WO2023136155A1 - Temperature control module - Google Patents

Temperature control module Download PDF

Info

Publication number
WO2023136155A1
WO2023136155A1 PCT/JP2022/048456 JP2022048456W WO2023136155A1 WO 2023136155 A1 WO2023136155 A1 WO 2023136155A1 JP 2022048456 W JP2022048456 W JP 2022048456W WO 2023136155 A1 WO2023136155 A1 WO 2023136155A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
control module
peltier element
vapor chamber
thermoelectric semiconductor
Prior art date
Application number
PCT/JP2022/048456
Other languages
French (fr)
Japanese (ja)
Inventor
智士 木田
智則 篠田
拓 根本
桜子 田村
邦久 加藤
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2023136155A1 publication Critical patent/WO2023136155A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present invention relates to temperature control modules.
  • Peltier elements have been proposed to use Peltier elements, vapor chambers, or temperature control modules that combine these to control the temperature of specific parts in various electronic devices. For example, by arranging a Peltier device or a vapor chamber in the vicinity of a part that serves as a heat source, it can be expected to promote cooling of the heat source. Also, by placing a Peltier element near a particular component, it is possible to heat this component if necessary.
  • Patent Document 1 discloses a thermo-module including a thermo-element that absorbs heat on the upper surface and generates heat on the lower surface due to the Peltier effect, a flat plate-shaped heat pipe attached to the cooling part side of the thermo-module, and the thermo-module.
  • a cold plate is described that has a heat pipe radiator provided on the heat generating side.
  • Patent Document 2 a plurality of battery cells, a plate-shaped vapor chamber interposed between a pair of battery cells, and a thermoelectric element arranged so as to be in close contact with an end surface of the vapor chamber are provided.
  • a battery pack temperature control and power supply system is described.
  • Patent Document 3 a plurality of Peltier modules are arranged along a direction perpendicular to the surface direction, and a heat absorption channel or heat dissipation channel is arranged between a pair of Peltier modules, and the heat absorption surfaces of the adjacent Peltier modules are arranged. and a cooling system in which heat dissipating surfaces face each other. Also, it is described that the heat absorption flow path and the heat radiation flow path are formed of vapor chambers.
  • temperature control modules As the fields of application of temperature control modules expand, we are working to enable them to be installed even in devices with limited installation space, such as thin and small portable electronic devices such as smartphones and laptop computers. There is a demand for a temperature control module that is thinner and has higher cooling performance.
  • JP-A-2-176377 JP 2017-126418 A Japanese Patent Application Laid-Open No. 2020-200980
  • each Peltier module has a thickness of 2 to 3 mm, and a plurality of Peltier modules and a plurality of heat absorption channels or heat dissipation channels are repeatedly laminated. Therefore, it is difficult to reduce the thickness of the entire system.
  • an object of the present invention is to provide a thin temperature control module with high cooling performance.
  • the present inventors have made intensive studies to solve the above problems, and as a result, have found that the above problems can be solved by setting the total thickness of the Peltier device and the vapor chamber used in the temperature control module within a predetermined range. He found the headline and completed the present invention. That is, the present invention provides the following [1] to [6]. [1] A Peltier element and a vapor chamber stacked on the Peltier element, A temperature control module, wherein the total thickness of the Peltier element and the vapor chamber is 1 mm or less. [2] A temperature control module comprising a Peltier element and a vapor chamber stacked on the Peltier element, wherein the temperature control module has a thickness of 1 mm or less.
  • thermoelectric conversion layer containing a plurality of thermoelectric conversion elements
  • the plurality of thermoelectric conversion elements is a fired body of a coating film of a composition containing a thermoelectric semiconductor material.
  • the temperature control module according to [2].
  • the composition containing the thermoelectric semiconductor material contains thermoelectric semiconductor particles, a polymer component, and an ionic compound.
  • the Peltier element includes a thermoelectric conversion layer containing a plurality of thermoelectric conversion elements, and the plurality of thermoelectric conversion elements contain a bismuth-tellurium compound.
  • the present invention can provide a thin temperature control module with high cooling performance.
  • a temperature control module includes a Peltier element and a vapor chamber stacked on the Peltier element, and the total thickness of the Peltier element and the vapor chamber is 1 mm or less. .
  • the temperature control module has a high cooling performance by being equipped with a Peltier device and a vapor chamber. Moreover, since the total thickness of the Peltier element and the vapor chamber is 1 mm or less, the temperature control module can be thin. In addition, by having the above configuration, the temperature control module is lightweight, and the temperature control module can be easily made flexible.
  • a thin Peltier element and a thin vapor chamber each having a thickness of less than 1 mm are used.
  • a thin Peltier element can be obtained, for example, by using a Peltier element having a thermoelectric conversion layer formed by a coating method as described later.
  • the thin vapor chamber has, for example, a configuration in which two sheets having a plurality of ridges formed thereon are overlapped to enclose the working fluid, as shown in the embodiment described later, and the working fluid is condensed. This can be realized by using a vapor chamber in which a plurality of condensed liquid flow paths through which liquid flows and a vapor flow path through which vapor obtained by vaporizing the working fluid flows are formed.
  • a temperature control module is a temperature control module comprising a Peltier element and a vapor chamber stacked on the Peltier element, wherein the temperature control module has a thickness of 1 mm or less. is.
  • the temperature control module according to the second embodiment can be provided with other layers such as intervening layers in addition to the Peltier element and the vapor chamber. By making the total thickness of 1 mm or less, for example, it is possible to install even in a device with a limited installation space in the equipment, or the thickness of the entire equipment can be reduced and miniaturized. In addition, it becomes easier to reduce the weight of the temperature control module, and it becomes easier to give flexibility.
  • the intervening layer include an adhesive layer, an insulator layer, and a sealing material layer.
  • a specific layer in the Peltier element may also be used as the intervening layer.
  • the sum of the thickness of the Peltier element including the specific layer that also serves as the intervening layer and the thickness of the vapor chamber should be 1 mm or less, and the thickness of the entire temperature control module should be 1 mm or less.
  • the total thickness of the Peltier element and the vapor chamber may be 1 mm or less.
  • the temperature control module may be a cooling module that exclusively performs cooling, or may be a module that can switch between cooling and heating.
  • a Peltier element is an electronic component containing a thermoelectric semiconductor that exhibits the Peltier effect.
  • the Peltier element preferably has a thermoelectric conversion layer including a plurality of P-type thermoelectric semiconductor elements and a plurality of N-type thermoelectric semiconductor elements arranged alternately. The top surfaces of the first set of adjacent P-type thermoelectric semiconductor elements and the N-type thermoelectric semiconductor elements are electrically connected, and the bottom surfaces of the first set of N-type thermoelectric semiconductor elements and the second set of P-type thermoelectric semiconductor elements are electrically connected.
  • thermoelectric semiconductor element of the second set and the upper surface of the N-type thermoelectric semiconductor element paired with the P-type thermoelectric semiconductor element of the second set and forming the second set together are electrically connected, The lower surfaces of the second set of N-type thermoelectric semiconductor elements and the lower surfaces of the third set of P-type thermoelectric semiconductor elements are electrically connected, and the same configuration is repeated thereafter.
  • an endothermic phenomenon occurs at the electrical junction where the current flows in the order of N ⁇ P, and the current flows in the order of P ⁇ N.
  • a heat dissipation phenomenon occurs at the electrical junction where . Therefore, one surface of the Peltier element absorbs heat and the other surface generates heat, and the object to be cooled can be cooled by bringing the heat absorbing surface of the Peltier element close to or in contact with the object. can.
  • the temperature control module is provided with a thermoelectric conversion layer including a plurality of thermoelectric conversion elements as described above as Peltier elements, and the plurality of thermoelectric conversion elements further includes a thermoelectric semiconductor material. It is more preferable to use a sintered body of a coating film of the composition.
  • a Peltier element which is a baked body of a coating film of a composition containing a thermoelectric semiconductor material, as the thermoelectric conversion element, the thickness of the Peltier element can be easily reduced to less than 1 mm.
  • the thickness of the Peltier element is preferably 50 ⁇ m or more, more preferably 75 ⁇ m or more, and still more preferably 150 ⁇ m or more.
  • the thickness of the Peltier element is preferably 650 ⁇ m or less, more preferably 550 ⁇ m or less, and even more preferably 450 ⁇ m or less. In other words, the thickness of the Peltier element is preferably 50 ⁇ m or more and less than 1 mm.
  • the composition containing the thermoelectric semiconductor material may contain a polymer component, an ionic compound and thermoelectric semiconductor particles. A coating film formed using such a composition is suitable for forming a thermoelectric conversion layer having good thermoelectric conversion properties by coating.
  • the thermoelectric conversion layer formed from the coating film may be provided on a substrate, but it is also possible to peel it off from the support after forming the thermoelectric conversion layer on the support, and the presence of the substrate is not required.
  • the coating film is formed, for example, by gravure printing or the like, and may be formed by means such as inkjet printing. Adjacent thermoelectric semiconductor elements may be separated from each other, and a gap between the adjacent thermoelectric semiconductor elements may be filled with a reinforcing material. Various insulators, etc., which will be described later, can be used as the reinforcing material. Materials for forming the thermoelectric conversion layer, formation by coating, and the like will be described later.
  • the Peltier element can be provided with other layers as required.
  • a covering layer consisting of a single layer or multiple layers may be arranged to cover the thermoelectric conversion layer on at least one main surface to protect the thermoelectric conversion layer.
  • the covering layer can also include a sealing layer. If the coating layer is a single layer, the coating layer itself can also serve as the sealing layer, and if the coating layer consists of a plurality of layers, any layer can contain the sealing layer.
  • the covering layer includes a sealing layer, it is possible to more effectively suppress permeation of water vapor in the atmosphere, and it becomes easier to maintain the performance of the Peltier element for a long period of time.
  • a vapor chamber is a heat spreading device comprising a pair of opposed flat plates and a working fluid enclosed between the pair of flat plates.
  • the working fluid transports heat by refluxing with a phase change, transports and diffuses the heat in the heat source, and cools the heat source.
  • a conventionally known vapor chamber can be used as the vapor chamber constituting the temperature control module.
  • a plurality of condensed liquid flow paths having a configuration in which two sheets having unevenness formed thereon are superimposed to enclose a working fluid, and a liquid condensed from the working fluid flows;
  • a vapor chamber can be used in which a vapor channel through which vapor obtained by vaporizing the working fluid flows is formed.
  • a mesh wick may be arranged between a pair of flat plates to enclose the working fluid, and the working fluid condensed after vaporization may be circulated by the mesh wick.
  • the material of the pair of flat plates and the pair of sheets constituting the vapor chamber is not particularly limited, but metals with high thermal conductivity are preferred, such as copper and copper alloys.
  • the type of working fluid enclosed in the closed space of the vapor chamber is not particularly limited. 56°C), naphthalene (boiling point: 218°C), and the like can be used.
  • the operating temperature range of the vapor chamber is a relatively low temperature range when ethanol or acetone is used as the working fluid (for example, about -10 to +130°C for ethanol). It is a relatively high temperature range (approximately 250 to 400°C). When the working fluid is pure water, the temperature is in an intermediate temperature range of about 30 to 200.degree.
  • the stacking order of the vapor chamber and the Peltier element is not particularly limited, and the Peltier element may be stacked on the vapor chamber, or the vapor chamber may be stacked on the Peltier element. Moreover, both may be laminated
  • the area of the Peltier element should be equal to or greater than that of the vapor chamber, or the area of the Peltier element smaller than that of the vapor chamber should correspond to the area of the vapor chamber. It is preferable to arrange a plurality of
  • FIG. 1 is a schematic cross-sectional view showing an example of a temperature control module according to this embodiment.
  • a temperature control module 1A shown in FIG. 1 has a configuration in which a Peltier element 40 is stacked on one main surface (lower surface in FIG. 1) of a vapor chamber 30. As shown in FIG.
  • the temperature control module 1A is flat.
  • the shape of the temperature control module 1A when viewed from above is not particularly limited, and may be rectangular, square, polygonal, circular, elliptical, or the like.
  • the main surface of the Peltier element 40 opposite to the vapor chamber 30 lower surface in FIG.
  • the temperature control module 1A is in contact with the object of temperature control.
  • a member 50 (hereinafter referred to as a temperature-controlled member 50) is installed.
  • the total thickness D1 of the thickness D3 of the Peltier element 40 and the thickness D2 of the vapor chamber 30 is 1 mm or less.
  • the thickness D1 is also the thickness D of the temperature control module 1A. Since the thickness D1 is 1 mm or less, the temperature control module 1A can be made thin, and the temperature control module can be arranged in a narrow space. In addition, it is easy to achieve weight reduction and flexibility.
  • the area of the Peltier element 40 is smaller than the area of the vapor chamber 30 when viewed from above.
  • a Peltier element 40 is arranged in contact with the bottom surface of the vapor chamber 30 near the center. Since the area of the vapor chamber 30 is larger than the area of the Peltier element 40, the heat emitted from the Peltier element 40 can be efficiently diffused in the planar direction.
  • the Peltier element 40 includes a thermoelectric conversion layer 48 including a plurality of P-type thermoelectric conversion elements 43 and a plurality of N-type thermoelectric conversion elements 44 arranged alternately.
  • the P-type thermoelectric conversion elements 43 and the N-type thermoelectric conversion elements 44 are alternately electrically connected by first connection electrodes 41 and second connection electrodes 42 .
  • An insulator layer 46 is provided around the P-type thermoelectric conversion elements 43 and the N-type thermoelectric conversion elements 44 .
  • a filler layer 45 is provided around and on the top surface of the first connection electrode 41 located on the top surface side of the Peltier element 40 .
  • a coating layer 47 is provided on the lower surface side of the Peltier element 40 so as to cover the second connection electrodes 42 , the P-type thermoelectric conversion elements 43 and the N-type thermoelectric conversion elements 44 .
  • the vapor chamber 30 includes a first sheet 10 and a second sheet 20 on which a plurality of ridges are formed at positions corresponding to each other.
  • the first sheet 10 and the second sheet 20 are joined so that the plurality of ridges 13 of the first sheet 10 and the plurality of ridges 23 of the second sheet 20 overlap each other, and a closed space is formed between them.
  • a working fluid is enclosed in 31 .
  • a detailed configuration of the vapor chamber 30 will be described later.
  • the temperature control module 1A for example, when the temperature control target member 50 is brought into contact with the lower surface of the Peltier element 40 of the temperature control module 1A to cool the temperature control target member 50, the Peltier element 40 is energized to absorb heat from the lower surface. A temperature difference is generated in the Peltier element 40 with the side and the upper surface as heat radiation sides. When the heat absorbed from the temperature controlled member 50 is radiated from the upper surface side of the Peltier device 40 , this heat is diffused in the planar direction by the vapor chamber 30 . Thus, although the temperature control module 1A is thin, it exhibits high cooling performance.
  • the lower surface of the Peltier element 40 is turned to the heat-generating side by energizing the Peltier element 40 in the direction opposite to the case where the lower surface is on the heat-absorbing side. Therefore, the temperature control target member 50 can be warmed. In this way, temperature control can be performed on the temperature-controlled member 50 .
  • FIG. 2 is a schematic cross-sectional view showing another example of the temperature control module according to this embodiment.
  • the temperature control module 1B shown in FIG. 2 has a configuration in which an intervening layer 60 is provided between the Peltier element 40 and the vapor chamber 30. As shown in FIG. Other configurations are the same as those of the temperature control module 1A.
  • the thickness D of the temperature control module 1B is 1 mm or less.
  • the sum of the thickness D4 of the intervening layer 60, the thickness D2 of the vapor chamber 30, and the thickness D3 of the Peltier element 40 is 1 mm or less. With such a thickness, even if the intervening layer 60 is provided, it is possible to prevent the temperature control module 1B from becoming thick.
  • the thickness of the intervening layer 60 is usually about 20-200 ⁇ m, preferably about 35-150 ⁇ m.
  • the intervening layer 60 is regarded as a part of the Peltier element 40, or when the filler layer 45 and the intervening layer 60 are integrally provided in the Peltier element 40, the thickness of the Peltier element D3 and the thickness D2 of the vapor chamber is 1 mm or less.
  • the intervening layer 60 is directly provided on the upper surfaces of the electrode 41 and the filler layer 45 in the Peltier element 40. As shown in FIG. However, the present invention is not limited to this, and the filler layer 45 also covers the upper surface of the electrode 41 as in the temperature control module 1A shown in FIG. may
  • FIG. 3 is a schematic cross-sectional view showing another example of the temperature control module according to this embodiment.
  • a temperature control module 1C shown in FIG. 3 has a configuration in which a first Peltier element 40 is arranged on part of one main surface (lower surface in FIG. 3) of a vapor chamber 30, like the temperature control module 1A.
  • the second Peltier element 70 is arranged over the entire other main surface (upper surface in FIG. 3) of the vapor chamber 30 . That is, the area of the second Peltier element 70 when viewed from above is larger than the area of the vapor chamber 30 .
  • the second Peltier element 70 includes a thermoelectric conversion layer 78 including a plurality of P-type thermoelectric conversion elements 73 and a plurality of N-type thermoelectric conversion elements 74, a first connection electrode 71, a first 2 connection electrodes 72 , an insulator layer 76 , a filler layer 75 and a coating layer 77 .
  • the second Peltier element 70 is energized so that the surface facing the vapor chamber 30 is the heat absorbing side and the opposite surface is the heat radiating side. can absorb heat from the bottom side of the second Peltier element 70 and dissipate heat from the top side. Therefore, the temperature control module 1C can further improve the cooling performance.
  • the thickness D of the temperature control module 1C is 1 mm or less, and the sum of the thickness D31 of the first Peltier element 40, the thickness D2 of the vapor chamber 30, and the thickness D32 of the second Peltier element 70 is 1 mm or less. . By setting it as such thickness, even if the 2nd Peltier element 70 is provided, the temperature control module 1C can be prevented from becoming thick.
  • an intervening layer may be provided between at least one of the Peltier element 40 and the vapor chamber 30 and between the vapor chamber 30 and the Peltier element 70 .
  • FIG. 4 is a schematic cross-sectional view showing another example of the temperature control module according to this embodiment.
  • a temperature control module 1D shown in FIG. 4 has a configuration obtained by removing the first Peltier element 40 from the temperature control module 1C.
  • temperature control module 1D has a configuration in which Peltier element 70 is arranged over one main surface (upper surface in FIG. 4) of vapor chamber 30 .
  • heat is diffused in the planar direction by the vapor chamber 30 by bringing the temperature control target member 50 into contact with the lower surface of the vapor chamber 30 .
  • the heat emitted from the vapor chamber 30 can be absorbed from the lower surface side of the Peltier element 70 and radiated to the upper surface side.
  • the thickness D of the temperature control module 1D is 1 mm or less, and the sum of the thickness D3 of the Peltier element and the thickness D2 of the vapor chamber is 1 mm or less.
  • FIG. 5 is a schematic cross-sectional view showing another example of the temperature control module according to this embodiment, and FIG. 6 is a bottom view thereof.
  • a cross section taken along line VV in FIG. 6 corresponds to the cross sectional view in FIG.
  • a region (planned installation region) 32 in which the temperature controlled member 50 is provided is secured on the lower surface of the vapor chamber 30.
  • a plurality of third Peltier elements 80 are arranged in a region other than the planned installation region 32 on the lower surface of the vapor chamber 30 .
  • the temperature control module of this configuration example includes a Peltier element and a vapor chamber stacked on the Peltier element, and the temperature control of the surface of the vapor chamber on which the member to be temperature controlled is installed.
  • the temperature control module one or more, preferably a plurality, of the Peltier elements are arranged on a region different from the planned installation region of the target member.
  • a plurality two in the example of FIGS. 5 and 6) of It can be said that the temperature control module 1D has a configuration in which the third Peltier element 80 is arranged and the second Peltier element 70 is removed from the temperature control module 1D.
  • the third Peltier element 80 is located at a position corresponding to the region where the vaporized working fluid flows and moves in the vapor flow path 31 in the configuration example of the vapor chamber to be described later. is installed in The heat radiated from the vaporized working fluid through the second sheet 20 of the vapor chamber can be absorbed from the upper surface side of the third Peltier element 80 and radiated to the lower surface side.
  • the Peltier element 80 includes first and second connection electrodes 81 and 82, a P-type thermoelectric conversion element 83, an N-type thermoelectric conversion element 84, a filler layer 85, an insulator layer 86, a coating layer 87, and a thermoelectric conversion layer. 88. Since these are the same as the Peltier element 40 described above, detailed description thereof will be omitted.
  • the temperature control module From the viewpoint of setting the total thickness of the Peltier element and the vapor chamber to 1 mm or less, or from the viewpoint of setting the thickness of the temperature control module to 1 mm or less, the temperature control module, as in Configuration Examples 1, 2, or 4, It is preferable to have only one vapor chamber 30 and one Peltier element 40 . With such a configuration, the number of parts is smaller than that of the temperature control module 1C having at least one of the vapor chamber 30 and the Peltier element 40, and thus the thickness can be easily reduced. Therefore, even if the thickness of the vapor chamber 30 or the Peltier element exceeds 350 ⁇ m, for example, the total thickness of the Peltier element and the vapor chamber or the thickness of the temperature control module can easily be 1 mm or less. be.
  • the Peltier element when the Peltier element is arranged in a region where the temperature-controlled member is not provided on the other main surface of the vapor chamber of the temperature control module, the Peltier element is arranged in the thickness direction of the temperature control module. , exists at the same level as the member to be temperature controlled. This is preferable because the Peltier element does not increase the total thickness of the temperature control module and the temperature control member.
  • the vapor chamber 30 includes a first sheet 10 and a second sheet 20. As shown in FIGS. As described above, the first sheet 10 and the second sheet 20 are formed with a plurality of ridges at positions corresponding to each other.
  • FIG. 7 is a schematic plan view showing an example of the first sheet 10 of the vapor chamber 30, in which the vapor chamber 30 has a rectangular shape. 7 corresponds to the cross-sectional view of the vapor chamber 30 shown in FIGS. 1-4. 7 corresponds to the cross-sectional view of the vapor chamber 30 shown in FIG.
  • FIG. 7 shows a first Peltier element 40 in contact with the vapor chamber 30 directly or through an intervening layer as shown in FIGS. 1 to 3, a temperature controlled member 50 shown in FIGS.
  • the contact positions of the third Peltier elements 80 shown in 5 and 6 are indicated by dashed lines.
  • the peripheral edge portion 11 of the first sheet 10 is an annular ridge, and a plurality of protrusions are provided along the peripheral edge portion 11 on the upper surface of the peripheral edge portion 11 (the surface facing the second sheet 20 ).
  • grooves 14 are formed.
  • a plurality of ridges 13 are formed inside the peripheral edge portion 11, and recesses 12 are formed between the peripheral edge portion 11 and the ridges 13 and between a pair of adjacent ridges 13. .
  • a plurality of grooves 15 are formed in each of the ridges 13 along the ridges 13 .
  • An end portion of the first sheet 10 is provided with an inlet forming portion 18 protruding from the peripheral edge portion 11 .
  • the inlet forming portion 18 constitutes part of an inlet for introducing the working fluid.
  • groove-like liquid communication openings 16 are provided at predetermined intervals on the upper surface of the peripheral edge portion 11 so as to intersect with the grooves 14 , and the upper surface of the ridges 13 are provided with grooves in the direction intersecting with the grooves 15 .
  • shaped liquid communication openings 17 are provided at predetermined intervals. In FIG. 7, the grooves 14 and 15 and the liquid communication openings 16 and 17 are simply illustrated with solid lines.
  • the second sheet 20 has the same configuration as the first sheet 10 except that the grooves 14 and 15 are not provided at positions corresponding to the peripheral edge portion 11 and the plurality of ridges 13 of the first sheet 10.
  • a peripheral edge portion 21 and a plurality of ridges 23 are provided (see FIGS. 1 to 4).
  • a concave portion 22 is formed between the peripheral portion 21 and the ridge 23 and between a pair of adjacent ridges 23 .
  • there is an injection port forming portion having a recess at a portion corresponding to the injection port forming portion 18 of the first sheet 10 so as to communicate with the space between the peripheral edge portion 21 of the second sheet 20 and the plurality of ridges 23 .
  • an injection port 24 for injecting the working fluid is formed. Then, the first sheet 10 and the second sheet 20 are diffusion-bonded so that the peripheral edge portion 11 and the plurality of ridges 13 of the first sheet 10 overlap the peripheral edge portion 21 and the plurality of ridges 23 of the second sheet 20.
  • a sealed space 31 surrounded by the ridges 13, 23 and the peripheral edges 11, 21 is formed by joining them by brazing or the like.
  • a working fluid is enclosed in the closed space 31 .
  • This closed space 31 functions as a steam flow path as described later.
  • the working fluid is filled, the working fluid is injected from the filling port 24 after the closed space 31 is decompressed by evacuating from the filling port 24 . After the injection is completed, the injection port 24 is sealed by laser bonding or caulking.
  • the temperature-controlled member 50 which is a heat source, or the Peltier element 40, which is in contact with the heat source and dissipates heat to the outside (hereinafter collectively referred to as the “heat source”)
  • the heat source contacts a predetermined portion of the vapor chamber 30, the heat is generated. propagates through the first sheet 10 by heat conduction, and the condensate present in the closed space near the heat source receives heat. The condensate that has received this heat absorbs the heat and evaporates. This cools the heat source.
  • the vaporized working fluid turns into steam and flows through the steam flow path 31 as indicated by the black arrows in FIG. Because this flow occurs away from the heat source, the steam moves away from the heat source.
  • the steam in the steam channel 31 leaves the heat source and moves toward the peripheral edge of the vapor chamber 30 where the temperature is relatively low. Cooled.
  • the working fluid that has lost heat while moving through the steam flow path 31 condenses and liquefies. This condensate adheres to the wall surface of the steam channel 31 .
  • the condensate is distributed from the liquid communication openings 16, 17 and the like to the grooves 14, 15 which become the condensate flow path so as to be pushed by the steam. to move.
  • the condensate that has entered the grooves 14 and 15 that serve as condensate flow paths approaches the heat source as indicated by the white thin line arrows in FIG. to move. Then, it is vaporized again by the heat from the heat source, and the above operations and state changes are repeated.
  • the vapor chamber 30 the high capillary force in the condensate flow path allows the condensate to recirculate well, and the vapor chamber 30 has a high heat transfer capacity even though it is thin. Therefore, the temperature control module obtained by stacking the Peltier elements 40, 70, 80 in the vapor chamber 30 exhibits a high cooling capacity.
  • a method of removing material to a predetermined depth by half-etching a metal sheet having a corresponding external size can be used. can.
  • the cross-sectional shape of the ridges is not limited to those having vertical flat sides as shown in FIGS.
  • the cross-sectional shape of the concave portion is not limited to those in which the bottom is horizontal and the wall is vertical, as shown in FIGS. It can have any shape, such as a shape or an elliptical shape.
  • the width, length, height, depth, etc. of the ridges and recesses are not particularly limited, and may be appropriately set so that the vapor chamber operates well.
  • the first sheet and the second sheet may differ in the configuration of the protrusions other than the presence or absence of grooves, or the protrusions of the second sheet may also be formed with grooves.
  • the thickness of the vapor chamber is preferably 500 ⁇ m or less, preferably 400 ⁇ m or less, more preferably 350 ⁇ m or less. Also, the lower limit of the thickness of the vapor chamber is usually about 100 ⁇ m. In other words, the thickness of the vapor chamber is preferably between 100 and 500 ⁇ m.
  • thermoelectric conversion element used for the Peltier element contains a thermoelectric semiconductor material.
  • Thermoelectric semiconductor materials are usually fired to obtain Peltier elements.
  • the thermoelectric conversion element is preferably formed by applying a composition containing a thermoelectric semiconductor material (hereinafter also referred to as a "composition containing a thermoelectric semiconductor material" or a “thermoelectric semiconductor composition”) to the surface of a support or the like. It is a sintered body of the coating film. Since the thermoelectric conversion element is a fired body of the coating film of the thermoelectric semiconductor composition, a sheet-like thermoelectric conversion module can be easily produced, and a thermoelectric conversion element with improved flexibility can be easily obtained.
  • the thickness of the thermoelectric conversion element is preferably 10 ⁇ m or more, more preferably 25 ⁇ m or more, still more preferably 35 ⁇ m or more, and is preferably 800 ⁇ m or less, more preferably 500 ⁇ m or less, still more preferably 300 ⁇ m or less. In other words, the thickness of the thermoelectric conversion element is preferably 10-800 ⁇ m. When the thickness of the thermoelectric conversion element is within the above range, it is easy to manufacture the thermoelectric conversion element exhibiting good thermoelectric conversion performance with high productivity.
  • thermoelectric semiconductor composition used for producing the thermoelectric conversion layer contains at least a thermoelectric semiconductor material, preferably thermoelectric semiconductor particles made of the thermoelectric semiconductor material and a resin, more preferably thermoelectric semiconductor particles, a polymer component and ions compounds.
  • the ionic compound preferably contains at least one of an ionic liquid and an inorganic ionic compound, and more preferably contains an ionic liquid.
  • thermoelectric semiconductor material The thermoelectric semiconductor material contained in the P-type thermoelectric semiconductor element and the N-type thermoelectric semiconductor element is not particularly limited as long as it is a material that can generate a thermoelectromotive force by applying a temperature difference.
