditioning device can implement the method for controlling air outlet based on the air-conditioning device in any of the above-mentioned embodiments.
  • Fig. 12 is a structural block diagram of an air conditioning device according to an embodiment of the present application. As shown in FIG. 12 , the air-conditioning device 100 proposed in the present application includes a memory 102, a processor 104, and an air-out control program 106 based on the air-conditioning device 100 that is stored on the memory 102 and can run on the processor 104.
  • the air conditioning equipment 100 of the present application it is possible to automatically detect the spatial location information of the air conditioning equipment 100 in the room, automatically adjust the air output parameters of the air conditioning equipment 100 according to the detected spatial location information, and control the operation of the air conditioning equipment 100 according to the adjusted air output parameters, which reduces the user's operating costs, provides intelligent and accurate air supply services for users, and improves user experience.
  • the air-conditioning equipment cannot automatically detect its own indoor installation position, and automatically adjust the air output parameters of the air-conditioning equipment according to its indoor installation position, so the air-conditioning equipment in the related art has problems such as low intelligence, low air outlet control accuracy, complicated operation, and affecting user experience.
  • the air-conditioning device can automatically determine its indoor installation position and the position characteristic angle corresponding to the installation position, and determine the compensation parameters according to the automatically determined installation position and the automatically determined position characteristic angle, and correct the air-out parameters of the air-conditioning device according to the compensation parameters, so that when performing air-out control, the air-conditioning device can be automatically controlled according to the corrected air-out parameters.
  • air conditioning equipment includes but is not limited to wall-mounted air conditioners.
  • the air conditioner itself may include radar or other position detection sensors, and the indoor spatial position information of the air conditioner and the indoor user's position can be automatically determined by analyzing the acquired radar data or other position detection sensor data.
  • the indoor spatial position information of the air-conditioning device can also be automatically generated by other household appliances, and the air-conditioning device can communicate with other household appliances and obtain its own spatial position information.
  • Other household appliances include, but are not limited to, televisions, drinking fountains, robot vacuums, or other air-conditioning equipment.
  • the spatial position information may also be actively input by the user, so as to meet the control requirements of different users, which is not limited here.
  • the corresponding relationship between different position characteristic angles, different installation positions and compensation parameters can be calibrated and stored in advance, so that after the installation position and position characteristic angle are determined, the corresponding compensation parameters can be quickly and directly determined in combination with the corresponding relationship.
  • the corresponding relationship may not be calibrated in advance, and the corresponding compensation parameters may be calculated in real time after the installation position and position characteristic angle are determined, thus saving storage space.
  • the air outlet parameters of the air conditioning equipment include, but are not limited to, the left and right air guide angles, the up and down air guide angles, and the air outlet time.
  • the air outlet parameters of the air conditioning equipment can be preset parameters without considering different spatial location information, which can be stored on the air conditioning equipment or in the cloud. When the air outlet parameters are stored in the cloud, the air conditioning equipment can communicate with the cloud to obtain the air outlet parameters.
  • the air output parameter of the air conditioning device may be related to the working mode of the air conditioning device and the location of the user.
  • the working mode may include a function mode and an air supply mode
  • the function mode may include a wind avoidance mode and a normal mode
  • the air supply mode may include a cooling mode, a dehumidification mode, a heating mode, and the like.
  • the wind parameters corresponding to each working mode and the user's position may be partly the same or completely different.
  • step S11, step S13 and step S15 of the above-mentioned embodiment can be implemented.
  • the embodiments of the present application further propose an air outlet control device, which can implement the air outlet control method based on the air conditioning equipment in any of the above embodiments.
  • Fig. 13 is a structural block diagram of an air outlet control device according to an embodiment of the present application.
  • the air-conditioning equipment-based air outlet control device 200 proposed in this application includes a first determination module 202 , a second determination module 204 and a control module 206 .
  • the first determination module 202 is used to determine spatial location information of the air conditioning equipment indoors, where the spatial location information includes the installation location of the air conditioning equipment and the corresponding position characteristic angle.
  • the second determination module 204 is used to determine the compensation parameters according to the position feature angle and the installation position.
  • the control module 206 is used for correcting and controlling the air outlet parameters of the air conditioning equipment according to the compensation parameters.
  • the air-conditioning equipment-based air outlet control device 200 of the present application can automatically detect the indoor spatial position information of the air-conditioning equipment, automatically adjust the air-out parameters of the air-conditioning equipment according to the detected spatial position information, and control the operation of the air-conditioning equipment according to the adjusted air-out parameters, which reduces the operating cost of the user, provides intelligent and accurate air supply services for the user, and improves user experience.
  • the first determination module 202 includes a first determination unit, a calculation unit and a second determination unit.
  • the first determination unit is configured to implement the above step S111.
  • the calculation unit is used to realize the above step S113.
  • the second determining unit is configured to implement the above step S115.
  • the position characteristic angle of the air-conditioning equipment is determined not according to the two wall corners on the same vertical plane as the air-conditioning equipment, but according to the two wall corners on the same horizontal plane as the air-conditioning equipment.
  • the third target wall corner is located on the same wall as the first target wall corner and the location of the air conditioning equipment, the first target wall corner and the third target wall corner are respectively located on both sides of the air conditioning equipment, and the second determining unit includes a seventh determining subunit, an eighth determining subunit, and a ninth determining subunit.
  • the seventh determining subunit is used to implement the above step S1157.
  • the eighth determination subunit is used to implement the above step S1158.
  • the ninth determination subunit is used to implement the above step S1159.
  • the first target wall corner is located on the right side of the air conditioning equipment
  • the third target wall corner is located on the left side of the air conditioning equipment
  • the second determining module includes a seventh determining unit, an eighth determining unit and a ninth determining unit.
  • the seventh determining unit is used to implement the above step S134.
  • the eighth determining unit is used to implement the above step S135.
  • the ninth determination unit is used to implement the above step S136.
  • the first target wall corner is located on the left side of the air conditioning equipment
  • the third target wall corner is located on the right side of the air conditioning equipment
  • the second determining module includes a tenth determining unit, an eleventh determining unit and a twelfth determining unit.
  • the tenth determination unit is used to implement the above step S137.
  • the eleventh determining unit is used to implement the above step S138.
  • the twelfth determination unit is used to implement the above step S139.
  • the second determination unit includes a first determination subunit, a second determination subunit and a third determination subunit.
  • the first determining subunit is configured to implement the above step S1151.
  • the second determining subunit is used to implement the above step S1152.
  • the third determination subunit is used to implement the above step S1153.
  • the second determination unit further includes a fourth determination subunit, a fifth determination subunit, and a sixth determination subunit.
  • the fourth determination subunit is used to implement the above step S1154.
  • the fifth determination subunit is used to implement the above step S1155.
  • the sixth determining subunit is used to implement the above step S1156.
  • the second determining module 204 includes a third determining unit, a fourth determining unit and a fifth determining unit.
  • the third determining unit is configured to implement the above step S131.
  • the fourth determination unit is used to implement the above step S132.
  • the fifth determining unit is used to implement the above step S133.
  • the air outlet parameters of the air conditioning equipment are preset. Therefore, when the installation position of the air conditioning equipment is automatically determined to be in the middle position, the preset air outlet parameters may not be corrected, that is, the compensation parameter is determined to be 0°, so that the operation of the air conditioning equipment is directly controlled by the preset air outlet parameters.
  • control module 206 includes a sixth determination unit and a control unit.
  • the sixth determining unit is used to implement the above step S151.
  • the control unit is used to implement the above step S153.
  • control unit is further configured to implement the above step S1531.
  • the target angle of the left and right wind guides of the air conditioning equipment is determined according to the working mode of the air conditioning equipment and the location of the user.
  • the target angles of left and right air guides corresponding to different working modes and different positions of users can be calibrated in advance.
  • the air outlet control device further includes a third determining module, a fourth determining module and a fifth determining module.
  • the third determination module is used to implement the above step S21.
  • the fourth determination module is used to implement the above step S23.
  • the fifth determining module is used to realize the above step S25.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory capable of directing a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means that implement the functions specified in one or more flows of the flowchart and/or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to generate computer-implemented processing, so that the instructions executed on the computer or other programmable equipment provide steps for realizing the functions specified in one flow or multiple flows of the flow chart and/or one or more square blocks of the block diagram.