  • Bismuth-tellurium thermoelectric semiconductor materials such as bismuth telluride and N-type bismuth telluride; Telluride thermoelectric semiconductor materials such as GeTe and PbTe; Antimony-tellurium thermoelectric semiconductor materials; Zinc such as ZnSb, Zn 3 Sb 2 and Zn 4 Sb 3 - antimony-based thermoelectric semiconductor materials ; silicon - germanium-based thermoelectric semiconductor materials such as SiGe ; bismuth-selenide-based thermoelectric semiconductor materials such as Bi2Se3 ; silicide-based thermoelectric semiconductor materials; oxide-based thermoelectric semiconductor materials; Heusler materials such as FeVAl, FeVAlSi, and FeVTiAl; sulfide-based thermoelectric semiconductor materials such as TiS2 ; skutterudite materials; carbon materials such as carbon nanotubes (CNT); Used.
  • CNT carbon nanotubes
  • thermoelectric conversion performance can be easily obtained.
  • silicide-based thermoelectric semiconductor materials are preferable from the viewpoint of not containing rare metals whose supply is unstable due to geopolitical issues, and facilitate the functioning of thermoelectric conversion modules in high-temperature environments.
  • the skutterudite material is preferred from the viewpoint of being able to do so.
  • the thermoelectric semiconductor material is P-type bismuth telluride or A bismuth-tellurium-based thermoelectric semiconductor material such as N-type bismuth telluride is preferred.
  • the Peltier device may include a thermoelectric conversion layer containing a plurality of thermoelectric conversion elements, and the plurality of thermoelectric conversion elements may contain a bismuth-tellurium compound.
  • thermoelectric semiconductor materials When using a vapor chamber in which the working fluid has a boiling point of over 150° C., for example, silicide-based thermoelectric semiconductor materials, telluride-based thermoelectric semiconductor materials such as PbTe, silicon-germanium-based thermoelectric semiconductor materials such as SiGe, and skutterudite materials are used. It is preferable to use P-type bismuth telluride has holes as carriers and a positive Seebeck coefficient, and is preferably represented by, for example, Bi X Te 3 Sb 2-X . In this case, X preferably satisfies 0 ⁇ X ⁇ 0.8, more preferably 0.4 ⁇ X ⁇ 0.6.
  • N-type bismuth telluride has electrons as carriers and a negative Seebeck coefficient.
  • Y is 0 or more and 3 or less, the Seebeck coefficient and electrical conductivity are increased, and the properties as an N-type thermoelectric conversion material are maintained, which is preferable.
  • thermoelectric semiconductor material used for the thermoelectric conversion layer is preferably in the form of particles having a predetermined size. Preferably.
  • the content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably 50 to 96% by mass, still more preferably 70 to 95% by mass. If the amount of the thermoelectric semiconductor particles is within the above range, the Seebeck coefficient (absolute value of the Peltier coefficient) is large, and the decrease in electrical conductivity is suppressed, and only the thermal conductivity decreases, so high thermoelectric performance is exhibited. In addition, a film having sufficient film strength and moderate flexibility can be obtained, which is preferable.
  • the average particle size of the thermoelectric semiconductor particles is preferably 10 nm to 200 ⁇ m, more preferably 10 nm to 30 ⁇ m, even more preferably 50 nm to 10 ⁇ m, particularly preferably 1 to 6 ⁇ m. Within the above range, uniform dispersion is facilitated, and electrical conductivity can be increased.
  • the method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor particles is not particularly limited, and includes jet mills, ball mills, bead mills, colloid mills, conical mills, disk mills, edge mills, milling mills, hammer mills, pellet mills, Willie mills, and roller mills. It may be pulverized to a predetermined size by a known fine pulverizer such as. In this specification, the average particle size of the thermoelectric semiconductor particles is obtained by measuring with a laser diffraction particle size analyzer (manufactured by CILAS, model 1064), and is represented by the median value of the particle size distribution. is.
  • thermoelectric semiconductor particles are preferably heat-treated in advance (the "heat treatment” referred to here is different from the “annealing treatment” performed in the annealing treatment step of the present invention).
  • the heat treatment is not particularly limited, but before preparing the thermoelectric semiconductor composition, in an inert gas atmosphere such as nitrogen, argon, etc., in which the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor particles. It is preferably carried out under a reducing gas atmosphere such as hydrogen or under vacuum conditions, more preferably under a mixed gas atmosphere of an inert gas and a reducing gas.
  • a reducing gas atmosphere such as hydrogen or under vacuum conditions
  • the specific temperature conditions depend on the thermoelectric semiconductor particles used, it is usually preferred that the temperature is below the melting point of the particles and 100 to 1,500° C. for several minutes to several tens of hours.
  • thermoelectric semiconductor composition The polymer component that can be contained in the thermoelectric semiconductor composition has the effect of physically bonding between the thermoelectric semiconductor materials (thermoelectric semiconductor particles), and the Peltier element, which is a thermoelectric conversion module, can be formed into a thin film by coating or the like. make it easier.
  • a heat-resistant resin or a binder resin is preferable as the polymer component.
  • the heat-resistant resin maintains various physical properties such as mechanical strength and thermal conductivity as a resin when crystal growth of thermoelectric semiconductor particles is performed by annealing a thin film made of a thermoelectric semiconductor composition.
  • Polyamide resins, polyamideimide resins, polyimide resins, and epoxy resins are preferred as the heat-resistant resins because they have higher heat resistance and do not adversely affect the crystal growth of the thermoelectric semiconductor particles in the thin film, and are excellent in flexibility. Polyamide resins, polyamideimide resins, and polyimide resins are more preferable.
  • the heat-resistant resin preferably has a decomposition temperature of 300°C or higher. If the decomposition temperature is within the above range, flexibility can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
  • the heat-resistant resin preferably has a mass reduction rate of 10% or less, more preferably 5% or less, and even more preferably 1% or less at 300°C as measured by thermogravimetry (TG). If the mass reduction rate is within the above range, even when the thin film made of the thermoelectric semiconductor composition is annealed, the bendability of the tip of the thermoelectric semiconductor material can be maintained without losing its function as a binder, as will be described later. can be done.
  • the content of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, still more preferably 2 to 15% by mass. is.
  • the content of the heat-resistant resin is within the above range, it functions as a binder for the thermoelectric semiconductor material, making it easier to form a thin film, and a film having both high thermoelectric performance and film strength can be obtained, resulting in a thermoelectric semiconductor material.
  • a resin portion exists on the outer surface of the chip.
  • the binder resin also facilitates peeling from the base material such as glass, alumina, silicon, etc. used when manufacturing the thermoelectric conversion element after the annealing treatment described later.
  • the binder resin refers to a resin in which 90% by mass or more decomposes at a baking (annealing) temperature or higher, more preferably a resin in which 95% by mass or more decomposes, and a resin in which 99% by mass or more decomposes. is particularly preferred.
  • a resin that maintains various physical properties such as mechanical strength and thermal conductivity without impairing when crystal growth of thermoelectric semiconductor particles is performed by baking (annealing) a coating film (thin film) made of a thermoelectric semiconductor composition. more preferred.
  • the binder resin As the binder resin, if a resin that decomposes 90% by mass or more at a firing (annealing) temperature or higher, that is, a resin that decomposes at a lower temperature than the heat-resistant resin described above, the binder resin is decomposed by firing, resulting in a fired body.
  • the content of the binder resin, which is an insulating component contained therein, is reduced, and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted. As a result, voids in the thermoelectric semiconductor material layer can be reduced and the filling rate can be improved.
  • Whether or not a resin decomposes at a predetermined value (for example, 90% by mass) at a firing (annealing) temperature or higher is determined by thermogravimetric measurement (TG) at the mass reduction rate at the firing (annealing) temperature (before decomposition The value obtained by dividing the mass after decomposition by the mass).
  • TG thermogravimetric measurement
  • thermoplastic resin or a curable resin can be used as such a binder resin.
  • thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonates; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymers, and polyacetic acid.
  • thermosetting resins include epoxy resins and phenol resins.
  • photocurable resins include photocurable acrylic resins, photocurable urethane resins, and photocurable epoxy resins. These may be used individually by 1 type, and may use 2 or more types together. Among these, from the viewpoint of the electrical resistivity of the thermoelectric semiconductor material in the thermoelectric conversion layer, thermoplastic resins are preferred, cellulose derivatives such as polycarbonate and ethyl cellulose are more preferred, and polycarbonate is particularly preferred.
  • the binder resin is appropriately selected according to the temperature of the baking (annealing) treatment for the thermoelectric semiconductor material in the baking (annealing) treatment step. From the viewpoint of the electrical resistivity of the thermoelectric semiconductor material in the thermoelectric conversion layer, it is preferable to perform the baking (annealing) treatment at a temperature higher than the final decomposition temperature of the binder resin.
  • the term “final decomposition temperature” refers to the temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetry (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition). say.
  • the final decomposition temperature of the binder resin is usually 150-600°C, preferably 200-560°C, more preferably 220-460°C, and particularly preferably 240-360°C. If a binder resin having a final decomposition temperature within this range is used, it functions as a binder for the thermoelectric semiconductor material and facilitates the formation of a thin film during printing.
  • the content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 0.5 to 5% by mass. % by mass.
  • the electrical resistivity of the thermoelectric semiconductor material in the thermoelectric conversion layer can be reduced.
  • the content of the binder resin in the thermoelectric semiconductor material is preferably 0-10% by mass, more preferably 0-5% by mass, and particularly preferably 0-1% by mass. If the content of the binder resin in the thermoelectric semiconductor material is within the above range, the electrical resistivity of the thermoelectric semiconductor material in the thermoelectric conversion layer can be reduced.
  • the ionic liquid that can be contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range from -50°C to less than 400°C.
  • an ionic liquid is an ionic compound having a melting point in the range of -50°C or higher and lower than 400°C.
  • the melting point of the ionic liquid is preferably ⁇ 25° C. or higher and 200° C. or lower, more preferably 0° C. or higher and 150° C. or lower.
  • Ionic liquids have characteristics such as extremely low vapor pressure and non-volatility, excellent thermal and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, it can effectively suppress the decrease in electrical conductivity between thermoelectric semiconductor materials as a conductive auxiliary agent.
  • the ionic liquid exhibits high polarity based on an aprotic ionic structure and is excellent in compatibility with heat-resistant resins, so that the electric conductivity of the thermoelectric semiconductor material can be made uniform.
  • ionic liquids can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine-based cations and their derivatives; Phosphine-based cations and derivatives thereof; cation components such as lithium cations and derivatives thereof, Cl ⁇ , Br ⁇ , I ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , NO 3 ⁇ , CH 3 COO ⁇ , CF 3 COO ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , (FSO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 3 C ⁇ , AsFSO 2 ) 2 N
  • the cation component of the ionic liquid is pyridinium cation and its derivatives from the viewpoint of high-temperature stability, compatibility with thermoelectric semiconductor materials and resins, suppression of decrease in electrical conductivity in the gaps of thermoelectric semiconductor materials, etc. , imidazolium cations and derivatives thereof.
  • ionic liquids in which the cationic component contains pyridinium cations and derivatives thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, and 3-methyl-hexylpyridinium chloride.
  • ionic liquids containing imidazolium cations and derivatives thereof as cationic components include [1-butyl-3-(2-hydroxyethyl)imidazolium bromide], [1-butyl-3-(2 -hydroxyethyl)imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-tetradecyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium tetrafluor
  • the above ionic liquid preferably has an electrical conductivity of 10 ⁇ 7 S/cm or more. If the ionic conductivity is within the above range, it can effectively suppress the decrease in electrical conductivity between thermoelectric semiconductor materials as a conductive auxiliary agent.
  • the above ionic liquid preferably has a decomposition temperature of 300°C or higher. If the decomposition temperature is within the above range, the effect as a conductive aid can be maintained even when a thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
  • the above ionic liquid preferably has a mass reduction rate of 10% or less at 300° C. by thermogravimetry (TG), more preferably 5% or less, and even more preferably 1% or less. . If the mass reduction rate is within the above range, the effect as a conductive aid can be maintained even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
  • TG thermogravimetry
  • the content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01-50% by mass, more preferably 0.5-30% by mass, and still more preferably 1.0-20% by mass. If the blending amount of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • the inorganic ionic compound that can be included in the thermoelectric semiconductor composition is a compound composed of at least cations and anions. Inorganic ionic compounds exist in a solid state over a wide temperature range of 400 to 900°C and have characteristics such as high ionic conductivity. can be suppressed.
  • a metal cation is used as the cation constituting the inorganic ionic compound.
  • metal cations include alkali metal cations, alkaline earth metal cations, typical metal cations and transition metal cations, with alkali metal cations and alkaline earth metal cations being more preferred.
  • alkali metal cations include Li + , Na + , K + , Rb + , Cs + and Fr + .
  • Alkaline earth metal cations include, for example, Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • Examples of anions constituting the inorganic ionic compound include F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , CN ⁇ , NO 3 ⁇ , NO 2 ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , CrO 4 2 ⁇ , HSO 4 ⁇ , SCN ⁇ , BF 4 ⁇ , PF 6 ⁇ and the like.
  • thermoelectric conversion layer As the inorganic ionic compound contained in the thermoelectric conversion layer, a known or commercially available one can be used.
  • cation components such as potassium cations, sodium cations, or lithium cations, chloride ions such as Cl ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ , and ClO 4 ⁇ , bromide ions such as Br ⁇ Iodide ions, fluoride ions such as BF 4 ⁇ and PF 6 ⁇ , halide anions such as F(HF) n ⁇ , and anion components such as NO 3 ⁇ , OH ⁇ , CN ⁇ and the like.
  • chloride ions such as Cl ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ , and ClO 4 ⁇
  • bromide ions such as Br ⁇ Iodide ions
  • fluoride ions such as BF 4 ⁇ and PF 6 ⁇
  • halide anions such as
  • the cation component of the inorganic ionic compound is potassium. , sodium, and lithium.
  • the anion component of the inorganic ionic compound preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ and I ⁇ .
  • inorganic ionic compounds whose cationic component contains potassium cations include KBr, KI, KCl, KF, KOH, K2CO3 , and the like . Among these, KBr and KI are preferred.
  • Specific examples of inorganic ionic compounds containing sodium cations as cationic components include NaBr, NaI, NaOH, NaF, Na 2 CO 3 and the like. Among these, NaBr and NaI are preferred.
  • Specific examples of inorganic ionic compounds containing lithium cations as cationic components include LiF, LiOH, LiNO 3 and the like. Among these, LiF and LiOH are preferred.
  • the above inorganic ionic compound preferably has an electrical conductivity of 10 ⁇ 7 S/cm or more, more preferably 10 ⁇ 6 S/cm or more. If the electrical conductivity is within the above range, it can effectively suppress the decrease in electrical conductivity between thermoelectric semiconductor materials as a conductive auxiliary agent.
  • the above inorganic ionic compound preferably has a decomposition temperature of 400°C or higher. If the decomposition temperature is within the above range, the effect as a conductive aid can be maintained even when a thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
  • the above-mentioned inorganic ionic compound preferably has a mass reduction rate at 400°C measured by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and preferably 1% or less. More preferred. If the mass reduction rate is within the above range, even when the thin film made of the thermoelectric semiconductor composition is annealed, it is easy to maintain the effect as a conductive additive, as will be described later.
  • TG thermogravimetry
  • the content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, still more preferably 1.0 to 10% by mass. If the blending amount of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film with improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
  • thermoelectric semiconductor composition The method for preparing the thermoelectric semiconductor composition is not particularly limited, and the thermoelectric semiconductor material, the heat-resistant resin, and the One or both of the ionic liquid and the inorganic ionic compound used as necessary, other additives, and a solvent may be added and mixed and dispersed to prepare the thermoelectric semiconductor composition.
  • a solvent may be used when preparing the thermoelectric semiconductor composition. Examples of the solvent used include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve. These solvents may be used singly or in combination of two or more.
  • the solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
  • thermoelectric conversion elements are formed by a coating method
  • an adhesive layer is formed so as to cover the connection electrodes on the main surface facing the vapor chamber, and the Peltier element is attached to the vapor chamber by the adhesive layer (
  • the adhesive layer corresponds to the aspect in which the intervening layer 60 and the filler layer 45 are combined).
  • thermoelectric conversion element When manufacturing a temperature control module having a coating type Peltier element, the thermoelectric conversion element is not particularly limited, but may be, for example, on a base material such as glass, alumina, silicon, or a resin film, or on a sacrificial layer to be described later. It can be obtained by coating the thermoelectric semiconductor composition on the base material on the side where the thermoelectric semiconductor composition is applied to obtain a coating film, drying the coating film, and appropriately separating the coating film from the base material. By forming in this way, a large number of thermoelectric conversion elements can be obtained simply and at low cost.
  • the resin film a film having heat resistance is preferable, and a film made of a polyamide resin, a polyamideimide resin, a polyimide resin, or the like is preferable.
  • thermoelectric semiconductor compositions include screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating, and doctor blade.
  • a known method such as a method can be mentioned, and there is no particular limitation.
  • a screen printing method, a slot die coating method, or the like which enables simple pattern formation using a screen plate having a desired pattern, is preferably used.
  • the thermoelectric conversion element is formed by drying the obtained coating film, and as the drying method, a conventionally known drying method such as hot air drying method, hot roll drying method, infrared irradiation method, etc. can be used.
  • the heating temperature is usually 80 to 150° C., and the heating time varies depending on the heating method, but is usually several seconds to several tens of minutes.
  • the heating temperature is not particularly limited as long as it is within a temperature range that allows the solvent used to be dried.
  • the thickness of the coating film made of the thermoelectric semiconductor composition is not particularly limited, but is preferably 100 nm to 1,000 ⁇ m, more preferably 100 nm to 1,000 ⁇ m, more preferably from the viewpoint of thermoelectric performance and film strength, and from the viewpoint of thinning the Peltier element. 300 nm to 600 ⁇ m, more preferably 5 to 400 ⁇ m.
  • the coating film of the thermoelectric semiconductor composition is preferably further annealed to form a fired body.
  • the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thin film can be crystal-grown, thereby further improving the thermoelectric performance.
  • Annealing treatment is not particularly limited, but is usually performed under an inert gas atmosphere such as nitrogen or argon with a controlled gas flow rate, under a reducing gas atmosphere, or under vacuum conditions. Depending on the temperature and the like, it is carried out at 100 to 500° C. for several minutes to several tens of hours. Furthermore, in the annealing treatment, the thermoelectric semiconductor composition may be pressed to increase the density of the thermoelectric semiconductor composition.
  • a resin such as polymethyl methacrylate or polystyrene, or a releasing agent such as a fluorine-based releasing agent or a silicone-based releasing agent can be used.
  • the thermoelectric conversion element formed on a base material such as glass can be easily separated from the glass or the like after annealing. Formation of the sacrificial layer is not particularly limited, and can be performed by known methods such as flexographic printing and spin coating.
  • thermoelectric conversion elements In order to ensure insulation between the obtained thermoelectric conversion elements, an insulator is filled between the thermoelectric conversion elements.
  • the insulator ensures insulation between the P-type thermoelectric conversion element and the N-type thermoelectric conversion element, insulation between the P-type thermoelectric conversion elements or between the N-type thermoelectric conversion elements, and mechanical It acts as a stiffener that allows it to maintain its physical strength.
  • the insulator is not particularly limited as long as it can maintain insulation and strength, and examples thereof include insulating resins and ceramics.
  • insulating resins include polyimide-based resins, silicone-based resins, rubber-based resins, acrylic-based resins, olefin-based resins, maleimide-based resins, epoxy-based resins, and the like. From the viewpoint of heat resistance and mechanical strength, it is preferably selected from polyimide resins, silicone resins, acrylic resins, maleimide resins and epoxy resins.
  • the insulating resin is preferably a curable resin or a foaming resin.
  • the insulating resin may further contain a filler.
  • a hollow filler is preferable as the filler.
  • the hollow filler is not particularly limited, and known fillers can be used.
  • inorganic hollow fillers such as glass balloons, silica balloons, shirasu balloons, fly ash balloons, and metal silicate balloons (hollow bodies) can be used.
  • Fillers, and organic resin-based hollow fillers such as acrylonitrile, vinylidene chloride, phenolic resins, epoxy resins, and urea resins, which are balloons (hollow bodies), can be used.
  • the thermal conductivity of the insulating resin is lowered, and the thermoelectric performance is further improved.
  • ceramics include materials containing aluminum oxide (alumina), aluminum nitride, zirconium oxide (zirconia), silicon carbide, etc. as a main component (50% by mass or more in ceramics).
  • a rare earth compound can also be added.
  • a known method can be used to fill the insulator. For example, using a liquid resin, a method of spreading and filling the resin on the support surface on which the chips of the P-type thermoelectric semiconductor material and the chips of the N-type thermoelectric semiconductor material are alternately arranged, using a coating member such as a squeegee, Further, a method of filling by spin coating after dripping from approximately the center of the support to the outside, a method of filling by immersing the support together with a liquid resin storage tank or the like and pulling it up, and further, Using a sheet-shaped insulating resin, the sheet-shaped insulating resin is attached to the surface of the support on which the chips of the P-type thermoelectric semiconductor material and the chips of the N-type thermoelectric semiconductor material are alternately arranged, and heated and/or A method of melting and filling a sheet-shaped insulating resin by pressurization can be used. After filling, heat curing or the like is performed.
  • a coating member such as a sque
  • the support is not particularly limited, and examples thereof include glass, silicon, ceramics, metals, plastics, and the like. It is preferably selected from glass, plastic and silicon. Glass, silicon, ceramics, or metal is preferable when annealing treatment or the like is performed at a high temperature. Note that the support is peeled off after an integrated product of a plurality of thermoelectric conversion elements and insulators positioned therebetween is obtained.
  • the substrate having the sacrificial layer described above can be used as the support, and the thermoelectric conversion element may be transferred from the substrate having the sacrificial layer to another support.
  • connection electrodes used for connecting a pair of thermoelectric conversion elements or for external connection are formed.
  • the connection electrode is preferably formed of at least one film selected from the group consisting of a vapor deposited film, a plated film, a conductive composition and a metal foil.
  • the metal material used for the connection electrode is not particularly limited, and examples thereof include copper, gold, nickel, aluminum, rhodium, platinum, chromium, palladium, stainless steel, molybdenum, solder, and alloys containing any of these metals.
  • connection electrodes As a method for forming the connection electrodes, after providing an electrode without a pattern formed on the above-described integrated product of the plurality of thermoelectric conversion elements and the insulating layer (hereinafter also simply referred to as "integrated product"), A method of processing into a predetermined pattern shape by a known physical treatment or chemical treatment mainly based on photolithography, or a combination thereof, or a conductive composition comprising the above-mentioned metal material or the like A method of directly forming an electrode pattern by using a paste, a screen printing method, an inkjet method, or the like can be used.
  • Methods for forming electrodes without a pattern include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating, or CVD (chemical vapor deposition) such as thermal CVD and atomic layer deposition (ALD). vapor phase growth method), or various coatings such as dip coating method, spin coating method, spray coating method, gravure coating method, die coating method, doctor blade method, wet process such as electrodeposition method, silver salt method , electroplating method, electroless plating method, lamination of metal foil, etc., and are appropriately selected according to the material of the electrode. For lamination of metal foils, solder may be used to bond them to a thermoelectric material or the like.
  • connection electrodes are required to have high electrical conductivity and high thermal conductivity. Therefore, it is more preferable to use electrodes formed by a plating method or a vacuum film forming method.
  • a vacuum deposition method such as a vacuum deposition method or a sputtering method, an electroplating method, or an electroless plating method is preferable because high electrical conductivity and high thermal conductivity can be easily realized.
  • the pattern can be easily formed through a hard mask such as a metal mask, depending on the size of the formed pattern and the required dimensional accuracy.
  • the thickness of the connection electrode layer is preferably 10 nm to 200 ⁇ m, more preferably 30 nm to 150 ⁇ m, and even more preferably 50 nm to 120 ⁇ m. If the thickness of the layer of the connection electrode is within the above range, the electrical conductivity is high, the resistance is low, and sufficient strength is obtained as the connection electrode.
  • An adhesive layer is provided on at least one surface of a Peltier device, which is a thermoelectric conversion module. That is, an adhesive layer is provided on the first connection electrodes including the gaps between adjacent first connection electrodes. Then, by bonding the Peltier element to the vapor chamber with this adhesive layer, for example, the Peltier element can be easily installed. In addition, weather resistance can be improved by including a gap between the first connection electrodes. Furthermore, insulation between the vapor chamber and the connection electrodes of the Peltier element can be ensured. Note that the adhesive layer may be formed in advance on the surface of the vapor chamber.
  • the adhesive layer is not particularly limited as long as it can be easily adhered to the vapor chamber, but it preferably contains an adhesive resin, and if desired, a cross-linking agent, a tackifier, a polymerizable compound, and a polymerization initiator.
  • Adhesive additives such as silane coupling agents, antistatic agents, antioxidants, UV absorbers, light stabilizers, softeners, fillers, refractive index modifiers, colorants and the like may be contained.
  • boron nitride filler, alumina filler, or the like may be used as the filler.
  • adhesive resin is a concept that includes adhesive resins. It also includes a resin that exhibits adhesiveness when used in combination, and also includes a resin that exhibits adhesiveness due to the presence of a trigger such as heat or water.
  • adhesive resins examples include acrylic resins, urethane resins, rubber resins such as polyisobutylene resins, polyester resins, olefin resins, silicone resins, epoxy resins, and polyvinyl ether resins.
  • the thickness of the adhesive layer is not particularly limited, it is preferably 1 to 50 ⁇ m, more preferably 2 to 30 ⁇ m.
  • the adhesive layer may be directly formed on the electrode on the integrated body by a known method from an adhesive composition containing an adhesive resin.
  • methods for forming the adhesive layer include spin coating, spray coating, bar coating, knife coating, roll coating, roll knife coating, blade coating, die coating, and gravure coating.
  • the release film may include a release substrate and a release agent layer formed by coating a release agent on the release substrate. is preferred.
  • the release film may have a release agent layer on only one side of the release substrate, or may have a release agent layer on both sides of the release substrate.
  • the release substrate include a paper substrate, a laminated paper obtained by laminating a thermoplastic resin such as polyethylene on the paper substrate, and a plastic film.
  • paper substrates include glassine paper, coated paper, and cast-coated paper.
  • Plastic films include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
  • release agents include olefin-based resins, rubber-based elastomers (eg, butadiene-based resins, isoprene-based resins, etc.), long-chain alkyl-based resins, alkyd-based resins, fluorine-based resins, and silicone-based resins.
  • An adhesive layer having a release film is produced, for example, through the following steps. First, an adhesive composition is applied onto a release film to form a coating film. The coating is then dried to form an adhesive layer. Next, it can be produced by bonding the adhesive layer on the release film and the electrode on the integrated product.
  • the Peltier element By bonding the Peltier element to the vapor chamber with the adhesive layer, the Peltier element is installed on the back surface of the vapor chamber.
  • thermoelectric conversion elements can be fabricated not on the substrate but on a flat plate or sheet that constitutes the vapor chamber.
  • a passivation film is formed on the flat plate or sheet constituting the vapor chamber as necessary, and then the passivation film is formed on the surface of the flat plate or sheet constituting the vapor chamber.
  • a connection electrode on the lower surface side is formed directly or on the passivation film, a thermoelectric semiconductor material composition is further applied, and drying or annealing treatment is performed as necessary to produce a thermoelectric conversion element.
  • connection electrodes on the upper surface side are formed.
  • an adhesive layer is formed on the connection electrodes on the upper surface side, if necessary.
  • the adhesive layer is curable, it is easy to lose the adhesiveness of the adhesive layer on the upper surface side by curing the adhesive layer.
  • another flat plate or sheet is joined, the working fluid is injected, and the injection port is sealed to complete the vapor chamber, thereby obtaining the temperature control module.
  • Peltier elements are arranged on both sides of the vapor chamber, respectively, as in the temperature control module 1C shown in FIG.
  • the vapor chamber may be assembled by joining the sheet and the second sheet.
  • the temperature control module of the present invention is a thin temperature control module with high cooling performance, it is used for applications that require installation in a narrow space, especially portable electronic devices in which components with high heat generation temperature are arranged in a narrow space. Suitable for applications such as In addition, the temperature control module can be made suitable for applications that require weight reduction, applications that require flexibility, and the like. This application is based on a Japanese patent application (Japanese Patent Application No. 2022-002595) filed on January 11, 2022, the entirety of which is incorporated by reference.
  • thermoelectric conversion layer 50 Temperature controlled member 60: Intervening layer D: thickness of temperature control module D1: total thickness of Peltier element and vapor chamber D2: thickness of vapor chamber D3: thickness of