  • first and second used in the embodiments of the present application are used for description purposes only, and cannot be understood as indicating or implying relative importance, or implicitly indicating the number of technical features indicated in this embodiment. Therefore, the features defined in terms of “first”, “second” and other terms in the embodiments of the present application may explicitly or implicitly indicate that at least one of the features is included in the embodiment.
  • the word “plurality” means at least two or two or more, such as two, three, four, etc., unless otherwise specifically defined in the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空气调节设备及基于其的出风控制方法、装置及介质,该方法包括:确定空气调节设备在室内的空间位置信息,其中,空间位置信息包括空气调节设备的安装位置和对应的位置特征角度;根据位置特征角度和安装位置确定补偿参数;根据补偿参数对空气调节设备的出风参数进行修正控制。

Description

空气调节设备及基于其的出风控制方法、装置及介质
相关申请的交叉引用
本申请要求于2022年01月21日提交的申请号为202210074212.9、名称为“空气调节设备及基于其的出风控制方法、装置及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及家用电器技术领域,尤其涉及一种空气调节设备及基于其的出风控制方法、装置及介质。
背景技术
在相关技术中,空气调节设备的出风控制策略在出厂前即已完成设置,当用户购买并安装该空气调节设备之后,空气调节设备只能够按照预先设置的出风控制策略运行,而无法根据实际使用场景对该出风控制策略自动进行修正。也即是说,相关技术中空气调节设备无法为用户提供智能、准确的送风服务,影响用户体验。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的一个目的在于提出一种基于空气调节设备的出风控制方法,该出风控制方法能够减少用户的操作步骤,有利于提升用户体验。
本申请的第二个目的在于提出一种计算机可读存储介质。
本申请的第三个目的在于提出一种空气调节设备。
本申请的第四个目的在于提出一种基于空气调节设备的出风控制装置。
为达上述目的,本申请第一方面实施例提出了一种基于空气调节设备的出风控制方法,该方法包括:确定空气调节设备在室内的空间位置信息,其中,所述空间位置信息包括所述空气调节设备的安装位置和对应的位置特征角度;根据所述位置特征角度和所述安装位置确定补偿参数;根据所述补偿参数对所述空气调节设备的出风参数进行修正控制。
根据本申请的基于空气调节设备的出风控制方法,能够自动检测空气调节设备在室内的空间位置信息,并根据检测到的空间位置信息自动调整空气调节设备的出风参数,以及根据调整后的出风参数控制空气调节设备运行,降低了用户的操作成本,能够为用户提供智能、精准的送风服务,改善用户体验。
在一个实施例中,确定空气调节设备在室内的空间位置信息,包括:确定室内的第一目标墙角和第二目标墙角,其中,所述第一目标墙角、所述第二目标墙角和所述空气调节设备所处位置在同一水平面,所述第一目标墙角和所述第二目标墙角均位于所述空气调节设备的一侧,所述第一目标墙角和所述空气调节设备所处位置位于同一墙面;将所述第一目标墙角与所述空气调节设备所处位置之间的连线作为第一夹角线,并将所述第二目标墙角与所述空气调节设备所处位置之间的连线作为第二夹角线,以及将所述第一夹角线与所述第二夹角线之间的夹角作为所述位置特征角度;根据所述位置特征角度确定所述安装位置。
在一个实施例中,第三目标墙角与所述第一目标墙角、所述空气调节设备所处位置位于所述同一墙面,所述第一目标墙角和所述第三目标墙角分别位于所述空气调节设备的两侧,其中,根据所述位置特征角度确定所述安装位置,包括:在所述位置特征角度大于0°且小于等于第一角度时,确定所述空气调节设备和所述第一目标墙角之间的距离大于所述空气调节设备和所述第三目标墙角之间的距离;在所述位置特征角度大于所述第一角度且小于等于第二角度时,确定所述空气调节设备和所述第一目标墙角之间的距离约等于所述空气调节设备和所述第三目标墙角之间的距离;在所述位置特征角度大于所述第二角度且小于等于90°时,确定所述空气调节设备和所述第一目标墙角之间的距离小于所述空气调节设备和所述第三目标墙角之间的距离。
在一个实施例中,根据所述位置特征角度和所述安装位置确定补偿参数,包括:在所述空气调节设备和所述第一目标墙角之间的距离大于所述空气调节设备和所述第三目标墙角之间的距离时,将所述位置特征角度对应的角度参数作为所述补偿参数;在所述空气调节设备和所述第一目标墙角之间的距离约等于所述空气调节设备和所述第三目标墙角之间的距离时,将0°作为所述补偿参数;在所述空气调节 设备和所述第一目标墙角之间的距离小于所述空气调节设备和所述第三目标墙角之间的距离时,将所述位置特征角度对应的角度参数的负值作为所述补偿参数。
在一个实施例中,所述第一目标墙角和所述第二目标墙角均位于所述空气调节设备的右侧,其中,根据所述位置特征角度确定所述安装位置,包括:在所述位置特征角度大于0°且小于等于第一角度时,确定所述空气调节设备安装在左侧位置;在所述位置特征角度大于所述第一角度且小于等于第二角度时,确定所述空气调节设备安装在中间位置,所述第一角度小于等于所述第二角度;在所述位置特征角度大于所述第二角度且小于等于90°时,确定所述空气调节设备安装在右侧位置。
在一个实施例中,所述第一目标墙角和所述第二目标墙角均位于所述空气调节设备的左侧,其中,根据所述位置特征角度确定所述安装位置,包括:在所述位置特征角度大于0°且小于等于第一角度时,确定所述空气调节设备安装在右侧位置;在所述位置特征角度大于所述第一角度且小于等于第二角度时,确定所述空气调节设备安装在中间位置,所述第一角度小于等于所述第二角度;在所述位置特征角度大于所述第二角度且小于等于90°时,确定所述空气调节设备安装在左侧位置。
在一个实施例中,根据所述位置特征角度和所述安装位置确定补偿参数,包括:在所述空气调节设备安装在左侧位置时,将所述位置特征角度对应的角度参数作为所述补偿参数;在所述空气调节设备安装在中间位置时,将0°作为所述补偿参数;在所述空气调节设备安装在右侧位置时,将所述位置特征角度对应的角度参数的负值作为所述补偿参数。
在一个实施例中,根据所述补偿参数对所述空气调节设备的出风参数进行修正控制,包括:确定所述空气调节设备的左右导风的目标角度;根据所述补偿参数对所述目标角度进行修正控制。
在一个实施例中,根据所述补偿参数对所述目标角度进行修正控制,包括:计算所述补偿参数与所述目标角度的和值,将所述和值作为修正后的目标角度,并根据所述修正后的目标角度控制所述空气调节设备。
在一个实施例中,所述空气调节设备的左右导风的目标角度根据所述空气调节设备的工作模式和用户的位置确定。
在一个实施例中,在所述空气调节设备处于风避人模式时,所述方法还包括:在用户处于第一位置时,确定所述空气调节设备的左右导风的目标角度与第三位置相对应;在用户处于第二位置时,确定所述空气调节设备的左右导风的目标角度与所述第一位置和所述第三位置相对应,其中,所述第一位置、所述第二位置和所述第三位置在水平方向上依次排列,且所述第二位置位于所述第一位置和所述第三位置之间;在用户处于所述第三位置时,确定所述空气调节设备的左右导风的目标角度与所述第一位置相对应。
为达上述目的,本申请第二方面实施例提出了一种计算机可读存储介质,其上存储有基于空气调节设备的出风控制程序,该出风控制程序被处理器执行时实现上述任一实施例的基于空气调节设备的出风控制方法。
根据本申请的计算机可读存储介质,能够自动检测空气调节设备在室内的空间位置信息,并根据检测到的空间位置信息自动调整空气调节设备的出风参数,以及根据调整后的出风参数控制空气调节设备运行,降低了用户的操作成本,能够为用户提供智能、精准的送风服务,改善用户体验。
为达上述目的,本申请第三方面实施例提出了一种空气调节设备,所述空气调节设备包括存储器、处理器及存储在存储器上并可在处理器上运行的基于空气调节设备的出风控制程序,所述处理器执行所述基于空气调节设备的出风控制程序时,实现上述任一实施例的基于空气调节设备的出风控制方法。
根据本申请的空气调节设备,能够自动检测空气调节设备在室内的空间位置信息,并根据检测到的空间位置信息自动调整空气调节设备的出风参数,以及根据调整后的出风参数控制空气调节设备运行,降低了用户的操作成本,能够为用户提供智能、精准的送风服务,改善用户体验。
为达上述目的,本申请第四方面实施例提出了一种基于空气调节设备的出风控制装置,该装置包括第一确定模块、第二确定模块和控制模块。第一确定模块用于确定空气调节设备在室内的空间位置信息,其中,所述空间位置信息包括所述空气调节设备的安装位置和对应的位置特征角度。第二确定模块用于根据所述位置特征角度和所述安装位置确定补偿参数。控制模块用于根据所述补偿参数对所述空气调节设备的出风参数进行修正控制。
根据本申请的基于空气调节设备的出风控制装置,能够自动检测空气调节设备在室内的空间位置信息,并根据检测到的空间位置信息自动调整空气调节设备的出风参数,以及根据调整后的出风参数控制空气调节设备运行,降低了用户的操作成本,能够为用户提供智能、精准的送风服务,改善用户体验。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的出风控制方法的流程示意图;
图2是根据本申请实施例的出风控制方法的另一流程示意图;
图3是根据本申请实施例的出风控制方法的场景示意图;
图4是根据本申请实施例的出风控制方法的另一流程示意图;
图5是根据本申请实施例的出风控制方法的另一流程示意图;
图6是根据本申请实施例的出风控制方法的另一流程示意图;
图7是根据本申请实施例的出风控制方法的另一流程示意图;
图8是根据本申请实施例的出风控制方法的另一场景示意图;
图9是根据本申请实施例的出风控制方法的另一场景示意图;
图10是根据本申请实施例的出风控制方法的另一场景示意图;
图11是根据本申请实施例的出风控制方法的另一场景示意图;
图12是根据本申请实施例的空气调节设备的结构框图;
图13是根据本申请实施例的出风控制装置的结构框图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为清楚说明本申请实施例的空气调节设备及基于其的出风控制方法、装置及介质,下面结合图1所示的基于空气调节设备的出风控制方法的流程示意图进行描述。如图1所示,本申请实施例的基于空气调节设备的出风控制方法包括以下步骤:
S11:确定空气调节设备在室内的空间位置信息,其中,空间位置信息包括空气调节设备的安装位置和对应的位置特征角度;
S13:根据位置特征角度和安装位置确定补偿参数;
S15:根据补偿参数对空气调节设备的出风参数进行修正控制。
根据本申请的基于空气调节设备的出风控制方法,能够自动检测空气调节设备在室内的空间位置信息,并根据检测到的空间位置信息自动调整空气调节设备的出风参数,以及根据调整后的出风参数控制空气调节设备运行,降低了用户的操作成本,能够为用户提供智能、精准的送风服务,改善用户体验。
可以理解,在相关技术中,对于普通的空气调节设备,其无法自我检知自身在室内的安装位置,其对应的遥控器也不存在相关功能设定,当空气调节设备安装在靠近左侧墙壁的位置或者靠近右侧墙壁的位置时,空气调节设备根据预先设置的出风控制策略进行左右扫风,可能存在长时间对着左侧墙壁或者对着右侧墙壁进行送风的情况,容易造成冷量的浪费,降低空气调节设备的整体节能性,而解决措施是需要用户手动调整并固定左右导风板的出风角度,但是,这样不仅增加了用户的操作成本,而且在空气调节设备朝某一固定的角度持续进行送风时,一方面无法满足用户均匀送风的需求,另一方面容易对用户的身体健康造成危害。对于高端的空气调节设备,其无法自我检知自身在室内的安装位置,需要通过安装人员在其对应的遥控器上设定空气调节设备的安装位置,但是,相关的设定比较粗放,只能够设定空气调节设备的粗略安装位置,出风控制的精度仍然较差,并且在空气调节设备的安装位置发生改变时,需要重新设定安装位置,否则同样存在普通的空气调节设备具备的缺陷。
也即是说,在相关技术中,空气调节设备无法自动检测自身在室内的安装位置,并自动根据自身在 室内的安装位置调整空气调节设备的出风参数,从而相关技术中的空气调节设备存在智能化程度低、出风控制精度低、操作复杂、影响用户体验等问题。
而在本申请的基于空气调节设备的出风控制方法中,空气调节设备能够自动确定自身在室内的安装位置以及室内用户的位置,以及与该安装位置相对应的位置特征角度,并根据自动确定的安装位置和自动确定的位置特征角度确定补偿参数,以及根据补偿参数修正空气调节设备的出风参数,从而在进行出风控制时,可以自动根据修正后的出风参数控制空气调节设备,提高了空气调节设备的智能化程度,无需用户进行复杂的操作,即可实现较精准地出风控制,有利于改善用户体验。
具体地,空气调节设备包括但不限于挂壁式空调器。在某些实施例中,空气调节设备自身可包括雷达或者其他位置检知传感器,通过分析获取到的雷达数据或者其他位置检知传感器数据可以自动确定出空气调节设备在室内的空间位置信息。在某些实施例中,空气调节设备在室内的空间位置信息也可由其他家用电器自动生成,空气调节设备能够与其他家用电器进行通信,并获得自身的空间位置信息。其他家用电器包括但不限于电视机、饮水机、扫地机器人或其他空气调节设备等。在其他实施例中,空间位置信息也可由用户主动输入,从而满足不同用户的控制需求,在此不作限定。
可以预先标定并存储不同位置特征角度、不同安装位置与补偿参数的对应关系,这样在确定安装位置和位置特征角度之后,可以结合该对应关系快速、直接地确定对应的补偿参数。也可以不预先标定该对应关系,在确定安装位置和位置特征角度之后,实时计算对应的补偿参数,如此,能够节省存储空间。
空气调节设备的出风参数包括但不限于左右导风的角度、上下导风的角度、出风时长等。空气调节设备的出风参数可以是未考虑不同空间位置信息而预先设置的参数,其可以存储在空气调节设备上,也可以存储在云端,当出风参数存储在云端时,空气调节设备可与云端进行通信,以获得出风参数。
在某些实施例中,空气调节设备的出风参数可与空气调节设备的工作模式和用户的位置相关。工作模式可包括功能模式和送风模式,功能模式可包括风避人模式和普通模式,送风模式可包括制冷模式、除湿模式、制热模式等。每一种工作模式、用户的位置对应的出风参数可部分相同,也可完全不同。
请参阅图2,在一个实施例中,步骤S11包括:
S111:确定室内的第一目标墙角和第二目标墙角,其中,第一目标墙角、第二目标墙角和空气调节设备所处位置在同一水平面,第一目标墙角和第二目标墙角均位于空气调节设备的一侧,第一目标墙角和空气调节设备所处位置位于同一墙面;
S113:将第一目标墙角与空气调节设备所处位置之间的连线作为第一夹角线,并将第二目标墙角与空气调节设备所处位置之间的连线作为第二夹角线,以及将第一夹角线与第二夹角线之间的夹角作为位置特征角度;
S115:根据位置特征角度确定安装位置。
如此,能够自动确定空气调节设备安装在室内时的位置特征角度以及安装位置。可以理解,由于空气调节设备的安装位置对水平方向扫风也即左右扫风的影响较大,而对竖直方向扫风也即上下扫风的影响较小,因此,不是根据与空气调节设备所处位置处于同一竖直面的两个墙角确定空气调节设备的位置特征角度,而是根据与空气调节设备所处位置处于同一水平面的两个墙角确定空气调节设备的位置特征角度,这样根据位置特征角度确定的补偿参数能够更好地修正空气调节设备的出风参数。