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Control Of Temperature (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a temperature control module having high cooling ability and a thin profile, the temperature control module comprising a Peltier element and a vapor chamber layered on the Peltier element, the total thickness of the Peltier element and the vapor chamber being 1 mm or less.

Description

温度制御モジュールtemperature control module
 本発明は、温度制御モジュールに関する。 The present invention relates to temperature control modules.
 各種電子機器内の特定の部品の温度制御のために、ペルチェ素子、ベーパーチャンバー、あるいはこれらを組み合わせた温度制御モジュールを用いることが提案されている。例えば、ペルチェ素子やベーパーチャンバーを熱源となる部品の近傍に配置することで、当該熱源の冷却を促すことが期待できる。また、ペルチェ素子を特定の部品の近傍に配置することで、必要な場合はこの部品を加熱することもできる。 It has been proposed to use Peltier elements, vapor chambers, or temperature control modules that combine these to control the temperature of specific parts in various electronic devices. For example, by arranging a Peltier device or a vapor chamber in the vicinity of a part that serves as a heat source, it can be expected to promote cooling of the heat source. Also, by placing a Peltier element near a particular component, it is possible to heat this component if necessary.
 特許文献1には、ペルチェ効果により上面で吸熱、下面で発熱するサーモエレメントを含むサーモ・モジュールと、当該サーモ・モジュールの冷却部側に取り付けられた平板状のヒートパイプと、上記サーモ・モジュールの発熱部側に設けられたヒートパイプ放熱器とを有するコールドプレートが記載されている。
 また、特許文献2には、複数のバッテリーセルと、一対のバッテリーセル間に介装された板形状のベーパーチャンバーと、ベーパーチャンバーの端面に密着するように配置された熱電素子と、を備えたバッテリーパック温度制御・給電システムが記載されている。
 特許文献3には、面方向に対して直交方向に沿って配置された複数のペルチェモジュールと、一対のペルチェモジュール間に吸熱流路又は放熱流路が配置され、隣り合うペルチェモジュールの吸熱面同士及び放熱面同士が対向する冷却システムが記載されている。また、上記吸熱流路及び放熱流路がベーパーチャンバーで構成されることが記載されている。
Patent Document 1 discloses a thermo-module including a thermo-element that absorbs heat on the upper surface and generates heat on the lower surface due to the Peltier effect, a flat plate-shaped heat pipe attached to the cooling part side of the thermo-module, and the thermo-module. A cold plate is described that has a heat pipe radiator provided on the heat generating side.
Further, in Patent Document 2, a plurality of battery cells, a plate-shaped vapor chamber interposed between a pair of battery cells, and a thermoelectric element arranged so as to be in close contact with an end surface of the vapor chamber are provided. A battery pack temperature control and power supply system is described.
In Patent Document 3, a plurality of Peltier modules are arranged along a direction perpendicular to the surface direction, and a heat absorption channel or heat dissipation channel is arranged between a pair of Peltier modules, and the heat absorption surfaces of the adjacent Peltier modules are arranged. and a cooling system in which heat dissipating surfaces face each other. Also, it is described that the heat absorption flow path and the heat radiation flow path are formed of vapor chambers.
 温度制御モジュールの利用分野が広がるにつれて、例えばスマートフォンやノート型パソコンに代表される薄く小型の携帯電子機器のように、機器内に限られた設置スペースしかない装置においても設置が可能なように、より一層薄型でかつ冷却性能の高い温度制御モジュールが求められている。 As the fields of application of temperature control modules expand, we are working to enable them to be installed even in devices with limited installation space, such as thin and small portable electronic devices such as smartphones and laptop computers. There is a demand for a temperature control module that is thinner and has higher cooling performance.
特開平2-176377号公報JP-A-2-176377 特開2017-126418号公報JP 2017-126418 A 特開2020-200980号公報Japanese Patent Application Laid-Open No. 2020-200980
 しかしながら、特許文献1に記載されるコールドプレートでは、ヒートパイプが厚いためコールドプレート全体を薄くすることができない。
 また、特許文献2に記載されるバッテリーパック温度制御・給電システムでは、熱電素子が被冷却物であるバッテリーセルの面方向に対して直交するように設置されているため、装置全体を薄型化することが困難である。
 更に、特許文献3に記載される冷却システムでは、各ペルチェモジュールの厚さは2~3mmとされており、しかも複数のペルチェモジュールと複数の吸熱流路又は放熱流路が繰り返し積層される構成であるため、システム全体を薄型化することが難しい。
However, in the cold plate described in Patent Document 1, the heat pipe is thick, so the cold plate as a whole cannot be made thin.
In addition, in the battery pack temperature control and power supply system described in Patent Document 2, the thermoelectric element is installed so as to be orthogonal to the surface direction of the battery cell, which is the object to be cooled, so that the entire device can be made thinner. is difficult.
Furthermore, in the cooling system described in Patent Document 3, each Peltier module has a thickness of 2 to 3 mm, and a plurality of Peltier modules and a plurality of heat absorption channels or heat dissipation channels are repeatedly laminated. Therefore, it is difficult to reduce the thickness of the entire system.
 本発明は、上記問題を鑑み、冷却性能が高く薄型の温度制御モジュールを提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a thin temperature control module with high cooling performance.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、温度制御モジュールに用いられるペルチェ素子及びベーパーチャンバーの合計厚さを所定範囲とすることにより、上記課題を解決し得ることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[6]を提供するものである。
[1]ペルチェ素子と、前記ペルチェ素子上に積層されたベーパーチャンバーと、を備え、
 前記ペルチェ素子及び前記ベーパーチャンバーの合計厚さが1mm以下である、温度制御モジュール。
[2]ペルチェ素子と、前記ペルチェ素子上に積層されたベーパーチャンバーと、を備える温度制御モジュールであって、前記温度制御モジュールの厚さが1mm以下である、温度制御モジュール。
[3]前記ペルチェ素子は、複数の熱電変換素子を含む熱電変換層を備えており、前記複数の熱電変換素子が熱電半導体材料を含む組成物の塗膜の焼成体である、上記[1]又は[2]に記載の温度制御モジュール。
[4]前記熱電半導体材料を含む組成物が、熱電半導体粒子と重合体成分とイオン化合物とを含む、上記[3]に記載の温度制御モジュール。
[5]前記ペルチェ素子は、複数の熱電変換素子を含む熱電変換層を備えており、前記複数の熱電変換素子がビスマス-テルル化合物を含む、上記[1]~[4]のいずれか一つに記載の温度制御モジュール。
[6]冷却モジュールである、上記[1]~[5]のいずれか一つに記載の温度制御モジュール。
The present inventors have made intensive studies to solve the above problems, and as a result, have found that the above problems can be solved by setting the total thickness of the Peltier device and the vapor chamber used in the temperature control module within a predetermined range. He found the headline and completed the present invention.
That is, the present invention provides the following [1] to [6].
[1] A Peltier element and a vapor chamber stacked on the Peltier element,
A temperature control module, wherein the total thickness of the Peltier element and the vapor chamber is 1 mm or less.
[2] A temperature control module comprising a Peltier element and a vapor chamber stacked on the Peltier element, wherein the temperature control module has a thickness of 1 mm or less.
[3] The above [1], wherein the Peltier element includes a thermoelectric conversion layer containing a plurality of thermoelectric conversion elements, and the plurality of thermoelectric conversion elements is a fired body of a coating film of a composition containing a thermoelectric semiconductor material. Or the temperature control module according to [2].
[4] The temperature control module according to [3] above, wherein the composition containing the thermoelectric semiconductor material contains thermoelectric semiconductor particles, a polymer component, and an ionic compound.
[5] Any one of [1] to [4] above, wherein the Peltier element includes a thermoelectric conversion layer containing a plurality of thermoelectric conversion elements, and the plurality of thermoelectric conversion elements contain a bismuth-tellurium compound. A temperature control module as described in .
[6] The temperature control module according to any one of [1] to [5] above, which is a cooling module.
 本発明は、冷却性能が高く薄型の温度制御モジュールを提供することができる。 The present invention can provide a thin temperature control module with high cooling performance.
温度制御モジュールの一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of a temperature control module. 温度制御モジュールの他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of a temperature control module. 温度制御モジュールの他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of a temperature control module. 温度制御モジュールの他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of a temperature control module. 温度制御モジュールの他の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows another example of a temperature control module. 図5の温度制御モジュールの下面図である。6 is a bottom view of the temperature control module of FIG. 5; FIG. ベーパーチェンバーの第1シートの一例を示す平面模式図である。It is a plane schematic diagram which shows an example of the 1st sheet|seat of a vapor chamber.
 以下、本発明の実施形態について説明する。 Embodiments of the present invention will be described below.
[温度制御モジュール]
 本発明の第1の実施形態に係る温度制御モジュールは、ペルチェ素子と、上記ペルチェ素子上に積層されたベーパーチャンバーと、を備え、上記ペルチェ素子及び上記ベーパーチャンバーの合計厚さが1mm以下である。
 上記温度制御モジュールは、ペルチェ素子及びベーパーチャンバーを備えていることにより、高い冷却性能を有する。また、ペルチェ素子及びベーパーチャンバーの合計厚さが1mm以下であるため、薄型の温度制御モジュールとすることができる。加えて、上記構成を有することにより、温度制御モジュールが軽量であり、温度制御モジュールに屈曲性を持たせやすくなる。
[Temperature control module]
A temperature control module according to a first embodiment of the present invention includes a Peltier element and a vapor chamber stacked on the Peltier element, and the total thickness of the Peltier element and the vapor chamber is 1 mm or less. .
The temperature control module has a high cooling performance by being equipped with a Peltier device and a vapor chamber. Moreover, since the total thickness of the Peltier element and the vapor chamber is 1 mm or less, the temperature control module can be thin. In addition, by having the above configuration, the temperature control module is lightweight, and the temperature control module can be easily made flexible.
 ペルチェ素子とベーパーチャンバーの合計厚さを1mm以下とするためには、それぞれ厚さが1mm未満の、薄型のペルチェ素子及び薄型のベーパーチャンバーを用いる。
 薄型のペルチェ素子は、例えば、後述するような塗布法によって形成された熱電変換層を有するペルチェ素子を用いることによって得ることができる。
 また、薄型のベーパーチャンバーは、例えば、後述する実施形態に示すような、複数の凸条が形成された2枚のシートを重ね合わせて作動流体を封入した構成を有し、作動流体が凝縮した液が流れる複数の凝縮液流路と、作動流体が気化した蒸気が流れる蒸気流路とが形成されてなるベーパーチャンバーを用いることで実現することができる。
In order to make the total thickness of the Peltier element and the vapor chamber 1 mm or less, a thin Peltier element and a thin vapor chamber each having a thickness of less than 1 mm are used.
A thin Peltier element can be obtained, for example, by using a Peltier element having a thermoelectric conversion layer formed by a coating method as described later.
In addition, the thin vapor chamber has, for example, a configuration in which two sheets having a plurality of ridges formed thereon are overlapped to enclose the working fluid, as shown in the embodiment described later, and the working fluid is condensed. This can be realized by using a vapor chamber in which a plurality of condensed liquid flow paths through which liquid flows and a vapor flow path through which vapor obtained by vaporizing the working fluid flows are formed.
 本発明の第2の実施形態に係る温度制御モジュールは、ペルチェ素子と、上記ペルチェ素子上に積層されたベーパーチャンバーと、を備える温度制御モジュールであって、上記温度制御モジュールの厚さが1mm以下である。
 上記第2の実施形態に係る温度制御モジュールには、ペルチェ素子とベーパーチャンバー以外にも、介在層等の他の層を設けることもできるが、このような他の層も含めて、温度制御モジュールの全体の厚さを1mm以下にすることにより、例えば、機器内に限られた設置スペースしかない装置においても設置が可能となり、あるいは、機器全体の厚さを薄く小型化することができる。また、温度制御モジュールを軽量化させやすくなり、屈曲性も持たせやすくなる。
 上記介在層としては、接着剤層、絶縁体層、封止材層等が挙げられる。
 なお、ペルチェ素子中の特定の層を上記介在層と兼用してもよい。この場合も、介在層を兼用する特定の層を含むペルチェ素子の厚さとベーパーチャンバーの厚さの合計を1mm以下とし、温度制御モジュール全体の厚さを1mm以下とすればよい。
 また、第2の実施形態に係る温度制御モジュールにおいても、上記ペルチェ素子及び上記ベーパーチャンバーの合計厚さが1mm以下であってもよい。
 以下、第1及び第2の実施形態をまとめて「本実施形態」と称することがある。
A temperature control module according to a second embodiment of the present invention is a temperature control module comprising a Peltier element and a vapor chamber stacked on the Peltier element, wherein the temperature control module has a thickness of 1 mm or less. is.
The temperature control module according to the second embodiment can be provided with other layers such as intervening layers in addition to the Peltier element and the vapor chamber. By making the total thickness of 1 mm or less, for example, it is possible to install even in a device with a limited installation space in the equipment, or the thickness of the entire equipment can be reduced and miniaturized. In addition, it becomes easier to reduce the weight of the temperature control module, and it becomes easier to give flexibility.
Examples of the intervening layer include an adhesive layer, an insulator layer, and a sealing material layer.
A specific layer in the Peltier element may also be used as the intervening layer. Also in this case, the sum of the thickness of the Peltier element including the specific layer that also serves as the intervening layer and the thickness of the vapor chamber should be 1 mm or less, and the thickness of the entire temperature control module should be 1 mm or less.
Also in the temperature control module according to the second embodiment, the total thickness of the Peltier element and the vapor chamber may be 1 mm or less.
Hereinafter, the first and second embodiments may be collectively referred to as "this embodiment".
 本実施形態に係る温度制御モジュールは、専ら冷却を行う冷却モジュールであってもよいし、冷却と加熱とを切換え得るモジュールであってもよい。 The temperature control module according to this embodiment may be a cooling module that exclusively performs cooling, or may be a module that can switch between cooling and heating.
<ペルチェ素子>
 ペルチェ素子は、ペルチェ効果を発現する熱電半導体を含む電子部品である。ペルチェ素子としては、交互に配列された、複数のP型熱電半導体素子及び複数のN型熱電半導体素子を含む熱電変換層を有するものであることが好ましい。そして、第1組の隣り合うP型熱電半導体素子とN型熱電半導体素子の上面が電気的に接続され、この第1組のN型熱電半導体素子の下面と第2組のP型熱電半導体素子の下面とが電気的に接続される。この第2組のP型熱電半導体素子の上面と、第2組のP型熱電半導体素子と対になり、ともに第2組を構成するN型熱電半導体素子の上面とが電気的に接続され、この第2組のN型熱電半導体素子の下面と第3組のP型熱電半導体素子の下面とが電気的に接続され、以下、同様の構成が繰り返される。そして、先頭の熱電半導体素子と最終の熱電半導体素子に通電することにより、電流の流れる方向がN→Pの順である電気接合部において吸熱現象が生じ、電流の流れる方向がP→Nの順である電気接合部において放熱現象が生じる。このため、ペルチェ素子は一方の面が吸熱し、他方の面が発熱することになり、冷却しようとする物体にペルチェ素子の吸熱側の面を近接又は接触させることで当該物体を冷却することができる。
<Peltier element>
A Peltier element is an electronic component containing a thermoelectric semiconductor that exhibits the Peltier effect. The Peltier element preferably has a thermoelectric conversion layer including a plurality of P-type thermoelectric semiconductor elements and a plurality of N-type thermoelectric semiconductor elements arranged alternately. The top surfaces of the first set of adjacent P-type thermoelectric semiconductor elements and the N-type thermoelectric semiconductor elements are electrically connected, and the bottom surfaces of the first set of N-type thermoelectric semiconductor elements and the second set of P-type thermoelectric semiconductor elements are electrically connected. is electrically connected to the lower surface of the The upper surface of the P-type thermoelectric semiconductor element of the second set and the upper surface of the N-type thermoelectric semiconductor element paired with the P-type thermoelectric semiconductor element of the second set and forming the second set together are electrically connected, The lower surfaces of the second set of N-type thermoelectric semiconductor elements and the lower surfaces of the third set of P-type thermoelectric semiconductor elements are electrically connected, and the same configuration is repeated thereafter. Then, by energizing the first thermoelectric semiconductor element and the last thermoelectric semiconductor element, an endothermic phenomenon occurs at the electrical junction where the current flows in the order of N→P, and the current flows in the order of P→N. A heat dissipation phenomenon occurs at the electrical junction where . Therefore, one surface of the Peltier element absorbs heat and the other surface generates heat, and the object to be cooled can be cooled by bringing the heat absorbing surface of the Peltier element close to or in contact with the object. can.
 上記温度制御モジュールとしては、薄型化の観点から、ペルチェ素子として、上述したように複数の熱電変換素子を含む熱電変換層を備えており、更に、上記複数の熱電変換素子が熱電半導体材料を含む組成物の塗膜の焼成体であるものを用いることがより好ましい。
 熱電変換素子が熱電半導体材料を含む組成物の塗膜の焼成体であるペルチェ素子を用いることにより、ペルチェ素子の厚さを1mm未満にしやすくなる。
 ペルチェ素子の厚さは、50μm以上であることが好ましく、より75μm以上であることが好ましく、150μm以上であることが更に好ましい。また、ペルチェ素子の厚さは、650μm以下であることが好ましく、550μm以下であることがより好ましく、450μm以下であることが更に好ましい。換言すれば、ペルチェ素子の厚さは、好ましくは50μm以上1mm未満である。
 上記熱電半導体材料を含む組成物は、重合体成分、イオン化合物及び熱電半導体粒子を含むものであってもよい。
 このような組成物を用いて形成される塗膜は、良好な熱電変換特性を有する熱電変換層を、塗布により形成することに適している。
 上記塗膜から形成された熱電変換層は、基材上に設けられていてもよいが、支持体上で熱電変換層を形成した後に支持体から剥離することも可能であり、基材の存在を必須としない。このため、薄型化が容易であり、薄型化の要請の大きい携帯電子機器等への適用に適している。
 塗膜は、例えば、グラビア印刷等により形成され、インクジェット印刷等の手段により形成してもよい。
 隣り合う前記熱電半導体素子同士が互いに離間し、隣り合う前記熱電半導体素子間の空隙に補強材が充填されていてもよい。補強材としては、後述する各種の絶縁体等を用いることができる。
 熱電変換層を形成するための材料や塗布による形成等については後述する。
From the viewpoint of thinning, the temperature control module is provided with a thermoelectric conversion layer including a plurality of thermoelectric conversion elements as described above as Peltier elements, and the plurality of thermoelectric conversion elements further includes a thermoelectric semiconductor material. It is more preferable to use a sintered body of a coating film of the composition.
By using a Peltier element, which is a baked body of a coating film of a composition containing a thermoelectric semiconductor material, as the thermoelectric conversion element, the thickness of the Peltier element can be easily reduced to less than 1 mm.
The thickness of the Peltier element is preferably 50 μm or more, more preferably 75 μm or more, and still more preferably 150 μm or more. Also, the thickness of the Peltier element is preferably 650 μm or less, more preferably 550 μm or less, and even more preferably 450 μm or less. In other words, the thickness of the Peltier element is preferably 50 μm or more and less than 1 mm.
The composition containing the thermoelectric semiconductor material may contain a polymer component, an ionic compound and thermoelectric semiconductor particles.
A coating film formed using such a composition is suitable for forming a thermoelectric conversion layer having good thermoelectric conversion properties by coating.
The thermoelectric conversion layer formed from the coating film may be provided on a substrate, but it is also possible to peel it off from the support after forming the thermoelectric conversion layer on the support, and the presence of the substrate is not required. Therefore, it can be easily made thin, and is suitable for application to mobile electronic devices, etc., where there is a great demand for thinness.
The coating film is formed, for example, by gravure printing or the like, and may be formed by means such as inkjet printing.
Adjacent thermoelectric semiconductor elements may be separated from each other, and a gap between the adjacent thermoelectric semiconductor elements may be filled with a reinforcing material. Various insulators, etc., which will be described later, can be used as the reinforcing material.
Materials for forming the thermoelectric conversion layer, formation by coating, and the like will be described later.
 ペルチェ素子には、必要に応じてその他の層を設けることができる。例えば、少なくとも一方の主面上の熱電変換層を覆うように、単層又は複数層からなる被覆層を配置して熱電変換層を保護するようにしてもよい。
 また、被覆層は封止層を含むことができる。被覆層が単層であれば、被覆層自身が封止層を兼ねることができ、被覆層が複数の層からなる場合は、いずれかの層に封止層を含むことができる。被覆層が封止層を含む場合、大気中の水蒸気の透過をより効果的に抑制でき、ペルチェ素子の性能を長期間にわたり維持しやすくなる。
The Peltier element can be provided with other layers as required. For example, a covering layer consisting of a single layer or multiple layers may be arranged to cover the thermoelectric conversion layer on at least one main surface to protect the thermoelectric conversion layer.
The covering layer can also include a sealing layer. If the coating layer is a single layer, the coating layer itself can also serve as the sealing layer, and if the coating layer consists of a plurality of layers, any layer can contain the sealing layer. When the covering layer includes a sealing layer, it is possible to more effectively suppress permeation of water vapor in the atmosphere, and it becomes easier to maintain the performance of the Peltier element for a long period of time.
<ベーパーチャンバー>
 ベーパーチャンバーは、対向する一対の平板と、この一対の平板間に封入された作動流体とを備える熱拡散デバイスである。上記作動流体は、相変化を伴いつつ還流することで熱輸送を行い、熱源における熱を輸送及び拡散して熱源を冷却する。
 上記温度制御モジュールを構成するベーパーチャンバーとしては、従来公知のものを使用することができる。例えば、以下の実施形態に示すような、凹凸が形成された2枚のシートを重ね合わせて作動流体を封入した構成を有し、作動流体が凝縮した液が流れる複数の凝縮液流路と、作動流体が気化した蒸気が流れる蒸気流路とが形成されてなるベーパーチャンバーを用いることができる。また、一対の平板間に、メッシュウィックを配置し、作動流体を封入した構成のものであって、気化後に凝縮した作動流体をメッシュウィックによって還流するタイプのものを用いてもよい。
<Vapor chamber>
A vapor chamber is a heat spreading device comprising a pair of opposed flat plates and a working fluid enclosed between the pair of flat plates. The working fluid transports heat by refluxing with a phase change, transports and diffuses the heat in the heat source, and cools the heat source.
A conventionally known vapor chamber can be used as the vapor chamber constituting the temperature control module. For example, as shown in the following embodiments, a plurality of condensed liquid flow paths having a configuration in which two sheets having unevenness formed thereon are superimposed to enclose a working fluid, and a liquid condensed from the working fluid flows; A vapor chamber can be used in which a vapor channel through which vapor obtained by vaporizing the working fluid flows is formed. Alternatively, a mesh wick may be arranged between a pair of flat plates to enclose the working fluid, and the working fluid condensed after vaporization may be circulated by the mesh wick.
 ベーパーチャンバーを構成する一対の平板や一対のシートの材質に特に限定はないが、熱伝導率が高い金属であることが好ましく、例えば、銅、銅合金が挙げられる。
 また、ベーパーチャンバーの密閉空間に封入される作動流体の種類も特に限定されないが、例えば、純水、エタノール(沸点:78.3℃)、メタノール(沸点:64.7℃)、アセトン(沸点:56℃)、ナフタレン(沸点:218℃)等を用いることができる。なお、ベーパーチャンバーの作動温度範囲は、エタノールやアセトンを作動流体とする場合、比較的低温領域であり(例えば、エタノールの場合は-10~+130℃程度)、ナフタレンを作動流体とする場合は比較的高温領域である(250~400℃程度)。作動流体が純水の場合は中間的な温度領域であり、30~200℃程度である。
The material of the pair of flat plates and the pair of sheets constituting the vapor chamber is not particularly limited, but metals with high thermal conductivity are preferred, such as copper and copper alloys.
Also, the type of working fluid enclosed in the closed space of the vapor chamber is not particularly limited. 56°C), naphthalene (boiling point: 218°C), and the like can be used. The operating temperature range of the vapor chamber is a relatively low temperature range when ethanol or acetone is used as the working fluid (for example, about -10 to +130°C for ethanol). It is a relatively high temperature range (approximately 250 to 400°C). When the working fluid is pure water, the temperature is in an intermediate temperature range of about 30 to 200.degree.
 ベーパーチャンバーとペルチェ素子との積層順には特に制限はなく、ベーパーチャンバー上にペルチェ素子が積層されていてもよいし、ペルチェ素子上にベーパーチャンバーが積層されていてもよい。また、両者は、他の層を介して積層されていてもよい。
 ベーパーチャンバーとペルチェ素子の面積には特に制限はないが、例えば、熱源となる特定のパーツを冷却する場合は、ペルチェ素子を当該パーツに対応する面積とし、ベーパーチャンバーはそれより大きな面積とすることが好ましい。また、ペルチェ素子によってベーパーチャンバーからの放熱を促進する場合は、ペルチェ素子をベーパーチャンバーと同等かそれ以上の面積とするか、ベーパーチャンバーより小さい面積のペルチェ素子を、ベーパーチャンバーの面積に対応するように、複数配置することが好ましい。
The stacking order of the vapor chamber and the Peltier element is not particularly limited, and the Peltier element may be stacked on the vapor chamber, or the vapor chamber may be stacked on the Peltier element. Moreover, both may be laminated|stacked through another layer.