具体地,空气调节设备可安装在室内的第一墙壁上,此时,安装位置可以理解为空气调节设备相对于第一墙壁的位置。室内可包括分别与安装空气调节设备的第一墙壁相连的第一侧壁和第二侧壁,以及与第一侧壁和第二侧壁相连并与第一墙壁相对设置的第二墙壁。空气调节设备所处位置的水平面可与第一墙壁相交于第一线段,可与第二墙壁相交于第二线段,可与第一侧壁相交于第三线段,可与第二侧壁相交于第四线段。请结合图3,第一线段Q1Q2、第二线段Q3Q4、第三线段Q1Q3和第四线段Q2Q4可围成四边形封闭空间,四边形封闭空间的四个顶点Q1、Q2、Q3、Q4可以理解为四个墙角。第一目标墙角可以理解为第三线段Q1Q3的其中一端的顶点,第二目标墙角可以理解为第三线段Q1Q3的另外一端的顶点;或者,第一目标墙角可以理解为第四线段Q2Q4的其中一端的顶点,第二目标墙角可以理解为第四线段Q2Q4的另外一端的顶点。
进一步地,空气调节设备可包括雷达,可以空气调节设备所在位置为坐标原点O建立直角坐标系,根据雷达接收到的回波数据可以确定室内与空气调节设备所在位置处于同一水平面的四个墙角的坐标, 进而可以计算第二夹角线和第一夹角线之间的夹角的角度值,并将该角度值作为位置特征角度,以及根据该角度值确定安装位置。
在一个例子中,第一目标墙角为Q1,第二目标墙角为Q3,则第一夹角线为OQ1,第二夹角线为OQ3,由于第二目标墙角Q3的坐标和第一目标墙角Q1的坐标已知,并且第一目标墙角Q1与第二目标墙角Q3之间的连线Q1Q3与第一夹角线OQ1和第二夹角线OQ3共同构成直角三角形,位置特征角度α可通过以下公式计算:α=arccos(a/b),其中,a表示第一夹角线OQ1的长度,b表示第二夹角线OQ3的长度。
需要指出的是,位置特征角度是第一夹角线与第二夹角线所形成的锐角的角度,而不是第一夹角线与第二夹角线所形成的钝角的角度。位置特征角度小于或者等于90度。
在一个实施例中,第三目标墙角与第一目标墙角、空气调节设备所处位置位于同一墙面,第一目标墙角和第三目标墙角分别位于空气调节设备的两侧,其中,步骤S115包括:
S1157:在位置特征角度大于0°且小于等于第一角度时,确定空气调节设备和第一目标墙角之间的距离大于空气调节设备和第三目标墙角之间的距离;
S1158:在位置特征角度大于第一角度且小于等于第二角度时,确定空气调节设备和第一目标墙角之间的距离约等于空气调节设备和第三目标墙角之间的距离;
S1159:在位置特征角度大于第二角度且小于等于90°时,确定空气调节设备和第一目标墙角之间的距离小于空气调节设备和第三目标墙角之间的距离。
如此,能够根据位置特征角度自动确定空气调节设备靠近第一目标墙角、还是靠近第三目标墙角、还是与第一目标墙角和第三目标墙角距离基本相等。
具体地,第一角度可为40°,第二角度可为50°,即在位置特征角度大于0°且小于等于40°时,可以自动确定空气调节设备和第一目标墙角之间的距离大于空气调节设备和第三目标墙角之间的距离;在位置特征角度大于40°且小于等于50°时,可以自动确定空气调节设备和第一目标墙角之间的距离约等于空气调节设备和第三目标墙角之间的距离;在位置特征角度大于50°且小于等于90°时,可以自动确定空气调节设备和第一目标墙角之间的距离小于空气调节设备和第三目标墙角之间的距离。
在一个实施例中,第一目标墙角位于空气调节设备的右侧,第三目标墙角位于空气调节设备的左侧,步骤S13包括:
S134:在空气调节设备和第一目标墙角之间的距离大于空气调节设备和第三目标墙角之间的距离时,将位置特征角度对应的角度参数作为补偿参数;
S135:在空气调节设备和第一目标墙角之间的距离约等于空气调节设备和第三目标墙角之间的距离时,将0°作为补偿参数;
S136:在空气调节设备和第一目标墙角之间的距离小于空气调节设备和第三目标墙角之间的距离时,将位置特征角度对应的角度参数的负值作为补偿参数。
如此,根据空气调节设备的安装位置选择较合适的补偿参数,有利于针对不同的安装位置进行修正控制。可以理解,通常情况下,基于空气调节设备安装在中间位置即空气调节设备和第一目标墙角之间的距离约等于空气调节设备和第三目标墙角之间的距离的情形,预先设置空气调节设备的出风参数,因此,在自动确定空气调节设备和第一目标墙角之间的距离约等于空气调节设备和第三目标墙角之间的距离时,可以不对预先设置的出风参数进行修正,即确定补偿参数为0°,从而直接采用预先设置的出风参数控制空气调节设备运行。
具体地,位置特征角度对应的角度参数为正值。若将位置特征角度对应的角度参数记为α,则位置特征角度对应的角度参数的负值为-α。在空气调节设备与自身右侧的墙角距离更近时,补偿参数为负值;在空气调节设备与自身左侧的墙角距离更近时,补偿参数为正值。补偿参数也即用于对角度进行补偿的角度值。
请参阅图4,在一个实施例中,第一目标墙角和第二目标墙角均位于空气调节设备的右侧,其中,步骤S115包括:
S1151:在位置特征角度大于0°且小于等于第一角度时,确定空气调节设备安装在左侧位置;
S1152:在位置特征角度大于第一角度且小于等于第二角度时,确定空气调节设备安装在中间位置, 第一角度小于等于第二角度;
S1153:在位置特征角度大于第二角度且小于等于90°时,确定空气调节设备安装在右侧位置。
如此,能够根据位置特征角度自动确定空气调节设备的安装位置是位于左侧位置、位于中间位置还是位于右侧位置。
具体地,第一角度可为40°,第二角度可为50°,即在位置特征角度大于0°且小于等于40°时,可以自动确定空气调节设备的安装位置为位于左侧位置;在位置特征角度大于40°且小于等于50°时,可以自动确定空气调节设备的安装位置为位于中间位置;在位置特征角度大于50°且小于等于90°时,可以自动确定空气调节设备的安装位置为位于右侧位置。
需要指出的是,空气调节设备的右侧,应当理解为空气调节设备自身的右侧,也即沿着空气调节设备的出风方向的右侧,而不能够直接理解为用户视线的右侧,因为用户视线的右侧可能与空气调节设备的右侧是完全相反的两个方向。空气调节设备能够预先确定自身的右侧的两个目标墙角,并确定自身的右侧的两个目标墙角中的第一目标墙角和第二目标墙角,进而根据自身的右侧的两个目标墙角确定空气调节设备的安装位置。同样地,左侧位置,应当理解为墙壁自身的左侧位置,而不能够直接理解为用户视线的左侧位置;右侧位置,应当理解为墙壁自身的右侧位置,而不能够直接理解为用户视线的右侧位置。
请参阅图5,在一个实施例中,第一目标墙角和第二目标墙角均位于空气调节设备的左侧,其中,步骤S115包括:
S1154:在位置特征角度大于0°且小于等于第一角度时,确定空气调节设备安装在右侧位置;
S1155:在位置特征角度大于第一角度且小于等于第二角度时,确定空气调节设备安装在中间位置,第一角度小于等于第二角度;
S1156:在位置特征角度大于第二角度且小于等于90°时,确定空气调节设备安装在左侧位置。
如此,能够根据位置特征角度自动确定空气调节设备的安装位置是左侧位置、中间位置还是右侧位置。
如此,能够根据位置特征角度自动确定空气调节设备的安装位置是位于左侧位置、位于中间位置还是位于右侧位置。
具体地,第一角度可为40°,第二角度可为50°,即在位置特征角度大于0°且小于等于40°时,可以自动确定空气调节设备的安装位置为位于右侧位置;在位置特征角度大于40°且小于等于50°时,可以自动确定空气调节设备的安装位置为位于中间位置;在位置特征角度大于50°且小于等于90°时,可以自动确定空气调节设备的安装位置为位于左侧位置。
需要指出的是,空气调节设备的左侧,应当理解为空气调节设备自身的左侧,也即沿着空气调节设备的出风方向的左侧,而能够当直接理解为用户视线的左侧,因为用户视线的左侧可能与空气调节设备的左侧是完全相反的两个方向。空气调节设备能够预先确定自身的左侧的两个目标墙角,并确定自身的左侧的两个目标墙角中的第一目标墙角和第二目标墙角,进而根据自身的左侧的两个目标墙角确定空气调节设备的安装位置。同样地,左侧位置,应当理解为墙壁自身的左侧位置,而不能够直接理解为用户视线的左侧位置;右侧位置,应当理解为墙壁自身的右侧位置,而不能够直接理解为用户视线的右侧位置。
请参阅图6,在一个实施例中,步骤S13包括:
S131:在空气调节设备安装在左侧位置时,将位置特征角度对应的角度参数作为补偿参数;
S132:在空气调节设备安装在中间位置时,将0°作为补偿参数;
S133:在空气调节设备安装在右侧位置时,将位置特征角度对应的角度参数的负值作为补偿参数。