There are no particular restrictions on the area of the vapor chamber and the Peltier element, but for example, when cooling a specific part that is a heat source, the area of the Peltier element should correspond to that part, and the area of the vapor chamber should be larger than that. is preferred. In addition, when promoting heat dissipation from the vapor chamber with a Peltier element, the area of the Peltier element should be equal to or greater than that of the vapor chamber, or the area of the Peltier element smaller than that of the vapor chamber should correspond to the area of the vapor chamber. It is preferable to arrange a plurality of
 以下、本発明の実施形態に係る温度制御モジュールの構成例を、図面を用いて説明する。図面は全て模式的なものであり、理解を容易にするため誇張している場合がある。また、同様の部材や構造については同じ符号を重複して付与することを省略している場合がある。 A configuration example of the temperature control module according to the embodiment of the present invention will be described below with reference to the drawings. All drawings are schematic and may be exaggerated for ease of understanding. In addition, redundant assignment of the same reference numerals to similar members and structures may be omitted.
<温度制御モジュールの構成例1>
 図1は、本実施形態に係る温度制御モジュールの一例を示す断面模式図である。図1に示す温度制御モジュール1Aは、ベーパーチャンバー30の一方の主面(図1における下面)にペルチェ素子40が積層された構成を有する。温度制御モジュール1Aは平板状のものである。温度制御モジュール1Aの平面視したときの形状には特に制限はなく、矩形、正方形、多角形、円形、楕円形などの形状とすることができる。
 温度制御モジュール1Aを使用する際には、図1に破線で示すように、ペルチェ素子40の、ベーパーチャンバー30とは反対側の主面(図1における下面)に接するように、温度制御の対象となる部材50(以下、温度制御対象部材50という)が設置される。
 温度制御モジュール1Aにおいては、ペルチェ素子40の厚さD3及びベーパーチャンバー30の厚さD2の合計厚さD1が1mm以下である。温度制御モジュール1Aにおいては、厚さD1が温度制御モジュール1Aの厚さDでもある。上記の厚さD1が1mm以下であることにより、温度制御モジュール1Aを薄型にすることでき、狭い空間へ配置可能な温度制御モジュールとすることができる。また、軽量化や屈曲性も達成させやすい。
<Configuration example 1 of temperature control module>
FIG. 1 is a schematic cross-sectional view showing an example of a temperature control module according to this embodiment. A temperature control module 1A shown in FIG. 1 has a configuration in which a Peltier element 40 is stacked on one main surface (lower surface in FIG. 1) of a vapor chamber 30. As shown in FIG. The temperature control module 1A is flat. The shape of the temperature control module 1A when viewed from above is not particularly limited, and may be rectangular, square, polygonal, circular, elliptical, or the like.
When using the temperature control module 1A, as indicated by the dashed line in FIG. 1, the main surface of the Peltier element 40 opposite to the vapor chamber 30 (lower surface in FIG. 1) is in contact with the object of temperature control. A member 50 (hereinafter referred to as a temperature-controlled member 50) is installed.
In the temperature control module 1A, the total thickness D1 of the thickness D3 of the Peltier element 40 and the thickness D2 of the vapor chamber 30 is 1 mm or less. In the temperature control module 1A, the thickness D1 is also the thickness D of the temperature control module 1A. Since the thickness D1 is 1 mm or less, the temperature control module 1A can be made thin, and the temperature control module can be arranged in a narrow space. In addition, it is easy to achieve weight reduction and flexibility.
 ペルチェ素子40は、平面視したときの面積がベーパーチャンバー30の面積より小さい。そして、ベーパーチャンバー30の中心付近の下面に接するようにペルチェ素子40が配置されている。ベーパーチャンバー30の上記面積がペルチェ素子40の上記面積より大きいことにより、ペルチェ素子40から放出される熱を効率よく平面方向に拡散することができる。 The area of the Peltier element 40 is smaller than the area of the vapor chamber 30 when viewed from above. A Peltier element 40 is arranged in contact with the bottom surface of the vapor chamber 30 near the center. Since the area of the vapor chamber 30 is larger than the area of the Peltier element 40, the heat emitted from the Peltier element 40 can be efficiently diffused in the planar direction.
 ペルチェ素子40は、交互に並んで配置された複数のP型熱電変換素子43と複数のN型熱電変換素子44を含む熱電変換層48を備える。P型熱電変換素子43とN型熱電変換素子44は、第1の接続電極41と第2の接続電極42により、交互に電気的に接続されている。
 P型熱電変換素子43とN型熱電変換素子44の周囲には絶縁体層46が設けられている。ペルチェ素子40の上面側に位置する第1の接続電極41の周囲及び上面には充填剤層45が設けられている。ペルチェ素子40の下面側には、第2の接続電極42、P型熱電変換素子43、N型熱電変換素子44を覆うように被覆層47が設けられている。
The Peltier element 40 includes a thermoelectric conversion layer 48 including a plurality of P-type thermoelectric conversion elements 43 and a plurality of N-type thermoelectric conversion elements 44 arranged alternately. The P-type thermoelectric conversion elements 43 and the N-type thermoelectric conversion elements 44 are alternately electrically connected by first connection electrodes 41 and second connection electrodes 42 .
An insulator layer 46 is provided around the P-type thermoelectric conversion elements 43 and the N-type thermoelectric conversion elements 44 . A filler layer 45 is provided around and on the top surface of the first connection electrode 41 located on the top surface side of the Peltier element 40 . A coating layer 47 is provided on the lower surface side of the Peltier element 40 so as to cover the second connection electrodes 42 , the P-type thermoelectric conversion elements 43 and the N-type thermoelectric conversion elements 44 .
 ベーパーチャンバー30は、それぞれ互いに対応する位置に複数の凸条が形成された第1シート10及び第2シート20を含む。第1シート10の複数の凸条13と第2シート20の複数の凸条23とが互いに重なるように、第1シート10及び第2シート20が接合され、両者の間に形成される密閉空間31には作動流体が封入されている。なお、ベーパーチャンバー30の詳細な構成については後述する。 The vapor chamber 30 includes a first sheet 10 and a second sheet 20 on which a plurality of ridges are formed at positions corresponding to each other. The first sheet 10 and the second sheet 20 are joined so that the plurality of ridges 13 of the first sheet 10 and the plurality of ridges 23 of the second sheet 20 overlap each other, and a closed space is formed between them. A working fluid is enclosed in 31 . A detailed configuration of the vapor chamber 30 will be described later.
 温度制御モジュール1Aにおいては、例えば、温度制御対象部材50を温度制御モジュール1Aが有するペルチェ素子40の下面に接触させて温度制御対象部材50を冷却する場合、ペルチェ素子40に通電して下面を吸熱側、上面を放熱側としてペルチェ素子40に温度差を発生させる。そして、温度制御対象部材50から吸収した熱をペルチェ素子40の上面側から放熱すると、この熱がベーパーチャンバー30によって平面方向に拡散される。こうして、温度制御モジュール1Aは薄型であるにもかかわらず、高い冷却性能を発揮する。
 なお、周辺の環境温度が低い場合など必要な場合には、ペルチェ素子40に対して、下面を吸熱側にする場合とは逆の方向に通電することにより、ペルチェ素子40の下面が発熱側となるため、温度制御対象部材50を温めることができる。こうして、温度制御対象部材50に対する温度制御を行うことができる。
In the temperature control module 1A, for example, when the temperature control target member 50 is brought into contact with the lower surface of the Peltier element 40 of the temperature control module 1A to cool the temperature control target member 50, the Peltier element 40 is energized to absorb heat from the lower surface. A temperature difference is generated in the Peltier element 40 with the side and the upper surface as heat radiation sides. When the heat absorbed from the temperature controlled member 50 is radiated from the upper surface side of the Peltier device 40 , this heat is diffused in the planar direction by the vapor chamber 30 . Thus, although the temperature control module 1A is thin, it exhibits high cooling performance.
If necessary, such as when the surrounding environmental temperature is low, the lower surface of the Peltier element 40 is turned to the heat-generating side by energizing the Peltier element 40 in the direction opposite to the case where the lower surface is on the heat-absorbing side. Therefore, the temperature control target member 50 can be warmed. In this way, temperature control can be performed on the temperature-controlled member 50 .
<温度制御モジュールの構成例2>
 図2は、本実施形態に係る温度制御モジュールの他の一例を示す断面模式図である。図2に示す温度制御モジュール1Bは、ペルチェ素子40とベーパーチャンバー30との間に介在層60を設けた構成を有する。他の構成は、温度制御モジュール1Aと同様である。
 介在層60を設けることにより、ペルチェ素子40とベーパーチャンバー30との密着性を高めたり、ペルチェ素子40とべーパーチャンバー30との間の熱抵抗を小さくして、両者間における熱移動性を向上させたりすることができる。
 温度制御モジュール1Bの厚さDは1mm以下である。また、介在層60の厚さD4とベーパーチャンバー30の厚さD2とペルチェ素子40の厚さD3の合計も1mm以下である。このような厚さとすることで、介在層60を設けても、温度制御モジュール1Bが厚くなることを防ぐことができる。介在層60の厚さは、通常20~200μm、好ましくは35~150μm程度である。
 なお、介在層60をペルチェ素子40の一部と見た場合、あるいは、充填剤層45と介在層60とが一体のものとしてペルチェ素子40に設けられている場合は、ペルチェ素子の厚さD3とベーパーチャンバーの厚さD2の合計厚さが1mm以下であるともいえる。
 また、図2に示す温度制御モジュール1Bにおいては、ペルチェ素子40中の電極41及び充填剤層45の上面に介在層60が直接設けられている。しかし、これに限るものではなく、図1に示す温度制御モジュール1Aのように充填剤層45が電極41の上面をも覆っており、その充填剤層45の上面に介在層60を設けるようにしてもよい。
<Configuration example 2 of temperature control module>
FIG. 2 is a schematic cross-sectional view showing another example of the temperature control module according to this embodiment. The temperature control module 1B shown in FIG. 2 has a configuration in which an intervening layer 60 is provided between the Peltier element 40 and the vapor chamber 30. As shown in FIG. Other configurations are the same as those of the temperature control module 1A.
By providing the intervening layer 60, the adhesiveness between the Peltier element 40 and the vapor chamber 30 is enhanced, or the thermal resistance between the Peltier element 40 and the vapor chamber 30 is reduced to improve the thermal transferability therebetween. can do.
The thickness D of the temperature control module 1B is 1 mm or less. Also, the sum of the thickness D4 of the intervening layer 60, the thickness D2 of the vapor chamber 30, and the thickness D3 of the Peltier element 40 is 1 mm or less. With such a thickness, even if the intervening layer 60 is provided, it is possible to prevent the temperature control module 1B from becoming thick. The thickness of the intervening layer 60 is usually about 20-200 μm, preferably about 35-150 μm.
When the intervening layer 60 is regarded as a part of the Peltier element 40, or when the filler layer 45 and the intervening layer 60 are integrally provided in the Peltier element 40, the thickness of the Peltier element D3 and the thickness D2 of the vapor chamber is 1 mm or less.
In addition, in the temperature control module 1B shown in FIG. 2, the intervening layer 60 is directly provided on the upper surfaces of the electrode 41 and the filler layer 45 in the Peltier element 40. As shown in FIG. However, the present invention is not limited to this, and the filler layer 45 also covers the upper surface of the electrode 41 as in the temperature control module 1A shown in FIG. may
<温度制御モジュールの構成例3>
 図3は、本実施形態に係る温度制御モジュールの他の一例を示す断面模式図である。図3に示す温度制御モジュール1Cは、上記温度制御モジュール1Aと同様に、ベーパーチャンバー30の一方の主面(図3における下面)の一部に第1のペルチェ素子40を配置した構成を有する。加えて、ベーパーチャンバー30の他方の主面(図3における上面)の全体にわたって第2のペルチェ素子70を配置した構成を有する。つまり、平面視したときの第2のペルチェ素子70の面積はベーパーチャンバー30の面積以上の大きさである。
 第2のペルチェ素子70は、第1のペルチェ素子40と同様に、複数のP型熱電変換素子73及び複数のN型熱電変換素子74を含む熱電変換層78、第1の接続電極71、第2の接続電極72、絶縁体層76、充填剤層75、被覆層77を有している。
<Configuration Example 3 of Temperature Control Module>
FIG. 3 is a schematic cross-sectional view showing another example of the temperature control module according to this embodiment. A temperature control module 1C shown in FIG. 3 has a configuration in which a first Peltier element 40 is arranged on part of one main surface (lower surface in FIG. 3) of a vapor chamber 30, like the temperature control module 1A. In addition, it has a configuration in which the second Peltier element 70 is arranged over the entire other main surface (upper surface in FIG. 3) of the vapor chamber 30 . That is, the area of the second Peltier element 70 when viewed from above is larger than the area of the vapor chamber 30 .
As with the first Peltier element 40, the second Peltier element 70 includes a thermoelectric conversion layer 78 including a plurality of P-type thermoelectric conversion elements 73 and a plurality of N-type thermoelectric conversion elements 74, a first connection electrode 71, a first 2 connection electrodes 72 , an insulator layer 76 , a filler layer 75 and a coating layer 77 .
 温度制御モジュール1Cにおいては、ベーパーチャンバー30に対向する側の面が吸熱側、反対側の面が放熱側となるように第2のペルチェ素子70に通電することにより、ベーパーチャンバー30が拡散した熱を第2のペルチェ素子70の下面側から吸熱し、上面側から放熱することができる。このため、温度制御モジュール1Cでは、冷却性能を更に高めることができる。
 温度制御モジュール1Cの厚さDは1mm以下であり、第1のペルチェ素子40の厚さD31とベーパーチャンバー30の厚さD2と第2のペルチェ素子70の厚さD32の合計が1mm以下である。このような厚さとすることで、第2のペルチェ素子70を設けても、温度制御モジュール1Cが厚くなることを防ぐことができる。
 なお、温度制御モジュール1Cにおいて、ペルチェ素子40とベーパーチャンバー30との間、及び、ベーパーチャンバー30とペルチェ素子70との間のうち少なくとも一方に介在層を設けてもよい。
In the temperature control module 1C, the second Peltier element 70 is energized so that the surface facing the vapor chamber 30 is the heat absorbing side and the opposite surface is the heat radiating side. can absorb heat from the bottom side of the second Peltier element 70 and dissipate heat from the top side. Therefore, the temperature control module 1C can further improve the cooling performance.
The thickness D of the temperature control module 1C is 1 mm or less, and the sum of the thickness D31 of the first Peltier element 40, the thickness D2 of the vapor chamber 30, and the thickness D32 of the second Peltier element 70 is 1 mm or less. . By setting it as such thickness, even if the 2nd Peltier element 70 is provided, the temperature control module 1C can be prevented from becoming thick.
In the temperature control module 1</b>C, an intervening layer may be provided between at least one of the Peltier element 40 and the vapor chamber 30 and between the vapor chamber 30 and the Peltier element 70 .
<温度制御モジュールの構成例4>
 図4は、本実施形態に係る温度制御モジュールの他の一例を示す断面模式図である。図4に示す温度制御モジュール1Dは、上記温度制御モジュール1Cから第1のペルチェ素子40を取り除いた構成を有している。具体的には、温度制御モジュール1Dは、ベーパーチャンバー30の一方の主面(図4における上面)の全体にわたってペルチェ素子70が配置された構成を有する。
 温度制御モジュール1Dにおいては、ベーパーチャンバー30の下面に、温度制御対象部材50を接触させることにより、ベーパーチャンバー30によって平面方向に熱を拡散させる。加えて、ペルチェ素子70に通電することにより、ベーパーチャンバー30から放出される熱を、ペルチェ素子70の下面側から吸熱して上面側に放熱することができる。
 温度制御モジュール1Dの厚さDは1mm以下であり、ペルチェ素子の厚さD3とベーパーチャンバーの厚さD2の合計が1mm以下である。
<Configuration Example 4 of Temperature Control Module>
FIG. 4 is a schematic cross-sectional view showing another example of the temperature control module according to this embodiment. A temperature control module 1D shown in FIG. 4 has a configuration obtained by removing the first Peltier element 40 from the temperature control module 1C. Specifically, temperature control module 1D has a configuration in which Peltier element 70 is arranged over one main surface (upper surface in FIG. 4) of vapor chamber 30 .
In the temperature control module 1</b>D, heat is diffused in the planar direction by the vapor chamber 30 by bringing the temperature control target member 50 into contact with the lower surface of the vapor chamber 30 . In addition, by energizing the Peltier element 70, the heat emitted from the vapor chamber 30 can be absorbed from the lower surface side of the Peltier element 70 and radiated to the upper surface side.
The thickness D of the temperature control module 1D is 1 mm or less, and the sum of the thickness D3 of the Peltier element and the thickness D2 of the vapor chamber is 1 mm or less.
<温度制御モジュールの構成例5>
 図5は、本実施形態に係る温度制御モジュールの他の一例を示す断面模式図であり、図6はその下面図である。図6のV-V線に沿う断面が、図5の断面図に相当する。
 図5及び図6に示す温度制御モジュール1Eは、ベーパーチャンバー30の下面に、温度制御対象部材50が設けられる領域(設置予定領域)32が確保されている。そして、ベーパーチャンバー30の下面の設置予定領域32以外の領域に、第3のペルチェ素子80が複数配置された構成を有する。換言すれば、本構成例の温度制御モジュールは、ペルチェ素子と、上記ペルチェ素子上に積層されたベーパーチャンバーとを備え、上記ベーパーチャンバーの、温度制御対象部材が設置される面の、上記温度制御対象部材の設置予定領域とは異なる領域上に、上記ペルチェ素子が、1つ以上、好ましくは複数配置されている、温度制御モジュールである。
 本構成例の温度制御モジュールは、上記温度制御モジュール1Dのベーパーチャンバー30の他方の主面の、温度制御対象部材50が設けられない領域に、複数(図5、6の例では2枚)の第3のペルチェ素子80が配置され、上記温度制御モジュール1Dから第2のペルチェ素子70を取り除いた構成を有するともいえる。
 温度制御モジュール1Eにおいては、第3のペルチェ素子80が、後述するべーパーチャンバーの構成例において、気化した作動流体が蒸気となって蒸気流路31内を流れて移動してくる領域に対応する位置に設置されている。そして、この気化した作動流体からべーパーチャンバーの第2シート20を介して放熱される熱を、第3のペルチェ素子80の上面側から吸熱して下面側に放熱することができる。
 ペルチェ素子80は、第1及び第2の接続電極81、82、P型熱電変換素子83、N型熱電変換素子84、充填剤層85、絶縁体層86、被覆層87、及び、熱電変換層88を有している。これらは、上述したペルチェ素子40と同様であるため、詳しい説明を省略する。
<Configuration Example 5 of Temperature Control Module>
FIG. 5 is a schematic cross-sectional view showing another example of the temperature control module according to this embodiment, and FIG. 6 is a bottom view thereof. A cross section taken along line VV in FIG. 6 corresponds to the cross sectional view in FIG.
In the temperature control module 1E shown in FIGS. 5 and 6, a region (planned installation region) 32 in which the temperature controlled member 50 is provided is secured on the lower surface of the vapor chamber 30. As shown in FIG. A plurality of third Peltier elements 80 are arranged in a region other than the planned installation region 32 on the lower surface of the vapor chamber 30 . In other words, the temperature control module of this configuration example includes a Peltier element and a vapor chamber stacked on the Peltier element, and the temperature control of the surface of the vapor chamber on which the member to be temperature controlled is installed. In the temperature control module, one or more, preferably a plurality, of the Peltier elements are arranged on a region different from the planned installation region of the target member.
In the temperature control module of this configuration example, a plurality (two in the example of FIGS. 5 and 6) of It can be said that the temperature control module 1D has a configuration in which the third Peltier element 80 is arranged and the second Peltier element 70 is removed from the temperature control module 1D.
In the temperature control module 1E, the third Peltier element 80 is located at a position corresponding to the region where the vaporized working fluid flows and moves in the vapor flow path 31 in the configuration example of the vapor chamber to be described later. is installed in The heat radiated from the vaporized working fluid through the second sheet 20 of the vapor chamber can be absorbed from the upper surface side of the third Peltier element 80 and radiated to the lower surface side.
The Peltier element 80 includes first and second connection electrodes 81 and 82, a P-type thermoelectric conversion element 83, an N-type thermoelectric conversion element 84, a filler layer 85, an insulator layer 86, a coating layer 87, and a thermoelectric conversion layer. 88. Since these are the same as the Peltier element 40 described above, detailed description thereof will be omitted.
 ペルチェ素子及びベーパーチャンバーの合計厚さを1mm以下とする観点、又は、温度制御モジュールの厚さを1mm以下とする観点からは、温度制御モジュールは、構成例1、2、又は4のように、べーパーチャンバー30及びペルチェ素子40のいずれも1つのみ有することが好ましい。このような構成であれば、温度制御モジュール1Cのようにべーパーチャンバー30又はペルチェ素子40の少なくとも一方を2つ以上有する場合に比べて部品点数が少ないため、薄型化を達成させやすい。したがって、べーパーチャンバー30又はペルチェ素子として、例えば、厚さが350μmを超えるものを用いても、ペルチェ素子及びベーパーチャンバーの合計厚さ、又は温度制御モジュールの厚さを1mm以下とすることが容易である。
 また、構成例5のように、温度制御モジュールのベーパーチャンバーの他方の主面の、温度制御対象部材が設けられない領域にペルチェ素子を配置する場合は、ペルチェ素子は温度制御モジュールの厚さ方向において、温度制御対象部材と同レベルの位置に存在する。これにより、ペルチェ素子が温度制御モジュール及び温度制御部材の合計厚さを増加させる要因とならないため好ましい。
From the viewpoint of setting the total thickness of the Peltier element and the vapor chamber to 1 mm or less, or from the viewpoint of setting the thickness of the temperature control module to 1 mm or less, the temperature control module, as in Configuration Examples 1, 2, or 4, It is preferable to have only one vapor chamber 30 and one Peltier element 40 . With such a configuration, the number of parts is smaller than that of the temperature control module 1C having at least one of the vapor chamber 30 and the Peltier element 40, and thus the thickness can be easily reduced. Therefore, even if the thickness of the vapor chamber 30 or the Peltier element exceeds 350 μm, for example, the total thickness of the Peltier element and the vapor chamber or the thickness of the temperature control module can easily be 1 mm or less. be.
In addition, as in configuration example 5, when the Peltier element is arranged in a region where the temperature-controlled member is not provided on the other main surface of the vapor chamber of the temperature control module, the Peltier element is arranged in the thickness direction of the temperature control module. , exists at the same level as the member to be temperature controlled. This is preferable because the Peltier element does not increase the total thickness of the temperature control module and the temperature control member.
<ベーパーチャンバーの構成例>
 次に、温度制御モジュール1A~1Eに設けられたベーパーチャンバーの構成例について説明する。
 図1~図5に示すように、ベーパーチャンバー30は、第1シート10と第2シート20とを備える。そして、上述したように、第1シート10と第2シート20には、それぞれ互いに対応する位置に複数の凸条が形成されている。
 図7は、ベーパーチェンバー30の第1シート10の一例を示す平面模式図であり、ベーパーチャンバー30が矩形状の例である。図7のI-I線に沿う断面が、図1~4に示されたべーパーチャンバー30の断面図に相当する。また、図7のV-V線に沿う断面が、図5に示されたべーパーチャンバー30の断面図に相当する。図7には、図1~3に示されるように直接又は介在層を介してベーパーチャンバー30に接触する第1のペルチェ素子40、図4、5に示される温度制御対象部材50、及び、図5、6に示される第3のペルチェ素子80の接触位置をそれぞれ破線で示している。
 図7に示すように、第1シート10の周縁部11は環状の凸条となっており、周縁部11の上面(第2シート20に対向する面)には、周縁部11に沿って複数の溝14が形成されている。また、周縁部11より内側には、複数の凸条13が形成されており、周縁部11と凸条13との間、及び、隣り合う一対の凸条13の間は凹部12となっている。そして、凸条13のそれぞれには、凸条13に沿って複数の溝15が形成されている。第1シート10の端部には、周縁部11から突出した注入口形成部18が設けられている。注入口形成部18は、作動流体を導入するための注入口の一部を構成する。
 また、周縁部11の上面には、溝14と交差するように、溝状の液連通開口部16が所定間隔で設けられ、凸条13の上面には、溝15と交差する方向に、溝状の液連通開口部17が所定間隔で設けられている。
 なお、図7において、溝14、15、液連通開口部16、17は簡略的に実線で図示してある。
<Configuration example of vapor chamber>
Next, configuration examples of the vapor chambers provided in the temperature control modules 1A to 1E will be described.
As shown in FIGS. 1-5, the vapor chamber 30 includes a first sheet 10 and a second sheet 20. As shown in FIGS. As described above, the first sheet 10 and the second sheet 20 are formed with a plurality of ridges at positions corresponding to each other.
FIG. 7 is a schematic plan view showing an example of the first sheet 10 of the vapor chamber 30, in which the vapor chamber 30 has a rectangular shape. 7 corresponds to the cross-sectional view of the vapor chamber 30 shown in FIGS. 1-4. 7 corresponds to the cross-sectional view of the vapor chamber 30 shown in FIG. 7 shows a first Peltier element 40 in contact with the vapor chamber 30 directly or through an intervening layer as shown in FIGS. 1 to 3, a temperature controlled member 50 shown in FIGS. The contact positions of the third Peltier elements 80 shown in 5 and 6 are indicated by dashed lines.
As shown in FIG. 7 , the peripheral edge portion 11 of the first sheet 10 is an annular ridge, and a plurality of protrusions are provided along the peripheral edge portion 11 on the upper surface of the peripheral edge portion 11 (the surface facing the second sheet 20 ). grooves 14 are formed. In addition, a plurality of ridges 13 are formed inside the peripheral edge portion 11, and recesses 12 are formed between the peripheral edge portion 11 and the ridges 13 and between a pair of adjacent ridges 13. . A plurality of grooves 15 are formed in each of the ridges 13 along the ridges 13 . An end portion of the first sheet 10 is provided with an inlet forming portion 18 protruding from the peripheral edge portion 11 . The inlet forming portion 18 constitutes part of an inlet for introducing the working fluid.
In addition, groove-like liquid communication openings 16 are provided at predetermined intervals on the upper surface of the peripheral edge portion 11 so as to intersect with the grooves 14 , and the upper surface of the ridges 13 are provided with grooves in the direction intersecting with the grooves 15 . shaped liquid communication openings 17 are provided at predetermined intervals.
In FIG. 7, the grooves 14 and 15 and the liquid communication openings 16 and 17 are simply illustrated with solid lines.
 第2シート20には、第1シート10の周縁部11及び複数の凸条13に対応する位置に、溝14、15が設けられていないことを除いて、第1シート10と同様の構成を有する周縁部21と複数の凸条23が設けられている(図1~図4参照)。周縁部21と凸条23との間、及び、隣り合う一対の凸条23の間は凹部22となっている。また、第2シート20の周縁部21と複数の凸条23との間の空間に連通するように、第1シート10の注入口形成部18に対応する部位に凹部を有する注入口形成部が設けられており、第1シート10と第2シート20とを接合することで、作動流体を注入するための注入口24が形成される。
 そして、第1シート10の周縁部11と複数の凸条13が、第2シート20の周縁部21と複数の凸条23に重なるように、第1シート10及び第2シート20が、拡散接合やろう付け等によって接合され、凸条13、23及び周縁部11、21で囲まれる密閉空間31が形成される。そして、密閉空間31に作動流体が封入される。この密閉空間31は後述するように蒸気流路として機能する。
 なお、作動流体の封入に当たっては、注入口24から真空引きを行って密閉空間31を減圧した後、注入口24から作動流体を注入する。そして、注入完了後に注入口24はレーザー接合したりかしめたりすることにより封止される。
The second sheet 20 has the same configuration as the first sheet 10 except that the grooves 14 and 15 are not provided at positions corresponding to the peripheral edge portion 11 and the plurality of ridges 13 of the first sheet 10. A peripheral edge portion 21 and a plurality of ridges 23 are provided (see FIGS. 1 to 4). A concave portion 22 is formed between the peripheral portion 21 and the ridge 23 and between a pair of adjacent ridges 23 . In addition, there is an injection port forming portion having a recess at a portion corresponding to the injection port forming portion 18 of the first sheet 10 so as to communicate with the space between the peripheral edge portion 21 of the second sheet 20 and the plurality of ridges 23 . By joining the first sheet 10 and the second sheet 20, an injection port 24 for injecting the working fluid is formed.
Then, the first sheet 10 and the second sheet 20 are diffusion-bonded so that the peripheral edge portion 11 and the plurality of ridges 13 of the first sheet 10 overlap the peripheral edge portion 21 and the plurality of ridges 23 of the second sheet 20. A sealed space 31 surrounded by the ridges 13, 23 and the peripheral edges 11, 21 is formed by joining them by brazing or the like. A working fluid is enclosed in the closed space 31 . This closed space 31 functions as a steam flow path as described later.
When the working fluid is filled, the working fluid is injected from the filling port 24 after the closed space 31 is decompressed by evacuating from the filling port 24 . After the injection is completed, the injection port 24 is sealed by laser bonding or caulking.
 熱源である温度制御対象部材50、あるいは、熱源に接し外部へ放熱しているペルチェ素子40(以下、これらを総称して「熱源」という)がベーパーチャンバー30の所定部位に接触すると、それらの熱が第1シート10内を熱伝導によって伝播し、密閉空間内における熱源に近い位置に存在する凝縮液が熱を受ける。この熱を受けた凝縮液は熱を吸収し蒸発し気化する。これにより熱源が冷却される。
 気化した作動流体は蒸気となって図7に黒色矢印で示したように蒸気流路31内を流れて移動する。この流れは熱源から離れる方向に生じるため、蒸気は熱源から離れる方向に移動する。
 蒸気流路31内の蒸気は熱源から離れ、比較的温度が低いベーパーチャンバー30の周縁部に向かって移動し、当該移動の際に順次第1シート10及び第2シート20に熱を奪われながら冷却される。蒸気から熱を奪った第1シート10及び第2シート20はその下面(第1シート10及び第2シート20が互いに対向する面(上面)とは逆側の面)や側面から熱を外気に放出する。
 蒸気流路31を移動しつつ熱を奪われた作動流体は凝縮して液化する。この凝縮液は蒸気流路31の壁面に付着する。一方で蒸気流路31には連続して蒸気が流れているので、凝縮液は蒸気で押し込まれるように、液連通開口部16、17等から凝縮液流路となる溝14、15に分配されて移動する。
 凝縮液流路となる溝14、15に入った凝縮液は、凝縮液流路による毛管現象、及び、蒸気からの押圧により、図7に白抜き薄線の矢印で表したように熱源に近づくように移動する。そして再度熱源からの熱により気化して上記の動作及び状態変化を繰り返す。
 ベーパーチャンバー30によれば、凝縮液流路において高い毛管力で凝縮液の還流が良好となり、薄型であっても高い熱輸送量を有している。したがって、ベーパーチャンバー30にペルチェ素子40、70、80が積層されることにより得られる温度制御モジュールは、高い冷却能力を発揮する。
When the temperature-controlled member 50, which is a heat source, or the Peltier element 40, which is in contact with the heat source and dissipates heat to the outside (hereinafter collectively referred to as the “heat source”), contacts a predetermined portion of the vapor chamber 30, the heat is generated. propagates through the first sheet 10 by heat conduction, and the condensate present in the closed space near the heat source receives heat. The condensate that has received this heat absorbs the heat and evaporates. This cools the heat source.
The vaporized working fluid turns into steam and flows through the steam flow path 31 as indicated by the black arrows in FIG. Because this flow occurs away from the heat source, the steam moves away from the heat source.
The steam in the steam channel 31 leaves the heat source and moves toward the peripheral edge of the vapor chamber 30 where the temperature is relatively low. Cooled. The first sheet 10 and the second sheet 20, which have taken heat from the steam, transfer heat to the outside air from the lower surface (the surface opposite to the surface (upper surface) where the first sheet 10 and the second sheet 20 face each other) and the side surface. discharge.
The working fluid that has lost heat while moving through the steam flow path 31 condenses and liquefies. This condensate adheres to the wall surface of the steam channel 31 . On the other hand, since steam is continuously flowing in the steam flow path 31, the condensate is distributed from the liquid communication openings 16, 17 and the like to the grooves 14, 15 which become the condensate flow path so as to be pushed by the steam. to move.
The condensate that has entered the grooves 14 and 15 that serve as condensate flow paths approaches the heat source as indicated by the white thin line arrows in FIG. to move. Then, it is vaporized again by the heat from the heat source, and the above operations and state changes are repeated.
According to the vapor chamber 30, the high capillary force in the condensate flow path allows the condensate to recirculate well, and the vapor chamber 30 has a high heat transfer capacity even though it is thin. Therefore, the temperature control module obtained by stacking the Peltier elements 40, 70, 80 in the vapor chamber 30 exhibits a high cooling capacity.
 第1シート10及び第2シート20に凸条や溝を形成するためには、例えば、対応する外形サイズを有する金属シートに対して、ハーフエッチングによって所定深さまで材料を除去する方法を用いることができる。 In order to form ridges and grooves in the first sheet 10 and the second sheet 20, for example, a method of removing material to a predetermined depth by half-etching a metal sheet having a corresponding external size can be used. can.
 凸条の断面形状は、図1~図5に示したような、側面が垂直な平面のものに限られず、台形状や、側面が曲面の形状等、任意の形状とすることができる。
 凹部の断面形状は、図1~図5に示したような、底部が水平面で壁部が垂直面のものに限られず、底部が半円形状や楕円形状のもの、底部及び壁部が半円形状や楕円形状のもの等、任意の形状とすることができる。
 凸条及び凹部の幅、長さ、高さ、深さ等に特に限定はなく、ベーパーチャンバーが良好に作動するように適宜に設定すればよい。第1シートと第2シートとで、溝の有無以外の凸部の構成を異ならせてもよいし、第2シートの凸条にも溝を形成してもよい。
 凝縮液流路や液連通開口部を構成する溝については、その幅、深さ、長さ、断面形状等は種々変更可能である。また、液連通開口部の配置間隔や配置パターン(直線状、斜め状、ジグザグ状等)、形状等も任意である。
 べーパーチャンバーの厚さは、500μm以下であることが好ましく、400μm以下であることが好ましく、350μm以下であることがより好ましい。また、べーパーチャンバーの厚さの下限としては、通常100μm程度である。換言すれば、べーパーチャンバーの厚さは、好ましくは100~500μmである。
The cross-sectional shape of the ridges is not limited to those having vertical flat sides as shown in FIGS.
The cross-sectional shape of the concave portion is not limited to those in which the bottom is horizontal and the wall is vertical, as shown in FIGS. It can have any shape, such as a shape or an elliptical shape.
The width, length, height, depth, etc. of the ridges and recesses are not particularly limited, and may be appropriately set so that the vapor chamber operates well. The first sheet and the second sheet may differ in the configuration of the protrusions other than the presence or absence of grooves, or the protrusions of the second sheet may also be formed with grooves.
The width, depth, length, cross-sectional shape, etc. of the grooves forming the condensate flow path and the liquid communication opening can be changed in various ways. Further, the arrangement interval, arrangement pattern (linear, oblique, zigzag, etc.), shape, etc. of the liquid communication openings are arbitrary.
The thickness of the vapor chamber is preferably 500 μm or less, preferably 400 μm or less, more preferably 350 μm or less. Also, the lower limit of the thickness of the vapor chamber is usually about 100 μm. In other words, the thickness of the vapor chamber is preferably between 100 and 500 μm.
 次に、ペルチェ素子を構成する各部の材料等について説明する。 Next, the materials and the like of each part that constitutes the Peltier element will be described.
[熱電変換素子]
 上記ペルチェ素子に用いられる熱電変換素子は、熱電半導体材料を含む。熱電半導体材料は、通常、ペルチェ素子を得るために焼成される。
 熱電変換素子は、好ましくは、熱電半導体材料を含む組成物(以下、「熱電半導体材料を含む組成物」又は「熱電半導体組成物」ともいう)を、支持体等の表面に塗布して形成した塗布膜の焼成体である。熱電変換素子が、熱電半導体組成物の塗布膜の焼成体であることにより、シート状の熱電変換モジュールを容易に製造することができ、柔軟性が向上された熱電変換素子も得られ易い。
 熱電変換素子の厚さは、好ましくは10μm以上、より好ましくは25μm以上、更に好ましくは35μm以上であり、また、好ましくは800μm以下、より好ましくは500μm以下、更に好ましくは300μm以下である。換言すれば、熱電変換素子の厚さは、好ましくは10~800μmである。
 熱電変換素子の厚さが上記範囲にあると、良好な熱電変換性能を示す熱電変換素子を生産性よく製造しやすい。
[Thermoelectric conversion element]
The thermoelectric conversion element used for the Peltier element contains a thermoelectric semiconductor material. Thermoelectric semiconductor materials are usually fired to obtain Peltier elements.
The thermoelectric conversion element is preferably formed by applying a composition containing a thermoelectric semiconductor material (hereinafter also referred to as a "composition containing a thermoelectric semiconductor material" or a "thermoelectric semiconductor composition") to the surface of a support or the like. It is a sintered body of the coating film. Since the thermoelectric conversion element is a fired body of the coating film of the thermoelectric semiconductor composition, a sheet-like thermoelectric conversion module can be easily produced, and a thermoelectric conversion element with improved flexibility can be easily obtained.
The thickness of the thermoelectric conversion element is preferably 10 μm or more, more preferably 25 μm or more, still more preferably 35 μm or more, and is preferably 800 μm or less, more preferably 500 μm or less, still more preferably 300 μm or less. In other words, the thickness of the thermoelectric conversion element is preferably 10-800 μm.
When the thickness of the thermoelectric conversion element is within the above range, it is easy to manufacture the thermoelectric conversion element exhibiting good thermoelectric conversion performance with high productivity.
<熱電半導体組成物>
 熱電変換層を作製するために用いる熱電半導体組成物は、少なくとも熱電半導体材料を含み、好ましくは熱電半導体材料からなる熱電半導体粒子と樹脂とを含み、より好ましくは熱電半導体粒子と重合体成分とイオン化合物とを含む。イオン化合物としては、イオン液体及び無機イオン性化合物のうち少なくとも一方を含むことが好ましく、イオン液体を含むことがより好ましい。
<Thermoelectric semiconductor composition>
The thermoelectric semiconductor composition used for producing the thermoelectric conversion layer contains at least a thermoelectric semiconductor material, preferably thermoelectric semiconductor particles made of the thermoelectric semiconductor material and a resin, more preferably thermoelectric semiconductor particles, a polymer component and ions compounds. The ionic compound preferably contains at least one of an ionic liquid and an inorganic ionic compound, and more preferably contains an ionic liquid.
(熱電半導体材料)
 P型熱電半導体素子及びN型熱電半導体素子に含まれる熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば特に制限されず、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS等の硫化物系熱電半導体材料、スクッテルダイト材料、カーボンナノチューブ(CNT)等の炭素材料等が用いられる。
 これらの中でも、高い熱電変換性能が得られ易いという観点から、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料が好ましい。
 また、これらのうち、地政学的な問題から供給が不安定なレアメタルを含まないという観点からは、シリサイド系熱電半導体材料が好ましく、高温環境で熱電変換モジュールを機能させることを容易とすることができるという観点からは、スクッテルダイト材料が好ましい。
(Thermoelectric semiconductor material)
The thermoelectric semiconductor material contained in the P-type thermoelectric semiconductor element and the N-type thermoelectric semiconductor element is not particularly limited as long as it is a material that can generate a thermoelectromotive force by applying a temperature difference. Bismuth-tellurium thermoelectric semiconductor materials such as bismuth telluride and N-type bismuth telluride; Telluride thermoelectric semiconductor materials such as GeTe and PbTe; Antimony-tellurium thermoelectric semiconductor materials; Zinc such as ZnSb, Zn 3 Sb 2 and Zn 4 Sb 3 - antimony-based thermoelectric semiconductor materials ; silicon - germanium-based thermoelectric semiconductor materials such as SiGe ; bismuth-selenide-based thermoelectric semiconductor materials such as Bi2Se3 ; silicide-based thermoelectric semiconductor materials; oxide-based thermoelectric semiconductor materials; Heusler materials such as FeVAl, FeVAlSi, and FeVTiAl; sulfide-based thermoelectric semiconductor materials such as TiS2 ; skutterudite materials; carbon materials such as carbon nanotubes (CNT); Used.
Among these, bismuth-tellurium-based thermoelectric semiconductor materials, telluride-based thermoelectric semiconductor materials, antimony-tellurium-based thermoelectric semiconductor materials, or bismuth-selenide-based thermoelectric semiconductor materials are preferable from the viewpoint that high thermoelectric conversion performance can be easily obtained.
Among these, silicide-based thermoelectric semiconductor materials are preferable from the viewpoint of not containing rare metals whose supply is unstable due to geopolitical issues, and facilitate the functioning of thermoelectric conversion modules in high-temperature environments. The skutterudite material is preferred from the viewpoint of being able to do so.
 また、低温環境での熱電変換性能が高いという観点、及び、作動流体の沸点が150℃以下であるベーパーチャンバーの動作温度域と合わせやすいという観点からは、熱電半導体材料は、P型ビスマステルライド又はN型ビスマステルライド等のビスマス-テルル系熱電半導体材料であることが好ましい。この場合、温度制御モジュールとして、上記ペルチェ素子が複数の熱電変換素子を含む熱電変換層を備えており、上記複数の熱電変換素子がビスマス-テルル化合物を含むものとすることができる。
 なお、作動流体の沸点が150℃超のベーパーチャンバーを用いる場合は、例えば、シリサイド系熱電半導体材料、PbTe等のテルライド系熱電半導体材料SiGe等のシリコン-ゲルマニウム系熱電半導体材料、スクッテルダイト材料を用いることが好ましい。
 P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、P型熱電変換材料としての特性が維持されるので好ましい。
 また、N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0.1<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、N型熱電変換材料としての特性が維持されるので好ましい。
In addition, from the viewpoint of high thermoelectric conversion performance in a low-temperature environment and from the viewpoint of being easily matched with the operating temperature range of the vapor chamber in which the boiling point of the working fluid is 150 ° C. or less, the thermoelectric semiconductor material is P-type bismuth telluride or A bismuth-tellurium-based thermoelectric semiconductor material such as N-type bismuth telluride is preferred. In this case, as the temperature control module, the Peltier device may include a thermoelectric conversion layer containing a plurality of thermoelectric conversion elements, and the plurality of thermoelectric conversion elements may contain a bismuth-tellurium compound.
When using a vapor chamber in which the working fluid has a boiling point of over 150° C., for example, silicide-based thermoelectric semiconductor materials, telluride-based thermoelectric semiconductor materials such as PbTe, silicon-germanium-based thermoelectric semiconductor materials such as SiGe, and skutterudite materials are used. It is preferable to use
P-type bismuth telluride has holes as carriers and a positive Seebeck coefficient, and is preferably represented by, for example, Bi X Te 3 Sb 2-X . In this case, X preferably satisfies 0<X≦0.8, more preferably 0.4≦X≦0.6. When X is greater than 0 and 0.8 or less, the Seebeck coefficient and electric conductivity are increased, and the properties of the P-type thermoelectric conversion material are maintained, which is preferable.
N-type bismuth telluride has electrons as carriers and a negative Seebeck coefficient. In this case, Y preferably satisfies 0≦Y≦3 (when Y=0: Bi 2 Te 3 ), more preferably 0.1<Y≦2.7. When Y is 0 or more and 3 or less, the Seebeck coefficient and electrical conductivity are increased, and the properties as an N-type thermoelectric conversion material are maintained, which is preferable.
 熱電変換層に用いる熱電半導体材料は、所定のサイズを有する粒子状のものであることが好ましく、例えば、ボールミル等の微粉砕装置を用いるなどして、所定のサイズまで粉砕された熱電半導体粒子であることが好ましい。 The thermoelectric semiconductor material used for the thermoelectric conversion layer is preferably in the form of particles having a predetermined size. Preferably.
 熱電半導体粒子の熱電半導体組成物中の配合量は、好ましくは、30~99質量%である。より好ましくは、50~96質量%であり、更に好ましくは、70~95質量%である。熱電半導体粒子の配合量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、及び、適度な柔軟性を有する膜が得られ好ましい。 The content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably 50 to 96% by mass, still more preferably 70 to 95% by mass. If the amount of the thermoelectric semiconductor particles is within the above range, the Seebeck coefficient (absolute value of the Peltier coefficient) is large, and the decrease in electrical conductivity is suppressed, and only the thermal conductivity decreases, so high thermoelectric performance is exhibited. In addition, a film having sufficient film strength and moderate flexibility can be obtained, which is preferable.
 熱電半導体粒子の平均粒径は、好ましくは、10nm~200μm、より好ましくは、10nm~30μm、更に好ましくは、50nm~10μm、特に好ましくは、1~6μmである。上記範囲内であれば、均一分散が容易になり、電気伝導率を高くすることができる。
 熱電半導体材料を粉砕して熱電半導体粒子を得る方法は特に限定されず、ジェットミル、ボールミル、ビーズミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、製粉ミル、ハンマーミル、ペレットミル、ウィリーミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。
 なお、本明細書において、熱電半導体粒子の平均粒径は、レーザー回折式粒度分析装置(CILAS社製、1064型)にて測定することにより得られ、粒径分布の中央値で表される値である。
The average particle size of the thermoelectric semiconductor particles is preferably 10 nm to 200 μm, more preferably 10 nm to 30 μm, even more preferably 50 nm to 10 μm, particularly preferably 1 to 6 μm. Within the above range, uniform dispersion is facilitated, and electrical conductivity can be increased.
The method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor particles is not particularly limited, and includes jet mills, ball mills, bead mills, colloid mills, conical mills, disk mills, edge mills, milling mills, hammer mills, pellet mills, Willie mills, and roller mills. It may be pulverized to a predetermined size by a known fine pulverizer such as.
In this specification, the average particle size of the thermoelectric semiconductor particles is obtained by measuring with a laser diffraction particle size analyzer (manufactured by CILAS, model 1064), and is represented by the median value of the particle size distribution. is.
 また、熱電半導体粒子は、事前に熱処理されたものであることが好ましい(ここでいう「熱処理」とは本発明でいうアニール処理工程で行う「アニール処理」とは異なる)。熱処理を行うことにより、熱電半導体粒子は、結晶性が向上し、更に、熱電半導体粒子の表面酸化膜が除去されるため、熱電半導体材料のゼーベック係数(ペルチェ係数の絶対値)が増大し、熱電性能指数を更に向上させることができる。熱処理は、特に限定されないが、熱電半導体組成物を調製する前に、熱電半導体粒子に悪影響を及ぼすことがないように、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、または真空条件下で行うことが好ましく、不活性ガス及び還元ガスの混合ガス雰囲気下で行うことがより好ましい。具体的な温度条件は、用いる熱電半導体粒子に依存するが、通常、粒子の融点以下の温度で、かつ100~1,500℃で、数分~数十時間行うことが好ましい。 Also, the thermoelectric semiconductor particles are preferably heat-treated in advance (the "heat treatment" referred to here is different from the "annealing treatment" performed in the annealing treatment step of the present invention). By performing heat treatment, the crystallinity of the thermoelectric semiconductor particles is improved, and the surface oxide film of the thermoelectric semiconductor particles is removed. The figure of merit can be further improved. The heat treatment is not particularly limited, but before preparing the thermoelectric semiconductor composition, in an inert gas atmosphere such as nitrogen, argon, etc., in which the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor particles. It is preferably carried out under a reducing gas atmosphere such as hydrogen or under vacuum conditions, more preferably under a mixed gas atmosphere of an inert gas and a reducing gas. Although the specific temperature conditions depend on the thermoelectric semiconductor particles used, it is usually preferred that the temperature is below the melting point of the particles and 100 to 1,500° C. for several minutes to several tens of hours.
(重合体成分)
 上記熱電半導体組成物に含まれ得る重合体成分は、熱電半導体材料(熱電半導体粒子)間を物理的に結合する作用を有し、熱電変換モジュールであるペルチェ素子について、塗布等による薄膜の形成を容易にする。
 上記重合体成分としては、耐熱性樹脂、又はバインダー樹脂が好ましい。
(Polymer component)
The polymer component that can be contained in the thermoelectric semiconductor composition has the effect of physically bonding between the thermoelectric semiconductor materials (thermoelectric semiconductor particles), and the Peltier element, which is a thermoelectric conversion module, can be formed into a thin film by coating or the like. make it easier.
A heat-resistant resin or a binder resin is preferable as the polymer component.
 耐熱性樹脂は、熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される。
 上記耐熱性樹脂は、耐熱性がより高く、かつ薄膜中の熱電半導体粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。
The heat-resistant resin maintains various physical properties such as mechanical strength and thermal conductivity as a resin when crystal growth of thermoelectric semiconductor particles is performed by annealing a thin film made of a thermoelectric semiconductor composition.
Polyamide resins, polyamideimide resins, polyimide resins, and epoxy resins are preferred as the heat-resistant resins because they have higher heat resistance and do not adversely affect the crystal growth of the thermoelectric semiconductor particles in the thin film, and are excellent in flexibility. Polyamide resins, polyamideimide resins, and polyimide resins are more preferable.
 上記耐熱性樹脂は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、屈曲性を維持することができる。 The heat-resistant resin preferably has a decomposition temperature of 300°C or higher. If the decomposition temperature is within the above range, flexibility can be maintained without losing the function as a binder even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
 上記耐熱性樹脂は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることが更に好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電半導体材料のチップの屈曲性を維持することができる。 The heat-resistant resin preferably has a mass reduction rate of 10% or less, more preferably 5% or less, and even more preferably 1% or less at 300°C as measured by thermogravimetry (TG). If the mass reduction rate is within the above range, even when the thin film made of the thermoelectric semiconductor composition is annealed, the bendability of the tip of the thermoelectric semiconductor material can be maintained without losing its function as a binder, as will be described later. can be done.
 耐熱性樹脂の熱電半導体組成物中の含有量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは、1~20質量%、更に好ましくは2~15質量%である。耐熱性樹脂の含有量が、上記範囲内であると、熱電半導体材料のバインダーとして機能し、薄膜の形成がしやすくなり、しかも高い熱電性能と皮膜強度が両立した膜が得られ、熱電半導体材料のチップの外表面には樹脂部が存在する。 The content of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, still more preferably 2 to 15% by mass. is. When the content of the heat-resistant resin is within the above range, it functions as a binder for the thermoelectric semiconductor material, making it easier to form a thin film, and a film having both high thermoelectric performance and film strength can be obtained, resulting in a thermoelectric semiconductor material. A resin portion exists on the outer surface of the chip.
 バインダー樹脂は、後述するアニール処理後の、熱電変換素子の作製時に用いるガラス、アルミナ、シリコン等の基材からの剥離も容易にする。 The binder resin also facilitates peeling from the base material such as glass, alumina, silicon, etc. used when manufacturing the thermoelectric conversion element after the annealing treatment described later.
 バインダー樹脂としては、焼成(アニール)温度以上で、90質量%以上が分解する樹脂を指し、95質量%以上が分解する樹脂であることがより好ましく、99質量%以上が分解する樹脂であることが特に好ましい。また、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理等により熱電半導体粒子を結晶成長させる際に、機械的強度及び熱伝導率等の諸物性が損なわれず維持される樹脂がより好ましい。