如此,根据空气调节设备的安装位置选择较合适的补偿参数,有利于针对不同的安装位置进行修正控制。可以理解,通常情况下,基于空气调节设备安装在中间位置的情形,预先设置空气调节设备的出风参数,因此,在自动确定空气调节设备的安装位置为位于中间位置时,可以不对预先设置的出风参数进行修正,即确定补偿参数为0°,从而直接采用预先设置的出风参数控制空气调节设备运行。
具体地,位置特征角度对应的角度参数为正值。若将位置特征角度对应的角度参数记为α,则位置特征角度对应的角度参数的负值为-α。补偿参数也即用于对角度进行补偿的角度值。
请参阅图7,在一个实施例中,步骤S15包括:
S151:确定空气调节设备的左右导风的目标角度;
S153:根据补偿参数对目标角度进行修正控制。
如此,能够为用户提供智能、准确的送风服务。
具体地,在一个实施例中,空气调节设备的左右导风的目标角度根据空气调节设备的工作模式和用户的位置确定。工作模式可包括功能模式和送风模式,功能模式可包括风避人模式和普通模式,送风模式可包括制冷模式、除湿模式、制热模式等。用户的位置可以通过空气调节设备上安装的雷达确定。每一种工作模式、用户的位置对应的左右导风的目标角度可部分相同,也可完全不同。可以预先建立每一种工作模式、用户的位置与左右导风的目标角度的映射关系,这样能够根据该映射关系、空气调节设备的工作模式和用户的位置快速确定空气调节设备的左右导风的目标角度。
进一步地,在一个实施例中,步骤S153包括:S1531计算补偿参数与目标角度的和值,将和值作为修正后的目标角度,并根据修正后的目标角度控制空气调节设备。
在一个实施例中,在空气调节设备处于风避人模式时,方法还包括:
S21:在用户处于第一位置时,确定空气调节设备的左右导风的目标角度与第三位置相对应;
S23:在用户处于第二位置时,确定空气调节设备的左右导风的目标角度与第一位置和第三位置相对应,其中,第一位置、第二位置和第三位置在水平方向上依次排列,且第二位置位于第一位置和第三位置之间;
S25:在用户处于第三位置时,确定空气调节设备的左右导风的目标角度与第一位置相对应。
如此,预先建立风避人模式下的出风参数控制策略,从而达到风避人的效果。
具体地,用户的位置可同时包括水平位置和远近位置,请结合图8和图9,用户的水平位置可包括第一位置①、第二位置②和第三位置③,用户的远近位置可包括位置A、位置B和位置C。如此,从水平方向和远近方向两个维度上针对风避人目的预先设置空气调节设备的出风参数。
第一位置①、第二位置②和第三位置③可以根据空气调节设备左右导风的有效范围进行设置,例如,当空气调节设备左右导风的有效范围为120°时,可以每隔40°划分一个区域,从而确定第一位置①、第二位置②和第三位置③。位置A、位置B和位置C可以根据空气调节设备上下导风的有效范围进行设置,例如,当空气调节设备上下导风的有效范围为60°时,可以每隔20°划分一个区域,从而确定位置A、位置B和位置C。
在预先设置的空气调节设备的出风参数中,在功能模式为风避人模式、送风模式为制冷模式的情况下,若检测到用户的水平位置处于第一位置①,则确定左右导风的目标角度与第三位置③相对应,同时,上下导风的目标角度根据用户的远近位置确定,即,若用户的远近位置处于位置A,则确定上下导风的目标角度与位置C相对应,若用户的远近位置处于位置C,则确定上下导风的目标角度与位置A相对应,若用户的远近位置处于位置B、位置AB、位置BC、位置AC或者位置ABC,则确定上下导风的目标角度为冷房上限,从而尽量避免直接对用户所处的位置进行送风;若检测到用户的水平位置处于第二位置②,则确定左右导风的目标角度为广角,同时上下导风的目标角度设置为冷房上限,从而尽量避免直接对用户所处的位置进行送风;若检测到用户的位置处于第三位置③,则确定左右导风的目标角度与第一位置①相对应,同时上下导风的目标角度根据用户的远近位置确定;若检测到用户的位置处于第一位置①和第二位置②,则确定左右导风的目标角度与第三位置③相对应,同时上下导风的目标角度设置为冷房上限;若检测到用户的位置处于第二位置②和第三位置③,则确定左右导风的目标角度与第一位置①相对应,同时上下导风的目标角度设置为冷房上限;若检测到用户的位置处于第一位置①和第三位置③,则确定左右导风的目标角度为居中,同时上下导风的目标角度设置为冷房上限;若检测到用户的位置处于第一位置①、第二位置②和第三位置③,则确定左右导风的目标角度为居中,同时上下导风的目标角度设置为冷房上限。
在预先设置的空气调节设备的出风参数中,在功能模式为风避人模式、送风模式为除湿模式的情况下,若检测到用户的水平位置处于第一位置①,则确定左右导风的目标角度与第三位置③相对应,同时上下导风的目标角度根据用户的远近位置确定,可以统一设定为除湿上限,从而尽量避免直接对用户所处的位置进行送风;若检测到用户的水平位置处于第二位置②,则确定左右导风的目标角度为广角,同 时上下导风的目标角度设置为冷房上限,从而尽量避免直接对用户所处的位置进行送风;若检测到用户的位置处于第三位置③,则确定左右导风的目标角度与第一位置①相对应,同时上下导风的目标角度根据用户的远近位置确定,可以统一设定为除湿上限;若检测到用户的位置处于第一位置①和第二位置②,则确定左右导风的目标角度与第三位置③相对应,同时上下导风的目标角度设置为冷房上限;若检测到用户的位置处于第二位置②和第三位置③,则确定左右导风的目标角度与第一位置①相对应,同时上下导风的目标角度设置为冷房上限;若检测到用户的位置处于第一位置①和第三位置③,则确定左右导风的目标角度为居中,同时上下导风的目标角度设置为冷房上限;若检测到用户的位置处于第一位置①、第二位置②和第三位置③,则确定左右导风的目标角度为居中,同时上下导风的目标角度设置为冷房上限。
在预先设置的空气调节设备的出风参数中,在功能模式为风避人模式、送风模式为制热模式的情况下,若检测到用户的水平位置处于第一位置①,则确定左右导风的目标角度与第三位置③相对应;若检测到用户的水平位置处于第二位置②,则确定左右导风的目标角度为广角;若检测到用户的位置处于第三位置③,则确定左右导风的目标角度与第一位置①相对应;若检测到用户的位置处于第一位置①和第二位置②,则确定左右导风的目标角度与第三位置③相对应;若检测到用户的位置处于第二位置②和第三位置③,则确定左右导风的目标角度与第一位置①相对应;若检测到用户的位置处于第一位置①和第三位置③,则确定左右导风的目标角度为居中;若检测到用户的位置处于第一位置①、第二位置②和第三位置③,则确定左右导风的目标角度为居中。在制热模式中,上下导风板的目标角度统一设定为制热下限,同时,还可以打开无风感导风板,以进一步达到风避人的效果。
需要指出的是,空气调节设备可包括左侧导风板和右侧导风板,左侧导风板和右侧导风板可独立运行,上述“广角”,可以理解为,将左侧导风板的左右导风的目标角度设置为与第三位置③相对应,将右侧导风板的左右导风的目标角度设置为与第一位置①相对应,从而使得左侧导风板和右侧导风板呈“八”字型并进行导风。上述“居中”,可以理解为,将左侧导风板和右侧导风板的设置为平行向前,从而使得空气调节设备向自身正前方区域进行送风。上述“冷房上限”,可以理解为,制冷模式下空气调节设备的上下导风板往上转动的极限位置。上述“除湿上限”,可以理解为,除湿模式下空气调节设备的上下导风板往上转动的极限位置。在某些实施例中,冷房上限与除湿上限对应的上下扫风的角度相同,在某些实施例中,为了避免制冷模式下水蒸气在导风板上液化成水滴进而回流至空气调节设备内部,冷房上限对应的上下扫风的角度小于除湿上限对应的上下扫风的角度,例如,冷房上限可以设置为水平面向上20°,除湿上限可以设置为水平面向上25°。上述“制热下限”,可以理解为,制热模式下空气调节设备的上下导风板往下转动的极限位置,例如,水平面向下90°。
进一步地,在根据空气调节设备在室内的空间位置信息确定补偿参数θ后,可以对上述预先设置的出风参数进行修正控制。修正后的出风参数如表1和表2所示。
表1 风避人模式-修正后的出风参数
Figure PCTCN2022101551-appb-000001
表2 风避人模式-远近
Figure PCTCN2022101551-appb-000002
请结合图10,图10为空气调节装置(空调)移位后相关技术的出风控制与本方法的出风控制的一个场景示意图,从图中可以看出,在风避人模式下,当用户位于第一位置①时,左右导风的目标角度与第三位置③相对应,当空气调节设备向右移位之后,在用户仍然处于第一位置①的情况下,相关技术中的空气调节设备的左右导风的角度仍然保持原角度不变,存在吹到用户的情况,而本申请的空气调节设备的左右导风的角度根据空气调节设备的空间位置信息进行修正,能够避免吹到用户,实现风避人功能。
请结合图11,图11为空气调节装置(空调)移位后相关技术的出风控制与本方法的出风控制的另一个场景示意图,从图中可以看出,在风避人模式下,当用户位于第一位置①时,左右导风的目标角度与第三位置③相对应,当空气调节设备向左移位之后,在用户仍然处于第一位置①的情况下,相关技术中的空气调节设备的左右导风的角度仍然保持原角度不变,存在持续大面积地对墙壁进行送风、浪费冷量的情况,而本申请的空气调节设备的左右导风的角度根据空气调节设备的空间位置信息进行修正,能够有效减少朝向墙壁送风的情况,同时能够保证风避人功能。
需要指出的是,本方法的出风参数的修正控制的原理可以理解为:当空气调节设备安装在左侧位置时,将出风参数中左右导风的角度全部向右偏置位置特征角度;当空气调节设备安装在右侧位置时,将出风参数中左右导风的角度全部向左偏置位置特征角度。因此,在空气调节设备的左右导风板朝向左侧时定义的角度值小于左右导风板朝向右侧时定义的角度值时,例如,在预先设定左右导风板水平朝前时的角度为0度、左右导风板朝左转动的角度为负值、左右导风板朝右转动的角度为正值时,或者,在预先设定左右导风板朝左转动的极限角度为0度、左右导风板从左往右转动角度逐渐增大时,可以采用上述步骤S131、步骤S132和步骤S133确定补偿参数。而在空气调节设备的左右导风板朝向左侧时定义的角度值大于左右导风板朝向右侧时定义的角度值时,例如,在预先设定左右导风板水平朝前时的角度为0度、左右导风板朝左转动的角度为正值、左右导风板朝右转动的角度为负值时,或者,在预先设定左右导风板朝右转动的极限角度为0度、左右导风板从右往左转动角度逐渐增大时,若确定空气调节设备安装在左侧位置,可以将位置特征角度的负值确定为补偿参数;若确定空气调节设备安装在中间位置,可以将0°确定为补偿参数;若确定空气调节设备安装在右侧位置时,可以将位置特征角度直接确定为补偿参数。
在某些实施例中,在修正后的左右导风的角度超过空气调节设备的左右导风板的转动极限时,按照左右导风板的转动极限对应的角度进行出风控制。
需要指出的是,上述所提到的具体数值只为了作为例子详细说明本申请的实施,而不应理解为对本申请的限制。在其它例子或实施方式或实施例中,可根据本申请来选择其它数值,在此不作具体限定。
为了实现上述实施例,本申请实施例还提出一种计算机可读存储介质,该计算机可读存储介质可实现上述任一实施例的基于空气调节设备的出风控制方法。本申请提出的计算机可读存储介质,其上存储有基于空气调节设备的出风控制程序,该出风控制程序被处理器执行时实现上述任一实施例的基于空气调节设备的出风控制方法。
根据本申请的计算机可读存储介质,能够自动检测空气调节设备在室内的空间位置信息,并根据检测到的空间位置信息自动调整空气调节设备的出风参数,以及根据调整后的出风参数控制空气调节设备运行,降低了用户的操作成本,能够为用户提供智能、精准的送风服务,改善用户体验。
在一个例子中,在出风控制程序被处理器执行的情况下,可以实现上述实施例的步骤S11、步骤S13和步骤S15。
为了实现上述实施例,本申请实施例还提出一种空气调节设备,该空气调节设备可实现上述任一实施例的基于空气调节设备的出风控制方法。图12是根据本申请一个实施例的空气调节设备的结构框图。 如图12所示,本申请提出的空气调节设备100包括存储器102、处理器104及存储在存储器102上并可在处理器104上运行的基于空气调节设备100的出风控制程序106,处理器104执行基于空气调节设备100的出风控制程序106时,实现上述任一实施例的基于空气调节设备100的出风控制方法。
根据本申请的空气调节设备100,能够自动检测空气调节设备100在室内的空间位置信息,并根据检测到的空间位置信息自动调整空气调节设备100的出风参数,以及根据调整后的出风参数控制空气调节设备100运行,降低了用户的操作成本,能够为用户提供智能、精准的送风服务,改善用户体验。
可以理解,在相关技术中,对于普通的空气调节设备,其无法自我检知自身在室内的安装位置,其对应的遥控器也不存在相关功能设定,当空气调节设备安装在靠近左侧墙壁的位置或者靠近右侧墙壁的位置时,空气调节设备根据预先设置的出风控制策略进行左右扫风,可能存在长时间对着左侧墙壁或者对着右侧墙壁进行送风的情况,容易造成冷量的浪费,降低空气调节设备的整体节能性,而解决措施是需要用户手动调整并固定左右导风板的出风角度,但是,这样不仅增加了用户的操作成本,而且在空气调节设备朝某一固定的角度持续进行送风时,一方面无法满足用户均匀送风的需求,另一方面容易对用户的身体健康造成危害。对于高端的空气调节设备,其无法自我检知自身在室内的安装位置,需要通过安装人员在其对应的遥控器上设定空气调节设备的安装位置,但是,相关的设定比较粗放,只能够设定空气调节设备的粗略安装位置,出风控制的精度仍然较差,并且在空气调节设备的安装位置发生改变时,需要重新设定安装位置,否则同样存在普通的空气调节设备具备的缺陷。
也即是说,在相关技术中,空气调节设备无法自动检测自身在室内的安装位置,并自动根据自身在室内的安装位置调整空气调节设备的出风参数,从而相关技术中的空气调节设备存在智能化程度低、出风控制精度低、操作复杂、影响用户体验等问题。
而在本申请的空气调节设备中,空气调节设备能够自动确定自身在室内的安装位置,以及与该安装位置相对应的位置特征角度,并根据自动确定的安装位置和自动确定的位置特征角度确定补偿参数,以及根据补偿参数修正空气调节设备的出风参数,从而在进行出风控制时,可以自动根据修正后的出风参数控制空气调节设备,提高了空气调节设备的智能化程度,无需用户进行复杂的操作,即可实现较精准地出风控制,有利于改善用户体验。
具体地,空气调节设备包括但不限于挂壁式空调器。在某些实施例中,空气调节设备自身可包括雷达或者其他位置检知传感器,通过分析获取到的雷达数据或者其他位置检知传感器数据可以自动确定出空气调节设备在室内的空间位置信息以及室内用户的位置。在某些实施例中,空气调节设备在室内的空间位置信息也可由其他家用电器自动生成,空气调节设备能够与其他家用电器进行通信,并获得自身的空间位置信息。其他家用电器包括但不限于电视机、饮水机、扫地机器人或其他空气调节设备等。在其他实施例中,空间位置信息也可由用户主动输入,从而满足不同用户的控制需求,在此不作限定。
可以预先标定并存储不同位置特征角度、不同安装位置与补偿参数的对应关系,这样在确定安装位置和位置特征角度之后,可以结合该对应关系快速、直接地确定对应的补偿参数。也可以不预先标定该对应关系,在确定安装位置和位置特征角度之后,实时计算对应的补偿参数,如此,能够节省存储空间。
空气调节设备的出风参数包括但不限于左右导风的角度、上下导风的角度、出风时长等。空气调节设备的出风参数可以是未考虑不同空间位置信息而预先设置的参数,其可以存储在空气调节设备上,也可以存储在云端,当出风参数存储在云端时,空气调节设备可与云端进行通信,以获得出风参数。
在某些实施例中,空气调节设备的出风参数可与空气调节设备的工作模式和用户的位置相关。工作模式可包括功能模式和送风模式,功能模式可包括风避人模式和普通模式,送风模式可包括制冷模式、除湿模式、制热模式等。每一种工作模式、用户的位置对应的出风参数可部分相同,也可完全不同。
在一个例子中,在出风控制程序106被处理器104执行的情况下,可以实现上述实施例的步骤S11、步骤S13和步骤S15。
为了实现上述实施例,本申请实施例还提出一种出风控制装置,该出风控制装置可实现上述任一实施例的基于空气调节设备的出风控制方法。图13是根据本申请一个实施例的出风控制装置的结构框图。如图13所示,本申请提出的基于空气调节设备的出风控制装置200包括第一确定模块202、第二确定模块204和控制模块206。第一确定模块202用于确定空气调节设备在室内的空间位置信息,其中,空间位置信息包括空气调节设备的安装位置和对应的位置特征角度。第二确定模块204用于根据位置特征 角度和安装位置确定补偿参数。控制模块206用于根据补偿参数对空气调节设备的出风参数进行修正控制。
根据本申请的基于空气调节设备的出风控制装置200,能够自动检测空气调节设备在室内的空间位置信息,并根据检测到的空间位置信息自动调整空气调节设备的出风参数,以及根据调整后的出风参数控制空气调节设备运行,降低了用户的操作成本,能够为用户提供智能、精准的送风服务,改善用户体验。