 バインダー樹脂として、焼成(アニール)温度以上で90質量%以上が分解する樹脂、すなわち、前述した耐熱性樹脂よりも低温で分解する樹脂、を用いると、焼成によりバインダー樹脂が分解するため、焼成体中に含まれる絶縁性の成分となるバインダー樹脂の含有量が減少し、熱電半導体組成物における熱電半導体粒子の結晶成長が促進される。これにより、熱電半導体材料層における空隙を少なくして、充填率を向上させることができる。
 なお、焼成(アニール)温度以上で所定値(例えば、90質量%)以上が分解する樹脂であるか否かは、熱重量測定(TG)による焼成(アニール)温度における質量減少率(分解前の質量で分解後の質量を除した値)を測定することにより判断する。
The binder resin refers to a resin in which 90% by mass or more decomposes at a baking (annealing) temperature or higher, more preferably a resin in which 95% by mass or more decomposes, and a resin in which 99% by mass or more decomposes. is particularly preferred. In addition, a resin that maintains various physical properties such as mechanical strength and thermal conductivity without impairing when crystal growth of thermoelectric semiconductor particles is performed by baking (annealing) a coating film (thin film) made of a thermoelectric semiconductor composition. more preferred.
As the binder resin, if a resin that decomposes 90% by mass or more at a firing (annealing) temperature or higher, that is, a resin that decomposes at a lower temperature than the heat-resistant resin described above, the binder resin is decomposed by firing, resulting in a fired body. The content of the binder resin, which is an insulating component contained therein, is reduced, and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted. As a result, voids in the thermoelectric semiconductor material layer can be reduced and the filling rate can be improved.
Whether or not a resin decomposes at a predetermined value (for example, 90% by mass) at a firing (annealing) temperature or higher is determined by thermogravimetric measurement (TG) at the mass reduction rate at the firing (annealing) temperature (before decomposition The value obtained by dividing the mass after decomposition by the mass).
 このようなバインダー樹脂として、熱可塑性樹脂や硬化性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリメチルペンテン等のポリオレフィン系樹脂;ポリカーボネート;ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂;ポリスチレン、アクリロニトリル-スチレン共重合体、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、塩化ビニル、ポリビニルピリジン、ポリビニルアルコール、ポリビニルピロリドン等のポリビニル重合体;ポリウレタン;エチルセルロース等のセルロース誘導体;などが挙げられる。硬化性樹脂としては、熱硬化性樹脂や光硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。光硬化性樹脂としては、例えば、光硬化性アクリル樹脂、光硬化性ウレタン樹脂、光硬化性エポキシ樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、熱電変換層における熱電半導体材料の電気抵抗率の観点から、熱可塑性樹脂が好ましく、ポリカーボネート、エチルセルロース等のセルロース誘導体がより好ましく、ポリカーボネートが特に好ましい。
A thermoplastic resin or a curable resin can be used as such a binder resin. Examples of thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonates; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymers, and polyacetic acid. Polyvinyl polymers such as vinyl, ethylene-vinyl acetate copolymer, vinyl chloride, polyvinylpyridine, polyvinyl alcohol and polyvinylpyrrolidone; polyurethanes; cellulose derivatives such as ethyl cellulose; Examples of curable resins include thermosetting resins and photocurable resins. Examples of thermosetting resins include epoxy resins and phenol resins. Examples of photocurable resins include photocurable acrylic resins, photocurable urethane resins, and photocurable epoxy resins. These may be used individually by 1 type, and may use 2 or more types together.
Among these, from the viewpoint of the electrical resistivity of the thermoelectric semiconductor material in the thermoelectric conversion layer, thermoplastic resins are preferred, cellulose derivatives such as polycarbonate and ethyl cellulose are more preferred, and polycarbonate is particularly preferred.
 バインダー樹脂は、焼成(アニール)処理工程における熱電半導体材料に対する焼成(アニール)処理の温度に応じて適宜選択される。バインダー樹脂が有する最終分解温度以上で焼成(アニール)処理することが、熱電変換層における熱電半導体材料の電気抵抗率の観点から好ましい。
 本明細書において、「最終分解温度」とは、熱重量測定(TG)による焼成(アニール)温度における質量減少率が100%(分解後の質量が分解前の質量の0%)となる温度をいう。
The binder resin is appropriately selected according to the temperature of the baking (annealing) treatment for the thermoelectric semiconductor material in the baking (annealing) treatment step. From the viewpoint of the electrical resistivity of the thermoelectric semiconductor material in the thermoelectric conversion layer, it is preferable to perform the baking (annealing) treatment at a temperature higher than the final decomposition temperature of the binder resin.
As used herein, the term “final decomposition temperature” refers to the temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetry (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition). say.
 バインダー樹脂の最終分解温度は、通常150~600℃、好ましくは200~560℃、より好ましくは220~460℃、特に好ましくは240~360℃である。最終分解温度がこの範囲にあるバインダー樹脂を用いれば、熱電半導体材料のバインダーとして機能し、印刷時に薄膜の形成がしやすくなる。 The final decomposition temperature of the binder resin is usually 150-600°C, preferably 200-560°C, more preferably 220-460°C, and particularly preferably 240-360°C. If a binder resin having a final decomposition temperature within this range is used, it functions as a binder for the thermoelectric semiconductor material and facilitates the formation of a thin film during printing.
 バインダー樹脂の熱電半導体組成物中の含有量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは0.5~10質量%、特に好ましくは0.5~5質量%である。バインダー樹脂の含有量が、上記範囲内であると、熱電変換層における熱電半導体材料の電気抵抗率を減少させることができる。 The content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 0.5 to 5% by mass. % by mass. When the content of the binder resin is within the above range, the electrical resistivity of the thermoelectric semiconductor material in the thermoelectric conversion layer can be reduced.
 熱電半導体材料中におけるバインダー樹脂の含有量は、好ましくは0~10質量%、より好ましくは0~5質量%、特に好ましくは0~1質量%である。熱電半導体材料中におけるバインダー樹脂の含有量が、上記範囲内であれば、熱電変換層における熱電半導体材料の電気抵抗率を減少させることができる。 The content of the binder resin in the thermoelectric semiconductor material is preferably 0-10% by mass, more preferably 0-5% by mass, and particularly preferably 0-1% by mass. If the content of the binder resin in the thermoelectric semiconductor material is within the above range, the electrical resistivity of the thermoelectric semiconductor material in the thermoelectric conversion layer can be reduced.
(イオン液体)
 熱電半導体組成物に含まれ得るイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50℃以上400℃未満のいずれかの温度領域において液体で存在し得る塩をいう。換言すれば、イオン液体は、融点が-50℃以上400℃未満の範囲にあるイオン性化合物である。イオン液体の融点は、好ましくは-25℃以上200℃以下、より好ましくは0℃以上150℃以下である。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体材料間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電半導体材料の電気伝導率を均一にすることができる。
(ionic liquid)
The ionic liquid that can be contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range from -50°C to less than 400°C. In other words, an ionic liquid is an ionic compound having a melting point in the range of -50°C or higher and lower than 400°C. The melting point of the ionic liquid is preferably −25° C. or higher and 200° C. or lower, more preferably 0° C. or higher and 150° C. or lower. Ionic liquids have characteristics such as extremely low vapor pressure and non-volatility, excellent thermal and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, it can effectively suppress the decrease in electrical conductivity between thermoelectric semiconductor materials as a conductive auxiliary agent. In addition, the ionic liquid exhibits high polarity based on an aprotic ionic structure and is excellent in compatibility with heat-resistant resins, so that the electric conductivity of the thermoelectric semiconductor material can be made uniform.
 イオン液体は、公知または市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウム系のアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、Br、I、AlCl 、AlCl 、BF 、PF 、ClO 、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF) 、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。 Known or commercially available ionic liquids can be used. For example, nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine-based cations and their derivatives; Phosphine-based cations and derivatives thereof; cation components such as lithium cations and derivatives thereof, Cl , Br , I , AlCl 4 , Al 2 Cl 7 , BF 4 , PF 6 , ClO 4 , NO 3 , CH 3 COO , CF 3 COO , CH 3 SO 3 , CF 3 SO 3 , (FSO 2 ) 2 N , (CF 3 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , AsF 6 , SbF 6 , NbF 6 , TaF 6 , F(HF) n , (CN) 2 N , C 4 F 9 SO 3 , (C 2 F 5 SO 2 ) 2 N , C 3 F 7 COO , (CF 3 SO 2 )(CF 3 CO)N and other anion components.
 上記のイオン液体の中で、高温安定性、熱電半導体材料及び樹脂との相溶性、熱電半導体材料間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。 Among the above ionic liquids, the cation component of the ionic liquid is pyridinium cation and its derivatives from the viewpoint of high-temperature stability, compatibility with thermoelectric semiconductor materials and resins, suppression of decrease in electrical conductivity in the gaps of thermoelectric semiconductor materials, etc. , imidazolium cations and derivatives thereof.
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体の具体的な例として、4-メチル-ブチルピリジニウムクロライド、3-メチル-ブチルピリジニウムクロライド、4-メチル-ヘキシルピリジニウムクロライド、3-メチル-ヘキシルピリジニウムクロライド、4-メチル-オクチルピリジニウムクロライド、3-メチル-オクチルピリジニウムクロライド、3、4-ジメチル-ブチルピリジニウムクロライド、3、5-ジメチル-ブチルピリジニウムクロライド、4-メチル-ブチルピリジニウムテトラフルオロボレート、4-メチル-ブチルピリジニウムヘキサフルオロホスフェート、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート等が挙げられる。この中で、1-ブチル-4-メチルピリジニウムブロミド、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファートが好ましい。 Specific examples of ionic liquids in which the cationic component contains pyridinium cations and derivatives thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, and 3-methyl-hexylpyridinium chloride. chloride, 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- methyl-butylpyridinium hexafluorophosphate, 1-butylpyridinium bromide, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate and the like. Among these, 1-butyl-4-methylpyridinium bromide, 1-butylpyridinium bromide and 1-butyl-4-methylpyridinium hexafluorophosphate are preferred.
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体の具体的な例として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]、1-エチル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-オクチル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムブロミド、1-ドデシル-3-メチルイミダゾリウムクロライド、1-テトラデシル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ブチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ヘキシル-3-メチルイミダゾリウムテトラフロオロボレート、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-ブチルイミダゾリウムメチルスルフェート、1、3-ジブチルイミダゾリウムメチルスルフェート等が挙げられる。この中で、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。 Specific examples of ionic liquids containing imidazolium cations and derivatives thereof as cationic components include [1-butyl-3-(2-hydroxyethyl)imidazolium bromide], [1-butyl-3-(2 -hydroxyethyl)imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-tetradecyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium tetrafluorooroborate, 1-butyl-3-methylimidazolium tetrafluorooroborate, 1-hexyl-3-methylimidazolium tetrafluoro Oroborate, 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-methyl-3-butylimidazolium methylsulfate, 1,3-dibutylimidazolium methyl Sulfate and the like can be mentioned. Among these, [1-butyl-3-(2-hydroxyethyl)imidazolium bromide] and [1-butyl-3-(2-hydroxyethyl)imidazolium tetrafluoroborate] are preferred.
 上記のイオン液体は、電気伝導度が10-7S/cm以上であることが好ましい。イオン伝導度が上記範囲であれば、導電補助剤として、熱電半導体材料間の電気伝導率の低減を効果的に抑制することができる。 The above ionic liquid preferably has an electrical conductivity of 10 −7 S/cm or more. If the ionic conductivity is within the above range, it can effectively suppress the decrease in electrical conductivity between thermoelectric semiconductor materials as a conductive auxiliary agent.
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 In addition, the above ionic liquid preferably has a decomposition temperature of 300°C or higher. If the decomposition temperature is within the above range, the effect as a conductive aid can be maintained even when a thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
 また、上記のイオン液体は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることが更に好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 In addition, the above ionic liquid preferably has a mass reduction rate of 10% or less at 300° C. by thermogravimetry (TG), more preferably 5% or less, and even more preferably 1% or less. . If the mass reduction rate is within the above range, the effect as a conductive aid can be maintained even when the thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
 イオン液体の熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、更に好ましくは1.0~20質量%である。イオン液体の配合量が、上記範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 The content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01-50% by mass, more preferably 0.5-30% by mass, and still more preferably 1.0-20% by mass. If the blending amount of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
(無機イオン性化合物)
 熱電半導体組成物に含まれ得る無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は400~900℃の幅広い温度領域において固体で存在し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体材料間の電気伝導率の低減を抑制することができる。
(Inorganic ionic compound)
The inorganic ionic compound that can be included in the thermoelectric semiconductor composition is a compound composed of at least cations and anions. Inorganic ionic compounds exist in a solid state over a wide temperature range of 400 to 900°C and have characteristics such as high ionic conductivity. can be suppressed.
 上記無機イオン性化合物を構成するカチオンとしては、金属カチオンを用いる。
 金属カチオンとしては、例えば、アルカリ金属カチオン、アルカリ土類金属カチオン、典型金属カチオン及び遷移金属カチオンが挙げられ、アルカリ金属カチオン又はアルカリ土類金属カチオンがより好ましい。
 アルカリ金属カチオンとしては、例えば、Li、Na、K、Rb、Cs及びFr等が挙げられる。
 アルカリ土類金属カチオンとしては、例えば、Mg2+、Ca2+、Sr2+及びBa2+等が挙げられる。
A metal cation is used as the cation constituting the inorganic ionic compound.
Examples of metal cations include alkali metal cations, alkaline earth metal cations, typical metal cations and transition metal cations, with alkali metal cations and alkaline earth metal cations being more preferred.
Examples of alkali metal cations include Li + , Na + , K + , Rb + , Cs + and Fr + .
Alkaline earth metal cations include, for example, Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
 上記無機イオン性化合物を構成するアニオンとしては、例えば、F、Cl、Br、I、OH、CN、NO 、NO 、ClO、ClO 、ClO 、ClO 、CrO 2-、HSO 、SCN、BF 、PF 等が挙げられる。 Examples of anions constituting the inorganic ionic compound include F , Cl , Br , I , OH , CN , NO 3 , NO 2 − , ClO , ClO 2 , ClO 3 , ClO 4 , CrO 4 2− , HSO 4 , SCN , BF 4 , PF 6 and the like.
 熱電変換層に含まれる無機イオン性化合物は、公知または市販のものが使用できる。例えば、カリウムカチオン、ナトリウムカチオン、又はリチウムカチオン等のカチオン成分と、Cl、AlCl 、AlCl 、ClO 等の塩化物イオン、Br等の臭化物イオン、I等のヨウ化物イオン、BF 、PF 等のフッ化物イオン、F(HF) 等のハロゲン化物アニオン、NO 、OH、CN等のアニオン成分とから構成されるものが挙げられる。 As the inorganic ionic compound contained in the thermoelectric conversion layer, a known or commercially available one can be used. For example, cation components such as potassium cations, sodium cations, or lithium cations, chloride ions such as Cl , AlCl 4 , Al 2 Cl 7 , and ClO 4 , bromide ions such as Br Iodide ions, fluoride ions such as BF 4 and PF 6 − , halide anions such as F(HF) n , and anion components such as NO 3 , OH , CN and the like. be done.
 上記の無機イオン性化合物の中で、高温安定性、熱電半導体材料及び樹脂との相溶性、熱電半導体材料間隙の電気伝導率の低下抑制等の観点から、無機イオン性化合物のカチオン成分が、カリウム、ナトリウム、及びリチウムから選ばれる少なくとも1種を含むことが好ましい。また、無機イオン性化合物のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br、及びIから選ばれる少なくとも1種を含むことが更に好ましい。 Among the above inorganic ionic compounds, from the viewpoint of high-temperature stability, compatibility with thermoelectric semiconductor materials and resins, suppression of reduction in electrical conductivity in gaps between thermoelectric semiconductor materials, etc., the cation component of the inorganic ionic compound is potassium. , sodium, and lithium. Also, the anion component of the inorganic ionic compound preferably contains a halide anion, and more preferably contains at least one selected from Cl , Br and I .
 カチオン成分が、カリウムカチオンを含む無機イオン性化合物の具体的な例として、KBr、KI、KCl、KF、KOH、KCO等が挙げられる。この中で、KBr、KIが好ましい。
 カチオン成分が、ナトリウムカチオンを含む無機イオン性化合物の具体的な例として、NaBr、NaI、NaOH、NaF、NaCO等が挙げられる。この中で、NaBr、NaIが好ましい。
 カチオン成分が、リチウムカチオンを含む無機イオン性化合物の具体的な例として、LiF、LiOH、LiNO等が挙げられる。この中で、LiF、LiOHが好ましい。
Specific examples of inorganic ionic compounds whose cationic component contains potassium cations include KBr, KI, KCl, KF, KOH, K2CO3 , and the like . Among these, KBr and KI are preferred.
Specific examples of inorganic ionic compounds containing sodium cations as cationic components include NaBr, NaI, NaOH, NaF, Na 2 CO 3 and the like. Among these, NaBr and NaI are preferred.
Specific examples of inorganic ionic compounds containing lithium cations as cationic components include LiF, LiOH, LiNO 3 and the like. Among these, LiF and LiOH are preferred.
 上記の無機イオン性化合物は、電気伝導率が10-7S/cm以上であることが好ましく、10-6S/cm以上であることがより好ましい。電気伝導率が上記範囲であれば、導電補助剤として、熱電半導体材料間の電気伝導率の低減を効果的に抑制することができる。 The above inorganic ionic compound preferably has an electrical conductivity of 10 −7 S/cm or more, more preferably 10 −6 S/cm or more. If the electrical conductivity is within the above range, it can effectively suppress the decrease in electrical conductivity between thermoelectric semiconductor materials as a conductive auxiliary agent.
 また、上記の無機イオン性化合物は、分解温度が400℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 In addition, the above inorganic ionic compound preferably has a decomposition temperature of 400°C or higher. If the decomposition temperature is within the above range, the effect as a conductive aid can be maintained even when a thin film made of the thermoelectric semiconductor composition is annealed, as will be described later.
 また、上記の無機イオン性化合物は、熱重量測定(TG)による400℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることが更に好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することが容易である。 In addition, the above-mentioned inorganic ionic compound preferably has a mass reduction rate at 400°C measured by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and preferably 1% or less. More preferred. If the mass reduction rate is within the above range, even when the thin film made of the thermoelectric semiconductor composition is annealed, it is easy to maintain the effect as a conductive additive, as will be described later.
 無機イオン性化合物の熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、更に好ましくは1.0~10質量%である。無機イオン性化合物の配合量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、更に好ましくは1.0~10質量%である。
The content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, still more preferably 1.0 to 10% by mass. If the blending amount of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film with improved thermoelectric performance can be obtained.
When the inorganic ionic compound and the ionic liquid are used together, the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
(熱電半導体組成物の調製方法)
 上記熱電半導体組成物の調製方法には特に制限はなく、超音波ホモジナイザー、スパイラルミキサー、プラネタリーミキサー、ディスパーサー、ハイブリッドミキサー等の公知の装置を用いて、熱電半導体材料、耐熱性樹脂、及び、必要に応じて用いられるイオン液体及び無機イオン性化合物の一方又は双方、その他の添加剤、更に溶媒を加えて、混合分散させ、当該熱電半導体組成物を調製すればよい。
 熱電半導体組成物を調製する際に、溶媒を用いてもよい。用いられる溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、アルコール、テトラヒドロフラン、メチルピロリドン、エチルセロソルブ等の溶媒などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。熱電半導体組成物の固形分濃度としては、該組成物が塗工に適した粘度であればよく、特に制限はない。
(Method for preparing thermoelectric semiconductor composition)
The method for preparing the thermoelectric semiconductor composition is not particularly limited, and the thermoelectric semiconductor material, the heat-resistant resin, and the One or both of the ionic liquid and the inorganic ionic compound used as necessary, other additives, and a solvent may be added and mixed and dispersed to prepare the thermoelectric semiconductor composition.
A solvent may be used when preparing the thermoelectric semiconductor composition. Examples of the solvent used include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve. These solvents may be used singly or in combination of two or more. The solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
[温度制御モジュールの製造方法]
 温度制御モジュールの製造方法の一例として、熱電変換素子を塗布法で形成するペルチェ素子を有する温度制御モジュールの製造方法について説明する。なお、本製造方法では、ベーパーチャンバーに対向する側の主面において、接続電極を覆うように接着剤層を形成し、当該接着剤層によってペルチェ素子をベーパーチャンバーに貼付する例を示している(つまり、図1、3~5に示す温度制御モジュール1A、1C~1Eにおいて、接着剤層が、充填剤層45、75、85を兼ねている態様に相当し、また、図2に示す温度制御モジュール1Bにおいて、接着剤層が、介在層60及び充填剤層45を兼ねている態様に相当する)。
[Manufacturing method of temperature control module]
As an example of a method of manufacturing a temperature control module, a method of manufacturing a temperature control module having Peltier elements in which thermoelectric conversion elements are formed by a coating method will be described. In this manufacturing method, an adhesive layer is formed so as to cover the connection electrodes on the main surface facing the vapor chamber, and the Peltier element is attached to the vapor chamber by the adhesive layer ( In other words, in the temperature control modules 1A, 1C to 1E shown in FIGS. In the module 1B, the adhesive layer corresponds to the aspect in which the intervening layer 60 and the filler layer 45 are combined).
<熱電変換素子の形成>
 塗布型のペルチェ素子を有する温度制御モジュールを作製するに当たって、上記熱電変換素子は、特に制限はないが、例えば、ガラス、アルミナ、シリコン、樹脂フィルム等の基材上、又は後述する犠牲層を形成した側の基材上に、上記熱電半導体組成物を塗布し塗膜を得、乾燥することで形成し、適宜、該基材と分離することにより得ることができる。このように形成することで、簡便に低コストで多数の熱電変換素子を得ることができる。樹脂フィルムとしては、耐熱性を有する物がよく、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂等からなるフィルムが好ましい。
<Formation of thermoelectric conversion element>
When manufacturing a temperature control module having a coating type Peltier element, the thermoelectric conversion element is not particularly limited, but may be, for example, on a base material such as glass, alumina, silicon, or a resin film, or on a sacrificial layer to be described later. It can be obtained by coating the thermoelectric semiconductor composition on the base material on the side where the thermoelectric semiconductor composition is applied to obtain a coating film, drying the coating film, and appropriately separating the coating film from the base material. By forming in this way, a large number of thermoelectric conversion elements can be obtained simply and at low cost. As the resin film, a film having heat resistance is preferable, and a film made of a polyamide resin, a polyamideimide resin, a polyimide resin, or the like is preferable.
 熱電半導体組成物を塗布して塗膜を形成する方法としては、スクリーン印刷法、フレキソ印刷法、グラビア印刷法、スピンコート法、ディップコート法、ダイコート法、スプレーコート法、バーコート法、ドクターブレード法等の公知の方法が挙げられ、特に制限されない。塗膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷法、スロットダイコート法等が好ましく用いられる。
 次いで、得られた塗膜を乾燥することにより、熱電変換素子が形成されるが、乾燥方法としては、熱風乾燥法、熱ロール乾燥法、赤外線照射法等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、加熱方法により異なるが、通常、数秒~数十分である。
Methods for forming a coating film by applying a thermoelectric semiconductor composition include screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating, and doctor blade. A known method such as a method can be mentioned, and there is no particular limitation. When a coating film is formed in a pattern, a screen printing method, a slot die coating method, or the like, which enables simple pattern formation using a screen plate having a desired pattern, is preferably used.
Then, the thermoelectric conversion element is formed by drying the obtained coating film, and as the drying method, a conventionally known drying method such as hot air drying method, hot roll drying method, infrared irradiation method, etc. can be used. The heating temperature is usually 80 to 150° C., and the heating time varies depending on the heating method, but is usually several seconds to several tens of minutes.
 また、熱電半導体組成物の調製において溶媒を使用した場合、加熱温度は、使用した溶媒を乾燥できる温度範囲であれば、特に制限はない。 In addition, when a solvent is used in the preparation of the thermoelectric semiconductor composition, the heating temperature is not particularly limited as long as it is within a temperature range that allows the solvent used to be dried.
 上記熱電半導体組成物からなる塗膜の厚さは、特に制限はないが、熱電性能と皮膜強度の観点、及び、ペルチェ素子の薄型化の観点から、好ましくは100nm~1,000μm、より好ましくは300nm~600μm、更に好ましくは5~400μmである。 The thickness of the coating film made of the thermoelectric semiconductor composition is not particularly limited, but is preferably 100 nm to 1,000 μm, more preferably 100 nm to 1,000 μm, more preferably from the viewpoint of thermoelectric performance and film strength, and from the viewpoint of thinning the Peltier element. 300 nm to 600 μm, more preferably 5 to 400 μm.
 熱電半導体組成物の塗膜は、更にアニール処理を行って焼成体とすることが好ましい。アニール処理を行うことで、熱電性能を安定化させるとともに、薄膜中の熱電半導体粒子を結晶成長させることができ、熱電性能を更に向上させることができる。アニール処理は、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われ、用いる樹脂及びイオン性化合物の耐熱温度等に依存するが、100~500℃で、数分~数十時間行われる。更に、アニール処理では、熱電半導体組成物をプレスして、熱電半導体組成物の密度を向上させてもよい。 The coating film of the thermoelectric semiconductor composition is preferably further annealed to form a fired body. By performing the annealing treatment, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thin film can be crystal-grown, thereby further improving the thermoelectric performance. Annealing treatment is not particularly limited, but is usually performed under an inert gas atmosphere such as nitrogen or argon with a controlled gas flow rate, under a reducing gas atmosphere, or under vacuum conditions. Depending on the temperature and the like, it is carried out at 100 to 500° C. for several minutes to several tens of hours. Furthermore, in the annealing treatment, the thermoelectric semiconductor composition may be pressed to increase the density of the thermoelectric semiconductor composition.
 上記犠牲層として、ポリメタクリル酸メチルもしくはポリスチレン等の樹脂、又は、フッ素系離型剤もしくはシリコーン系離型剤等の離型剤、を用いることができる。犠牲層を用いると、ガラス等の基材上に形成された熱電変換素子が、アニール処理後に上記ガラス等から容易に剥離できる。
 犠牲層の形成は、特に制限されず、フレキソ印刷法、スピンコート法等、公知の方法で行うことができる。
As the sacrificial layer, a resin such as polymethyl methacrylate or polystyrene, or a releasing agent such as a fluorine-based releasing agent or a silicone-based releasing agent can be used. By using the sacrificial layer, the thermoelectric conversion element formed on a base material such as glass can be easily separated from the glass or the like after annealing.
Formation of the sacrificial layer is not particularly limited, and can be performed by known methods such as flexographic printing and spin coating.
<絶縁体の充填>
 得られた熱電変換素子間の絶縁性を確保するため、熱電変換素子間に絶縁体を充填する。上記絶縁体は、P型熱電変換素子とN型熱電変換素子との絶縁性、P型熱電変換素子同士もしくはN型熱電変換素子同士の絶縁性を確保するとともに、それらを一体化物にした時に機械的強度が維持できるようにする補強材としての役割を果たす。絶縁体としては、絶縁性と強度維持が行えるものであれば特に制限はないが、例えば、絶縁性樹脂、セラミックス等が挙げられる。
<Insulator filling>
In order to ensure insulation between the obtained thermoelectric conversion elements, an insulator is filled between the thermoelectric conversion elements. The insulator ensures insulation between the P-type thermoelectric conversion element and the N-type thermoelectric conversion element, insulation between the P-type thermoelectric conversion elements or between the N-type thermoelectric conversion elements, and mechanical It acts as a stiffener that allows it to maintain its physical strength. The insulator is not particularly limited as long as it can maintain insulation and strength, and examples thereof include insulating resins and ceramics.
 絶縁性樹脂としては、ポリイミド系樹脂、シリコーン系樹脂、ゴム系樹脂、アクリル系樹脂、オレフィン系樹脂、マレイミド系樹脂又はエポキシ系樹脂等が挙げられる。耐熱性、機械的強度の観点から、好ましくは、ポリイミド系樹脂、シリコーン系樹脂、アクリル系樹脂、マレイミド系樹脂及びエポキシ系樹脂から選ばれる。絶縁性樹脂としては、硬化性樹脂や発泡性樹脂であることが好ましい。
 絶縁性樹脂には、更にフィラーを含んでいてもよい。フィラーとしては、中空フィラーが好ましい。中空フィラーとしては、特に制限されず、公知のものを用いることができ、例えば、ガラスバルーン、シリカバルーン、シラスバルーン、フライアッシュバルーン、金属ケイ酸塩等のバルーン(中空体)である無機物系中空フィラー、また、アクリロニトリル、塩化ビニリデン、フェノール樹脂、エポキシ樹脂、尿素樹脂等のバルーン(中空体)である有機樹脂物系中空フィラーが挙げられる。中空フィラーを用いることで、絶縁性樹脂の熱伝導率を下げ、熱電性能がより向上する。
 セラミックスとしては、酸化アルミニウム(アルミナ)、窒化アルミニウム、酸化ジルコニウム(ジルコニア)、炭化ケイ素等を主成分(セラミックス中で50質量%以上)とする材料が挙げられる。なお、上記主成分以外に、例えば、希土類化合物を添加することもできる。
Examples of insulating resins include polyimide-based resins, silicone-based resins, rubber-based resins, acrylic-based resins, olefin-based resins, maleimide-based resins, epoxy-based resins, and the like. From the viewpoint of heat resistance and mechanical strength, it is preferably selected from polyimide resins, silicone resins, acrylic resins, maleimide resins and epoxy resins. The insulating resin is preferably a curable resin or a foaming resin.
The insulating resin may further contain a filler. A hollow filler is preferable as the filler. The hollow filler is not particularly limited, and known fillers can be used. For example, inorganic hollow fillers such as glass balloons, silica balloons, shirasu balloons, fly ash balloons, and metal silicate balloons (hollow bodies) can be used. Fillers, and organic resin-based hollow fillers such as acrylonitrile, vinylidene chloride, phenolic resins, epoxy resins, and urea resins, which are balloons (hollow bodies), can be used. By using the hollow filler, the thermal conductivity of the insulating resin is lowered, and the thermoelectric performance is further improved.
Examples of ceramics include materials containing aluminum oxide (alumina), aluminum nitride, zirconium oxide (zirconia), silicon carbide, etc. as a main component (50% by mass or more in ceramics). In addition to the above main components, for example, a rare earth compound can also be added.
 絶縁体を充填する方法としては、公知の方法で行うことができる。例えば、液状樹脂を用い、P型熱電半導体材料のチップとN型熱電半導体材料のチップとが交互に配置された支持体面上に、スキージ等の塗布部材を用いて樹脂を塗り広げ充填する方法、また、支持体の略中心部から外側にわたり滴下した後、スピンコート法により充填する方法、更に、支持体ごと液状樹脂の貯留槽等に浸漬させた後、引き上げることにより充填する方法、更にまた、シート状の絶縁性樹脂を用いて、P型熱電半導体材料のチップとN型熱電半導体材料のチップとが交互に配置された支持体面上にシート状の絶縁性樹脂を貼付し、加熱及び/又は加圧によりシート状の絶縁性樹脂を溶融させ充填する方法等が挙げられる。充填後は、熱硬化等を行う。 A known method can be used to fill the insulator. For example, using a liquid resin, a method of spreading and filling the resin on the support surface on which the chips of the P-type thermoelectric semiconductor material and the chips of the N-type thermoelectric semiconductor material are alternately arranged, using a coating member such as a squeegee, Further, a method of filling by spin coating after dripping from approximately the center of the support to the outside, a method of filling by immersing the support together with a liquid resin storage tank or the like and pulling it up, and further, Using a sheet-shaped insulating resin, the sheet-shaped insulating resin is attached to the surface of the support on which the chips of the P-type thermoelectric semiconductor material and the chips of the N-type thermoelectric semiconductor material are alternately arranged, and heated and/or A method of melting and filling a sheet-shaped insulating resin by pressurization can be used. After filling, heat curing or the like is performed.
 支持体としては、特に制限はなく、ガラス、シリコン、セラミックス、金属、又はプラスチック等が挙げられる。好ましくはガラス、プラスチック及びシリコンから選ばれる。アニール処理等を高温度下で行う場合は、ガラス、シリコン、セラミックス、又は金属が好ましい。
 なお、当該支持体は、複数の熱電変換素子とそれらの間に位置する絶縁体との一体化物が得られた後、剥離される。前述した犠牲層を有する基材を支持体として用いることができ、また、犠牲層を有する基材から、別の支持体に熱電変換素子を転移させてもよい。
The support is not particularly limited, and examples thereof include glass, silicon, ceramics, metals, plastics, and the like. It is preferably selected from glass, plastic and silicon. Glass, silicon, ceramics, or metal is preferable when annealing treatment or the like is performed at a high temperature.
Note that the support is peeled off after an integrated product of a plurality of thermoelectric conversion elements and insulators positioned therebetween is obtained. The substrate having the sacrificial layer described above can be used as the support, and the thermoelectric conversion element may be transferred from the substrate having the sacrificial layer to another support.
<接続電極の形成>
 次に、一対の熱電変換素子の接続、又は、外部接続のために用いる接続電極を形成する。
 接続電極は、好ましくは蒸着膜、めっき膜、導電性組成物及び金属箔からなる群より選ばれる少なくとも1種の膜で形成される。
 接続電極に用いる金属材料は、特に制限されないが、銅、金、ニッケル、アルミニウム、ロジウム、白金、クロム、パラジウム、ステンレス鋼、モリブデン、ハンダ又はこれらのいずれかの金属を含む合金等が挙げられる。
<Formation of Connection Electrode>
Next, connection electrodes used for connecting a pair of thermoelectric conversion elements or for external connection are formed.
The connection electrode is preferably formed of at least one film selected from the group consisting of a vapor deposited film, a plated film, a conductive composition and a metal foil.
The metal material used for the connection electrode is not particularly limited, and examples thereof include copper, gold, nickel, aluminum, rhodium, platinum, chromium, palladium, stainless steel, molybdenum, solder, and alloys containing any of these metals.
 接続電極を形成する方法としては、前述した、複数の熱電変換素子及び絶縁体層との一体化物(以下単に「一体化物」ともいう)上に、パターンが形成されていない電極を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、又は、上記金属材料等を含む導電性組成物からなる導電性ペーストを用い、スクリーン印刷法、インクジェット法等により直接電極のパターンを形成する方法等が挙げられる。
 パターンが形成されていない電極の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等のドライプロセス、又はディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティングや電着法等のウェットプロセス、銀塩法、電解めっき法、無電解めっき法、金属箔の積層等が挙げられ、電極の材料に応じて適宜選択される。金属箔の積層には、はんだを用いて熱電材料等と接合してもよい。
 上記接続電極には、熱電性能を維持する観点から、高い導電性、高い熱伝導性が求められるため、めっき法や真空成膜法で成膜した電極を用いることがより好ましい。高い導電性、高い熱伝導性を容易に実現できることから、真空蒸着法、スパッタリング法等の真空成膜法、および電解めっき法、無電解めっき法が好ましい。形成パターンの寸法、寸法精度の要求にもよるが、メタルマスク等のハードマスクを介し、容易にパターンを形成することもできる。
As a method for forming the connection electrodes, after providing an electrode without a pattern formed on the above-described integrated product of the plurality of thermoelectric conversion elements and the insulating layer (hereinafter also simply referred to as "integrated product"), A method of processing into a predetermined pattern shape by a known physical treatment or chemical treatment mainly based on photolithography, or a combination thereof, or a conductive composition comprising the above-mentioned metal material or the like A method of directly forming an electrode pattern by using a paste, a screen printing method, an inkjet method, or the like can be used.
Methods for forming electrodes without a pattern include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating, or CVD (chemical vapor deposition) such as thermal CVD and atomic layer deposition (ALD). vapor phase growth method), or various coatings such as dip coating method, spin coating method, spray coating method, gravure coating method, die coating method, doctor blade method, wet process such as electrodeposition method, silver salt method , electroplating method, electroless plating method, lamination of metal foil, etc., and are appropriately selected according to the material of the electrode. For lamination of metal foils, solder may be used to bond them to a thermoelectric material or the like.
From the viewpoint of maintaining the thermoelectric performance, the connection electrodes are required to have high electrical conductivity and high thermal conductivity. Therefore, it is more preferable to use electrodes formed by a plating method or a vacuum film forming method. A vacuum deposition method such as a vacuum deposition method or a sputtering method, an electroplating method, or an electroless plating method is preferable because high electrical conductivity and high thermal conductivity can be easily realized. The pattern can be easily formed through a hard mask such as a metal mask, depending on the size of the formed pattern and the required dimensional accuracy.
 上記接続電極の層の厚さは、好ましくは10nm~200μm、より好ましくは30nm~150μm、更に好ましくは50nm~120μmである。接続電極の層の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり、接続電極として十分な強度が得られる。 The thickness of the connection electrode layer is preferably 10 nm to 200 μm, more preferably 30 nm to 150 μm, and even more preferably 50 nm to 120 μm. If the thickness of the layer of the connection electrode is within the above range, the electrical conductivity is high, the resistance is low, and sufficient strength is obtained as the connection electrode.
<接着剤層の形成>
 熱電変換モジュールであるペルチェ素子の少なくとも一方の面に接着剤層を設ける。すなわち、隣接する第1の接続電極間の空隙を含め、第1の接続電極上に接着剤層を設ける。そして、この接着剤層によって、例えば、ペルチェ素子をベーパーチャンバーに接着することにより、ペルチェ素子を容易に設置することができる。また、第1の接続電極間の空隙を含めることにより、耐候性を向上させることができる。更に、ベーパーチャンバーとペルチェ素子の接続電極との間の絶縁性を確保することができる。
 なお、接着剤層は、予めベーパーチャンバーの表面に形成してもよい。
<Formation of Adhesive Layer>
An adhesive layer is provided on at least one surface of a Peltier device, which is a thermoelectric conversion module. That is, an adhesive layer is provided on the first connection electrodes including the gaps between adjacent first connection electrodes. Then, by bonding the Peltier element to the vapor chamber with this adhesive layer, for example, the Peltier element can be easily installed. In addition, weather resistance can be improved by including a gap between the first connection electrodes. Furthermore, insulation between the vapor chamber and the connection electrodes of the Peltier element can be ensured.
Note that the adhesive layer may be formed in advance on the surface of the vapor chamber.
 接着剤層は、ベーパーチャンバーに容易に接着できるものであればよく、特に制限されないが、接着性樹脂を含むものであることが好ましく、所望により、架橋剤、粘着付与剤、重合性化合物、重合開始剤等の粘着剤用添加剤、シランカップリング剤、帯電防止剤、酸化防止剤、紫外線吸収剤、光安定剤、軟化剤、充填材、屈折率調整剤、着色剤等を含有してもよい。これらのうち、接着剤層の熱伝導性を向上させ、ペルチェ素子40とべーパーチャンバー30との間の熱抵抗を小さくする観点から、充填材として窒化ホウ素フィラー、アルミナフィラー等を用いてもよい。
 なお、本明細書において、「接着性樹脂」とは、粘着性を有する樹脂をも含む概念であり、例えば、樹脂自体が粘着性を有するものだけでなく、添加剤等の他の成分との併用により粘着性を示す樹脂も含まれ、熱又は水等のトリガーの存在によって接着性を示す樹脂等も含む。
The adhesive layer is not particularly limited as long as it can be easily adhered to the vapor chamber, but it preferably contains an adhesive resin, and if desired, a cross-linking agent, a tackifier, a polymerizable compound, and a polymerization initiator. Adhesive additives such as silane coupling agents, antistatic agents, antioxidants, UV absorbers, light stabilizers, softeners, fillers, refractive index modifiers, colorants and the like may be contained. Among these, from the viewpoint of improving the thermal conductivity of the adhesive layer and reducing the thermal resistance between the Peltier element 40 and the vapor chamber 30, boron nitride filler, alumina filler, or the like may be used as the filler.
In this specification, the term "adhesive resin" is a concept that includes adhesive resins. It also includes a resin that exhibits adhesiveness when used in combination, and also includes a resin that exhibits adhesiveness due to the presence of a trigger such as heat or water.
 接着性樹脂としては、例えば、アクリル系樹脂、ウレタン系樹脂、ポリイソブチレン系樹脂等のゴム系樹脂、ポリエステル系樹脂、オレフィン系樹脂、シリコーン系樹脂、エポキシ系樹脂及びポリビニルエーテル系樹脂等が挙げられる。
 接着剤層の厚さは、特に限定されないが、1~50μmであることが好ましく、2~30μmであることがより好ましい。
Examples of adhesive resins include acrylic resins, urethane resins, rubber resins such as polyisobutylene resins, polyester resins, olefin resins, silicone resins, epoxy resins, and polyvinyl ether resins. .
Although the thickness of the adhesive layer is not particularly limited, it is preferably 1 to 50 μm, more preferably 2 to 30 μm.
 接着剤層は、粘着性樹脂を含む粘着剤組成物から、公知の方法で、直接、一体化物上の電極上に形成してもよい。接着剤層の形成方法として、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ロールナイフコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。 The adhesive layer may be directly formed on the electrode on the integrated body by a known method from an adhesive composition containing an adhesive resin. Examples of methods for forming the adhesive layer include spin coating, spray coating, bar coating, knife coating, roll coating, roll knife coating, blade coating, die coating, and gravure coating.
 接着剤層の少なくともいずれか一方の面が、ベーパーチャンバーに接着されるまでの間、剥離フィルムによって覆われていてもよい。剥離フィルムとしては、特に限定されないが、例えば、取り扱い易さの観点から、剥離フィルムは、剥離基材と、剥離基材の上に剥離剤が塗布されて形成された剥離剤層とを備えることが好ましい。また、剥離フィルムは、剥離基材の片面のみに剥離剤層を備えていてもよいし、剥離基材の両面に剥離剤層を備えていてもよい。剥離基材としては、例えば、紙基材、この紙基材にポリエチレン等の熱可塑性樹脂をラミネートしたラミネート紙、並びにプラスチックフィルム等が挙げられる。紙基材としては、グラシン紙、コート紙、及びキャストコート紙等が挙げられる。プラスチックフィルムとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、及びポリエチレンナフタレート等のポリエステルフィルム、並びにポリプロピレン及びポリエチレン等のポリオレフィンフィルム等が挙げられる。剥離剤としては、例えば、オレフィン系樹脂、ゴム系エラストマー(例えば、ブタジエン系樹脂、イソプレン系樹脂等)、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂、及びシリコーン系樹脂が挙げられる。 At least one side of the adhesive layer may be covered with a release film until it is adhered to the vapor chamber. The release film is not particularly limited, but from the viewpoint of ease of handling, for example, the release film may include a release substrate and a release agent layer formed by coating a release agent on the release substrate. is preferred. Moreover, the release film may have a release agent layer on only one side of the release substrate, or may have a release agent layer on both sides of the release substrate. Examples of the release substrate include a paper substrate, a laminated paper obtained by laminating a thermoplastic resin such as polyethylene on the paper substrate, and a plastic film. Examples of paper substrates include glassine paper, coated paper, and cast-coated paper. Plastic films include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. Examples of release agents include olefin-based resins, rubber-based elastomers (eg, butadiene-based resins, isoprene-based resins, etc.), long-chain alkyl-based resins, alkyd-based resins, fluorine-based resins, and silicone-based resins.
 剥離フィルムを有する接着剤層は、例えば、次のような工程を経て製造される。
 まず、剥離フィルム上に接着剤組成物を塗布し、塗膜を形成する。次に、塗膜を乾燥させて、接着剤層を形成する。次に、剥離フィルム上の接着剤層と、一体化物上の電極とを貼り合わせることにより製造できる。
An adhesive layer having a release film is produced, for example, through the following steps.
First, an adhesive composition is applied onto a release film to form a coating film. The coating is then dried to form an adhesive layer. Next, it can be produced by bonding the adhesive layer on the release film and the electrode on the integrated product.
<ペルチェ素子の設置>
 上記接着剤層によって、ペルチェ素子をベーパーチャンバーに接着することにより、ペルチェ素子をベーパーチャンバーの裏面に設置する。
<Installation of Peltier device>
By bonding the Peltier element to the vapor chamber with the adhesive layer, the Peltier element is installed on the back surface of the vapor chamber.
[温度制御モジュールの製造方法の他の例]
 熱電変換素子の形成後にベーパーチャンバーの組み立てを行う場合は、熱電変換素子の作製を上記基材上ではなく、ベーパーチャンバーを構成する平板やシート上で行うこともできる。
 この場合、上記接着剤層をペルチェ素子に設けることに代えて、必要に応じてパッシベーション膜を、ベーパーチャンバーを構成する平板やシートに形成した後、ベーパーチャンバーを構成する平板やシートの表面上に直接に、又はパッシベーション膜上に下面側の接続電極を形成し、更に、熱電半導体材料組成物を塗布し、必要に応じて乾燥やアニール処理を行って、熱電変換素子を作製する。そして、熱電変換素子間に上記絶縁体を充填した後、上面側の接続電極を形成する。その後、必要に応じて上面側の接続電極上に接着剤層を形成する。この場合、接着剤層が硬化性のものであれば、接着剤層を硬化させることで、上面側の接着剤層の接着性を消失させることが容易である。
 この後、もう一方の平板又はシートを接合し、作動流体を注入した後、注入口を封止してベーパーチャンバーを完成させることにより、温度制御モジュールを得ることができる。なお、図3に示す温度制御モジュール1Cのように、ベーパーチャンバーの両面にペルチェ素子をそれぞれ配置する場合は、第1シートと第2シートのそれぞれに上述した手順でペルチェ素子形成した後、第1シートと第2シートを接合してベーパーチャンバーを組み立てるようにすればよい。
 このように、ベーパーチャンバーを構成する平板やシート上で塗布法によって熱電変換素子を形成することにより、介在層等の他の層が不要になり、より薄型の温度制御モジュールを得やすくなる。
[Other examples of manufacturing method of temperature control module]
When the vapor chamber is assembled after forming the thermoelectric conversion elements, the thermoelectric conversion elements can be fabricated not on the substrate but on a flat plate or sheet that constitutes the vapor chamber.
In this case, instead of providing the adhesive layer on the Peltier element, a passivation film is formed on the flat plate or sheet constituting the vapor chamber as necessary, and then the passivation film is formed on the surface of the flat plate or sheet constituting the vapor chamber. A connection electrode on the lower surface side is formed directly or on the passivation film, a thermoelectric semiconductor material composition is further applied, and drying or annealing treatment is performed as necessary to produce a thermoelectric conversion element. Then, after filling the insulator between the thermoelectric conversion elements, the connection electrodes on the upper surface side are formed. After that, an adhesive layer is formed on the connection electrodes on the upper surface side, if necessary. In this case, if the adhesive layer is curable, it is easy to lose the adhesiveness of the adhesive layer on the upper surface side by curing the adhesive layer.
After that, another flat plate or sheet is joined, the working fluid is injected, and the injection port is sealed to complete the vapor chamber, thereby obtaining the temperature control module. When Peltier elements are arranged on both sides of the vapor chamber, respectively, as in the temperature control module 1C shown in FIG. The vapor chamber may be assembled by joining the sheet and the second sheet.
By forming the thermoelectric conversion element on the flat plate or sheet that constitutes the vapor chamber by the coating method in this way, other layers such as an intervening layer become unnecessary, and a thinner temperature control module can be easily obtained.
 本発明の温度制御モジュールは、冷却性能が高く薄型の温度制御モジュールであるため、狭い場所へ設置することが求められる用途、特に、発熱温度が高い部品が狭い空間に配置されている携帯電子機器等の用途に適している。また、軽量化が求められる用途、屈曲性が求められる用途等にも適した温度制御モジュールとすることができる。
 なお、本出願は、2022年1月11日付けで出願された日本特許出願(特願2022-002595)に基づいており、その全体が引用により援用される。
Since the temperature control module of the present invention is a thin temperature control module with high cooling performance, it is used for applications that require installation in a narrow space, especially portable electronic devices in which components with high heat generation temperature are arranged in a narrow space. Suitable for applications such as In addition, the temperature control module can be made suitable for applications that require weight reduction, applications that require flexibility, and the like.
This application is based on a Japanese patent application (Japanese Patent Application No. 2022-002595) filed on January 11, 2022, the entirety of which is incorporated by reference.
1A、1B、1C、1D、1E:温度制御モジュール
10:第1シート
11:周縁部
12:凹部
13:凸条
14、15:溝(凝縮液流路)
16、17:液連通開口部
18:注入口形成部
20:第2シート
21:周縁部
22:凹部
23:凸条
24:注入口
30:ベーパーチャンバー
31:密閉空間(蒸気流路)
32:設置予定領域
40、70、80:ペルチェ素子
41、71、81:第1の接続電極
42、72、82:第2の接続電極
43、73、83:P型熱電変換素子
44、74、84:N型熱電変換素子
45、75、85:充填剤層
46、76、86:絶縁体層
47、77、87:被覆層
48、78、88:熱電変換層
50:温度制御対象部材
60:介在層
D:温度制御モジュールの厚さ
D1:ペルチェ素子及びベーパーチャンバーの合計厚さ
D2:ベーパーチャンバーの厚さ
D3:ペルチェ素子の厚さ
D4:介在層の厚さ
D31:第1ペルチェ素子の厚さ
D32:第2ペルチェ素子の厚さ