在一个实施例中,第一确定模块202包括第一确定单元、计算单元和第二确定单元。第一确定单元用于实现上述步骤S111。计算单元用于实现上述步骤S113。第二确定单元用于实现上述步骤S115。
如此,能够自动确定空气调节设备安装在室内时的位置特征角度以及安装位置。可以理解,由于空气调节设备的安装位置对水平方向扫风也即左右扫风的影响较大,而对竖直方向扫风也即上下扫风的影响较小,因此,不是根据与空气调节设备所处位置处于同一竖直面的两个墙角确定空气调节设备的位置特征角度,而是根据与空气调节设备所处位置处于同一水平面的两个墙角确定空气调节设备的位置特征角度,这样根据位置特征角度确定的补偿参数能够更好地修正空气调节设备的出风参数。
在一个实施例中,第三目标墙角与第一目标墙角、空气调节设备所处位置位于同一墙面,第一目标墙角和第三目标墙角分别位于空气调节设备的两侧,第二确定单元包括第七确定子单元、第八确定子单元和第九确定子单元。第七确定子单元用于实现上述步骤S1157。第八确定子单元用于实现上述步骤S1158。第九确定子单元用于实现上述步骤S1159。
在一个实施例中,第一目标墙角位于空气调节设备的右侧,第三目标墙角位于空气调节设备的左侧,第二确定模块包括第七确定单元、第八确定单元和第九确定单元。第七确定单元用于实现上述步骤S134。第八确定单元用于实现上述步骤S135。第九确定单元用于实现上述步骤S136。
在一个实施例中,第一目标墙角位于空气调节设备的左侧,第三目标墙角位于空气调节设备的右侧,第二确定模块包括第十确定单元、第十一确定单元和第十二确定单元。第十确定单元用于实现上述步骤S137。第十一确定单元用于实现上述步骤S138。第十二确定单元用于实现上述步骤S139。
在一个实施例中,第二确定单元包括第一确定子单元、第二确定子单元和第三确定子单元。第一确定子单元用于实现上述步骤S1151。第二确定子单元用于实现上述步骤S1152。第三确定子单元用于实现上述步骤S1153。
如此,能够根据位置特征角度自动确定空气调节设备的安装位置是位于左侧位置、位于中间位置还是位于右侧位置。
在一个实施例中,第二确定单元还包括第四确定子单元、第五确定子单元和第六确定子单元。第四确定子单元用于实现上述步骤S1154。第五确定子单元用于实现上述步骤S1155。第六确定子单元用于实现上述步骤S1156。
如此,能够根据位置特征角度自动确定空气调节设备的安装位置是左侧位置、中间位置还是右侧位置。
在一个实施例中,第二确定模块204包括第三确定单元、第四确定单元和第五确定单元。第三确定单元用于实现上述步骤S131。第四确定单元用于实现上述步骤S132。第五确定单元用于实现上述步骤S133。
如此,根据空气调节设备的安装位置选择较合适的补偿参数,有利于针对不同的安装位置进行修正控制。可以理解,通常情况下,基于空气调节设备安装在中间位置的情形,预先设置空气调节设备的出风参数,因此,在自动确定空气调节设备的安装位置为位于中间位置时,可以不对预先设置的出风参数进行修正,即确定补偿参数为0°,从而直接采用预先设置的出风参数控制空气调节设备运行。
在一个实施例中,控制模块206包括第六确定单元和控制单元。第六确定单元用于实现上述步骤S151。控制单元用于实现上述步骤S153。
如此,能够为用户提供智能、准确的送风服务。
在一个实施例中,控制单元还用于实现上述步骤S1531。
在一个实施例中,空气调节设备的左右导风的目标角度根据空气调节设备的工作模式和用户的位置确定。
如此,能够预先标定不同工作模式和用户的不同位置对应的左右导风的目标角度。
在一个实施例中,出风控制装置还包括第三确定模块、第四确定模块和第五确定模块。第三确定模块用于实现上述步骤S21。第四确定模块用于实现上述步骤S23。第五确定模块用于实现上述步骤S25。
需要指出的是,上述对基于空气调节设备的出风控制方法的实施方式和有益效果的解释说明,也适应本申请的计算机可读存储介质、空气调节设备100和基于空气调节设备的出风控制装置200,为避免冗余,在此不作详细展开。
本领域内的技术人员应明白,本申请的实施例可提供为方法、***、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
此外,本申请实施例中所使用的“第一”、“第二”等术语,仅用于描述目的,而不可以理解为指示或者暗示相对重要性,或者隐含指明本实施例中所指示的技术特征数量。由此,本申请实施例中限定有“第一”、“第二”等术语的特征,可以明确或者隐含地表示该实施例中包括至少一个该特征。在本申请的描述中,词语“多个”的含义是至少两个或者两个及以上,例如两个、三个、四个等,除非实施例中另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (14)

  1. 一种基于空气调节设备的出风控制方法,包括:
    确定空气调节设备在室内的空间位置信息,其中,所述空间位置信息包括所述空气调节设备的安装位置和对应的位置特征角度;
    根据所述位置特征角度和所述安装位置确定补偿参数;
    根据所述补偿参数对所述空气调节设备的出风参数进行修正控制。
  2. 根据权利要求1所述的方法,其中,确定空气调节设备在室内的空间位置信息,包括:
    确定室内的第一目标墙角和第二目标墙角,其中,所述第一目标墙角、所述第二目标墙角和所述空气调节设备所处位置在同一水平面,所述第一目标墙角和所述第二目标墙角均位于所述空气调节设备的一侧,所述第一目标墙角和所述空气调节设备所处位置位于同一墙面;
    将所述第一目标墙角与所述空气调节设备所处位置之间的连线作为第一夹角线,并将所述第二目标墙角与所述空气调节设备所处位置之间的连线作为第二夹角线,以及将所述第一夹角线与所述第二夹角线之间的夹角作为所述位置特征角度;
    根据所述位置特征角度确定所述安装位置。
  3. 根据权利要求2所述的方法,其中,第三目标墙角与所述第一目标墙角、所述空气调节设备所处位置位于所述同一墙面,所述第一目标墙角和所述第三目标墙角分别位于所述空气调节设备的两侧,其中,根据所述位置特征角度确定所述安装位置,包括:
    在所述位置特征角度大于0°且小于等于第一角度时,确定所述空气调节设备和所述第一目标墙角之间的距离大于所述空气调节设备和所述第三目标墙角之间的距离;
    在所述位置特征角度大于所述第一角度且小于等于第二角度时,确定所述空气调节设备和所述第一目标墙角之间的距离约等于所述空气调节设备和所述第三目标墙角之间的距离;
    在所述位置特征角度大于所述第二角度且小于等于90°时,确定所述空气调节设备和所述第一目标墙角之间的距离小于所述空气调节设备和所述第三目标墙角之间的距离。
  4. 根据权利要求3所述的方法,其中,根据所述位置特征角度和所述安装位置确定补偿参数,包括:
    在所述空气调节设备和所述第一目标墙角之间的距离大于所述空气调节设备和所述第三目标墙角之间的距离时,将所述位置特征角度对应的角度参数作为所述补偿参数;
    在所述空气调节设备和所述第一目标墙角之间的距离约等于所述空气调节设备和所述第三目标墙角之间的距离时,将0°作为所述补偿参数;
    在所述空气调节设备和所述第一目标墙角之间的距离小于所述空气调节设备和所述第三目标墙角之间的距离时,将所述位置特征角度对应的角度参数的负值作为所述补偿参数。
  5. 根据权利要求2所述的方法,其中,所述第一目标墙角和所述第二目标墙角均位于所述空气调节设备的右侧,其中,根据所述位置特征角度确定所述安装位置,包括:
    在所述位置特征角度大于0°且小于等于第一角度时,确定所述空气调节设备安装在左侧位置;
    在所述位置特征角度大于所述第一角度且小于等于第二角度时,确定所述空气调节设备安装在中间位置,所述第一角度小于等于所述第二角度;
    在所述位置特征角度大于所述第二角度且小于等于90°时,确定所述空气调节设备安装在右侧位置。
  6. 根据权利要求2所述的方法,其中,所述第一目标墙角和所述第二目标墙角均位于所述空气调节设备的左侧,其中,根据所述位置特征角度确定所述安装位置,包括:
    在所述位置特征角度大于0°且小于等于第一角度时,确定所述空气调节设备安装在右侧位置;
    在所述位置特征角度大于所述第一角度且小于等于第二角度时,确定所述空气调节设备安装在中间位置,所述第一角度小于等于所述第二角度;
    在所述位置特征角度大于所述第二角度且小于等于90°时,确定所述空气调节设备安装在左侧位置。
  7. 根据权利要求5或6所述的方法,其中,根据所述位置特征角度和所述安装位置确定补偿参数,包括:
    在所述空气调节设备安装在左侧位置时,将所述位置特征角度对应的角度参数作为所述补偿参数;
    在所述空气调节设备安装在中间位置时,将0°作为所述补偿参数;
    在所述空气调节设备安装在右侧位置时,将所述位置特征角度对应的角度参数的负值作为所述补偿参数。
  8. 根据权利要求7所述的方法,其中,根据所述补偿参数对所述空气调节设备的出风参数进行修正控制,包括:
    确定所述空气调节设备的左右导风的目标角度;
    根据所述补偿参数对所述目标角度进行修正控制。
  9. 根据权利要求8所述的方法,其中,根据所述补偿参数对所述目标角度进行修正控制,包括:
    计算所述补偿参数与所述目标角度的和值,将所述和值作为修正后的目标角度,并根据所述修正后的目标角度控制所述空气调节设备。
  10. 根据权利要求8所述的方法,其中,所述空气调节设备的左右导风的目标角度根据所述空气调节设备的工作模式和用户的位置确定。
  11. 根据权利要求10所述的方法,其中,在所述空气调节设备处于风避人模式时,所述方法还包括:
    在用户处于第一位置时,确定所述空气调节设备的左右导风的目标角度与第三位置相对应;
    在用户处于第二位置时,确定所述空气调节设备的左右导风的目标角度与所述第一位置和所述第三位置相对应,其中,所述第一位置、所述第二位置和所述第三位置在水平方向上依次排列,且所述第二位置位于所述第一位置和所述第三位置之间;
    在用户处于所述第三位置时,确定所述空气调节设备的左右导风的目标角度与所述第一位置相对应。
  12. 一种计算机可读存储介质,其上存储有基于空气调节设备的出风控制程序,该出风控制程序被处理器执行时实现如权利要求1-11中任一项所述的基于空气调节设备的出风控制方法。
  13. 一种空气调节设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的基于空气调节设备的出风控制程序,所述处理器执行所述基于空气调节设备的出风控制程序时,实现如权利要求1-11中任一项所述的基于空气调节设备的出风控制方法。
  14. 一种基于空气调节设备的出风控制装置,包括:
    第一确定模块,用于确定空气调节设备在室内的空间位置信息,其中,所述空间位置信息包括所述空气调节设备的安装位置和对应的位置特征角度;
    第二确定模块,用于根据所述位置特征角度和所述安装位置确定补偿参数;
    控制模块,用于根据所述补偿参数对所述空气调节设备的出风参数进行修正控制。
PCT/CN2022/101551 2022-01-21 2022-06-27 空气调节设备及基于其的出风控制方法、装置及介质 WO2023137978A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210074212.9A CN116518520A (zh) 2022-01-21 2022-01-21 空气调节设备及基于其的出风控制方法、装置及介质
CN202210074212.9 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023137978A1 true WO2023137978A1 (zh) 2023-07-27

Family

ID=87347711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101551 WO2023137978A1 (zh) 2022-01-21 2022-06-27 空气调节设备及基于其的出风控制方法、装置及介质

Country Status (2)

Country Link
CN (1) CN116518520A (zh)
WO (1) WO2023137978A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1912485A (zh) * 2005-08-12 2007-02-14 珠海格力电器股份有限公司 空调器个性化送风角度计算方法
CN104456825A (zh) * 2013-09-18 2015-03-25 珠海格力电器股份有限公司 空调区域送风控制方法和装置
CN106594959A (zh) * 2016-10-20 2017-04-26 珠海格力电器股份有限公司 一种空调的温度控制方法、装置及空调
CN109489187A (zh) * 2018-09-25 2019-03-19 珠海格力电器股份有限公司 一种控制方法、装置及空气调节装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1912485A (zh) * 2005-08-12 2007-02-14 珠海格力电器股份有限公司 空调器个性化送风角度计算方法
CN104456825A (zh) * 2013-09-18 2015-03-25 珠海格力电器股份有限公司 空调区域送风控制方法和装置
CN106594959A (zh) * 2016-10-20 2017-04-26 珠海格力电器股份有限公司 一种空调的温度控制方法、装置及空调
CN109489187A (zh) * 2018-09-25 2019-03-19 珠海格力电器股份有限公司 一种控制方法、装置及空气调节装置

Also Published As

Publication number Publication date
CN116518520A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
CN104676843B (zh) 空调控制方法和装置
CN105757892B (zh) 一种基于空调区域内人员信息的空调智能控制方法及***
CN104676844B (zh) 空调控制方法和装置
WO2019034122A1 (zh) 一种基于人***置的空调器控制方法及空调器
WO2019034123A1 (zh) 一种智能空调器控制方法及智能空调器
CN106196408B (zh) 空调器的参数的控制方法、参数控制装置和空调器
WO2018150535A1 (ja) 室内機および空気調和装置
CN104729001A (zh) 一种空调控制方法、装置及***
CN110878981B (zh) 空调器及其控制方法
CN112013457B (zh) 空调器及其控制方法
KR20120018519A (ko) 공기 조화기의 실내기 및 그 제어방법
JP2017048929A (ja) 空気調和機
JP2014156977A (ja) 空気調和機
WO2019075821A1 (zh) 一种多媒体教室空调控制方法
WO2020000837A1 (zh) 空气调节设备的导风条控制方法、装置和空气调节设备
CN111780233B (zh) 一种空调器
WO2019024819A1 (zh) 空调装置的控制方法
WO2023137978A1 (zh) 空气调节设备及基于其的出风控制方法、装置及介质
CN112361557A (zh) 一种空调控制方法、装置、电子设备及可读存储介质
WO2020087701A1 (zh) 空调***的除湿控制方法、装置和空调机
CN108413582A (zh) 用于空调器的防凝露控制方法
JP2003185227A (ja) 天井型空気調和機およびその制御方法
CN113237200A (zh) 空调器的送风控制方法
CN108954722A (zh) 一种具有景深识别功能的空调及应用于该空调的送风方法
CN106895548A (zh) 一种空调室内机导风条防干涉的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921409

Country of ref document: EP

Kind code of ref document: A1