 
1A, 1B, 1C, 1D, 1E: temperature control module 10: first sheet 11: peripheral edge 12: recess 13: ridges 14, 15: groove (condensate flow path)
16, 17: liquid communication opening 18: injection port forming portion 20: second sheet 21: peripheral edge portion 22: recess 23: ridge 24: injection port 30: vapor chamber 31: closed space (vapor flow path)
32: Installation planned areas 40, 70, 80: Peltier elements 41, 71, 81: First connection electrodes 42, 72, 82: Second connection electrodes 43, 73, 83: P-type thermoelectric conversion elements 44, 74, 84: N-type thermoelectric conversion elements 45, 75, 85: Filler layers 46, 76, 86: Insulator layers 47, 77, 87: Coating layers 48, 78, 88: Thermoelectric conversion layer 50: Temperature controlled member 60: Intervening layer D: thickness of temperature control module D1: total thickness of Peltier element and vapor chamber D2: thickness of vapor chamber D3: thickness of Peltier element D4: thickness of intervening layer D31: thickness of first Peltier element Thickness D32: Thickness of the second Peltier element

Claims (6)

  1.  ペルチェ素子と、前記ペルチェ素子上に積層されたベーパーチャンバーと、を備え、
     前記ペルチェ素子及び前記ベーパーチャンバーの合計厚さが1mm以下である、温度制御モジュール。
    A Peltier element and a vapor chamber stacked on the Peltier element,
    A temperature control module, wherein the total thickness of the Peltier element and the vapor chamber is 1 mm or less.
  2.  ペルチェ素子と、前記ペルチェ素子上に積層されたベーパーチャンバーと、を備える温度制御モジュールであって、前記温度制御モジュールの厚さが1mm以下である、温度制御モジュール。 A temperature control module comprising a Peltier element and a vapor chamber laminated on the Peltier element, wherein the temperature control module has a thickness of 1 mm or less.
  3.  前記ペルチェ素子は、複数の熱電変換素子を含む熱電変換層を備えており、前記複数の熱電変換素子が熱電半導体材料を含む組成物の塗膜の焼成体である、請求項1又は2に記載の温度制御モジュール。 3. The Peltier device according to claim 1 or 2, wherein the Peltier device comprises a thermoelectric conversion layer containing a plurality of thermoelectric conversion elements, and the plurality of thermoelectric conversion elements is a fired body of a coating film of a composition containing a thermoelectric semiconductor material. temperature control module.
  4.  前記熱電半導体材料を含む組成物が、熱電半導体粒子と重合体成分とイオン化合物とを含む、請求項3に記載の温度制御モジュール。 The temperature control module according to claim 3, wherein the composition containing the thermoelectric semiconductor material contains thermoelectric semiconductor particles, a polymer component, and an ionic compound.
  5.  前記ペルチェ素子は、複数の熱電変換素子を含む熱電変換層を備えており、前記複数の熱電変換素子がビスマス-テルル化合物を含む、請求項1~4のいずれか1項に記載の温度制御モジュール。 The temperature control module according to any one of claims 1 to 4, wherein the Peltier element includes a thermoelectric conversion layer containing a plurality of thermoelectric conversion elements, and the plurality of thermoelectric conversion elements contain a bismuth-tellurium compound. .
  6.  冷却モジュールである、請求項1~5のいずれか1項に記載の温度制御モジュール。

     
    A temperature control module according to any one of claims 1 to 5, which is a cooling module.

PCT/JP2022/048456 2022-01-11 2022-12-28 Temperature control module WO2023136155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022002595 2022-01-11
JP2022-002595 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023136155A1 true WO2023136155A1 (en) 2023-07-20

Family

ID=87278961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048456 WO2023136155A1 (en) 2022-01-11 2022-12-28 Temperature control module

Country Status (2)

Country Link
TW (1) TW202338544A (en)
WO (1) WO2023136155A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181504A1 (en) * 2014-12-23 2016-06-23 Palo Alto Research Center Incorporated Method for roll-to-roll production of flexible, stretchy objects with integrated thermoelectric modules, electronics and heat dissipation
JP2019050239A (en) * 2017-09-07 2019-03-28 株式会社村田製作所 Semiconductor package
WO2021241635A1 (en) * 2020-05-29 2021-12-02 リンテック株式会社 Thermoelectric conversion module and manufacturing method therefor
WO2022084884A1 (en) * 2020-10-21 2022-04-28 3M Innovative Properties Company Flexible thermoelectric device including vapor chamber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181504A1 (en) * 2014-12-23 2016-06-23 Palo Alto Research Center Incorporated Method for roll-to-roll production of flexible, stretchy objects with integrated thermoelectric modules, electronics and heat dissipation
JP2019050239A (en) * 2017-09-07 2019-03-28 株式会社村田製作所 Semiconductor package
WO2021241635A1 (en) * 2020-05-29 2021-12-02 リンテック株式会社 Thermoelectric conversion module and manufacturing method therefor
WO2022084884A1 (en) * 2020-10-21 2022-04-28 3M Innovative Properties Company Flexible thermoelectric device including vapor chamber

Also Published As

Publication number Publication date
TW202338544A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
TWI673165B (en) Boer post cooling element and method of manufacturing same
WO2018181661A1 (en) Thermoelectric conversion device
JP7245652B2 (en) Flexible thermoelectric conversion element and manufacturing method thereof
JP7406756B2 (en) Thermoelectric conversion module and its manufacturing method
JP6672562B2 (en) Peltier cooling element and method of manufacturing the same
TW201705403A (en) Waste heat recovery sheet
WO2021065670A1 (en) Thermoelectric conversion module
JP7346427B2 (en) Method for manufacturing chips of thermoelectric conversion material and method for manufacturing thermoelectric conversion modules using chips obtained by the manufacturing method
WO2023136155A1 (en) Temperature control module
JP7294607B2 (en) Thermoelectric conversion module manufacturing method and thermoelectric conversion module
JP7386801B2 (en) Method for manufacturing intermediate for thermoelectric conversion module
JP2019179911A (en) Thermoelectric conversion module
WO2022092177A1 (en) Thermoelectric conversion module
US11974504B2 (en) Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body
WO2020196001A1 (en) Thermoelectric conversion module and method for producing thermoelectric conversion module
WO2020022228A1 (en) Thermoelectric conversion unit
JP2023006278A (en) Semiconductor device and method for manufacturing semiconductor device
TW202023073A (en) Semiconductor element
JP7506054B2 (en) Thermoelectric conversion module and method for manufacturing the thermoelectric conversion module
JP7506089B2 (en) Window and window spacer member
WO2021200265A1 (en) Thermoelectric conversion module
TW202306067A (en) Semiconductor sealing body
JP2021158237A (en) Thermoelectric conversion module
WO2021193358A1 (en) Thermoelectric conversion module
WO2021100674A1 (en) Window and window spacer member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920671

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023573980

Country of ref document: JP